content
stringlengths
5
1.05M
import numpy as np import pytest from structure_factor.hyperuniformity import Hyperuniformity from structure_factor.point_processes import ( GinibrePointProcess, HomogeneousPoissonPointProcess, ) @pytest.mark.parametrize( "sf, expected", [ (HomogeneousPoissonPointProcess.structure_factor, False), (GinibrePointProcess.structure_factor, True), ], ) def test_effective_hyperuniformity(sf, expected): # verify that the hyperuniformity index for the ginibre ensemble is less than 1e-3 k = np.linspace(0, 10, 100) sf_k = sf(k) hyperuniformity_test = Hyperuniformity(k, sf_k) index_H, _ = hyperuniformity_test.effective_hyperuniformity(k_norm_stop=4) result = index_H < 1e-3 assert result == expected def f(c, alpha, x): return c * x ** alpha x_1 = np.linspace(0, 3, 100) x_2 = np.linspace(0.5, 2, 50) @pytest.mark.parametrize( "x, fx, c, alpha", [ (x_1, f(8, 2, x_1), 8, 2), (x_2, f(6, 0.5, x_2), 6, 0.5), ], ) def test_hyperuniformity_class_on_polynomial(x, fx, c, alpha): test = Hyperuniformity(x, fx) assert alpha, c == test.hyperuniformity_class() @pytest.mark.parametrize( "sf, expected_alpha", [ (GinibrePointProcess.structure_factor, 2), ], ) def test_hyperuniformity_class_ginibre(sf, expected_alpha): # verify that the hyperuniformity index for the ginibre ensemble is less than 1e-3 k = np.linspace(0, 1, 3000) sf_k = sf(k) hyperuniformity_test = Hyperuniformity(k, sf_k) alpha, _ = hyperuniformity_test.hyperuniformity_class(k_norm_stop=0.001) diff_alpha = alpha - expected_alpha np.testing.assert_almost_equal(diff_alpha, 0, decimal=3)
import asyncio import os import re id_matcher = re.compile("(?<=/)\d+(?=/)") async def main(): files = os.listdir("links") for file in files: with open(f"links/{file}", encoding="utf-8") as link_file: links = link_file.readlines() for link in links: nlink = link.replace("\n", "") link_id = id_matcher.search(nlink).group(0) folder = file.replace(".txt", "") if not os.path.exists(f"images/{folder}"): os.mkdir(f"images/{folder}") print(f"Downloading {link_id} to folder {folder}",end="\r") await ugetter(file.replace(".txt", ""), f"{link_id}.png", nlink) async def ugetter(folder, filename, url): cmd = [ "wget", url, "-O", f"images/{folder}/{filename}", "-q" ] process = await asyncio.create_subprocess_exec(*cmd) return await process.wait() if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
#!/usr/bin/env python """ Entry point for bin/* scripts """ __authors__ = "James Bergstra" __license__ = "3-clause BSD License" __contact__ = "github.com/hyperopt/hyperopt" import cPickle import logging import os import base import utils logger = logging.getLogger(__name__) from .base import SerialExperiment import sys import logging logger = logging.getLogger(__name__) def main_search(): from optparse import OptionParser parser = OptionParser( usage="%prog [options] [<bandit> <bandit_algo>]") parser.add_option('--load', default='', dest="load", metavar='FILE', help="unpickle experiment from here on startup") parser.add_option('--save', default='experiment.pkl', dest="save", metavar='FILE', help="pickle experiment to here on exit") parser.add_option("--steps", dest='steps', default='100', metavar='N', help="exit after queuing this many jobs (default: 100)") parser.add_option("--workdir", dest="workdir", default=os.path.expanduser('~/.hyperopt.workdir'), help="create workdirs here", metavar="DIR") parser.add_option("--bandit-argfile", dest="bandit_argfile", default=None, help="path to file containing arguments bandit constructor \ file format: pickle of dictionary containing two keys,\ {'args' : tuple of positional arguments, \ 'kwargs' : dictionary of keyword arguments}") parser.add_option("--bandit-algo-argfile", dest="bandit_algo_argfile", default=None, help="path to file containing arguments for bandit_algo " "constructor. File format is pickled dictionary containing " "two keys: 'args', a tuple of positional arguments, and " "'kwargs', a dictionary of keyword arguments. " "NOTE: bandit is pre-pended as first element of arg tuple.") (options, args) = parser.parse_args() try: bandit_json, bandit_algo_json = args except: parser.print_help() return -1 try: if not options.load: raise IOError() handle = open(options.load, 'rb') self = cPickle.load(handle) handle.close() except IOError: bandit = utils.get_obj(bandit_json, argfile=options.bandit_argfile) bandit_algo = utils.get_obj(bandit_algo_json, argfile=options.bandit_algo_argfile, args=(bandit,)) self = SerialExperiment(bandit_algo) try: self.run(int(options.steps)) finally: if options.save: cPickle.dump(self, open(options.save, 'wb')) def main(cmd, fn_pos = 1): """ Entry point for bin/* scripts XXX """ logging.basicConfig( stream=sys.stderr, level=logging.INFO) try: runner = dict( search='main_search', dryrun='main_dryrun', plot_history='main_plot_history', )[cmd] except KeyError: logger.error("Command not recognized: %s" % cmd) # XXX: Usage message sys.exit(1) try: argv1 = sys.argv[fn_pos] except IndexError: logger.error('Module name required (XXX: print Usage)') return 1 fn = datasets.main.load_tokens(sys.argv[fn_pos].split('.') + [runner]) sys.exit(fn(sys.argv[fn_pos+1:])) if __name__ == '__main__': cmd = sys.argv[1] sys.exit(main(cmd, 2))
#notecard specific ATTN requests and processing from command import Commands CM = Commands remoteCommandQueue = "commands.qi" def isEndOfQueueErr(e): return str.__contains__(e, "{note-noexist}") def _extractAndEnqueueCommands(body): for c in body.items(): command = c[0] args = tuple(c[1]) if isinstance(c[1],list) else (c[1],) CM.Enqueue(command, args) def ReadCommands(card): req = {"req":"note.get","file":remoteCommandQueue,"delete":True} while True: rsp = card.Transaction(req) if "err" in rsp: if isEndOfQueueErr(rsp["err"]): return raise Exception(rsp["err"]) if "body" not in rsp: continue body = rsp["body"] _extractAndEnqueueCommands(body) def Arm(card) -> None: req = {"req":"card.attn","mode":"rearm"} card.Transaction(req) def Disarm(card) -> None: req = {"req":"card.attn","mode":"disarm"} card.Transaction(req) def Initialize(card) -> None: Disarm(card) req = {"req":"card.attn","mode":"files","files":[remoteCommandQueue]} card.Transaction(req) Arm(card) def QueryTriggerSource(card) -> dict: req = {"req":"card.attn"} return card.Transaction(req) def ProcessAttnInfo(card, info=None) -> None: if not info: info = QueryTriggerSource(card) if "files" in info: files = info["files"] if remoteCommandQueue in files: ReadCommands(card)
#!/usr/bin/env python from setuptools import setup, find_packages setup ( name = "katsdpdisp", description = "Karoo Array Telescope Online Signal Displays", author = "MeerKAT SDP team", author_email = "[email protected]", packages = find_packages(), package_data={'': ['html/*']}, include_package_data = True, scripts = [ "scripts/time_plot.py", ], zip_safe = False, python_requires=">=3.5", install_requires=[ "h5py", "manhole", "matplotlib", "netifaces", "numpy", "psutil", "six", "spead2>=3.0.0", "katsdpservices[argparse]", "katsdptelstate", "katdal", "katpoint"], use_katversion=True )
import numpy # scipy.special for the sigmoid function expit() import scipy.special # neural network class definition class neuralNetwork: # initialise the neural network def __init__(self, inputnodes, hiddennodes, hiddenlayers, outputnodes, learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes self.hiddenlayers = hiddenlayers # link weight matrices, wih and who # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer # w11 w21 # w12 w22 etc self.wih = [] self.who = [] for i in range(0, hiddenlayers): if i == 0: w = self.inodes else: w = self.hnodes self.wih.append(numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, w))) self.who.append(numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, w))) # learning rate self.lr = learningrate # activation function is the sigmoid function self.activation_function = lambda x: scipy.special.expit(x) pass # train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer #hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer #hidden_outputs = self.activation_function(hidden_inputs) hidden_outputs = self.queryHiddenLayers(inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who[self.hiddenlayers - 1], hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # update the weights for the links between the hidden and output layers for layerIndex in range(self.hiddenlayers - 1, -1, -1): # hidden layer error is the output_errors, split by weights, recombined at hidden nodes hidden_errors = numpy.dot(self.who[layerIndex].T, output_errors) self.who[layerIndex] += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers self.wih[layerIndex] += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) pass # query the neural network def query(self, inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer #hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer #hidden_outputs = self.activation_function(hidden_inputs) hidden_outputs = self.queryHiddenLayers(inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs def queryHiddenLayers(self, inputs): for layerWeights in self.wih: hidden_inputs = numpy.dot(layerWeights, inputs) hidden_outputs = self.activation_function(hidden_inputs) print(str(len(inputs))) inputs = hidden_inputs print(str(len(inputs))) return hidden_outputs
