Updated app with code for deduplication
Browse files
app.py
CHANGED
@@ -4,67 +4,74 @@ import numpy as np
|
|
4 |
from model2vec import StaticModel
|
5 |
from reach import Reach
|
6 |
from difflib import ndiff
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"""
|
10 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
11 |
"""
|
12 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
13 |
|
14 |
-
|
15 |
-
deduplicated_indices = set(range(len(embedding_matrix))) # Start with all indices as deduplicated
|
16 |
duplicate_to_original_mapping = {}
|
17 |
|
18 |
results = reach.nearest_neighbor_threshold(
|
19 |
-
embedding_matrix,
|
20 |
-
threshold=threshold,
|
21 |
-
batch_size=batch_size,
|
22 |
-
show_progressbar=
|
23 |
)
|
24 |
|
25 |
# Process duplicates
|
26 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
27 |
if i not in deduplicated_indices:
|
28 |
-
continue
|
29 |
|
30 |
-
# Similar items are returned as (index, score), we are only interested in the index
|
31 |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
32 |
|
33 |
-
# Mark similar documents as duplicates and map them to the original
|
34 |
for sim_idx in similar_indices:
|
35 |
if sim_idx in deduplicated_indices:
|
36 |
deduplicated_indices.remove(sim_idx)
|
37 |
-
duplicate_to_original_mapping[sim_idx] = i
|
38 |
|
39 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
40 |
|
41 |
-
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=
|
42 |
"""
|
43 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
44 |
"""
|
45 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
46 |
|
47 |
-
# Keep track of duplicates in the second dataset
|
48 |
duplicate_indices_in_test = []
|
49 |
duplicate_to_original_mapping = {}
|
50 |
|
51 |
-
# Find nearest neighbors from the test set in the train set
|
52 |
results = reach.nearest_neighbor_threshold(
|
53 |
-
embedding_matrix_2,
|
54 |
-
threshold=threshold,
|
55 |
-
batch_size=batch_size,
|
56 |
-
show_progressbar=
|
57 |
)
|
58 |
|
59 |
# Process duplicates
|
60 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
61 |
-
|
62 |
-
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
|
63 |
|
64 |
-
# If we find a similar item in the train set, mark it as a duplicate
|
65 |
if similar_indices:
|
66 |
duplicate_indices_in_test.append(i)
|
67 |
-
duplicate_to_original_mapping[i] = similar_indices[0]
|
68 |
|
69 |
return duplicate_indices_in_test, duplicate_to_original_mapping
|
70 |
|
@@ -83,85 +90,114 @@ def perform_deduplication(
|
|
83 |
threshold=0.8,
|
84 |
progress=gr.Progress(track_tqdm=True)
|
85 |
):
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
result_text
|
121 |
-
result_text += f"**
|
122 |
-
result_text += "
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
with gr.Blocks() as demo:
|
167 |
gr.Markdown("# Semantic Deduplication")
|
@@ -225,3 +261,232 @@ with gr.Blocks() as demo:
|
|
225 |
)
|
226 |
|
227 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from model2vec import StaticModel
|
5 |
from reach import Reach
|
6 |
from difflib import ndiff
|
7 |
+
import sys
|
8 |
+
import tqdm
|
9 |
|
10 |
+
# Load the model at startup
|
11 |
+
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
12 |
+
|
13 |
+
# Load the default datasets at startup
|
14 |
+
default_dataset1_name = "ag_news"
|
15 |
+
default_dataset1_split = "train"
|
16 |
+
default_dataset2_name = "ag_news"
|
17 |
+
default_dataset2_split = "test"
|
18 |
+
|
19 |
+
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
20 |
+
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
21 |
+
|
22 |
+
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
23 |
"""
|
24 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
25 |
"""
|
26 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
27 |
|
28 |
+
deduplicated_indices = set(range(len(embedding_matrix)))
|
|
|
29 |
duplicate_to_original_mapping = {}
|
30 |
|
31 |
results = reach.nearest_neighbor_threshold(
