File size: 10,949 Bytes
25d2eb7
2827b8a
 
39a5b1c
2827b8a
7a1cd7a
a81fb12
95530b9
e9a1430
f5eb405
95530b9
393e68a
225d3fb
 
393e68a
3b4c438
f5eb405
95530b9
 
 
 
c58907b
 
24f7d5b
ed5b7bd
 
 
 
 
 
 
 
 
 
95530b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
7a1cd7a
ed5b7bd
 
 
 
 
 
 
 
7a1cd7a
73a84b9
 
 
24f7d5b
ed5b7bd
 
 
 
225d3fb
ed5b7bd
 
 
95530b9
 
7a1cd7a
4f0286f
24f7d5b
 
 
 
 
 
 
 
 
2827b8a
ed5b7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
f5eb405
 
3bd0812
95530b9
 
 
 
f39d105
24f7d5b
f5eb405
95530b9
 
 
 
c58907b
 
95530b9
 
2a0be82
 
95530b9
2258895
c58907b
3bd0812
5422464
5d96b3d
95530b9
 
 
 
 
 
 
 
 
 
5422464
 
3bd0812
95530b9
c58907b
95530b9
 
 
 
 
f39d105
24f7d5b
95530b9
 
 
 
c58907b
 
95530b9
 
2a0be82
 
95530b9
2258895
c58907b
39a5b1c
 
5d96b3d
95530b9
 
 
 
 
 
 
 
 
 
39a5b1c
 
 
95530b9
f5eb405
6b0e834
39a5b1c
c58907b
 
72c7e2c
365d622
e49e0e9
24f7d5b
d54c792
 
 
 
24f7d5b
4f0286f
 
2f9e086
4f0286f
1744dee
4f0286f
 
 
95530b9
225d3fb
4f0286f
 
1744dee
4f0286f
 
95530b9
225d3fb
4f0286f
 
95530b9
2f9e086
 
 
 
1a5f99b
c58907b
4f0286f
24f7d5b
95530b9
4f0286f
95530b9
4f0286f
 
 
 
 
 
 
 
 
 
 
c58907b
4f0286f
c58907b
4f0286f
 
72c7e2c
4f0286f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff

# Load the model
model = StaticModel.from_pretrained("minishlab/potion-base-8M")

# Default parameters
default_dataset_name = "ag_news"
default_dataset1_split = "train"  # Default for the first dataset is "train"
default_dataset2_split = "test"   # Default for the second dataset is "test"
default_text_column = "text"
default_threshold = 0.9

def deduplicate_embeddings(
    embeddings_a: np.ndarray,
    embeddings_b: np.ndarray = None,
    threshold: float = 0.9,
    batch_size: int = 1024,
    progress=None
) -> tuple[np.ndarray, dict[int, int]]:
    """
    Deduplicate embeddings within one dataset or across two datasets.

    :param embeddings_a: Embeddings of Dataset 1.
    :param embeddings_b: Optional, embeddings of Dataset 2.
    :param threshold: Similarity threshold for deduplication.
    :param batch_size: Batch size for similarity computation.
    :param progress: Gradio progress tracker for feedback.
    :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
    """
    if embeddings_b is None:
        reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
        duplicate_to_original = {}
        results = reach.nearest_neighbor_threshold(
            embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
        )
        for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
            for sim_idx, _ in similar_items:
                sim_idx = int(sim_idx)
                if sim_idx != i and sim_idx not in duplicate_to_original:
                    duplicate_to_original[sim_idx] = i
        deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
        return deduplicated_indices, duplicate_to_original
    else:
        reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
        duplicate_indices_in_b = []
        duplicate_to_original = {}
        results = reach.nearest_neighbor_threshold(
            embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
        )
        for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
            if similar_items:
                duplicate_indices_in_b.append(i)
                duplicate_to_original[i] = int(similar_items[0][0])
        return duplicate_indices_in_b, duplicate_to_original

def display_word_differences(x: str, y: str) -> str:
    """
    Display the word-level differences between two texts, formatted to avoid
    misinterpretation of Markdown syntax.

    :param x: First text.
    :param y: Second text.
    :return: A string showing word-level differences, wrapped in a code block.
    """
    diff = ndiff(x.split(), y.split())
    formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
    return f"```\n{formatted_diff}\n```"

def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
    """
    Load texts from a specified dataset and split.

    :param dataset_name: Name of the dataset.
    :param dataset_split: Split of the dataset (e.g., 'train', 'validation', 'test').
    :param text_column: Name of the text column.
    :return: A list of texts from the dataset.
    """
    ds = load_dataset(dataset_name, split=dataset_split)
    return [example[text_column] for example in ds]

def perform_deduplication(
    deduplication_type: str,
    dataset1_name: str,
    dataset1_split: str,
    dataset1_text_column: str,
    dataset2_name: str = "",
    dataset2_split: str = "",
    dataset2_text_column: str = "",
    threshold: float = default_threshold,
    progress: gr.Progress = gr.Progress(track_tqdm=True)
):
    """
    Perform deduplication on one or two datasets based on the deduplication type.