from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from app import app, db, models from app.models import User, Bucket, BucketItem import unittest import coverage import os import forgery_py as faker from random import randint from sqlalchemy.exc import IntegrityError # Initializing the manager manager = Manager(app) # Initialize Flask Migrate migrate = Migrate(app, db) # Add the flask migrate manager.add_command('db', MigrateCommand)
__all__ = ('animate', ) from functools import partial from kivy.clock import Clock from kivy.animation import AnimationTransition from asynckivy import sleep_forever async def animate(target, **kwargs): # noqa:C901 ''' animate ======= An async version of ``kivy.animation.Animation``. Usage ----- .. code-block:: python import asynckivy as ak async def some_async_func(widget): # case #1: start an animation and wait for its completion await ak.animate(widget, x=100, d=2, s=.2, t='in_cubic') # case #2: start an animation but not wait for its completion ak.start(ak.animate(widget, ...)) Difference from kivy.animation.Animation ---------------------------------------- ``kivy.animation.Animation`` requires the object you wanna animate to have an attribute named ``uid`` but ``asynckivy`` does not. When you have an object like this: .. code-block:: python class MyClass: pass obj = MyClass() obj.value = 100 you already can animate it by ``asynckivy.animate(obj, value=200)``. Therefore, ``asynckivy.animate()`` is more broadly applicable than ``kivy.animation.Animation``. Sequence and Parallel --------------------- Kivy has two compound animations: ``Sequence`` and ``Parallel``. You can achieve the same functionality in asynckivy as follows: .. code-block:: python def kivy_Sequence(widget): anim = Animation(x=100) + Animation(x=0) anim.repeat = True anim.start(widget) async def asynckivy_Sequence(widget): while True: await ak.animate(widget, x=100) await ak.animate(widget, x=0) def kivy_Parallel(widget): anim = Animation(x=100) & Animation(y=100, d=2) anim.start(widget) anim.bind(on_complete=lambda *args: print("completed")) async def asynckivy_Parallel(widget): await ak.and_( ak.animate(widget, x=100), ak.animate(widget, y=100, d=2), ) print("completed") ''' from asyncgui import get_step_coro duration = kwargs.pop('d', kwargs.pop('duration', 1.)) transition = kwargs.pop('t', kwargs.pop('transition', 'linear')) step = kwargs.pop('s', kwargs.pop('step', 0)) animated_properties = kwargs if not duration: for key, value in animated_properties.items(): setattr(target, key, value) return if isinstance(transition, str): transition = getattr(AnimationTransition, transition) # get current values properties = {} for key, value in animated_properties.items(): original_value = getattr(target, key) if isinstance(original_value, (tuple, list)): original_value = original_value[:] elif isinstance(original_value, dict): original_value = original_value.copy() properties[key] = (original_value, value) try: ctx = { 'target': target, 'time': 0., 'duration': duration, 'transition': transition, 'properties': properties, 'step_coro': await get_step_coro(), } clock_event = Clock.schedule_interval(partial(_update, ctx), step) await sleep_forever() finally: clock_event.cancel() def _update(ctx, dt): time = ctx['time'] + dt ctx['time'] = time # calculate progression progress = min(1., time / ctx['duration']) t = ctx['transition'](progress) # apply progression on target target = ctx['target'] for key, values in ctx['properties'].items(): a, b = values value = _calculate(a, b, t) setattr(target, key, value) # time to stop ? if progress >= 1.: ctx['step_coro']() return False def _calculate(a, b, t): if isinstance(a, list) or isinstance(a, tuple): if isinstance(a, list): tp = list else: tp = tuple return tp([_calculate(a[x], b[x], t) for x in range(len(a))]) elif isinstance(a, dict): d = {} for x in a: if x not in b: # User requested to animate only part of the dict. # Copy the rest d[x] = a[x] else: d[x] = _calculate(a[x], b[x], t) return d else: return (a * (1. - t)) + (b * t)
from logging import getLogger def settings_handler(): """ This function is started if the bot receives settings command (not used yet) """ logger = getLogger() logger.info("settings_handler started")
""" gfa_reduce.xmatch ================ Cross-matching utilities for the DESI GFA off-line reduction pipeline. """
"""Second-Generation p-values and delta-gaps.""" def sgpvalue(*, null_lo, null_hi, est_lo, est_hi, inf_correction: float = 1e-5, warnings: bool = True): """ Second-Generation p-values and delta-gaps. #TODO: Output is still not pretty-> need to remove numpy type information Parameters ---------- null_lo : array_like Lower bounds of the null interval(s). Values may be finite or -Inf or Inf. Must be of same length as null_hi. null_hi : array_like Upper bounds of the null interval(s). Values may be finite or -Inf or Inf. Must be of same length as null_hi. est_lo : array_like Lower bounds of interval estimates. Values may be finite or -Inf or Inf. Must be of same length as est_hi. est_hi : array_like Upper bounds of interval estimates. Values may be finite or -Inf or Inf. Must be of same length as est_lo. infcorrection : TYPE, optional A small number to denote a positive but infinitesimally small SGPV. Default is 1e-5. SGPVs that are infinitesimally close to 1 are assigned 1-infcorrection. This option can only be invoked when one of the intervals has infinite length. warnings : bool, optional Warnings toggle. Showing the warnings about potentially problematic intervals. Warnings are on by default. Raises ------ ValueError Indicates that some value was outside of the expected range or outside of the accepted options. Returns ------- pdelta : numpy_array Second-generation p-values. deltagap : numpy_array The delta gaps, Reported as None when the corresponding second-generation p-value is not zero. Examples # TODO : add references to original R-code and further comments -------- # Simple example for three estimated log odds ratios but the same null interval >>> import numpy as np >>> from sgpvalue import sgpvalue >>> lb = (np.log(1.05), np.log(1.3), np.log(0.97)) >>> ub = (np.log(1.8), np.log(1.8), np.log(1.02)) >>> sgpvalue(est_lo = lb, est_hi = ub, null_lo = np.log(1/1.1), null_hi = np.log(1.1)) sgpv(pdelta=array([0.1220227, 0. , 1. ]), deltagap=array([None, 1.7527413, None], dtype=object)) >>> sgpvalue(est_lo = np.log(1.3), est_hi = np.inf, null_lo = np.NINF, null_hi = np.log(1.1)) At least one interval has infinite length sgpv(pdelta=array([0.]), deltagap=array([0.1670541], dtype=object)) >>> sgpvalue(est_lo = np.log(1.05), est_hi = np.inf, null_lo = np.NINF, null_hi = np.log(1.1)) At least one interval has infinite length sgpv(pdelta=array([0.]), deltagap=array([-0.04652], dtype=object)) # Example t-test with simulated data >>> from scipy.stats import ttest_ind >>> from scipy.stats import norm >>> from scipy.stats import t >>> np.random.seed(1776) >>> x1 = norm.rvs(size=15, loc=0, scale=2) >>> x2 = norm.rvs(size=15, loc=3, scale=2) >>> se = (x1-x2).std()/np.sqrt(15) >>> ci1 = (x1.mean()-x2.mean()) - se*t.ppf(df=13, q=0.975) >>> ci2 = (x1.mean()-x2.mean()) + se*t.ppf(df=13 ,q=0.975) >>> sgpvalue(est_lo = ci1, est_hi = ci2, null_lo = -1, null_hi = 1) sgpv(pdelta=array([0.]), deltagap=array([0.3000322], dtype=object)) # Simulated two-group dichotomous data for different parameters >>> from scipy.stats import binom >>> from statsmodels.stats.proportion import proportions_ztest >>> np.random.seed(1492) >>> n = 30 >>> p1, p2 = 0.15, 0.50 >>> x1 = binom.rvs(1, p=p1, size=n).sum() >>> x2 = binom.rvs(1, p=p2, size=n).sum() >>> prop1 = x1.sum()/n # Proportion of successes >>> prop2 = x2.sum()/n >>> ci1 = (prop1 - prop2) - 1.96*np.sqrt((prop1 *(1-prop1)/n) + (prop2*(1- prop2)/n)) >>> ci2 = (prop1 - prop2) + 1.96*np.sqrt((prop1 *(1-prop1)/n) + (prop2*(1- prop2)/n)) >>> sgpvalue(est_lo=ci1, est_hi=ci2, null_lo=-0.2, null_hi=0.2) sgpv(pdelta=array([0.2756205]), deltagap=array([None], dtype=object)) #On