Updates
Browse files
app.py
CHANGED
@@ -4,7 +4,8 @@ import numpy as np
|
|
4 |
from model2vec import StaticModel
|
5 |
from reach import Reach
|
6 |
from difflib import ndiff
|
7 |
-
import
|
|
|
8 |
|
9 |
# Load the model at startup
|
10 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
@@ -26,9 +27,65 @@ def batch_iterable(iterable, batch_size):
|
|
26 |
for i in range(0, len(iterable), batch_size):
|
27 |
yield iterable[i:i + batch_size]
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def display_word_differences(x: str, y: str) -> str:
|
30 |
diff = ndiff(x.split(), y.split())
|
31 |
-
return " ".join([word for word in diff if word.startswith((
|
32 |
|
33 |
def perform_deduplication(
|
34 |
deduplication_type,
|
@@ -39,7 +96,7 @@ def perform_deduplication(
|
|
39 |
dataset2_split="",
|
40 |
dataset2_text_column="",
|
41 |
threshold=default_threshold,
|
42 |
-
progress=gr.Progress(track_tqdm=True)
|
43 |
):
|
44 |
try:
|
45 |
# Convert threshold to float
|
@@ -52,7 +109,10 @@ def perform_deduplication(
|
|
52 |
# Load Dataset 1
|
53 |
status = "Loading Dataset 1..."
|
54 |
yield status, ""
|
55 |
-
if
|
|
|
|
|
|
|
56 |
ds = ds_default1
|
57 |
else:
|
58 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
@@ -65,15 +125,12 @@ def perform_deduplication(
|
|
65 |
# Compute embeddings
|
66 |
status = "Computing embeddings for Dataset 1..."
|
67 |
yield status, ""
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
embeddings.append(batch_embeddings)
|
75 |
-
|
76 |
-
embedding_matrix = np.concatenate(embeddings, axis=0)
|
77 |
|
78 |
# Deduplicate
|
79 |
status = "Deduplicating embeddings..."
|
@@ -89,7 +146,9 @@ def perform_deduplication(
|
|
89 |
|
90 |
result_text = f"**Total documents:** {num_total}\n"
|
91 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
92 |
-
result_text +=
|
|
|
|
|
93 |
|
94 |
# Show deduplicated examples
|
95 |
if num_duplicates > 0:
|
@@ -119,49 +178,13 @@ def perform_deduplication(
|
|
119 |
yield f"An error occurred: {e}", ""
|
120 |
raise e
|
121 |
|
122 |
-
|
123 |
-
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
124 |
-
"""
|
125 |
-
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
126 |
-
"""
|
127 |
-
# Building the index
|
128 |
-
progress(0, desc="Building search index...")
|
129 |
-
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
130 |
-
|
131 |
-
deduplicated_indices = set(range(len(embedding_matrix)))
|
132 |
-
duplicate_to_original_mapping = {}
|
133 |
-
|
134 |
-
# Finding nearest neighbors
|
135 |
-
progress(0, desc="Finding nearest neighbors...")
|
136 |
-
results = reach.nearest_neighbor_threshold(
|
137 |
-
embedding_matrix,
|
138 |
-
threshold=threshold,
|
139 |
-
batch_size=batch_size,
|
140 |
-
show_progressbar=False # Disable internal progress bar
|
141 |
-
)
|
142 |
-
|
143 |
-
# Processing duplicates with a progress bar
|
144 |
-
total_items = len(embedding_matrix)
|
145 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
146 |
-
if i not in deduplicated_indices:
|
147 |
-
continue
|
148 |
-
|
149 |
-
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
150 |
-
|
151 |
-
for sim_idx in similar_indices:
|
152 |
-
if sim_idx in deduplicated_indices:
|
153 |
-
deduplicated_indices.remove(sim_idx)
|
154 |
-
duplicate_to_original_mapping[sim_idx] = i
|
155 |
-
|
156 |
-
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
157 |
-
|
158 |
with gr.Blocks() as demo:
|
159 |
gr.Markdown("# Semantic Deduplication")
|
160 |
|
161 |
deduplication_type = gr.Radio(
|
162 |
choices=["Single dataset", "Cross-dataset"],
|
163 |
label="Deduplication Type",
|
164 |
-
value="Single dataset"
|
165 |
)
|
166 |
|
167 |
with gr.Row():
|
@@ -178,10 +201,7 @@ with gr.Blocks() as demo:
|
|
178 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
179 |
|
180 |
threshold = gr.Slider(
|
181 |
-
minimum=0.0,
|
182 |
-
maximum=1.0,
|
183 |
-
value=default_threshold,
|
184 |
-
label="Similarity Threshold"
|
185 |
)
|
186 |
|
187 |
compute_button = gr.Button("Compute")
|
@@ -197,9 +217,7 @@ with gr.Blocks() as demo:
|
|
197 |
return gr.update(visible=False)
|
198 |
|
199 |
deduplication_type.change(
|
200 |
-
update_visibility,
|
201 |
-
inputs=deduplication_type,
|
202 |
-
outputs=dataset2_inputs
|
203 |
)
|
204 |
|
205 |
compute_button.click(
|
@@ -212,9 +230,9 @@ with gr.Blocks() as demo:
|
|
212 |
dataset2_name,
|
213 |
dataset2_split,
|
214 |
dataset2_text_column,
|
215 |
-
threshold
|
216 |
],
|
217 |
-
outputs=[status_output, result_output]
|
218 |
)
|
219 |
|
220 |
demo.launch()
|
|
|
4 |
from model2vec import StaticModel
|
5 |
from reach import Reach
|
6 |
from difflib import ndiff
|
7 |
+
import tqdm
|
8 |
+
from contextlib import contextmanager
|
9 |
|
10 |
# Load the model at startup
|
11 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
27 |
for i in range(0, len(iterable), batch_size):
|
28 |
yield iterable[i:i + batch_size]
|
29 |
|
30 |
+
@contextmanager
|
31 |
+
def tqdm_redirect(progress):
|
32 |
+
original_tqdm = tqdm.tqdm
|
33 |
+
try:
|
34 |
+
tqdm.tqdm = progress.tqdm
|
35 |
+
yield
|
36 |
+
finally:
|
37 |
+
tqdm.tqdm = original_tqdm
|
38 |
+
|
39 |
+
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
40 |
+
with tqdm_redirect(progress):
|
41 |
+
embeddings = model.encode(texts, show_progressbar=True, batch_size=batch_size)
|
42 |
+
return embeddings
|
43 |
+
|
44 |
+
def deduplicate(
|
45 |
+
embedding_matrix: np.ndarray,
|
46 |
+
threshold: float,
|
47 |
+
batch_size: int = 1024,
|
48 |
+
progress=None
|
49 |
+
) -> tuple[np.ndarray, dict[int, int]]:
|
50 |
+
# Existing deduplication code remains unchanged
|
51 |
+
# Building the index
|
52 |
+
progress(0, desc="Building search index...")
