Spaces:
Runtime error
Runtime error
File size: 7,811 Bytes
7a5c6a0 4be7ef1 7a5c6a0 4be7ef1 7a5c6a0 a5994ff 4be7ef1 fdead57 4be7ef1 fdead57 4be7ef1 a5994ff 4be7ef1 1287f22 4be7ef1 1287f22 4be7ef1 1287f22 4be7ef1 1287f22 6585503 4be7ef1 eebd0b7 4be7ef1 a5994ff 4be7ef1 d07326d 8b2a350 7a5c6a0 c5a40b1 487f89b 6585503 c5a40b1 7a5c6a0 c5a40b1 c6b395b 4c5854e c6b395b a312aeb 7a5c6a0 03fc7e7 d07326d 7a5c6a0 d07326d 7a5c6a0 fdead57 7a5c6a0 e82f9dc 7a5c6a0 fdead57 7a5c6a0 cc910da fdead57 4be7ef1 fdead57 02fa9c7 4be7ef1 fdead57 4be7ef1 cc910da 4be7ef1 cc910da 29e7450 b3ba9f7 7a5c6a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import cv2
import einops
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
from PIL import Image
from controlnet_aux import OpenposeDetector
# Constants
low_threshold = 100
high_threshold = 200
# Models
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe_canny = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16
)
pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe_canny.enable_model_cpu_offload()
pipe_canny.enable_xformers_memory_efficient_attention()
# Generator seed,
generator = torch.manual_seed(0)
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
controlnet_pose = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
)
pipe_pose = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet_pose, safety_checker=None, torch_dtype=torch.float16
)
pipe_pose.scheduler = UniPCMultistepScheduler.from_config(pipe_pose.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe_pose.enable_model_cpu_offload()
# xformers
pipe_pose.enable_xformers_memory_efficient_attention()
def get_canny_filter(image):
print(image)
if not isinstance(image, np.ndarray):
image = np.array(image)
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:
, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def get_pose(image):
return pose_model(image)
def process(input_image, prompt, input_control):
# TODO: Add other control tasks
if input_control == "Scribble":
return process_canny(input_image, prompt)
elif input_control == "Pose":
return process_pose(input_image, prompt)
return process_canny(input_image, prompt)
def process_canny(input_image, prompt):
canny_image = get_canny_filter(input_image)
output = pipe_canny(
prompt,
canny_image,
generator=generator,
num_images_per_prompt=1,
num_inference_steps=20,
)
return [canny_image,output.images[0]]
def process_pose(input_image, prompt):
pose_image = get_pose(input_image)
output = pipe_pose(
prompt,
pose_image,
generator=generator,
num_images_per_prompt=1,
num_inference_steps=20,
)
return [pose_image,output.images[0]]
block = gr.Blocks().queue()
control_task_list = [
"Canny Edge Map",
"Scribble",
"Pose"
]
with block:
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation.
</p>
''')
gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
examples_list = [
[
"bird.png",
"bird",
"Canny Edge Map"
],
# [
# "turtle.png",
# "turtle",
# "Scribble",
# "best quality, extremely detailed",
# 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
# 1,
# 512,
# 20,
# 9.0,
# 123490213,
# 0.0,
# 100,
# 200
# ],
# [
# "pose1.png",
# "Chef in the Kitchen",
# "Pose",
# "best quality, extremely detailed",
# 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
# 1,
# 512,
# 20,
# 9.0,
# 123490213,
# 0.0,
# 100,
# 200
# ]
]
examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control], outputs = [result_gallery], cache_examples = True, fn = process)
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.ControlNet)")
block.launch(debug = True) |