the log odds ratio scale >>> a = x1 >>> b = x2 >>> c = 30-x1 >>> d = 30-x2 >>> cior1 = np.log(a*d/(b*c)) - 1.96*np.sqrt(1/a+1/b+1/c+1/d) # Delta-method SE for log odds ratio >>> cior2 = np.log(a*d/(b*c)) + 1.96*np.sqrt(1/a+1/b+1/c+1/d) >>> sgpvalue(est_lo=cior1, est_hi=cior2, null_lo=np.log(1/1.5), null_hi=np.log(1.5)) sgpv(pdelta=array([0.]), deltagap=array([0.65691], dtype=object)) """ import numpy as np from termcolor import colored from collections import namedtuple # Convert inputs into np.array to emulate R behaviour null_lo = np.asarray(null_lo, dtype=np.float64) null_hi = np.asarray(null_hi, dtype=np.float64) est_lo = np.asarray(est_lo, dtype=np.float64) est_hi = np.asarray(est_hi, dtype=np.float64) if null_hi.size != null_lo.size: raise ValueError('null_lo and null_hi are of different lengths.') if est_lo.size != est_hi.size: raise ValueError('est_lo and est_hi are of different lengths.') if null_lo.size != est_lo.size & null_lo.size > 1: raise ValueError("'null_lo' and 'null_hi' must only have one argument\ or exactly as many arguments as 'est_hi' and 'est_lo'.") if null_lo.size == 1: null_lo = np.repeat(null_lo, est_lo.size) null_hi = np.repeat(null_hi, est_hi.size) # Compute Interval Lengths est_len = np.array(est_hi) - np.array(est_lo) null_len = np.array(null_hi) - np.array(null_lo) # Warnings -> to be added once I know how to check for these # -> might not be 100% correct yet na_any = (np.any(est_lo is None) or np.any(est_hi is None) or np.any(null_lo is None) or np.any(null_hi is None)) if (na_any is True) and warnings: print(colored('At least one input is NA', 'red')) if (na_any is not True) and np.any(est_len < 0) and np.any(null_len < 0) and warnings: print('At least one interval length is negative') if (na_any is not True) and np.any(np.isinf(abs(est_len) + abs(null_len))) and warnings: print('At least one interval has infinite length') if (na_any is not True) and (np.any(est_len == 0) or np.any(null_len == 0)) and warnings: print('At least one interval has zero length') # SGPV computation overlap = np.minimum(est_hi, null_hi) - np.maximum(est_lo, null_lo) overlap = np.maximum(overlap, 0) bottom = np.minimum(2 * null_len, est_len) pdelta = np.round(overlap / bottom, 7) # Zero-length & Infinite-length intervals np.where((overlap == 0), 0, pdelta) # Overlap finite & non-zero but bottom = Inf np.where(overlap != 0 & np.isfinite(overlap) & np.isinf(bottom), inf_correction, pdelta) # Interval estimate is a point (overlap=zero) but can be in null or equal null pt pdelta[(est_len == 0) & (null_len >= 0) & ( est_lo >= null_lo) & (est_hi <= null_hi)] = 1 # Null interval is a point (overlap=zero) but is in interval estimate pdelta[(est_len > 0) & (null_len == 0) & ( est_lo <= null_lo) & (est_hi >= null_hi)] = 1/2 # One-sided intervals with overlap; overlap == Inf & bottom==Inf pdelta[np.isinf(overlap) & np.isinf(bottom) & ( (est_hi <= null_hi) | (est_lo >= null_lo))] = 1 pdelta[np.isinf(overlap) & np.isinf(bottom) & ((est_hi > null_hi) | (est_lo < null_lo))] = 1-inf_correction # ## Interval estimate is entire real line and null interval is NOT entire real line pdelta[np.isneginf(est_lo) & np.isposinf(est_hi)] = 1/2 # ## Null interval is entire real line pdelta[np.isneginf(null_lo) & np.isposinf(null_hi)] = None if np.any(null_lo == np.NINF) & np.any(null_hi == np.inf) and warnings: print('At least one null interval is entire real line.') # Return NA for nonsense intervals -> not working correctly yet pdelta[(est_lo > est_hi) | (null_lo > null_hi)] = None if (np.any(est_lo > est_hi) or np.any(null_lo > null_hi)) and warnings: print('Some interval limits likely reversed') # Calculate delta gap deltagap = np.repeat(None, len(pdelta)) deltagap[(pdelta is not None) & (pdelta == 0)] = 0 gap = np.maximum(est_lo, null_lo) - np.minimum(null_hi, est_hi) delta = null_len / 2 # Report unscaled delta gap if null has infinite length delta[null_len == np.inf] = 1 # Report unscaled delta gap if null has length zero delta[null_len == 0] = 1 dg = np.round(gap / delta, 7) deltagap[pdelta is not None and (pdelta == 0)] = dg[ pdelta is not None and (pdelta == 0)] sgpv = namedtuple('sgpv', 'pdelta, deltagap') return sgpv(pdelta, deltagap)
#!/usr/bin/env python3 # Requires Python 3.6 and above from os import chdir, makedirs, path from sys import platform from math import pi, sin, cos, inf import webbrowser import tkinter as tk from tkinter import ttk, filedialog, messagebox from ezdxf.r12writer import r12writer from polylabel import polylabel # Use Windows high DPI scaling if platform == 'win32': try: from ctypes import OleDLL OleDLL('shcore').SetProcessDpiAwareness(1) except (ImportError, AttributeError, OSError): pass class MenuBar(tk.Menu): def __init__(self, root): super().__init__() self.option_add("*tearOff", False) file_menu = tk.Menu(self) file_menu.add_command(label="Exit", command=root.quit) help_menu = tk.Menu(self) help_menu.add_command(label="Support", command=lambda: webbrowser.open(r"https://github.com/Archer4499/Maximum-Inscribed-Circle")) help_menu.add_command(label="About", command=lambda: messagebox.showinfo("About", "Reads data files containing polygons and outputs the co-ordinates and diameter " "(and optionally points of the circle) of maximum inscribed circles to be " "contained within the digitized polygons.\n\n" "Read more at https://github.com/Archer4499/Maximum-Inscribed-Circle\n\n" "This project is licensed under the MIT License.")) self.add_cascade(menu=file_menu, label="File") self.add_cascade(menu=help_menu, label="Help") root.config(menu=self) class NumEntry(ttk.Spinbox): # A number validated Spinbox def __init__(self, length, min_val, max_val, *args, **kwargs): super().__init__(*args, **kwargs) self.length = length self.min_val = min_val self.max_val = max_val self.default_val = self.get() self.configure(from_=self.min_val, to=self.max_val, width=self.length + 1, validate="all", validatecommand=(self.register(self.on_validate), "%P", "%d", "%V")) def on_validate(self, new_value, action_type, validate_type): if validate_type == "key": # Don't validate if action is delete if action_type != "0" and new_value.strip() != "": try: value = int(new_value) except ValueError: self.bell() return False elif validate_type == "focusout": try: value = int(new_value) if value < self.min_val: self.bell() self.set(self.min_val) return False if value > self.max_val: self.bell() self.set(self.max_val) return False except ValueError: self.bell() self.set(self.default_val) return False return True class Gui(tk.Tk): def __init__(self): super().__init__() self.polygons = [] self.numPolygons = tk.IntVar() self.numPolygons.set(0) self.circles = [] # Settings self.outputDXF = tk.IntVar() self.outputDXF.set(1) self.outputDXFCircle = tk.IntVar() self.outputDXFCircle.set(0) self.outputDXFDiameter = tk.IntVar() self.outputDXFDiameter.set(1) self.outputDXFLabel = tk.IntVar() self.outputDXFLabel.set(0) self.outputDXFPoints = tk.IntVar() self.outputDXFPoints.set(0) self.outputDXFPolyLines = tk.IntVar() self.outputDXFPolyLines.set(1) self.outputCircles = tk.IntVar() self.outputCircles.set(0) self.outputPoints = tk.IntVar() self.outputPoints.set(1) self.outputPointsNum = tk.StringVar() self.outputPointsNum.set("16") self.outputFolder = tk.StringVar() self.outputFolder.set("./") self.title("Maximum Inscribed Circle") self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) MenuBar(self) mainframe = ttk.Frame(self) mainframe.grid(column=0, row=0, sticky="NESW") # Clear focus from text boxes on click mainframe.bind("<1>", lambda event: mainframe.focus_set()) # TODO(Derek): Not sure how to set correct minsizes # Uses 3 columns self.initLoad(mainframe, 1) mainframe.columnconfigure(1, weight=1) mainframe.columnconfigure(2, weight=0) mainframe.columnconfigure(3, weight=1) ttk.Separator(mainframe, orient="vertical")\ .grid(column=4, row=0, rowspan=30, padx=5, pady=0, sticky="NS") mainframe.rowconfigure(29, weight=1) # Uses 2 columns self.initSave(mainframe, 5) mainframe.columnconfigure(5, weight=0, minsize=15) mainframe.columnconfigure(6, weight=2) def initLoad(self, parentFrame, column): self.loadButton = ttk.Button(parentFrame, text="Open csv file/s", command=self.load) self.loadButton.grid(column=column, row=0, padx=5, pady=5) self.loadButton.focus_set() ttk.Label(parentFrame, text="Number of polygons found:")\ .grid(column=column+1, row=0, sticky="E", padx=(5, 0), pady=0) ttk.Label(parentFrame, textvariable=self.numPolygons)\ .grid(column=column+2, row=0, sticky="W", padx=(0, 5), pady=0) ttk.Label(parentFrame, text="Preview of polygons and output circles:", anchor="center")\ .grid(column=column, columnspan=3, row=2, sticky="EW", padx=5, pady=0) self.canvas = tk.Canvas(parentFrame, background="white") self.canvas.grid(column=column, columnspan=3, row=3, rowspan=27, sticky="NESW", padx=(10, 5), pady=(0, 10)) self.canvas.bind("<Configure>", self.drawShapes) def initSave(self, parentFrame, column): ttk.Checkbutton(parentFrame, text="Output to DXF", variable=self.outputDXF, command=self.disableDXF)\ .grid(column=column, row=0, columnspan=2, sticky="W", padx=5, pady=(5, 0)) self.dxfCheckButtons = [] self.dxfCheckButtons.append(ttk.Checkbutton(parentFrame, text="Output Circle in DXF", variable=self.outputDXFCircle)) self.dxfCheckButtons.append(ttk.Checkbutton(parentFrame, text="Output Diameter Line in DXF", variable=self.outputDXFDiameter)) self.dxfCheckButtons.append(ttk.Checkbutton(parentFrame, text="Output Diameter Label in DXF", variable=self.outputDXFLabel)) self.dxfCheckButtons.append(ttk.Checkbutton(parentFrame, text="Output Points in DXF", variable=self.outputDXFPoints, command=self.disablePointsNum)) self.dxfCheckButtons.append(ttk.Checkbutton(parentFrame, text="Output PolyLine in DXF", variable=self.outputDXFPolyLines, command=self.disablePointsNum)) for i, button in enumerate(self.dxfCheckButtons): button.grid(column=column+1, row=i+1, sticky="W", padx=5, pady=0) ttk.Checkbutton(parentFrame, text="Output to Circles csv", variable=self.outputCircles)\ .grid(column=column, row=6, columnspan=2, sticky="W", padx=5, pady=5) ttk.Checkbutton(parentFrame, text="Output to Points csv", variable=self.outputPoints, command=self.disablePointsNum)\ .grid(column=column, row=7, columnspan=2, sticky="W", padx=5, pady=5) ttk.Label(parentFrame, text="Number of points on circle:")\ .grid(column=column, row=8, columnspan=2, sticky="W", padx=5, pady=(5, 0)) self.pointsNumCheckButton = NumEntry(4, 3, 9999, parentFrame, textvariable=self.outputPointsNum) self.pointsNumCheckButton.grid(column=column, row=9, columnspan=2, sticky="W", padx=5, pady=0) ttk.Label(parentFrame, text="Output Folder:")\ .grid(column=column, row=10, columnspan=2, sticky="W", padx=5, pady=(5, 0)) ttk.Entry(parentFrame, textvariable=self.outputFolder)\ .grid(column=column, row=11, columnspan=2, sticky="EW", padx=5, pady=0) self.browseButton = ttk.Button(parentFrame, text="Browse", command=self.browse) self.browseButton.grid(column=column, row=14, columnspan=2, padx=5, pady=(5, 0)) self.saveButton = ttk.Button(parentFrame, text="Save", command=self.save) self.saveButton.grid(column=column, row=15, columnspan=2, padx=5, pady=(0, 5)) self.saveButton.state(["disabled"]) def disableDXF(self): # Bound to dxf CheckButton if self.outputDXF.get(): for button in self.dxfCheckButtons: button.state(["!disabled"]) else: for button in self.dxfCheckButtons: button.state(["disabled"]) self.disablePointsNum() def disablePointsNum(self): # Bound to CheckButtons related to pointsNumCheckButton if self.outputPoints.get() or self.outputDXF.get() and (self.outputDXFPoints.get() or self.outputDXFPolyLines.get()): self.pointsNumCheckButton.state(["!disabled"]) else: self.pointsNumCheckButton.state(["disabled"]) def load(self): # Bound to loadButton fileNames = filedialog.askopenfilenames(filetypes=[("All Data Files", ".csv .str .txt .arch_d"), ("CSV", ".csv"), ("STR", ".str"), ("Text", ".txt"), ("Vulcan Data", ".arch_d")]) if not fileNames: return polygons = [] for fileName in fileNames: polygons.extend(parseData(fileName)) if not polygons: return circles = [] for polygon in polygons: # TODO(Derek): polylabel sometimes infinite loops if bad data is given # contained multiple polygons in one, with 0, 0 in between. # circle is formatted as [[x,y,z],radius] circle = list(polylabel(polygon[0], precision=0.001, with_distance=True)) if not circle[1]: prettyPolygon = [[polygon[0][i][0], polygon[0][i][1], polygon[1][i]] for i in range(len(polygon[0]))] messagebox.showerror(title="Error", message=f"Could not create circle from polygon:\n{prettyPolygon}") return circle[0].append(sum(polygon[1])/len(polygon[1])) circles.append(circle) self.polygons = polygons self.circles = circles self.numPolygons.set(len(polygons)) self.saveButton.state(["!disabled"]) self.drawShapes() def drawShapes(self, _=None): # Bound to self.canvas resize event # _ argument to allow being used as resize callback if self.polygons: # Clear the canvas before drawing new shapes self.canvas.delete("all") colours = ["#e6194B", "#3cb44b", "#ffe119", "#4363d8", "#f58231", "#42d4f4", "#f032e6", "#fabebe", "#469990", "#e6beff", "#9A6324", "#fffac8", "#800000", "#aaffc3", "#000075", "#a9a9a9", "#000000"] xMin = inf xMax = 0 yMin = inf yMax = 0 # Polygon max and mins for polygon in self.polygons: for point in polygon[0]: if point[0] < xMin: xMin = point[0] if point[0] > xMax: xMax = point[0] if point[1] < yMin: yMin = point[1] if point[1] > yMax: yMax = point[1] canvasWidth = self.canvas.winfo_width() canvasHeight = self.canvas.winfo_height() # Flip y-axis because origin of canvas is top left xCanvasMin = 10 xCanvasMax = canvasWidth - 10 yCanvasMin = canvasHeight - 10 yCanvasMax = 10 xScale = (xCanvasMax-xCanvasMin)/(xMax-xMin) yScale = (yCanvasMin-yCanvasMax)/(yMax-yMin) if xScale < yScale: scale = xScale # Centre vertically yCanvasMin -= (canvasHeight - scale*(yMax-yMin)) / 2.0 else: scale = yScale # Centre horizontally xCanvasMin += (canvasWidth - scale*(xMax-xMin)) / 2.0 for i, polygon in enumerate(self.polygons): scaledPoints = [] for point in polygon[0]: scaledPoints.append((point[0]-xMin)*scale + xCanvasMin) scaledPoints.append((point[1]-yMin)*-scale + yCanvasMin) self.canvas.create_polygon(scaledPoints, fill="", outline=colours[i%len(colours)], width=1) for i, circle in enumerate(self.circles): radius = circle[1] x = (circle[0][0]-xMin)*scale + xCanvasMin y = (circle[0][1]-yMin)*-scale + yCanvasMin x1 = (circle[0][0]-radius-xMin)*scale + xCanvasMin x2 = (circle[0][0]+radius-xMin)*scale + xCanvasMin y1 = (circle[0][1]-radius-yMin)*-scale + yCanvasMin y2 = (circle[0][1]+radius-yMin)*-scale + yCanvasMin self.canvas.create_oval(x, y, x, y, outline=colours[i%len(colours)]) self.canvas.create_oval(x1, y1, x2, y2, outline=colours[i%len(colours)]) def browse(self): # Bound to browse_button directory = filedialog.askdirectory(mustexist=True) if not directory: return try: chdir(directory) except OSError as e: messagebox.showerror(title="Error", message=repr(e)) return self.outputFolder.set(directory) def save(self): # Bound to saveButton dxfFileName = "circles.dxf" circlesFileName = "circles.csv" pointsFileName = "points.csv" if not self.outputFolder.get(): messagebox.showerror(title="Error", message="Output Folder not set.") return try: if self.outputFolder.get()[-1] != "/": makedirs(self.outputFolder.get(), exist_ok=True) self.outputFolder.set(self.outputFolder.get()+"/") else: makedirs(self.outputFolder.get()[:-1], exist_ok=True) except OSError: messagebox.showerror(title="Error", message=f"Output Folder: {self.outputFolder.get()} is not able to be created.") return if self.outputPoints.get() or self.outputDXFPoints.get() or self.outputDXFPolyLines.get(): if int(self.outputPointsNum.get()) < 3: messagebox.showerror(title="Error", message="Number of points on circle should be greater than 2.") return if self.outputDXF.get(): if self.outputDXFCircle.get() or self.outputDXFDiameter.get() or self.outputDXFLabel.get() or self.outputDXFPoints.get() or self.outputDXFPolyLines.get(): self.saveDXF(self.outputFolder.get()+dxfFileName) else: messagebox.showerror(title="Error", message="Output to DXF is selected, at least one of the sub options needs to also be selected.") return if self.outputCircles.get(): self.saveCircles(self.outputFolder.get()+circlesFileName) if self.outputPoints.get(): self.savePoints(self.outputFolder.get()+pointsFileName) messagebox.showinfo(title="Success", message="Saved File/s") def saveDXF(self, outFileNameDXF): try: with r12writer(outFileNameDXF) as dxf: for i, circle in enumerate(self.circles): pointsNum = int(self.outputPointsNum.get()) centre = circle[0] radius = circle[1] x = centre[0] x1 = x + radius x2 = x - radius y = centre[1] z = centre[2] arc = 2 * pi / pointsNum # Draw the circle if self.outputDXFCircle.get(): dxf.add_circle(centre, radius=radius, layer="Circle"+str(i)) # Draw the diameter line if self.outputDXFDiameter.get(): dxf.add_line((x1, y, z), (x2, y, z), layer="Circle"+str(i)) # Draw the diameter label if self.outputDXFLabel.get(): diameter = radius * 2.0 # polylabel gives the radius of the circle, we want the diameter lineCentre = [(x2-x1)/2.0 + x1, y + 0.2, z] # Centre of the line with a slight offset dxf.add_text(f"{diameter:.2f}", lineCentre, align="CENTER", layer="Circle"+str(i)) # Draw