Updates
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
from datasets import load_dataset
|
4 |
import numpy as np
|
@@ -38,23 +37,18 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
38 |
"""
|
39 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
40 |
"""
|
41 |
-
# Building the index
|
42 |
-
progress(0, desc="Building search index...")
|
43 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
44 |
|
45 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
46 |
duplicate_to_original_mapping = {}
|
47 |
|
48 |
-
# Finding nearest neighbors
|
49 |
-
progress(0, desc="Finding nearest neighbors...")
|
50 |
results = reach.nearest_neighbor_threshold(
|
51 |
embedding_matrix,
|
52 |
threshold=threshold,
|
53 |
batch_size=batch_size,
|
54 |
-
show_progressbar=False
|
55 |
)
|
56 |
|
57 |
-
# Processing duplicates with a progress bar
|
58 |
total_items = len(embedding_matrix)
|
59 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
60 |
if i not in deduplicated_indices:
|
@@ -73,24 +67,19 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
73 |
"""
|
74 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
75 |
"""
|
76 |
-
# Building the index from Dataset 1
|
77 |
-
progress(0, desc="Building search index from Dataset 1...")
|
78 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
79 |
|
80 |
duplicate_indices_in_test = []
|
81 |
duplicate_to_original_mapping = {}
|
82 |
|
83 |
-
# Finding nearest neighbors between datasets
|
84 |
-
progress(0, desc="Finding nearest neighbors between datasets...")
|
85 |
results = reach.nearest_neighbor_threshold(
|
86 |
embedding_matrix_2,
|
87 |
threshold=threshold,
|
88 |
batch_size=batch_size,
|
89 |
-
show_progressbar=False
|
90 |
)
|
91 |
|
92 |
total_items = len(embedding_matrix_2)
|
93 |
-
# Processing duplicates with a progress bar
|
94 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
95 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
96 |
|
@@ -116,39 +105,15 @@ def perform_deduplication(
|
|
116 |
progress=gr.Progress(track_tqdm=True)
|
117 |
):
|
118 |
try:
|
119 |
-
# Convert threshold to float
|
120 |
threshold = float(threshold)
|
121 |
|
122 |
-
# Initialize status message
|
123 |
-
status = ""
|
124 |
-
|
125 |
if deduplication_type == "Single dataset":
|
126 |
-
|
127 |
-
status = "Loading Dataset 1..."
|
128 |
-
yield status, ""
|
129 |
-
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
130 |
-
ds = ds_default1
|
131 |
-
else:
|
132 |
-
ds = load_dataset(dataset1_name, split=dataset1_split)
|
133 |
-
|
134 |
-
# Extract texts
|
135 |
-
status = "Extracting texts from Dataset 1..."
|
136 |
-
yield status, ""
|
137 |
texts = [example[dataset1_text_column] for example in ds]
|
138 |
|
139 |
-
# Compute embeddings
|
140 |
-
status = "Computing embeddings for Dataset 1..."
|
141 |
-
yield status, ""
|
142 |
embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
|
|
143 |
|
144 |
-
# Deduplicate
|
145 |
-
status = "Deduplicating embeddings..."
|
146 |
-
yield status, ""
|
147 |
-
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
148 |
-
embedding_matrix, threshold, progress=progress
|
149 |
-
)
|
150 |
-
|
151 |
-
# Prepare the results
|
152 |
num_duplicates = len(duplicate_to_original_mapping)
|
153 |
num_total = len(texts)
|
154 |
num_deduplicated = len(deduplicated_indices)
|
@@ -157,7 +122,6 @@ def perform_deduplication(
|
|
157 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
158 |
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
159 |
|
160 |
-
# Show deduplicated examples
|
161 |
if num_duplicates > 0:
|
162 |
result_text += "**Examples of duplicates found:**\n\n"
|
163 |
num_examples = min(5, num_duplicates)
|
@@ -172,53 +136,19 @@ def perform_deduplication(
|
|
172 |
else:
|
173 |
result_text += "No duplicates found."
|
174 |
|
175 |
-
|
176 |
-
status = "Deduplication completed."
