File size: 13,618 Bytes
7a5c6a0
 
 
 
 
 
 
 
 
 
 
c5c689b
8b2a350
7a5c6a0
 
 
efe3c52
a5994ff
 
 
 
 
 
 
 
 
7a5c6a0
fdead57
 
 
02583a6
fdead57
 
 
c5c689b
 
 
a5994ff
c5c689b
 
efe3c52
02fa9c7
9b5dbca
1287f22
570118a
1287f22
 
7a5c6a0
a5994ff
 
c5a40b1
 
1287f22
d07326d
fdead57
6585503
fdead57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5994ff
 
 
fdead57
 
 
 
a5994ff
 
 
fdead57
 
 
 
a5994ff
 
 
 
fdead57
 
 
 
 
3b1f734
1287f22
 
 
 
 
 
 
 
 
 
 
 
 
 
a5994ff
 
 
1287f22
 
 
 
a5994ff
 
 
1287f22
 
 
 
 
a5994ff
 
 
1287f22
 
 
 
 
6585503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5994ff
 
6585503
a5994ff
6585503
 
 
 
a5994ff
 
 
6585503
 
 
 
 
a5994ff
 
 
6585503
 
 
 
 
d07326d
 
 
 
 
8b2a350
7a5c6a0
c5a40b1
487f89b
6585503
 
c5a40b1
7a5c6a0
c5a40b1
c6b395b
 
4c5854e
c6b395b
 
9c9406a
7a5c6a0
 
03fc7e7
d07326d
7a5c6a0
 
d07326d
7a5c6a0
 
 
fdead57
 
7a5c6a0
 
 
e82f9dc
7a5c6a0
 
 
 
 
fdead57
7a5c6a0
cc910da
fdead57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fa9c7
cc910da
 
 
 
 
3985249
cc910da
 
 
 
 
fdead57
 
 
 
487f89b
fdead57
 
 
 
 
 
 
 
 
 
 
 
 
 
cc910da
 
 
 
0d7e782
7a5c6a0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import cv2
import einops
import gradio as gr
import numpy as np
import torch


from pytorch_lightning import seed_everything
from util import resize_image, HWC3, apply_canny
from ldm.models.diffusion.ddim import DDIMSampler

from annotator.openpose import apply_openpose

from cldm.model import create_model, load_state_dict

from huggingface_hub import hf_hub_url, cached_download

# REPO_ID = "lllyasviel/ControlNet"
# canny_checkpoint = "models/control_sd15_canny.pth"
# scribble_checkpoint = "models/control_sd15_scribble.pth"
# pose_checkpoint = "models/control_sd15_openpose.pth"

REPO_ID = "webui/ControlNet-modules-safetensors"
canny_checkpoint = " control_canny-fp16.safetensors"
scribble_checkpoint = "control_scribble-fp16.safetensors"
pose_checkpoint = "control_openpose-fp16.safetensors"

canny_model = create_model('./models/cldm_v15.yaml').cpu()
canny_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, canny_checkpoint)
), location='cpu'))
canny_model = canny_model.cuda()
ddim_sampler = DDIMSampler(canny_model)

pose_model = create_model('./models/cldm_v15.yaml').cpu()
pose_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, pose_checkpoint)
), location='cpu'))
pose_model = pose_model.cuda()
ddim_sampler_pose = DDIMSampler(pose_model)

scribble_model = create_model('./models/cldm_v15.yaml').cpu()
scribble_model.load_state_dict(load_state_dict(cached_download(
    hf_hub_url(REPO_ID, scribble_checkpoint)
), location='cpu'))
scribble_model = canny_model.cuda()
ddim_sampler_scribble = DDIMSampler(scribble_model)

save_memory = False

def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
    # TODO: Add other control tasks
    if input_control == "Scribble":
        return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
    elif input_control == "Pose":
        return process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, image_resolution, ddim_steps, scale, seed, eta)
        
    return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)

def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = apply_canny(img, low_threshold, high_threshold)
        detected_map = HWC3(detected_map)

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        seed_everything(seed)

        if save_memory:
            canny_model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if save_memory:
            canny_model.low_vram_shift(is_diffusing=False)

        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if save_memory:
            canny_model.low_vram_shift(is_diffusing=False)
            
        x_samples = canny_model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    return [255 - detected_map] + results
    
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = np.zeros_like(img, dtype=np.uint8)
        detected_map[np.min(img, axis=2) < 127] = 255

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        seed_everything(seed)

        if save_memory:
            scribble_model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if save_memory:
            scribble_model.low_vram_shift(is_diffusing=False)
            
        samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if save_memory:
            scribble_model.low_vram_shift(is_diffusing=False)
                    
        x_samples = scribble_model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    return [255 - detected_map] + results

def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
    with torch.no_grad():
        input_image = HWC3(input_image)
        detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
        detected_map = HWC3(detected_map)
        img = resize_image(input_image, image_resolution)
        H, W, C = img.shape

        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        if save_memory:
            pose_model.low_vram_shift(is_diffusing=False)

    
        cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if save_memory:
            pose_model.low_vram_shift(is_diffusing=False)
            
        samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if save_memory:
            pose_model.low_vram_shift(is_diffusing=False)
            
        x_samples = pose_model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    return [detected_map] + results
    
def create_canvas(w, h):
    new_control_options = ["Interactive Scribble"]
    return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255

    
block = gr.Blocks().queue()
control_task_list = [
    "Canny Edge Map",
    "Scribble", 
    "Pose"
]
with block:
    gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. 
              </p>
              ''')
    gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints.  : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> <a style='display:inline-block' href='https://colab.research.google.com/github/camenduru/controlnet-colab/blob/main/controlnet-colab.ipynb'><img src = 'https://colab.research.google.com/assets/colab-badge.svg' alt='Open in Colab'></a></p>")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy")
            input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(label="Run")
            
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
                eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
    examples_list = [
                [
            "bird.png", 
            "bird",
            "Canny Edge Map",
            "best quality, extremely detailed",
            'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
             1, 
            512,
            20, 
            9.0, 
            123490213,
            0.0, 
            100, 
            200
            
        ],
        
                [
            "turtle.png", 
            "turtle",
            "Scribble",
            "best quality, extremely detailed",
            'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
             1, 
            512,
            20, 
            9.0, 
            123490213,
            0.0,
            100,
            200
            
        ],
                  [
            "pose1.png", 
            "Chef in the Kitchen",
            "Pose",
            "best quality, extremely detailed",
            'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
             1, 
            512,
            20, 
            9.0, 
            123490213,
            0.0,
            100,
            200
            
        ]
    ]
    examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process)
      

block.launch(debug = True)