the points approximating circle if self.outputDXFPoints.get(): # For each circle calculate outputPointsNum number of points around it for j in range(pointsNum): angle = arc * j currX = x + radius*cos(angle) currY = y + radius*sin(angle) dxf.add_point((currX, currY, z), layer="Circle"+str(i)) # Draw the polylines approximating circle if self.outputDXFPolyLines.get(): # For each circle calculate outputPointsNum number of points around it points = [(x+radius*cos(arc*j), y+radius*sin(arc*j), z) for j in range(pointsNum)] points.append(points[0]) dxf.add_polyline(points, layer="Circle"+str(i)) except OSError: messagebox.showerror(title="Error", message=f"Could not write to output file: {outFileNameDXF}") return 1 return 0 def saveCircles(self, outFileNameCircles): try: with open(outFileNameCircles, "w") as f: for circle in self.circles: diameter = circle[1] * 2.0 # polylabel gives the radius of the circle, we want to print the diameter # Output to 2 decimal places output = f"{circle[0][0]:.2f},{circle[0][1]:.2f},{circle[0][2]:.2f},{diameter:.2f}\n" f.write(output) except OSError: messagebox.showerror(title="Error", message=f"Could not write to output file: {outFileNameCircles}") return 1 return 0 def savePoints(self, outFileNamePoints): pointsNum = int(self.outputPointsNum.get()) try: with open(outFileNamePoints, "w") as f: for circle in self.circles: # For each circle calculate outputPointsNum number of points around it arc = 2 * pi / pointsNum for i in range(pointsNum): angle = arc * i x = circle[0][0] + circle[1]*cos(angle) y = circle[0][1] + circle[1]*sin(angle) # Output to 2 decimal places output = f"{x:.2f},{y:.2f},{circle[0][2]:.2f}\n" f.write(output) f.write("\n") except OSError: messagebox.showerror(title="Error", message=f"Could not write to output file: {outFileNamePoints}") return 1 return 0 class AskColumns(tk.Toplevel): def __init__(self, fileName): self.parent = tk._default_root # pylint: disable=W0212 super().__init__(self.parent) self.result = None self.separatorList = {"Comma":",", "Whitespace":" ", "Colon":":", "Semicolon":";", "Equals Sign":"="} self.currSeparator = self.separatorList["Comma"] self.fileName = fileName self.csvLines = [] self.maxWidth = 0 self.loadLines() self.withdraw() # remain invisible for now # If the master is not viewable, don't # make the child transient, or else it # would be opened withdrawn if self.parent.winfo_viewable(): self.transient(self.parent) self.title("Select Columns") # Layout self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) self.mainframe = ttk.Frame(self) self.mainframe.bind("<1>", lambda event: self.mainframe.focus_set()) self.mainframe.grid(column=0, row=0, sticky="NESW") self.mainframe.columnconfigure(0, weight=1) self.mainframe.rowconfigure(1, weight=1) descLabel = ttk.Label(self.mainframe, text=f"Select the columns that contain the X,Y,Z co-ordinates of the polygons.\n" "If the polygons aren't separated by non-numerical lines, a column needs to be chosen to use as an ID string. " "The ID needs to be the same for each point in a polygon and different or not continuous between polygons.\n" "Use the selection box at the bottom to change the delimiter if the file isn't comma delimited.", anchor="w", justify="left", wraplength=500) descLabel.grid(column=0, row=0, padx=10, pady=10, sticky="EW") descLabel.bind('<Configure>', lambda e: descLabel.config(wraplength=descLabel.winfo_width())) # NOTE(Derek): possibly add tooltip for showing full path? (https://stackoverflow.com/questions/20399243/display-message-when-hovering-over-something-with-mouse-cursor-in-python) ttk.Label(self.mainframe, text=f"File: {path.basename(self.fileName)}", anchor="e", justify="right", wraplength=300)\ .grid(column=1, row=0, padx=10, pady=10, sticky="ESW") self.data(self.mainframe) self.buttonbox(self.mainframe) ## self.protocol("WM_DELETE_WINDOW", self.cancel) # become visible now self.deiconify() # wait for window to appear on screen before calling grab_set self.wait_visibility() self.grab_set() self.focus_force() self.wait_window(self) def destroy(self): tk.Toplevel.destroy(self) def yview(self, *args): for canvas in self.dataCanvases: canvas.yview(*args) def _bind_mouse(self, _=None): self.dataFrame.bind_all("<4>", self._on_mousewheel) self.dataFrame.bind_all("<5>", self._on_mousewheel) self.dataFrame.bind_all("<MouseWheel>", self._on_mousewheel) def _unbind_mouse(self, _=None): self.dataFrame.unbind_all("<4>") self.dataFrame.unbind_all("<5>") self.dataFrame.unbind_all("<MouseWheel>") def _on_mousewheel(self, event): # Linux uses event.num; Windows / Mac uses event.delta if event.num == 4 or event.delta > 0: for canvas in self.dataCanvases: canvas.yview_scroll(-1, "units") elif event.num == 5 or event.delta < 0: for canvas in self.dataCanvases: canvas.yview_scroll(1, "units") def data(self, master): def onFrameConfigure(canvas): # Reset the scroll region to encompass the inner frame x1, y1, x2, y2 = canvas.bbox("all") canvas.configure(scrollregion=(x1, y1, x2, y2)) canvas.configure(width=x2-x1) self.dataFrame = ttk.Frame(master, relief="sunken", borderwidth=4) self.dataFrame.grid(column=0, columnspan=2, row=1, padx=10, pady=0, sticky="NESW") # self.dataFrame.grid(column=0, row=1, padx=10, pady=0, sticky="NESW") self.dataFrame.rowconfigure(1, weight=1) self.dataFrame.bind("<Enter>", self._bind_mouse) self.dataFrame.bind("<Leave>", self._unbind_mouse) scroll = tk.Scrollbar(self.dataFrame, orient="vertical", command=self.yview) scroll.grid(column=self.maxWidth, row=1, sticky="NS") options = ["Ignore", "X", "Y", "Z", "ID"] self.selectionBoxes = [] self.dataCanvases = [] for column in range(self.maxWidth): self.dataFrame.columnconfigure(column, weight=1) # Header header = ttk.Frame(self.dataFrame, relief="groove", borderwidth=1) header.grid(column=column, row=0, sticky="EW") header.columnconfigure(0, weight=1) ttk.Label(header, text=column, anchor="center")\ .grid(column=0, row=0, sticky="EW") selection = ttk.Combobox(header, values=options, width=5, state="readonly") selection.grid(column=0, row=1, sticky="EW") selection.bind("<<ComboboxSelected>>", self.selected) selection.current(0) self.selectionBoxes.append(selection) # Show a preview of some of the data file canvas = tk.Canvas(self.dataFrame, borderwidth=0, highlightthickness=0) canvas.grid(column=column, row=1, sticky="NSW") canvasFrame = ttk.Frame(canvas, borderwidth=0) canvasFrame.grid(column=0, row=0, sticky="NESW") canvas.create_window((0, 0), window=canvasFrame, anchor="nw") canvas.configure(yscrollcommand=scroll.set) canvasFrame.bind("<Configure>", lambda event, canvas=canvas: onFrameConfigure(canvas)) self.dataCanvases.append(canvas) for row, line in enumerate(self.csvLines): if column < len(line): token = line[column] ttk.Label(canvasFrame, text=token.strip(), relief="sunken", borderwidth=1)\ .grid(column=0, row=row, padx=1, sticky="EW") else: ttk.Label(canvasFrame, text="", borderwidth=1)\ .grid(column=0, row=row, padx=1, sticky="EW") def buttonbox(self, master): box = ttk.Frame(master) box.grid(column=0, columnspan=2, row=2, padx=10, pady=10, sticky="EW") # NOTE(Derek): possibly allow entering characters ttk.Label(box, text="Delimiter:")\ .grid(column=0, row=0, padx=(5, 0), pady=5, sticky="E") self.separatorSelect = ttk.Combobox(box, values=list(self.separatorList), width=9, state="readonly") self.separatorSelect.grid(column=1, row=0, padx=(0, 5), pady=5, sticky="W") self.separatorSelect.bind("<<ComboboxSelected>>", self.separatorSet) self.separatorSelect.current(0) self.okButton = ttk.Button(box, text="OK", width=10, command=self.ok, default=tk.ACTIVE) self.okButton.grid(column=2, row=0, padx=5, pady=5, sticky="E") ttk.Button(box, text="Cancel", width=10, command=self.cancel)\ .grid(column=3, row=0, padx=5, pady=5, sticky="E") box.columnconfigure(1, weight=1) self.bind("<Return>", self.ok) self.bind("<Escape>", self.cancel) def selected(self, event): current = event.widget.current() # Check for other selections having the same value if not "Ignore" # and reset any to "Ignore". if current > 0: for selection in self.selectionBoxes: # Only check other widgets if selection is not event.widget: if selection.current() == current: selection.current(0) def separatorSet(self, event): newSeparator = self.separatorList[event.widget.get()] if newSeparator != self.currSeparator: self.currSeparator = newSeparator self.loadLines() self.dataFrame.grid_forget() self.dataFrame.destroy() self.data(self.mainframe) def loadLines(self): self.csvLines = [] self.maxWidth = 0 try: with open(self.fileName, "r") as f: for i, line in enumerate(f): self.csvLines.append(smartSplit(line.strip(), self.currSeparator)) self.maxWidth = max(self.maxWidth, len(self.csvLines[i])) # Only take at most 100 lines if i > 100: break except OSError: messagebox.showerror(title="Error", message=f"Could not open input file:\n{self.fileName}") return def getSelections(self): selections = [-1, -1, -1, -1] for i, selection in enumerate(self.selectionBoxes): current = selection.current() if current > 0: selections[current-1] = i return selections def ok(self, _=None): # _ to allow event binding # Make sure X,Y,Z are all selected (>0) selections = self.getSelections() if min(selections[:3]) < 0: self.bell() # Flash effect self.after(70, self.mainframe.focus_set) self.after(140, self.okButton.focus_set) self.after(210, self.mainframe.focus_set) self.after(280, self.okButton.focus_set) self.after(350, self.mainframe.focus_set) return self.withdraw() self.update_idletasks() self.result = self.getSelections() self.cancel() def cancel(self, _=None): # _ to allow event binding self.parent.focus_set() self.destroy() class AskAuto(tk.Toplevel): def __init__(self, baseFileName): self.parent = tk._default_root # pylint: disable=W0212 super().