|
177 |
-
yield status, result_text
|
178 |
|
179 |
elif deduplication_type == "Cross-dataset":
|
180 |
-
|
181 |
-
|
182 |
-
yield status, ""
|
183 |
-
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
184 |
-
ds1 = ds_default1
|
185 |
-
else:
|
186 |
-
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
187 |
|
188 |
-
# Load Dataset 2
|
189 |
-
status = "Loading Dataset 2..."
|
190 |
-
yield status, ""
|
191 |
-
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
192 |
-
ds2 = ds_default2
|
193 |
-
else:
|
194 |
-
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
195 |
-
|
196 |
-
# Extract texts from Dataset 1
|
197 |
-
status = "Extracting texts from Dataset 1..."
|
198 |
-
yield status, ""
|
199 |
texts1 = [example[dataset1_text_column] for example in ds1]
|
200 |
-
|
201 |
-
# Extract texts from Dataset 2
|
202 |
-
status = "Extracting texts from Dataset 2..."
|
203 |
-
yield status, ""
|
204 |
texts2 = [example[dataset2_text_column] for example in ds2]
|
205 |
|
206 |
-
# Compute embeddings for Dataset 1
|
207 |
-
status = "Computing embeddings for Dataset 1..."
|
208 |
-
yield status, ""
|
209 |
embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
210 |
-
|
211 |
-
# Compute embeddings for Dataset 2
|
212 |
-
status = "Computing embeddings for Dataset 2..."
|
213 |
-
yield status, ""
|
214 |
embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
215 |
|
216 |
-
|
217 |
-
status = "Deduplicating embeddings across datasets..."
|
218 |
-
yield status, ""
|
219 |
-
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
220 |
-
embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
221 |
-
)
|
222 |
|
223 |
num_duplicates = len(duplicate_indices_in_ds2)
|
224 |
num_total_ds2 = len(texts2)
|
@@ -228,7 +158,6 @@ def perform_deduplication(
|
|
228 |
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
229 |
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
230 |
|
231 |
-
# Show deduplicated examples
|
232 |
if num_duplicates > 0:
|
233 |
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
234 |
num_examples = min(5, num_duplicates)
|
@@ -244,15 +173,13 @@ def perform_deduplication(
|
|
244 |
else:
|
245 |
result_text += "No duplicates found."
|
246 |
|
247 |
-
|
248 |
-
status = "Deduplication completed."
|
249 |
-
yield status, result_text
|
250 |
|
251 |
except Exception as e:
|
252 |
yield f"An error occurred: {e}", ""
|
253 |
-
raise e
|
254 |
|
255 |
-
|
|
|
256 |
gr.Markdown("# Semantic Deduplication")
|
257 |
|
258 |
deduplication_type = gr.Radio(
|
@@ -283,10 +210,9 @@ with gr.Blocks() as demo:
|
|
283 |
|
284 |
compute_button = gr.Button("Compute")
|
285 |
|
286 |
-
status_output = gr.Markdown()
|
287 |
-
result_output = gr.Markdown()
|
288 |
|
289 |
-
# Function to update the visibility of dataset2_inputs
|
290 |
def update_visibility(deduplication_type_value):
|
291 |
if deduplication_type_value == "Cross-dataset":
|
292 |
return gr.update(visible=True)
|
@@ -316,6 +242,323 @@ with gr.Blocks() as demo:
|
|
316 |
|
317 |
demo.launch()
|
318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
# import gradio as gr
|
321 |
# from datasets import load_dataset
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
import numpy as np
|
|
|
37 |
"""
|
38 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
39 |
"""
|
|
|
|
|
40 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
41 |
|
42 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
43 |
duplicate_to_original_mapping = {}
|
44 |
|
|
|
|
|
45 |
results = reach.nearest_neighbor_threshold(
|
46 |
embedding_matrix,
|
47 |
threshold=threshold,
|
48 |
batch_size=batch_size,
|
49 |
+
show_progressbar=False
|
50 |
)
|
51 |
|
|
|
52 |
total_items = len(embedding_matrix)
|
53 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
54 |
if i not in deduplicated_indices:
|
|
|
67 |
"""
|
68 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
69 |
"""
|
|
|
|
|
70 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
71 |
|
72 |
duplicate_indices_in_test = []
|
73 |
duplicate_to_original_mapping = {}
|
74 |
|
|
|
|
|
75 |
results = reach.nearest_neighbor_threshold(
|
76 |
embedding_matrix_2,
|
77 |
threshold=threshold,
|
78 |
batch_size=batch_size,
|
79 |
+
show_progressbar=False
|
80 |
)
|
81 |
|
82 |
total_items = len(embedding_matrix_2)
|
|
|
83 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
84 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
85 |
|
|
|
105 |
progress=gr.Progress(track_tqdm=True)
|
106 |
):
|
107 |
try:
|
|
|
108 |
threshold = float(threshold)
|
109 |
|
|
|
|
|
|
|
110 |
if deduplication_type == "Single dataset":
|
111 |
+
ds = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
texts = [example[dataset1_text_column] for example in ds]
|
113 |
|
|
|
|
|
|
|
114 |
embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
115 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
num_duplicates = len(duplicate_to_original_mapping)
|
118 |
num_total = len(texts)
|
119 |
num_deduplicated = len(deduplicated_indices)
|
|
|
122 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
123 |
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
124 |
|
|
|
125 |
if num_duplicates > 0:
|
126 |
result_text += "**Examples of duplicates found:**\n\n"
|
127 |
num_examples = min(5, num_duplicates)
|
|
|
136 |
else:
|
137 |
result_text += "No duplicates found."
