File size: 2,675 Bytes
5a68661
 
 
 
 
c1bb504
 
465ab0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
datasets:
- raalst/squad_v2_dutch
language:
- nl
---

The used dataset raalst/squad_v2_dutch was kindly provided by Henryk 
it contains train and validation. 
I declared 20% of Train to function as Test
when using raalst/squad_v2_dutch, be sure to clean up quotes and double quotes in the contexts

def cleanup(mylist):
    for item in mylist:
        if '"' in item["context"]:
            item["context"] = item["context"].replace('"','\\"')
        if "'" in item["context"]:
            item["context"] = item["context"].replace("'","\\'")             

The pretrained model was pdelobelle/robbert-v2-dutch-base, a dutch RoBERTa model  

results obtained in training are :

{'exact': 61.75389109958193,
 'f1': 66.89717170237417,
 'total': 19853,
 'HasAns_exact': 48.967182330322814,
 'HasAns_f1': 58.09796564493008,
 'HasAns_total': 11183,
 'NoAns_exact': 78.24682814302192,
 'NoAns_f1': 78.24682814302192,
 'NoAns_total': 8670,
 'best_exact': 61.75389109958193,
 'best_exact_thresh': 0.0,
 'best_f1': 66.89717170237276,
 'best_f1_thresh': 0.0}

settings (until I figured out how to report them properly):

DatasetDict({
    train: Dataset({
        features: ['id', 'title', 'context', 'question', 'answers'],
        num_rows: 79412
    })
    test: Dataset({
        features: ['id', 'title', 'context', 'question', 'answers'],
        num_rows: 19853
    })
    validation: Dataset({
        features: ['id', 'title', 'context', 'question', 'answers'],
        num_rows: 9669
    })
})

tokenizer = AutoTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base")

from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer

model = AutoModelForQuestionAnswering.from_pretrained("pdelobelle/robbert-v2-dutch-base")
training_args = TrainingArguments(
    output_dir="./qa_model",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
    push_to_hub=False,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_squad["train"],
    eval_dataset=tokenized_squad["validation"],
    tokenizer=tokenizer,
    data_collator=data_collator,
)

trainer.train()
[15198/15198 2:57:03, Epoch 3/3]
Epoch 	Training Loss 	Validation Loss
1 	1.380700 	1.177431
2 	1.093000 	1.052601
3 	0.849700 	1.143632

TrainOutput(global_step=15198, training_loss=1.1917077029499668, metrics={'train_runtime': 10623.9565, 
'train_samples_per_second': 22.886, 'train_steps_per_second': 1.431, 'total_flos': 4.764955396486349e+16, 
'train_loss': 1.1917077029499668, 'epoch': 3.0})

Trained on Ubuntu with 1080Ti