__init__(self.parent) self.result = None self.baseFileName = baseFileName self.withdraw() # remain invisible for now # If the master is not viewable, don't # make the child transient, or else it # would be opened withdrawn if self.parent.winfo_viewable(): self.transient(self.parent) self.title("Process File") # Layout self.resizable(False, False) self.geometry("+%d+%d" % (self.parent.winfo_rootx()+50, self.parent.winfo_rooty()+50)) self.mainframe = ttk.Frame(self) self.mainframe.bind("<1>", lambda event: self.mainframe.focus_set()) self.mainframe.grid(column=0, row=0, sticky="NESW") self.mainframe.columnconfigure(0, weight=1) self.body(self.mainframe) self.buttonbox(self.mainframe) ## self.protocol("WM_DELETE_WINDOW", self.skip) # become visible now self.deiconify() # wait for window to appear on screen before calling grab_set self.wait_visibility() self.grab_set() self.focus_force() self.wait_window(self) def body(self, master): bodyFrame = ttk.Frame(master) bodyFrame.grid(column=0, columnspan=4, row=0, padx=20, pady=20, sticky="NESW") bodyFrame.columnconfigure(3, weight=1) ttk.Label(bodyFrame, wraplength=400, text=f"{self.baseFileName}", font="-weight bold")\ .grid(column=0, columnspan=4, row=0, sticky="NESW") ttk.Label(bodyFrame, wraplength=400, text="Is not in a recognised format.\nAttempt to parse automatically or manually specify columns?")\ .grid(column=0, columnspan=4, row=1, sticky="NESW") ttk.Label(bodyFrame, wraplength=400, text="If you would like this format to be automatically processed, please report an issue to the")\ .grid(column=0, columnspan=4, row=2, sticky="NESW") linkLabel = ttk.Label(bodyFrame, foreground="#0645AD", font="-underline 1", anchor="w", text=r"GitHub") linkLabel.grid(column=0, row=3, sticky="NW") linkLabel.bind("<Button-1>", lambda event: webbrowser.open(r"https://github.com/Archer4499/Maximum-Inscribed-Circle")) ttk.Label(bodyFrame, anchor="w", text="page or email")\ .grid(column=1, row=3, sticky="NW") emailLabel = ttk.Label(bodyFrame, foreground="#0645AD", font="-underline 1", anchor="w", text=r"[email protected]") emailLabel.grid(column=2, row=3, sticky="NW") emailLabel.bind("<Button-1>", lambda event: webbrowser.open(r"mailto:[email protected]&subject=Add%20support%20for%20new%20file%20format")) def buttonbox(self, master): autoButton = ttk.Button(master, text="Auto", command=self.auto, default=tk.ACTIVE) autoButton.grid(column=1, row=1, padx=0, pady=10, sticky="E") autoButton.focus_set() ttk.Button(master, text="Manual", command=self.manual)\ .grid(column=2, row=1, padx=5, pady=10, sticky="E") ttk.Button(master, text="Skip", command=self.skip)\ .grid(column=3, row=1, padx=10, pady=10, sticky="E") self.bind("<Return>", self.auto) self.bind("<Escape>", self.skip) def auto(self, _=None): self.result = True self.skip() def manual(self, _=None): self.result = False self.skip() def skip(self, _=None): self.parent.focus_set() self.destroy() def smartSplit(line, separator): # Using line.split() if whitespace used as separator allows # counting multiple sequential separators as one if separator.isspace(): tokens = line.split() else: tokens = line.split(separator) return tokens def parseWithoutID(fileName, columns, separator): # Parse columns given in columns[] without ID polygons = [] points = [] elevations = [] try: with open(fileName, "r") as f: for line in f: tokens = smartSplit(line, separator) # Make sure the line has at least as many tokens as required, otherwise treat it as empty if len(tokens) >= max(columns): try: x = float(tokens[columns[0]]) y = float(tokens[columns[1]]) z = float(tokens[columns[2]]) points.append([x, y]) elevations.append(z) continue # for line in f except ValueError: pass # If either empty line or floats can't be found in specified columns treat as end of polygon if points: if len(points) < 3: messagebox.showerror(title="Error", message=f"Not enough points in number {len(polygons)} polygon in file: {fileName}") return [] polygons.append([points, elevations]) points = [] elevations = [] if points: if len(points) < 3: messagebox.showerror(title="Error", message=f"Not enough points in number {len(polygons)} polygon in file: {fileName}") return [] polygons.append([points, elevations]) except OSError: messagebox.showerror(title="Error", message=f"Could not open input file: {fileName}") return [] return polygons def parseWithID(fileName, columns, separator): # Parse columns given in columns[] with ID polygons = [] points = [] elevations = [] try: with open(fileName, "r") as f: currID = "" for line in f: tokens = smartSplit(line, separator) # Make sure the line has at least as many tokens as required, otherwise treat it as empty if len(tokens) > max(columns): try: newID = tokens[columns[3]] # If ID is different we are in a new object if newID != currID: if len(points) >= 3: polygons.append([points, elevations]) points = [] elevations = [] currID = newID x = float(tokens[columns[0]]) y = float(tokens[columns[1]]) z = float(tokens[columns[2]]) points.append([x, y]) elevations.append(z) continue # for line in f except ValueError: pass # If either empty line or floats can't be found in specified columns treat as end of polygon if len(points) >= 3: polygons.append([points, elevations]) points = [] elevations = [] if len(points) >= 3: polygons.append([points, elevations]) except OSError: messagebox.showerror(title="Error", message=f"Could not open input file: {fileName}") return [] return polygons def parseUnknown(fileName): # Attempt to parse unknown format separators = [",", " ", ";"] polygons = [] try: with open(fileName, "r") as f: for separator in separators: f.seek(0) # Go back to start of file for each separator points = [] elevations = [] for line in f: tokens = smartSplit(line, separator) # Searches the line for a group of 3 consecutive numbers for i in range(len(tokens)-2): try: x = float(tokens[i]) y = float(tokens[i+1]) z = float(tokens[i+2]) points.append([x, y]) elevations.append(z) break except ValueError: pass else: # If line is either too short or doesn't contain 3 floats, # then it counts as an empty line and we move onto the next polygon if len(points) >= 3: polygons.append([points, elevations]) points = [] elevations = [] if len(points) >= 3: polygons.append([points, elevations]) if polygons: # If we found polygons in file finish processing, else try again with a different separator break except OSError: messagebox.showerror(title="Error", message=f"Could not open input file: {fileName}") return [] return polygons def parseData(fileName): # Parses data from the file fileName in the CSV format GEM4D outputs # And attempts to parse similar CSV files, main requirements are: # At least one line, without 3 consecutive numbers, separating each polygon # Comma separated values # 3 consecutive numbers on each polygon line interpreted as x,y,z try: with open(fileName, "r") as f: firstLine = f.readline() if not firstLine: messagebox.showerror(title="Error", message=f"File: {fileName} is empty") return [] # Reset position in file to beginning after reading first line except OSError: messagebox.showerror(title="Error", message=f"Could not open input file: {fileName}") return [] polygons = [] columns = [] separator = "," firstToken = smartSplit(firstLine, separator)[0] baseFileName = path.basename(fileName) # Check for recognised formats else ask user to specify columns if ".csv" in baseFileName and firstToken == "DHid": # GEM4D csv format columns = [1, 2, 3, -1] elif ".csv" in baseFileName and "Leapfrog" in firstToken and "v1.2" in firstToken: # Leapfrog v1.2 csv format columns = [0, 1, 2, -1] elif ".arch_d" in baseFileName and firstLine.split()[0] == "FMT_3": # Vulcan arch_d format columns = [2, 3, 4, -1] separator = " " elif "SimpleFormat" in firstToken: # Custom SimpleFormat columns = [0, 1, 2, -1] else: # TODO(Derek): checkbox to allow temp suppress warning? (while program still open) ask = AskAuto(baseFileName) answer = ask.result if answer is None: # Skip file return [] elif not answer: # Ask user to specify columns ask = AskColumns(fileName) columns = ask.result separator = ask.currSeparator if columns is None: # Cancel, skip file return [] # Parse if columns: if columns[3] < 0: polygons = parseWithoutID(fileName, columns, separator) else: polygons = parseWithID(fileName, columns, separator) else: polygons = parseUnknown(fileName) if not polygons: messagebox.showerror(title="Error", message=f"No polygons found in file: {fileName}") return [] return polygons if __name__ == '__main__': Gui().mainloop()
