Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
d07326d
1
Parent(s):
bb7ef0f
Update app.py
Browse filesAdd new tab for interactive sketch
app.py
CHANGED
@@ -36,7 +36,9 @@ ddim_sampler_scribble = DDIMSampler(scribble_model)
|
|
36 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
37 |
# TODO: Add other control tasks
|
38 |
if input_control == "Scribble":
|
39 |
-
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
|
|
|
|
40 |
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
41 |
|
42 |
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
@@ -96,11 +98,51 @@ def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image
|
|
96 |
|
97 |
results = [x_samples[i] for i in range(num_samples)]
|
98 |
return [255 - detected_map] + results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
block = gr.Blocks().queue()
|
101 |
control_task_list = [
|
102 |
"Canny Edge Map",
|
103 |
-
"Scribble"
|
|
|
104 |
]
|
105 |
with block:
|
106 |
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
|
@@ -111,10 +153,22 @@ with block:
|
|
111 |
''')
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
prompt = gr.Textbox(label="Prompt")
|
117 |
run_button = gr.Button(label="Run")
|
|
|
118 |
with gr.Accordion("Advanced options", open=False):
|
119 |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
120 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
|
|
36 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
37 |
# TODO: Add other control tasks
|
38 |
if input_control == "Scribble":
|
39 |
+
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
40 |
+
elif input_control == "Interactive Scribble":
|
41 |
+
return process_scribble_interactive(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
42 |
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
43 |
|
44 |
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
|
|
98 |
|
99 |
results = [x_samples[i] for i in range(num_samples)]
|
100 |
return [255 - detected_map] + results
|
101 |
+
|
102 |
+
def process_scribble_interactive(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
103 |
+
with torch.no_grad():
|
104 |
+
img = resize_image(HWC3(input_image['mask'][:, :, 0]), image_resolution)
|
105 |
+
H, W, C = img.shape
|
106 |
+
|
107 |
+
detected_map = np.zeros_like(img, dtype=np.uint8)
|
108 |
+
detected_map[np.min(img, axis=2) > 127] = 255
|
109 |
+
|
110 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
111 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
112 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
113 |
+
|
114 |
+
if seed == -1:
|
115 |
+
seed = random.randint(0, 65535)
|
116 |
+
seed_everything(seed)
|
117 |
+
|
118 |
+
|
119 |
+
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
120 |
+
un_cond = {"c_concat": [control], "c_crossattn": [scribble.get_learned_conditioning([n_prompt] * num_samples)]}
|
121 |
+
shape = (4, H // 8, W // 8)
|
122 |
+
|
123 |
+
|
124 |
+
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
125 |
+
shape, cond, verbose=False, eta=eta,
|
126 |
+
unconditional_guidance_scale=scale,
|
127 |
+
unconditional_conditioning=un_cond)
|
128 |
+
|
129 |
+
x_samples = scribble_model.decode_first_stage(samples)
|
130 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
131 |
+
|
132 |
+
results = [x_samples[i] for i in range(num_samples)]
|
133 |
+
return [255 - detected_map] + results
|
134 |
+
|
135 |
+
|
136 |
+
def create_canvas(w, h):
|
137 |
+
new_control_options = ["Interactive Scribble"]
|
138 |
+
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
139 |
+
|
140 |
|
141 |
block = gr.Blocks().queue()
|
142 |
control_task_list = [
|
143 |
"Canny Edge Map",
|
144 |
+
"Scribble",
|
145 |
+
"Interactive Scribble"
|
146 |
]
|
147 |
with block:
|
148 |
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
|
|
|
153 |
''')
|
154 |
with gr.Row():
|
155 |
with gr.Column():
|
156 |
+
with gr.Tab("Upload"):
|
157 |
+
input_image = gr.Image(source='upload', type="numpy")
|
158 |
+
|
159 |
+
with gr.Tab("Interactive Scribble"):
|
160 |
+
canvas_width = gr.Slider(label="Canvas Width", minimum=256, maximum=1024, value=512, step=1)
|
161 |
+
canvas_height = gr.Slider(label="Canvas Height", minimum=256, maximum=1024, value=512, step=1)
|
162 |
+
create_button = gr.Button(label="Start", value='Open drawing canvas!')
|
163 |
+
input_image = gr.Image(source='upload', type='numpy', tool='sketch')
|
164 |
+
gr.Markdown(value='Do not forget to change your brush width to make it thinner. (Gradio do not allow developers to set brush width so you need to do it manually.) '
|
165 |
+
'Just click on the small pencil icon in the upper right corner of the above block.')
|
166 |
+
create_button.click(fn=create_canvas, inputs=[canvas_width, canvas_height], outputs=[input_image])
|
167 |
+
|
168 |
+
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
|
169 |
prompt = gr.Textbox(label="Prompt")
|
170 |
run_button = gr.Button(label="Run")
|
171 |
+
|
172 |
with gr.Accordion("Advanced options", open=False):
|
173 |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
174 |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|