RobBERT-v2-nl-qa / README.md
raalst's picture
Update README.md
465ab0c
|
raw
history blame
2.68 kB
metadata
datasets:
  - raalst/squad_v2_dutch
language:
  - nl

The used dataset raalst/squad_v2_dutch was kindly provided by Henryk it contains train and validation. I declared 20% of Train to function as Test when using raalst/squad_v2_dutch, be sure to clean up quotes and double quotes in the contexts

def cleanup(mylist): for item in mylist: if '"' in item["context"]: item["context"] = item["context"].replace('"','\"') if "'" in item["context"]: item["context"] = item["context"].replace("'","\'")

The pretrained model was pdelobelle/robbert-v2-dutch-base, a dutch RoBERTa model

results obtained in training are :

{'exact': 61.75389109958193, 'f1': 66.89717170237417, 'total': 19853, 'HasAns_exact': 48.967182330322814, 'HasAns_f1': 58.09796564493008, 'HasAns_total': 11183, 'NoAns_exact': 78.24682814302192, 'NoAns_f1': 78.24682814302192, 'NoAns_total': 8670, 'best_exact': 61.75389109958193, 'best_exact_thresh': 0.0, 'best_f1': 66.89717170237276, 'best_f1_thresh': 0.0}

settings (until I figured out how to report them properly):

DatasetDict({ train: Dataset({ features: ['id', 'title', 'context', 'question', 'answers'], num_rows: 79412 }) test: Dataset({ features: ['id', 'title', 'context', 'question', 'answers'], num_rows: 19853 }) validation: Dataset({ features: ['id', 'title', 'context', 'question', 'answers'], num_rows: 9669 }) })

tokenizer = AutoTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base")

from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer

model = AutoModelForQuestionAnswering.from_pretrained("pdelobelle/robbert-v2-dutch-base") training_args = TrainingArguments( output_dir="./qa_model", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, push_to_hub=False, )

trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_squad["train"], eval_dataset=tokenized_squad["validation"], tokenizer=tokenizer, data_collator=data_collator, )

trainer.train() [15198/15198 2:57:03, Epoch 3/3] Epoch Training Loss Validation Loss 1 1.380700 1.177431 2 1.093000 1.052601 3 0.849700 1.143632

TrainOutput(global_step=15198, training_loss=1.1917077029499668, metrics={'train_runtime': 10623.9565, 'train_samples_per_second': 22.886, 'train_steps_per_second': 1.431, 'total_flos': 4.764955396486349e+16, 'train_loss': 1.1917077029499668, 'epoch': 3.0})

Trained on Ubuntu with 1080Ti