import os import copy import torch import torch.nn as nn import numpy as np from .network_blocks import Focus, SPPBottleneck, BaseConv, CoordAtt from .bev_transformer import DropPath, TransBlock from .swin import BasicLayer class LayerNormChannel(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \ + self.bias.unsqueeze(-1).unsqueeze(-1) return x class GroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d( pool_size, stride=1, padding=pool_size//2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PoolFormerBlock(nn.Module): """ Implementation of one PoolFormer block. --dim: embedding dim --pool_size: pooling size --mlp_ratio: mlp expansion ratio --act_layer: activation --norm_layer: normalization --drop: dropout rate --drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 --use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, pool_size=3, mlp_ratio=4., act_layer=nn.GELU, norm_layer=GroupNorm, drop=0., drop_path=0., use_layer_scale=True, layer_scale_init_value=1e-5): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Pooling(pool_size=pool_size) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) # The following two techniques are useful to train deep PoolFormers. self.drop_path = DropPath(drop_path) if drop_path > 0. \ else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter( layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.layer_scale_2 = nn.Parameter( layer_scale_init_value * torch.ones((dim)), requires_grad=True) def forward(self, x): if self.use_layer_scale: x = x + self.drop_path( self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.token_mixer(self.norm1(x))) x = x + self.drop_path( self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PoolFormerLayer(nn.Module): def __init__(self, dim, pool_size, depth, mlp_ratio=4., act_layer=nn.GELU, norm_layer=GroupNorm, drop=0., drop_path=0.): super().__init__() self.dim = dim self.depth = depth self.blocks = nn.ModuleList([ PoolFormerBlock(dim, pool_size, mlp_ratio, act_layer, norm_layer, drop, drop_path) for i in range(depth) ]) def forward(self, x): for blk in self.blocks: x = blk(x) return x class PatchEmbedding(nn.Module): def __init__(self, in_channels, out_channels, image_size, dropout = 0.): super().__init__() # down sample BEV image from 704, 800 to 176, 200 self.patch_embedding = nn.Sequential( BaseConv(in_channels, out_channels // 8, 3, 2), BaseConv(out_channels // 8, out_channels // 8, 3, 1), BaseConv(out_channels // 8, out_channels // 8, 3, 2), BaseConv(out_channels // 8, out_channels // 4, 3, 1), BaseConv(out_channels // 4, out_channels, 1, 1) ) self.compress = nn.Conv2d(out_channels * 2, out_channels, 1, 1) # To output shape position = torch.randn([1, out_channels, image_size[1] // 4, image_size[0] // 4], requires_grad=True) # To input shape cls = torch.zeros([1, out_channels, image_size[0] // 4, image_size[1] // 4], requires_grad=True) self.position_embedding = nn.Parameter(position) self.cls_token = nn.Parameter(cls) self.dropout = nn.Dropout(dropout) def forward(self, batch_data): x = batch_data['bev'] inputs = batch_data['spatial_features'] b,c,h,w = inputs.shape cls_token = self.cls_token.expand(x.shape[0], -1, -1, -1) x = self.patch_embedding(x) x = torch.cat([cls_token, x], 1) x = self.compress(x) x = x.permute(0, 1, 3, 2) positions = x + self.position_embedding embeddings = inputs + positions embeddings = self.dropout(embeddings) return embeddings class PositionEmbedding(nn.Module): def __init__(self, in_channels, out_channels, dropout = 0): super().__init__() self.patch_embedding = nn.Sequential( BaseConv(in_channels, out_channels // 8, 3, 2), BaseConv(out_channels // 8, out_channels // 8, 3, 1), BaseConv(out_channels // 8, out_channels // 4, 3, 2), BaseConv(out_channels // 4, out_channels // 2, 3, 1), BaseConv(out_channels // 2, out_channels, 1, 1) ) self.compress = BaseConv(out_channels * 2, out_channels, 1, 1) self.drop_path = DropPath(dropout) def forward(self, batch_data): bev_images = batch_data['bev'] bev_feature = batch_data['spatial_features'] position = self.patch_embedding(bev_images).permute(0, 1, 3, 2) cat_feature = torch.cat([bev_feature, position], 1) bev_feature = self.drop_path(self.compress(cat_feature)) return bev_feature class FourierEmbedding(nn.Module): def __init__(self, in_channels, out_channels, dropout = 0): super().__init__() self.patch_embedding = nn.Sequential( BaseConv(in_channels * 2, out_channels // 4, 3, 2), BaseConv(out_channels // 4, out_channels // 4, 3, 1), BaseConv(out_channels // 4, out_channels // 2, 3, 2), BaseConv(out_channels // 2, out_channels // 2, 3, 1), BaseConv(out_channels // 2, out_channels, 1, 1) ) self.compress = BaseConv(out_channels * 2, out_channels, 1, 1) self.drop_path = DropPath(dropout) def forward(self, batch_data): bev_images = batch_data['bev'] bev_feature = batch_data['spatial_features'] fourier_bev_x = torch.cos(bev_images * 2 * np.pi) class TransSPFANet(nn.Module): ''' SWIN with BEV INPUT branch. ''' def __init__(self, model_cfg, input_channels): super().__init__() self.model_cfg = model_cfg dim = input_channels out_dim = dim num_head = self.model_cfg.NUM_HEADS drop = self.model_cfg.DROP_RATE act = self.model_cfg.ACT self.num_bev_features = 128 self.num_filters = 256 self.fcous = Focus(3, 256) self.spp = SPPBottleneck(256, 256) self.compress = nn.Sequential( BaseConv(dim + 256, dim, 1, 1), BaseConv(dim, dim // 2, 1, 1) ) self.transformer = TransBlock(dim // 2, out_dim // 2, num_head, None, drop, act) self.layer_block1 = PoolFormerLayer(128, 7, 3, mlp_ratio=1) self.down_sample = BaseConv(128, 128, 3, 2) self.layer_block2 = BasicLayer(128, (100, 88), 3, 4, 4) self.deconv = nn.Sequential( nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), nn.BatchNorm2d(128), nn.SiLU(), ) self.weight_spatil = nn.Sequential( BaseConv(128, 128, 3, 1), BaseConv(128, 1, 1, 1), ) self.weight_segment= nn.Sequential( BaseConv(128, 128, 3, 1), BaseConv(128, 1, 1, 1), ) def forward(self, data_dict): origin_bev = data_dict["bev"] features = data_dict["spatial_features"] origin_for = self.spp(self.fcous(origin_bev)) origin_for = origin_for.permute(0, 1, 3, 2) concat_fea = torch.cat([features, origin_for], 1) x = self.compress(concat_fea) trans_out = self.transformer(x) # spatial information group use the poolformer block1 = self.layer_block1(trans_out) down_block1= self.down_sample(block1) # segmation information group use the swin-transformer block_temp = down_block1.permute(0, 2, 3, 1) b, h, w, c = block_temp.shape block_temp = block_temp.reshape(b, h * w, c) block2 = self.layer_block2(block_temp) block2 = block2.reshape(b, h, w, c) block2 = block2.permute(0, 3, 1, 2) block2 = self.deconv(block2) weight1 = self.weight_spatil(block1) weight2 = self.weight_segment(block2) weight = torch.softmax(torch.cat([weight1, weight2], dim=1), dim=1) result = block1 * weight[:, 0:1, :, :] + block2 * weight[:, 1:2, :, :] data_dict["spatial_features_2d"] = result return data_dict class TransSPoolformer(nn.Module): ''' CIA-SSD version 2d backbone ''' def __init__(self, model_cfg, input_channels): super().