Updates
Browse files
app.py
CHANGED
@@ -14,20 +14,6 @@ default_dataset_split = "train"
|
|
14 |
default_text_column = "sentence"
|
15 |
default_threshold = 0.9
|
16 |
|
17 |
-
# def batch_iterable(iterable, batch_size):
|
18 |
-
# """Yield successive batches from an iterable."""
|
19 |
-
# for i in range(0, len(iterable), batch_size):
|
20 |
-
# yield iterable[i:i + batch_size]
|
21 |
-
|
22 |
-
# def compute_embeddings(texts, batch_size, progress, desc):
|
23 |
-
# """Compute embeddings for a list of texts with progress tracking."""
|
24 |
-
# embeddings = []
|
25 |
-
# total_batches = (len(texts) + batch_size - 1) // batch_size
|
26 |
-
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
27 |
-
# embeddings.append(model.encode(batch_texts, show_progressbar=False))
|
28 |
-
# progress((i + 1) / total_batches, desc=desc)
|
29 |
-
# return np.concatenate(embeddings, axis=0)
|
30 |
-
|
31 |
def deduplicate_embeddings(
|
32 |
embeddings_a: np.ndarray,
|
33 |
embeddings_b: np.ndarray = None,
|
@@ -101,8 +87,8 @@ def perform_deduplication(
|
|
101 |
|
102 |
num_duplicates = len(duplicate_mapping)
|
103 |
result_text = (
|
104 |
-
f"**Total documents:** {len(texts1)}\n"
|
105 |
-
f"**Duplicates found:** {num_duplicates}\n"
|
106 |
f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
107 |
)
|
108 |
|
@@ -138,8 +124,8 @@ def perform_deduplication(
|
|
138 |
|
139 |
num_duplicates = len(duplicate_indices)
|
140 |
result_text = (
|
141 |
-
f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n"
|
142 |
-
f"**Duplicates found in Dataset 2:** {num_duplicates}\n"
|
143 |
f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
144 |
)
|
145 |
|
@@ -212,358 +198,3 @@ with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
|
212 |
)
|
213 |
|
214 |
demo.launch()