    :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
    :param dataset1_name: Name of the first dataset.
    :param dataset1_split: Split of the first dataset.
    :param dataset1_text_column: Text column of the first dataset.
    :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
    :param dataset2_split: Optional, split of the second dataset.
    :param dataset2_text_column: Optional, text column of the second dataset.
    :param threshold: Similarity threshold for deduplication.
    :param progress: Gradio progress tracker.
    :return: Status updates and result text for the Gradio interface.
    """
    try:
        threshold = float(threshold)

        # Load and process Dataset 1
        yield "Loading Dataset 1...", ""
        texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
        yield "Computing embeddings for Dataset 1...", ""
        embeddings1 = model.encode(texts1, show_progressbar=True)

        if deduplication_type == "Single dataset":
            # Deduplicate within Dataset 1
            yield "Deduplicating within Dataset 1...", ""
            deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
                embeddings1, threshold=threshold, progress=progress
            )

            num_duplicates = len(duplicate_mapping)
            result_text = (
                f"**Total documents:** {len(texts1)}\n\n"
                f"**Duplicates found:** {num_duplicates}\n\n"
                f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
                + "-" * 50 + "\n\n"
            )

            if num_duplicates > 0:
                result_text += "**Example duplicates:**\n\n"
                for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
                    orig_text = texts1[orig_idx]
                    dup_text = texts1[dup_idx]
                    differences = display_word_differences(orig_text, dup_text)
                    result_text += (
                        f"**Original:**\n{orig_text}\n\n"
                        f"**Duplicate:**\n{dup_text}\n\n"
                        f"**Differences:**\n{differences}\n"
                        + "-" * 50 + "\n\n"
                    )
            else:
                result_text += "No duplicates found."

            yield "Deduplication completed.", result_text

        else:
            # Load and process Dataset 2
            yield "Loading Dataset 2...", ""
            texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
            yield "Computing embeddings for Dataset 2...", ""
            embeddings2 = model.encode(texts2, show_progressbar=True)

            # Deduplicate Dataset 2 against Dataset 1
            yield "Deduplicating Dataset 2 against Dataset 1...", ""
            duplicate_indices, duplicate_mapping = deduplicate_embeddings(
                embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
            )

            num_duplicates = len(duplicate_indices)
            result_text = (
                f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
                f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
                f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
                + "-" * 50 + "\n\n"
            )

            if num_duplicates > 0:
                result_text += "**Example duplicates from Dataset 2:**\n\n"
                for idx in duplicate_indices[:5]:
                    orig_text = texts1[duplicate_mapping[idx]]
                    dup_text = texts2[idx]
                    differences = display_word_differences(orig_text, dup_text)
                    result_text += (
                        f"**Original (Dataset 1):**\n{orig_text}\n\n"
                        f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
                        f"**Differences:**\n{differences}\n"
                        + "-" * 50 + "\n\n"
                    )
            else:
                result_text += "No duplicates found."

            yield "Deduplication completed.", result_text

    except Exception as e:
        yield f"An error occurred: {e}", ""
        raise e

# Gradio app with stop button support
with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }") as demo:
    gr.Markdown("# Semantic Deduplication")
    gr.Markdown("""
    This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
    It can be used to identify duplicate texts within a single dataset or across two datasets.
    You can adjust the similarity threshold to control the strictness of the deduplication.\n
    NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
    """)

    deduplication_type = gr.Radio(
        choices=["Cross-dataset", "Single dataset"],  # Swapped "Cross-dataset" to the left
        label="Deduplication Type",
        value="Cross-dataset",  # Set "Cross-dataset" as the default value
    )

    with gr.Row():
        dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
        dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")  # Default split is "train"
        dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    dataset2_inputs = gr.Column(visible=True)  # Make dataset2_inputs visible by default
    with dataset2_inputs:
        with gr.Row():
            dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
            dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")  # Default split is "test"
            dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")

    with gr.Row():  # Placing the button in the same row for better alignment
        compute_button = gr.Button("Deduplicate")

    status_output = gr.Markdown(elem_id="status_output")
    result_output = gr.Markdown()

    def update_visibility(choice: str):
        return gr.update(visible=choice == "Cross-dataset")

    deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)

    compute_button.click(
        fn=perform_deduplication,
        inputs=[
            deduplication_type,
            dataset1_name,
            dataset1_split,
            dataset1_text_column,
            dataset2_name,
            dataset2_split,
            dataset2_text_column,
            threshold,
        ],
        outputs=[status_output, result_output],
    )


demo.launch()