--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-Trial008-YEL_STEM results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # vit-base-patch16-224-Trial008-YEL_STEM This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0593 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 60 - eval_batch_size: 60 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 240 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.544 | 1.0 | 1 | 0.8179 | 0.4118 | | 0.3416 | 2.0 | 3 | 0.7448 | 0.5294 | | 0.1412 | 3.0 | 5 | 0.7606 | 0.5294 | | 0.4868 | 4.0 | 6 | 0.5647 | 0.6471 | | 0.3852 | 5.0 | 7 | 0.4646 | 0.8235 | | 0.284 | 6.0 | 9 | 0.4300 | 0.8235 | | 0.1075 | 7.0 | 11 | 0.4628 | 0.8235 | | 0.3243 | 8.0 | 12 | 0.4687 | 0.7647 | | 0.3317 | 9.0 | 13 | 0.4089 | 0.8235 | | 0.146 | 10.0 | 15 | 0.3330 | 0.8824 | | 0.0762 | 11.0 | 17 | 0.2941 | 0.8824 | | 0.2351 | 12.0 | 18 | 0.3217 | 0.8824 | | 0.2458 | 13.0 | 19 | 0.3705 | 0.8824 | | 0.1431 | 14.0 | 21 | 0.3138 | 0.8824 | | 0.0883 | 15.0 | 23 | 0.1510 | 0.9412 | | 0.1601 | 16.0 | 24 | 0.1373 | 0.9412 | | 0.2212 | 17.0 | 25 | 0.1175 | 0.9412 | | 0.1311 | 18.0 | 27 | 0.1130 | 0.9412 | | 0.0801 | 19.0 | 29 | 0.1506 | 0.9412 | | 0.1857 | 20.0 | 30 | 0.1272 | 0.9412 | | 0.241 | 21.0 | 31 | 0.0974 | 0.9412 | | 0.1098 | 22.0 | 33 | 0.0593 | 1.0 | | 0.0464 | 23.0 | 35 | 0.0574 | 1.0 | | 0.1757 | 24.0 | 36 | 0.0554 | 1.0 | | 0.1992 | 25.0 | 37 | 0.0605 | 1.0 | | 0.1167 | 26.0 | 39 | 0.0818 | 0.9412 | | 0.0703 | 27.0 | 41 | 0.1177 | 0.9412 | | 0.1382 | 28.0 | 42 | 0.1281 | 0.9412 | | 0.1563 | 29.0 | 43 | 0.1357 | 0.9412 | | 0.1113 | 30.0 | 45 | 0.1417 | 0.8824 | | 0.0639 | 31.0 | 47 | 0.1250 | 0.9412 | | 0.1564 | 32.0 | 48 | 0.1107 | 0.9412 | | 0.1877 | 33.0 | 49 | 0.1002 | 0.9412 | | 0.06 | 33.33 | 50 | 0.0958 | 0.9412 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 1.12.1 - Datasets 2.12.0 - Tokenizers 0.13.1