|
32 |
+
embedding_matrix,
|
33 |
+
threshold=threshold,
|
34 |
+
batch_size=batch_size,
|
35 |
+
show_progressbar=False # Disable internal progress bar
|
36 |
)
|
37 |
|
38 |
# Process duplicates
|
39 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
40 |
if i not in deduplicated_indices:
|
41 |
+
continue
|
42 |
|
|
|
43 |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
44 |
|
|
|
45 |
for sim_idx in similar_indices:
|
46 |
if sim_idx in deduplicated_indices:
|
47 |
deduplicated_indices.remove(sim_idx)
|
48 |
+
duplicate_to_original_mapping[sim_idx] = i
|
49 |
|
50 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
51 |
|
52 |
+
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
53 |
"""
|
54 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
55 |
"""
|
56 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
57 |
|
|
|
58 |
duplicate_indices_in_test = []
|
59 |
duplicate_to_original_mapping = {}
|
60 |
|
|
|
61 |
results = reach.nearest_neighbor_threshold(
|
62 |
+
embedding_matrix_2,
|
63 |
+
threshold=threshold,
|
64 |
+
batch_size=batch_size,
|
65 |
+
show_progressbar=False # Disable internal progress bar
|
66 |
)
|
67 |
|
68 |
# Process duplicates
|
69 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
70 |
+
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
|
|
71 |
|
|
|
72 |
if similar_indices:
|
73 |
duplicate_indices_in_test.append(i)
|
74 |
+
duplicate_to_original_mapping[i] = similar_indices[0]
|
75 |
|
76 |
return duplicate_indices_in_test, duplicate_to_original_mapping
|
77 |
|
|
|
90 |
threshold=0.8,
|
91 |
progress=gr.Progress(track_tqdm=True)
|
92 |
):
|
93 |
+
# Monkey-patch tqdm
|
94 |
+
original_tqdm = tqdm.tqdm
|
95 |
+
tqdm.tqdm = progress.tqdm
|
96 |
+
sys.modules['tqdm'].tqdm = progress.tqdm
|
97 |
+
sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
98 |
+
|
99 |
+
try:
|
100 |
+
# Convert threshold to float
|
101 |
+
threshold = float(threshold)
|
102 |
+
|
103 |
+
if deduplication_type == "Single dataset":
|
104 |
+
# Check if the dataset is the default one
|
105 |
+
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
106 |
+
ds = ds_default1
|
107 |
+
else:
|
108 |
+
ds = load_dataset(dataset1_name, split=dataset1_split)
|
109 |
+
|
110 |
+
# Extract texts
|
111 |
+
texts = [example[dataset1_text_column] for example in ds]
|
112 |
+
|
113 |
+
# Compute embeddings
|
114 |
+
embedding_matrix = model.encode(texts, show_progressbar=False) # Disable internal progress bar
|
115 |
+
|
116 |
+
# Show progress bar for embedding computation
|
117 |
+
embedding_matrix = progress.tqdm(embedding_matrix, desc="Computing embeddings")
|
118 |
+
|
119 |
+
# Deduplicate
|
120 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
121 |
+
|
122 |
+
# Prepare the results
|
123 |
+
num_duplicates = len(duplicate_to_original_mapping)
|
124 |
+
num_total = len(texts)
|
125 |
+
num_deduplicated = len(deduplicated_indices)
|
126 |
+
|
127 |
+
result_text = f"**Total documents:** {num_total}\n"
|
128 |
+
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
129 |
+
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
130 |
+
|
131 |
+
# Show deduplicated examples
|
132 |
+
result_text += "**Examples of duplicates found:**\n\n"
|
133 |
+
num_examples = min(5, num_duplicates)
|
134 |
+
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
135 |
+
original_text = texts[original_idx]
|
136 |
+
duplicate_text = texts[duplicate_idx]
|
137 |
+
differences = display_word_differences(original_text, duplicate_text)
|
138 |
+
result_text += f"**Original text:**\n{original_text}\n\n"
|
139 |
+
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
140 |
+
result_text += f"**Differences:**\n{differences}\n"
|
141 |
+
result_text += "-" * 50 + "\n\n"
|
142 |
+
|
143 |
+
return result_text
|
144 |
+
|
145 |
+
elif deduplication_type == "Cross-dataset":
|
146 |
+
# Dataset 1
|
147 |
+
