|
--- |
|
datasets: |
|
- raalst/squad_v2_dutch |
|
language: |
|
- nl |
|
--- |
|
|
|
The used dataset raalst/squad_v2_dutch was kindly provided by Henryk |
|
it contains train and validation. |
|
I declared 20% of Train to function as Test |
|
when using raalst/squad_v2_dutch, be sure to clean up quotes and double quotes in the contexts |
|
|
|
def cleanup(mylist): |
|
for item in mylist: |
|
if '"' in item["context"]: |
|
item["context"] = item["context"].replace('"','\\"') |
|
if "'" in item["context"]: |
|
item["context"] = item["context"].replace("'","\\'") |
|
|
|
The pretrained model was pdelobelle/robbert-v2-dutch-base, a dutch RoBERTa model |
|
|
|
results obtained in training are : |
|
|
|
{'exact': 61.75389109958193, |
|
'f1': 66.89717170237417, |
|
'total': 19853, |
|
'HasAns_exact': 48.967182330322814, |
|
'HasAns_f1': 58.09796564493008, |
|
'HasAns_total': 11183, |
|
'NoAns_exact': 78.24682814302192, |
|
'NoAns_f1': 78.24682814302192, |
|
'NoAns_total': 8670, |
|
'best_exact': 61.75389109958193, |
|
'best_exact_thresh': 0.0, |
|
'best_f1': 66.89717170237276, |
|
'best_f1_thresh': 0.0} |
|
|
|
settings (until I figured out how to report them properly): |
|
|
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['id', 'title', 'context', 'question', 'answers'], |
|
num_rows: 79412 |
|
}) |
|
test: Dataset({ |
|
features: ['id', 'title', 'context', 'question', 'answers'], |
|
num_rows: 19853 |
|
}) |
|
validation: Dataset({ |
|
features: ['id', 'title', 'context', 'question', 'answers'], |
|
num_rows: 9669 |
|
}) |
|
}) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base") |
|
|
|
from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained("pdelobelle/robbert-v2-dutch-base") |
|
training_args = TrainingArguments( |
|
output_dir="./qa_model", |
|
evaluation_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
push_to_hub=False, |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_squad["train"], |
|
eval_dataset=tokenized_squad["validation"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
) |
|
|
|
trainer.train() |
|
[15198/15198 2:57:03, Epoch 3/3] |
|
Epoch Training Loss Validation Loss |
|
1 1.380700 1.177431 |
|
2 1.093000 1.052601 |
|
3 0.849700 1.143632 |
|
|
|
TrainOutput(global_step=15198, training_loss=1.1917077029499668, metrics={'train_runtime': 10623.9565, |
|
'train_samples_per_second': 22.886, 'train_steps_per_second': 1.431, 'total_flos': 4.764955396486349e+16, |
|
'train_loss': 1.1917077029499668, 'epoch': 3.0}) |
|
|
|
Trained on Ubuntu with 1080Ti |
|
|