|
138 |
|
139 |
+
yield result_text
|
|
|
|
|
140 |
|
141 |
elif deduplication_type == "Cross-dataset":
|
142 |
+
ds1 = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
|
143 |
+
ds2 = ds_default2 if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split else load_dataset(dataset2_name, split=dataset2_split)
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
texts1 = [example[dataset1_text_column] for example in ds1]
|
|
|
|
|
|
|
|
|
146 |
texts2 = [example[dataset2_text_column] for example in ds2]
|
147 |
|
|
|
|
|
|
|
148 |
embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
|
|
|
|
|
|
|
|
149 |
embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
150 |
|
151 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
num_duplicates = len(duplicate_indices_in_ds2)
|
154 |
num_total_ds2 = len(texts2)
|
|
|
158 |
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
159 |
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
160 |
|
|
|
161 |
if num_duplicates > 0:
|
162 |
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
163 |
num_examples = min(5, num_duplicates)
|
|
|
173 |
else:
|
174 |
result_text += "No duplicates found."
|
175 |
|
176 |
+
yield result_text
|
|
|
|
|
177 |
|
178 |
except Exception as e:
|
179 |
yield f"An error occurred: {e}", ""
|
|
|
180 |
|
181 |
+
# Adjust the height of the status_output and result_output components
|
182 |
+
with gr.Blocks(css="#status_output { height: 300px; overflow: auto; } #result_output { height: 300px; overflow: auto; }") as demo:
|
183 |
gr.Markdown("# Semantic Deduplication")
|
184 |
|
185 |
deduplication_type = gr.Radio(
|
|
|
210 |
|
211 |
compute_button = gr.Button("Compute")
|
212 |
|
213 |
+
status_output = gr.Markdown(elem_id="status_output")
|
214 |
+
result_output = gr.Markdown(elem_id="result_output")
|
215 |
|
|
|
216 |
def update_visibility(deduplication_type_value):
|
217 |
if deduplication_type_value == "Cross-dataset":
|
218 |
return gr.update(visible=True)
|
|
|
242 |
|
243 |
demo.launch()
