content
stringlengths
5
1.05M
# -*- coding: utf-8 -*- """ @author: Youye """ import torch import torch.nn as nn import torch.nn.functional as F #%% Define the ResNet block class ResNetBlock(nn.Module): def __init__(self,inter_channel = 128): super(ResNetBlock, self).__init__() # RESNET Block Operator self.conv1 = nn.Conv2d( in_channels=inter_channel , out_channels=inter_channel, kernel_size=(1,1)) self.CN1 = nn.InstanceNorm2d( num_features=inter_channel ) self.BN1 = nn.BatchNorm2d( num_features=inter_channel , affine=False ) self.conv2 = nn.Conv2d( in_channels=inter_channel , out_channels=inter_channel, kernel_size=(1,1)) self.CN2 = nn.InstanceNorm2d( num_features=inter_channel ) self.BN2 = nn.BatchNorm2d( num_features=inter_channel , affine=False ) def forward(self,x): # define the structure of the ResNetBlock identity = x; x = self.conv1(x); #print(x.size()) x = self.CN1(x); #print(x.size()) x = self.BN1(x); #print(x.size()) x = F.relu(x); # print(x.size()) x = self.conv2(x); x = self.CN2(x); x = self.BN2(x); x = F.relu(x); x = x + identity; return x #% Define the network structure class Net(nn.Module): def __init__(self, numBlocks1 = 5, numBlocks2=19,inter_channel=128): self.numBlocks1 = numBlocks1 # for inlier predictor self.numBlocks2 = numBlocks2 # for object weight predictor super(Net, self).__init__() # INPUT layer operator self.convInt = nn.Conv2d( in_channels=1 , out_channels=inter_channel , kernel_size=(1,5) ) # Common ResNetBlock layers1 = [] for _ in range(0,self.numBlocks1): layers1.append( ResNetBlock(inter_channel) ) self.ResNet1 = nn.Sequential(*layers1) # OUTPUT layer operator self.convInlierPredictor = nn.Conv2d( in_channels=inter_channel , out_channels=1, kernel_size=(1,1) ) def forward(self, x): # Input Layer x = self.convInt(x) # ResNet blocks x = self.ResNet1(x) ######### inlier predictor routine ################ #x = self.ResNet3(x) # [ Batch_size , 128 , num_weight, 1 ] [batch_size, _, numData,_] = x.shape # inlier predictor x = self.convInlierPredictor(x) x = x.view([batch_size,numData]) #x_inlier = self.linearInlierPredictor1(x_inlier) #x_inlier = self.linearInlierPredictor2(x_inlier) x = torch.tanh(x) x = F.relu(x) return x #% Define the network structure class AngleNet(nn.Module): def __init__(self, numBlocks = 20,inter_channel=128): self.numBlocks = numBlocks super(AngleNet, self).__init__() # INPUT layer operator self.convInt = nn.Conv2d( in_channels=1 , out_channels=inter_channel , kernel_size=(1,5) ) # Common ResNetBlock layers = [] for _ in range(0,self.numBlocks): layers.append( ResNetBlock(inter_channel) ) self.ResNet = nn.Sequential(*layers) # OUTPUT layer operator self.convOut = nn.Conv2d( in_channels=inter_channel , out_channels=9, kernel_size=(1,1) ) self.SoftMax = nn.LogSoftmax(dim=1) def forward(self, x): # Input Layer x = self.convInt(x) # ResNet blocks x = self.ResNet(x) # [ Batch_size , 128 ,numData, 1 ] [batch_size, _, numData,_] = x.shape # [ Batch_size , 9 ,numData, 1 ] x = self.convOut(x) x = x[:,:,:,0] x = self.SoftMax(x) return x
"""JS/CSS bundles for theme.""" from flask_assets import Bundle from invenio_assets import NpmBundle css = NpmBundle( Bundle( 'scss/styles.scss', filters='node-scss, cleancss', output="gen/cd2hrepo.local.styles.%(version)s.css", depends=('scss/*.scss', ), ), Bundle( 'node_modules/angular-loading-bar/build/loading-bar.css', 'node_modules/typeahead.js-bootstrap-css/typeaheadjs.css', 'node_modules/bootstrap-switch/dist/css/bootstrap3' '/bootstrap-switch.css', filters='cleancss', output="gen/cd2hrepo.external.styles.%(version)s.css", ), depends=('scss/*.scss', ), output="gen/cd2hrepo.%(version)s.css", npm={ 'bootstrap-sass': '~3.3.5', 'bootstrap-switch': '~3.0.2', 'font-awesome': '~4.7.0', 'typeahead.js-bootstrap-css': '~1.2.1', } ) """Default CSS bundle.""" js = Bundle( NpmBundle( 'node_modules/almond/almond.js', 'js/settings.js', filters='uglifyjs', output="gen/cd2hrepo.external.%(version)s.js", npm={ 'almond': '~0.3.1', 'angular': '~1.4.9', 'jquery': '~1.9.1', } ), Bundle( 'js/base.js', output="gen/cd2hrepo.base.%(version)s.js", filters='requirejs', ), filters='jsmin', output='gen/packed.%(version)s.js', ) """Default JavaScript bundle with Almond, JQuery and RequireJS."""
import base64 import json configs = [{ "v": "2", "ps": "ibm", "add": "v2ray_ip", "port": "30080", "id": "18ad2c9c-a88b-48e8-aa64-5dee0045c282", "aid": "0", "net": "kcp", "type": "wechat-video", "host": "", "path": "", "tls": "" }, { "v": "2", "ps": "cf", "add": "104.19.96.0", "port": "443", "id": "18ad2c9c-a88b-48e8-aa64-5dee0045c282", "aid": "0", "net": "ws", "type": "none", "host": "v2ray_host", "path": "ws", "tls": "tls" }] urls = [] for conf in configs: urls.append("vmess://" + base64.urlsafe_b64encode(json.dumps(conf).encode()).decode()) print base64.urlsafe_b64encode("\n".join(urls)).decode()
from flask import Flask, request import db_utils import email_utils import git_utils app = Flask(__name__) @app.route('/publish', methods=["GET", "POST"]) def publish_to_cloud(): key = request.json['key'] msg = email_utils.fetch_raw_email_from_aws(key) filepath = '_posts/' + email_utils.fetch_filename(msg) post = email_utils.format_post(msg) email = email_utils.fetch_from_address(msg) repo = db_utils.get_blog_from_email(email) git_utils.push_file_to_github(filepath, post, repo) return 'Thanks', 200 @app.route('/register', methods=["GET", "POST"]) def register_user(): key = request.json['key'] blog = request.json['blog'] msg = email_utils.fetch_raw_email_from_aws(key) email = email_utils.fetch_from_address(msg) db_utils.register_user(email, blog) git_utils.update_template(blog) return 'Registered', 200 if __name__ == '__main__': app.run()
#!/usr/bin/env python3 import re ''' Example rules: * light red bags contain 1 bright white bag, 2 muted yellow bags. * dark orange bags contain 3 bright white bags, 4 muted yellow bags. * bright white bags contain 1 shiny gold bag. * muted yellow bags contain 2 shiny gold bags, 9 faded blue bags. * shiny gold bags contain 1 dark olive bag, 2 vibrant plum bags. * dark olive bags contain 3 faded blue bags, 4 dotted black bags. * vibrant plum bags contain 5 faded blue bags, 6 dotted black bags. * faded blue bags contain no other bags. * dotted black bags contain no other bags. Consider again your shiny gold bag and the rules from the above example: * faded blue bags contain 0 other bags. * dotted black bags contain 0 other bags. * vibrant plum bags contain 11 other bags: 5 faded blue bags and 6 dotted black bags. * dark olive bags contain 7 other bags: 3 faded blue bags and 4 dotted black bags. So, a single shiny gold bag must contain 1 dark olive bag (and the 7 bags within it) plus 2 vibrant plum bags (and the 11 bags within each of those): 1 + 1*7 + 2 + 2*11 = 32 bags! ''' g_file = 'input.txt' #------------------------------------------------------------------------------ def run(): #------------------------------------------------------------------------------ ''' l_rules['shiny gold'] = [ (1, 'dark olive'), (2, 'vibrant plum') ] ''' l_rules = dict() for l_line in open(g_file).readlines(): (l_outer, l_inner_list) = parse_rule(l_line) if l_inner_list == None: continue l_rules[l_outer] = l_inner_list l_count = count_bags('shiny gold', l_rules) print("1 shiny gold bag holds {} bags".format(l_count)) ''' count the number of bags contained by this bag type ''' #------------------------------------------------------------------------------ def count_bags(x_desc, x_rules): #------------------------------------------------------------------------------ if x_desc not in x_rules: return 0 l_total = 0 for l_tuple in x_rules[x_desc]: (l_quantity, l_desc) = l_tuple l_total += l_quantity + l_quantity * count_bags(l_desc, x_rules) return l_total ''' Parse a rule, returning: (<outer bag description>, list()) If list is None, then the outer bag can't hold any bags. Otherwise, the list contains tuples containing quantity and color of inner bags ''' #------------------------------------------------------------------------------ def parse_rule(x_rule): #------------------------------------------------------------------------------ l_match = re.search("(.*) bags contain (.*)", x_rule) l_inner_list = None if not l_match: print("Error. No match for line {}".format(x_rule)) exit(1) (l_outer, l_inner) = l_match.group(1, 2) if 'no other bags' in l_inner: pass else: l_inner_list = list() for l_sub in l_inner.split(','): l_curr_match = re.search("(\d+) (\w+\s\w+) bag", l_sub) if not l_curr_match: print("Error. No match on rule {} sub rule {}".format(x_rule, l_sub)) exit(1) (l_quantity, l_style) = l_curr_match.group(1, 2) l_quantity = int(l_quantity) l_inner_list.append((l_quantity, l_style)) return (l_outer, l_inner_list) #------------------------------------------------------------------------------ def main(): #------------------------------------------------------------------------------ run() main()
from abc import abstractmethod import logging import functools logger = logging.getLogger(__name__) # GLOBALS METHODS_MAP_CODE = {} METHODS_MAP_DATA = {} class SerializerBase(object): """ Adds shared functionality for all serializer implementations """ def __init_subclass__(cls, *args, **kwargs): """ This forces all child classes to register themselves as methods for serializing code or data """ super().__init_subclass__(*args, **kwargs) if cls._for_code: METHODS_MAP_CODE[cls._identifier] = cls if cls._for_data: METHODS_MAP_DATA[cls._identifier] = cls @property def identifier(self): """ Get the identifier of the serialization method Returns ------- identifier : str """ return self._identifier def chomp(self, payload): """ If the payload starts with the identifier, return the remaining block Parameters ---------- payload : str Payload blob """ s_id, payload = payload.split(b'\n', 1) if (s_id + b'\n') != self.identifier: raise TypeError("Buffer does not start with parsl.serialize identifier:{}".format(self.identifier)) return payload def enable_caching(self, maxsize=128): """ Add functools.lru_cache onto the serialize, deserialize methods """ self.serialize = functools.lru_cache(maxsize=maxsize)(self.serialize) self.deserialize = functools.lru_cache(maxsize=maxsize)(self.deserialize) return @abstractmethod def serialize(self, data): pass @abstractmethod def deserialize(self, payload): pass
#!/usr/bin/env python3 import random from math import sqrt import numpy as np #--------------------------------------------------------------- # Data to be generated # (1) number of phrases # (2) number of total words # (3) words per phrase (2/1) # (4) number of non-function words # (5) non-function words per phrase (4/1) # (6) mean of total words # (7) std. dev. of total words # (8) mean of non-function words # (9) std. dev. of non-function words # (10) mean of ln(word frequency) (total words) # (11) std. dev. of ln(word frequency) (total words) # (12) mean of ln(word frequency) (non-function words) # (13) std. dev. of ln(word frequency) (non-function words) # constant term = 1 # scroll time for the current page based on a gamma dist. #--------------------------------------------------------------- def generate_page_data(): data = [] for i in range(3): # generating (1) using range of 1-4 --- E(X) = 2.5 num_sentences = random.randint(1,4) data.append(num_sentences) # generating (2) --- using range of 30-50 --- E(X) = 40 num_words = random.randint(30,50) data.append(num_words) # generating (3) --- dividing (2)/(1) --- E(X) = 16 data.append(round((num_words/num_sentences),4)) # generating (4) --- using range of 15-25 --- E(X) = 20 num_words_nf = random.randint(15,25) data.append(num_words_nf) # generating (5) --- dividing (4)/(1) --- E(X) = 8 data.append(round((num_words_nf/num_sentences),4)) # generating (6) --- using range of 3-8 --- E(X) = 5.5 data.append(random.randint(3,8)) # generating (7) --- using range of 1.5-2.5 --- E(X) = 2 data.append(round(random.uniform(1.5,2.5),4)) # generating (8) --- using range of 4-9 --- E(X) = 6.5 data.append(random.randint(4,9)) # generating (9) --- using range of 2-3 --- E(X) = 2.5 data.append(round(random.uniform(2.0,3.0),4)) # generating (10) --- using range of 11.2-16.6 --- E(X) = 13.9 data.append(round(random.uniform(11.2,16.6),4)) # generating (11) --- using range of 1.0-2.0 --- E(X) = 1.5 data.append(round(random.uniform(1.0,2.0),4)) # generating (12) --- using range of 11.2-15.0 --- E(X) = 13.1 data.append(round(random.uniform(11.2,15.0),4)) # generating (13) --- using range of 1.0-2.0 --- E(X) = 1.5 data.append(round(random.uniform(1.0,2.0),4)) # generating constant = 1 data.append(1) # generating representation data.append(sum(data)) return np.asarray(data) def main(): with open("synthetic_data.csv", mode='w') as WRITE_FILE: num_iterations = int(input("enter the number of iterations: ")) for i in range(num_iterations): current_data = generate_page_data() current_data_str = ','.join(str(elements) for elements in current_data) print(current_data_str) WRITE_FILE.write(current_data_str + "\n") WRITE_FILE.close() print("---------------------------------------------------------") print("number of iterations producted", str(num_iterations)) print("---------------------------------------------------------") if __name__ == '__main__': main()
from django.conf.urls import url from .. import views urlpatterns = [ url( regex=r'^users/?$', view=views.UserList.as_view(), name='user_list' ), url( regex=r'^users/(?P<pk>\d+)/?$', view=views.UserDetail.as_view(), name='user_detail' ), ]
import os from flask import Flask import urllib.parse from combien import Combien app = Flask(__name__) @app.route("/") def hello(): return "Hello World" @app.route("/price/<path:url>") def price(url): c = Combien(urllib.parse.unquote(url)) return c.price() if __name__ == "__main__": app.run(debug=True)
from selenium import webdriver import pickle import json import os from process import process def do_login(browser, url): browser.get(url) cookies = browser.get_cookies() with open('cookies.pickle', 'wb') as f: pickle.dump(cookies, f) input('Login in the browser, then press Enter to continue here...') cookies = browser.get_cookies() with open('cookies.pickle', 'wb') as f: pickle.dump(cookies, f) def scrape(browser, url): if not os.path.isfile('cookies.pickle'): do_login(browser, url) browser.get('https://musicleague.app') with open('cookies.pickle', 'rb') as f: cookies = pickle.load(f) for cookie in cookies: browser.add_cookie(cookie) print('Logged in') browser.get(url) # Just get the number of rounds round_count = len(browser.find_elements_by_link_text('Round Results')) rounds = [] round_names = [x.text for x in browser.find_elements_by_class_name('round-title')] assert(round_count == len(round_names)) for round_num, round_name in enumerate(round_names): browser.get(url) browser.find_elements_by_link_text('Round Results')[round_num].click() song_names = [x.text for x in browser.find_elements_by_class_name('name') if x.tag_name=='a' and len(x.text) > 0] submitters = [x.text[13:] for x in browser.find_elements_by_class_name('submitter') if x.tag_name=='span' and len(x.text) > 0] vote_containers = browser.find_elements_by_class_name('vote-breakdown') all_voters = [] all_vote_counts = [] for vote_container in vote_containers: upvotes = vote_container.find_elements_by_class_name('upvote') upvotes = upvotes[:len(upvotes)//2] # half are hidden all_vote_counts.append([ int(upvote.find_element_by_class_name('vote-count').text) for upvote in upvotes ]) all_voters.append([ upvote.find_element_by_class_name('voter').text for upvote in upvotes ]) songs = [] for song_name, submitter, voters, vote_counts in zip(song_names, submitters, all_voters, all_vote_counts): song = { 'name': song_name, 'submitter': submitter, 'votes': {voter:count for voter, count in zip(voters, vote_counts)} } songs.append(song) rounds.append({ 'name': round_name, 'songs': songs }) with open('data.json', 'w') as f: json.dump(rounds, f) return rounds if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('url', help='URL for the music league - https://musicleague.app/l/<base64 crap>/') parser.add_argument('--login', '-l', action='store_true', help="Login to music league. Try this if the scraper isn't running correctly.") parser.add_argument('--process', '-p', action='store_true', help="Immediately process the data to csv (semicolon-separated) and print this.") args = parser.parse_args() browser = webdriver.Chrome() if args.login: do_login(browser, args.url) data = scrape(browser, args.url) if args.process: process(data) browser.close()
import logging import urllib logger = logging.getLogger("municipal_finance") class ApiClient(object): def __init__(self, get, api_url): self.get = get self.api_url = api_url + "/cubes/" def api_get(self, query): if query["query_type"] == "aggregate": url = self.api_url + query["cube"] + "/aggregate" params = { "aggregates": query["aggregate"], "cut": self.format_cut_param(query["cut"]), "drilldown": "|".join(query["drilldown"]), "page": 0, } if query.get("order"): params["order"] = query.get("order") else: params["order"] = "financial_year_end.year:desc,item.code:asc" elif query["query_type"] == "facts": url = self.api_url + query["cube"] + "/facts" params = {"fields": ",".join( field for field in query["fields"]), "page": 0} if query.get("cut"): params["cut"] = self.format_cut_param(query.get("cut")) if query.get("order"): params["order"] = query.get("order") elif query["query_type"] == "model": url = self.api_url + query["cube"] + "/model" params = {} params["pagesize"] = 20000 logger.debug("API query %s?%s" % (url, urllib.parse.urlencode(params))) return self.get(url, params) def format_cut_param(self, cuts): keypairs = [] for key, vals in cuts.items(): vals_as_strings = [] for val in vals: if type(val) == str: vals_as_strings.append('"' + val + '"') if type(val) == int: vals_as_strings.append(str(val)) keypairs.append((key, ";".join(vals_as_strings))) return "|".join("{!s}:{!s}".format(pair[0], pair[1]) for pair in keypairs)
#!usr/bin/env python """ Postprocessor subclass. """ from collections import namedtuple import general_utils import rapid_config from postproc import postproc from postproc import postproc_options from robotmath import transforms # PARAMS __a1 = 'A1' __a2 = 'A2' __a3 = 'A3' __a4 = 'A4' __a5 = 'A5' __a6 = 'A6' __e1 = 'E1' __e2 = 'E2' __e3 = 'E3' __e4 = 'E4' __e5 = 'E5' __e6 = 'E6' __x = 'X' __y = 'Y' __z = 'Z' __q1 = 'Q1' __q2 = 'Q2' __q3 = 'Q3' __q4 = 'Q4' __c1 = 'C1' __c2 = 'C2' __c3 = 'C3' __c4 = 'C4' __params = 'params' __identifier = 'identifier' __value = 'value' __move_type = 'type' __move_target = 'target' __move_speed = 'speed' __move_zone = 'zone' __move_tool = 'tool' __move_wobj = 'wobj' # STRUCTURES MOVE = 'MOVE' MOVE_L = 'MoveL' MOVE_J = 'MoveJ' MOVE_ABS_J = 'MoveAbsJ' __move_structure = namedtuple( MOVE, [ __move_type, __move_target, __move_speed, __move_zone, __move_tool, __move_wobj ] ) VARIABLE = 'VARIABLE' __variable_structure = namedtuple( VARIABLE, [ __params ] ) JOINTTARGET = 'JOINTTARGET' __jointtarget_structure = namedtuple( JOINTTARGET, [ __a1, __a2, __a3, __a4, __a5, __a6, __e1, __e2, __e3, __e4, __e5, __e6 ] ) ROBTARGET = 'ROBTARGET' __robtarget_structure = namedtuple( ROBTARGET, [ __x, __y, __z, __q1, __q2, __q3, __q4, __c1, __c2, __c3, __c4, __e1, __e2, __e3, __e4, __e5, __e6 ] ) DIGITAL_OUT = 'DO' __digital_out_structure = namedtuple( DIGITAL_OUT, [ __identifier, __value ] ) STRUCTURES = { JOINTTARGET: __jointtarget_structure, ROBTARGET: __robtarget_structure, DIGITAL_OUT: __digital_out_structure, MOVE: __move_structure, VARIABLE: __variable_structure } # TEMPLATES __jointtarget_template = \ '[' \ '[{}, {}, {}, {}, {}, {}], ' \ '[{}, {}, {}, {}, {}, {}]' \ ']' __robtarget_template = \ '[' \ '[{}, {}, {}], ' \ '[{}, {}, {}, {}], ' \ '[{}, {}, {}, {}], ' \ '[{}, {}, {}, {}, {}, {}]' \ ']' __digital_out_template = \ '\t\tSetDO {}, {};' __variable_template = \ '\t\t{}' __move_template = \ '\t\t{} {}, {}, {}, {}\\WObj:={};' TEMPLATES = { JOINTTARGET: __jointtarget_template, ROBTARGET: __robtarget_template, DIGITAL_OUT: __digital_out_template, MOVE: __move_template, VARIABLE: __variable_template } # COMMANDS MOTION_COMMAND = 'motion_command' _motion_command_fields = [ postproc.AXES, postproc.EXTERNAL_AXES, postproc.POSE, postproc.CONFIGURATION ] MotionCommand = namedtuple( MOTION_COMMAND, _motion_command_fields ) IO_COMMAND = 'io_command' _io_command_fields = [ postproc.DIGITAL_OUTPUT, postproc.ANALOG_OUTPUT ] IOCommand = namedtuple( IO_COMMAND, _io_command_fields ) class SimpleRAPIDProcessor(postproc.PostProcessor): """ Postprocessor subclass. """ def __init__(self): """ Initialize specific processor. """ # Initialize superclass (generic processor) super(SimpleRAPIDProcessor, self).__init__( type_robot='ABB', type_processor='RAPID', program_file_extension=rapid_config.DEFAULT_FILE_EXTENSION, def_program_template=rapid_config.DEFAULT_PROGRAM) # Initialize internal parameters self.supported_options = self._set_supported_options() def _process_program(self, processed_commands, opts): # Implement in base class! """ Process a list of instructions and fill a program template. :param processed_commands: List of processed commands. :param opts: UserOptions tuple :return: """ # Get program structure and template if opts.Use_motion_as_variables: formatted_commands = ',\n'.join(processed_commands) count = len(processed_commands) try: program_template = self._read_program_template() # don't overwrite original if program_template.count('{}') != 2: raise IndexError return program_template.format(count, formatted_commands) except IndexError: message = 'To use motion parameters as variables, template requires ' \ '2 placeholders, one for number of motion variables and ' \ 'another for the motion variables.' raise IndexError(message) else: formatted_commands = '\n'.join(processed_commands) try: program_template = self._read_program_template() # don't overwrite original return program_template.format(formatted_commands) except IndexError: message = 'To use motion parameters as commands, template requires ' \ '1 placeholder for the motion variables.' raise IndexError(message) @staticmethod def _process_command(command, opts): """ Process a single command with user options. :param command: Command tuple :param opts: UserOptions tuple :return: """ command_type = postproc.get_structure_type(command) if not opts.Ignore_motion and command_type == MOTION_COMMAND: return _process_motion_command(command, opts) elif not opts.Ignore_IOs and command_type == IO_COMMAND: return _process_io_command(command, opts) @staticmethod def _format_command(params_dict): """ Processor-specific function. Certain types of commands are very specific to the processor in use or application, such as EntertainTech, requiring in some cases both Motion and IO datatypes in a single line of code. This function allows PostProcessor (processor) subclasses to format the input params flexibly and as needed. For this processor: Can create a MotionCommand namedTuple from optional input parameters. Can create a IOCommand namedTuple from optional input parameters. :param params_dict: Dictionary of namedtuple containing all command parameters (i.e. Axes, ExternalAxes, etc). :return: """ # Try to get a MotionCommand params = [] for field in _motion_command_fields: param = params_dict[field] if field in params_dict else None params.append(param) if params.count(None) != len(params): return MotionCommand(*params) else: # Try to get an IO command params = [] for field in _io_command_fields: param = params_dict[field] if field in params_dict else None params.append(param) if params.count(None) != len(params): return IOCommand(*params) @staticmethod def _set_supported_options(): """ Set the supported options for this processor. Only set to True if the optional parameter is actually supported by this processor! :return: """ # TODO: implement include_pose and use_linear_motion return postproc_options.configure_user_options( ignore_motion=True, use_motion_as_variables=True, use_nonlinear_motion=True, use_linear_motion=True, include_axes=True, include_external_axes=True, include_pose=True, include_configuration=True ) def _process_motion_command(command, opts): # Implement in base class! """ Process motion command. :param command: Command tuple :param opts: UserOptions tuple :return: """ motion_type = None target_data_type = None target_data = [] # Interpret linear motion command if opts.Use_linear_motion: if command.pose is not None: motion_type = MOVE_L target_data_type = ROBTARGET pose = _convert_pose(command.pose) params = [general_utils.num_to_str(p, include_sign=False, precision=3) for p in pose] target_data.extend(params) if command.configuration is not None: configuration = _convert_configuration(command.configuration) params = [general_utils.num_to_str(p, include_sign=False, precision=3, simplify_ints=True) for p in configuration] target_data.extend(params) else: target_data.extend(rapid_config.DEFAULT_CONF) if command.external_axes is not None: external_axes = [axis if axis is not None else '9E9' for axis in command.external_axes] params = [general_utils.num_to_str(p, include_sign=False, precision=3) for p in external_axes] target_data.extend(params) else: target_data.extend(rapid_config.DEFAULT_EXAX) else: raise ValueError('Invalid command') # Interpret nonlinear motion command elif opts.Use_nonlinear_motion: if command.axes is not None: motion_type = MOVE_ABS_J target_data_type = JOINTTARGET axes = command.axes params = [general_utils.num_to_str(p, include_sign=False, precision=3) for p in axes] target_data.extend(params) if command.external_axes is not None: external_axes = [axis if axis is not None else '9E9' for axis in command.external_axes] params = [general_utils.num_to_str(p, include_sign=False, precision=3) for p in external_axes] target_data.extend(params) else: target_data.extend(rapid_config.DEFAULT_EXAX) elif command.pose is not None: motion_type = MOVE_J target_data_type = ROBTARGET pose = _convert_pose(command.pose) params = [general_utils.num_to_str(p, include_sign=False, precision=3) for p in pose] target_data.extend(params) if command.configuration is not None: configuration = _convert_configuration(command.configuration) params = [general_utils.num_to_str(p, include_sign=False, precision=3, simplify_ints=True) for p in configuration] target_data.extend(params) else: target_data.extend(rapid_config.DEFAULT_CONF) if command.external_axes is not None: external_axes = [axis if axis is not None else '9E9' for axis in command.external_axes] params = [general_utils.num_to_str(p, include_sign=False, precision=3) for p in external_axes] target_data.extend(params) else: target_data.extend(rapid_config.DEFAULT_EXAX) else: raise ValueError('Invalid command') else: # User never supplied a motion type raise ValueError('Invalid motion type') # Structure and format data, command formatted_target_data = postproc.fill_template( target_data, STRUCTURES[target_data_type], TEMPLATES[target_data_type]) if opts.Use_motion_as_variables: formatted_variable = postproc.fill_template( formatted_target_data, STRUCTURES[VARIABLE], TEMPLATES[VARIABLE]) return formatted_variable else: motion_data = [ motion_type, formatted_target_data, rapid_config.DEFAULT_SPEED, rapid_config.DEFAULT_ZONE, rapid_config.DEFAULT_TOOL, rapid_config.DEFAULT_WOBJ] formatted_motion = postproc.fill_template( motion_data, STRUCTURES[MOVE], TEMPLATES[MOVE]) return formatted_motion def _process_io_command(command, opts): """ Process io command. :param command: Command tuple :param opts: UserOptions tuple :return: """ io_data = [] # empty data container # Interpret digital output command if opts.Include_digital_output: if command.digital_output is not None: io_type = DIGITAL_OUT for io in command.digital_output: formatted_io = postproc.fill_template( io, STRUCTURES[io_type], TEMPLATES[io_type]) io_data.append(formatted_io) # if command.analog_outputs is not None: # io_type = ANALOG_OUT # for io in command.analog_outputs: # formatted_io = postproc.fill_template( # io, # STRUCTURES[io_type], # TEMPLATES[io_type]) # io_data.append(formatted_io) if io_data: formatted_ios = '\n'.join(io_data) return formatted_ios def _convert_pose(pose): """ Convert a Pose tuple to subclass conventions. :param pose: Pose tuple :return: """ i_vector = [pose.pose_ix, pose.pose_iy, pose.pose_iz] j_vector = [pose.pose_jx, pose.pose_jy, pose.pose_jz] k_vector = [pose.pose_kx, pose.pose_ky, pose.pose_kz] q1, q2, q3, q4 = transforms.quaternion_by_vectors(i_vector, j_vector, k_vector) return [pose.pose_x, pose.pose_y, pose.pose_z, q1, q2, q3, q4] def _convert_configuration(configuration): """ Convert a Configuration tuple to subclass conventions. :param configuration: Configuration tuple :return: """ # TODO: This might not be correct! c1 = not configuration.configuration_1 c2 = not configuration.configuration_2 c3 = not configuration.configuration_3 c4 = 0 # unused return [c1, c2, c3, c4]
__author__ = 'Tristan Watson' # Keystroke Dynamic software that covers the following key functionality: # 1. User File management # 2. Input gathering and management (including storage) # 3. Plotting of keystrokes taking into consideration both up events and down events. import pyHook import pythoncom import os import matplotlib.pyplot as plt import json import numpy import sys # File is to be opened and closed numerous times. Should be re-written as a class. global userFilePath time_between_ups = [] time_between_downs = [] def banner(): print("------------------------------") print("Keystroke Dynamics Software") print("Author: Tristan Watson, 2015") print("------------------------------") print("Current Working Directory: ", os.getcwd()) def menuOptions(): #Menu print("Please choose a following option:") print("1: User Login or Create New") print("2: Username and Password Input") print("3: Plot Graph (Based on Username)") print("4: Help") print("5: Exit") def menuHandler(): choice = input("Please enter option choice: ") if choice == "1": getUserFileWriteSession() elif choice == "2": usernamePasswordInput() elif choice == "3": plotMenu() elif choice == "4": documentation() elif choice == "5": print("Program Quitting") sys.exit() else: print("Please select a valid option (1-5)") menuHandler() # For writing events def getUserFileWriteSession(): print("File Location: ", os.getcwd()) username = input("Enter your username: ") userFileName = (username + ".txt") # If directory DNE. if not os.path.isdir((os.path.join("./", "accounts"))): # Create it. os.makedirs("accounts") if os.path.exists(os.path.join("accounts", userFileName)): userFile = (os.path.join("accounts", userFileName)) else: print("No File Exists! Creating New User") if os.path.exists(os.path.join("accounts", userFileName)): print("Username exists! Load it or choose different name") else: userFile = (os.path.join("accounts", userFileName)) writeFile = open(userFile, "w") # Have to prime a file ready to be used with JSON fileSetup = json.dumps([]) writeFile.write(fileSetup) writeFile.close() print("User Successfully Created", userFile) print("Your account has been created: ", userFile) global userFilePath userFilePath = userFile # Used for matplotlib only def getUserFileReadSession(): userFileName = input("Username:") + ".txt" if os.path.exists(os.path.join("accounts", userFileName)): userFile = (os.path.join("accounts", userFileName)) open(userFile, "r") return "File Loaded Successfully" else: print("Username does not exist") def plotMenu(): print("What would you like to plot?") print("1. Key Up") print("2. Key Down") print("3. Back") print("4. Quit") plotMenuHandler() def plotMenuHandler(): plotChoice = input("Choice: ") if plotChoice == "1": timeBetweenUPS() elif plotChoice == "2": timeBetweenDOWNS() elif plotChoice == "3": menuHandler() elif plotChoice == "4": sys.exit() else: print("Please Choose Valid Option") def plotGraph(y): userInput = ("Enter if you want to plot KeyUp or KeyDowns") data = y x = list(range(len(data))) # Average average = numpy.mean(data) # Words Per Minute = (Chr / 5) / Time wpm = len(data) / 5 # MatPlotLib Handling plt.title("Time Elapsed Between Down Events") plt.ylabel("Key Number") plt.ylabel("Milliseconds") plt.plot(x, y) # Format average display box plt.text(5, 35, ("WPM: ", wpm, "Average", average) ,style='italic', bbox={'facecolor':'red', 'alpha':0.5, 'pad':10}) plt.show() def documentation(): print ("The menu works in a way that accepts a corresponding number.") print ("For example, press 2 to enter information.") print ("A file must be created or loaded first.") print ("If not defined, program will exit.") print ("To end input in option '2'. use ESC character") print ("Option 3 gives an option to either print out a graph of 'up' or 'down' events") def userRecordData(eventList): userFile = userFilePath #Read File to Grab Sessions readUserFile = open(userFile, "r") testFile = readUserFile.read() #print(testFile) userSessionList = json.loads(testFile) readUserFile.close() # Create New Session and Write To File writeUserFile = open(userFile, "w") newUserEventList = eventList userSessionList.append(newUserEventList) data = json.dumps(userSessionList) writeUserFile.write(data) writeUserFile.close() def timeBetweenUPS(): # Define the list first eventFile = open(userFilePath, "r") eventList = json.loads(eventFile.read()) ups = ([(etype, etime) for etype, etime in eventList[0] if etype == "Up"]) while len(ups) > 1: #Get the time from the tuple startTime = ups.pop(0)[1] betweenTime = ups[0][1] - startTime time_between_ups.append(betweenTime) #average = numpy.mean(time_between_downs) plotGraph(time_between_ups) def timeBetweenDOWNS(): # Define the list first eventFile = open(userFilePath, "r") eventList = json.loads(eventFile.read()) downs = ([(etype, etime) for etype, etime in eventList[0] if etype == "Down"]) while len(downs) > 1: startTime = downs.pop(0)[1] #Get the time from the tuple betweenTime = downs[0][1] - startTime time_between_downs.append(betweenTime) #average = numpy.mean(time_between_downs) plotGraph(time_between_downs) def usernamePasswordInput(): keyLogger = KeyLogger() hookManager = pyHook.HookManager() hookManager.KeyDown = keyLogger.keyDownEvent hookManager.KeyUp = keyLogger.keyUpEvent hookManager.HookKeyboard() keyLogger.mainLoop() # Unhooks the keyboard, no more data recorded, returns to menu hookManager.UnhookKeyboard() class KeyLogger(object): def __init__(self): self.enterPressed = False self.eventList = [] def keyDownEvent(self, event): self.storeEvent("Down", event) return True # Fixes Requires Integer Bug (Got Nonetype) def keyUpEvent(self, event): self.storeEvent("Up", event) return True # Fixes Requires Integer (Got Nonetype) def mainLoop(self): while not self.enterPressed: pythoncom.PumpWaitingMessages() def storeEvent(self, activity, event): keystrokeTime = int(event.Time) #keystrokeCharacter = chr(event.Ascii) self.eventList.append ((activity, int(keystrokeTime))) # Chosen to use Escape key (ESC) due to input using a similar method # Enter Key - KeyCode: 13 Ascii: 13 ScanCode: 28 - ESC = 27 @ Ascii if event.Ascii == 27: self.enterPressed = True userRecordData(self.eventList) # Starts the program banner() #Main Program Loop while True: menuOptions() menuHandler()
import cv2 from face_recognizer import FaceRecognizer LIBRARY_FOLDER_PATH = "#PATH TO THE LIBRARY FOLDER#" IMAGE_PATH = "#PATH TO THE IMAGE THAT NEEDS TO BE ANALYZED#" faces_names, image = FaceRecognizer(LIBRARY_FOLDER_PATH).classify(IMAGE_PATH) cv2.imshow('image', image) cv2.waitKey(0)
