Edit model card

vit-base-patch16-224-Trial008-YEL_STEM

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0593
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 60
  • eval_batch_size: 60
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 240
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.544 1.0 1 0.8179 0.4118
0.3416 2.0 3 0.7448 0.5294
0.1412 3.0 5 0.7606 0.5294
0.4868 4.0 6 0.5647 0.6471
0.3852 5.0 7 0.4646 0.8235
0.284 6.0 9 0.4300 0.8235
0.1075 7.0 11 0.4628 0.8235
0.3243 8.0 12 0.4687 0.7647
0.3317 9.0 13 0.4089 0.8235
0.146 10.0 15 0.3330 0.8824
0.0762 11.0 17 0.2941 0.8824
0.2351 12.0 18 0.3217 0.8824
0.2458 13.0 19 0.3705 0.8824
0.1431 14.0 21 0.3138 0.8824
0.0883 15.0 23 0.1510 0.9412
0.1601 16.0 24 0.1373 0.9412
0.2212 17.0 25 0.1175 0.9412
0.1311 18.0 27 0.1130 0.9412
0.0801 19.0 29 0.1506 0.9412
0.1857 20.0 30 0.1272 0.9412
0.241 21.0 31 0.0974 0.9412
0.1098 22.0 33 0.0593 1.0
0.0464 23.0 35 0.0574 1.0
0.1757 24.0 36 0.0554 1.0
0.1992 25.0 37 0.0605 1.0
0.1167 26.0 39 0.0818 0.9412
0.0703 27.0 41 0.1177 0.9412
0.1382 28.0 42 0.1281 0.9412
0.1563 29.0 43 0.1357 0.9412
0.1113 30.0 45 0.1417 0.8824
0.0639 31.0 47 0.1250 0.9412
0.1564 32.0 48 0.1107 0.9412
0.1877 33.0 49 0.1002 0.9412
0.06 33.33 50 0.0958 0.9412

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.12.0
  • Tokenizers 0.13.1
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results