|
215 |
-
|
216 |
-
# import gradio as gr
|
217 |
-
# from datasets import load_dataset
|
218 |
-
# import numpy as np
|
219 |
-
# from model2vec import StaticModel
|
220 |
-
# from reach import Reach
|
221 |
-
# from difflib import ndiff
|
222 |
-
|
223 |
-
# # Load the model at startup
|
224 |
-
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
225 |
-
|
226 |
-
# # Default dataset parameters
|
227 |
-
# default_dataset1_name = "sst2"
|
228 |
-
# default_dataset1_split = "train"
|
229 |
-
# default_dataset2_name = "sst2"
|
230 |
-
# default_dataset2_split = "validation"
|
231 |
-
# default_text_column = "sentence"
|
232 |
-
# default_threshold = 0.9
|
233 |
-
|
234 |
-
# # Load the default datasets at startup
|
235 |
-
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
236 |
-
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
237 |
-
|
238 |
-
# def batch_iterable(iterable, batch_size):
|
239 |
-
# """Helper function to create batches from an iterable."""
|
240 |
-
# for i in range(0, len(iterable), batch_size):
|
241 |
-
# yield iterable[i:i + batch_size]
|
242 |
-
|
243 |
-
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
244 |
-
# embeddings = []
|
245 |
-
# total_batches = (len(texts) + batch_size - 1) // batch_size
|
246 |
-
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
247 |
-
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
248 |
-
# embeddings.append(batch_embeddings)
|
249 |
-
# progress((i + 1) / total_batches, desc=desc)
|
250 |
-
# return np.concatenate(embeddings, axis=0)
|
251 |
-
|
252 |
-
# def deduplicate(
|
253 |
-
# embedding_matrix: np.ndarray,
|
254 |
-
# threshold: float,
|
255 |
-
# batch_size: int = 1024,
|
256 |
-
# progress=None
|
257 |
-
# ) -> tuple[np.ndarray, dict[int, int]]:
|
258 |
-
# # Building the index
|
259 |
-
# progress(0, desc="Building search index...")
|
260 |
-
# reach = Reach(
|
261 |
-
# vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
262 |
-
# )
|
263 |
-
|
264 |
-
# deduplicated_indices = set(range(len(embedding_matrix)))
|
265 |
-
# duplicate_to_original_mapping = {}
|
266 |
-
|
267 |
-
# # Finding nearest neighbors
|
268 |
-
# progress(0, desc="Finding nearest neighbors...")
|
269 |
-
# results = reach.nearest_neighbor_threshold(
|
270 |
-
# embedding_matrix,
|
271 |
-
# threshold=threshold,
|
272 |
-
# batch_size=batch_size,
|
273 |
-
# show_progressbar=False, # Disable internal progress bar
|
274 |
-
# )
|
275 |
-
|
276 |
-
# # Processing duplicates with a progress bar
|
277 |
-
# total_items = len(embedding_matrix)
|
278 |
-
# for i, similar_items in enumerate(
|
279 |
-
# progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
280 |
-
# ):
|
281 |
-
# if i not in deduplicated_indices:
|
282 |
-
# continue
|
283 |
-
|
284 |
-
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
285 |
-
|
286 |
-
# for sim_idx in similar_indices:
|
287 |
-
# if sim_idx in deduplicated_indices:
|
288 |
-
# deduplicated_indices.remove(sim_idx)
|
289 |
-
# duplicate_to_original_mapping[sim_idx] = i
|
290 |
-
|
291 |
-
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
292 |
-
|
293 |
-
# def display_word_differences(x: str, y: str) -> str:
|
294 |
-
# diff = ndiff(x.split(), y.split())
|
295 |
-
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
296 |
-
|
297 |
-
# def perform_deduplication(
|
298 |
-
# deduplication_type,
|
299 |
-
# dataset1_name,
|
300 |
-
# dataset1_split,
|
301 |
-
# dataset1_text_column,
|
302 |
-
# dataset2_name="",
|
303 |
-
# dataset2_split="",
|
304 |
-
# dataset2_text_column="",
|
305 |
-
# threshold=default_threshold,
|
306 |
-
# progress=gr.Progress(track_tqdm=True),
|
307 |
-
# ):
|
308 |
-
# try:
|
309 |
-
# # Convert threshold to float
|
310 |
-
# threshold = float(threshold)
|
311 |
-
|
312 |
-
# # Initialize status message
|
313 |
-
# status = ""
|
314 |
-
|
315 |
-
# if deduplication_type == "Single dataset":
|
316 |
-
# # Load Dataset 1
|
317 |
-
# status = "Loading Dataset 1..."
|
318 |
-
# yield status, ""
|
319 |
-
# if (
|
320 |
-
# dataset1_name == default_dataset1_name
|
321 |
-
# and dataset1_split == default_dataset1_split
|
322 |
-
# ):
|
323 |
-
# ds = ds_default1
|
324 |
-
# else:
|
325 |
-
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
326 |
-
|
327 |
-
# # Extract texts
|
328 |
-
# status = "Extracting texts from Dataset 1..."
|
329 |
-
# yield status, ""
|
330 |
-
# texts = [example[dataset1_text_column] for example in ds]
|
331 |
-
|
332 |
-
# # Compute embeddings
|
333 |
-
# status = "Computing embeddings for Dataset 1..."
|
334 |
-
# yield status, ""
|
335 |
-
# embedding_matrix = compute_embeddings(
|
336 |
-
# texts,
|
337 |
-
# batch_size=64,
|
338 |
-
# progress=progress,
|
339 |
-
# desc="Computing embeddings for Dataset 1",
|
340 |
-
# )
|
341 |
-
|
342 |
-
# # Deduplicate
|
343 |
-
# status = "Deduplicating embeddings..."
|
344 |
-
