Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
1287f22
1
Parent(s):
c6b395b
Update app.py
Browse filesAttempt at adding scribble checkpoint
app.py
CHANGED
@@ -16,7 +16,7 @@ from huggingface_hub import hf_hub_url, cached_download
|
|
16 |
|
17 |
REPO_ID = "lllyasviel/ControlNet"
|
18 |
canny_checkpoint = "models/control_sd15_canny.pth"
|
19 |
-
|
20 |
|
21 |
canny_model = create_model('./models/cldm_v15.yaml')
|
22 |
canny_model.load_state_dict(load_state_dict(cached_download(
|
@@ -26,14 +26,17 @@ canny_model = canny_model.cuda()
|
|
26 |
ddim_sampler = DDIMSampler(canny_model)
|
27 |
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
36 |
# TODO: Add other control tasks
|
|
|
|
|
37 |
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
38 |
|
39 |
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
@@ -64,11 +67,40 @@ def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_re
|
|
64 |
results = [x_samples[i] for i in range(num_samples)]
|
65 |
return [255 - detected_map] + results
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
block = gr.Blocks().queue()
|
70 |
control_task_list = [
|
71 |
-
"Canny Edge Map"
|
|
|
72 |
]
|
73 |
with block:
|
74 |
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
|
|
|
16 |
|
17 |
REPO_ID = "lllyasviel/ControlNet"
|
18 |
canny_checkpoint = "models/control_sd15_canny.pth"
|
19 |
+
scribble_checkpoint = "models/control_sd15_scribble.pth"
|
20 |
|
21 |
canny_model = create_model('./models/cldm_v15.yaml')
|
22 |
canny_model.load_state_dict(load_state_dict(cached_download(
|
|
|
26 |
ddim_sampler = DDIMSampler(canny_model)
|
27 |
|
28 |
|
29 |
+
scribble_model = create_model('./models/cldm_v15.yaml')
|
30 |
+
sribbble_model.load_state_dict(load_state_dict(cached_download(
|
31 |
+
hf_hub_url(REPO_ID, scribble_checkpoint)
|
32 |
+
), location='cpu'))
|
33 |
+
scribble_model = canny_model.cuda()
|
34 |
+
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
35 |
|
36 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
37 |
# TODO: Add other control tasks
|
38 |
+
if input_control == "Scribble":
|
39 |
+
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
40 |
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
41 |
|
42 |
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
|
|
67 |
results = [x_samples[i] for i in range(num_samples)]
|
68 |
return [255 - detected_map] + results
|
69 |
|
70 |
+
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
71 |
+
with torch.no_grad():
|
72 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
73 |
+
H, W, C = img.shape
|
74 |
+
|
75 |
+
detected_map = np.zeros_like(img, dtype=np.uint8)
|
76 |
+
detected_map[np.min(img, axis=2) < 127] = 255
|
77 |
+
|
78 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
79 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
80 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
81 |
+
|
82 |
+
seed_everything(seed)
|
83 |
+
|
84 |
+
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
85 |
+
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
86 |
+
shape = (4, H // 8, W // 8)
|
87 |
+
|
88 |
|
89 |
+
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
90 |
+
shape, cond, verbose=False, eta=eta,
|
91 |
+
unconditional_guidance_scale=scale,
|
92 |
+
unconditional_conditioning=un_cond)
|
93 |
+
|
94 |
+
x_samples = scribble_model.decode_first_stage(samples)
|
95 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
96 |
+
|
97 |
+
results = [x_samples[i] for i in range(num_samples)]
|
98 |
+
return [255 - detected_map] + results
|
99 |
|
100 |
block = gr.Blocks().queue()
|
101 |
control_task_list = [
|
102 |
+
"Canny Edge Map",
|
103 |
+
"Scribble"
|
104 |
]
|
105 |
with block:
|
106 |
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
|