import time import vk def get_members(api: vk.API, group_id: int, fields: str = "", delay: float = 0.4): spy_requests = api.groups.getMembers(group_id=group_id, fields=fields) count = spy_requests["count"] members = set(spy_requests["items"]) if count > 1000: for i in range(1, (count // 1000) + 1): time.sleep(delay) members.update( set(api.groups.getMembers(group_id=group_id, fields=fields, offset=i*1000)["items"]) ) return members
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from IPython import get_ipython # %% import matplotlib.pyplot as plt import pandas as pd import seaborn as sns get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np train = pd.read_csv('Train1.csv') train.head() test = pd.read_csv('test1.csv') test.head() train_original=train.copy() test_original=test.copy() train.columns = pd.Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education', 'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History', 'Property_Area', 'Loan_Status'], dtype='object') test.columns = pd.Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education', 'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History', 'Property_Area'], dtype='object') train.shape (614, 13) test.shape (367, 12) # %% train.isnull().sum() # %% train['Gender'].fillna(train['Gender'].mode()[0], inplace=True) train['Married'].fillna(train['Married'].mode()[0], inplace=True) train['Dependents'].fillna(train['Dependents'].mode()[0], inplace=True) train['Self_Employed'].fillna(train['Self_Employed'].mode()[0], inplace=True) train['Credit_History'].fillna(train['Credit_History'].mode()[0], inplace=True) train['Loan_Amount_Term'].value_counts() # %% train['Loan_Amount_Term'].fillna(train['Loan_Amount_Term'].mode()[0], inplace=True) train['LoanAmount'].fillna(train['LoanAmount'].median(), inplace=True) train.isnull().sum() # %% test['Gender'].fillna(train['Gender'].mode()[0], inplace=True) test['Married'].fillna(train['Married'].mode()[0], inplace=True) test['Dependents'].fillna(train['Dependents'].mode()[0], inplace=True) test['Self_Employed'].fillna(train['Self_Employed'].mode()[0], inplace=True) test['Credit_History'].fillna(train['Credit_History'].mode()[0], inplace=True) test['Loan_Amount_Term'].fillna(train['Loan_Amount_Term'].mode()[0], inplace=True) test['LoanAmount'].fillna(train['LoanAmount'].median(), inplace=True) test.isnull().sum() # %% train['LoanAmount_log']=np.log(train['LoanAmount']) train['LoanAmount_log'].hist(bins=20) test['LoanAmount_log']=np.log(test['LoanAmount']) train=train.drop('Loan_ID' ,axis=1) test=test.drop('Loan_ID',axis=1) X = train.drop('Loan_Status',1) y = train.Loan_Status X = pd.get_dummies(X) train=pd.get_dummies(train) test=pd.get_dummies(test) # %% from sklearn.model_selection import train_test_split x_train, x_cv, y_train, y_cv = train_test_split(X,y, test_size=0.3) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score model = LogisticRegression(max_iter=10000) model.fit(x_train, y_train) LogisticRegression() pred_cv = model.predict(x_cv) accuracy_score(y_cv,pred_cv) # %% pred_test = model.predict(test) # %% submission = pd.read_csv('Sample1.csv') submission.head() submission['Loan_Status']=pred_test submission['Loan_ID']=test_original['Loan_ID'] submission['Loan_Status'].replace(0, 'N', inplace=True) submission['Loan_Status'].replace(1, 'Y', inplace=True) pd.DataFrame(submission, columns=['Loan_ID','Loan_Status']).to_csv('output.csv')
# Copyright (c) Facebook, Inc. and its affiliates. # The following script requires Java 1.8.0 and pycocotools installed. # The pycocoevalcap can be installed with pip as # pip install git+https://github.com/flauted/coco-caption.git@python23 # Original pycocoevalcap code is at https://github.com/tylin/coco-caption # but has no python3 support yet. import json import argparse from builtins import dict from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer from pycocoevalcap.bleu.bleu import Bleu from pycocoevalcap.meteor.meteor import Meteor from pycocoevalcap.rouge.rouge import Rouge from pycocoevalcap.cider.cider import Cider from pycocoevalcap.spice.spice import Spice class COCOEvalCap: """ COCOEvalCap code is adopted from https://github.com/tylin/coco-caption """ def __init__(self, img_ids, coco, coco_res): self.eval_imgs = [] self.eval = dict() self.img_to_eval = dict() self.coco = coco self.coco_res = coco_res def evaluate(self): gts = self.coco res = self.coco_res # ================================================= # Set up scorers # ================================================= print("tokenization...") tokenizer = PTBTokenizer() gts = tokenizer.tokenize(gts) res = tokenizer.tokenize(res) # ================================================= # Set up scorers # ================================================= print("setting up scorers...") scorers = [ (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]), (Meteor(), "METEOR"), (Rouge(), "ROUGE_L"), (Cider(), "CIDEr"), (Spice(), "SPICE"), ] # ================================================= # Compute scores # ================================================= for scorer, method in scorers: print("computing %s score..." % (scorer.method())) score, scores = scorer.compute_score(gts, res) if type(method) == list: for sc, scs, m in zip(score, scores, method): self.set_eval(sc, m) self.set_img_to_eval_imgs(scs, gts.keys(), m) print("%s: %0.3f" % (m, sc)) else: self.set_eval(score, method) self.set_img_to_eval_imgs(scores, gts.keys(), method) print("%s: %0.3f" % (method, score)) self.set_eval_imgs() # anwen hu 2020/9/16 """for img_id in res.keys(): # print('res_id', res_id) hypo = res[img_id] gt_captions = gts[img_id] cider = self.img_to_eval[img_id]['CIDEr'] if cider*100 < 20: print(img_id, cider, hypo) print(gt_captions) print('=================')""" def set_eval(self, score, method): self.eval[method] = score def set_img_to_eval_imgs(self, scores, img_ids, method): for img_id, score in zip(img_ids, scores): if img_id not in self.img_to_eval: self.img_to_eval[img_id] = dict() self.img_to_eval[img_id]["image_id"] = img_id self.img_to_eval[img_id][method] = score def set_eval_imgs(self): self.eval_imgs = [eval for img_id, eval in self.img_to_eval.items()] def calculate_metrics(img_ids, dataset_dts, dataset_res): img_to_anns_gts = {id: [] for id in img_ids} for ann in dataset_dts["annotations"]: img_to_anns_gts[ann["image_id"]] += [ann] img_to_anns_res = {id: [] for id in img_ids} for ann in dataset_res["annotations"]: img_to_anns_res[ann["image_id"]] += [ann] eval_obj = COCOEvalCap(img_ids, img_to_anns_gts, img_to_anns_res) eval_obj.evaluate() return eval_obj.eval, eval_obj.img_to_eval if __name__ == "__main__": parser = argparse.ArgumentParser(description="Image captioning metrics") parser.add_argument("--reference_json", help="Path to reference captions json") parser.add_argument("--predicted_json", help="Path to predicted captions json") args = parser.parse_args() with open(args.reference_json, "r") as f: captions = json.load(f) references = [] img_ids = [] for img in captions["images"]: if img["split"] == "test": for c in img["sentences"]: d = {} d["image_id"] = c["imgid"] img_ids.append(c["imgid"]) d["caption"] = c["raw"] references.append(d) img_ids = list(set(img_ids)) with open(args.predicted_json, "r") as f: preds = json.load(f) dataset_dts = {"annotations": references} dataset_res = {"annotations": preds} print(calculate_metrics(img_ids, dataset_dts, dataset_res))
"""Define fixtures available for all tests.""" from unittest.mock import Mock, patch from pytest import fixture MOCK_AREAS_0 = [ {"bank": 0, "name": "Area 1", "sequence": 30, "status": "Ready"}, ] MOCK_AREAS_1 = [ {"bank": 0, "name": "Area 1", "sequence": 31, "status": "Not Ready"}, # A dummy invalid bank to trigger throwing an invalid sensor update # for test coverage... {"bank": 98, "name": "Invalid", "sequence": 0, "status": "Ready"}, ] MOCK_AREAS_2 = [ # We return to a ready state {"bank": 0, "name": "Area 1", "sequence": 32, "status": "Ready"}, ] MOCK_ZONES_0 = [ {"bank": 0, "name": "Front door", "sequence": 1, "status": "Ready"}, {"bank": 1, "name": "Back door", "sequence": 1, "status": "Ready"}, ] MOCK_ZONES_1 = [ {"bank": 0, "name": "Front door", "sequence": 2, "status": "Not Ready"}, {"bank": 1, "name": "Back door", "sequence": 1, "status": "Ready"}, # A dummy invalid bank to trigger throwing an invalid sensor update # for test coverage... {"bank": 98, "name": "Invalid", "sequence": 0, "status": "Ready"}, ] MOCK_ZONES_2 = [ # Backdoor sensor was removed {"bank": 0, "name": "Front door", "sequence": 3, "status": "Ready"}, ] MOCK_RESPONSES = ( { "areas": MOCK_AREAS_0, "zones": MOCK_ZONES_0, }, { "areas": MOCK_AREAS_1, "zones": MOCK_ZONES_1, }, { "areas": MOCK_AREAS_2, "zones": MOCK_ZONES_2, }, ) @fixture def ultrasync_api(hass): """Mock UltraSync for easier testing.""" with patch("ultrasync.UltraSync") as mock_api: instance = mock_api.return_value instance.login = Mock(return_value=True) instance.details = Mock(side_effect=MOCK_RESPONSES) instance.areas = Mock(return_value=list(MOCK_AREAS_0)) instance.zones = Mock(return_value=list(MOCK_ZONES_0)) yield mock_api
#!/usr/bin/env python """Inspecting the call stack. """ #end_pymotw_header import inspect def show_stack(): for level in inspect.stack(): frame, filename, line_num, func, src_code, src_index = level print '%s[%d]\n -> %s' % (filename, line_num, src_code[src_index].strip(), ) print inspect.getargvalues(frame) print def recurse(limit): local_variable = '.' * limit if limit <= 0: show_stack() return recurse(limit - 1) return if __name__ == '__main__': recurse(2)
from django.conf.urls import url from .views import (index, upload_resume, upload_profilepic, profile, edit_personalinfo, edit_profile_description, edit_professionalinfo, add_language, edit_language, delete_language, add_experience, edit_experience, delete_experience, add_education, edit_education, delete_education, add_technicalskill, edit_technicalskill, delete_technicalskill, add_project, edit_project, delete_project, edit_email, job_alert, job_alert_results, modify_job_alert, alerts_list, delete_job_alert, edit_emailnotifications, delete_resume, user_password_change, messages) app_name = "candidate" urlpatterns = [ # url(r'^home/$','home'), url(r'^$', index, name="index"), url(r'^profile/$', profile, name="profile"), url(r'personalinfo/edit/$', edit_personalinfo, name="edit_personalinfo"), url(r'profile_description/edit/$', edit_profile_description, name="edit_profile_description"), url(r'email/edit/$', edit_email, name="edit_email"), url(r'professionalinfo/edit/$', edit_professionalinfo, name="edit_professionalinfo"), # mobile verify # url(r'^mobile/verify/$', verify_mobile, name="verify_mobile"), # url(r'^send/mobile_verification_code/$', send_mobile_verification_code, name="send_mobile_verification_code"), # language urls url(r'language/add/$', add_language, name="add_language"), url(r'language/edit/(?P<language_id>[a-zA-Z0-9_-]+)/$', edit_language, name="edit_language"), url(r'language/delete/(?P<language_id>[a-zA-Z0-9_-]+)/$', delete_language, name="delete_language"), # experience urls url(r'experience/add/$', add_experience, name="add_experience"), url(r'experience/edit/(?P<experience_id>[a-zA-Z0-9_-]+)/$', edit_experience, name="edit_experience"), url(r'experience/delete/(?P<experience_id>[a-zA-Z0-9_-]+)/$', delete_experience, name="delete_experience"), # education urls url(r'education/add/$', add_education, name="add_education"), url(r'education/edit/(?P<education_id>[a-zA-Z0-9_-]+)/$', edit_education, name="edit_education"), url(r'education/delete/(?P<education_id>[a-zA-Z0-9_-]+)/$', delete_education, name="delete_education"), # techskill urls url(r'technicalskill/add/$', add_technicalskill, name="add_technicalskill"), url(r'technicalskill/edit/(?P<technical_skill_id>[a-zA-Z0-9_-]+)/$', edit_technicalskill, name="edit_technicalskill"), url(r'technicalskill/delete/(?P<technical_skill_id>[a-zA-Z0-9_-]+)/$', delete_technicalskill, name="delete_technicalskill"), # project urls url(r'project/add/$', add_project, name="add_project"), url(r'project/edit/(?P<project_id>[a-zA-Z0-9_-]+)/$', edit_project, name="edit_project"), url(r'project/delete/(?P<project_id>[a-zA-Z0-9_-]+)/$', delete_project, name="delete_project"), # resume urls url(r'upload_resume/$', upload_resume, name="upload_resume"), url(r'delete-resume/$', delete_resume, name="delete_resume"), url(r'upload_profilepic/$', upload_profilepic, name="upload_profilepic"), url(r'edit_emailnotifications/$', edit_emailnotifications, name="edit_emailnotifications"), # job alert url(r'^alert/create/$', job_alert, name="job_alert"), url(r'^alert/list/$', alerts_list, name="alerts_list"), url(r'^alert/list/(?P<page_num>[-\w]+)/$', alerts_list), url(r'^alert/results/(?P<job_alert_id>[a-zA-Z0-9_-]+)/$', job_alert_results, name="job_alert_results"), url(r'^alert/modify/(?P<job_alert_id>[a-zA-Z0-9_-]+)/$', modify_job_alert, name="modify_job_alert"), url(r'^alert/delete/(?P<job_alert_id>[a-zA-Z0-9_-]+)/$', delete_job_alert, name="delete_job_alert"), url(r'user/password/change/', user_password_change, name="user_password_change"), url(r'^messages/$', messages, name="messages"), ]
from pydantic import BaseModel import toml class TomlModel(BaseModel): @classmethod def load(cls, file): with open(file, "r") as f: return cls.parse_obj(toml.load(f)) def dump(self, file): with open(file, "w") as f: toml.dump(self.dict(), f) class WebserialConfig(TomlModel): calibre_library: str = "" calibre_username: str = "" calibre_password: str = ""
#This file contains a series of functions to generate the necessary #wires to drive the storage grid. The standards for the wires are laid out #in make_store_cell #takes in the output file manager, the number of entries, the number of bits #and the number of reads #Matthew Trahms #EE 526 #4/20/21 def make_store_grid_wires(out_file, entries, bits, reads, num_regfiles): #make write enables make_wires(out_file, 'we', (entries, num_regfiles)) #make latch output wires make_wires(out_file, 'lo', (entries, bits, num_regfiles)) #make latch input wires make_wires(out_file, 'li', (bits, num_regfiles)) #make buffer output wires make_wires(out_file, 'bo', (bits, reads, num_regfiles)) #make read enables make_wires(out_file, 're', (entries, reads, num_regfiles)) return #generic function to generate a set of string wire names based on a prefix #and tuple of dimensions, returns a list of strings #dimensions are in an n-entry tuple treated as an n-dim rectangle #DO NOT HAVE A VALUE OF 0 FOR ONE OF THE DIMS def make_wire_names(prefix, dims): prog = [prefix] for dim in dims: lastprog = prog prog = list() for wirename in lastprog: for index in range(dim): new_wire = wirename + '_' + str(index) prog.append(new_wire) return prog #translates from a list of wire names to a string corresponding to the correct #syntax for wire declarations def make_wire_line(wire_names): output = "wire " + wire_names[0] wire_names = wire_names[1:] for name in wire_names: output += ', ' output += name output += ';\n' return output #creates a set of wires based on a prefix and a set of dimensions #writes the correct syntax of wires to the output file def make_wires(output_file, prefix, dims): names = make_wire_names(prefix, dims) line = make_wire_line(names) output_file.write(line) if __name__ == "__main__": f = open('make_wire_names_test.txt', 'w') names = make_wire_names('test', (3,2,1,2)) print(len(names) == (3*2*1*2)) f.write(make_wire_line(names)) f.close()
from datetime import datetime from openapi.db import CrudDB async def test_upsert(db: CrudDB) -> None: task = await db.db_upsert(db.tasks, dict(title="Example"), dict(severity=4)) assert task["id"] assert task["severity"] == 4 assert task["done"] is None task2 = await db.db_upsert( db.tasks, dict(title="Example"), dict(done=datetime.now()) ) task2["id"] == task["id"] assert task2["done"] async def test_upsert_no_data(db: CrudDB) -> None: task = await db.db_upsert(db.tasks, dict(title="Example2")) assert task["id"] assert task["title"] == "Example2"
#13-1 pandas とmodelのやり取りを行う import pandas as pd import numpy as np #dataframe を numpy 配列に直す data = pd.DataFrame(~) data.values #array(~) df2 = pd.DataFrame(data.values,columns = [~]) data.loc[:,["a","b"]].values #範囲を指定 dummies = pd.get_dummies(data.category,prefix="~") #~列をdummieにする data_with_dummies = data.drop("~",axis = 1).join(dummies)#dummy変数をjoin #13-2 pastyを使ったモデルの記述 #Rに近いらしい data = pd.DataFrame({"x0":~,"x1":~,"y":~}) import pasty y,X = pasty.dmatrices("y~x0+x1",data) y # y列のデータ X #xo,x1の行列 np.asarray(y) # array化 np.asarray(X) # array化 dummy定数1が入る y,X = pasty.dmatrices("y~x0+x1+0",data) #+0を入れることで、切片校をなくす coef,resid,_,_ = np.linalg.lstsq(X,y) #最小二乗法 #13-2-1 pasty式によるデータ変換 y,X = pasty.dmatrices("y~x0+np.log(np.abs(x1) + 1)",data) y,X = pasty.dmatrices("y~standardize(x0)+center(x1)",data) #standardize 標準化 #center 中心化 平均値を引く new_data = pd.DataFrame(~) new_X = pasty.build_design_matrices([X.design_info],new_data)#Xのデータをnew_dataに変更 y,X = pasty.dmatrices("y~I(x0+x1)",data) #I()にくくることでxo + x1の意味を足し算にできる #13-2-2 カテゴリー型データとpasty df = pd.DataFrame({ "key1":["a","b",~], "key2" : [1,0,1,0,~] "v2" : [1,2,3~] }) y,X = pasty.dmatrices("v2 ~ key1",data) X #key1 にダミー変数が与えられる。 y,X = pasty.dmatrices("v2 ~ key1+0",data) #key1[a],key1[b]にそれぞれダミー変数が入る。(aがあるところに1、bに0 bに1、aに0) y,X = pasty.dmatrices("v2 ~ C(key2)",data)#key2をカテゴリーが他で読み込む y,X = pasty.dmatrices("v2 ~ key1 + key2 + key1:key2",data) #key1:key2で&データを作る。 #statsmedels 入門 #13-3-1 線形モデルの推定 import statsmodels.api as sm import statsmodels.formula.api as smf #ex) ランダムデータから線形モデルを一個作る def dnorm(mean,variance,size = 1): if isinstance(size,int): size = size, return mean + np.sqrt(variance)*np.random.randn(*size) #*変数で、変数をタプル化する https://pycarnival.com/one_asterisk/ *の意味がここに #再現性のために乱数シード np.random.seed(12345) N = 100 X = np.c_[dnorm(0,0.4,size = N),dnorm(0,0.6,size = N),dnorm(0,0.2,size = N)] eps = dnorm(0,0.1,size = N) beta = [0.1,0.3,0.5] y = np.dot(X,beta) + eps X_model = sm.add_constant(X) #Xに切片1を加える。 model = sm.OLS(y,X) #線形回帰モデル results = model.fit() results.params print(results.summary()) #いろいろ出る results = smf.ols("y~a+b+c",data = data ).fit() #ひとまとめでできる result.param result.tvalues #13-3-2 時系列モデルの推定 init_x = 4 import random values = [init_x,init_x] N = 1000 b0 = 0.8 b1 = -0.4 noise = dnorm(0,0.1,N) for i in range(N): new_x = values[-1] * b0 + values[-2]*b1 + noise[i] values.append(new_x) #AR(2)過程 MAXLAGS = 5 model = sm.tsa.AR(values) results = models.fit(MAXLAGS) #ラグ指定 #13-4scikit-learn 入門 train = pd.read_txt("titanic.UTF") from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train,y_train) y_predict = model.predict(X_test) #交差検証 トレーニングデータを分割して、サンプル外のデータへの予測をシミュレートする from sklearn.linear_model import LogisticRegressionCV model_cv = LogisticRegressionCV(10) #精度を指定 model_CV.fit(X_train,y_train) #自分で行い時 from sklearn.model_selection import cross_val_score model = LogisticRegression(C = 10) scores = cross_val_score(moedl,X_train,y_train,cv = 4)
from typing import Optional, Any from StructNoSQL.utils.types import TYPED_TYPES_TO_PRIMITIVES def make_dict_key_var_name(key_name: str) -> str: return f"$key$:{key_name}" def try_to_get_primitive_default_type_of_item(item_type: Any): item_default_primitive_type: Optional[type] = getattr(item_type, '_default_primitive_type', None) if item_default_primitive_type is not None: return item_default_primitive_type item_type_name: Optional[str] = getattr(item_type, '_name', None) if item_type_name is not None: primitive_from_typed: Optional[type] = TYPED_TYPES_TO_PRIMITIVES.get(item_type_name, None) if primitive_from_typed is not None: return primitive_from_typed return item_type
try: from maya import cmds except ImportError: print("Must be in a maya environment!") raise from rig.maya.dag import get_positions def create_line(objects, attach=True, attachParents=[], name=""): """ Creates a line between objects, that optionally attaches to each """ if not name: name = "line_display" print("Attach is: {}".format(attach)) positions = get_positions(objects) curve = create_from_points(positions, name=name, degree=1) # Rig CVs to each object if attach: if not attachParents: attachParents = objects[:] print("Attaching...") cvs = get_cvs(curve) for i in range(len(objects)): cluster = cmds.cluster(cvs[i]) cmds.parentConstraint(objects[i], cluster, maintainOffset=True) return curve def get_cvs(curve): """ Given a curve, return its CVs (flattened) :param str curve: name of curve object :returns list cvs: list of component cvs """ return cmds.ls("{0}.cv[*]".format(curve), flatten=True) def get_cv_positions(cvs): """ Given some components, query their position in world space :param list cvs: :returns list positions: """ positions = list() for cv in cvs: ws = cmds.xform(cv, query=True, worldSpace=True, translation=True) positions.append(ws) return positions def create_from_points(points, degree=1, name="curve#"): knotList = [0] if degree == 1: knotList.extend(range(1, len(points))) if degree == 3: knotList.extend([0]) knotList.extend(range(len(points) - 2)) knotList.extend([knotList[-1], knotList[-1]]) curve = cmds.curve(degree=degree, point=points, knot=knotList) curve = cmds.rename(curve, name) return curve def reorient(curve, downAxis): x = 0 y = 0 z = 0 if downAxis == "x" or "-x": z = z + 90 elif downAxis == "y" or "-y": y = 90 else: x = x + 90 cmds.rotate(x, y, z, get_cvs(curve))
from __future__ import print_function import numpy as np weights = np.load("pspnet101_voc2012.npy", encoding="latin1").item() settable_weights = 0 for layer, value in weights.items(): print(layer) for attrib, vals in weights[layer].items(): if attrib == "weights": print("weights: ", vals.shape) else: print(attrib) settable_weights += 1 print("Total settable weights %i" % settable_weights)
from sipTransportConnection import SIPTransportConnection class UDPSIPTransportConnection(SIPTransportConnection): def __init__(self, bind_address_string, remote_address_string, bind_port_integer, remote_port_integer): self.twistedProtocol = None super(UDPSIPTransportConnection, self).__init__(bind_address_string, remote_address_string, bind_port_integer, remote_port_integer) @property def is_reliable(self): return False @property def is_stateful(self): return False def send_message(self, a_sip_message): self.twistedProtocol.send_message(a_sip_message)
""" Registrador de eventos. """ from logging import INFO, FileHandler, Formatter, StreamHandler, getLogger from typing import TYPE_CHECKING from ..auxiliar import Singleton from ..constantes import LOG_PATH if TYPE_CHECKING: from logging import Logger class LectorLogger(metaclass=Singleton): """ Clase que registra eventos del bot. Hecho con patrón singleton. """ def __new__(cls) -> "LectorLogger": """ Devuelve la instancia de la clase, la cual es única y no puede tener duplicados """ if not hasattr(cls, "_instance"): cls._instancia = super(LectorLogger, cls).__new__(cls) return cls._instancia def __init__(self, *, nombre_log: str="lector", nivel_log: int=INFO, fmt: str="[ %(asctime)s ] [ %(levelname)s ] %(message)s", fmt_fecha: str="%d-%m-%Y %I:%M:%S %p") -> None: """ Crea una instancia de 'LectorLogger'. """ super().__init__() self._formato: str = fmt self._fmt_fecha: str = fmt_fecha self._formateador = Formatter(fmt=self.formato, datefmt=self.fmt_fecha) self.handler_archivo = FileHandler(filename=LOG_PATH, encoding="utf-8") self.handler_consola = StreamHandler() self.actualizar_formateador() self.logger: "Logger" = getLogger(nombre_log) self.logger.setLevel(nivel_log) self.logger.addHandler(self.handler_archivo) self.logger.addHandler(self.handler_consola) def actualizar_formateador(self) -> None: """ Actualiza el formateador para cada handler que el logger tiene. """ self.handler_archivo.setFormatter(self.formateador) self.handler_consola.setFormatter(self.formateador) @property def formateador(self) -> Formatter: """ Devuelve el formateador en uso. """ return self._formateador @formateador.setter def formateador(self, nuevo_formateador: Formatter) -> None: self._formateador = nuevo_formateador self.actualizar_formateador() @property def formato(self) -> str: """ Devuelve el formato de los mensajes del log. """ return self._formato @formato.setter def formato(self, nuevo_formato) -> None: self._formato = nuevo_formato self.formateador = Formatter(fmt=self.formato, datefmt=self.fmt_fecha) @property def fmt_fecha(self) -> str: """ Devuelve el formato de fecha de los mensajes del log. """ return self._fmt_fecha @fmt_fecha.setter def fmt_fecha(self, nuevo_fmt_fecha: str) -> None: self._fmt_fecha = nuevo_fmt_fecha self.formateador = Formatter(fmt=self.formato, datefmt=self.fmt_fecha) def debug(self, mensaje: str, *args, **kwargs) -> None: """ Registra un evento de nivel DEBUG. """ self.logger.debug(mensaje, *args, **kwargs) def info(self, mensaje: str, *args, **kwargs) -> None: """ Registra un evento de nivel INFO. """ self.logger.info(mensaje, *args, **kwargs) def warning(self, mensaje: str, *args, **kwargs) -> None: """ Registra un evento de nivel WARNING. """ self.logger.warning(mensaje, *args, **kwargs) def error(self, mensaje: str, *args, **kwargs) -> None: """ Registra un evento de nivel ERROR. """ self.logger.error(mensaje, *args, **kwargs) def critical(self, message: str, *args, **kwargs) -> None: """ Registra un evento de nivel CRITICAL. """ self.logger.critical(message, *args, **kwargs) def exception(self, mensaje, *args, exc_info=True, **kwargs) -> None: """ Registra una excepción. """ self.logger.exception(mensaje, *args, exc_info, **kwargs)
import sys import data_IO import json if len(sys.argv) < 3: print("Number of provided arguments: ", len(sys.argv) - 1) print("Usage: python testKPIreaderJSON.py <desiredMetrics.json> <outputDir> ") sys.exit() kpiFileAddress = sys.argv[1] outputDir = sys.argv[2] # Read the desired outputs/metrics from the csv file: fp_csvin = data_IO.open_file(kpiFileAddress) kpihash = json.load(fp_csvin) fp_csvin.close() print(kpihash) import json obj_json = kpihash print(json.dumps(obj_json, indent=4)) fkjson = data_IO.open_file(outputDir + "/kpi.json","w") fkjson.write(json.dumps(obj_json, indent=4)) fkjson.close()
# -*- coding: utf-8 -*- """ updater enumerations module. """ from pyrin.core.decorators import class_property from pyrin.core.enumerations import CoreEnum class UpdaterCategoryEnum(CoreEnum): """ updater category enum. """ CONTENT_RATE = 'content_rate' COUNTRY = 'country' GENRE = 'genre' LANGUAGE = 'language' META_SCORE = 'meta_score' POSTER_NAME = 'poster_name' ORIGINAL_TITLE = 'original_title' PRODUCTION_YEAR = 'production_year' IMDB_RATE = 'imdb_rate' RUNTIME = 'runtime' STORYLINE = 'storyline' TITLE = 'title' ACTORS = 'actors' DIRECTORS = 'directors' @class_property def persons(self): """ gets all enumeration values related to persons. :rtype: tuple[str] """ return self.ACTORS, self.DIRECTORS
from django.shortcuts import render from django.http import HttpResponse def index(request) -> HttpResponse: """FAQs index view """ return render(request, "faqs/index.html") def section(request, section_title: str) -> HttpResponse: """FAQs section view - FAQ lists for participants, organizers, photographers """ ctx = { "section_title": section_title, } return render(request, "faqs/section.html", context=ctx)
class Solution(object): def numberToWords(self, num): """ :type num: int :rtype: str """ to19 = 'One Two Three Four Five Six Seven Eight Nine Ten Eleven Twelve ' \ 'Thirteen Fourteen Fifteen Sixteen Seventeen Eighteen Nineteen'.split() tens = 'Twenty Thirty Forty Fifty Sixty Seventy Eighty Ninety'.split() def words(n): if n < 20: return to19[n-1:n] #n=0 will give an empty list elif n < 100: return [tens[n/10-2]] + words(n%10) elif n < 1000: return [to19[n/100-1]] + ['Hundred'] + words(n%100) for order, word in enumerate(('Thousand', 'Million', 'Billion'), 1): if n < 1000**(order+1): return words(n/1000**order) + [word] + words(n%1000**order) # e.g. 'Thousand' below: # if n < 1000000: # return [words[n/1000]] + ['Thousand'] + words(n%1000) return 'Zero' if num==0 else ' '.join(words(num))
import pytest from pygraphblas import * from pygraphblas import lib def test_options_set(): opts = options_get() iz = lambda name, typ: isinstance(opts.get(name), typ) assert iz("nthreads", int) assert iz("chunk", float) assert iz("burble", int) assert iz("format", int) assert iz("hyper_switch", float) assert iz("bitmap_switch", list) assert opts["burble"] == 0 options_set(nthreads=4) options_set(chunk=4096) options_set(burble=1) options_set(format=lib.GxB_BY_COL) options_set(hyper_switch=1.0) options_set(bitmap_switch=[1, 2, 3, 4, 5, 6, 7, 8]) news = options_get() ez = lambda name, v: news.get(name) == v assert ez("nthreads", 4) assert ez("chunk", 4096) assert ez("burble", 1) assert ez("format", lib.GxB_BY_COL) assert ez("hyper_switch", 1.0) assert ez("bitmap_switch", [1, 2, 3, 4, 5, 6, 7, 8]) options_set(**opts) assert opts == options_get()
class Base1(object): def __init__(self): self.str1 = "anum" print "Base1" class Base2(object): def __init__(self): self.str2 = "sharma" print "Base2" class Derived(Base1, Base2): def __init__(self): # Calling constructors of Base1 # and Base2 classes Base1.__init__(self) Base2.__init__(self) print "Derived" def printString(self): print(self.str1, self.str2) ob = Derived() ob.printString() """ Base1 Base2 Derived ('anum', 'sharma') """
import time import Box2D import Box2D.b2 import gym from gym import spaces from gym.utils import colorize, seeding, EzPickle import numpy as np env = gym.make('Box2D:BipedalWalkerHardcore-v3') observations = env.reset() reward = 0 import neural_network_NE_agent_2 neural_network_NE_agent_2.Evolution.simulate_generation(self=neural_network_NE_agent_2.Evolution, observation=None, is_dead=True, score=0, first_time=True) first_time = False done = False for i in range(10000): for q in range(neural_network_NE_agent_2.genomes): start_timer = time.time() while not done: output_signal = neural_network_NE_agent_2.Evolution.simulate_generation(self=neural_network_NE_agent_2.Evolution, observation=observations, is_dead=False, score=reward, first_time=False) observations, reward, done, info = env.step(output_signal[0]) done = False observations = env.reset() neural_network_NE_agent_2.Evolution.simulate_generation(self=neural_network_NE_agent_2.Evolution, observation=None, is_dead=True, score=0, first_time=False)
FULLNODE = "http://node.deviceproof.org:14265" # FULLNODE = "http://node10.puyuma.org:14265" SEED = 'AMRWQP9BUMJALJHBXUCHOD9HFFD9LGTGEAWMJWWXSDVOF9PI9YGJAPBQLQUOMNYEQCZPGCTHGVNNAPGHA'