|
53 |
+
reach = Reach(
|
54 |
+
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
55 |
+
)
|
56 |
+
|
57 |
+
deduplicated_indices = set(range(len(embedding_matrix)))
|
58 |
+
duplicate_to_original_mapping = {}
|
59 |
+
|
60 |
+
# Finding nearest neighbors
|
61 |
+
progress(0, desc="Finding nearest neighbors...")
|
62 |
+
results = reach.nearest_neighbor_threshold(
|
63 |
+
embedding_matrix,
|
64 |
+
threshold=threshold,
|
65 |
+
batch_size=batch_size,
|
66 |
+
show_progressbar=False, # Disable internal progress bar
|
67 |
+
)
|
68 |
+
|
69 |
+
# Processing duplicates with a progress bar
|
70 |
+
total_items = len(embedding_matrix)
|
71 |
+
for i, similar_items in enumerate(
|
72 |
+
progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
73 |
+
):
|
74 |
+
if i not in deduplicated_indices:
|
75 |
+
continue
|
76 |
+
|
77 |
+
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
78 |
+
|
79 |
+
for sim_idx in similar_indices:
|
80 |
+
if sim_idx in deduplicated_indices:
|
81 |
+
deduplicated_indices.remove(sim_idx)
|
82 |
+
duplicate_to_original_mapping[sim_idx] = i
|
83 |
+
|
84 |
+
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
85 |
+
|
86 |
def display_word_differences(x: str, y: str) -> str:
|
87 |
diff = ndiff(x.split(), y.split())
|
88 |
+
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
89 |
|
90 |
def perform_deduplication(
|
91 |
deduplication_type,
|
|
|
96 |
dataset2_split="",
|
97 |
dataset2_text_column="",
|
98 |
threshold=default_threshold,
|
99 |
+
progress=gr.Progress(track_tqdm=True),
|
100 |
):
|
101 |
try:
|
102 |
# Convert threshold to float
|
|
|
109 |
# Load Dataset 1
|
110 |
status = "Loading Dataset 1..."
|
111 |
yield status, ""
|
112 |
+
if (
|
113 |
+
dataset1_name == default_dataset1_name
|
114 |
+
and dataset1_split == default_dataset1_split
|
115 |
+
):
|
116 |
ds = ds_default1
|
117 |
else:
|
118 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
|
|
125 |
# Compute embeddings
|
126 |
status = "Computing embeddings for Dataset 1..."
|
127 |
yield status, ""
|
128 |
+
embedding_matrix = compute_embeddings(
|
129 |
+
texts,
|
130 |
+
batch_size=64,
|
131 |
+
progress=progress,
|
132 |
+
desc="Computing embeddings for Dataset 1",
|
133 |
+
)
|
|
|
|
|
|
|
134 |
|
135 |
# Deduplicate
|
136 |
status = "Deduplicating embeddings..."
|
|
|
146 |
|
147 |
result_text = f"**Total documents:** {num_total}\n"
|
148 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
149 |
+
result_text += (
|
150 |
+
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
151 |
+
)
|
152 |
|
153 |
# Show deduplicated examples
|
154 |
if num_duplicates > 0:
|
|
|
178 |
yield f"An error occurred: {e}", ""
|
179 |
raise e
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
with gr.Blocks() as demo:
|
182 |
gr.Markdown("# Semantic Deduplication")
|
183 |
|
184 |
deduplication_type = gr.Radio(
|
185 |
choices=["Single dataset", "Cross-dataset"],
|
186 |
label="Deduplication Type",
|
187 |
+
value="Single dataset",
|
188 |
)
|
189 |
|
190 |
with gr.Row():
|
|
|
201 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
202 |
|
203 |
threshold = gr.Slider(
|
204 |
+
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
|
|
|
|
|
|
205 |
)
|
206 |
|
207 |
compute_button = gr.Button("Compute")
|
|
|
217 |
return gr.update(visible=False)
|
218 |
|
219 |
deduplication_type.change(
|
220 |
+
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
|
|
|
221 |
)
|
222 |
|
223 |
compute_button.click(
|
|
|
230 |
dataset2_name,
|
231 |
dataset2_split,
|
232 |
dataset2_text_column,
|
233 |
+
threshold,
|
234 |
],
|
235 |
+
outputs=[status_output, result_output],
|
236 |
)
|
237 |
|
238 |
demo.launch()
|