Updates
Browse files
app.py
CHANGED
@@ -10,7 +10,8 @@ model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
10 |
|
11 |
# Default parameters
|
12 |
default_dataset_name = "sst2"
|
13 |
-
|
|
|
14 |
default_text_column = "sentence"
|
15 |
default_threshold = 0.9
|
16 |
|
@@ -75,7 +76,7 @@ def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str)
|
|
75 |
Load texts from a specified dataset and split.
|
76 |
|
77 |
:param dataset_name: Name of the dataset.
|
78 |
-
:param dataset_split: Split of the dataset (e.g., 'train', 'validation').
|
79 |
:param text_column: Name of the text column.
|
80 |
:return: A list of texts from the dataset.
|
81 |
"""
|
@@ -206,7 +207,7 @@ with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
|
206 |
|
207 |
with gr.Row():
|
208 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
209 |
-
dataset1_split = gr.Textbox(value=
|
210 |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
211 |
|
212 |
dataset2_inputs = gr.Column(visible=True) # Make dataset2_inputs visible by default
|
@@ -214,7 +215,7 @@ with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
|
214 |
gr.Markdown("### Dataset 2")
|
215 |
with gr.Row():
|
216 |
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
217 |
-
dataset2_split = gr.Textbox(value=
|
218 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
219 |
|
220 |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
@@ -449,7 +450,7 @@ demo.launch()
|
|
449 |
# """)
|
450 |
|
451 |
# deduplication_type = gr.Radio(
|
452 |
-
# choices=["Single dataset", "Cross-dataset"
|
453 |
# label="Deduplication Type",
|
454 |
# value="Cross-dataset", # Set "Cross-dataset" as the default value
|
455 |
# )
|
@@ -468,7 +469,10 @@ demo.launch()
|
|
468 |
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
469 |
|
470 |
# threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
471 |
-
|
|
|
|
|
|
|
472 |
# status_output = gr.Markdown(elem_id="status_output")
|
473 |
# result_output = gr.Markdown()
|
474 |
|
@@ -698,7 +702,7 @@ demo.launch()
|
|
698 |
# # deduplication_type = gr.Radio(
|
699 |
# # choices=["Single dataset", "Cross-dataset"],
|
700 |
# # label="Deduplication Type",
|
701 |
-
# # value="
|
702 |
# # )
|
703 |
|
704 |
# # with gr.Row():
|
@@ -706,7 +710,7 @@ demo.launch()
|
|
706 |
# # dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
707 |
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
708 |
|
709 |
-
# # dataset2_inputs = gr.Column(visible=
|
710 |
# # with dataset2_inputs:
|
711 |
# # gr.Markdown("### Dataset 2")
|
712 |
# # with gr.Row():
|
@@ -741,3 +745,250 @@ demo.launch()
|
|
741 |
|
742 |
|
743 |
# # demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Default parameters
|
12 |
default_dataset_name = "sst2"
|
13 |
+
default_dataset1_split = "train" # Default for the first dataset is "train"
|
14 |
+
default_dataset2_split = "test" # Default for the second dataset is "test"
|
15 |
default_text_column = "sentence"
|
16 |
default_threshold = 0.9
|
17 |
|
|
|
76 |
Load texts from a specified dataset and split.
|
77 |
|
78 |
:param dataset_name: Name of the dataset.
|
79 |
+
:param dataset_split: Split of the dataset (e.g., 'train', 'validation', 'test').
|
80 |
:param text_column: Name of the text column.
|
81 |
:return: A list of texts from the dataset.