from sklearn.model_selection import train_test_split from utils.data_util import get_stocks def prepare_data(company_symbol, result_feature, features, forecast_out, test_size, random_state): """ Method will shift data values by given 'forecast_out' amount. Basically, we will be predicting 'n' values in the future by shifting the values 'n' backwards. So, we will use the data that comes 'n' days ago to predict today and further. Parameter ------- _dataset = Stock Dataset Returns ------- X_train : Set of features (For training the model) X_test : Set of features (For evaluating the model) y_train : Set of label (For training the model) y_test : Set of label (For evaluation the model) x_forecast: Forecast out (It will be used to predict 'n' days ahead """ dataset = get_stocks(company_symbol, features, result_feature) dataset['Prediction'] = dataset[result_feature].shift(-forecast_out) X = dataset.loc[:, features].values X = X[:-forecast_out] full_dataset = dataset.drop(columns='Prediction', axis=1) y = dataset.loc[:, 'Prediction'].values y = y[:-forecast_out] x_forecast = dataset.loc[:, features].values x_forecast = x_forecast[-forecast_out:] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) return X_train, X_test, y_train, y_test, x_forecast, full_dataset def get_model_performance(regression_model, X_test, y_test): """ Method will use the passed predictor to make prediction on test data and report the accuracy metrics. Returns ------- performance_results = A dictionary which includes performance metrics: variance_score max_error_value mean_abs_error_value mean_square_error_value r2_value """ from sklearn.metrics import explained_variance_score, max_error, mean_absolute_error, mean_squared_error, r2_score # Predicting the Test set results y_pred = regression_model.predict(X_test) # Performance Metrics: variance_score = explained_variance_score(y_test, y_pred) max_error_value = max_error(y_test, y_pred) mean_abs_error_value = mean_absolute_error(y_test, y_pred) mean_square_error_value = mean_squared_error(y_test, y_pred) r2_value = r2_score(y_test, y_pred) # Metric Dictionary performance_results = { "variance_score": variance_score, "max_error_value": max_error_value, "mean_abs_error_value": mean_abs_error_value, "mean_square_error_value": mean_square_error_value, "r2_value": r2_value } return performance_results def get_future_predictions(regression_model, x_forecast): """ Method will use the passed predictor to make prediction for the future stock prices Parameter ------- predictor = A Linear Regression Model that has been created and fit before Returns ------- forecast_stocks = List of future stock prices """ forecast_stocks = regression_model.predict(x_forecast) return forecast_stocks
import os from glob import glob import hickle import numpy as np from datasets.phys import Phys from utils.config import _C as C from utils.misc import tprint plot = False class PHYRE(Phys): def __init__(self, data_root, split, template, image_ext='.jpg'): super().__init__(data_root, split, template, image_ext) protocal = C.PHYRE_PROTOCAL fold = C.PHYRE_FOLD template = C.TEMPLATE env_list = open(f'{data_root}/splits/{protocal}_{split}_{template}_fold_{fold}.txt', 'r').read().split('\n') self.video_list = sum([sorted(glob(f'{data_root}/images/{env.replace(":", "/")}/*.npy')) for env in env_list], []) self.anno_list = [(v[:-4] + '_boxes.hkl').replace('images', 'labels') for v in self.video_list] # video_info_name = f'for_plot.npy' video_info_name = f'{data_root}/{protocal}_{split}_{template}_{self.input_size}_{self.pred_size}_fold_{fold}_info.npy' if os.path.exists(video_info_name): print(f'loading info from: {video_info_name}') self.video_info = np.load(video_info_name) else: self.video_info = np.zeros((0, 2), dtype=np.int32) for idx, video_name in enumerate(self.video_list): tprint(f'loading progress: {idx}/{len(self.video_list)}') num_im = hickle.load(video_name.replace('images', 'labels').replace('.npy', '_boxes.hkl')).shape[0] if plot: # we will pad sequence so no check num_sw = 1 else: assert self.input_size == 1 num_sw = min(1, num_im - self.seq_size + 1) if num_sw <= 0: continue video_info_t = np.zeros((num_sw, 2), dtype=np.int32) video_info_t[:, 0] = idx # video index video_info_t[:, 1] = np.arange(num_sw) # sliding window index self.video_info = np.vstack((self.video_info, video_info_t)) np.save(video_info_name, self.video_info) def _parse_image(self, video_name, vid_idx, img_idx): data = np.load(video_name) return data.reshape(1, 1, data.shape[0], data.shape[1]) def _parse_label(self, anno_name, vid_idx, img_idx): boxes = hickle.load(anno_name)[img_idx:img_idx + self.seq_size, :, 1:] if_destroyed = boxes[:, :, -1] boxes = boxes[:, :, :-1] gt_masks = np.zeros((self.pred_size, boxes.shape[1], C.RPIN.MASK_SIZE, C.RPIN.MASK_SIZE)) if C.RPIN.MASK_LOSS_WEIGHT > 0: anno_name = anno_name.replace('boxes.', 'masks.') gt_masks = hickle.load(anno_name) gt_masks = gt_masks[img_idx:img_idx + self.seq_size].astype(np.float32) gt_masks = gt_masks[self.input_size:] if plot: boxes = np.concatenate([boxes] + [boxes[[-1]] for _ in range(self.seq_size - boxes.shape[0])], axis=0) gt_masks = np.concatenate( [gt_masks] + [gt_masks[[-1]] for _ in range(self.pred_size - gt_masks.shape[0])], axis=0 ) return boxes, if_destroyed, gt_masks
"""Helpers for working with Recurly's recurly.js packge""" from django.template.loader import render_to_string from django_recurly.conf import SUBDOMAIN, DEFAULT_CURRENCY from django_recurly.utils import recurly, dump def get_signature(obj): return recurly.js.sign(obj) def get_config(subdomain=SUBDOMAIN, currency=DEFAULT_CURRENCY): return render_to_string("django_recurly/config.js", { "subdomain": subdomain, "currency": currency, }) def get_signed_form_options(protected_params={}, unprotected_params={}): from django_recurly.utils import dict_merge # Protected params data = dict_merge({}, protected_params) data['signature'] = get_signature(data) # Unprotected params (overridden by existing protected params) data = dict_merge({}, unprotected_params, data) data['json'] = dump(data, js=True) return data def get_subscription_form(plan_code, user, target_element='#recurly-container', protected_params={}, unprotected_params={}): from django_recurly.utils import dict_merge # Protected params protected_data = { 'plan_code': plan_code, 'subscription': { 'plan_code': plan_code, }, 'account': { 'username': user.username, }, } dict_merge(protected_data, protected_params) # Unprotected params unprotected_data = { 'target': target_element } dict_merge(unprotected_data, unprotected_params) data = get_signed_form_options(protected_data, unprotected_data) return render_to_string("django_recurly/build_subscription_form.js", data) def get_billing_info_update_form(user, account, target_element='#recurly-container', protected_params={}, unprotected_params={}): from django_recurly.utils import dict_merge # Protected params protected_data = { 'account_code': account.account_code, 'account': { 'account_code': account.account_code, 'username': account.username, }, 'addressRequirement': 'none', } dict_merge(protected_data, protected_params) # Unprotected params unprotected_data = { 'target': target_element, 'distinguish_contact_from_billing_info': False, 'account': account.to_dict(js=True), 'billing_info': account.billing_info.to_dict(js=True) } dict_merge(unprotected_data, unprotected_params) data = get_signed_form_options(protected_data, unprotected_data) return render_to_string("django_recurly/build_billing_info_update_form.js", data)
from .conf import * __version__ = "1.1"
import FWCore.ParameterSet.Config as cms muonIsolations = cms.EDProducer("ValeMapFloatMerger", src = cms.VInputTag(cms.InputTag("goodMuonIsolations"), cms.InputTag("goodTrackIsolations"), cms.InputTag("goodStandAloneMuonTrackIsolations")) )
{%- set klass = cookiecutter.project_slug.capitalize() -%} {%- set obj = cookiecutter.project_slug.lower() -%} {%- set is_open_source = cookiecutter.open_source_license != 'Not open source' -%} # -*- coding: utf-8 -*- # # This file is part of the {{ cookiecutter.project_name }} project # # Copyright (c) {% now 'local', '%Y' %} {{ cookiecutter.full_name }} {% if is_open_source -%} # Distributed under the {{ cookiecutter.open_source_license }}. See LICENSE for more info. {% endif %} """Tango server class for {{ klass }}""" import asyncio import urllib.parse from connio import connection_for_url from tango import GreenMode from tango.server import Device, attribute, command, device_property import {{ cookiecutter.project_slug }}.core class {{ klass }}(Device): green_mode = GreenMode.Asyncio url = device_property(dtype=str) async def init_device(self): await super().init_device() self.connection = connection_for_url(self.url, concurrency="async") self.{{ obj }} = {{ cookiecutter.project_slug }}.core.{{ klass }}(self.connection) @attribute(dtype=str, label="ID") def idn(self): return self.{{ obj }}.get_idn() @attribute(dtype=float, unit="bar", label="Pressure") async def pressure(self): # example processing the result pressure = await self.{{ obj }}.get_pressure() return pressure / 1000 @attribute(dtype=float, unit="bar", label="Pressure set point") async def pressure_setpoint(self): # example processing the result setpoint = await self.{{ obj }}.get_pressure_setpoint() return setpoint / 1000 @pressure_setpoint.setter def pressure_setpoint(self, value): # example returning the coroutine back to tango return self.{{ obj }}.get_pressure_setpoint(value * 1000) @command def turn_on(self): # example returning the coroutine back to who calling function return self.{{ obj }}.turn_on() if __name__ == "__main__": import logging fmt = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level="DEBUG", format=fmt) {{ klass }}.run_server()
from .bloom_filter import BloomFilter, Response __all__ = ["BloomFilter", "Response"]
""" This file solves the second Advent of Code 2020 puzzle. https://adventofcode.com/2020/day/2 """ def parse_line(line: str) -> dict: """ This function inelegantly gets all the parts of the password policy and password and stores them in a dictionary. :param line: The line containing the password policy and password to parse through. :return: A dict with all the parts of the line with specific keys. """ ret_val = {} line = line.split(':') min_max = line[0][:-2].split('-') ret_val['min'] = int(min_max[0]) ret_val['max'] = int(min_max[1]) ret_val['char'] = line[0][-1] ret_val['data'] = line[1] return ret_val def check_compliance(password: dict) -> bool: """ Takes a line as returned by 'parse_line' and returns a boolean value for if the password is compliant with the policy. :param password: A line, freshly parsed by the 'parse_line' function. :return: True if the password is compliant. """ # The following two (commented) lines solve part one of the day's puzzle. # n = password['data'].count(password['char']) # return password['min'] <= n <= password['max'] interest = password['data'][password['min']] + password['data'][password['max']] return interest.count(password['char']) == 1 def parse_input(path: str) -> int: """ Parses the puzzle input file and calculates how many lines are compliant with the policy. :param path: The path to the input puzzle file. :return: """ with open(path) as inp: compliance_list = [check_compliance(parse_line(line)) for line in inp] return sum(compliance_list) input_path = "puzzle_input.py" print(parse_input(input_path))
from .order.suggested import SuggestedOrder from .portfolio import Portfolio from .price_parser import PriceParser class PortfolioHandler(object): def __init__( self, initial_cash, events_queue, price_handler, position_sizer, risk_manager ): """ The PortfolioHandler is designed to interact with the backtesting or live trading overall event-driven architecture. It exposes two methods, on_signal and on_fill, which handle how SignalEvent and FillEvent objects are dealt with. Each PortfolioHandler contains a Portfolio object, which stores the actual Position objects. The PortfolioHandler takes a handle to a PositionSizer object which determines a mechanism, based on the current Portfolio, as to how to size a new Order. The PortfolioHandler also takes a handle to the RiskManager, which is used to modify any generated Orders to remain in line with risk parameters. """ self.initial_cash = initial_cash self.events_queue = events_queue self.price_handler = price_handler self.position_sizer = position_sizer self.risk_manager = risk_manager self.portfolio = Portfolio(price_handler, initial_cash) def _create_order_from_signal(self, signal_event): """ Take a SignalEvent object and use it to form a SuggestedOrder object. These are not OrderEvent objects, as they have yet to be sent to the RiskManager object. At this stage they are simply "suggestions" that the RiskManager will either verify, modify or eliminate. """ if signal_event.suggested_quantity is None: quantity = 0 else: quantity = signal_event.suggested_quantity order = SuggestedOrder( signal_event.ticker, signal_event.action, quantity=quantity, strategy_name=signal_event.strategy_name ) return order def _place_orders_onto_queue(self, order_list): """ Once the RiskManager has verified, modified or eliminated any order objects, they are placed onto the events queue, to ultimately be executed by the ExecutionHandler. """ for order_event in order_list: self.events_queue.put(order_event) def _convert_fill_to_portfolio_update(self, fill_event): """ Upon receipt of a FillEvent, the PortfolioHandler converts the event into a transaction that gets stored in the Portfolio object. This ensures that the broker and the local portfolio are "in sync". In addition, for backtesting purposes, the portfolio value can be reasonably estimated in a realistic manner, simply by modifying how the ExecutionHandler object handles slippage, transaction costs, liquidity and market impact. """ action = fill_event.action ticker = fill_event.ticker quantity = fill_event.quantity price = fill_event.price commission = fill_event.commission # Create or modify the position from the fill info if 'ICBC' in self.portfolio.positions: print(' 期初资产:{0}; 现金:{1}; 数量:{2}'.format(self.portfolio.equity / PriceParser.PRICE_MULTIPLIER, self.portfolio.cur_cash / PriceParser.PRICE_MULTIPLIER, self.portfolio.positions['ICBC'].quantity)) else: print(' 期初资产:{0}; 现金:{1}; 数量:{2}'.format(self.portfolio.equity / PriceParser.PRICE_MULTIPLIER, self.portfolio.cur_cash / PriceParser.PRICE_MULTIPLIER, 0)) self.portfolio.transact_position( action, ticker, quantity, price, commission ) print(' {0} {1} 数量:{2}; 价格:{3}; 手续费:{4}'.format(ticker, action, quantity, price / PriceParser.PRICE_MULTIPLIER, commission / PriceParser.PRICE_MULTIPLIER)) if 'ICBC' in self.portfolio.positions: print(' 期末资产:{0}; 现金:{1}; 数量:{2}'.format(self.portfolio.equity / PriceParser.PRICE_MULTIPLIER, self.portfolio.cur_cash / PriceParser.PRICE_MULTIPLIER, self.portfolio.positions['ICBC'].quantity)) else: print(' 期末资产:{0}; 现金:{1}; 数量:{2}'.format(self.portfolio.equity / PriceParser.PRICE_MULTIPLIER, self.portfolio.cur_cash / PriceParser.PRICE_MULTIPLIER, 0)) def on_signal(self, signal_event): """ This is called by the backtester or live trading architecture to form the initial orders from the SignalEvent. These orders are sized by the PositionSizer object and then sent to the RiskManager to verify, modify or eliminate. Once received from the RiskManager they are converted into full OrderEvent objects and sent back to the events queue. """ # Create the initial order list from a signal event initial_order = self._create_order_from_signal(signal_event) # Size the quantity of the initial order sized_order = self.position_sizer.size_order( self.portfolio, initial_order ) # Refine or eliminate the order via the risk manager overlay order_events = self.risk_manager.refine_orders( self.portfolio, sized_order ) # Place orders onto events queue self._place_orders_onto_queue(order_events) def on_fill(self, fill_event): """ This is called by the backtester or live trading architecture to take a FillEvent and update the Portfolio object with new or modified Positions. In a backtesting environment these FillEvents will be simulated by a model representing the execution, whereas in live trading they will come directly from a brokerage (such as Interactive Brokers). """ self._convert_fill_to_portfolio_update(fill_event) def update_portfolio_value(self): """ Update the portfolio to reflect current market value as based on last bid/ask of each ticker. """ self.portfolio._update_portfolio()
from .utils import encode_attr from .control import Control class Item(Control): def __init__(self, text=None, id=None, secondary_text=None, url=None, new_window=None, icon=None, icon_color=None, icon_only=None, split=None, divider=None, onclick=None, items=[], width=None, height=None, padding=None, margin=None, visible=None, disabled=None): Control.__init__(self, id=id, width=width, height=height, padding=padding, margin=margin, visible=visible, disabled=disabled) self.text = text self.secondary_text = secondary_text self.url = url self.new_window = new_window self.icon = icon self.icon_color = icon_color self.icon_only = icon_only self.split = split self.divider = divider self.onclick = onclick self._items = [] if items and len(items) > 0: for item in items: self.add_item(item) def _getControlName(self): return "item" def add_item(self, item): if isinstance(item, Item): self._items.append(item) else: self._items.append(Item(str(item))) # onclick @property def onclick(self): return None @onclick.setter def onclick(self, handler): self._add_event_handler("click", handler) # items @property def items(self): return self._items # text @property def text(self): return self._get_attr("text") @text.setter def text(self, value): self._set_attr("text", value) # secondary_text @property def secondary_text(self): return self._get_attr("secondaryText") @secondary_text.setter def secondary_text(self, value): self._set_attr("secondaryText", value) # url @property def url(self): return self._get_attr("url") @url.setter def url(self, value): self._set_attr("url", value) # new_window @property def new_window(self): return self._get_attr("newWindow") @new_window.setter def new_window(self, value): assert value == None or isinstance(value, bool), "value must be a boolean" self._set_attr("newWindow", value) # icon @property def icon(self): return self._get_attr("icon") @icon.setter def icon(self, value): self._set_attr("icon", value) # icon_color @property def icon_color(self): return self._get_attr("iconColor") @icon_color.setter def icon_color(self, value): self._set_attr("iconColor", value) # icon_only @property def icon_only(self): return self._get_attr("iconOnly") @icon_only.setter def icon_only(self, value): assert value == None or isinstance(value, bool), "icon_only must be a boolean" self._set_attr("iconOnly", value) # split @property def split(self): return self._get_attr("split") @split.setter def split(self, value): assert value == None or isinstance(value, bool), "split must be a boolean" self._set_attr("split", value) # divider @property def divider(self): return self._get_attr("divider") @divider.setter def divider(self, value): assert value == None or isinstance(value, bool), "divider must be a boolean" self._set_attr("divider", value) def _getChildren(self): return self._items class Button(Control): def __init__(self, text=None, id=None, primary=None, compound=None, action=None, toolbar=None, split=None, secondary_text=None, url=None, new_window=None, title=None, icon=None, icon_color=None, data=None, onclick=None, items=[], width=None, height=None, padding=None, margin=None, visible=None, disabled=None): Control.__init__(self, id=id, width=width, height=height, padding=padding, margin=margin, visible=visible, disabled=disabled) self.primary = primary self.compound = compound self.action = action self.toolbar = toolbar self.split = split self.text = text self.secondary_text = secondary_text self.url = url self.new_window = new_window self.title = title self.icon = icon self.icon_color = icon_color self.data = data self.onclick = onclick self._items = [] if items and len(items) > 0: for item in items: self.add_item(item) def _getControlName(self): return "button" def add_item(self, item): assert isinstance(item, Item), 'button can hold items only' self._items.append(item) # onclick @property def onclick(self): return None @onclick.setter def onclick(self, handler): self._add_event_handler("click", handler) # primary @property def primary(self): return self._get_attr("primary") @primary.setter def primary(self, value): assert value == None or isinstance(value, bool), "primary must be a boolean" self._set_attr("primary", value) # compound @property def compound(self): return self._get_attr("compound") @compound.setter def compound(self, value): assert value == None or isinstance(value, bool), "compound must be a boolean" self._set_attr("compound", value) # action @property def action(self): return self._get_attr("action") @action.setter def action(self, value): assert value == None or isinstance(value, bool), "action must be a boolean" self._set_attr("action", value) # toolbar @property def toolbar(self): return self._get_attr("toolbar") @toolbar.setter def toolbar(self, value): assert value == None or isinstance(value, bool), "toolbar must be a boolean" self._set_attr("toolbar", value) # split @property def split(self): return self._get_attr("split") @split.setter def split(self, value): assert value == None or isinstance(value, bool), "split must be a boolean" self._set_attr("split", value) # text @property def text(self): return self._get_attr("text") @text.setter def text(self, value): self._set_attr("text", value) # secondary_text @property def secondary_text(self): return self._get_attr("secondaryText") @secondary_text.setter def secondary_text(self, value): self._set_attr("secondaryText", value) # url @property def url(self): return self._get_attr("url") @url.setter def url(self, value): self._set_attr("url", value) # new_window @property def new_window(self): return self._get_attr("newWindow") @new_window.setter def new_window(self, value): assert value == None or isinstance(value, bool), "new_window must be a boolean" self._set_attr("newWindow", value) # title @property def title(self): return self._get_attr("title") @title.setter def title(self, value): self._set_attr("title", value) # icon @property def icon(self): return self._get_attr("icon") @icon.setter def icon(self, value): self._set_attr("icon", value) # icon_color @property def icon_color(self): return self._get_attr("iconColor") @icon_color.setter def icon_color(self, value): self._set_attr("iconColor", value) # data @property def data(self): return self._get_attr("data") @data.setter def data(self, value): self._set_attr("data", value) def _getChildren(self): return self._items
# Do not edit this file directly. # It was auto-generated by: code/programs/reflexivity/reflexive_refresh load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_file") def mpmcQueue(): http_archive( name = "mpmc_queue", build_file = "//bazel/deps/mpmc_queue:build.BUILD", sha256 = "675004f332c74390c16efea98f30ebc636a2855434bdbfa24eaa703501a6ae0f", strip_prefix = "MPMCQueue-5883e32b07e8a60c22d532d9120ea5c11348aea9", urls = [ "https://github.com/Unilang/MPMCQueue/archive/5883e32b07e8a60c22d532d9120ea5c11348aea9.tar.gz", ], )
# Advent of Code - Day 10 def parse(input): return [[char for char in row] for row in input] def corrupt_closer(open_and_shut, row): """Returns boolean indicating corruptness and first corrupt closer""" openers = open_and_shut.keys() closers = open_and_shut.values() openers_stack = [] for char in row: if char in openers: openers_stack.append(char) elif char in closers: if not openers_stack: return True, char else: last_unclosed_opener = openers_stack.pop() if not open_and_shut[last_unclosed_opener] == char: return True, char return False, None def score_invalid_closers(invalid_closers): points = {")": 3, "]": 57, "}": 1197, ">": 25137} return sum([points[closer] for closer in invalid_closers]) def result_part1(input): data = parse(input) open_and_shut = {"(": ")", "[": "]", "{": "}", "<": ">"} invalid_closers = [] for row in data: corrupt, char = corrupt_closer(open_and_shut, row) if corrupt: invalid_closers.append(char) return score_invalid_closers(invalid_closers) def incorrect_open_close(open_and_shut, row): opener_keys = open_and_shut.keys() closer_keys = open_and_shut.values() openers_stack = [] invalid_closer = [] for char in row: if char in opener_keys: openers_stack.append(char) elif char in closer_keys: if not openers_stack: invalid_closer.append(char) else: last_unclosed_opener = openers_stack.pop() if not open_and_shut[last_unclosed_opener] == char: invalid_closer.append(char) return invalid_closer, openers_stack def score_unmatched_openers(matching_pairs, unmatched_openers): points = {")": 1, "]": 2, "}": 3, ">": 4} missing_closers = [matching_pairs[opener] for opener in unmatched_openers] missing_closers.reverse() total_score = 0 for closer in missing_closers: total_score *= 5 total_score += points[closer] return total_score def result_part2(input): data = parse(input) open_and_shut = {"(": ")", "[": "]", "{": "}", "<": ">"} scores = [] for row in data: invalid_closer, unmatched_openers = incorrect_open_close(open_and_shut, row) if invalid_closer: continue else: scores.append(score_unmatched_openers(open_and_shut, unmatched_openers)) scores.sort(reverse=True) middle_score = scores[int(len(scores) / 2)] return middle_score sample_input = [ "[({(<(())[]>[[{[]{<()<>>", "[(()[<>])]({[<{<<[]>>(", "{([(<{}[<>[]}>{[]{[(<()>", "(((({<>}<{<{<>}{[]{[]{}", "[[<[([]))<([[{}[[()]]]", "[{[{({}]{}}([{[{{{}}([]", "{<[[]]>}<{[{[{[]{()[[[]", "[<(<(<(<{}))><([]([]()", "<{([([[(<>()){}]>(<<{{", "<{([{{}}[<[[[<>{}]]]>[]]", ] input = sample_input # print(parse(input)) print(result_part1(input)) print(result_part2(input))
import sys from PyQt5 import QtCore, QtWidgets from PyQt5.QtWidgets import QMainWindow, QLabel, QGridLayout, QWidget from PyQt5.QtCore import QSize class HelloWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.setMinimumSize(QSize(280, 120)) self.setWindowTitle("Olá, Mundo! Exemplo PyQT5") centralWidget = QWidget(self) self.setCentralWidget(centralWidget) gridLayout = QGridLayout(self) centralWidget.setLayout(gridLayout) title = QLabel("Olá Mundo para PyQt", self) title.setAlignment(QtCore.Qt.AlignCenter) gridLayout.addWidget(title, 0, 0) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) mainWin = HelloWindow() mainWin.show() sys.exit( app.exec_() )
# Copyright 2021 MosaicML. All Rights Reserved. from __future__ import annotations from dataclasses import MISSING, fields from enum import Enum from typing import TYPE_CHECKING, List, NamedTuple, Optional, Type, get_type_hints import yahp as hp from yahp.utils.interactive import query_with_options from yahp.utils.iter_helpers import ensure_tuple from yahp.utils.type_helpers import HparamsType, get_default_value, is_field_required, safe_issubclass if TYPE_CHECKING: from yahp.types import JSON, HparamsField try: from ruamel_yaml import YAML # type: ignore from ruamel_yaml.comments import CommentedMap, CommentedSeq # type: ignore except ImportError as _: from ruamel.yaml import YAML # type: ignore from ruamel.yaml.comments import CommentedMap, CommentedSeq # type: ignore def _to_json_primitive(val: HparamsField) -> JSON: if isinstance(val, Enum): return val.name if val is None or isinstance(val, (str, float, int, dict)): # if dict, assuming already a json dict return val if isinstance(val, list): return [_to_json_primitive(x) for x in val] raise TypeError(f"Cannot convert value of type {type(val)} into a JSON primitive") def _add_commenting( cm: CommentedMap, comment_key: str, eol_comment: str, typing_column: int, choices: Optional[List[str]] = None, ) -> None: if choices: eol_comment = f"{eol_comment} Options: {', '.join(choices)}." if typing_column + len(eol_comment) <= 120: cm.yaml_add_eol_comment(eol_comment, key=comment_key, column=typing_column) else: cm.yaml_set_comment_before_after_key(key=comment_key, before=eol_comment) cm.fa.set_block_style() class CMOptions(NamedTuple): add_docs: bool typing_column: int interactive: bool def _process_abstract_hparams(hparams: Type[hp.Hparams], path_with_fname: List[str], is_list: bool, options: CMOptions): """Generate a template for an abstract :class:`~yahp.hparams.Hparams`. If in interactive mode (as specified in ``options``), then a CLI prompt is used to determine which concrete subclass should be enumerated. Otherwise, all are dumped. Args: hparams (Type[hp.Hparams]): The parent of the abstract :class:`~yahp.hparams.Hparams` object. path_with_fname (List[str]): The path from the root :class:`~yahp.hparams.Hparams` to the abstract field. is_list (bool): Whether the abstract field is a list. options (CMOptions): CMOptions from :meth:`to_commented_map`. Returns: The generated template for the field, as a :class:`~ruamel.yaml.comments.CommentedSeq` if ``is_list``, otherwise, a :class:`~ruamel.yaml.comments.CommentedMap`` """ field_name = path_with_fname[-1] possible_sub_hparams = hparams.hparams_registry[field_name] possible_keys = list(possible_sub_hparams.keys()) if options.interactive: leave_blank_option = "(Leave Blank)" dump_all_option = "(Dump all)" name = f"Field {'.'.join(path_with_fname)}:" if is_list: interactive_response = query_with_options( name=name, options=[leave_blank_option] + possible_keys + [dump_all_option], default_response=dump_all_option, multiple_ok=True, ) if leave_blank_option in interactive_response: possible_keys = [] elif dump_all_option not in interactive_response: possible_keys = interactive_response else: interactive_response = query_with_options( name=name, options=possible_keys + [dump_all_option], default_response=dump_all_option, multiple_ok=False, ) if dump_all_option != interactive_response: possible_keys = [interactive_response] # filter possible_sub_hparams to those in possible_keys possible_sub_hparams = {k: v for (k, v) in possible_sub_hparams.items() if k in possible_keys} sub_hparams = CommentedSeq() if is_list else CommentedMap() for sub_key, sub_type in possible_sub_hparams.items(): sub_map = to_commented_map( cls=sub_type, path=list(path_with_fname) + [sub_key], options=options, ) if is_list: sub_item = CommentedMap() sub_item[sub_key] = sub_map sub_hparams.append(sub_item) if options.add_docs: _add_commenting(sub_item, comment_key=sub_key, eol_comment=sub_type.__name__, typing_column=options.typing_column) continue sub_hparams[sub_key] = sub_map if options.add_docs: _add_commenting(sub_hparams, comment_key=sub_key, eol_comment=sub_type.__name__, typing_column=options.typing_column) return sub_hparams def to_commented_map( cls: Type[hp.Hparams], options: CMOptions, path: List[str], ) -> YAML: """Converts a Hparams class into a CommentedMap YAML template. .. note:: This function should not be called directly. Instead, use :meth:`~yahp.hparams.Hparams.dump` or :meth:`~yahp.hparams.Hparams.dumps`. Args: cls (Type[hp.Hparams]): The class to geneate into a template options (CMOptions): Options for genearting the CommentedMap path (List[str]): Path to ``cls`` from the root. Returns: YAML: YAML template for ``cls``. """ # TODO(averylamp) accept existing fields to create a new template from an existing one output = CommentedMap() field_types = get_type_hints(cls) for f in fields(cls): if not f.init: continue path_with_fname = list(path) + [f.name] ftype = HparamsType(field_types[f.name]) helptext = f.metadata.get("doc") helptext_suffix = f" Description: {helptext}." if helptext is not None else "" required = is_field_required(f) default = get_default_value(f) default_suffix = "" optional_prefix = " (Required)" if not required: optional_prefix = " (Optional)" if default is None or safe_issubclass(default, (int, float, str, Enum)): default_suffix = f" Defaults to {default}." elif safe_issubclass(default, hp.Hparams): default_suffix = f" Defaults to {type(default).__name__}." # Don't print the default, it's too big if default == MISSING and "template_default" in f.metadata: default = f.metadata["template_default"] choices = [] if not ftype.is_hparams_dataclass: if default != MISSING: output[f.name] = _to_json_primitive(default) elif ftype.is_list: output[f.name] = CommentedSeq() if ftype.is_enum: # If an enum list, then put all enum options in the list output[f.name].extend([x.name for x in ftype.type]) else: output[f.name] = None # it's a dataclass, or list of dataclasses elif f.name not in cls.hparams_registry: # non-abstract hparams if default is None: output[f.name] = None else: if default == MISSING: output[f.name] = [(to_commented_map( cls=ftype.type, path=path_with_fname, options=options, ))] else: output[f.name] = [x.to_dict() for x in ensure_tuple(default)] if not ftype.is_list: output[f.name] = output[f.name][0] else: inverted_hparams = {v: k for (k, v) in cls.hparams_registry[f.name].items()} choices = [x.__name__ for x in cls.hparams_registry[f.name].values()] if default is None: output[f.name] = None elif default == MISSING: output[f.name] = _process_abstract_hparams(cls, path_with_fname, ftype.is_list, options) else: if ftype.is_list: output[f.name] = [{inverted_hparams[type(x)]: x.to_dict()} for x in ensure_tuple(default)] else: output[f.name] = {inverted_hparams[type(default)]: default.to_dict()} if options.add_docs: _add_commenting(cm=output, comment_key=f.name, eol_comment=f"{str(ftype): >20}{optional_prefix}.{helptext_suffix}{default_suffix}", typing_column=options.typing_column, choices=choices) return output
import sqlite3 import os history_limit = 30 home = os.path.join(os.path.expanduser('~'), ".piepresto") os.makedirs(home, exist_ok=True) lite_db = os.path.join(home, "history.db") history_table = """ CREATE TABLE IF NOT EXISTS history( sql TEXT PRIMARY KEY, update_time datetime default current_timestamp ) """ get_history = """ SELECT sql FROM history ORDER BY update_time DESC LIMIT {} """.format(history_limit) upsert_history = """ INSERT INTO history(sql) VALUES (?) ON CONFLICT(sql) DO UPDATE SET update_time = current_timestamp """ class DBLite(): def __init__(self): self.connection = sqlite3.connect(lite_db) self.connection.execute(history_table) def history(self): cursor = self.connection.execute(get_history) return [row[0] for row in cursor] def upsert(self, stmt): self.connection.execute(upsert_history, (stmt,)) self.connection.commit() def close(self): if self.connection: self.connection.close() def __del__(self): self.close()