|
244 |
|
245 |
+
# import gradio as gr
|
246 |
+
# from datasets import load_dataset
|
247 |
+
# import numpy as np
|
248 |
+
# from model2vec import StaticModel
|
249 |
+
# from reach import Reach
|
250 |
+
# from difflib import ndiff
|
251 |
+
# import tqdm
|
252 |
+
|
253 |
+
# # Load the model at startup
|
254 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
255 |
+
|
256 |
+
# # Update default dataset to 'sst2' and set default threshold to 0.9
|
257 |
+
# default_dataset1_name = "sst2"
|
258 |
+
# default_dataset1_split = "train"
|
259 |
+
# default_dataset2_name = "sst2"
|
260 |
+
# default_dataset2_split = "validation"
|
261 |
+
# default_text_column = "sentence"
|
262 |
+
# default_threshold = 0.9
|
263 |
+
|
264 |
+
# # Load the default datasets at startup
|
265 |
+
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
266 |
+
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
267 |
+
|
268 |
+
# def batch_iterable(iterable, batch_size):
|
269 |
+
# """Helper function to create batches from an iterable."""
|
270 |
+
# for i in range(0, len(iterable), batch_size):
|
271 |
+
# yield iterable[i:i + batch_size]
|
272 |
+
|
273 |
+
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
274 |
+
# embeddings = []
|
275 |
+
# for batch in progress.tqdm(batch_iterable(texts, batch_size), total=(len(texts) + batch_size - 1) // batch_size, desc=desc):