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
148 |
+
ds1 = ds_default1
|
149 |
+
else:
|
150 |
+
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
151 |
+
|
152 |
+
# Dataset 2
|
153 |
+
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
154 |
+
ds2 = ds_default2
|
155 |
+
else:
|
156 |
+
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
157 |
+
|
158 |
+
# Extract texts
|
159 |
+
texts1 = [example[dataset1_text_column] for example in ds1]
|
160 |
+
texts2 = [example[dataset2_text_column] for example in ds2]
|
161 |
+
|
162 |
+
# Compute embeddings
|
163 |
+
embedding_matrix1 = model.encode(texts1, show_progressbar=False) # Disable internal progress bar
|
164 |
+
embedding_matrix2 = model.encode(texts2, show_progressbar=False) # Disable internal progress bar
|
165 |
+
|
166 |
+
# Show progress bar for embedding computation
|
167 |
+
embedding_matrix1 = progress.tqdm(embedding_matrix1, desc="Computing embeddings for Dataset 1")
|
168 |
+
embedding_matrix2 = progress.tqdm(embedding_matrix2, desc="Computing embeddings for Dataset 2")
|
169 |
+
|
170 |
+
# Deduplicate across datasets
|
171 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
172 |
+
|
173 |
+
num_duplicates = len(duplicate_indices_in_ds2)
|
174 |
+
num_total_ds2 = len(texts2)
|
175 |
+
num_unique_ds2 = num_total_ds2 - num_duplicates
|
176 |
+
|
177 |
+
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
178 |
+
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
179 |
+
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
180 |
+
|
181 |
+
# Show deduplicated examples
|
182 |
+
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
183 |
+
num_examples = min(5, num_duplicates)
|
184 |
+
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
185 |
+
original_idx = duplicate_to_original_mapping[duplicate_idx]
|
186 |
+
original_text = texts1[original_idx]
|
187 |
+
duplicate_text = texts2[duplicate_idx]
|
188 |
+
differences = display_word_differences(original_text, duplicate_text)
|
189 |
+
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
190 |
+
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
191 |
+
result_text += f"**Differences:**\n{differences}\n"
|
192 |
+
result_text += "-" * 50 + "\n\n"
|
193 |
+
|
194 |
+
return result_text
|
195 |
+
|
196 |
+
finally:
|
197 |
+
# Restore original tqdm
|
198 |
+
tqdm.tqdm = original_tqdm
|
199 |
+
sys.modules['tqdm'].tqdm = original_tqdm
|
200 |
+
sys.modules['tqdm.auto'].tqdm = original_tqdm
|
201 |
|
202 |
with gr.Blocks() as demo:
|
203 |
gr.Markdown("# Semantic Deduplication")
|
|
|
261 |
)
|
262 |
|
263 |
demo.launch()
|
264 |
+
|
265 |
+
|
266 |
+
# import gradio as gr
|
267 |
+
# from datasets import load_dataset
|
268 |
+
# import numpy as np
|
269 |
+
# from model2vec import StaticModel
|
270 |
+
# from reach import Reach
|
271 |
+
# from difflib import ndiff
|
272 |
+
|
273 |
+
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[np.ndarray, dict[int, int]]:
|
274 |
+
# """
|
275 |
+
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
276 |
+
# """
|
277 |
+
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
278 |
+
|
279 |
+
# # Use a set for deduplicated indices and keep track of duplicates
|
280 |
+
# deduplicated_indices = set(range(len(embedding_matrix))) # Start with all indices as deduplicated
|
281 |
+
# duplicate_to_original_mapping = {}
|
282 |
+
|
283 |
+
# results = reach.nearest_neighbor_threshold(
|
284 |
+
# embedding_matrix,
|
285 |
+
# threshold=threshold,
|
286 |
+
# batch_size=batch_size,
|
287 |
+
# show_progressbar=True
|
288 |
+
# )
|
289 |
+
|
290 |
+
# # Process duplicates
|
291 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
292 |
+
# if i not in deduplicated_indices:
|
293 |
+
# continue # Skip already marked duplicates
|
294 |
+
|
295 |
+
# # Similar items are returned as (index, score), we are only interested in the index
|
296 |
+
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