import abc from nesim.frame import Frame from typing import Dict, List from pathlib import Path from nesim.devices.send_receiver import SendReceiver from nesim.devices.cable import DuplexCableHead from nesim.devices.device import Device class MultiplePortDevice(Device, metaclass=abc.ABCMeta): """Representa un dispositivo que contiene múltiples puertos. Parameters ---------- name : str Nombre del dispositivo ports_count : int Cantidad de puertos signal_time : int ``Signal time`` de la simulación """ def __init__(self, name: str, ports_count: int, signal_time: int): self.signa_time = signal_time self._updating = False ports = {} for i in range(ports_count): ports[f'{name}_{i+1}'] = self.create_send_receiver(i) self.ports_buffer = [[] for _ in range(ports_count)] self.mac_table: Dict[int, str] = {} super().__init__(name, ports) @property def is_active(self): """bool : Estado del switch""" return any([sr.is_active for sr in self.ports.values()]) def save_log(self, path=''): output_folder = Path(path) output_folder.mkdir(parents=True, exist_ok=True) output_path = output_folder / Path(f'{self.name}.txt') with open(str(output_path), 'w+') as file: header = f'| {"Time (ms)": ^10} |' for port in self.ports.keys(): header += f' {port: ^11} |' header_len = len(header) header += f'\n| {"": ^10} |' for port in self.ports.keys(): header += f' {"Rece . Sent": ^11} |' file.write(f'{"-" * header_len}\n') file.write(f'{header}\n') file.write(f'{"-" * header_len}\n') file.write('\n'.join(self.logs)) file.write(f'\n{"-" * header_len}\n') def special_log(self, time: int, received: List[int], sent: List[int]): """ Representación especial para los logs de los switch. Parameters ---------- time : int Timepo de ejecución de la simulación. received : List[int] Lista de bits recibidos por cada puerto. sent : List[int] Lista de bits enviados por cada puerto. """ log_msg = f'| {time: ^10} |' for bit_re, bit_se in zip(received, sent): if bit_re == '-' and bit_se == '-': log_msg += f' {"---" : ^11} |' else: log_msg += f' {bit_re :>4} . {bit_se: <4} |' self.logs.append(log_msg) def broadcast(self, from_port, data): """Envia un frame por todos los puertos. Parameters ---------- from_port : str Puerto del cual se transmite la información. data : List[List[int]] Frame a ser enviado. """ for port, send_receiver in self.ports.items(): if port != from_port and send_receiver.cable_head is not None: send_receiver.send(data) def reset(self): pass def update(self, time: int)-> None: for send_receiver in self.ports.values(): send_receiver.update() super().update(time) def receive(self) -> None: """ Ordena a todos los puertos a recibir la información que les esté llegnado. (Leer del cable) """ for send_receiver in self.ports.values(): if send_receiver.cable_head is not None: send_receiver.receive() received = [self.get_port_value(p) for p in self.ports] sent = [self.get_port_value(p, False) for p in self.ports] self.special_log(self.sim_time, received, sent) @abc.abstractmethod def on_frame_received(self, frame: Frame, port: str) -> None: """Este método se ejecuta cada vez que se recibe un frame en uno de los puertos. Parameters ---------- frame : Frame Frame recibido. port : str Puerto por el cual llegó el frame. """ def handle_buffer_data(self, port: str) -> None: """Se encarga de procesar los datos en el buffer de un puerto. Parameters ---------- port : str Nombre del puerto """ data = self.ports_buffer[port] frame = Frame(data) if not frame.is_valid: return self.on_frame_received(frame, port + 1) self.ports_buffer[port] = [] def get_port_value(self, port_name: str, received: bool = True): """ Devuelve el valor del cable conectado a un puerto dado. En caso de no tener un cable conectado devuelve ``'-'``. Parameters ---------- port_name : str Nombre del puerto. """ send_receiver = self.ports[port_name] bit = None if send_receiver.cable_head is not None: if received: bit = send_receiver.cable_head.receive_value else: bit = send_receiver.cable_head.send_value return str(bit) if bit is not None else '-' def receive_on_port(self, port: str, bit: int): """Guarda el bit recibido en un puerto y procesa los datos del mismo. Parameters ---------- port : str Nombre del puerto. bit : int Bit recibido """ self.ports_buffer[port].append(bit) self.handle_buffer_data(port) def create_send_receiver(self, port: str): """Crea un ``SendReceiver``. Parameters ---------- port : str Puerto al que será asignado el ``SendReceiver``. Returns ------- SendReceiver ``SendReceiver`` creado. """ send_receiver = SendReceiver(self.signa_time, None) send_receiver.on_receive.append( lambda bit : self.receive_on_port(port, bit) ) return send_receiver def connect(self, cable_head: DuplexCableHead, port_name: str): send_receiver = self.ports[port_name] if send_receiver.cable_head is not None: raise ValueError(f'Port {port_name} is currently in use.') send_receiver.cable_head = cable_head def disconnect(self, port_name: str): self.ports_buffer[list(self.ports.keys()).index(port_name)] = [] self.ports[port_name].disconnect()
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import webapp2 from frontend.handlers import cracas_dashboard from frontend.handlers import crash_config from frontend.handlers import crash_handler from frontend.handlers import cracas_result_feedback from frontend.handlers import fracas_dashboard from frontend.handlers import fracas_result_feedback from frontend.handlers import triage_analysis from frontend.handlers import update_component_config frontend_web_pages_handler_mappings = [ ('/config', crash_config.CrashConfig), ('/update-component-config', update_component_config.UpdateComponentConfig), ('/cracas-dashboard', cracas_dashboard.CracasDashBoard), ('/cracas-result-feedback', cracas_result_feedback.CracasResultFeedback), ('/fracas-dashboard', fracas_dashboard.FracasDashBoard), ('/fracas-result-feedback', fracas_result_feedback.FracasResultFeedback), ('/triage-analysis', triage_analysis.TriageAnalysis), ('/_ah/push-handlers/crash/fracas', crash_handler.CrashHandler), ('/_ah/push-handlers/crash/cracas', crash_handler.CrashHandler), ('/_ah/push-handlers/crash/clusterfuzz', crash_handler.CrashHandler), ] frontend_app = webapp2.WSGIApplication( frontend_web_pages_handler_mappings, debug=False)
from dataclasses import dataclass, field from enum import Enum from typing import Optional from xsdata.models.datatype import XmlDuration __NAMESPACE__ = "NISTSchema-SV-IV-atomic-duration-enumeration-2-NS" class NistschemaSvIvAtomicDurationEnumeration2Type(Enum): P2030_Y06_M26_DT21_H55_M47_S = XmlDuration("P2030Y06M26DT21H55M47S") P1979_Y03_M06_DT16_H39_M48_S = XmlDuration("P1979Y03M06DT16H39M48S") P1987_Y06_M06_DT18_H56_M03_S = XmlDuration("P1987Y06M06DT18H56M03S") P1977_Y04_M02_DT05_H48_M43_S = XmlDuration("P1977Y04M02DT05H48M43S") P1995_Y02_M01_DT05_H15_M19_S = XmlDuration("P1995Y02M01DT05H15M19S") P2019_Y06_M07_DT15_H23_M38_S = XmlDuration("P2019Y06M07DT15H23M38S") P1976_Y12_M13_DT09_H35_M31_S = XmlDuration("P1976Y12M13DT09H35M31S") P1989_Y03_M16_DT04_H44_M26_S = XmlDuration("P1989Y03M16DT04H44M26S") P1993_Y12_M14_DT04_H03_M02_S = XmlDuration("P1993Y12M14DT04H03M02S") @dataclass class NistschemaSvIvAtomicDurationEnumeration2: class Meta: name = "NISTSchema-SV-IV-atomic-duration-enumeration-2" namespace = "NISTSchema-SV-IV-atomic-duration-enumeration-2-NS" value: Optional[NistschemaSvIvAtomicDurationEnumeration2Type] = field( default=None, metadata={ "required": True, } )
from rest_framework import serializers from bullet_point.models import BulletPoint, Endorsement, Flag, Vote from user.serializers import UserSerializer from utils.http import get_user_from_request class EndorsementSerializer(serializers.ModelSerializer): bullet_point = serializers.PrimaryKeyRelatedField( many=False, read_only=True ) created_by = UserSerializer( read_only=False, default=serializers.CurrentUserDefault() ) class Meta: fields = [ 'bullet_point', 'created_by', 'created_date', ] model = Endorsement class FlagSerializer(serializers.ModelSerializer): bullet_point = serializers.PrimaryKeyRelatedField( many=False, read_only=True ) created_by = UserSerializer( read_only=False, default=serializers.CurrentUserDefault() ) class Meta: fields = [ 'bullet_point', 'created_by', 'created_date', 'reason', ] model = Flag class BulletPointSerializer(serializers.ModelSerializer): tail_created_by = serializers.SerializerMethodField() tail_editors = serializers.SerializerMethodField() created_by = UserSerializer( read_only=False, default=serializers.CurrentUserDefault() ) editors = serializers.SerializerMethodField() score = serializers.SerializerMethodField() user_vote = serializers.SerializerMethodField() promoted = serializers.SerializerMethodField() paper_slug = serializers.SerializerMethodField() endorsements = EndorsementSerializer(read_only=True, many=True) flags = FlagSerializer(read_only=True, many=True) class Meta: model = BulletPoint exclude = [] read_only_fields = [ 'is_head', 'is_tail', 'previous', 'tail', ] def get_tail_created_by(self, obj): if obj.is_tail: tail = obj else: tail = obj.tail return UserSerializer(tail.created_by).data def get_tail_editors(self, obj): if obj.is_tail: tail = obj else: tail = obj.tail return self.get_editors(tail) def get_editors(self, obj): return UserSerializer(obj.editors, many=True).data def get_score(self, obj): return obj.calculate_score() def get_user_vote(self, obj): user = get_user_from_request(self.context) if user and not user.is_anonymous: vote = obj.votes.filter(created_by=user) if vote.exists(): return BulletPointVoteSerializer(vote.last()).data return False return False def get_promoted(self, obj): if self.context.get('exclude_promoted_score', False): return None return obj.get_promoted_score() def get_paper_slug(self, obj): if obj.paper: return obj.paper.slug class BulletPointTextOnlySerializer(serializers.ModelSerializer): paper = serializers.PrimaryKeyRelatedField(many=False, read_only=True) class Meta: model = BulletPoint fields = [ 'is_head', 'is_public', 'ordinal', 'paper', 'plain_text', 'text', ] read_only_fields = fields class BulletPointVoteSerializer(serializers.ModelSerializer): bullet_point = serializers.SerializerMethodField() class Meta: fields = [ 'id', 'created_by', 'created_date', 'vote_type', 'bullet_point', ] model = Vote def get_bullet_point(self, obj): if self.context.get('include_bullet_data', False): serializer = BulletPointSerializer(obj.bulletpoint) return serializer.data return None
# Loads configuration file from ConfigParser import ConfigParser cfg = ConfigParser() cfg.readfp(open('apps.cfg')) # General variables COINSCOPED_API_ADDR = cfg.get('general', 'coinscoped_api_addr') COINSCOPED_API_PORT = int(cfg.get('general', 'coinscoped_api_port')) # Nethealth MAINNET_PORT = 8333 TESTNET_PORT = 18333 HALF_TARGET = 0.5 TARGET = float(cfg.get('nethealth', 'target')) WIPE_TIME = int(cfg.get('nethealth', 'wipe_time')) WIPE_DELAY = int(cfg.get('nethealth', 'wipe_delay')) CARBON_SERVER = cfg.get('nethealth', 'carbon_server') CARBON_PICKLE_PORT = int(cfg.get('nethealth', 'carbon_pickle_port')) UPDATE_DELAY = int(cfg.get('nethealth', 'update_delay'))
# Generated by Django 2.1.5 on 2019-02-11 16:40 from django.db import migrations class Migration(migrations.Migration): dependencies = [("iert_news", "0004_auto_20190211_1631")] operations = [migrations.RenameModel(old_name="news", new_name="new")]
import os import warnings import pytest from ...utils import LightkurveDeprecationWarning, LightkurveError from ... import PACKAGEDIR, KeplerTargetPixelFile, TessTargetPixelFile from .. import read def test_read(): # define paths to k2 and tess data k2_path = os.path.join(PACKAGEDIR, "tests", "data", "test-tpf-star.fits") tess_path = os.path.join(PACKAGEDIR, "tests", "data", "tess25155310-s01-first-cadences.fits.gz") # Ensure files are read in as the correct object k2tpf = read(k2_path) assert(isinstance(k2tpf, KeplerTargetPixelFile)) tesstpf = read(tess_path) assert(isinstance(tesstpf, TessTargetPixelFile)) # Open should fail if the filetype is not recognized try: read(os.path.join(PACKAGEDIR, "data", "lightkurve.mplstyle")) except LightkurveError: pass # Can you instantiate with a path? assert(isinstance(KeplerTargetPixelFile(k2_path), KeplerTargetPixelFile)) assert(isinstance(TessTargetPixelFile(tess_path), TessTargetPixelFile)) # Can open take a quality_bitmask argument? assert(read(k2_path, quality_bitmask='hard').quality_bitmask == 'hard') def test_open(): """Does the deprecated `open` function still work?""" from .. import open with warnings.catch_warnings(): # lk.open is deprecated warnings.simplefilter("ignore", LightkurveDeprecationWarning) # define paths to k2 and tess data k2_path = os.path.join(PACKAGEDIR, "tests", "data", "test-tpf-star.fits") tess_path = os.path.join(PACKAGEDIR, "tests", "data", "tess25155310-s01-first-cadences.fits.gz") # Ensure files are read in as the correct object k2tpf = open(k2_path) assert(isinstance(k2tpf, KeplerTargetPixelFile)) tesstpf = open(tess_path) assert(isinstance(tesstpf, TessTargetPixelFile)) # Open should fail if the filetype is not recognized try: open(os.path.join(PACKAGEDIR, "data", "lightkurve.mplstyle")) except LightkurveError: pass # Can you instantiate with a path? assert(isinstance(KeplerTargetPixelFile(k2_path), KeplerTargetPixelFile)) assert(isinstance(TessTargetPixelFile(tess_path), TessTargetPixelFile)) # Can open take a quality_bitmask argument? assert(open(k2_path, quality_bitmask='hard').quality_bitmask == 'hard') def test_filenotfound(): """Regression test for #540; ensure lk.read() yields `FileNotFoundError`.""" with pytest.raises(FileNotFoundError): read("DOESNOTEXIST")
import re from eth_utils import ( is_string, is_list_like, ) from .events import ( construct_event_topic_set, construct_event_data_set, ) from web3.utils.validation import ( validate_address, ) def construct_event_filter_params(event_abi, contract_address=None, argument_filters=None, topics=None, fromBlock=None, toBlock=None, address=None): filter_params = {} if topics is None: topic_set = construct_event_topic_set(event_abi, argument_filters) else: topic_set = [topics] + construct_event_topic_set(event_abi, argument_filters) if len(topic_set) == 1 and is_list_like(topic_set[0]): filter_params['topics'] = topic_set[0] else: filter_params['topics'] = topic_set if address and contract_address: if is_list_like(address): filter_params['address'] = address + [contract_address] elif is_string(address): filter_params['address'] = [address, contract_address] else: raise ValueError( "Unsupported type for `address` parameter: {0}".format(type(address)) ) elif address: filter_params['address'] = address elif contract_address: filter_params['address'] = contract_address if 'address' not in filter_params: pass elif is_list_like(filter_params['address']): for addr in filter_params['address']: validate_address(addr) else: validate_address(filter_params['address']) if fromBlock is not None: filter_params['fromBlock'] = fromBlock if toBlock is not None: filter_params['toBlock'] = toBlock data_filters_set = construct_event_data_set(event_abi, argument_filters) return data_filters_set, filter_params class Filter: callbacks = None running = None stopped = False poll_interval = None filter_id = None def __init__(self, web3, filter_id): self.web3 = web3 self.filter_id = filter_id self.callbacks = [] super(Filter, self).__init__() def __str__(self): return "Filter for {0}".format(self.filter_id) def format_entry(self, entry): """ Hook for subclasses to change the format of the value that is passed into the callback functions. """ return entry def is_valid_entry(self, entry): """ Hook for subclasses to implement additional filtering layers. """ return True def _filter_valid_entries(self, entries): return filter(self.is_valid_entry, entries) def get_new_entries(self): self._ensure_not_running("get_new_entries") log_entries = self._filter_valid_entries(self.web3.eth.getFilterChanges(self.filter_id)) return self._format_log_entries(log_entries) def get_all_entries(self): self._ensure_not_running("get_all_entries") log_entries = self._filter_valid_entries(self.web3.eth.getFilterLogs(self.filter_id)) return self._format_log_entries(log_entries) class BlockFilter(Filter): pass class TransactionFilter(Filter): pass ZERO_32BYTES = '[a-f0-9]{64}' def construct_data_filter_regex(data_filter_set): return re.compile(( '^' + '|'.join(( '0x' + ''.join( (ZERO_32BYTES if v is None else v[2:] for v in data_filter) ) for data_filter in data_filter_set )) + '$' )) class LogFilter(Filter): data_filter_set = None data_filter_set_regex = None log_entry_formatter = None def __init__(self, *args, **kwargs): self.log_entry_formatter = kwargs.pop( 'log_entry_formatter', self.log_entry_formatter, ) if 'data_filter_set' in kwargs: self.set_data_filters(kwargs.pop('data_filter_set')) super(LogFilter, self).__init__(*args, **kwargs) def _ensure_not_running(self, method_name): if self.running: raise ValueError( "Cannot call `{0}` on a filter object which is actively watching" .format(method_name) ) def _format_log_entries(self, log_entries=None): if log_entries is None: log_entries = [] formatted_log_entries = [ self.format_entry(log_entry) for log_entry in log_entries ] return formatted_log_entries def format_entry(self, entry): if self.log_entry_formatter: return self.log_entry_formatter(entry) return entry def set_data_filters(self, data_filter_set): self.data_filter_set = data_filter_set if any(data_filter_set): self.data_filter_set_regex = construct_data_filter_regex( data_filter_set, ) def is_valid_entry(self, entry): if not self.data_filter_set_regex: return True return bool(self.data_filter_set_regex.match(entry['data'])) class ShhFilter(Filter): pass
from app import app def run(): print(""" +===================================+ ¦ Parkwood Vale Harriers Webapp ¦ +===================================+ ¦ Stop the application by either ¦ ¦ closing the console window, or ¦ ¦ pressing CTRL+C. ¦ +===================================+ ¦ Made by Christopher Stevens ¦ ¦ GITHUB/PUBLIC VERSION ¦ +===================================+ """) app.run(debug=True, use_reloader=False) if __name__ == "__main__": run()
default_app_config = "pinaxcon.registrasion.apps.RegistrasionConfig"
from control import * emergency()
#!/usr/bin/env python # # (c) Copyright Rosetta Commons Member Institutions. # (c) This file is part of the Rosetta software suite and is made available under license. # (c) The Rosetta software is developed by the contributing members of the Rosetta Commons. # (c) For more information, see http://www.rosettacommons.org. Questions about this can be # (c) addressed to University of Washington CoMotion, email: [email protected]. ## @file /GUIs/pyrosetta_toolkit/modules/DesignBreakdown.py ## @brief Class for analyzing design results from a fasta of sequences ## @author Jared Adolf-Bryfogle ([email protected]) #Rosetta Imports from rosetta import * #Python Imports import re import os import sqlite3 import sys from optparse import OptionParser, IndentedHelpFormatter #Tkinter Imports from tkinter import * import tkinter.filedialog import tkinter.simpledialog #Toolkit Imports from jade2.pyrosetta_toolkit.modules.prettytable.prettytable import * from jade2.pyrosetta_toolkit.modules.definitions.restype_definitions import definitions class DesignBreakdown: """ This class functions in organizing results for a Rosetta design run. Perhaps you can do this using features. Probably. Anyhow, this will work for the GUI. It can output a text file, a database, and run an R script to graph the results. It also has some GUI functions, but can be run as an independant script. FASTA should have > format: pdbID region pdbpath OR pdbID pdbpath for whole structure comparisons. (region designated as start:end:chain) LIMITATIONS: 1) Currently, it does not deal with extensions or deletions in the designed poses. 2) Currently, No DNA, polymers, or other non-cannonicals. 3) Currently, Does not print or output decoys with mutations of x, y, z at positions a, b, c However, it does output a raw_data table in the SQLITE3 database, which will allow advanced querys to get this answer. """ def __init__(self, fasta_path, reference_path, output_directory=False, region=False): self.output_directory = output_directory self.sequences = []; # List of SequenceInfo objects self.reference_path = reference_path self.reference_sequence = None self.reference_pose = Pose() self.main_region = region self.regions = dict() self.load_sequences(fasta_path) self.results = SequenceResults() self.aa_codes = definitions().get_all_one_letter_codes() #Calculate - If return number is 0, exit. if not self.calculate_results(): return #Data Output if not self.output_directory: self.output_directory = os.path.dirname(fasta_path)+'/'+os.path.basename(fasta_path)+"_RESULTS" if not os.path.exists(self.output_directory): os.mkdir(self.output_directory) print("Outputting results to: "+self.output_directory) def run_outputs(self): self.output_basic_table() self.output_prettytable() self.output_database() self.output_plots() def load_sequences(self, fasta_path): """ Opens Fasta file and appends a list of SequenceInfo objects. """ FILE = open(fasta_path, 'r') for line in FILE: if re.search(">", line): info = line.strip() info = info[1:] infoSP = info.split() Seq = SequenceInfo() if len(infoSP)<2:continue elif len(infoSP)==2: Seq.set_pdbID(infoSP[0]) Seq.set_pdbpath(infoSP[1]) elif len(infoSP)==3: Seq.set_pdbID(infoSP[0]) Seq.set_region(infoSP[1]) self.regions[infoSP[1]]="" Seq.set_pdbpath(infoSP[2]) self.sequences.append(Seq) continue line = line.strip() if not line:continue print(line) self.sequences[-1].set_sequence(line) FILE.close() print("Sequences Loaded") def calculate_results(self): print("Calculating Results") pose_from_file(self.reference_pose, self.reference_path) print(self.reference_pose) self.reference_sequence = self.reference_pose.sequence() print(self.reference_sequence) for i in range(0, self.reference_pose.total_residue()): self.results.add_reference_residue(i+1, self.reference_sequence[i]) if not self.sequences:return 0 #Check to make sure reference pose matches length of all sequences #Check that all sequences are the same length if not self.regions: if not self.are_sequences_same_length: print("Sequences are not same length, and no region was specified in fasta. Cannot continue") return 0 if (self.reference_pose.total_residue() != self.sequences[0].get_length()): print("Sequence length of Fasta does not match sequence length of reference pose.") region = self.main_region if not region: region = tkinter.simpledialog.askstring(title="Region", prompt ="Please enter a region: start end chain for PDB numbering or start end for Rosetta numbering") if not region:return 0 regionSP = region.split() #Make sure it's entered correctly. If not, try one more time before returning. if 1<=len(regionSP)>3: print("Please re-enter region.") region = tkinter.simpledialog.askstring(title="Region", prompt ="Please enter a region: start end chain for PDB numbering or start end for Rosetta numbering") if not region:return regionSP = region.split() if 1<=len(regionSP)>3:print("Region not recognized. Returning."); return if len(regionSP)==3: self.regions[":".join(regionSP)]="" for Seq in self.sequences: Seq.set_region(":".join(regionSP)) elif len(regionSP)==2: if self.reference_pose.pdb_info().pose2pdb(int(regionSP[0])).split()[1]== self.reference_pose.pdb_info().pose2pdb(int(regionSP[1])).split()[1]: print("One chain specified.") chain = self.reference_pose.pdb_info().pose2pdb(int(regionSP[0])).split()[1] pdb_start = self.reference_pose.pdb_info().pose2pdb(int(regionSP[0])).split()[0] pdb_end = self.reference_pose.pdb_info().pose2pdb(int(regionSP[0])).split()[0] self.regions[":".join(regionSP)]="" for Seq in self.sequences: Seq.set_region(":".join(regionSP)) else: print("Multiple chains in region found. Splitting sequences to match regions.") self.split_region_and_fix_sequences(int(regionSP[0]), int(regionSP[1])) #Calculate Results if not self.regions: l = len(self.sequences[0].get_sequence()) for Seq in self.sequences: for i in range(1, l+2): residue = Seq.get_residue(i) self.results.add_residue(i, residue, Seq.get_pdbpath()) else: if not self.are_sequences_for_regions_same_length(): return 0 for region in self.regions: print(region) regionSP = region.split(":") for Seq in self.sequences: #print Seq.get_sequence() if Seq.get_region()==region: #This is so that if there are missing numbers in the PDB between start:end in the region: start = self.reference_pose.pdb_info().pdb2pose(Seq.get_chain(), Seq.get_start_residue()) for i in range(0, Seq.get_length()): print(i) self.results.add_residue(start+i, Seq.get_residue(Seq.get_start_residue()+i), Seq.get_pdbpath()) return 1 def output_basic_table(self): """ Outputs a basic table of all data for importing into Excel, R, or other script. Tab delimited. """ resnums = self.results.get_all_residue_numbers() reference_line = "#\t" resnum_line = "\t" conserved_line = "#\t" OUTFILE = open(self.output_directory+"/RAW_DESIGN_TABLE.txt", 'w') OUTFILE.write("# TOTAL_SEQUENCES "+repr(len(self.sequences))+"\n") for num in resnums: pdb_num = self.reference_pose.pdb_info().pose2pdb(num) SP = pdb_num.split() pdb_num = SP[0]+SP[1]; #Now it it resnumchain like 10A 11B etc. resnum_line = resnum_line+pdb_num+"\t" if self.reference_sequence: reference_line = reference_line+self.results.get_reference_residue(num)+"\t" conserved_line = conserved_line+self.results.get_percent_string(num, self.results.get_reference_residue(num))+"\t" if self.reference_sequence: OUTFILE.write(reference_line+"\n") OUTFILE.write(conserved_line+"\n") OUTFILE.write(resnum_line+"\n") for aa in self.aa_codes: line = aa+"\t" for num in resnums: line=line+self.results.get_percent_string(num, aa)+"\t" OUTFILE.write(line+"\n") print("Raw file written to RAW_DESIGN_TABLE.txt") OUTFILE.close() def output_prettytable(self): OUTFILE = open(self.output_directory+"/PRETTY_DESIGN_TABLE.txt", 'w') OUTFILE.write("# TOTAL_SEQUENCES "+repr(len(self.sequences))+"\n") resnums = self.results.get_all_residue_numbers() main_row = ["residue"] conserved_row = ["conserved"] reference_row = ["reference"] if not self.regions: for num in resnums: main_row.append(self.get_correct_pdb_number_string(num)) if self.reference_sequence: reference_row.append(self.results.get_reference_residue(num)) conserved_row.append(self.results.get_percent_string(num, self.results.get_reference_residue(num))) table = PrettyTable(main_row) if self.reference_sequence: table.add_row(reference_row) table.add_row(conserved_row) for aa in self.aa_codes: row = [aa] for num in resnums: row.append(self.results.get_percent_string(num, aa)) table.add_row(row) out_string = table.get_string() OUTFILE.write(out_string) else: for region in self.regions: OUTFILE.write('# REGION '+region+"\n") for num in resnums: if not self.check_if_rosetta_resnum_is_part_of_region(num, region): continue main_row.append(self.get_correct_pdb_number_string(num)) if self.reference_sequence: reference_row.append(self.results.get_reference_residue(num)) conserved_row.append(self.results.get_percent_string(num, self.results.get_reference_residue(num))) table = PrettyTable(main_row) if self.reference_sequence: table.add_row(reference_row) table.add_row(conserved_row) for aa in self.aa_codes: row = [aa] for num in resnums: if not self.check_if_rosetta_resnum_is_part_of_region(num, region): continue row.append(self.results.get_percent_string(num, aa)) table.add_row(row) out_string = table.get_string() OUTFILE.write(out_string) print("PrettyTable file written to PRETTY_DESIGN_TABLE.txt") OUTFILE.close() def output_database(self): self.db_path = self.output_directory+"/SQL_DESIGN_TABLE.db" db = sqlite3.connect(self.db_path) cur = db.cursor() resnums = self.results.get_all_residue_numbers() with db: #Hard to look at, easy to execute queries on data: #Like this: select * from design_data where prob>=.3 and type='design'. Awesomeness. cur.execute("CREATE TABLE IF NOT EXISTS design_data(id integer PRIMARY KEY, region TEXT, type TEXT, pdb_position TEXT, rosetta_position INT, aa TEXT, prob REAL, freq INT, total_sequences INT, ref_name TEXT, decoys TEXT)") if not self.regions: i=0 for num in resnums: main_row.append(self.get_correct_pdb_number_string(num)) i+=1 if self.reference_sequence: cur.execute("INSERT INTO design_data VALUES(NULL, ?,?,?,?,?,?,?,?,?,?)", \ ("full", "reference", self.get_correct_pdb_number_string(num), num, self.results.get_reference_residue(num), 1.00, 1, self.get_total_sequences(), self.reference_pose.pdb_info().name(), self.reference_pose.pdb_info().name())) for aa in self.aa_codes: i+=1 cur.execute("INSERT INTO design_data VALUES(NULL, ?,?,?,?,?,?,?,?,?,?)", \ ("full", "design", self.get_correct_pdb_number_string(num), num, aa, self.results.get_percent(num, aa),self.results.get_freq(num, aa), \ self.get_total_sequences(), self.reference_pose.pdb_info().name(), ":".join(self.results.get_decoys_with_aa(num, aa)))) else: i = 0 for region in self.regions: for num in resnums: i+=1 if not self.check_if_rosetta_resnum_is_part_of_region(num, region): continue cur.execute("INSERT INTO design_data VALUES(NULL, ?,?,?,?,?,?,?,?,?,?)", \ (region, "reference", self.get_correct_pdb_number_string(num), num, self.results.get_reference_residue(num), 1.00, 1, self.get_total_sequences(region), self.reference_pose.pdb_info().name(), self.reference_pose.pdb_info().name())) for aa in self.aa_codes: i+=1 cur.execute("INSERT INTO design_data VALUES(NULL, ?,?,?,?,?,?,?,?,?,?)", \ (region, "design", self.get_correct_pdb_number_string(num), num, aa, self.results.get_percent(num, aa),self.results.get_freq(num, aa), \ self.get_total_sequences(), self.reference_pose.pdb_info().name(),":".join(self.results.get_decoys_with_aa(num, aa)))) #Raw data table #So you can query for combinations and get decoys with specific mutations at positions and above a probablity. cur.execute("create table if not exists raw_data(id integer PRIMARY KEY, pdb_position TEXT, rosetta_position INT, aa TEXT, decoy TEXT)") if not self.regions: l = len(self.sequences[0].get_sequence()) x=0 for Seq in self.sequences: for i in range(1, l+2): x+=1 residue = Seq.get_residue(i) cur.execute("INSERT INTO raw_data VALUES(NULL, ?,?,?,?)", \ (self.get_correct_pdb_number_string(i), i, residue, Seq.get_pdbpath())) else: x=0 for region in self.regions: regionSP = region.split(":") for Seq in self.sequences: if Seq.get_region()==region: #This is so that if there are missing numbers in the PDB between start:end in the region: start = self.reference_pose.pdb_info().pdb2pose(Seq.get_chain(), Seq.get_start_residue()) for i in range(0, Seq.get_length()): x+=1 num = start+i cur.execute("INSERT INTO raw_data VALUES(NULL, ?,?,?,?)", \ (self.get_correct_pdb_number_string(num), num, Seq.get_residue(Seq.get_start_residue()+i), Seq.get_pdbpath())) print("Database written to SQL_DESIGN_TABLE.db") def output_plots(self): script = self.location()+"/R_Scripts/DesignBreakdown.R" os.system("Rscript "+script+' '+self.db_path+' '+self.output_directory) print("Plots written to PLOTS.pdb for each region.") ### Helper Functions ### def location(self): """ Allows the script to be self-aware of it's path. So that it can be imported/ran from anywhere. """ p = os.path.abspath(__file__) pathSP = os.path.split(p) return pathSP[0] def are_sequences_same_length(self): """ Determine if all items of the sequence list are the same number of residues """ return all(x.get_length() == self.sequences[0].get_length() for x in self.sequences) def are_sequences_for_regions_same_length(self): """ Assertion that sequences are the same length given their region. """ #Setup dictionary for checking region_Seq_map = dict() for region in self.regions: if region not in region_Seq_map: region_Seq_map[region]=[] for Seq in self.sequences: region_Seq_map[Seq.get_region()].append(Seq) #Check length for each region in dictionary. same_length=True for region in self.regions: #for x in region_Seq_map[region]: #print x.get_sequence() if not all(x.get_length() == region_Seq_map[region][0].get_length() for x in region_Seq_map[region]): print("Sequences for region "+region+" are not the same length.") same_length=False return same_length def