# yield status, ""
|
345 |
-
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
346 |
-
# embedding_matrix, threshold, progress=progress
|
347 |
-
# )
|
348 |
-
|
349 |
-
# # Prepare the results
|
350 |
-
# num_duplicates = len(duplicate_to_original_mapping)
|
351 |
-
# num_total = len(texts)
|
352 |
-
# num_deduplicated = len(deduplicated_indices)
|
353 |
-
|
354 |
-
# result_text = f"**Total documents:** {num_total}\n"
|
355 |
-
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
356 |
-
# result_text += (
|
357 |
-
# f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
358 |
-
# )
|
359 |
-
|
360 |
-
# # Show deduplicated examples
|
361 |
-
# if num_duplicates > 0:
|
362 |
-
# result_text += "**Examples of duplicates found:**\n\n"
|
363 |
-
# num_examples = min(5, num_duplicates)
|
364 |
-
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
365 |
-
# original_text = texts[original_idx]
|
366 |
-
# duplicate_text = texts[duplicate_idx]
|
367 |
-
# differences = display_word_differences(original_text, duplicate_text)
|
368 |
-
# result_text += f"**Original text:**\n{original_text}\n\n"
|
369 |
-
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
370 |
-
# result_text += f"**Differences:**\n{differences}\n"
|
371 |
-
# result_text += "-" * 50 + "\n\n"
|
372 |
-
# else:
|
373 |
-
# result_text += "No duplicates found."
|
374 |
-
|
375 |
-
# # Final status
|
376 |
-
# status = "Deduplication completed."
|
377 |
-
# yield status, result_text
|
378 |
-
|
379 |
-
# elif deduplication_type == "Cross-dataset":
|
380 |
-
# # Similar code for cross-dataset deduplication
|
381 |
-
# # Load Dataset 1
|
382 |
-
# status = "Loading Dataset 1..."
|
383 |
-
# yield status, ""
|
384 |
-
# if (
|
385 |
-
# dataset1_name == default_dataset1_name
|
386 |
-
# and dataset1_split == default_dataset1_split
|
387 |
-
# ):
|
388 |
-
# ds1 = ds_default1
|
389 |
-
# else:
|
390 |
-
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
391 |
-
|
392 |
-
# # Load Dataset 2
|
393 |
-
# status = "Loading Dataset 2..."
|
394 |
-
# yield status, ""
|
395 |
-
# if (
|
396 |
-
# dataset2_name == default_dataset2_name
|
397 |
-
# and dataset2_split == default_dataset2_split
|
398 |
-
# ):
|
399 |
-
# ds2 = ds_default2
|
400 |
-
# else:
|
401 |
-
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
402 |
-
|
403 |
-
# # Extract texts from Dataset 1
|
404 |
-
# status = "Extracting texts from Dataset 1..."
|
405 |
-
# yield status, ""
|
406 |
-
# texts1 = [example[dataset1_text_column] for example in ds1]
|
407 |
-
|
408 |
-
# # Extract texts from Dataset 2
|
409 |
-
# status = "Extracting texts from Dataset 2..."
|
410 |
-
# yield status, ""
|
411 |
-
# texts2 = [example[dataset2_text_column] for example in ds2]
|
412 |
-
|
413 |
-
# # Compute embeddings for Dataset 1
|
414 |
-
# status = "Computing embeddings for Dataset 1..."
|
415 |
-
# yield status, ""
|
416 |
-
# embedding_matrix1 = compute_embeddings(
|
417 |
-
# texts1,
|
418 |
-
# batch_size=64,
|
419 |
-
# progress=progress,
|
420 |
-
# desc="Computing embeddings for Dataset 1",
|
421 |
-
# )
|
422 |
-
|
423 |
-
# # Compute embeddings for Dataset 2
|
424 |
-
# status = "Computing embeddings for Dataset 2..."
|
425 |
-
# yield status, ""
|
426 |
-
# embedding_matrix2 = compute_embeddings(
|
427 |
-
# texts2,
|
428 |
-
# batch_size=64,
|
429 |
-
# progress=progress,
|
430 |
-
# desc="Computing embeddings for Dataset 2",
|
431 |
-
# )
|
432 |
-
|
433 |
-
# # Deduplicate across datasets
|
434 |
-
# status = "Deduplicating embeddings across datasets..."
|
435 |
-
# yield status, ""
|
436 |
-
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
437 |
-
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
438 |
-
# )
|
439 |
-
|
440 |
-
# num_duplicates = len(duplicate_indices_in_ds2)
|
441 |
-
# num_total_ds2 = len(texts2)
|
442 |
-
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
443 |
-
|
444 |
-
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
445 |
-
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
446 |
-
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
447 |
-
|
448 |
-
# # Show deduplicated examples
|
449 |
-
# if num_duplicates > 0:
|
450 |
-
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
451 |
-
# num_examples = min(5, num_duplicates)
|
452 |
-
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
453 |
-
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
454 |
-
# original_text = texts1[original_idx]
|
455 |
-
# duplicate_text = texts2[duplicate_idx]
|
456 |
-
# differences = display_word_differences(original_text, duplicate_text)
|
457 |
-
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
458 |
-
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
459 |
-
# result_text += f"**Differences:**\n{differences}\n"
|
460 |
-
# result_text += "-" * 50 + "\n\n"
|
461 |
-
# else:
|
462 |
-
# result_text += "No duplicates found."
|