|
82 |
"""
|
|
|
207 |
|
208 |
with gr.Row():
|
209 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
210 |
+
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split") # Default split is "train"
|
211 |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
212 |
|
213 |
dataset2_inputs = gr.Column(visible=True) # Make dataset2_inputs visible by default
|
|
|
215 |
gr.Markdown("### Dataset 2")
|
216 |
with gr.Row():
|
217 |
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
218 |
+
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split") # Default split is "test"
|
219 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
220 |
|
221 |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
|
|
450 |
# """)
|
451 |
|
452 |
# deduplication_type = gr.Radio(
|
453 |
+
# choices=["Cross-dataset", "Single dataset"], # Swapped "Cross-dataset" to the left
|
454 |
# label="Deduplication Type",
|
455 |
# value="Cross-dataset", # Set "Cross-dataset" as the default value
|
456 |
# )
|
|
|
469 |
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
470 |
|
471 |
# threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
472 |
+
|
473 |
+
# with gr.Row(): # Placing the button in the same row for better alignment
|
474 |
+
# compute_button = gr.Button("Deduplicate")
|
475 |
+
|
476 |
# status_output = gr.Markdown(elem_id="status_output")
|
477 |
# result_output = gr.Markdown()
|
478 |
|
|
|
702 |
# # deduplication_type = gr.Radio(
|
703 |
# # choices=["Single dataset", "Cross-dataset"],
|
704 |
# # label="Deduplication Type",
|
705 |
+
# # value="Cross-dataset", # Set "Cross-dataset" as the default value
|
706 |
# # )
|
707 |
|
708 |
# # with gr.Row():
|
|
|
710 |
# # dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
711 |
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
712 |
|
713 |
+
# # dataset2_inputs = gr.Column(visible=True) # Make dataset2_inputs visible by default
|
714 |
# # with dataset2_inputs:
|
715 |
# # gr.Markdown("### Dataset 2")
|
716 |
# # with gr.Row():
|
|
|
745 |
|
746 |
|
747 |
# # demo.launch()
|
748 |
+
|
749 |
+
# # # import gradio as gr
|
750 |
+
# # # from datasets import load_dataset
|
751 |
+
# # # import numpy as np
|
752 |
+
# # # from model2vec import StaticModel
|
753 |
+
# # # from reach import Reach
|
754 |
+
# # # from difflib import ndiff
|
755 |
+
|
756 |
+
# # # # Load the model
|
757 |
+
# # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
758 |
+
|
759 |
+
# # # # Default parameters
|
760 |
+
# # # default_dataset_name = "sst2"
|
761 |
+
# # # default_dataset_split = "train"
|
762 |
+
# # # default_text_column = "sentence"
|
763 |
+
# # # default_threshold = 0.9
|
764 |
+
|
765 |
+
# # # def deduplicate_embeddings(
|
766 |
+
# # # embeddings_a: np.ndarray,
|
767 |
+
# # # embeddings_b: np.ndarray = None,
|
768 |
+
# # # threshold: float = 0.9,
|
769 |
+
# # # batch_size: int = 1024,
|
770 |
+
# # # progress=None
|
771 |
+
# # # ) -> tuple[np.ndarray, dict[int, int]]:
|
772 |
+
# # # """
|
773 |
+
# # # Deduplicate embeddings within one dataset or across two datasets.
|
774 |
+
|
775 |
+
# # # :param embeddings_a: Embeddings of Dataset 1.
|
776 |
+
# # # :param embeddings_b: Optional, embeddings of Dataset 2.
|
777 |
+
# # # :param threshold: Similarity threshold for deduplication.
|
778 |
+
# # # :param batch_size: Batch size for similarity computation.
|
779 |
+
# # # :param progress: Gradio progress tracker for feedback.
|
780 |
+
# # # :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
|
781 |
+
# # # """
|
782 |
+
# # # if embeddings_b is None:
|
783 |
+
# # # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
784 |
+
# # # duplicate_to_original = {}
|
785 |
+
# # # results = reach.nearest_neighbor_threshold(
|
786 |
+
# # # embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
787 |
+
# # # )
|
788 |
+
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
|
789 |
+
# # # for sim_idx, _ in similar_items:
|
790 |
+
# # # sim_idx = int(sim_idx)
|
791 |
+
# # # if sim_idx != i and sim_idx not in duplicate_to_original:
|
792 |
+
# # # duplicate_to_original[sim_idx] = i
|
793 |
+
# # # deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
|
794 |
+
# # # return deduplicated_indices, duplicate_to_original
|
795 |
+
# # # else:
|
796 |
+
# # # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
797 |
+
# # # duplicate_indices_in_b = []
|
798 |
+
# # # duplicate_to_original = {}
|
799 |
+
# # # results = reach.nearest_neighbor_threshold(
|
800 |
+
# # # embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
801 |
+
# # # )
|
802 |
+
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
|
803 |
+
# # # if similar_items:
|
804 |
+
# # # duplicate_indices_in_b.append(i)
|
805 |
+
# # # duplicate_to_original[i] = int(similar_items[0][0])
|
806 |
+
# # # return duplicate_indices_in_b, duplicate_to_original
|
807 |
+
|
808 |
+
# # # def display_word_differences(x: str, y: str) -> str:
|
809 |
+
# # # """
|
810 |
+
# # # Display the word-level differences between two texts, formatted to avoid
|
811 |
+
# # # misinterpretation of Markdown syntax.
|
812 |
+
|
813 |
+
# # # :param x: First text.
|
814 |
+
# # # :param y: Second text.
|
815 |
+
# # # :return: A string showing word-level differences, wrapped in a code block.
|
816 |
+
# # # """
|
817 |
+
# # # diff = ndiff(x.split(), y.split())
|
818 |
+
# # # formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
819 |
+
# # # return f"```\n{formatted_diff}\n```"
|
820 |
+
|
821 |
+
# # # def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
822 |
+
# # # """
|
823 |
+
# # # Load texts from a specified dataset and split.
|
824 |
+
|
825 |
+
# # # :param dataset_name: Name of the dataset.
|
826 |
+
# # # :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
|
827 |
+
# # # :param text_column: Name of the text column.
|
828 |
+
# # # :return: A list of texts from the dataset.
|
829 |
+
# # # """
|
830 |
+
# # # ds = load_dataset(dataset_name, split=dataset_split)
|
831 |
+
# # # return [example[text_column] for example in ds]
|
832 |
+
|
833 |
+
# # # def perform_deduplication(
|
834 |
+
# # # deduplication_type: str,
|
835 |
+
# # # dataset1_name: str,
|
836 |
+
# # # dataset1_split: str,
|
837 |
+
# # # dataset1_text_column: str,
|
838 |
+
# # # dataset2_name: str = "",
|
839 |
+
# # # dataset2_split: str = "",
|
840 |
+
# # # dataset2_text_column: str = "",
|
841 |
+
# # # threshold: float = default_threshold,
|
842 |
+
# # # progress: gr.Progress = gr.Progress(track_tqdm=True)
|
843 |
+
# # # ):
|
844 |
+
# # # """
|
845 |
+
# # # Perform deduplication on one or two datasets based on the deduplication type.
|
846 |
+
|
847 |
+
# # # :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
|
848 |
+
# # # :param dataset1_name: Name of the first dataset.
|
849 |
+
# # # :param dataset1_split: Split of the first dataset.
|
850 |
+
# # # :param dataset1_text_column: Text column of the first dataset.
|
851 |
+
# # # :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
|
852 |
+
# # # :param dataset2_split: Optional, split of the second dataset.
|
853 |
+
# # # :param dataset2_text_column: Optional, text column of the second dataset.
|
854 |
+
# # # :param threshold: Similarity threshold for deduplication.
|
855 |
+
# # # :param progress: Gradio progress tracker.
|
856 |
+
# # # :return: Status updates and result text for the Gradio interface.
|
857 |
+
# # # """
|
858 |
+
# # # try:
|
859 |
+
# # # threshold = float(threshold)
|
860 |
+
|
861 |
+
# # # # Load and process Dataset 1
|
862 |
+
# # # yield "Loading Dataset 1...", ""
|
863 |
+
# # # texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
864 |
+
# # # yield "Computing embeddings for Dataset 1...", ""
|
865 |
+
# # # embeddings1 = model.encode(texts1, show_progressbar=True)
|
866 |
+
|
867 |
+
# # # if deduplication_type == "Single dataset":
|
868 |
+
# # # # Deduplicate within Dataset 1
|
869 |
+
# # # yield "Deduplicating within Dataset 1...", ""
|
870 |
+
# # # deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
|
871 |
+
# # # embeddings1, threshold=threshold, progress=progress
|
872 |
+
# # # )
|
873 |
+
|
874 |
+
# # # num_duplicates = len(duplicate_mapping)
|
875 |
+
# # # result_text = (
|
876 |
+
# # # f"**Total documents:** {len(texts1)}\n\n"
|
877 |
+
# # # f"**Duplicates found:** {num_duplicates}\n\n"
|
878 |
+
# # # f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
879 |
+
# # # )
|
880 |
+
|
881 |
+
# # # if num_duplicates > 0:
|
882 |
+
# # # result_text += "**Sample duplicates:**\n\n"
|
883 |
+
# # # for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
|
884 |
+
# # # orig_text = texts1[orig_idx]
|
885 |
+
# # # dup_text = texts1[dup_idx]
|
886 |
+
# # # differences = display_word_differences(orig_text, dup_text)
|
887 |
+
# # # result_text += (
|
888 |
+
# # # f"**Original:**\n{orig_text}\n\n"
|
889 |
+
# # # f"**Duplicate:**\n{dup_text}\n\n"
|
890 |
+
# # # f"**Differences:**\n{differences}\n"
|
891 |
+