check_if_rosetta_resnum_is_part_of_region(self, resnum, region): region_start = region.split(":")[0] region_end = region.split(":")[1] region_chain = region.split(":")[2] pdb_num = self.reference_pose.pdb_info().pose2pdb(resnum) SP = pdb_num.split() pdb_num = SP[0]; pdb_chain = SP[1] if (region_start <=pdb_num<=region_end) and pdb_chain==region_chain: return True else: return False def get_correct_pdb_number_string(self, resnum): """ Gets PDB numbering from pose numbering and switches order of chain and num. chain_num->num_chain """ pdb_num = self.reference_pose.pdb_info().pose2pdb(resnum) SP = pdb_num.split() pdb_num_string = SP[0]+SP[1]; #Now it it resnumchain like 10A 11B etc. return pdb_num_string def split_region_and_fix_sequences(self, start, end): """ Splits a Rosetta numbered region into PDB regions for each chain. Adds regions to self.regions, splits Seq in self.sequences. """ pass def get_total_sequences(self, region=False): if not region: return len(self.sequences) else: l = 0 for Seq in self.sequences: if Seq.get_region==region: l+=1 return l class SequenceResults: """ Simple class for holding, calculating, + accessing result data Residue Numbers are in Rosetta numbering. """ def __init__(self): self.data = dict() self.reference = dict() def add_residue(self, resnum, one_letter_code, decoy): if resnum not in self.data: self.data[resnum]=dict() self.data[resnum][one_letter_code]=dict() self.data[resnum][one_letter_code]['freq']=1 self.data[resnum][one_letter_code]['decoys']=[] self.data[resnum][one_letter_code]['decoys'].append(decoy);#This is to keep track of which decoys have which mutation. else: if one_letter_code not in self.data[resnum]: self.data[resnum][one_letter_code]=dict() self.data[resnum][one_letter_code]['freq']=0 self.data[resnum][one_letter_code]['decoys']=[] self.data[resnum][one_letter_code]['freq']+=1 self.data[resnum][one_letter_code]['decoys'].append(decoy) def add_reference_residue(self, resnum, one_letter_code): self.reference[resnum]=one_letter_code def get_freq(self, resnum, one_letter_code): try: x = self.data[resnum][one_letter_code]['freq'] return x except KeyError: return 0 def get_total(self, resnum): total = 0 for code in self.data[resnum]: freq = self.get_freq(resnum, code) total = total +freq return total def get_percent(self, resnum, one_letter_code): total = self.get_total(resnum) freq = self.get_freq(resnum, one_letter_code) percent = float(freq)/float(total) return percent def get_percent_string(self, resnum, one_letter_code): return "%.2f"%self.get_percent(resnum, one_letter_code) def get_reference_residue(self, resnum): return self.reference[resnum] def get_all_residues_observed(self, resnum): return sorted(self.data[resnum].keys()) def get_all_residue_numbers(self): return sorted(self.data.keys()) def get_decoys_with_aa(self, resnum, one_letter_code): """ Returns all decoys with a specific mutation at a position. """ try: return self.data[resnum][one_letter_code]['decoys'] except KeyError: return [] def get_decoys_with_joint_aa(self, resnum_one_letter_code_pair): """ Will output decoys that have x, y, z mutations at positions a, b, c """ pass ### reference Comparison Functions ### def get_all_mutated_positions(self): mutated_positions = [] for resnum in self.data: if resnum not in self.reference: print("Position in data does not match position in reference") if self.get_percent(resnum, self.reference[resnum])==1.0: pass else: mutated_positions.append(resnum) if mutated_positions:return mutated_positions else:print("No mutations found") def get_all_reference_percent_observed(self): """ Returns array of tripplets of [postion, one_letter_code, percent] of reference amino acid found. """ tripplet_array = [] for resnum in self.reference: if resnum not in self.data: print("Position in reference does not match any position in data") percent = self.get_percent(resnum, self.reference[resnum]) tripplet = [resnum, self.reference[resnum], percent] tripplet_array.append(tripplet) return tripplet_array class SequenceInfo: """ Simple class for holding + accessing sequence metadata """ def __init__(self): self.start = "" def get_sequence(self): return self.sequence def get_length(self): return len(self.sequence) def get_pdbID(self): return self.pdbID def get_pdbpath(self): return self.pdbpath def get_region(self): return self.region def get_start_residue(self): return self.start def get_end_residue(self): return self.end def get_chain(self): return self.chain def get_residue(self, resnum): """ If region is given, resnum is residue number of PDB If not, resnum in Rosetta resnum """ if self.start: index_num = resnum-self.start print(index_num) one_letter_code = self.sequence[index_num] return one_letter_code else: #Rosetta Resnum one_letter_code = self.sequence[int(resnum)-1] return one_letter_code def set_sequence(self, sequence): print(sequence) self.sequence = sequence def set_pdbID(self, pdbID): self.pdbID = pdbID def set_pdbpath(self, pdbpath): self.pdbpath = pdbpath def set_region(self, region): self.region = region rSP = region.split(":") self.start = int(rSP[0]) self.end = int(rSP[1]) self.chain = rSP[2] if __name__ == '__main__': """ For testing and use outside of GUI. """ Tk() rosetta.init() parser = OptionParser() args = sys.argv parser.add_option("--fasta", "-f", help = "Path to FASTA file for design comparisons" ) parser.add_option("--outpath","-o", default="/RESULTS", help = "Full output directory path. Default is fasta file path /Results" ) parser.add_option("--reference", "-r", default=None, help = "Reference pose for numbering and comparison (Required)" ) parser.add_option("--region", "-g", default=None, help = "Region - if none is given in Fasta + Not whole structure used for comparison (region designated as start:end:chain)" ) (options, args) = parser.parse_args(args=args[1:]) if not options.fasta or not os.path.exists(options.fasta): sys.exit("Please specify a FASTA file to use for calculations.") if options.outpath == "/RESULTS": options.outpath = os.path.dirname(options.fasta)+"/RESULTS" if not options.reference: sys.exit("Reference pdb required.") breakdown = DesignBreakdown(options.fasta, options.reference, options.outpath, options.region) breakdown.run_outputs()
import streamlit as st from streamlit_player import st_player import cv2 import numpy as np import tempfile import time from PIL import Image ############################################################ ############################################################ import os import collections # comment out below line to enable tensorflow logging outputs os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import time import tensorflow as tf import core.yolov4 import core.utils as utils from core.yolov4 import filter_boxes from tensorflow.python.saved_model import tag_constants from core.config import cfg from PIL import Image import cv2 import numpy as np import matplotlib.pyplot as plt from tensorflow._api.v2.compat.v1 import ConfigProto from tensorflow._api.v2.compat.v1 import InteractiveSession from deep_sort import preprocessing, nn_matching from deep_sort.detection import Detection from deep_sort.tracker import Tracker from tools import generate_detections as gdet max_cosine_distance = 0.4 nn_budget = None nms_max_overlap = 1.0 # initialize deep sort model_filename = 'model_data/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1) # calculate cosine distance metric metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) # initialize tracker tracker = Tracker(metric) # load configuration for object detector config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) STRIDES = np.array(cfg.YOLO.STRIDES) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, True) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE FRAMEWORK = 'tf' input_size = 416 video_path = './data/video/fall_sample2.mp4' saved_model_loaded = tf.saved_model.load('./checkpoints/yolov4-416', tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] ############################################################ ############################################################ DEMO_VIDEO = 'demo_video.mp4' st.title('Fall Detection Application Using YOLO') st.markdown( """ <style> [data-testid="stSidebar"][aria-expanded="true"] > div:first-child { width: 300px; } [data-testid="stSidebar"][aria-expanded="false"] > div:first-child { width: 300px; margin-left: -300px; } </style> """, unsafe_allow_html=True, ) st.sidebar.title('Menu') # st.sidebar.subheader('Parameters') @st.cache() def image_resize(image, width=None, height=None, inter=cv2.INTER_AREA): # initialize the dimensions of the image to be resized and # grab the image size dim = None (h, w) = image.shape[:2] # if both the width and height are None, then return the # original image if width is None and height is None: return image # check to see if the width is None if width is None: # calculate the ratio of the height and construct the # dimensions r = height / float(h) dim = (int(w * r), height) # otherwise, the height is None else: # calculate the ratio of the width and construct the # dimensions r = width / float(w) dim = (width, int(h * r)) # resize the image resized = cv2.resize(image, dim, interpolation=inter) # return the resized image return resized app_mode = st.sidebar.selectbox('Please Select', ['About', 'Sample Videos', 'Help', 'Run on Video'] ) if app_mode =='About': st.markdown(''' This is an application for fall detection of individuals based on the **YOLO V.4** object detection algorithm. The method used in this algorithm is suitable for detecting falls from a standing position or while walking. \n This method is based on the proposed method in **Lu, K. L., & Chu, E. T. H. (2018). An image-based fall detection system for the elderly. Applied Sciences, 8(10), 1995.** ''') st.markdown( """ <style> [data-testid="stSidebar"][aria-expanded="true"] > div:first-child { width: 300px; } [data-testid="stSidebar"][aria-expanded="false"] > div:first-child { width: 300px; margin-left: -300px; } </style> """, unsafe_allow_html=True, ) st.image('TEAM_LOGO.jpg') elif app_mode == 'Sample Videos': st.video('demo1.mp4', format='video/mp4', start_time=0) st.video('demo2.mp4', format='video/mp4', start_time=0) st.video('demo3.mp4', format='video/mp4', start_time=0) st.video('demo4.mp4', format='video/mp4', start_time=0) elif app_mode == 'Help': st.markdown(''' - The Ratio Factor is a factor which multiplied by the height of the bounding box of the person at 1.5 seconds before each moment. If the height of the bounding box at each moment is less than the multiplication value, the algorithm will detect a falling-down occurrence. The suggested value is 5.5, but values between 5 and 7 are good choices. The higher values will lead to more conservative results. \n ''') st.markdown( """ <style> [data-testid="stSidebar"][aria-expanded="true"] > div:first-child { width: 300px; } [data-testid="stSidebar"][aria-expanded="false"] > div:first-child { width: 300px; margin-left: -300px; } </style> """, unsafe_allow_html=True, ) #################################################################### #################################################################### elif app_mode == 'Run on Video': st.set_option('deprecation.showfileUploaderEncoding', False) st.sidebar.markdown('---') ratio = st.sidebar.slider('Ratio', min_value=1.0, max_value=8.0, value=5.5, step=0.5) st.sidebar.markdown('---') st.markdown(' ## Output') st.markdown( """ <style> [data-testid="stSidebar"][aria-expanded="true"] > div:first-child { width: 300px; } [data-testid="stSidebar"][aria-expanded="false"] > div:first-child { width: 300px; margin-left: -300px; } </style> """, unsafe_allow_html=True, ) stframe = st.empty() video_file_buffer = st.sidebar.file_uploader("Upload a video", type=['mp4']) tffile = tempfile.NamedTemporaryFile(delete=False) if not video_file_buffer: vid = cv2.VideoCapture(DEMO_VIDEO) tffile.name = DEMO_VIDEO else: tffile.write(video_file_buffer.read()) vid = cv2.VideoCapture(tffile.name) width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps_input = int(vid.get(cv2.CAP_PROP_FPS)) # codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) codec = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output_res.avi', codec, fps_input, (width, height)) st.sidebar.text('Input Video') st.sidebar.video(tffile.name) fps = 0 i = 0 kpi1, kpi2, kpi3 = st.beta_columns(3) with kpi1: kpi1 = st.markdown("**Frame Rate**") kpi1_text = st.markdown("0") with kpi2: st.markdown("**Tracked Individuals**") kpi2_text = st.markdown("0") with kpi3: st.markdown("**Fall Detection Status**") kpi3_text = st.markdown('') kpi3_text.write(f"<h1 style='text-align: center; color: green;'>{'No Fall'}</h1>", unsafe_allow_html=True) st.markdown("<hr/>", unsafe_allow_html=True) ################################################### ################################################### frame_num = 0 # while video is running # DEFINING A DICTIONARY FOR TRACKING id_Locs = collections.defaultdict(list) # FOR METHOD THREE id_ylocs = collections.defaultdict(list) # FOR METHOD ONE yLocs = [] falls = 0 track_dict = dict() frame_list = [] while vid.isOpened(): i += 1 ret, frame = vid.read() if not ret: continue if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: print('Video has ended or failed, try a different video format!') break frame_num += 1 frame_size = frame.shape[:2] image_data = cv2.resize(frame, (input_size, input_size)) image_data = image_data / 255. image_data = image_data[np.newaxis, ...].astype(np.float32) start_time = time.time() batch_data = tf.constant(image_data) pred_bbox = infer(batch_data) for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=0.3, score_threshold=0.2 ) # convert data to numpy arrays and slice out unused elements num_objects = valid_detections.numpy()[0] bboxes = boxes.numpy()[0] bboxes = bboxes[0:int(num_objects)] scores = scores.numpy()[0] scores = scores[0:int(num_objects)] classes = classes.numpy()[0] classes = classes[0:int(num_objects)] # format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, width, height original_h, original_w, _ = frame.shape bboxes = utils.format_boxes(bboxes, original_h, original_w) # store all predictions in one parameter for simplicity when calling functions pred_bbox = [bboxes, scores, classes, num_objects] # read in all class names from config class_names = utils.read_class_names(cfg.YOLO.CLASSES) # by default allow all classes in .names file # allowed_classes = list(class_names.values()) # custom allowed classes (uncomment line below to customize tracker for only people) allowed_classes = ['person'] # loop through objects and use class index to get class name, allow only classes in allowed_classes list names = [] deleted_indx = [] for i in range(num_objects): class_indx = int(classes[i]) class_name = class_names[class_indx] if class_name not in allowed_classes: deleted_indx.append(i) else: names.append(class_name) names = np.array(names) count = len(names) # cv2.putText(frame, "Objects being tracked: {}".format(count), (5, 35), cv2.FONT_HERSHEY_COMPLEX_SMALL, 2, # (0, 255, 0), 2) # print("Objects being tracked: {}".format(count)) # delete detections that are not in allowed_classes bboxes = np.delete(bboxes, deleted_indx, axis=0) scores = np.delete(scores, deleted_indx, axis=0) # encode yolo detections and feed to tracker features = encoder(frame, bboxes) detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(bboxes, scores, names, features)] # initialize color map cmap = plt.get_cmap('tab20b') colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)] # run non-maxima supression boxs = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) classes = np.array([d.class_name for d in detections]) indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores) detections = [detections[i] for i in indices] # Call the tracker tracker.predict() tracker.update(detections) # update tracks for track in tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue bbox = track.to_tlbr() class_name = track.get_class() # draw bbox on screen color = colors[int(track.track_id) % len(colors)] color = [i * 255 for i in color] cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2) cv2.rectangle(frame, (int(bbox[0]), int(bbox[1] - 30)), (int(bbox[0]) + (len(class_name) + len(str(track.track_id))) * 17, int(bbox[1])), color, -1) # cv2.circle(frame, (int((bbox[0] + bbox[2]) / 2), int((bbox[1] + bbox[3]) / 2)), 5, color, -1) # cv2.circle(frame, (int((bbox[0] + bbox[2]) / 2), int((bbox[1] + bbox[3]) / 2)), 15, (0, 255, 0), -1) cv2.putText(frame, class_name + "-" + str(track.track_id), (int(bbox[0]), int(bbox[1] - 10)), 0, 0.75, (255, 255, 255), 2) ################################################# ## PAPER METHOD FOR FALL DETECTION ############# ################################################# frameRate = 25 id_Locs[track.track_id].append([int(bbox[3] - bbox[1]), int(bbox[2] - bbox[0])]) for key, value in id_Locs.items(): if len(value) > int(np.floor(frameRate * 1.5)): # 1.5econds after detection a person: # if value[-1][0] < (7/8) * value[-1 * int(np.floor(frameRate * 1.5))][0]: # if value[-1][0] < (5.5 / 8) * value[-1 * int(np.floor(frameRate * 1.5))][0]: if value[-1][0] < (ratio / 8) * value[-1 * int(np.floor(frameRate * 1.5))][0]: print("Fall Detected") cv2.putText(frame, "Person " + str(key) + " Fell Down", (70, 250), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 255), 3) falls += 1 ######################################################## # if enable, then print details about each track # print("Tracker ID: {}, Class: {}, BBox Coords (xmin, ymin, xmax, ymax): {}".format(str(track.track_id), # class_name, ( # int(bbox[0]), # int(bbox[1]), # int(bbox[2]), # int(bbox[3])))) each_id_list = [frame_num, str(track.track_id), int((bbox[0] + bbox[2]) / 2), int((bbox[1] + bbox[3]) / 2)] frame_list.append(each_id_list) # calculate frames per second of running detections fps = 1.0 / (time.time() - start_time) kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{round(fps, 1)}</h1>", unsafe_allow_html=True) kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True) if falls > 0: cv2.putText(frame, "Fall Detected", (50, 100), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 5) kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{'Fall Detected'}</h1>", unsafe_allow_html=True) frame = cv2.resize(frame, (0, 0), fx=0.8, fy=0.8) frame = image_resize(image=frame, width=640) stframe.image(frame, channels='RGB', use_column_width=True) out.write(frame) vid.release() out.release()
from prisma.models import Profile # TODO: more tests async def order() -> None: # case: valid await Profile.prisma().group_by( ['country'], order={ 'country': 'desc', }, ) await Profile.prisma().group_by( ['country', 'city'], order={ 'country': 'desc', }, ) # case: limitation # this should error but it is not possible to both resolve the Mapping key type # from the TypeVar and limit the number of fields allowed to 1. I would rather # error if a non-grouped field is ordered by instead of if more than 1 field is ordered by # as I expect the first case to be a more common error await Profile.prisma().group_by( ['country', 'city'], order={ 'country': 'desc', 'city': 'asc', }, ) # case: can only order by grouped fields await Profile.prisma().group_by( ['city'], order={ # E: Argument of type "dict[str, str]" cannot be assigned to parameter "order" of type "Mapping[ProfileScalarFieldKeysT@group_by, SortOrder] | List[Mapping[ProfileScalarFieldKeysT@group_by, SortOrder]] | None" in function "group_by" 'country': 'desc', }, ) # case: invalid sort order await Profile.prisma().group_by( ['country'], order={ # E: Argument of type "dict[str, str]" cannot be assigned to parameter "order" of type "Mapping[ProfileScalarFieldKeysT@group_by, SortOrder] | List[Mapping[ProfileScalarFieldKeysT@group_by, SortOrder]] | None" in function "group_by" 'country': 'foo', }, )
urls = { "ETL-1": None, "ETL-2": None, "ETL-3": None, "ETL-4": None, "ETL-5": None, "ETL-6": None, "ETL-7": None, "ETL-8B": None, "ETL-8G": None, "ETL-9B": None, "ETL-9G": None }
import random import math import copy import itertools import torch import numpy as np from utils import jsonl_to_json, remove_duplicate, flatten_list, remove_nonascii def make_bert_batch(tokenizer, data, **kwargs): data = jsonl_to_json(data) sentences = data['target'] sentences = [tokenizer.encode(t) for t in sentences] max_limit = kwargs.get('max_sentence_tokens', None) if max_limit is not None: sentences = list([t[:max_limit] for t in sentences]) sentences = [torch.Tensor([tokenizer.cls_id, *t, tokenizer.sep_id]) for t in sentences] sentences, lengths = pad(sentences, tokenizer.pad_id) targets = sentences.clone() return {'sentences': sentences, 'lengths': lengths, 'targets': targets} def make_keyword_batch(tokenizer, data, concat=False, keywords=None, lemmatize=None, **kwargs): data = jsonl_to_json(data) sentences = data['target'] sentences = [tokenizer.encode(t) for t in sentences] max_limit = kwargs.get('max_sentence_tokens', None) if max_limit is not None: sentences = list([t[:max_limit] for t in sentences]) ordered_keywords = [[tokenizer.convert_ids_to_tokens(token) for token in sentence] for sentence in sentences] ordered_keywords = [[lemmatize(token) for token in sentence] for sentence in ordered_keywords] ordered_keywords = [[tokenizer.convert_tokens_to_ids(token) for token in sentence] for sentence in ordered_keywords] ordered_keywords = [[(i, token) for i, token in enumerate(sentence) if token in keywords] for sentence in ordered_keywords] ordered_keywords = [remove_duplicate(sentence, key=lambda x: x[1]) for sentence in ordered_keywords] keyword_ids = [torch.Tensor([i for i, token in sentence]) for sentence in ordered_keywords] ordered_keywords = [[token for i, token in sentence] for sentence in ordered_keywords] unordered_keywords = [[(token, keywords[token]) for token in sentence] for sentence in ordered_keywords] unordered_keywords = [sorted(sentence, key=lambda x: x[1], reverse=False) for sentence in unordered_keywords] unordered_keywords = [map(lambda x: x[0], sentence) for sentence in unordered_keywords] unordered_keywords = [torch.Tensor([tokenizer.cls_id, *keyword, tokenizer.sep_id, ]) for keyword in unordered_keywords] ordered_keywords = [torch.Tensor([tokenizer.cls_id, *keyword, tokenizer.sep_id, ]) for keyword in ordered_keywords] targets = [torch.Tensor([*t, tokenizer.sep_id]) for t in sentences] sentences = [torch.Tensor([tokenizer.cls_id, *t]) for t in sentences] # tensor B*L sentences, lengths = pad(sentences, tokenizer.pad_id) targets, _ = pad(targets, tokenizer.pad_id) ordered_keywords, _ = pad(ordered_keywords, tokenizer.pad_id) unordered_keywords, _ = pad(unordered_keywords, tokenizer.pad_id) keyword_ids, _ = pad(keyword_ids, tokenizer.pad_id) return {'sentences': sentences, 'lengths': lengths, 'targets': targets, 'keywords': unordered_keywords, 'ordered_keywords': ordered_keywords, 'keyword_ids': keyword_ids} def make_mask_model_batch(tokenizer, data, random_idx=True, complementary=False, **kwargs): data = jsonl_to_json(data) sentences = data['target'] if type(sentences) == 'list': sentences = [x for r in sentences for x in r] sentences = [tokenizer.encode(t) for t in sentences] max_limit = kwargs.get('max_sentence_tokens', None) if max_limit is not None: sentences = list([t[:max_limit] for t in sentences]) sentences = [torch.Tensor([tokenizer.cls_id, *t, tokenizer.sep_id]) for t in sentences] targets, _ = pad(sentences, tokenizer.pad_id) # mask words sentences, mask_ids = mask_words(sentences, tokenizer.mask_id, random_idx, complementary) if random_idx: # tensor B*L sentences, lengths = pad(sentences, tokenizer.pad_id) else: # len B list of tensor L*L li = [] lengths = [] for sentence in sentences: sentence, length = pad(sentence, tokenizer.pad_id) li.append(sentence) lengths.append(length) sentences = li return {'sentences': sentences, 'lengths': lengths, 'targets': targets, 'mask_ids': mask_ids} def mask_words(tensors, mask_idx, random_idx=True, complementary=False): # B(CLS+L+SEP) if random_idx: # mask random idx li = [] ids = [] for t in tensors: device = t.device idx = random.randint(1, t.shape[0] - 1) ids.append(idx) if complementary: val = t[idx].item() t.fill_(mask_idx) t[idx] = val else: t[idx] = mask_idx li.append(t) return li, torch.Tensor(ids).long().to(device) else: # generate mask for every word li = [] for t in tensors: t = t.unsqueeze(0).repeat(t.shape[0], 1) eye = torch.eye(t.shape[0]).bool().to(t.device) if complementary: eye = ~eye full = torch.full(t.shape, mask_idx, dtype=t.dtype).to(t.device) t.masked_scatter_(mask=eye, source=full) li.append(t) # list of L*L return li, None def make_autoencoder_batch(tokenizer, data, **kwargs): data = jsonl_to_json(data) sentences = data['target'] sentences = [tokenizer.encode(t) for t in sentences] targets = [torch.Tensor([*t, tokenizer.eos_id]) for t in sentences] sentences = [torch.Tensor([tokenizer.sos_id, *t]) for t in sentences] sentences, lengths = pad(sentences, tokenizer.pad_id) targets, _ = pad(targets, tokenizer.pad_id) return {'sentences': sentences, 'lengths': lengths, 'targets': targets} def make_subset_mask_batch(tokenizer, data, random_idx=True, keyword_min=1, keyword_max_ratio=0.4, **kwargs): data = jsonl_to_json(data) sentences = data['target'] sentences = [tokenizer.encode(t) for t in sentences] sentences = [torch.Tensor([tokenizer.cls_id, *t, tokenizer.sep_id]) for t in sentences] targets = copy.deepcopy(sentences) targets, lengths = pad(targets, tokenizer.pad_id) if random_idx: keyword_ids = [] for i, sentence in enumerate(sentences): length = len(sentence) - 2 max_length = math.ceil(max(keyword_min, keyword_max_ratio * length)) keyword_num = random.randrange(keyword_min, max_length + 1) ids = list(range(1, length + 1)) random.shuffle(ids) mask_idx = ids[keyword_num:] mask_idx = torch.LongTensor(mask_idx).to(sentence.device) keyword_idx = ids[:keyword_num] keyword_idx = torch.LongTensor(keyword_idx).to(sentence.device) sentence[mask_idx] = tokenizer.mask_id sentences[i] = sentence keyword_ids.append(keyword_idx) sentences, lengths = pad(sentences, tokenizer.pad_id) keyword_ids, _ = pad(keyword_ids, tokenizer.pad_id) return {'sentences': sentences, 'lengths': lengths, 'targets': targets, 'keyword_ids': keyword_ids} else: # for memory reasons, we should not keep source for every combinations ''' keyword_ids = [] for i, sentence in enumerate(sentences): length = len(sentence) - 2 max_length = math.ceil(max(keyword_min, keyword_max_ratio * length)) ids = list(range(1, length + 1)) combs = [] for L in range(1, max_length + 1): comb_L = [] for subset in itertools.combinations(ids, L): comb_L.append(subset) comb_L = torch.LongTensor(comb_L).to(sentence.device) combs.append(comb_L) keyword_ids.append(combs) return {'sentences': targets, 'targets': targets, 'keyword_ids': keyword_ids} ''' # generate masks dynamically return {'sentences': targets, 'lengths': lengths, 'targets': targets} class BPECap(object): def __init__(self): super(BPECap, self).__init__() self.small_prefix = b'\xc4\xa1'.decode() self.big_prefix = b'\xc4\xa0'.decode() def __call__(self, x): return x.replace(self.small_prefix, self.big_prefix) class ConvertToken(object): def __init__(self): super(ConvertToken, self).__init__() self.bpe_capitalize = BPECap() def __call__(self, tokenizer, token): return tokenizer.convert_tokens_to_ids([self.bpe_capitalize(token)])[0] def make_feature_lm_batch_with_keywords(tokenizer, data, keywords=None, word_counter=None, feature_name_map={}, concat_group=False, use_vist=False, force_ascii=False, **kwargs): # data: list of chunks: list of [item dict] data = jsonl_to_json(data) group_length = [len(i) for i in data['vid']] group_mask = torch.zeros(len(data['vid']), max(group_length)).bool() for i, length in enumerate(group_length): group_mask[i, :length] = 1 # keyword_counter = keywords if keywords is not None: # restore gpt token prefix # [:len(keywords)] part is arbitrary, and causes some bugs apparently... # keywords = torch.Tensor(list(itertools.chain(*[tokenizer.encode(token) for token in keywords]))[:len(keywords)]).long() convert_token = ConvertToken() keywords = torch.Tensor([convert_token(tokenizer, token) for token in list(keywords.keys())]).long() if 'target' in data: batch_sentences = data['target'] def get_text(sentences): ''' if use_vist: sentences = [tokenizer.decode(tokenizer.encode(t)) for t in sentences] ''' if force_ascii: sentences = [remove_nonascii(t) for t in sentences] sentences = [tokenizer.encode(t, add_special_tokens=False) for t in sentences] max_limit = kwargs.get('max_sentence_tokens', None) if max_limit is not None: sentences = list([t[:max_limit] for t in sentences]) # undo ptb tokenization # tensor B*L if concat_group: sentences = [[*t, tokenizer.seq_sep_id] for t in sentences] lengths = torch.LongTensor([len(s) for s in sentences]) sentences = flatten_list(sentences) # [:-1] # do not remove last seq_sep token targets = torch.Tensor([[*sentences, tokenizer.sep_id]]) sentences = torch.Tensor([[tokenizer.cls_id, *sentences]]) else: targets = [torch.Tensor([*t, tokenizer.sep_id]) for t in sentences] targets, _ = pad(targets, tokenizer.pad_id) sentences = [torch.Tensor([tokenizer.cls_id, *t]) for t in sentences] sentences, lengths = pad(sentences, tokenizer.pad_id) ''' word_subset = torch.zeros(sentences.shape[0], len(tokenizer)).bool().to(sentences.device) word_subset = word_subset.scatter(dim=-1, index=sentences, value=1) word_subset = [i.squeeze() for i in word_subset.split(1, dim=0)] keyword_mask = None if keywords is not None: keyword_mask = sentences.unsqueeze(-1).expand(-1, -1, keywords.shape[0]) == keywords.view(1, 1, -1) keyword_mask = keyword_mask.long().sum(dim=1) > 0 # VN keyword_mask = [i.squeeze() for i in keyword_mask.split(1, dim=0)] ''' return sentences, lengths, targets sentences, lengths, targets = zip(*[get_text(sentence) for sentence in batch_sentences]) sentences, batch_lengths = pad(sentences, tokenizer.pad_id) targets, _ = pad(targets, tokenizer.pad_id) lengths, _ = pad(lengths, 0) ''' word_subsets = pad_tensor(word_subsets, 0) word_subsets[:, :, tokenizer.pad_id] = 0 ''' ret_batch = { 'sentences': sentences, 'batch_lengths': batch_lengths, 'lengths': lengths, 'targets': targets, } else: ret_batch = {} ret_batch = { **ret_batch, 'vid': data['vid'], 'group_mask': group_mask, } if 'album_id' in data: ret_batch = { **ret_batch, 'album_id': data['album_id'], } if 'image_id' in data: ret_batch = { **ret_batch, 'image_id': data['image_id'], } if 'frame' in data: ret_batch = { **ret_batch, 'frame': pad_tensor(data['frame'], 0).long(), } # Process features if applicable for k, v in feature_name_map.items(): if k in data: try: ret_batch[v] = pad_tensor(data[k], 0) except Exception as e: print(k) print(data['vid']) print(e) from pdb_multi import set_trace; set_trace() return ret_batch def make_blank_filling_batch(tokenizer, data, feature_name_map={}, **kwargs): data = jsonl_to_json(data) sentences = data['input'] targets = data['target'] sentences = [tokenizer.encode(t) for t in sentences] sentences = [torch.Tensor(t) for t in sentences] sentences, lengths = pad(sentences, tokenizer.pad_id) targets = [tokenizer.encode(t) for t in targets] targets = [torch.Tensor(t) for t in targets] targets, _ = pad(targets, tokenizer.pad_id) blank_ids = sentences == tokenizer.convert_tokens_to_ids(tokenizer.blank) ret_batch = { 'sentences': sentences, 'lengths': lengths, 'targets': targets, 'blank_ids': blank_ids, 'blank_num': data['blank_num'], 'vid': data['vid'] } for k,v in feature_name_map.items(): if k in data: ret_batch[v] = pad_tensor(data[k], 0) return ret_batch def pad(x, pad_id=0): B = len(x) max_size, dtype = get_max_size(x) storage = torch.full(max_size, pad_id, dtype=torch.long).to(x[0].device) lengths = [] def add_data(ids, t): if hasattr(t, 'shape'): if not torch.is_tensor(t): t = torch.from_numpy(t) t_shape = [slice(None, j) for j in t.shape] storage[tuple([*ids, *t_shape])] = t else: for i in range(len(t)): add_data([*ids, i], t[i]) add_data([], x) lengths = torch.LongTensor(lengths).to(x[0].device) return storage, lengths def remove_pad(x, pad_id=0): return x[:(x != pad_id).sum(-1)] def remove_past_idx(x, idx=0): idx = (x == idx).nonzero() if idx.nelement() > 0: idx = idx[0] else: idx = x.shape[0] return x[: idx + 1] def decode_tensor(tokenizer, x, split_tokens=False, use_vist=False, remove_past_sep=False): if x.dim() < 1: x = x.unsqueeze(0) x = remove_pad(x, tokenizer.pad_id) if remove_past_sep: x = remove_past_idx(x, tokenizer.sep_id) x = list(x.cpu().numpy()) x_cut = [] temp = [] for tok in x: if tok == tokenizer.seq_sep_id: x_cut.append(temp) temp = [] else: temp.append(tok) x_cut.append(temp) x_cut = [[int(i) for i in x] for x in x_cut] if split_tokens: return flatten_list([tokenizer.convert_ids_to_tokens(x) for x in x_cut]) elif use_vist: return ' '.join([decode_vist(x, tokenizer) for x in x_cut]) else: return ' '.join(tokenizer.decode(x) for x in x_cut) def decode_vist(x, tokenizer): # decode vist for gpt2 tokenizer tokenizer.whitespace = getattr(tokenizer, 'whitespace', b'\xc4\xa0'.decode()) x = tokenizer.convert_ids_to_tokens(x) x = [f" {v[1:]}" if v.startswith(tokenizer.whitespace) else v for v in x] return ''.join(x) def get_max_size(t): if hasattr(t, 'shape'): if not torch.is_tensor(t): t = torch.from_numpy(t) return list(t.shape), t.dtype else: # get max t = [get_max_size(i) for i in t] dtype = t[0][1] t = [i[0] for i in t] return [len(t), *list(np.array(t).max(axis=0))], dtype def pad_tensor(x, val=0): max_size, _ = get_max_size(x) dtype = torch.float storage = torch.full(max_size, val, dtype=dtype) def add_data(ids, t): if hasattr(t, 'shape'): if not torch.is_tensor(t): t = torch.from_numpy(t) t_shape = [slice(None, j) for j in t.shape] t_shape = [*ids, *t_shape] storage[t_shape] = t else: for i in range(len(t)): add_data([*ids, i], t[i]) add_data([], x) return storage def make_fib_batch(tokenizer, data, feature_name_map={}, **kwargs): data = jsonl_to_json(data) group_length = [len(i) for i in data['vid']] group_mask = torch.zeros(len(data['vid']), max(group_length)).bool() for i, length in enumerate(group_length): group_mask[i, :length] = 1 def get_text(src, tgt): src = tokenizer.encode(src) tgt = tokenizer.encode(tgt) mask_idx = src.index(tokenizer.mask_id) length_diff = len(tgt) - len(src) src_extended = src[:mask_idx + 1] + [tokenizer.mask_id] * length_diff + src[mask_idx + 1:] return src_extended, tgt def process_texts(srcs, tgts): srcs, tgts = zip(*[get_text(src, tgt) for src, tgt in zip(srcs, tgts)]) srcs = [torch.Tensor(t) for t in srcs] tgts = [torch.Tensor(t) for t in tgts] srcs, _ = pad(srcs, tokenizer.pad_id) tgts, lengths = pad(tgts, tokenizer.pad_id) return srcs, tgts, lengths srcs, tgts, lengths = zip(*[process_texts(src, tgt) for src, tgt in \ zip(data['source'], data['target'])]) sentences, batch_lengths = pad(srcs, tokenizer.pad_id) targets, _ = pad(tgts, tokenizer.pad_id) lengths, _ = pad(lengths, 0) ret_batch = { 'sentences': sentences, 'batch_lengths': batch_lengths, 'lengths': lengths, 'targets': targets } ret_batch = { **ret_batch, 'vid': data['vid'], 'answer': data['answer'], 'group_mask': group_mask, } if 'album_id' in data: ret_batch = { **ret_batch, 'album_id': data['album_id'], } if 'image_id' in data: ret_batch = { **ret_batch, 'image_id': data['image_id'], } if 'frame' in data: ret_batch = { **ret_batch, 'frame': pad_tensor(data['frame'], 0).long(), } # Process features if applicable for k, v in feature_name_map.items(): if k in data: try: ret_batch[v] = pad_tensor(data[k], 0) except Exception as e: print(k) print(data['vid']) print(e) from pdb_multi import set_trace; set_trace() return ret_batch def make_multichoice_batch(tokenizer, data, feature_name_map={}, **kwargs): data = jsonl_to_json(data) group_length = [len(i) for i in data['vid']] group_mask = torch.zeros(len(data['vid']), max(group_length)).bool() for i, length in enumerate(group_length): group_mask[i, :length] = 1 def get_text(tgt): tgt = tokenizer.encode(tgt) return tgt def process_texts(tgts): tgts = [get_text(tgt) for tgt in tgts] tgts = [torch.Tensor(t) for t in tgts] tgts, lengths = pad(tgts, tokenizer.pad_id) return tgts, lengths tgts, lengths = zip(*[process_texts(tgt) for tgt in data['target']]) targets, batch_lengths = pad(tgts, tokenizer.pad_id) lengths, _ = pad(lengths, 0) sentences = targets answer = data['answer'] try: answer = [int(batch_a[0]) for batch_a in answer] # all choices has same true answer idx except: print(answer) answer = torch.Tensor(answer) targets = answer ret_batch = { 'sentences': sentences, 'batch_lengths': batch_lengths, 'lengths': lengths, 'targets': targets } ret_batch = { **ret_batch, 'vid': data['vid'], 'answer': data['answer'], 'group_mask': group_mask, } if 'album_id' in data: ret_batch = { **ret_batch, 'album_id': data['album_id'], } if 'image_id' in data: ret_batch = { **ret_batch, 'image_id': data['image_id'], } if 'frame' in data: ret_batch = { **ret_batch, 'frame': pad_tensor(data['frame'], 0).long(), } # Process features if applicable for k, v in feature_name_map.items(): if k in data: try: ret_batch[v] = pad_tensor(data[k], 0) except Exception as e: print(k) print(data['vid']) print(e) from pdb_multi import set_trace; set_trace() return ret_batch