297 |
+
|
298 |
+
# # Mark similar documents as duplicates and map them to the original
|
299 |
+
# for sim_idx in similar_indices:
|
300 |
+
# if sim_idx in deduplicated_indices:
|
301 |
+
# deduplicated_indices.remove(sim_idx)
|
302 |
+
# duplicate_to_original_mapping[sim_idx] = i # Map duplicate to original
|
303 |
+
|
304 |
+
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
305 |
+
|
306 |
+
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[list[int], dict[int, int]]:
|
307 |
+
# """
|
308 |
+
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
309 |
+
# """
|
310 |
+
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
311 |
+
|
312 |
+
# # Keep track of duplicates in the second dataset
|
313 |
+
# duplicate_indices_in_test = []
|
314 |
+
# duplicate_to_original_mapping = {}
|
315 |
+
|
316 |
+
# # Find nearest neighbors from the test set in the train set
|
317 |
+
# results = reach.nearest_neighbor_threshold(
|
318 |
+
# embedding_matrix_2,
|
319 |
+
# threshold=threshold,
|
320 |
+
# batch_size=batch_size,
|
321 |
+
# show_progressbar=True
|
322 |
+
# )
|
323 |
+
|
324 |
+
# # Process duplicates
|
325 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
326 |
+
# # Similar items are returned as (index, score), we are only interested in the index
|
327 |
+
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
|
328 |
+
|
329 |
+
# # If we find a similar item in the train set, mark it as a duplicate
|
330 |
+
# if similar_indices:
|
331 |
+
# duplicate_indices_in_test.append(i)
|
332 |
+
# duplicate_to_original_mapping[i] = similar_indices[0] # Map duplicate in test to original in train
|
333 |
+
|
334 |
+
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
335 |
+
|
336 |
+
# def display_word_differences(x: str, y: str) -> str:
|
337 |
+
# diff = ndiff(x.split(), y.split())
|
338 |
+
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
339 |
+
|
340 |
+
# def perform_deduplication(
|
341 |
+
# deduplication_type,
|
342 |
+
# dataset1_name,
|
343 |
+
# dataset1_split,
|
344 |
+
# dataset1_text_column,
|
345 |
+
# dataset2_name="",
|
346 |
+
# dataset2_split="",
|
347 |
+
# dataset2_text_column="",
|
348 |
+
# threshold=0.8,
|
349 |
+
# progress=gr.Progress(track_tqdm=True)
|
350 |
+
# ):
|
351 |
+
# # Convert threshold to float
|
352 |
+
# threshold = float(threshold)
|
353 |
+
|
354 |
+
# if deduplication_type == "Single dataset":
|
355 |
+
# # Load the dataset
|
356 |
+
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
357 |
+
|
358 |
+
# # Extract texts
|
359 |
+
# texts = [example[dataset1_text_column] for example in ds]
|
360 |
+
|
361 |
+
# # Compute embeddings
|
362 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
363 |
+
# embedding_matrix = model.encode(texts, show_progressbar=True)
|
364 |
+
|
365 |
+
# # Deduplicate
|
366 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
367 |
+
|
368 |
+
# # Prepare the results
|
369 |
+
# num_duplicates = len(duplicate_to_original_mapping)
|
370 |
+
# num_total = len(texts)
|
371 |
+
# num_deduplicated = len(deduplicated_indices)
|
372 |
+
|
373 |
+
# result_text = f"**Total documents:** {num_total}\n"
|
374 |
+
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
375 |
+
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
376 |
+
|
377 |
+
# # Show deduplicated examples
|
378 |
+
# result_text += "**Examples of duplicates found:**\n\n"
|
379 |
+
# num_examples = min(5, num_duplicates)
|
380 |
+
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
381 |
+
# original_text = texts[original_idx]
|
382 |
+
# duplicate_text = texts[duplicate_idx]
|
383 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
384 |
+
# result_text += f"**Original text:**\n{original_text}\n\n"
|
385 |
+
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
386 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
387 |
+
# result_text += "-" * 50 + "\n\n"
|
388 |
+
|
389 |
+
# return result_text
|