# # # + "-" * 50 + "\n\n"
|
892 |
+
# # # )
|
893 |
+
# # # else:
|
894 |
+
# # # result_text += "No duplicates found."
|
895 |
+
|
896 |
+
# # # yield "Deduplication completed.", result_text
|
897 |
+
|
898 |
+
# # # else:
|
899 |
+
# # # # Load and process Dataset 2
|
900 |
+
# # # yield "Loading Dataset 2...", ""
|
901 |
+
# # # texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
902 |
+
# # # yield "Computing embeddings for Dataset 2...", ""
|
903 |
+
# # # embeddings2 = model.encode(texts2, show_progressbar=True)
|
904 |
+
|
905 |
+
# # # # Deduplicate Dataset 2 against Dataset 1
|
906 |
+
# # # yield "Deduplicating Dataset 2 against Dataset 1...", ""
|
907 |
+
# # # duplicate_indices, duplicate_mapping = deduplicate_embeddings(
|
908 |
+
# # # embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
|
909 |
+
# # # )
|
910 |
+
|
911 |
+
# # # num_duplicates = len(duplicate_indices)
|
912 |
+
# # # result_text = (
|
913 |
+
# # # f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
|
914 |
+
# # # f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
915 |
+
# # # f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
916 |
+
# # # )
|
917 |
+
|
918 |
+
# # # if num_duplicates > 0:
|
919 |
+
# # # result_text += "**Sample duplicates from Dataset 2:**\n\n"
|
920 |
+
# # # for idx in duplicate_indices[:5]:
|
921 |
+
# # # orig_text = texts1[duplicate_mapping[idx]]
|
922 |
+
# # # dup_text = texts2[idx]
|
923 |
+
# # # differences = display_word_differences(orig_text, dup_text)
|
924 |
+
# # # result_text += (
|
925 |
+
# # # f"**Original (Dataset 1):**\n{orig_text}\n\n"
|
926 |
+
# # # f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
927 |
+
# # # f"**Differences:**\n{differences}\n"
|
928 |
+
# # # + "-" * 50 + "\n\n"
|
929 |
+
# # # )
|
930 |
+
# # # else:
|
931 |
+
# # # result_text += "No duplicates found."
|
932 |
+
|
933 |
+
# # # yield "Deduplication completed.", result_text
|
934 |
+
|
935 |
+
# # # except Exception as e:
|
936 |
+
# # # yield f"An error occurred: {e}", ""
|
937 |
+
# # # raise e
|
938 |
+
|
939 |
+
# # # # Gradio app with stop button support
|
940 |
+
# # # with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
941 |
+
# # # gr.Markdown("# Semantic Deduplication")
|
942 |
+
# # # gr.Markdown("""
|
943 |
+
# # # This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
|
944 |
+
# # # It can be used to identify duplicate texts within a single dataset or across two datasets.
|
945 |
+
# # # You can adjust the similarity threshold to control the strictness of the deduplication.\n
|
946 |
+
# # # NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
|
947 |
+
# # # """)
|
948 |
+
|
949 |
+
# # # deduplication_type = gr.Radio(
|
950 |
+
# # # choices=["Single dataset", "Cross-dataset"],
|
951 |
+
# # # label="Deduplication Type",
|
952 |
+
# # # value="Single dataset",
|
953 |
+
# # # )
|
954 |
+
|
955 |
+
# # # with gr.Row():
|
956 |
+
# # # dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
957 |
+
# # # dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
958 |
+
# # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
959 |
+
|
960 |
+
# # # dataset2_inputs = gr.Column(visible=False)
|
961 |
+
# # # with dataset2_inputs:
|
962 |
+
# # # gr.Markdown("### Dataset 2")
|
963 |
+
# # # with gr.Row():
|
964 |
+
# # # dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
965 |
+
# # # dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
|
966 |
+
# # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
967 |
+
|
968 |
+
# # # threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
969 |
+
# # # compute_button = gr.Button("Deduplicate")
|
970 |
+
# # # status_output = gr.Markdown(elem_id="status_output")
|
971 |
+
# # # result_output = gr.Markdown()
|
972 |
+
|
973 |
+
# # # def update_visibility(choice: str):
|
974 |
+
# # # return gr.update(visible=choice == "Cross-dataset")
|
975 |
+
|
976 |
+
# # # deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
977 |
+
|
978 |
+
# # # compute_button.click(
|
979 |
+
# # # fn=perform_deduplication,
|
980 |
+
# # # inputs=[
|
981 |
+
# # # deduplication_type,
|
982 |
+
# # # dataset1_name,
|
983 |
+
# # # dataset1_split,
|
984 |
+
# # # dataset1_text_column,
|
985 |
+
# # # dataset2_name,
|
986 |
+
# # # dataset2_split,
|
987 |
+
# # # dataset2_text_column,
|
988 |
+
# # # threshold,
|
989 |
+
# # # ],
|
990 |
+
# # # outputs=[status_output, result_output],
|
991 |
+
# # # )
|
992 |
+
|
993 |
+
|
994 |
+
# # # demo.launch()
|