Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
a5994ff
1
Parent(s):
e82f9dc
Attempt using safetensors for lightweight memory
Browse files
app.py
CHANGED
@@ -15,10 +15,15 @@ from cldm.model import create_model, load_state_dict
|
|
15 |
|
16 |
from huggingface_hub import hf_hub_url, cached_download
|
17 |
|
18 |
-
REPO_ID = "lllyasviel/ControlNet"
|
19 |
-
canny_checkpoint = "models/control_sd15_canny.pth"
|
20 |
-
scribble_checkpoint = "models/control_sd15_scribble.pth"
|
21 |
-
pose_checkpoint = "models/control_sd15_openpose.pth"
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
24 |
canny_model.load_state_dict(load_state_dict(cached_download(
|
@@ -30,7 +35,7 @@ ddim_sampler = DDIMSampler(canny_model)
|
|
30 |
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
31 |
pose_model.load_state_dict(load_state_dict(cached_download(
|
32 |
hf_hub_url(REPO_ID, pose_checkpoint)
|
33 |
-
), location='
|
34 |
pose_model = pose_model.cuda()
|
35 |
ddim_sampler_pose = DDIMSampler(pose_model)
|
36 |
|
@@ -41,6 +46,8 @@ scribble_model.load_state_dict(load_state_dict(cached_download(
|
|
41 |
scribble_model = canny_model.cuda()
|
42 |
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
43 |
|
|
|
|
|
44 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
45 |
# TODO: Add other control tasks
|
46 |
if input_control == "Scribble":
|
@@ -64,14 +71,24 @@ def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_re
|
|
64 |
|
65 |
seed_everything(seed)
|
66 |
|
|
|
|
|
|
|
67 |
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
68 |
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
69 |
shape = (4, H // 8, W // 8)
|
70 |
|
|
|
|
|
|
|
71 |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
72 |
shape, cond, verbose=False, eta=eta,
|
73 |
unconditional_guidance_scale=scale,
|
74 |
unconditional_conditioning=un_cond)
|
|
|
|
|
|
|
|
|
75 |
x_samples = canny_model.decode_first_stage(samples)
|
76 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
77 |
|
@@ -92,16 +109,24 @@ def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image
|
|
92 |
|
93 |
seed_everything(seed)
|
94 |
|
|
|
|
|
|
|
95 |
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
96 |
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
97 |
shape = (4, H // 8, W // 8)
|
98 |
|
99 |
-
|
|
|
|
|
100 |
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
101 |
shape, cond, verbose=False, eta=eta,
|
102 |
unconditional_guidance_scale=scale,
|
103 |
unconditional_conditioning=un_cond)
|
104 |
|
|
|
|
|
|
|
105 |
x_samples = scribble_model.decode_first_stage(samples)
|
106 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
107 |
|
@@ -126,18 +151,25 @@ def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_res
|
|
126 |
seed = random.randint(0, 65535)
|
127 |
seed_everything(seed)
|
128 |
|
|
|
|
|
129 |
|
|
|
130 |
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
131 |
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
132 |
shape = (4, H // 8, W // 8)
|
133 |
|
134 |
-
|
|
|
|
|
135 |
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
136 |
shape, cond, verbose=False, eta=eta,
|
137 |
unconditional_guidance_scale=scale,
|
138 |
unconditional_conditioning=un_cond)
|
139 |
|
140 |
-
|
|
|
|
|
141 |
x_samples = pose_model.decode_first_stage(samples)
|
142 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
143 |
|
|
|
15 |
|
16 |
from huggingface_hub import hf_hub_url, cached_download
|
17 |
|
18 |
+
# REPO_ID = "lllyasviel/ControlNet"
|
19 |
+
# canny_checkpoint = "models/control_sd15_canny.pth"
|
20 |
+
# scribble_checkpoint = "models/control_sd15_scribble.pth"
|
21 |
+
# pose_checkpoint = "models/control_sd15_openpose.pth"
|
22 |
+
|
23 |
+
REPO_ID = "webui/ControlNet-modules-safetensors"
|
24 |
+
canny_checkpoint = " control_canny-fp16.safetensors"
|
25 |
+
scribble_checkpoint = "control_scribble-fp16.safetensors"
|
26 |
+
pose_checkpoint = "control_openpose-fp16.safetensors"
|
27 |
|
28 |
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
29 |
canny_model.load_state_dict(load_state_dict(cached_download(
|
|
|
35 |
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
36 |
pose_model.load_state_dict(load_state_dict(cached_download(
|
37 |
hf_hub_url(REPO_ID, pose_checkpoint)
|
38 |
+
), location='cpu'))
|
39 |
pose_model = pose_model.cuda()
|
40 |
ddim_sampler_pose = DDIMSampler(pose_model)
|
41 |
|
|
|
46 |
scribble_model = canny_model.cuda()
|
47 |
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
48 |
|
49 |
+
save_memory = False
|
50 |
+
|
51 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
52 |
# TODO: Add other control tasks
|
53 |
if input_control == "Scribble":
|
|
|
71 |
|
72 |
seed_everything(seed)
|
73 |
|
74 |
+
if save_memory:
|
75 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
76 |
+
|
77 |
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
78 |
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
79 |
shape = (4, H // 8, W // 8)
|
80 |
|
81 |
+
if save_memory:
|
82 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
83 |
+
|
84 |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
85 |
shape, cond, verbose=False, eta=eta,
|
86 |
unconditional_guidance_scale=scale,
|
87 |
unconditional_conditioning=un_cond)
|
88 |
+
|
89 |
+
if save_memory:
|
90 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
91 |
+
|
92 |
x_samples = canny_model.decode_first_stage(samples)
|
93 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
94 |
|
|
|
109 |
|
110 |
seed_everything(seed)
|
111 |
|
112 |
+
if save_memory:
|
113 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
114 |
+
|
115 |
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
116 |
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
117 |
shape = (4, H // 8, W // 8)
|
118 |
|
119 |
+
if save_memory:
|
120 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
121 |
+
|
122 |
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
123 |
shape, cond, verbose=False, eta=eta,
|
124 |
unconditional_guidance_scale=scale,
|
125 |
unconditional_conditioning=un_cond)
|
126 |
|
127 |
+
if save_memory:
|
128 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
129 |
+
|
130 |
x_samples = scribble_model.decode_first_stage(samples)
|
131 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
132 |
|
|
|
151 |
seed = random.randint(0, 65535)
|
152 |
seed_everything(seed)
|
153 |
|
154 |
+
if save_memory:
|
155 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
156 |
|
157 |
+
|
158 |
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
159 |
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
160 |
shape = (4, H // 8, W // 8)
|
161 |
|
162 |
+
if save_memory:
|
163 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
164 |
+
|
165 |
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
166 |
shape, cond, verbose=False, eta=eta,
|
167 |
unconditional_guidance_scale=scale,
|
168 |
unconditional_conditioning=un_cond)
|
169 |
|
170 |
+
if save_memory:
|
171 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
172 |
+
|
173 |
x_samples = pose_model.decode_first_stage(samples)
|
174 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
175 |
|