# -*- coding: utf-8 -*- # @Time : 2018/11/27 18:42 # @Author : yag8009 # @File : for_notchongfu.py # @Software: PyCharm """ 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1程序分析: 可填在百位、十位、个位的数字都是1、2、3、4。 组成所有的排列后再去掉不满足条件的排列 """ class notchong: def __init__(self, data): self.data = data def notchong1(self, lis=[]): for i in self.data: for x in self.data: for y in self.data: if i is not x and x is not y and i is not y: lis.append((i, x, y)) return lis if __name__ == '__main__': print(notchong([1, 2, 3, 4]).notchong1())
""" Taken from the networkx source code and modified to process IOCall classes. See original at https://github.com/networkx/networkx/blob/main/networkx/readwrite/gexf.py """ """Read and write graphs in GEXF format. .. warning:: This parser uses the standard xml library present in Python, which is insecure - see :doc:`library/xml` for additional information. Only parse GEFX files you trust. GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data and dynamics. This implementation does not support mixed graphs (directed and undirected edges together). Format ------ GEXF is an XML format. See https://gephi.org/gexf/format/schema.html for the specification and https://gephi.org/gexf/format/basic.html for examples. """ import itertools import time from typing import Dict import networkx as nx from xml.etree.ElementTree import ( Element, ElementTree, SubElement, tostring, register_namespace, ) from themis.modules.common.calls import CallsNode, IOConstructType def write_gexf(G, path, encoding="utf-8", prettyprint=True, version="1.2draft"): """Write G in GEXF format to path. "GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" [1]_. Node attributes are checked according to the version of the GEXF schemas used for parameters which are not user defined, e.g. visualization 'viz' [2]_. See example for usage. Parameters ---------- G : graph A NetworkX graph path : file or string File or file name to write. File names ending in .gz or .bz2 will be compressed. encoding : string (optional, default: 'utf-8') Encoding for text data. prettyprint : bool (optional, default: True) If True use line breaks and indenting in output XML. version: string (optional, default: '1.2draft') The version of GEXF to be used for nodes attributes checking Examples -------- >>> G = nx.path_graph(4) >>> nx.write_gexf(G, "test.gexf") # visualization data >>> G.nodes[0]["viz"] = {"size": 54} >>> G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1} >>> G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256} Notes ----- This implementation does not support mixed graphs (directed and undirected edges together). The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node 'a' to 1. References ---------- .. [1] GEXF File Format, https://gephi.org/gexf/format/ .. [2] GEXF schema, https://gephi.org/gexf/format/schema.html """ writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version) writer.add_graph(G) writer.write(path) def generate_gexf(G, encoding="utf-8", prettyprint=True, version="1.2draft"): """Generate lines of GEXF format representation of G. "GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" [1]_. Parameters ---------- G : graph A NetworkX graph encoding : string (optional, default: 'utf-8') Encoding for text data. prettyprint : bool (optional, default: True) If True use line breaks and indenting in output XML. version : string (default: 1.2draft) Version of GEFX File Format (see https://gephi.org/gexf/format/schema.html) Supported values: "1.1draft", "1.2draft" Examples -------- >>> G = nx.path_graph(4) >>> linefeed = chr(10) # linefeed=\n >>> s = linefeed.join(nx.generate_gexf(G)) >>> for line in nx.generate_gexf(G): # doctest: +SKIP ... print(line) Notes ----- This implementation does not support mixed graphs (directed and undirected edges together). The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node 'a' to 1. References ---------- .. [1] GEXF File Format, https://gephi.org/gexf/format/ """ writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version) writer.add_graph(G) yield from str(writer).splitlines() class GEXF: versions = {} d = { "NS_GEXF": "http://www.gexf.net/1.1draft", "NS_VIZ": "http://www.gexf.net/1.1draft/viz", "NS_XSI": "http://www.w3.org/2001/XMLSchema-instance", "SCHEMALOCATION": " ".join( ["http://www.gexf.net/1.1draft", "http://www.gexf.net/1.1draft/gexf.xsd"] ), "VERSION": "1.1", } versions["1.1draft"] = d d = { "NS_GEXF": "http://www.gexf.net/1.2draft", "NS_VIZ": "http://www.gexf.net/1.2draft/viz", "NS_XSI": "http://www.w3.org/2001/XMLSchema-instance", "SCHEMALOCATION": " ".join( ["http://www.gexf.net/1.2draft", "http://www.gexf.net/1.2draft/gexf.xsd"] ), "VERSION": "1.2", } versions["1.2draft"] = d def construct_types(self): types = [ (int, "integer"), (float, "float"), (float, "double"), (bool, "boolean"), (list, "string"), (dict, "string"), (int, "long"), (str, "liststring"), (str, "anyURI"), (str, "string"), ] # These additions to types allow writing numpy types try: import numpy as np except ImportError: pass else: # prepend so that python types are created upon read (last entry wins) types = [ (np.float64, "float"), (np.float32, "float"), (np.float16, "float"), (np.float_, "float"), (np.int_, "int"), (np.int8, "int"), (np.int16, "int"), (np.int32, "int"), (np.int64, "int"), (np.uint8, "int"), (np.uint16, "int"), (np.uint32, "int"), (np.uint64, "int"), (np.int_, "int"), (np.intc, "int"), (np.intp, "int"), ] + types self.xml_type = dict(types) self.python_type = dict(reversed(a) for a in types) # http://www.w3.org/TR/xmlschema-2/#boolean convert_bool = { "true": True, "false": False, "True": True, "False": False, "0": False, 0: False, "1": True, 1: True, } def set_version(self, version): d = self.versions.get(version) if d is None: raise nx.NetworkXError(f"Unknown GEXF version {version}.") self.NS_GEXF = d["NS_GEXF"] self.NS_VIZ = d["NS_VIZ"] self.NS_XSI = d["NS_XSI"] self.SCHEMALOCATION = d["SCHEMALOCATION"] self.VERSION = d["VERSION"] self.version = version class GEXFWriter(GEXF): # class for writing GEXF format files # use write_gexf() function def __init__( self, graph=None, encoding="utf-8", prettyprint=True, version="1.2draft" ): self.construct_types() self.prettyprint = prettyprint self.encoding = encoding self.set_version(version) self.xml = Element( "gexf", { "xmlns": self.NS_GEXF, "xmlns:xsi": self.NS_XSI, "xsi:schemaLocation": self.SCHEMALOCATION, "version": self.VERSION, }, ) # Make meta element a non-graph element # Also add lastmodifieddate as attribute, not tag meta_element = Element("meta") subelement_text = f"NetworkX {nx.__version__}" SubElement(meta_element, "creator").text = subelement_text meta_element.set("lastmodifieddate", time.strftime("%Y-%m-%d")) self.xml.append(meta_element) register_namespace("viz", self.NS_VIZ) # counters for edge and attribute identifiers self.edge_id = itertools.count() self.attr_id = itertools.count() self.all_edge_ids = set() # default attributes are stored in dictionaries self.attr = {} self.attr["node"] = {} self.attr["edge"] = {} self.attr["node"]["dynamic"] = {} self.attr["node"]["static"] = {} self.attr["edge"]["dynamic"] = {} self.attr["edge"]["static"] = {} if graph is not None: self.add_graph(graph) def __str__(self): if self.prettyprint: self.indent(self.xml) s = tostring(self.xml).decode(self.encoding) return s def add_graph(self, G): # first pass through G collecting edge ids for u, v, dd in G.edges(data=True): eid = dd.get("id") if eid is not None: self.all_edge_ids.add(str(eid)) # set graph attributes if G.graph.get("mode") == "dynamic": mode = "dynamic" else: mode = "static" # Add a graph element to the XML if G.is_directed(): default = "directed" else: default = "undirected" name = G.graph.get("name", "") graph_element = Element("graph", defaultedgetype=default, mode=mode, name=name) self.graph_element = graph_element self.add_nodes(G, graph_element) self.add_edges(G, graph_element) self.xml.append(graph_element) def extract_node_data(self, data: Dict): call: CallsNode = data.pop("call", None) if call is None: return data retval = data func = call.func.funcname in_fd_present = call.input_fd is not None out_fds_len = 0 if call.output_fd is None else len(call.output_fd) type_hints = [] if call.input_fd is not None: type_hints.append(call.input_fd.typ) if call.output_fd is not None: for fd in call.output_fd: type_hints.append(fd.typ) io_type = sorted(type_hints, reverse=True)[0] if len(type_hints) > 0 else IOConstructType.UNKNOWN retval["func"] = func retval["in_fd_present"] = in_fd_present retval["out_fds_num"] = out_fds_len retval["io_type"] = str(io_type) return retval def add_nodes(self, G, graph_element): nodes_element = Element("nodes") for node, data in G.nodes(data=True): node_data = self.extract_node_data(data.copy()) node_id = str(node_data.pop("id", node)) kw = {"id": node_id} label = str(node_data.pop("label", node)) kw["label"] = label try: pid = node_data.pop("pid") kw["pid"] = str(pid) except KeyError: pass try: start = node_data.pop("start") kw["start"] = str(start) self.alter_graph_mode_timeformat(start) except KeyError: pass try: end = node_data.pop("end") kw["end"] = str(end) self.alter_graph_mode_timeformat(end) except KeyError: pass # add node element with attributes node_element = Element("node", **kw) # add node element and attr subelements default = G.graph.get("node_default", {}) node_data = self.add_parents(node_element, node_data) if self.VERSION == "1.1": node_data = self.add_slices(node_element, node_data) else: node_data = self.add_spells(node_element, node_data) node_data = self.add_viz(node_element, node_data) node_data = self.add_attributes("node", node_element, node_data, default) nodes_element.append(node_element) graph_element.append(nodes_element) def add_edges(self, G, graph_element): def edge_key_data(G): # helper function to unify multigraph and graph edge iterator if G.is_multigraph(): for u, v, key, data in G.edges(data=True, keys=True): edge_data = data.copy() edge_data.update(key=key) edge_id = edge_data.pop("id", None) if edge_id is None: edge_id = next(self.edge_id) while str(edge_id) in self.all_edge_ids: edge_id = next(self.edge_id) self.all_edge_ids.add(str(edge_id)) yield u, v, edge_id, edge_data else: for u, v, data in G.edges(data=True): edge_data = data.copy() edge_id = edge_data.pop("id", None) if edge_id is None: edge_id = next(self.edge_id) while str(edge_id) in self.all_edge_ids: edge_id = next(self.edge_id) self.all_edge_ids.add(str(edge_id)) yield u, v, edge_id, edge_data edges_element = Element("edges") for u, v, key, edge_data in edge_key_data(G): kw = {"id": str(key)} try: edge_label = edge_data.pop("label") kw["label"] = str(edge_label) except KeyError: pass try: edge_weight = edge_data.pop("weight") kw["weight"] = str(edge_weight) except KeyError: pass try: edge_type = edge_data.pop("type") kw["type"] = str(edge_type) except KeyError: pass try: start = edge_data.pop("start") kw["start"] = str(start) self.alter_graph_mode_timeformat(start) except KeyError: pass try: end = edge_data.pop("end") kw["end"] = str(end) self.alter_graph_mode_timeformat(end) except KeyError: pass source_id = str(G.nodes[u].get("id", u)) target_id = str(G.nodes[v].get("id", v)) edge_element = Element("edge", source=source_id, target=target_id, **kw) default = G.graph.get("edge_default", {}) if self.VERSION == "1.1": edge_data = self.add_slices(edge_element, edge_data) else: edge_data = self.add_spells(edge_element, edge_data) edge_data = self.add_viz(edge_element, edge_data) edge_data = self.add_attributes("edge", edge_element, edge_data, default) edges_element.append(edge_element) graph_element.append(edges_element) def add_attributes(self, node_or_edge, xml_obj, data, default): # Add attrvalues to node or edge attvalues = Element("attvalues") if len(data) == 0: return data mode = "static" for k, v in data.items(): # rename generic multigraph key to avoid any name conflict if k == "key": k = "networkx_key" val_type = type(v) if val_type not in self.xml_type: raise TypeError(f"attribute value type is not allowed: {val_type}") if isinstance(v, list): # dynamic data for val, start, end in v: val_type = type(val) if start is not None or end is not None: mode = "dynamic" self.alter_graph_mode_timeformat(start) self.alter_graph_mode_timeformat(end) break attr_id = self.get_attr_id( str(k), self.xml_type[val_type], node_or_edge, default, mode ) for val, start, end in v: e = Element("attvalue") e.attrib["for"] = attr_id e.attrib["value"] = str(val) # Handle nan, inf, -inf differently if val_type == float: if e.attrib["value"] == "inf": e.attrib["value"] = "INF" elif e.attrib["value"] == "nan": e.attrib["value"] = "NaN" elif e.attrib["value"] == "-inf": e.attrib["value"] = "-INF" if start is not None: e.attrib["start"] = str(start) if end is not None: e.attrib["end"] = str(end) attvalues.append(e) else: # static data mode = "static" attr_id = self.get_attr_id( str(k), self.xml_type[val_type], node_or_edge, default, mode ) e = Element("attvalue") e.attrib["for"] = attr_id if isinstance(v, bool): e.attrib["value"] = str(v).lower() else: e.attrib["value"] = str(v) # Handle float nan, inf, -inf differently if val_type == float: if e.attrib["value"] == "inf": e.attrib["value"] = "INF" elif e.attrib["value"] == "nan": e.attrib["value"] = "NaN" elif e.attrib["value"] == "-inf": e.attrib["value"] = "-INF" attvalues.append(e) xml_obj.append(attvalues) return data def get_attr_id(self, title, attr_type, edge_or_node, default, mode): # find the id of the attribute or generate a new id try: return self.attr[edge_or_node][mode][title] except KeyError: # generate new id new_id = str(next(self.attr_id)) self.attr[edge_or_node][mode][title] = new_id attr_kwargs = {"id": new_id, "title": title, "type": attr_type} attribute = Element("attribute", **attr_kwargs) # add subelement for data default value if present default_title = default.get(title) if default_title is not None: default_element = Element("default") default_element.text = str(default_title) attribute.append(default_element) # new insert it into the XML attributes_element = None for a in self.graph_element.findall("attributes"): # find existing attributes element by class and mode a_class = a.get("class") a_mode = a.get("mode", "static") if a_class == edge_or_node and a_mode == mode: attributes_element = a if attributes_element is None: # create new attributes element attr_kwargs = {"mode": mode, "class": edge_or_node} attributes_element = Element("attributes", **attr_kwargs) self.graph_element.insert(0, attributes_element) attributes_element.append(attribute) return new_id def add_viz(self, element, node_data): viz = node_data.pop("viz", False) if viz: color = viz.get("color") if color is not None: if self.VERSION == "1.1": e = Element( f"{{{self.NS_VIZ}}}color", r=str(color.get("r")), g=str(color.get("g")), b=str(color.get("b")), ) else: e = Element( f"{{{self.NS_VIZ}}}color", r=str(color.get("r")), g=str(color.get("g")), b=str(color.get("b")), a=str(color.get("a")), ) element.append(e) size = viz.get("size") if size is not None: e = Element(f"{{{self.NS_VIZ}}}size", value=str(size)) element.append(e) thickness = viz.get("thickness") if thickness is not None: e = Element(f"{{{self.NS_VIZ}}}thickness", value=str(thickness)) element.append(e) shape = viz.get("shape") if shape is not None: if shape.startswith("http"): e = Element( f"{{{self.NS_VIZ}}}shape", value="image", uri=str(shape) ) else: e = Element(f"{{{self.NS_VIZ}}}shape", value=str(shape)) element.append(e) position = viz.get("position") if position is not None: e = Element( f"{{{self.NS_VIZ}}}position", x=str(position.get("x")), y=str(position.get("y")), z=str(position.get("z")), ) element.append(e) return node_data def add_parents(self, node_element, node_data): parents = node_data.pop("parents", False) if parents: parents_element = Element("parents") for p in parents: e = Element("parent") e.attrib["for"] = str(p) parents_element.append(e) node_element.append(parents_element) return node_data def add_slices(self, node_or_edge_element, node_or_edge_data): slices = node_or_edge_data.pop("slices", False) if slices: slices_element = Element("slices") for start, end in slices: e = Element("slice", start=str(start), end=str(end)) slices_element.append(e) node_or_edge_element.append(slices_element) return node_or_edge_data def add_spells(self, node_or_edge_element, node_or_edge_data): spells = node_or_edge_data.pop("spells", False) if spells: spells_element = Element("spells") for start, end in spells: e = Element("spell") if start is not None: e.attrib["start"] = str(start) self.alter_graph_mode_timeformat(start) if end is not None: e.attrib["end"] = str(end) self.alter_graph_mode_timeformat(end) spells_element.append(e) node_or_edge_element.append(spells_element) return node_or_edge_data def alter_graph_mode_timeformat(self, start_or_end): # If 'start' or 'end' appears, alter Graph mode to dynamic and # set timeformat if self.graph_element.get("mode") == "static": if start_or_end is not None: if isinstance(start_or_end, str): timeformat = "date" elif isinstance(start_or_end, float): timeformat = "double" elif isinstance(start_or_end, int): timeformat = "long" else: raise nx.NetworkXError( "timeformat should be of the type int, float or str" ) self.graph_element.set("timeformat", timeformat) self.graph_element.set("mode", "dynamic") def write(self, fh): # Serialize graph G in GEXF to the open fh if self.prettyprint: self.indent(self.xml) document = ElementTree(self.xml) document.write(fh, encoding=self.encoding, xml_declaration=True) def indent(self, elem, level=0): # in-place prettyprint formatter i = "\n" + " " * level if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: self.indent(elem, level + 1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i
import argparse from anagram_matcher import AnagramMatcher parser = argparse.ArgumentParser() parser.add_argument('-A', "--anagram", type= str) parser.add_argument('-E', '--encoded_messages', nargs='+') parser.add_argument('-W', '--wordlist', type=str) args = parser.parse_args() anagram = args.anagram encoded_messages= args.encoded_messages wordlist_filepath = args.wordlist print(anagram) """ if __name__ == "__main__": self = AnagramMatcher(wordlist_filepath, anagram, encoded_messages) """
import sublime, sublime_plugin import webbrowser CHECKOUT = "mozilla-central" # maybe make this configurable? BASE = "https://searchfox.org/" + CHECKOUT PATH_MARKER = "@" REGEXP_MARKER = "rrr" SELECTION = 1 PATH = 2 QUERY = 3 def get_url(text, t): if t == SELECTION: return "{}/search?q={}".format(BASE, text) if t == PATH: return "{}/source/{}".format(BASE, text) if t == QUERY: q, _, path = text.partition(PATH_MARKER) regexp = q.startswith(REGEXP_MARKER) if regexp: q = q.split(REGEXP_MARKER).pop() url = "{}/search?q={}&path={}".format(BASE, q.strip(), path.strip()) if regexp: url += "&regexp=true" return url def open_search_tab(text, t): webbrowser.open(get_url(text, t), new=2, autoraise=True) class SearchfoxSelectionCommand(sublime_plugin.TextCommand): def run(self, edit): for sel in self.view.sel(): if not sel.empty(): open_search_tab(self.view.substr(sel), SELECTION) class SearchfoxPathCommand(sublime_plugin.TextCommand): def run(self, edit): path = self.view.file_name().split(CHECKOUT).pop() row = 0 for sel in self.view.sel(): row, _ = self.view.rowcol(sel.begin()) break if row != 0: path += "#" + str(row) open_search_tab(path, PATH) class SearchfoxQueryCommand(sublime_plugin.WindowCommand): def run(self): self.window.show_input_panel( "Search %s:" % CHECKOUT, "", self._on_done, self._on_change, self._on_cancel ) def _on_done(self, input): open_search_tab(input, QUERY) def _on_change(self, input): pass def _on_cancel(self, input): pass
# # SPDX-License-Identifier: Apache-2.0 # # Copyright 2020 Andrey Pleshakov # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from abc import abstractmethod from typing import TYPE_CHECKING, Protocol if TYPE_CHECKING: from typing import Sequence from thespiae.conf import AppEntry from .data import DownloadSpec class Feedback(Protocol): @abstractmethod def report_checking_software(self) -> None: raise NotImplementedError @abstractmethod def confirm_operations(self, to_download: Sequence[DownloadSpec], to_uninstall: Sequence[AppEntry], to_install: Sequence[AppEntry]) -> None: raise NotImplementedError @abstractmethod def report_software_set_no_changes(self) -> None: raise NotImplementedError @abstractmethod def report_download_started(self) -> None: raise NotImplementedError @abstractmethod def report_entry_download_initiated(self, spec: DownloadSpec) -> None: raise NotImplementedError @abstractmethod def report_entry_download_started(self, spec: DownloadSpec, current_size: int, total_size: int = None) -> None: raise NotImplementedError @abstractmethod def report_entry_download_progress(self, spec: DownloadSpec, batch_size: int) -> None: raise NotImplementedError @abstractmethod def report_entry_download_finished(self, spec: DownloadSpec) -> None: raise NotImplementedError @abstractmethod def report_download_finished(self) -> None: raise NotImplementedError @abstractmethod def report_removal_started(self) -> None: raise NotImplementedError @abstractmethod def report_entry_removal_started(self, entry: AppEntry) -> None: raise NotImplementedError @abstractmethod def report_entry_removal_finished(self, entry: AppEntry) -> None: raise NotImplementedError @abstractmethod def report_removal_finished(self) -> None: raise NotImplementedError @abstractmethod def report_installation_started(self) -> None: raise NotImplementedError @abstractmethod def report_entry_installation_started(self, entry: AppEntry) -> None: raise NotImplementedError @abstractmethod def report_entry_installation_finished(self, entry: AppEntry) -> None: raise NotImplementedError @abstractmethod def report_installation_finished(self) -> None: raise NotImplementedError
# -*- coding: utf-8 -*- # -------------------------------------------------------------------------- # Copyright Commvault Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- """File for operating on a Salesforce Backupset. SalesforceBackupset is the only class defined in this file. SalesforceBackuset: Derived class from CloudAppsBackupset Base class, representing a salesforce backupset, and to perform operations on that backupset SalesforceBackupset: __init__() -- Backupset class method overwritten to add salesforce browse options in default browse options _get_backupset_properties() -- Backupset class method overwritten to add salesforce backupset properties as well _prepare_browse_json() -- Backupset class method overwritten to add salesforce browse option download_cache_path() -- Fetches download cache path from backupset mutual_auth_path() -- Fetches mutual auth path from backupset salesforce_user_name() -- Fetches salesforce user name from backupset is_sync_db_enabled() -- Determines sync database enabled or not on backupset sync_db_type() -- Fetches sync database type from backupset sync_db_host() -- Fetches sync database host name from backupset sync_db_instance() -- Fetches ssync database instance name from backupset sync_db_name() -- Fetches sync database name from backupset sync_db_port() -- Fetches sync database port number from backupset sync_db_user_name() -- Fetches sync database user name from backupset """ from __future__ import unicode_literals from ..cabackupset import CloudAppsBackupset class SalesforceBackupset(CloudAppsBackupset): """Derived class from CloudAppsBackupset Base class, representing a salesforce backupset, and to perform operations on that backupset. """ def __init__(self, instance_object, backupset_name, backupset_id=None): """Initlializes instance of the Backupset class for the Salesforce instance. Args: instance_object (object) -- instance of the Instance class backupset_name (str) -- name of backupset backupset_id (int) -- id of backupset Returns: object - instance of the SalesforceBackupset class """ self._download_cache_path = None self._mutual_auth_path = None self._user_name = None self._api_token = None self._sync_db_enabled = None self._sync_db_type = None self._sync_db_host = None self._sync_db_instance = None self._sync_db_name = None self._sync_db_port = None self._sync_db_user_name = None self._sync_db_user_password = None super(SalesforceBackupset, self).__init__(instance_object, backupset_name, backupset_id) salesforce_browse_options = { '_browse_view_name_list': ['TBLVIEW', 'FILEVIEW'] } self._default_browse_options.update(salesforce_browse_options) def _get_backupset_properties(self): """Gets the properties of this backupset. Raises: SDKException: if response is empty if response is not success """ super(SalesforceBackupset, self)._get_backupset_properties() if 'cloudAppsBackupset' in self._properties: cloud_apps_backupset = self._properties['cloudAppsBackupset'] if 'salesforceBackupSet' in cloud_apps_backupset: sfbackupset = cloud_apps_backupset['salesforceBackupSet'] if 'downloadCachePath' in sfbackupset: self._download_cache_path = sfbackupset['downloadCachePath'] self._mutual_auth_path = sfbackupset.get('mutualAuthPath', '') if 'userName' in sfbackupset['userPassword']: self._user_name = sfbackupset['userPassword']['userName'] if 'syncDatabase' in sfbackupset: self._sync_db_enabled = sfbackupset['syncDatabase'].get('dbEnabled', False) if self._sync_db_enabled: if 'dbType' in sfbackupset['syncDatabase']: self._sync_db_type = sfbackupset['syncDatabase']['dbType'] if 'dbHost' in sfbackupset['syncDatabase']: self._sync_db_host = sfbackupset['syncDatabase']['dbHost'] if 'dbInstance' in sfbackupset['syncDatabase']: self._sync_db_instance = sfbackupset['syncDatabase']['dbInstance'] if 'dbName' in sfbackupset['syncDatabase']: self._sync_db_name = sfbackupset['syncDatabase']['dbName'] if 'dbPort' in sfbackupset['syncDatabase']: self._sync_db_port = sfbackupset['syncDatabase']['dbPort'] if 'userName' in sfbackupset['syncDatabase']['dbUserPassword']: self._sync_db_user_name = sfbackupset[ 'syncDatabase']['dbUserPassword']['userName'] if 'password' in sfbackupset['syncDatabase']['dbUserPassword']: self._sync_db_user_password = sfbackupset[ 'syncDatabase']['dbUserPassword']['password'] def _prepare_browse_json(self, options): """Prepares the JSON object for the browse request. Args: options (dict) -- the browse options dictionary Returns: dict - A JSON object for the browse response """ request_json = super(SalesforceBackupset, self)._prepare_browse_json(options) salesforce_browse_view = { 'browseViewNameList': options['_browse_view_name_list'] } request_json['advOptions'].update(salesforce_browse_view) return request_json @property def download_cache_path(self): """getter for download cache path""" return self._download_cache_path @property def mutual_auth_path(self): """getter for download cache path""" return self._mutual_auth_path @property def salesforce_user_name(self): """getter for salesforce user name""" return self._user_name @property def is_sync_db_enabled(self): """lets the user know whether sync db enabled or not""" return self._sync_db_enabled @property def sync_db_type(self): """getter for the sync database type""" return self._sync_db_type @property def sync_db_host(self): """getter for the sync database hostname""" return self._sync_db_host @property def sync_db_instance(self): """getter for the sync database instance name""" return self._sync_db_instance @property def sync_db_name(self): """getter for the sync database name""" return self._sync_db_name @property def sync_db_port(self): """getter for the sync database port number""" return self._sync_db_port @property def sync_db_user_name(self): """getter for the sync database user name""" return self._sync_db_user_name @mutual_auth_path.setter def mutual_auth_path(self, value): """Sets mutual auth path for the backupset. Args: value (str) -- mutual auth certificate path on access node """ if self.mutual_auth_path != value: if self.is_sync_db_enabled: del self._properties['cloudAppsBackupset']['salesforceBackupSet']['syncDatabase']['dbUserPassword'][ 'password'] self._properties['cloudAppsBackupset']['salesforceBackupSet']['mutualAuthPath'] = value self.update_properties(self._properties)
def in_array(array1, array2): result=[] for word_one in set(array1): for word_two in array2: if word_one in word_two: result.append(word_one) break result.sort() return result