463 |
-
|
464 |
-
# # Final status
|
465 |
-
# status = "Deduplication completed."
|
466 |
-
# yield status, result_text
|
467 |
-
|
468 |
-
# except Exception as e:
|
469 |
-
# yield f"An error occurred: {e}", ""
|
470 |
-
# raise e
|
471 |
-
|
472 |
-
# def deduplicate_across_datasets(
|
473 |
-
# embedding_matrix_1: np.ndarray,
|
474 |
-
# embedding_matrix_2: np.ndarray,
|
475 |
-
# threshold: float,
|
476 |
-
# batch_size: int = 1024,
|
477 |
-
# progress=None
|
478 |
-
# ) -> tuple[list[int], dict[int, int]]:
|
479 |
-
# # Building the index from Dataset 1
|
480 |
-
# progress(0, desc="Building search index from Dataset 1...")
|
481 |
-
# reach = Reach(
|
482 |
-
# vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
483 |
-
# )
|
484 |
-
|
485 |
-
# duplicate_indices_in_test = []
|
486 |
-
# duplicate_to_original_mapping = {}
|
487 |
-
|
488 |
-
# # Finding nearest neighbors between datasets
|
489 |
-
# progress(0, desc="Finding nearest neighbors between datasets...")
|
490 |
-
# results = reach.nearest_neighbor_threshold(
|
491 |
-
# embedding_matrix_2,
|
492 |
-
# threshold=threshold,
|
493 |
-
# batch_size=batch_size,
|
494 |
-
# show_progressbar=False, # Disable internal progress bar
|
495 |
-
# )
|
496 |
-
|
497 |
-
# total_items = len(embedding_matrix_2)
|
498 |
-
# # Processing duplicates with a progress bar
|
499 |
-
# for i, similar_items in enumerate(
|
500 |
-
# progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
501 |
-
# ):
|
502 |
-
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
503 |
-
|
504 |
-
# if similar_indices:
|
505 |
-
# duplicate_indices_in_test.append(i)
|
506 |
-
# duplicate_to_original_mapping[i] = similar_indices[0]
|
507 |
-
|
508 |
-
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
509 |
-
|
510 |
-
# # Adjust the height of the status_output component using custom CSS
|
511 |
-
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
512 |
-
# gr.Markdown("# Semantic Deduplication")
|
513 |
-
|
514 |
-
# deduplication_type = gr.Radio(
|
515 |
-
# choices=["Single dataset", "Cross-dataset"],
|
516 |
-
# label="Deduplication Type",
|
517 |
-
# value="Single dataset",
|
518 |
-
# )
|
519 |
-
|
520 |
-
# with gr.Row():
|
521 |
-
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
522 |
-
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
523 |
-
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
524 |
-
|
525 |
-
# dataset2_inputs = gr.Column(visible=False)
|
526 |
-
# with dataset2_inputs:
|
527 |
-
# gr.Markdown("### Dataset 2")
|
528 |
-
# with gr.Row():
|
529 |
-
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
530 |
-
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
531 |
-
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
532 |
-
|
533 |
-
# threshold = gr.Slider(
|
534 |
-
# minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
535 |
-
# )
|
536 |
-
|
537 |
-
# compute_button = gr.Button("Compute")
|
538 |
-
|
539 |
-
# # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
540 |
-
# status_output = gr.Markdown(elem_id="status_output")
|
541 |
-
# result_output = gr.Markdown()
|
542 |
-
|
543 |
-
# # Function to update the visibility of dataset2_inputs
|
544 |
-
# def update_visibility(deduplication_type_value):
|
545 |
-
# if deduplication_type_value == "Cross-dataset":
|
546 |
-
# return gr.update(visible=True)
|
547 |
-
# else:
|
548 |
-
# return gr.update(visible=False)
|
549 |
-
|
550 |
-
# deduplication_type.change(
|
551 |
-
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
552 |
-
# )
|
553 |
-
|
554 |
-
# compute_button.click(
|
555 |
-
# fn=perform_deduplication,
|
556 |
-
# inputs=[
|
557 |
-
# deduplication_type,
|
558 |
-
# dataset1_name,
|
559 |
-
# dataset1_split,
|
560 |
-
# dataset1_text_column,
|
561 |
-
# dataset2_name,
|
562 |
-
# dataset2_split,
|
563 |
-
# dataset2_text_column,
|
564 |
-
# threshold,
|
565 |
-
# ],
|
566 |
-
# outputs=[status_output, result_output],
|
567 |
-
# )
|
568 |
-
|
569 |
-
# demo.launch()
|
|
|
14 |
default_text_column = "sentence"
|
15 |
default_threshold = 0.9
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def deduplicate_embeddings(
|
18 |
embeddings_a: np.ndarray,
|
19 |
embeddings_b: np.ndarray = None,
|
|
|
87 |
|
88 |
num_duplicates = len(duplicate_mapping)
|
89 |
result_text = (
|
90 |
+
f"**Total documents:** {len(texts1)}\n\n"
|
91 |
+
f"**Duplicates found:** {num_duplicates}\n\n"
|
92 |
f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
93 |
)
|
94 |
|
|
|
124 |
|
125 |
num_duplicates = len(duplicate_indices)
|
126 |
result_text = (
|
127 |
+
f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
|
128 |
+
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
129 |
f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
130 |
)
|
131 |
|
|
|
198 |
)
|
199 |
|
200 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|