metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-Trial008-YEL_STEM
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
vit-base-patch16-224-Trial008-YEL_STEM
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0593
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 60
- eval_batch_size: 60
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 240
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.544 | 1.0 | 1 | 0.8179 | 0.4118 |
0.3416 | 2.0 | 3 | 0.7448 | 0.5294 |
0.1412 | 3.0 | 5 | 0.7606 | 0.5294 |
0.4868 | 4.0 | 6 | 0.5647 | 0.6471 |
0.3852 | 5.0 | 7 | 0.4646 | 0.8235 |
0.284 | 6.0 | 9 | 0.4300 | 0.8235 |
0.1075 | 7.0 | 11 | 0.4628 | 0.8235 |
0.3243 | 8.0 | 12 | 0.4687 | 0.7647 |
0.3317 | 9.0 | 13 | 0.4089 | 0.8235 |
0.146 | 10.0 | 15 | 0.3330 | 0.8824 |
0.0762 | 11.0 | 17 | 0.2941 | 0.8824 |
0.2351 | 12.0 | 18 | 0.3217 | 0.8824 |
0.2458 | 13.0 | 19 | 0.3705 | 0.8824 |
0.1431 | 14.0 | 21 | 0.3138 | 0.8824 |
0.0883 | 15.0 | 23 | 0.1510 | 0.9412 |
0.1601 | 16.0 | 24 | 0.1373 | 0.9412 |
0.2212 | 17.0 | 25 | 0.1175 | 0.9412 |
0.1311 | 18.0 | 27 | 0.1130 | 0.9412 |
0.0801 | 19.0 | 29 | 0.1506 | 0.9412 |
0.1857 | 20.0 | 30 | 0.1272 | 0.9412 |
0.241 | 21.0 | 31 | 0.0974 | 0.9412 |
0.1098 | 22.0 | 33 | 0.0593 | 1.0 |
0.0464 | 23.0 | 35 | 0.0574 | 1.0 |
0.1757 | 24.0 | 36 | 0.0554 | 1.0 |
0.1992 | 25.0 | 37 | 0.0605 | 1.0 |
0.1167 | 26.0 | 39 | 0.0818 | 0.9412 |
0.0703 | 27.0 | 41 | 0.1177 | 0.9412 |
0.1382 | 28.0 | 42 | 0.1281 | 0.9412 |
0.1563 | 29.0 | 43 | 0.1357 | 0.9412 |
0.1113 | 30.0 | 45 | 0.1417 | 0.8824 |
0.0639 | 31.0 | 47 | 0.1250 | 0.9412 |
0.1564 | 32.0 | 48 | 0.1107 | 0.9412 |
0.1877 | 33.0 | 49 | 0.1002 | 0.9412 |
0.06 | 33.33 | 50 | 0.0958 | 0.9412 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 1.12.1
- Datasets 2.12.0
- Tokenizers 0.13.1