# Tudor Berariu, 2016 import math from random import randint from sys import argv from zipfile import ZipFile import matplotlib.markers import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from scipy.cluster import hierarchy from scipy.spatial.distance import euclidean def getArchive(): archive_url = "http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS" local_archive = "FCPS.zip" from os import path if not path.isfile(local_archive): import urllib print("downloading...") urllib.urlretrieve(archive_url, filename=local_archive) assert path.isfile(local_archive) print("got the archive") return ZipFile(local_archive) def getDataSet(archive, dataSetName): path = "FCPS/01FCPSdata/" + dataSetName lrnFile = path + ".lrn" with archive.open(lrnFile, "r") as f: # open .lrn file N = int(f.readline().decode("UTF-8").split()[1]) # number of examples D = int(f.readline().decode("UTF-8").split()[1]) - 1 # number of columns f.readline() # skip the useless line f.readline() # skip columns' names Xs = np.zeros([N, D]) for i in range(N): data = f.readline().decode("UTF-8").strip().split("\t") assert len(data) == (D + 1) # check line assert int(data[0]) == (i + 1) Xs[i] = np.array(list(map(float, data[1:]))) clsFile = path + ".cls" with archive.open(clsFile, "r") as f: # open.cls file labels = np.zeros(N).astype("uint") line = f.readline().decode("UTF-8") while line.startswith("%"): # skip header line = f.readline().decode("UTF-8") i = 0 while line and i < N: data = line.strip().split("\t") assert len(data) == 2 assert int(data[0]) == (i + 1) labels[i] = int(data[1]) line = f.readline().decode("UTF-8") i = i + 1 assert i == N return Xs, labels # return data and correct classes def dist(a, b, ax=1): return np.linalg.norm(a - b, axis=ax) def dummy(Xs): (N, D) = Xs.shape Z = np.zeros((N - 1, 4)) lastIndex = 0 for i in range(N - 1): Z[i, 0] = lastIndex Z[i, 1] = i + 1 Z[i, 2] = 0.1 + i Z[i, 3] = i + 2 lastIndex = N + i return Z def singleLinkage(Xs): (N, D) = Xs.shape Z = np.zeros((N - 1, 4)) clusters = [] i = 0 # init for x in Xs: clusters.append([i, [x]]) i += 1 for i in range(N - 1): dmin = math.inf clust_idx1 = -1 clust_idx2 = -1 for cluster_idx, cluster in enumerate(clusters): for point in cluster[1]: for cluster_idx2, cluster2 in enumerate(clusters[(cluster_idx + 1) :]): for point2 in cluster2[1]: if euclidean(point, point2) < dmin: dmin = euclidean(point, point2) clust_idx1 = cluster_idx clust_idx2 = cluster_idx2 + cluster_idx + 1 idx1 = clusters[clust_idx1][0] idx2 = clusters[clust_idx2][0] clust1_points = clusters[clust_idx1][1] clust2_points = clusters[clust_idx2][1] clust1_points.extend(clust2_points) clusters[clust_idx1][0] = N + i clusters.pop(clust_idx2) Z[i, 0] = idx1 Z[i, 1] = idx2 Z[i, 2] = dmin Z[i, 3] = len(clust1_points) return Z def completeLinkage(Xs): (N, D) = Xs.shape Z = np.zeros((N - 1, 4)) clusters = [] i = 0 # init for x in Xs: clusters.append([i, [x]]) i += 1 for i in range(N - 1): dmin = math.inf clust_idx1 = -1 clust_idx2 = -1 for cluster_idx, cluster in enumerate(clusters): dmax = -math.inf for point in cluster[1]: for cluster_idx2, cluster2 in enumerate(clusters[(cluster_idx + 1) :]): for point2 in cluster2[1]: dist = euclidean(point, point2) if dist < dmin: dmin = dist if dist > dmax: dmax = dist clust_idx1 = cluster_idx clust_idx2 = cluster_idx2 + cluster_idx + 1 idx1 = clusters[clust_idx1][0] idx2 = clusters[clust_idx2][0] clust1_points = clusters[clust_idx1][1] clust2_points = clusters[clust_idx2][1] clust1_points.extend(clust2_points) clusters[clust_idx1][0] = N + i clusters.pop(clust_idx2) Z[i, 0] = idx1 Z[i, 1] = idx2 Z[i, 2] = dmin Z[i, 3] = len(clust1_points) return Z def groupAverageLinkage(Xs): (N, D) = Xs.shape Z = np.zeros((N - 1, 4)) clusters = [] i = 0 # init for x in Xs: clusters.append([i, [x]]) i += 1 for i in range(N - 1): dmin = math.inf clust_idx1 = -1 clust_idx2 = -1 dist = {} for cluster_idx, cluster in enumerate(clusters): dist[cluster_idx] = {} for cluster_idx2, cluster2 in enumerate(clusters[(cluster_idx + 1) :]): dist[cluster_idx][cluster_idx + cluster_idx2 + 1] = 0 for cluster_idx, cluster in enumerate(clusters): for point in cluster[1]: for cluster_idx2, cluster2 in enumerate(clusters[(cluster_idx + 1) :]): for point2 in cluster2[1]: dist[cluster_idx][cluster_idx + cluster_idx2 + 1] += ( 1 / (len(cluster) * len(cluster2)) * euclidean(point, point2) ) for cluster_idx, cluster in enumerate(clusters): for cluster_idx2, cluster2 in enumerate(clusters[(cluster_idx + 1) :]): d = dist[cluster_idx][cluster_idx + cluster_idx2 + 1] if d < dmin: dmin = d clust_idx1 = cluster_idx clust_idx2 = cluster_idx + cluster_idx2 + 1 idx1 = clusters[clust_idx1][0] idx2 = clusters[clust_idx2][0] clust1_points = clusters[clust_idx1][1] clust2_points = clusters[clust_idx2][1] clust1_points.extend(clust2_points) clusters[clust_idx1][0] = N + i clusters.pop(clust_idx2) Z[i, 0] = idx1 Z[i, 1] = idx2 Z[i, 2] = dmin Z[i, 3] = len(clust1_points) return Z def extractClusters(Xs, Z): (N, D) = Xs.shape assert Z.shape == (N - 1, 4) # TODO 4 # return 1, np.zeros(N) return 1, np.zeros(N).astype(int) def randIndex(clusters, labels): assert labels.size == clusters.size N = clusters.size a = 0.0 b = 0.0 for (i, j) in [(i, j) for i in range(N) for j in range(i + 1, N) if i < j]: if ( (clusters[i] == clusters[j]) and (labels[i] == labels[j]) or (clusters[i] != clusters[j]) and (labels[i] != labels[j]) ): a = a + 1 b = b + 1 return float(a) / float(b) def plot(Xs, labels, K, clusters): labelsNo = np.max(labels) markers = [] # get the different markers while len(markers) < labelsNo: markers.extend(list(matplotlib.markers.MarkerStyle.filled_markers)) colors = plt.cm.rainbow(np.linspace(0, 1, K + 1)) if Xs.shape[1] == 2: x = Xs[:, 0] y = Xs[:, 1] for (_x, _y, _c, _l) in zip(x, y, clusters, labels): plt.scatter(_x, _y, s=200, c=[colors[_c]], marker=markers[_l]) plt.show() elif Xs.shape[1] == 3: x = Xs[:, 0] y = Xs[:, 1] z = Xs[:, 2] fig = plt.figure() ax = fig.add_subplot(111, projection="3d") for (_x, _y, _z, _c, _l) in zip(x, y, z, clusters, labels): ax.scatter(_x, _y, _z, s=200, c=[colors[_c]], marker=markers[_l]) plt.show() if __name__ == "__main__": if len(argv) < 2: print("Usage: " + argv[0] + " dataset_name") exit() Xs, labels = getDataSet(getArchive(), argv[1]) # Xs is NxD, labels is Nx1 # Z = singleLinkage(Xs) Z = completeLinkage(Xs) # Z = groupAverageLinkage(Xs) # plt.figure() dn = hierarchy.dendrogram(Z) # plt.show() K, clusters = extractClusters(Xs, Z) print("randIndex: ", randIndex(clusters, labels)) plot(Xs, labels, K, clusters)
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license """asyncio library query support""" import socket import asyncio import dns._asyncbackend import dns.exception def _get_running_loop(): try: return asyncio.get_running_loop() except AttributeError: # pragma: no cover return asyncio.get_event_loop() class _DatagramProtocol: def __init__(self): self.transport = None self.recvfrom = None def connection_made(self, transport): self.transport = transport def datagram_received(self, data, addr): if self.recvfrom: self.recvfrom.set_result((data, addr)) self.recvfrom = None def error_received(self, exc): # pragma: no cover if self.recvfrom and not self.recvfrom.done(): self.recvfrom.set_exception(exc) def connection_lost(self, exc): if self.recvfrom and not self.recvfrom.done(): self.recvfrom.set_exception(exc) def close(self): self.transport.close() async def _maybe_wait_for(awaitable, timeout): if timeout: try: return await asyncio.wait_for(awaitable, timeout) except asyncio.TimeoutError: raise dns.exception.Timeout(timeout=timeout) else: return await awaitable class DatagramSocket(dns._asyncbackend.DatagramSocket): def __init__(self, family, transport, protocol): self.family = family self.transport = transport self.protocol = protocol async def sendto(self, what, destination, timeout): # pragma: no cover # no timeout for asyncio sendto self.transport.sendto(what, destination) async def recvfrom(self, size, timeout): # ignore size as there's no way I know to tell protocol about it done = _get_running_loop().create_future() assert self.protocol.recvfrom is None self.protocol.recvfrom = done await _maybe_wait_for(done, timeout) return done.result() async def close(self): self.protocol.close() async def getpeername(self): return self.transport.get_extra_info('peername') async def getsockname(self): return self.transport.get_extra_info('sockname') class StreamSocket(dns._asyncbackend.DatagramSocket): def __init__(self, af, reader, writer): self.family = af self.reader = reader self.writer = writer async def sendall(self, what, timeout): self.writer.write(what) return await _maybe_wait_for(self.writer.drain(), timeout) async def recv(self, count, timeout): return await _maybe_wait_for(self.reader.read(count), timeout) async def close(self): self.writer.close() try: await self.writer.wait_closed() except AttributeError: # pragma: no cover pass async def getpeername(self): return self.writer.get_extra_info('peername') async def getsockname(self): return self.writer.get_extra_info('sockname') class Backend(dns._asyncbackend.Backend): def name(self): return 'asyncio' async def make_socket(self, af, socktype, proto=0, source=None, destination=None, timeout=None, ssl_context=None, server_hostname=None): loop = _get_running_loop() if socktype == socket.SOCK_DGRAM: transport, protocol = await loop.create_datagram_endpoint( _DatagramProtocol, source, family=af, proto=proto) return DatagramSocket(af, transport, protocol) elif socktype == socket.SOCK_STREAM: (r, w) = await _maybe_wait_for( asyncio.open_connection(destination[0], destination[1], ssl=ssl_context, family=af, proto=proto, local_addr=source, server_hostname=server_hostname), timeout) return StreamSocket(af, r, w) raise NotImplementedError('unsupported socket ' + f'type {socktype}') # pragma: no cover async def sleep(self, interval): await asyncio.sleep(interval)
#class SVNRepo: # @classmethod # def isBadVersion(cls, id) # # Run unit tests to check whether verison `id` is a bad version # # return true if unit tests passed else false. # You can use SVNRepo.isBadVersion(10) to check whether version 10 is a # bad version. class Solution: """ @param n: An integers. @return: An integer which is the first bad version. """ def findFirstBadVersion(self, n): # write your code here start, end = 1, n if (n == 1): return 1 while (start <= end): i = (start + end) / 2 if (not SVNRepo.isBadVersion(i)): start = i + 1 else: end = i - 1 return start
from pytest import mark, raises import quirinius as qu import numpy as np import warnings pctl50 = np.array([.5]) class Test_ValAtQtl: def test_bounds(self): nvals = 11 vals = np.linspace(0., 1., nvals) cumul_qtl = (np.linspace(1., nvals, nvals) - 0.5) / nvals qtl = np.array([0., 1.]) with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', message='numpy.ufunc size changed', category=RuntimeWarning) vaqs = qu.val_at_qtl_(vals, cumul_qtl, qtl) assert np.isnan(vaqs).sum() == 2 def test_exact(self): nvals = 11 vals = np.linspace(0., 1., nvals) cumul_qtl = (np.linspace(1., nvals, nvals) - 0.5) / nvals qtl = np.array([0.5]) with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', message='numpy.ufunc size changed', category=RuntimeWarning) q = qu.val_at_qtl_(vals, cumul_qtl, qtl).squeeze() assert np.isclose(q, np.median(q)) class Test_wq_: pass class Test_wq: pass
import subprocess import sys import pkg_resources try: pkg_resources.get_distribution("httpx") except pkg_resources.DistributionNotFound: hyper_dist = "hyper@https://github.com/Lukasa/hyper/archive/development.tar.gz" subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", hyper_dist, 'httpx']) if pkg_resources.get_distribution("h2").version < '4': subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", 'h2']) import unittest from http.client import OK, NOT_FOUND from typing import List import jsondiff from httpx import Client, Response from tests.test_settings import TEST_TUNNEL_HOST from tests.test_utils import get_test_adapter_options from tests.validation_data import HOWSMYSSL_VALIDATION_RESPONSE from tcp_tls_tunnel.httpx_adapter import TunnelHTTPTransport class TestTunnelHttpxHttp20Request(unittest.TestCase): def setUp(self) -> None: self.transport = TunnelHTTPTransport( adapter_opts=get_test_adapter_options() ) def test_tunnel_ip_request(self): with Client(transport=self.transport) as client: response: Response = client.get("https://api.myip.com/") self.assertEqual(response.status_code, OK) response_json: dict = response.json() self.assertEqual(response_json.get("ip"), TEST_TUNNEL_HOST) def test_tunnel_ssl_request(self): with Client(transport=self.transport) as client: response: Response = client.get('https://www.howsmyssl.com/a/check') response_json: dict = response.json() diff: dict = jsondiff.diff(HOWSMYSSL_VALIDATION_RESPONSE, response_json) given_cipher_suites: List[str] = diff["given_cipher_suites"] self.assertEqual(len(given_cipher_suites[jsondiff.symbols.insert]), 1, msg="[given_cipher_suites] TLS_GREASE_IS INSERT parameter check failed.") self.assertEqual(len(given_cipher_suites[jsondiff.symbols.delete]), 1, msg="[given_cipher_suites] TLS_GREASE_IS DELETE parameter check failed.") def test_several_tunnel_requests(self): with Client(transport=self.transport) as client: for url in ["https://www.howsmyssl.com/", "https://www.howsmyssl.com/s/api.html", "https://www.howsmyssl.com/s/about.html"]: response: Response = client.get(url) self.assertEqual(response.status_code, OK) failed_response: Response = client.get("https://www.howsmyssl.com/s/api") self.assertEqual(failed_response.status_code, NOT_FOUND) def test_http2_tunnel_request(self): with Client(transport=self.transport) as client: response: Response = client.get("https://http2.pro/api/v1") response_json: dict = response.json() self.assertEqual(response_json.get("http2"), 1) self.assertEqual(response_json.get("protocol"), 'HTTP/2.0') def test_http_without_tls_tunnel_request(self): with Client(transport=self.transport) as client: response: Response = client.get("http://httpbin.org/get") response_json: dict = response.json() self.assertEqual(response.status_code, OK) self.assertEqual(response_json.get("origin"), TEST_TUNNEL_HOST)
# License: license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import flt, getdate def execute(filters=None): if not filters: filters = {} columns = get_columns(filters) item_map = get_item_details(filters) iwb_map = get_item_warehouse_map(filters) data = [] bal_kg, bal_packets, bal_bags = "","","" for (company, item, warehouse) in sorted(iwb_map): qty_dict = iwb_map[(company, item, warehouse)] # Calculate UOM Table for NPPL bal_kg = qty_dict.bal_qty if item_map[item]["stock_uom"] == "Kg" \ else convert_to_uom(item, qty_dict.bal_qty, item_map[item]["stock_uom"], "Kg") bal_packets = qty_dict.bal_qty if item_map[item]["stock_uom"] == "Packets" \ else convert_to_uom(item, qty_dict.bal_qty, item_map[item]["stock_uom"], "Packets") bal_bags = qty_dict.bal_qty if item_map[item]["stock_uom"] == "Bags" \ else convert_to_uom(item, qty_dict.bal_qty, item_map[item]["stock_uom"], "Bags") data.append([item, item_map[item]["item_name"], item_map[item]["item_group"], item_map[item]["brand"], item_map[item]["description"], warehouse, item_map[item]["stock_uom"], qty_dict.opening_qty, qty_dict.opening_val, qty_dict.in_qty, qty_dict.in_val, qty_dict.out_qty, qty_dict.out_val, qty_dict.bal_qty, bal_kg, bal_packets, bal_bags, qty_dict.bal_val, qty_dict.val_rate, company ]) return columns, data def get_columns(filters): """return columns based on filters""" columns = [ _("Item")+":Link/Item:100", _("Item Name")+"::150", _("Item Group")+"::100", _("Brand")+"::90", _("Description")+"::140", _("Warehouse")+":Link/Warehouse:100", _("Stock UOM")+":Link/UOM:90", _("Opening Qty")+":Float:100", _("Opening Value")+":Float:110", _("In Qty")+":Float:80", _("In Value")+":Float:80", _("Out Qty")+":Float:80", _("Out Value")+":Float:80", _("Balance Qty")+":Float:100", _("Kg")+"::100", _("Packets")+"::100", _("Bags")+"::100", _("Balance Value")+":Float:100", _("Valuation Rate")+":Float:90", _("Company")+":Link/Company:100" ] return columns def get_conditions(filters): conditions = "" if not filters.get("from_date"): frappe.throw(_("'From Date' is required")) if filters.get("to_date"): conditions += " and posting_date <= '%s'" % frappe.db.escape(filters["to_date"]) else: frappe.throw(_("'To Date' is required")) if filters.get("item_code"): conditions += " and item_code = '%s'" % frappe.db.escape(filters.get("item_code"), percent=False) return conditions #get all details def get_stock_ledger_entries(filters): conditions = get_conditions(filters) return frappe.db.sql("""select item_code, warehouse, posting_date, actual_qty, valuation_rate, company, voucher_type, qty_after_transaction, stock_value_difference from `tabStock Ledger Entry` force index (posting_sort_index) where docstatus < 2 %s order by posting_date, posting_time, name""" % conditions, as_dict=1) def get_item_warehouse_map(filters): iwb_map = {} from_date = getdate(filters["from_date"]) to_date = getdate(filters["to_date"]) sle = get_stock_ledger_entries(filters) for d in sle: key = (d.company, d.item_code, d.warehouse) if key not in iwb_map: iwb_map[key] = frappe._dict({ "opening_qty": 0.0, "opening_val": 0.0, "in_qty": 0.0, "in_val": 0.0, "out_qty": 0.0, "out_val": 0.0, "bal_qty": 0.0, "bal_val": 0.0, "val_rate": 0.0, "uom": None }) qty_dict = iwb_map[(d.company, d.item_code, d.warehouse)] if d.voucher_type == "Stock Reconciliation": qty_diff = flt(d.qty_after_transaction) - qty_dict.bal_qty else: qty_diff = flt(d.actual_qty) value_diff = flt(d.stock_value_difference) if d.posting_date < from_date: qty_dict.opening_qty += qty_diff qty_dict.opening_val += value_diff elif d.posting_date >= from_date and d.posting_date <= to_date: if qty_diff > 0: qty_dict.in_qty += qty_diff qty_dict.in_val += value_diff else: qty_dict.out_qty += abs(qty_diff) qty_dict.out_val += abs(value_diff) qty_dict.val_rate = d.valuation_rate qty_dict.bal_qty += qty_diff qty_dict.bal_val += value_diff return iwb_map def get_item_details(filters): item_map = {} for d in frappe.db.sql("select name, item_name, stock_uom, item_group, brand, \ description from tabItem", as_dict=1): item_map.setdefault(d.name, d) return item_map def convert_to_uom(item, qty, from_uom, to_uom): out = " " con_rate = get_conversion_rate(item) if from_uom == "Kg": if to_uom == "Packets": out = qty * con_rate.get("to_packets") elif to_uom == "Bags": out = qty * con_rate.get("to_bags") if from_uom == "Packets": if to_uom == "Kg": out = qty * con_rate.get("to_kg") elif to_uom == "Bags": out = qty * con_rate.get("to_bags") if from_uom == "Bags": if to_uom == "Kg": out = qty * con_rate.get("to_kg") elif to_uom == "Packets": out = qty * con_rate.get("to_packets") return out def get_conversion_rate(item): to_kg, to_packets, to_bags = 0,0,0 bom_name = frappe.db.get_value("BOM", {"item":item, "is_default":1}, "name") quantity = flt(frappe.db.get_value("BOM", {"item":item, "is_default":1}, "quantity")) qty = flt(frappe.db.get_value("BOM Item", {"parent":bom_name,"idx":1}, "qty")) if frappe.get_value("Item", {"name":item}, "stock_uom") == "Kg": to_kg = 1 if quantity and qty: to_packets = qty / quantity to_bags = qty * quantity # if any error use that elif frappe.get_value("Item", {"name":item}, "stock_uom") == "Packets": to_packets = 1 if quantity and qty: to_kg = qty / quantity to_bags = flt(1 / (quantity * qty),4) elif frappe.get_value("Item", {"name":item}, "stock_uom") == "Bags": to_bags = 1 if quantity and qty: to_packets = qty / quantity to_kg = quantity / qty # use this out = { "to_kg": to_kg, "to_packets": to_packets, "to_bags": to_bags } return out
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains triangles validation implementation """ from __future__ import print_function, division, absolute_import __author__ = "Tomas Poveda" __license__ = "MIT" __maintainer__ = "Tomas Poveda" __email__ = "[email protected]" import tpDcc as tp import pyblish.api class SelectTriangles(pyblish.api.Action): label = 'Select Triangles' on = 'failed' def process(self, context, plugin): if not tp.is_maya(): self.log.warning('Select Triangles Action is only available in Maya!') return False for instance in context: if not instance.data['publish'] or not instance.data['_has_failed']: continue node = instance.data.get('node', None) assert node and tp.Dcc.object_exists(node), 'No valid node found in current instance: {}'.format(instance) triangles = instance.data.get('triangles', None) assert triangles, 'No triangles geometry found in instance: {}'.format(instance) tp.Dcc.select_object(triangles, replace_selection=False) class ValidateTriangles(pyblish.api.InstancePlugin): """ If one of the geometries is tringulated, we must ensure that the rest of the geometry is also triangulated """ label = 'Topology - Triangles' order = pyblish.api.ValidatorOrder hosts = ['maya'] families = ['geometry'] optional = False actions = [SelectTriangles] def process(self, instance): import maya.api.OpenMaya as OpenMaya node = instance.data.get('node', None) assert tp.Dcc.object_exists(node), 'No valid node found in current instance: {}'.format(instance) nodes_to_check = self._nodes_to_check(node) assert nodes_to_check, 'No Nodes to check found!' meshes_selection_list = OpenMaya.MSelectionList() for node in nodes_to_check: meshes_selection_list.add(node) triangles_found = list() total_nodes = len(nodes_to_check) tringulated_meshes = 0 sel_it = OpenMaya.MItSelectionList(meshes_selection_list) while not sel_it.isDone(): mesh_triangles = list() face_it = OpenMaya.MItMeshPolygon(sel_it.getDagPath()) object_name = sel_it.getDagPath().getPath() while not face_it.isDone(): num_of_edges = face_it.getEdges() if len(num_of_edges) == 3: face_index = face_it.index() component_name = '{}.f[{}]'.format(object_name, face_index) mesh_triangles.append(component_name) triangles_found.append(component_name) tringulated_meshes += 1 face_it.next(None) if mesh_triangles: self.log.info('Geometry {} has triangles!'.format(object_name)) # assert mesh_triangles, 'Mesh with no triangles found: {}'.format(object_name) sel_it.next() if triangles_found: instance.data['triangles'] = triangles_found assert tringulated_meshes == total_nodes, 'Not all meshes of {} are triangulated!'.format(instance) def _nodes_to_check(self, node): valid_nodes = list() nodes = tp.Dcc.list_children(node=node, all_hierarchy=True, full_path=True, children_type='transform') if not nodes: nodes = [node] else: nodes.append(node) for node in nodes: shapes = tp.Dcc.list_shapes(node=node, full_path=True) if not shapes: continue valid_nodes.append(node) return valid_nodes
def show_figure(prob_Q_A_left, prob_E_A_left, prob_AD_A_left, prob_Q2_A_left): import matplotlib.pyplot as plt plt.ylabel('% left actions from A') plt.xlabel('Episodes') x_ticks = np.arange(0, 301, 20) y_ticks = np.arange(0, 1.1, 0.1) plt.xticks(x_ticks) plt.yticks(y_ticks, ['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%']) plt.plot(range(300), prob_Q_A_left, '-', label='Q Learning') plt.plot(range(300), prob_E_A_left, '-', label='Double Q-Learning') plt.plot(range(300), prob_AD_A_left, '-', label='Action Distribution') plt.plot(range(300), prob_Q2_A_left, '-', label='Expected Sarsa') plt.plot(np.ones(300) * 0.05, label='Optimal') plt.title('Comparison of the effect of 4 algorithms on Ex 6.7') plt.legend() plt.grid() plt.show() plt.close() total_num = 1000 A_Q_lst, B_Q_lst = np.zeros((total_num, 300)), np.zeros((total_num, 300)) A_Q2_lst, B_Q2_lst = np.zeros((total_num, 300)), np.zeros((total_num, 300)) A_AD_lst, B_AD_lst = np.zeros((total_num, 300)), np.zeros((total_num, 300)) A_E_lst, B_E_lst = np.zeros((total_num, 300)), np.zeros((total_num, 300)) prob_Q_A_left = np.zeros((total_num, 300)) prob_Q2_A_left = np.zeros((total_num, 300)) prob_AD_A_left = np.zeros((total_num, 300)) prob_E_A_left = np.zeros((total_num, 300)) # 计算在STATE_A下采样动作left的概率 alpha = 0.1 start_epsilon = 0.1 gamma = 0.9 num_of_episode = 300 for num in tqdm(range(total_num)): _, A_left1, A_Q1, B_Q1 = TD_learning(env, 'Q-Learning', alpha, epsilon_scope=[start_epsilon, 0.05, 1], num_of_episode=num_of_episode, gamma=gamma) _, A_left2, A_Q2, B_Q2 = TD_learning(env, 'Double-Q', alpha, epsilon_scope=[start_epsilon, 0.05, 1], num_of_episode=num_of_episode, gamma=gamma) _, A_left3, A_Q3, B_Q3 = TD_learning(env, 'Action_Distribution', alpha, epsilon_scope=[start_epsilon, 0.05, 1], num_of_episode=num_of_episode, gamma=gamma) _, A_left4, A_Q4, B_Q4 = TD_learning(env, 'Expected_Sarsa', alpha, epsilon_scope=[start_epsilon, 0.05, 1], num_of_episode=num_of_episode, gamma=gamma) prob_Q_A_left[int(num)] = A_left1 prob_Q2_A_left[int(num)] = A_left2 prob_AD_A_left[int(num)] = A_left3 prob_E_A_left[int(num)] = A_left4 A_Q_lst[int(num)], B_Q_lst[int(num)] = A_Q1, B_Q1 A_Q2_lst[int(num)], B_Q2_lst[int(num)] = A_Q2, B_Q2 A_AD_lst[int(num)], B_AD_lst[int(num)] = A_Q3, B_Q3 A_E_lst[int(num)], B_E_lst[int(num)] = A_Q4, B_Q4 a = prob_Q_A_left.mean(axis=0) b = prob_Q2_A_left.mean(axis=0) c = prob_AD_A_left.mean(axis=0) d = prob_E_A_left.mean(axis=0) show_figure(a, b, c, d)
# -*- coding: utf-8 -*- """ This module provides an abstract base class for invocation plugins. """ # Future from __future__ import absolute_import, division, print_function, \ unicode_literals, with_statement # Standard Library from abc import ABCMeta, abstractmethod class BasePlugin(object): """ Abstract base class for invocation plugins. Plugin developers can either derive their objects directly from this class or from :class:`metaopt.plugin.plugin.DummyPlugin` to only override methods selectively. """ __metaclass__ = ABCMeta @abstractmethod def __init__(self): super(BasePlugin, self).__init__() @abstractmethod def setup(self, f, param_spec, return_spec): """ Called before the invoker calls the objective function the first time :param f: Objective function :param param_spec: Parameter specification :param return_spec: Return value specification """ pass @abstractmethod def before_invoke(self, invocation): """ Called right before the invoker calls the objective function :param invocation: Information about the current (and past) invocations :type invocation: :class:`metaopt.invoker.pluggable.Invocation` """ pass @abstractmethod def on_invoke(self, invocation): """ Called after the invoker called the objective function Since objective functions are usually called asynchronously `invocation` will not contain any results yet. :param invocation: Information about the current (and past) invocations :type invocation: :class:`metaopt.invoker.pluggable.Invocation` """ pass @abstractmethod def on_result(self, invocation): """ Called when the invocation of the objective function was successful :param invocation: Information about the current (and past) invocations :type invocation: :class:`metaopt.invoker.pluggable.Invocation` """ pass @abstractmethod def on_error(self, invocation): """ Called when the invocation of the objective function was not successful Since the invocation was not successful `invocation` will not contain any result. :param invocation: Information about the current (and past) invocations :type invocation: :class:`metaopt.invoker.pluggable.Invocation` """ pass
import groups from base import OcgFunction, OcgCvArgFunction, OcgArgFunction import numpy as np from ocgis.util.helpers import iter_array class SampleSize(OcgFunction): ''' .. note:: Automatically added by OpenClimateGIS. This should generally not be invoked manually. n: Statistical sample size. ''' name = 'n' description = 'Statistical sample size.' Group = groups.BasicStatistics dtype = int @staticmethod def _calculate_(values): ret = np.empty(values.shape[-2:],dtype=int) ret[:] = values.shape[0] ret = np.ma.array(ret,mask=values.mask[0,0,:]) return(ret) @staticmethod def _aggregate_spatial_(values,weights): return(np.ma.sum(values)) class Median(OcgFunction): description = 'Median value for the series.' Group = groups.BasicStatistics dtype = float @staticmethod def _calculate_(values): return(np.median(values,axis=0)) class Mean(OcgFunction): description = 'Mean value for the series.' Group = groups.BasicStatistics dtype = float @staticmethod def _calculate_(values): return(np.mean(values,axis=0)) class Max(OcgFunction): description = 'Max value for the series.' Group = groups.BasicStatistics dtype = float @staticmethod def _calculate_(values): return(np.max(values,axis=0)) class Min(OcgFunction): description = 'Min value for the series.' Group = groups.BasicStatistics dtype = float @staticmethod def _calculate_(values): return(np.min(values,axis=0)) class StandardDeviation(OcgFunction): description = 'Standard deviation for the series.' Group = groups.BasicStatistics dtype = float name = 'std' @staticmethod def _calculate_(values): return(np.std(values,axis=0)) class MaxConsecutive(OcgArgFunction): name = 'max_cons' nargs = 2 Group = groups.Thresholds dtype = int description = ('Maximum number of consecutive occurrences in the sequence' ' where the logical operation returns TRUE.') @staticmethod def _calculate_(values,threshold=None,operation=None): ## time index reference ref = np.arange(0,values.shape[0]) ## storage array for counts store = np.empty(list(values.shape)[1:]) ## perform requested logical operation if operation == 'gt': arr = values > threshold elif operation == 'lt': arr = values < threshold elif operation == 'gte': arr = values >= threshold elif operation == 'lte': arr = values <= threshold ## find longest sequence for each geometry across time dimension for xidx,yidx in iter_array(values[0,:]): vec = arr[:,xidx,yidx] # ## collapse data if no axis provided # if axis is None: # vec = vec.reshape(-1) ## check first if there is a longer series than 1 if np.any(np.diff(ref[vec]) == 1): split_idx = ref[np.diff(vec)] + 1 splits = np.array_split(vec,split_idx) sums = [a.sum() for a in splits if np.all(a)] fill = np.max(sums) ## case of only a singular occurrence elif np.any(vec): fill = 1 ## case for no occurrence else: fill = 0 store[xidx,yidx] = fill # ## summarize across geometries if axis is collapsed # if axis is None: # store = np.max(store) return(store) class Between(OcgArgFunction): nargs = 2 description = 'Count of values falling within the limits lower and upper (inclusive).' Group = groups.Thresholds dtype = int @staticmethod def _calculate_(values,lower=None,upper=None): idx = (values >= lower)*(values <= upper) return(np.sum(idx,axis=0)) #class FooMulti(OcgCvArgFunction): # description = 'Meaningless test statistic.' # Group = groups.MultivariateStatistics # dtype = float # nargs = 2 # keys = ['foo','foo2'] # # @staticmethod # def _calculate_(foo=None,foo2=None): # ret = foo + foo2 # ret = 2*ret # ret = np.mean(ret,axis=0) # return(ret) class HeatIndex(OcgCvArgFunction): description = 'Heat Index following: http://en.wikipedia.org/wiki/Heat_index. If temperature is < 80F or relative humidity is < 40%, the value is masked during calculation. Output units are Fahrenheit.' Group = groups.MultivariateStatistics dtype = float nargs = 2 keys = ['tas','rhs'] name = 'heat_index' @staticmethod def _calculate_(tas=None,rhs=None,units=None): if units == 'k': tas = 1.8*(tas - 273.15) + 32 else: raise(NotImplementedError) c1 = -42.379 c2 = 2.04901523 c3 = 10.14333127 c4 = -0.22475541 c5 = -6.83783e-3 c6 = -5.481717e-2 c7 = 1.22874e-3 c8 = 8.5282e-4 c9 = -1.99e-6 idx = tas < 80 tas.mask = np.logical_or(idx,tas.mask) idx = rhs < 40 rhs.mask = np.logical_or(idx,rhs.mask) tas_sq = np.square(tas) rhs_sq = np.square(rhs) hi = c1 + c2*tas + c3*rhs + c4*tas*rhs + c5*tas_sq + c6*rhs_sq + \ c7*tas_sq*rhs + c8*tas*rhs_sq + c9*tas_sq*rhs_sq return(hi)
count = 0 for i in range(6): k = float(input()) if k > 0: count += 1 print("{0} valores positivos".format(count))
#from distutils.core import setup import setuptools setuptools.setup(name='target_chembl', version='0.0.7', scripts=['patho_chembl/chembldb_pfam_mech.py', 'patho_chembl/chembldb_pfam_assay.py', 'patho_chembl/mol_trg.py', 'patho_chembl/pfam_df_update.py', 'patho_chembl/pfam_mol_assay.py', 'patho_chembl/pfam_mol_mech.py', 'patho_chembl/pfam_trg_sql_assay.py', 'patho_chembl/pfam_trg_sql_mecanism.py', 'patho_chembl/tanimoto.py', 'patho_chembl/trg_mol.py', 'patho_chembl/trg_mol_funcion.py'], requires=['requests','argparse', 'chembl_webresource_client', 'pandas'], author='Florencia A. Castello', license='MIT license', author_email='[email protected]', description='Simple interface for ChEMBL DB', url='https://github.com/florenciacastello/target_chembl', packages=setuptools.find_packages(), long_description='', python_requires='>=3.6' )