|
276 |
+
# batch_embeddings = model.encode(batch, show_progressbar=False)
|
277 |
+
# embeddings.append(batch_embeddings)
|
278 |
+
# return np.concatenate(embeddings, axis=0)
|
279 |
+
|
280 |
+
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
281 |
+
# """
|
282 |
+
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
283 |
+
# """
|
284 |
+
# # Building the index
|
285 |
+
# progress(0, desc="Building search index...")
|
286 |
+
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
287 |
+
|
288 |
+
# deduplicated_indices = set(range(len(embedding_matrix)))
|
289 |
+
# duplicate_to_original_mapping = {}
|
290 |
+
|
291 |
+
# # Finding nearest neighbors
|
292 |
+
# progress(0, desc="Finding nearest neighbors...")
|
293 |
+
# results = reach.nearest_neighbor_threshold(
|
294 |
+
# embedding_matrix,
|
295 |
+
# threshold=threshold,
|
296 |
+
# batch_size=batch_size,
|
297 |
+
# show_progressbar=False # Disable internal progress bar
|
298 |
+
# )
|
299 |
+
|
300 |
+
# # Processing duplicates with a progress bar
|
301 |
+
# total_items = len(embedding_matrix)
|
302 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
303 |
+
# if i not in deduplicated_indices:
|
304 |
+
# continue
|
305 |
+
|
306 |
+
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
307 |
+
|
308 |
+
# for sim_idx in similar_indices:
|
309 |
+
# if sim_idx in deduplicated_indices:
|
310 |
+
# deduplicated_indices.remove(sim_idx)
|
311 |
+
# duplicate_to_original_mapping[sim_idx] = i
|
312 |
+
|
313 |
+
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
314 |
+
|
315 |
+
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
316 |
+
# """
|
317 |
+
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
318 |
+
# """
|
319 |
+
# # Building the index from Dataset 1
|
320 |
+
# progress(0, desc="Building search index from Dataset 1...")
|
321 |
+
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
322 |
+
|
323 |
+
# duplicate_indices_in_test = []
|
324 |
+
# duplicate_to_original_mapping = {}
|
325 |
+
|
326 |
+
# # Finding nearest neighbors between datasets
|
327 |
+
# progress(0, desc="Finding nearest neighbors between datasets...")
|
328 |
+
# results = reach.nearest_neighbor_threshold(
|
329 |
+
# embedding_matrix_2,
|
330 |
+
# threshold=threshold,
|
331 |
+
# batch_size=batch_size,
|
332 |
+
# show_progressbar=False # Disable internal progress bar
|
333 |
+
# )
|
334 |
+
|
335 |
+
# total_items = len(embedding_matrix_2)
|
336 |
+
# # Processing duplicates with a progress bar
|
337 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
338 |
+
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
339 |
+
|
340 |
+
# if similar_indices:
|
341 |
+
# duplicate_indices_in_test.append(i)
|
342 |
+
# duplicate_to_original_mapping[i] = similar_indices[0]
|
343 |
+
|
344 |
+
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
345 |
+
|
346 |
+
# def display_word_differences(x: str, y: str) -> str:
|
347 |
+
# diff = ndiff(x.split(), y.split())
|
348 |
+
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
349 |
+
|
350 |
+
# def perform_deduplication(
|
351 |
+
# deduplication_type,
|
352 |
+
# dataset1_name,
|
353 |
+
# dataset1_split,
|
354 |
+
# dataset1_text_column,
|
355 |
+
# dataset2_name="",
|
356 |
+
# dataset2_split="",
|
357 |
+
# dataset2_text_column="",
|
358 |
+
# threshold=default_threshold,
|
359 |
+
# progress=gr.Progress(track_tqdm=True)
|
360 |
+
# ):
|
361 |
+
# try:
|
362 |
+
# # Convert threshold to float
|
363 |
+
# threshold = float(threshold)
|
364 |
+
|
365 |
+
# # Initialize status message
|
366 |
+
# status = ""
|
367 |
+
|
368 |
+
# if deduplication_type == "Single dataset":
|
369 |
+
# # Load Dataset 1
|
370 |
+
# status = "Loading Dataset 1..."
|
371 |
+
# yield status, ""
|
372 |
+
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
373 |
+
# ds = ds_default1
|
374 |
+
# else:
|
375 |
+
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
376 |
+
|
377 |
+
# # Extract texts
|
378 |
+
# status = "Extracting texts from Dataset 1..."
|
379 |
+
# yield status, ""
|
380 |
+
# texts = [example[dataset1_text_column] for example in ds]
|
381 |
+
|
382 |
+
# # Compute embeddings
|
383 |
+
# status = "Computing embeddings for Dataset 1..."
|
384 |
+
# yield status, ""
|
385 |
+
# embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
386 |
+
|
387 |
+
# # Deduplicate
|
388 |
+
# status = "Deduplicating embeddings..."
|
389 |
+
# yield status, ""
|
390 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
391 |
+
# embedding_matrix, threshold, progress=progress
|
392 |
+
# )
|
393 |
+
|
394 |
+
# # Prepare the results
|
395 |
+
# num_duplicates = len(duplicate_to_original_mapping)
|
396 |
+
# num_total = len(texts)
|
397 |
+
# num_deduplicated = len(deduplicated_indices)
|
398 |
+
|
399 |
+
# result_text = f"**Total documents:** {num_total}\n"
|
400 |
+
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
401 |
+
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
402 |
+
|
403 |
+
# # Show deduplicated examples
|
404 |
+
# if num_duplicates > 0:
|
405 |
+
# result_text += "**Examples of duplicates found:**\n\n"
|
406 |
+
# num_examples = min(5, num_duplicates)
|
407 |
+
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
408 |
+
# original_text = texts[original_idx]
|
409 |
+
# duplicate_text = texts[duplicate_idx]
|
410 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
411 |
+
# result_text += f"**Original text:**\n{original_text}\n\n"
|
412 |
+
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
413 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
414 |
+