390 |
+
|
391 |
+
# elif deduplication_type == "Cross-dataset":
|
392 |
+
# # Load datasets
|
393 |
+
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
394 |
+
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
395 |
+
|
396 |
+
# # Extract texts
|
397 |
+
# texts1 = [example[dataset1_text_column] for example in ds1]
|
398 |
+
# texts2 = [example[dataset2_text_column] for example in ds2]
|
399 |
+
|
400 |
+
# # Compute embeddings
|
401 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
402 |
+
# embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
403 |
+
# embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
404 |
+
|
405 |
+
# # Deduplicate across datasets
|
406 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
407 |
+
|
408 |
+
# num_duplicates = len(duplicate_indices_in_ds2)
|
409 |
+
# num_total_ds2 = len(texts2)
|
410 |
+
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
411 |
+
|
412 |
+
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
413 |
+
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
414 |
+
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
415 |
+
|
416 |
+
# # Show deduplicated examples
|
417 |
+
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
418 |
+
# num_examples = min(5, num_duplicates)
|
419 |
+
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
420 |
+
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
421 |
+
# original_text = texts1[original_idx]
|
422 |
+
# duplicate_text = texts2[duplicate_idx]
|
423 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
424 |
+
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
425 |
+
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
426 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
427 |
+
# result_text += "-" * 50 + "\n\n"
|
428 |
+
|
429 |
+
# return result_text
|
430 |
+
|
431 |
+
# with gr.Blocks() as demo:
|
432 |
+
# gr.Markdown("# Semantic Deduplication")
|
433 |
+
|
434 |
+
# deduplication_type = gr.Radio(
|
435 |
+
# choices=["Single dataset", "Cross-dataset"],
|
436 |
+
# label="Deduplication Type",
|
437 |
+
# value="Single dataset"
|
438 |
+
# )
|
439 |
+
|
440 |
+
# with gr.Row():
|
441 |
+
# dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
|
442 |
+
# dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
|
443 |
+
# dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
|
444 |
+
|
445 |
+
# dataset2_inputs = gr.Column(visible=False)
|
446 |
+
# with dataset2_inputs:
|
447 |
+
# gr.Markdown("### Dataset 2")
|
448 |
+
# with gr.Row():
|
449 |
+
# dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
|
450 |
+
# dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
|
451 |
+
# dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
|
452 |
+
|
453 |
+
# threshold = gr.Slider(
|
454 |
+
# minimum=0.0,
|
455 |
+
# maximum=1.0,
|
456 |
+
# value=0.8,
|
457 |
+
# label="Similarity Threshold"
|
458 |
+
# )
|
459 |
+
|
460 |
+
# compute_button = gr.Button("Compute")
|
461 |
+
|
462 |
+
# output = gr.Markdown()
|
463 |
+
|
464 |
+
# # Function to update the visibility of dataset2_inputs
|
465 |
+
# def update_visibility(deduplication_type_value):
|
466 |
+
# if deduplication_type_value == "Cross-dataset":
|
467 |
+
# return gr.update(visible=True)
|
468 |
+
# else:
|
469 |
+
# return gr.update(visible=False)
|
470 |
+
|
471 |
+
# deduplication_type.change(
|
472 |
+
# update_visibility,
|
473 |
+
# inputs=deduplication_type,
|
474 |
+
# outputs=dataset2_inputs
|
475 |
+
# )
|
476 |
+
|
477 |
+
# compute_button.click(
|
478 |
+
# fn=perform_deduplication,
|
479 |
+
# inputs=[
|
480 |
+
# deduplication_type,
|
481 |
+
# dataset1_name,
|
482 |
+
# dataset1_split,
|
483 |
+
# dataset1_text_column,
|
484 |
+
# dataset2_name,
|
485 |
+
# dataset2_split,
|
486 |
+
# dataset2_text_column,
|
487 |
+
# threshold
|
488 |
+
# ],
|
489 |
+
# outputs=output
|
490 |
+
# )
|
491 |
+
|
492 |
+
# demo.launch()
|