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import unittest import webapp2 import webtest from google.appengine.ext import ndb from dashboard import benchmark_health_report from dashboard import update_test_suites from dashboard.common import stored_object from dashboard.common import testing_common from dashboard.common import utils from dashboard.models import anomaly from dashboard.models import graph_data class BenchmarkHealthReportTest(testing_common.TestCase): def setUp(self): super(BenchmarkHealthReportTest, self).setUp() app = webapp2.WSGIApplication( [('/benchmark_health_report', benchmark_health_report.BenchmarkHealthReportHandler)]) self.testapp = webtest.TestApp(app) def _AddAnomalyEntities( self, revision_ranges, test_key, bug_id=None): """Adds a group of Anomaly entities to the datastore.""" urlsafe_keys = [] for start_rev, end_rev in revision_ranges: anomaly_key = anomaly.Anomaly( start_revision=start_rev, end_revision=end_rev, test=test_key, bug_id=bug_id, median_before_anomaly=100, median_after_anomaly=200).put() urlsafe_keys.append(anomaly_key.urlsafe()) return urlsafe_keys def _AddTests(self): """Adds sample TestMetadata entities and returns their keys.""" testing_common.AddTests(['ChromiumPerf'], ['linux'], { 'sunspider': { 'Total': {}, 'ref': {}, }, 'page_cycler': { 'load_time': { 'cnn.com': {}, 'google.com': {}, } } }) tests = graph_data.TestMetadata.query() for test in tests: test.improvement_direction = anomaly.DOWN ndb.put_multi(tests) def _AddCachedSuites(self): test_suites = { 'sunspider': { 'mas': {'ChromiumPerf': {'mac': False, 'linux': False}}, 'mon': [], }, 'page_cycler': { 'mas': {'ChromiumPerf': {'linux': False}, 'CrOS': {'foo': False}}, 'mon': ['load_time'], }, 'speedometer': { 'mas': {'CrOS': {'foo': False, 'bar': False}}, 'mon': [], } } key = update_test_suites._NamespaceKey( update_test_suites._LIST_SUITES_CACHE_KEY) stored_object.Set(key, test_suites) def testGet(self): response = self.testapp.get('/benchmark_health_report') self.assertEqual('text/html', response.content_type) self.assertIn('Chrome Performance Dashboard', response.body) def testPost_MasterArgument_ListsTestsForMaster(self): self._AddCachedSuites() response = self.testapp.post( '/benchmark_health_report', {'master': 'CrOS'}) benchmark_list = self.GetJsonValue(response, 'benchmarks') self.assertItemsEqual(benchmark_list, [{ 'name': 'page_cycler', 'monitored': True, 'bots': ['foo'], }, { 'name': 'speedometer', 'monitored': False, 'bots': ['bar', 'foo'], }]) def testPost_BenchmarkArgument_ListsAlertsAndBots(self): self._AddCachedSuites() self._AddTests() self._AddAnomalyEntities( [(200, 400), (600, 800)], utils.TestKey('ChromiumPerf/linux/page_cycler/load_time')) self._AddAnomalyEntities( [(500, 700)], utils.TestKey('ChromiumPerf/linux/page_cycler/load_time/cnn.com')) response = self.testapp.post( '/benchmark_health_report', { 'benchmark': 'page_cycler', 'num_days': '30', 'master': 'ChromiumPerf', }) bots = self.GetJsonValue(response, 'bots') self.assertItemsEqual(bots, ['linux']) self.assertTrue(self.GetJsonValue(response, 'monitored')) alerts = self.GetJsonValue(response, 'alerts') self.assertEqual(3, len(alerts)) def testPost_Benchmark_NotMonitored(self): self._AddCachedSuites() self._AddTests() response = self.testapp.post( '/benchmark_health_report', { 'benchmark': 'sunspider', 'num_days': '30', 'master': 'ChromiumPerf', }) self.assertFalse(self.GetJsonValue(response, 'monitored')) def testPost_BenchmarkArgumentNumDaysArgument_ListsCorrectAlerts(self): self._AddCachedSuites() self._AddTests() self._AddAnomalyEntities( [(200, 400), (600, 800)], utils.TestKey('ChromiumPerf/linux/page_cycler/load_time')) self._AddAnomalyEntities( [(500, 700)], utils.TestKey('ChromiumPerf/linux/page_cycler/load_time/cnn.com')) anomalies = anomaly.Anomaly.query().fetch() anomalies[0].timestamp = datetime.datetime.now() - datetime.timedelta( days=20) anomalies[0].put() response = self.testapp.post( '/benchmark_health_report', {'benchmark': 'page_cycler', 'num_days': '5', 'master': 'ChromiumPerf'}) bots = self.GetJsonValue(response, 'bots') self.assertItemsEqual(bots, ['linux']) self.assertTrue(self.GetJsonValue(response, 'monitored')) alerts = self.GetJsonValue(response, 'alerts') self.assertEqual(2, len(alerts)) if __name__ == '__main__': unittest.main()
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Access the Chandra archive via the arc5gl tool. """ import six import pexpect import os # Should put in a watchdog timer to exit from arc5gl after a period of inactivity import ska_helpers __version__ = ska_helpers.get_version(__name__) class Arc5gl(object): def __init__(self, echo=False, timeout=100000): """Create an object for sending commands to arc5gl and waiting for the prompt indicating command completion. Example:: arc5gl = Ska.arc5gl.Arc5gl() arc5gl.sendline('obsid=21151') arc5gl.sendline('get acis2{evt2}') del arc5gl # explicitly shut things down, good idea If the file ``${HOME}/.arc5gl_user`` exists then the content will be taken as the user name to pass to the ``arc5gl`` Perl application for authentication. Otherwise the linux username will be used. :param echo: echo arc5gl output (default=False) :param timeout: wait for up to timeout seconds for response (default=100000) """ args = ['--stdin'] arc5gl_user_file = os.path.join(os.environ['HOME'], '.arc5gl_user') if os.path.exists(arc5gl_user_file): user = open(arc5gl_user_file).read().strip() args = args + ['--user={}'.format(user)] self.prompt = 'ARC5GL> ' spawn = pexpect.spawn if six.PY2 else pexpect.spawnu self.arc5gl = spawn('/proj/sot/ska/bin/arc5gl', args=args, timeout=timeout) self.arc5gl.expect(self.prompt) self.echo = echo self.arc5gl.setecho(echo) def sendline(self, line): """Send a single line to arc5gl and wait for the return prompt. There is no return value. :param line: line of input """ self.arc5gl.sendline(line) self.arc5gl.expect(self.prompt) if self.echo: print(self.prompt + self.arc5gl.before) def __del__(self): self.arc5gl.sendline('exit') self.arc5gl.expect(pexpect.EOF) self.arc5gl.close() if self.echo: print('Closed arc5gl')
import argparse import cPickle as pickle import numpy as np import os import matplotlib.pyplot as plt import chainer from chainer import optimizers from chainer import serializers import net import trainer import time class CifarDataset(chainer.datasets.TupleDataset): def __init__(self, x, y, augment=None): super(CifarDataset, self).__init__(x, y) self._augment = augment def __getitem__(self, index): items = super(CifarDataset, self).__getitem__(index) if self._augment is None: return items if isinstance(index, slice): return [(self._transform(x), y) for (x, y) in items] else: x, y = items return self._transform(x), y def _transform(self, x): image = np.zeros_like(x) size = x.shape[2] if self._augment.get('crop', False): offset = np.random.randint(-4, 5, size=(2,)) else: offset = (0, 0) if self._augment.get('mirror', False): mirror = np.random.randint(2) else: mirror = 0 if self._augment.get('erase', False): erase = np.random.randint(2) else: erase = 0 top, left = offset left = max(0, left) top = max(0, top) right = min(size, left + size) bottom = min(size, top + size) if mirror > 0: x = x[:,:,::-1] image[:,size-bottom:size-top,size-right:size-left] = x[:,top:bottom,left:right] if erase > 0: while True: s = np.random.uniform(0.02, 0.4) * size * size r = np.random.uniform(-np.log(3.0), np.log(3.0)) r = np.exp(r) w = int(np.sqrt(s / r)) h = int(np.sqrt(s * r)) left = np.random.randint(0, size) top = np.random.randint(0, size) if left + w < size and top + h < size: break c = np.random.randint(-128, 128) image[:, top:top + h, left:left + w] = c return image if __name__ == '__main__': parser = argparse.ArgumentParser(description='CIFAR-10 dataset trainer') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU device ID (negative value indicates CPU)') parser.add_argument('--model', '-m', type=str, default='vgg', choices=['cnn', 'cnnbn', 'cnnwn', 'vgg', 'residual', 'identity_mapping', 'vgg_no_fc', 'vgg_wide', 'vgg_crelu', 'inception', 'pyramid', 'shake_residual'], help='Model name') parser.add_argument('--batch_size', '-b', type=int, default=100, help='Mini batch size') parser.add_argument('--dataset', '-d', type=str, default='dataset/image.pkl', help='Dataset image pkl file path') parser.add_argument('--label', '-l', type=str, default='dataset/label.pkl', help='Dataset label pkl file path') parser.add_argument('--prefix', '-p', type=str, default=None, help='Prefix of model parameter files') parser.add_argument('--iter', type=int, default=300, help='Training iteration') parser.add_argument('--save_iter', type=int, default=0, help='Iteration interval to save model parameter file.') parser.add_argument('--lr_decay_iter', type=str, default='100', help='Iteration interval to decay learning rate') parser.add_argument('--lr_shape', type=str, default='multistep', choices=['multistep', 'cosine'], help='Learning rate annealing function, multistep or cosine') parser.add_argument('--weight_decay', type=float, default=0.0001, help='Weight decay') parser.add_argument('--optimizer', type=str, default='sgd', choices=['sgd', 'adam'], help='Optimizer name') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate for SGD') parser.add_argument('--alpha', type=float, default=0.001, help='Initial alpha for Adam') parser.add_argument('--augment', type=str, default='crop,mirror', help='Augmentation methods e.g. \'crop,mirror,erase\'') parser.add_argument('--no_valid_data', action='store_true', help='Do not use validation data') parser.add_argument('--res_depth', type=int, default=18, help='Depth of Residual Network') parser.add_argument('--res_width', type=int, default=2, help='Width of Residual Network') parser.add_argument('--skip_depth', action='store_true', help='Use stochastic depth in Residual Network') parser.add_argument('--swapout', action='store_true', help='Use swapout') parser.add_argument('--seed', type=int, default=1, help='Random seed') args = parser.parse_args() np.random.seed(args.seed) log_file_path = '{}_log.csv'.format(args.prefix) lr_decay_iter = map(int, args.lr_decay_iter.split(',')) augment_methods = args.augment.split(',') augmentation = {x: True for x in augment_methods} print('loading dataset...') with open(args.dataset, 'rb') as f: images = pickle.load(f) with open(args.label, 'rb') as f: labels = pickle.load(f) index = np.random.permutation(len(images['train'])) if args.no_valid_data: valid_data = None train_index = index else: train_index = index[:-5000] valid_index = index[-5000:] valid_x = images['train'][valid_index].reshape((-1, 3, 32, 32)) valid_y = labels['train'][valid_index] valid_data = CifarDataset(valid_x, valid_y, augment=None) train_x = images['train'][train_index].reshape((-1, 3, 32, 32)) train_y = labels['train'][train_index] train_data = CifarDataset(train_x, train_y, augment=augmentation) test_x = images['test'].reshape((-1, 3, 32, 32)) test_y = labels['test'] test_data = CifarDataset(test_x, test_y, augment=None) print('start training') if args.model == 'cnn': cifar_net = net.CNN() elif args.model == 'cnnbn': cifar_net = net.CNNBN() elif args.model == 'cnnwn': cifar_net = net.CNNWN() elif args.model == 'residual': cifar_net = net.ResidualNet(args.res_depth, swapout=args.swapout, skip=args.skip_depth) elif args.model == 'identity_mapping': cifar_net = net.IdentityMapping(args.res_depth, swapout=args.swapout, skip=args.skip_depth) elif args.model == 'vgg_no_fc': cifar_net = net.VGGNoFC() elif args.model == 'vgg_wide': cifar_net = net.VGGWide() elif args.model == 'vgg_crelu': cifar_net = net.VGGCReLU() elif args.model == 'inception': cifar_net = net.Inception() elif args.model == 'pyramid': cifar_net = net.PyramidNet(args.res_depth, skip=args.skip_depth) elif args.model == 'shake_residual': cifar_net = net.ShakeShakeResidualNet(args.res_depth, args.res_width) else: cifar_net = net.VGG() if args.optimizer == 'sgd': optimizer = optimizers.MomentumSGD(lr=args.lr) else: optimizer = optimizers.Adam(alpha=args.alpha) optimizer.setup(cifar_net) if args.weight_decay > 0: optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) cifar_trainer = trainer.CifarTrainer(cifar_net, optimizer, args.iter, args.batch_size, args.gpu, lr_shape=args.lr_shape, lr_decay=lr_decay_iter) if args.prefix is None: model_prefix = '{}_{}'.format(args.model, args.optimizer) else: model_prefix = args.prefix state = {'best_valid_error': 100, 'best_test_error': 100, 'clock': time.clock()} def on_epoch_done(epoch, n, o, loss, acc, valid_loss, valid_acc, test_loss, test_acc, test_time): error = 100 * (1 - acc) print('epoch {} done'.format(epoch)) print('train loss: {} error: {}'.format(loss, error)) if valid_loss is not None: valid_error = 100 * (1 - valid_acc) print('valid loss: {} error: {}'.format(valid_loss, valid_error)) else: valid_error = None if test_loss is not None: test_error = 100 * (1 - test_acc) print('test loss: {} error: {}'.format(test_loss, test_error)) print('test time: {}s'.format(test_time)) else: test_error = None if valid_loss is not None and valid_error < state['best_valid_error']: serializers.save_npz('{}.model'.format(model_prefix), n) serializers.save_npz('{}.state'.format(model_prefix), o) state['best_valid_error'] = valid_error state['best_test_error'] = test_error elif valid_loss is None: serializers.save_npz('{}.model'.format(model_prefix), n) serializers.save_npz('{}.state'.format(model_prefix), o) state['best_test_error'] = test_error if args.save_iter > 0 and (epoch + 1) % args.save_iter == 0: serializers.save_npz('{}_{}.model'.format(model_prefix, epoch + 1), n) serializers.save_npz('{}_{}.state'.format(model_prefix, epoch + 1), o) # prevent divergence when using identity mapping model if args.model == 'identity_mapping' and epoch < 9: o.lr = 0.01 + 0.01 * (epoch + 1) clock = time.clock() print('elapsed time: {}'.format(clock - state['clock'])) state['clock'] = clock with open(log_file_path, 'a') as f: f.write('{},{},{},{},{},{},{}\n'.format(epoch + 1, loss, error, valid_loss, valid_error, test_loss, test_error)) with open(log_file_path, 'w') as f: f.write('epoch,train loss,train acc,valid loss,valid acc,test loss,test acc\n') cifar_trainer.fit(train_data, valid_data, test_data, on_epoch_done) print('best test error: {}'.format(state['best_test_error'])) train_loss, train_acc, test_loss, test_acc = np.loadtxt(log_file_path, delimiter=',', skiprows=1, usecols=[1, 2, 5, 6], unpack=True) epoch = len(train_loss) xs = np.arange(epoch, dtype=np.int32) + 1 plt.clf() fig, ax = plt.subplots() ax.plot(xs, train_loss, label='train loss', c='blue') ax.plot(xs, test_loss, label='test loss', c='red') ax.set_xlim((1, epoch)) ax.set_xlabel('epoch') ax.set_ylabel('loss') ax.legend(loc='upper right') plt.savefig('{}_loss.png'.format(args.prefix), bbox_inches='tight') plt.clf() fig, ax = plt.subplots() ax.plot(xs, train_acc, label='train error', c='blue') ax.plot(xs, test_acc, label='test error', c='red') ax.set_xlim([1, epoch]) ax.set_xlabel('epoch') ax.set_ylabel('error') ax.legend(loc='upper right') plt.savefig('{}_error'.format(args.prefix), bbox_inches='tight')
import pandas as pd import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation plt.style.use('seaborn-notebook') def animation(_): data = pd.read_csv('data.csv') x = data['x'] y1 = data['y1'] y2 = data['y2'] plt.cla() plt.plot(x, y1, label='channel 1', color='green') plt.plot(x, y2, label='channel 2', color='orange') plt.legend(loc='upper left') plt.tight_layout() plt.grid(alpha=.3) ani = FuncAnimation(plt.gcf(), animation, interval=500) plt.tight_layout() plt.show()
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, UpSampling2D from tensorflow.keras.layers import BatchNormalization, Activation, Input, ZeroPadding2D from tensorflow.keras.layers import Add, Concatenate from tensorflow.keras.models import Model from ...layers import ReflectPadding2D, InstanceNormalization2D import sys padding = ZeroPadding2D def normalize(): return InstanceNormalization2D() def scaleup(input, ngf, kss, strides, padding): x = UpSampling2D(strides)(input) x = Conv2D(ngf, kss, padding=padding)(x) return x def res_block(input, filters, kernel_size=(3, 3), strides=(1, 1)): x = padding()(input) x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides,)(x) x = normalize()(x) x = Activation('relu')(x) x = padding()(x) x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides,)(x) x = normalize()(x) merged = Add()([input, x]) return merged def resnet_6blocks(input_shape, output_nc, ngf, **kwargs): ks = 3 f = 7 p = (f-1)/2 input = Input(input_shape) x = padding((int(p), int(p)))(input) x = Conv2D(ngf, (f, f),)(x) x = normalize()(x) x = Activation('relu')(x) x = Conv2D(ngf*2, (ks, ks), strides=(2, 2), padding='same')(x) x = normalize()(x) x = Activation('relu')(x) x = Conv2D(ngf*4, (ks, ks), strides=(2, 2), padding='same')(x) x = normalize()(x) x = Activation('relu')(x) x = res_block(x, ngf*4) x = res_block(x, ngf*4) x = res_block(x, ngf*4) x = res_block(x, ngf*4) x = res_block(x, ngf*4) x = res_block(x, ngf*4) x = scaleup(x, ngf*2, (ks, ks), strides=(2, 2), padding='same') x = normalize()(x) x = Activation('relu')(x) x = scaleup(x, ngf, (ks, ks), strides=(2, 2), padding='same') x = normalize()(x) x = Activation('relu')(x) x = padding((int(p), int(p)))(x) x = Conv2D(output_nc, (f, f))(x) x = Activation('tanh')(x) model = Model(input, x, name=kwargs.get('name', None)) return model
import io import solve def test_count_increases_empty_list(): depth_list = [] increases = solve.count_increases(depth_list) assert 0 == increases def test_count_increases_single_increase(): depth_list = [0, 100] increases = solve.count_increases(depth_list) assert 1 == increases def test_count_increases_single_decrease(): depth_list = [100, 0] increases = solve.count_increases(depth_list) assert 0 == increases def test_count_increases_single_value_zero_increases(): depth_list = [100] increases = solve.count_increases(depth_list) assert 0 == increases def test_count_increases_all_increases(): depth_list = [100, 101, 102, 103, 104, 105] increases = solve.count_increases(depth_list) assert len(depth_list) - 1 == increases def test_count_increases_all_decreases(): depth_list = reversed([100, 101, 102, 103, 104, 105]) increases = solve.count_increases(depth_list) assert 0 == increases def test_part_1_sample_input(): depth_list = [ 199, 200, 208, 210, 200, 207, 240, 269, 260, 263, ] increases = solve.count_increases(depth_list) assert 7 == increases def test_load_depth_list_empty_file(): file_obj = io.StringIO("") depth_list = solve.load_depth_list(file_obj) assert depth_list == [] def test_load_depth_list_single_line(): file_obj = io.StringIO("100") depth_list = solve.load_depth_list(file_obj) assert depth_list == [100] def test_load_depth_list_multi_line(): file_obj = io.StringIO("""100 200 300 400 500""") depth_list = solve.load_depth_list(file_obj) assert depth_list == [100, 200, 300, 400, 500] def test_load_depth_list_ignore_empty_lines(): file_obj = io.StringIO("""100 200 300 400 500""") depth_list = solve.load_depth_list(file_obj) assert depth_list == [100, 200, 300, 400, 500] def test_sliding_windows_empty_list(): measurements = [] sums = solve.sliding_windows(measurements) assert sums == [] def test_sliding_windows_not_enough_measurements(): measurements = [100, 200] sums = solve.sliding_windows(measurements, window=3) assert sums == [] def test_sliding_windows_sum_of_measurements(): measurements = [100, 200, 300] sums = solve.sliding_windows(measurements, window=3) assert sums == [600] def test_sliding_windows_sum_per_window(): measurements = [100, 200, 300, 10] sums = solve.sliding_windows(measurements, window=3) assert sums == [600, 510] def test_sliding_windows_extra_measurements_ignored(): measurements = [100, 200, 300, 10, 20] sums = solve.sliding_windows(measurements, window=3) assert sums == [600, 510, 330] def test_part_2_sample_input(): depth_list = [ 199, 200, 208, 210, 200, 207, 240, 269, 260, 263, ] sums = solve.sliding_windows(depth_list, window=3) print(sums) increases = solve.count_increases(sums) assert 5 == increases
from django.apps import AppConfig class RepairandbuyerConfig(AppConfig): name = 'repairANDbuyer' verbose_name = '蓝快维修与采购'
import os import sys from multiprocessing import Process, Queue from django.conf import settings from django.core.management.base import BaseCommand, CommandError from couchdbkit import ResourceConflict, ResourceNotFound from six.moves.urllib.parse import urlparse from dimagi.utils.couch.database import iter_docs # doctypes we want to be careful not to copy, which must be explicitly # specified with --include from dimagi.utils.parsing import json_format_date from corehq.apps.domain.models import Domain from corehq.apps.domainsync.config import DocumentTransform, save from corehq.apps.domainsync.management.commands.copy_utils import ( copy_postgres_data_for_docs, ) from corehq.util.couchdb_management import CouchConfig from corehq.util.dates import iso_string_to_date DEFAULT_EXCLUDE_TYPES = [ 'ReportNotification', 'WeeklyNotification', 'DailyNotification' ] NUM_PROCESSES = 8 class Command(BaseCommand): """ DEPRECATED/NEEDS WORK - `copy_domain` is basically broken because of - attachments in blobdb - SQL data. Scale trello card to update this: https://trello.com/c/OGGrmoGI/16-copydomain """ help = "Copies the contents of a domain to another database. " \ "If targetdb is not specified, the target is the database " \ "specified by COUCH_DATABASE in your settings." def add_arguments(self, parser): parser.add_argument( 'sourcedb', ) parser.add_argument( 'domain', ) parser.add_argument( 'targetdb', nargs='?', ) parser.add_argument( '--include', action='store', dest='doc_types', default='', help='Comma-separated list of Document Types to copy', ) parser.add_argument( '--exclude', action='store', dest='doc_types_exclude', default='', help='Comma-separated list of Document Types to NOT copy.', ) parser.add_argument( '--exclude-attachments', action='store_true', dest='exclude_attachments', default=False, help="Don't copy document attachments, just the docs themselves.", ) parser.add_argument( '--since', action='store', dest='since', default='', help='Only copy documents newer than this date. Format: yyyy-MM-dd. Only ', ) parser.add_argument( '--list-types', action='store_true', dest='list_types', default=False, help='Don\'t copy anything, just list all the available document types.', ) parser.add_argument( '--simulate', action='store_true', dest='simulate', default=False, help='Don\'t copy anything, print what would be copied.', ) parser.add_argument( '--id-file', action='store', dest='id_file', default='', help="File containing one document ID per line. Only docs with these ID's will be copied", ) parser.add_argument( '--postgres-db', action='store', dest='postgres_db', default='', help="Name of postgres database to pull additional data from. This should map to a " "key in settings.DATABASES. If not specified no additional postgres data will be " "copied. This is currently used to pull CommCare Supply models.", ) parser.add_argument( '--postgres-password', action='store', dest='postgres_password', default='', help="Password for postgres database to pull additional data from. If not specified will " "default to the value in settings.DATABASES", ) parser.add_argument( '--dont-run-multi-process', action='store_false', dest='run_multi_process', default=True, help="If set to true this spawn multiple processes which should speed up the time taken to " "copy. This must be false if running in a supervised process", ) def iter_source_dbs(self): for sourcedb_name, sourcedb in self.source_couch.all_dbs_by_slug.items(): if sourcedb_name not in self.exclude_dbs: print("In {} db".format(sourcedb_name or "the main")) yield sourcedb_name, sourcedb def _get_couch_database_configs_from_string(self, db_string): sourcedb_parse_result = urlparse(db_string) return CouchConfig({ 'default': { 'COUCH_HTTPS': sourcedb_parse_result.scheme == 'https', 'COUCH_SERVER_ROOT': sourcedb_parse_result.hostname, 'COUCH_USERNAME': sourcedb_parse_result.username, 'COUCH_PASSWORD': sourcedb_parse_result.password, 'COUCH_DATABASE_NAME': sourcedb_parse_result.path.lstrip('/') } }) def handle(self, sourcedb, domain, targetdb, **options): self.exclude_dbs = ( # these have data we don't want to copy 'receiverwrapper', 'auditcare', 'fluff-bihar', 'fluff-mc', 'fluff-cvsu', 'mvp-indicators', 'm4change', # todo: missing domain/docs, but probably want to add back 'meta', ) self.source_couch = source_couch = self._get_couch_database_configs_from_string(sourcedb) simulate = options['simulate'] exclude_attachments = options['exclude_attachments'] self.run_multi_process = options['run_multi_process'] since = json_format_date(iso_string_to_date(options['since'])) if options['since'] else None if options['list_types']: for sourcedb_name, sourcedb in self.iter_source_dbs(): self.list_types(sourcedb, domain, since) sys.exit(0) if simulate: print("\nSimulated run, no data will be copied.\n") if options['postgres_db'] and options['postgres_password']: settings.DATABASES[options['postgres_db']]['PASSWORD'] = options['postgres_password'] self.target_couch = self._get_couch_database_configs_from_string(targetdb) try: domain_doc = Domain.get_by_name(domain) except ResourceNotFound: domain_doc = None if domain_doc is None: self.copy_domain(source_couch, domain) if options['doc_types']: doc_types = options['doc_types'].split(',') for doc_type in doc_types: sourcedb = source_couch.get_db_for_doc_type(doc_type) startkey = [x for x in [domain, doc_type, since] if x is not None] endkey = [x for x in [domain, doc_type, {}] if x is not None] self.copy_docs(sourcedb, domain, simulate, startkey, endkey, doc_type=doc_type, since=since, postgres_db=options['postgres_db'], exclude_attachments=exclude_attachments) elif options['id_file']: path = options['id_file'] if not os.path.isfile(path): print("Path '%s' does not exist or is not a file" % path) sys.exit(1) with open(path) as input: doc_ids = [line.rstrip('\n') for line in input] if not doc_ids: print("Path '%s' does not contain any document ID's" % path) sys.exit(1) for sourcedb_name, sourcedb in self.iter_source_dbs(): self.copy_docs(sourcedb, domain, simulate, doc_ids=doc_ids, postgres_db=options['postgres_db'], exclude_attachments=exclude_attachments) else: startkey = [domain] endkey = [domain, {}] exclude_types = DEFAULT_EXCLUDE_TYPES + options['doc_types_exclude'].split(',') for sourcedb_name, sourcedb in self.iter_source_dbs(): self.copy_docs(sourcedb, domain, simulate, startkey, endkey, exclude_types=exclude_types, postgres_db=options['postgres_db'], exclude_attachments=exclude_attachments) def list_types(self, sourcedb, domain, since): doc_types = sourcedb.view("by_domain_doc_type_date/view", startkey=[domain], endkey=[domain, {}], reduce=True, group=True, group_level=2) doc_count = dict([(row['key'][1], row['value']) for row in doc_types]) if since: for doc_type in sorted(doc_count.keys()): num_since = sourcedb.view("by_domain_doc_type_date/view", startkey=[domain, doc_type, since], endkey=[domain, doc_type, {}], reduce=True).all() num = num_since[0]['value'] if num_since else 0 print("{0:<30}- {1:<6} total {2}".format(doc_type, num, doc_count[doc_type])) else: for doc_type in sorted(doc_count.keys()): print("{0:<30}- {1}".format(doc_type, doc_count[doc_type])) def copy_docs(self, sourcedb, domain, simulate, startkey=None, endkey=None, doc_ids=None, doc_type=None, since=None, exclude_types=None, postgres_db=None, exclude_attachments=False): if not doc_ids: doc_ids = [result["id"] for result in sourcedb.view("by_domain_doc_type_date/view", startkey=startkey, endkey=endkey, reduce=False)] total = len(doc_ids) count = 0 msg = "Found %s matching documents in domain: %s" % (total, domain) msg += " of type: %s" % (doc_type) if doc_type else "" msg += " since: %s" % (since) if since else "" print(msg) err_log = self._get_err_log() if self.run_multi_process: queue = Queue(150) for i in range(NUM_PROCESSES): Worker(queue, sourcedb, self.target_couch, exclude_types, total, simulate, err_log, exclude_attachments).start() for doc in iter_docs(sourcedb, doc_ids, chunksize=100): count += 1 queue.put((doc, count)) # shutdown workers for i in range(NUM_PROCESSES): queue.put(None) else: for doc in iter_docs(sourcedb, doc_ids, chunksize=100): target = self.target_couch.get_db_for_doc_type(doc['doc_type']) count += 1 copy_doc(doc, count, sourcedb, target, exclude_types, total, simulate, exclude_attachments) err_log.close() if os.stat(err_log.name)[6] == 0: os.remove(err_log.name) else: print('Failed document IDs written to %s' % err_log.name) if postgres_db: copy_postgres_data_for_docs(postgres_db, doc_ids=doc_ids, simulate=simulate) def copy_domain(self, source_couch, domain): print("Copying domain doc") sourcedb = source_couch.get_db_for_class(Domain) result = sourcedb.view( "domain/domains", key=domain, reduce=False, include_docs=True ).first() if result and 'doc' in result: domain_doc = Domain.wrap(result['doc']) dt = DocumentTransform(domain_doc._obj, sourcedb) save(dt, self.target_couch.get_db_for_doc_type(domain_doc['doc_type'])) else: print("Domain doc not found for domain %s." % domain) def _get_err_log(self): name = 'copy_domain.err.%s' for i in range(1000): # arbitrarily large number candidate = name % i if not os.path.isfile(candidate): return open(candidate, 'a', buffering=1, encoding='utf-8') class Worker(Process): def __init__(self, queue, sourcedb, target_couch, exclude_types, total, simulate, err_log, exclude_attachments): super(Worker, self).__init__() self.queue = queue self.sourcedb = sourcedb self.target_couch = target_couch self.exclude_types = exclude_types self.exclude_attachments = exclude_attachments self.total = total self.simulate = simulate self.err_log = err_log def run(self): for doc, count in iter(self.queue.get, None): try: target = self.target_couch.get_db_for_doc_type(doc['doc_type']) copy_doc(doc, count, self.sourcedb, target, self.exclude_types, self.total, self.simulate, self.exclude_attachments) except Exception as e: self.err_log.write('%s\n' % doc["_id"]) print(" Document %s failed! Error is: %s %s" % (doc["_id"], e.__class__.__name__, e)) def copy_doc(doc, count, sourcedb, target_couch, exclude_types, total, simulate, exclude_attachments): if exclude_types and doc["doc_type"] in exclude_types: print(" SKIPPED (excluded type: %s). Synced %s/%s docs (%s: %s)" % \ (doc["doc_type"], count, total, doc["doc_type"], doc["_id"])) else: if not simulate: dt = DocumentTransform(doc, sourcedb, exclude_attachments) for i in reversed(list(range(5))): try: save(dt, target_couch) break except (ResourceConflict, TypeError): if i == 0: raise print(" Synced %s/%s docs (%s: %s)" % (count, total, doc["doc_type"], doc["_id"]))
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ @Time : 2019-09-21 19:54 @Author : Wang Xin @Email : [email protected] @File : __init__.py.py """
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .torchscript_consistency_impl import Functional, FunctionalComplex class TestFunctionalFloat32(Functional, PytorchTestCase): dtype = torch.float32 device = torch.device('cpu') class TestFunctionalFloat64(Functional, PytorchTestCase): dtype = torch.float64 device = torch.device('cpu') class TestFunctionalComplex64(FunctionalComplex, PytorchTestCase): complex_dtype = torch.complex64 real_dtype = torch.float32 device = torch.device('cpu') class TestFunctionalComplex128(FunctionalComplex, PytorchTestCase): complex_dtype = torch.complex128 real_dtype = torch.float64 device = torch.device('cpu')
import os root_dir = os.path.expanduser("~") root_dir = os.path.join(root_dir, "Desktop") print_interval = 100 save_model_iter = 1000 train_data_path = os.path.join(root_dir, "Reinforce-Paraphrase-Generation/data/twitter_url/chunked/train_*") eval_data_path = os.path.join(root_dir, "Reinforce-Paraphrase-Generation/data/twitter_url/chunked/val_*") decode_data_path = os.path.join(root_dir, "Reinforce-Paraphrase-Generation/data/twitter_url/chunked/test_*") vocab_path = os.path.join(root_dir, "Reinforce-Paraphrase-Generation/data/twitter_url/vocab") log_root = os.path.join(root_dir, "Reinforce-Paraphrase-Generation/log_twitter") # Hyperparameters mode = "MLE" # other options: RL/GTI/SO/SIO/DAGGER/DAGGER* alpha = 1.0 beta = 1.0 k1 = 0.9999 k2 = 3000. hidden_dim= 256 emb_dim= 128 batch_size= 8 sample_size= 4 max_enc_steps= 20 max_dec_steps= 20 beam_size= 8 min_dec_steps= 5 vocab_size= 5000 max_iterations = 5000000 lr = 1e-5 pointer_gen = True is_coverage = False lr_coverage = 0.15 cov_loss_wt = 1.0 max_grad_norm = 2.0 rand_unif_init_mag = 0.02 trunc_norm_init_std = 1e-4 eps = 1e-12 use_gpu = True
import math from linked_list import LinkedList, Node # Time complexity: O(N) # Space complexity: O(N) def palindrome(s_list: LinkedList): current_node = s_list.head new_list = LinkedList() while current_node: new_list.unshift(current_node.value) current_node = current_node.next return new_list == s_list # Time complexity: O(N) # Space complexity: O(N) def palindrome_2(s_list: LinkedList): chars = [] current_node = s_list.head while current_node: chars.append(current_node.value) current_node = current_node.next left = 0 right = len(chars) - 1 while right > left: if chars[right] != chars[left]: return False right -= 1 left += 1 return True if __name__ == "__main__": s1 = LinkedList().push('l').push('e').push('v').push('e').push('l') s2 = LinkedList().push('l').push('e').push('v').push('f').push('l') print(palindrome(s1)) print(palindrome(s2))
import os import json import logging from datetime import date, datetime import boto3 import botocore # logger logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def lambda_handler(event, context): class CrawlerThrottlingException(Exception): pass class CrawlerRunningException(Exception): pass try: # Get Glue crawler name crawler_name = event['CrawlerName'] logger.info('CrawlerName: %s', crawler_name) glue_client = boto3.client('glue') response = glue_client.start_crawler(Name=crawler_name) logger.info('Response: %s', json.dumps(response)) return { "StatusCode": response['ResponseMetadata']['HTTPStatusCode'] } except botocore.exceptions.ClientError as e: logger.exception(e, exc_info=False) if e.response.get('Error', {}).get('Code') == 'ThrottlingException': raise CrawlerThrottlingException(e) elif e.response.get('Error', {}).get('Code') == 'CrawlerRunningException': raise CrawlerRunningException(e) else: raise e except Exception as e: logger.exception(e, exc_info=False) raise e