# result_text += "-" * 50 + "\n\n"
|
415 |
+
# else:
|
416 |
+
# result_text += "No duplicates found."
|
417 |
+
|
418 |
+
# # Final status
|
419 |
+
# status = "Deduplication completed."
|
420 |
+
# yield status, result_text
|
421 |
+
|
422 |
+
# elif deduplication_type == "Cross-dataset":
|
423 |
+
# # Load Dataset 1
|
424 |
+
# status = "Loading Dataset 1..."
|
425 |
+
# yield status, ""
|
426 |
+
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
427 |
+
# ds1 = ds_default1
|
428 |
+
# else:
|
429 |
+
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
430 |
+
|
431 |
+
# # Load Dataset 2
|
432 |
+
# status = "Loading Dataset 2..."
|
433 |
+
# yield status, ""
|
434 |
+
# if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
435 |
+
# ds2 = ds_default2
|
436 |
+
# else:
|
437 |
+
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
438 |
+
|
439 |
+
# # Extract texts from Dataset 1
|
440 |
+
# status = "Extracting texts from Dataset 1..."
|
441 |
+
# yield status, ""
|
442 |
+
# texts1 = [example[dataset1_text_column] for example in ds1]
|
443 |
+
|
444 |
+
# # Extract texts from Dataset 2
|
445 |
+
# status = "Extracting texts from Dataset 2..."
|
446 |
+
# yield status, ""
|
447 |
+
# texts2 = [example[dataset2_text_column] for example in ds2]
|
448 |
+
|
449 |
+
# # Compute embeddings for Dataset 1
|
450 |
+
# status = "Computing embeddings for Dataset 1..."
|
451 |
+
# yield status, ""
|
452 |
+
# embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
453 |
+
|
454 |
+
# # Compute embeddings for Dataset 2
|
455 |
+
# status = "Computing embeddings for Dataset 2..."
|
456 |
+
# yield status, ""
|
457 |
+
# embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
458 |
+
|
459 |
+
# # Deduplicate across datasets
|
460 |
+
# status = "Deduplicating embeddings across datasets..."
|
461 |
+
# yield status, ""
|
462 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
463 |
+
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
464 |
+
# )
|
465 |
+
|
466 |
+
# num_duplicates = len(duplicate_indices_in_ds2)
|
467 |
+
# num_total_ds2 = len(texts2)
|
468 |
+
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
469 |
+
|
470 |
+
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
471 |
+
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
472 |
+
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
473 |
+
|
474 |
+
# # Show deduplicated examples
|
475 |
+
# if num_duplicates > 0:
|
476 |
+
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
477 |
+
# num_examples = min(5, num_duplicates)
|
478 |
+
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
479 |
+
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
480 |
+
# original_text = texts1[original_idx]
|
481 |
+
# duplicate_text = texts2[duplicate_idx]
|
482 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
483 |
+
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
484 |
+
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
485 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
486 |
+
# result_text += "-" * 50 + "\n\n"
|
487 |
+
# else:
|
488 |
+
# result_text += "No duplicates found."
|
489 |
+
|
490 |
+
# # Final status
|
491 |
+
# status = "Deduplication completed."
|
492 |
+
# yield status, result_text
|
493 |
+
|
494 |
+
# except Exception as e:
|
495 |
+
# yield f"An error occurred: {e}", ""
|
496 |
+
# raise e
|
497 |
+
|
498 |
+
# with gr.Blocks() as demo:
|
499 |
+
# gr.Markdown("# Semantic Deduplication")
|
500 |
+
|
501 |
+
# deduplication_type = gr.Radio(
|
502 |
+
# choices=["Single dataset", "Cross-dataset"],
|
503 |
+
# label="Deduplication Type",
|
504 |
+
# value="Single dataset"
|
505 |
+
# )
|
506 |
+
|
507 |
+
# with gr.Row():
|
508 |
+
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
509 |
+
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
510 |
+
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
511 |
+
|
512 |
+
# dataset2_inputs = gr.Column(visible=False)
|
513 |
+
# with dataset2_inputs:
|
514 |
+
# gr.Markdown("### Dataset 2")
|
515 |
+
# with gr.Row():
|
516 |
+
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
517 |
+
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
518 |
+
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
519 |
+
|
520 |
+
# threshold = gr.Slider(
|
521 |
+
# minimum=0.0,
|
522 |
+
# maximum=1.0,
|
523 |
+
# value=default_threshold,
|
524 |
+
# label="Similarity Threshold"
|
525 |
+
# )
|
526 |
+
|
527 |
+
# compute_button = gr.Button("Compute")
|
528 |
+
|
529 |
+
# status_output = gr.Markdown()
|
530 |
+
# result_output = gr.Markdown()
|
531 |
+
|
532 |
+
# # Function to update the visibility of dataset2_inputs
|
533 |
+
# def update_visibility(deduplication_type_value):
|
534 |
+
# if deduplication_type_value == "Cross-dataset":
|
535 |
+
# return gr.update(visible=True)
|
536 |
+
# else:
|
537 |
+
# return gr.update(visible=False)
|
538 |
+
|
539 |
+
# deduplication_type.change(
|
540 |
+
# update_visibility,
|
541 |
+
# inputs=deduplication_type,
|
542 |
+
# outputs=dataset2_inputs
|
543 |
+
# )
|
544 |
+
|
545 |
+
# compute_button.click(
|
546 |
+
# fn=perform_deduplication,
|
547 |
+
# inputs=[
|
548 |
+
# deduplication_type,
|
549 |
+
# dataset1_name,
|
550 |
+
# dataset1_split,
|
551 |
+
# dataset1_text_column,
|
552 |
+
# dataset2_name,
|
553 |
+
# dataset2_split,
|
554 |
+
# dataset2_text_column,
|
555 |
+
# threshold
|
556 |
+
# ],
|
557 |
+
# outputs=[status_output, result_output]
|
558 |
+
# )
|
559 |
+
|
560 |
+
# demo.launch()
|
561 |
+
|
562 |
|
563 |
# import gradio as gr
|
564 |
# from datasets import load_dataset
|