__init__() self.model_cfg = model_cfg dim = input_channels out_dim = dim '''self.position_embedding = nn.Sequential( BaseConv(3, 64, 4, 4), BaseConv(64, 128, 1, 1), BaseConv(128, 256, 1, 1), )''' self.position_embedding = PatchEmbedding(3, 256, (704, 800)) self.project = nn.Conv2d(out_dim, out_dim // 2, 1) self.bottom_up_block_0 = nn.Sequential( BaseConv(128, 128, 3, 1), BaseConv(128, 128, 3, 1), BaseConv(128, 128, 3, 1), ) self.num_bev_features = 128 self.bottom_up_block_1 = nn.Sequential( # [200, 176] -> [100, 88] nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1, bias=False, ), nn.BatchNorm2d(256), nn.ReLU(), ) self.swin_block = BasicLayer(256, (100, 88), 3, 8, 4) self.trans_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.trans_1 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(256), nn.ReLU(), ) self.deconv_block_0 = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.deconv_block_1 = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.conv_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.w_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(1), ) self.conv_1 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.w_1 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(1), ) def forward_swin_block_1(self, inputs): x = inputs.permute(0, 2, 3, 1) b, h, w, c = x.shape x = x.reshape(b, h * w, c) x = self.swin_block(x) x = x.reshape(b, h, w, c) x = x.permute(0, 3, 1, 2) return x def forward(self, data_dict): x = data_dict["spatial_features"] x = self.position_embedding(data_dict) x = self.project(x) x_0 = self.bottom_up_block_0(x) x_1 = self.bottom_up_block_1(x_0) x_1 = self.forward_swin_block_1(x_1) x_trans_0 = self.trans_0(x_0) x_trans_1 = self.trans_1(x_1) x_middle_0 = self.deconv_block_0(x_trans_1) + x_trans_0 x_middle_1 = self.deconv_block_1(x_trans_1) x_output_0 = self.conv_0(x_middle_0) x_output_1 = self.conv_1(x_middle_1) x_weight_0 = self.w_0(x_output_0) x_weight_1 = self.w_1(x_output_1) x_weight = torch.softmax(torch.cat([x_weight_0, x_weight_1], dim=1), dim=1) x_output = x_output_0 * x_weight[:, 0:1, :, :] + x_output_1 * x_weight[:, 1:, :, :] data_dict["spatial_features_2d"] = x_output.contiguous() return data_dict class TransSwinBase(nn.Module): ''' CIA-SSD version 2d backbone ''' def __init__(self, model_cfg, input_channels): super().__init__() self.model_cfg = model_cfg dim = input_channels out_dim = dim self.position_embedding = nn.Sequential( BaseConv(3, 64, 4, 4), BaseConv(64, 128, 1, 1), BaseConv(128, 256, 1, 1), ) self.project = nn.Conv2d(out_dim, out_dim // 2, 1) self.bottom_up_block_0 = nn.Sequential( BaseConv(128, 128, 3, 1), BaseConv(128, 128, 3, 1), BaseConv(128, 128, 3, 1), ) self.num_bev_features = 128 self.bottom_up_block_1 = nn.Sequential( # [200, 176] -> [100, 88] nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1, bias=False, ), nn.BatchNorm2d(256), nn.ReLU(), ) self.swin_block = BasicLayer(256, (100, 88), 5, 8, 4) self.trans_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.trans_1 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(256), nn.ReLU(), ) self.deconv_block_0 = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.deconv_block_1 = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.conv_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.w_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(1), ) self.conv_1 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.w_1 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(1), ) def forward_swin_block_1(self, inputs): x = inputs.permute(0, 2, 3, 1) b, h, w, c = x.shape x = x.reshape(b, h * w, c) x = self.swin_block(x) x = x.reshape(b, h, w, c) x = x.permute(0, 3, 1, 2) return x def forward(self, data_dict): x = data_dict["spatial_features"] bev = data_dict["bev"] bev = bev.permute(0, 1, 3, 2) position = self.position_embedding(bev) x = x + position x = self.project(x) x_0 = self.bottom_up_block_0(x) x_1 = self.bottom_up_block_1(x_0) x_1 = self.forward_swin_block_1(x_1) x_trans_0 = self.trans_0(x_0) x_trans_1 = self.trans_1(x_1) x_middle_0 = self.deconv_block_0(x_trans_1) + x_trans_0 x_middle_1 = self.deconv_block_1(x_trans_1) x_output_0 = self.conv_0(x_middle_0) x_output_1 = self.conv_1(x_middle_1) x_weight_0 = self.w_0(x_output_0) x_weight_1 = self.w_1(x_output_1) x_weight = torch.softmax(torch.cat([x_weight_0, x_weight_1], dim=1), dim=1) x_output = x_output_0 * x_weight[:, 0:1, :, :] + x_output_1 * x_weight[:, 1:, :, :] data_dict["spatial_features_2d"] = x_output.contiguous() return data_dict class Trans_Coor_Swin_Net(nn.Module): ''' Coordinate_SSD ''' def __init__(self, model_cfg, input_channels): super().__init__() self.model_cfg = model_cfg dim = input_channels out_dim = dim self.position_embedding = PositionEmbedding(3, 256, 0.1) self.project = nn.Conv2d(out_dim, out_dim // 2, 1) self.spatial_block = CoordAtt(128, 128, 16) self.num_bev_features = 128 self.bottom_up_block_1 = BaseConv(128, 256, 3, 2) self.swin_block = BasicLayer(256, (100, 88), 3, 8, 4) self.trans_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.trans_1 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(256), nn.ReLU(), ) self.deconv_block_0 = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.deconv_block_1 = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.conv_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.w_0 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(1), ) self.conv_1 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(128), nn.ReLU(), ) self.w_1 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(1), ) def forward_swin_block_1(self, inputs): x = inputs.permute(0, 2, 3, 1) b, h, w, c = x.shape x = x.reshape(b, h * w, c) x = self.swin_block(x) x = x.reshape(b, h, w, c) x = x.permute(0, 3, 1, 2) return x def forward(self, data_dict): x = data_dict["spatial_features"] x = self.position_embedding(data_dict) x = self.project(x) spatial_mask = self.spatial_block(x) x_0 = spatial_mask * x x_1 = self.bottom_up_block_1(x_0) x_1 = self.forward_swin_block_1(x_1) x_trans_0 = self.trans_0(x_0) x_trans_1 = self.trans_1(x_1) x_middle_0 = self.deconv_block_0(x_trans_1) + x_trans_0 x_middle_1 = self.deconv_block_1(x_trans_1) x_output_0 = self.conv_0(x_middle_0) x_output_1 = self.conv_1(x_middle_1) x_weight_0 = self.w_0(x_output_0) x_weight_1 = self.w_1(x_output_1) x_weight = torch.softmax(torch.cat([x_weight_0, x_weight_1], dim=1), dim=1) x_output = x_output_0 * x_weight[:, 0:1, :, :] + x_output_1 * x_weight[:, 1:, :, :] data_dict["spatial_features_2d"] = x_output.contiguous() return data_dict
from schematics.types import IntType, StringType, UTCDateTimeType from sqlalchemy.sql import and_, func, select from playlog.lib.validation import OrderType, validate from playlog.models import album, artist async def create(conn, artist_id, name, plays, first_play, last_play): return await conn.scalar(album.insert().values( artist_id=artist_id, name=name, plays=plays, first_play=first_play, last_play=last_play )) async def find_one(conn, **kwargs): query = select([artist.c.name.label('artist_name'), album]) for key, value in kwargs.items(): query = query.where(getattr(album.c, key) == value) query = query.select_from(album.join(artist)) result = await conn.execute(query) return await result.fetchone() @validate.params( artist=StringType(min_length=1, max_length=50), name=StringType(min_length=1, max_length=50), first_play_lt=UTCDateTimeType(), first_play_gt=UTCDateTimeType(), last_play_lt=UTCDateTimeType(), last_play_gt=UTCDateTimeType(), order=OrderType('artist', 'name', 'first_play', 'last_play', 'plays'), limit=IntType(required=True, min_value=1, max_value=100), offset=IntType(required=True, min_value=0) ) async def find_many(conn, params): artist_name = artist.c.name.label('artist') filters = [] if 'artist' in params: filters.append(artist_name.ilike('%{}%'.format(params['artist']))) if 'name' in params: filters.append(album.c.name.ilike('%{}%'.format(params['name']))) if 'first_play_gt' in params: filters.append(album.c.first_play >= params['first_play_gt']) if 'first_play_lt' in params: filters.append(album.c.first_play <= params['first_play_lt']) if 'last_play_gt' in params: filters.append(album.c.last_play >= params['last_play_gt']) if 'last_play_lt' in params: filters.append(album.c.last_play <= params['last_play_lt']) order = params.get('order') order_field = order['column'] if order else 'artist' order_direction = order['direction'] if order else 'asc' order_clause = artist_name if order_field == 'artist' else album.c[order_field] order_clause = getattr(order_clause, order_direction)() stmt = select([album, artist_name]).select_from(album.join(artist)) if filters: stmt = stmt.where(and_(*filters)) total = await conn.scalar(stmt.with_only_columns([func.count(album.c.id)])) stmt = stmt.offset(params['offset']).limit(params['limit']).order_by(order_clause) result = await conn.execute(stmt) items = await result.fetchall() return {'items': items, 'total': total} async def find_for_artist(conn, artist_id): query = select([album]).where(album.c.artist_id == artist_id).order_by(album.c.plays.desc()) result = await conn.execute(query) return await result.fetchall() async def update(conn, album_id, **params): await conn.execute(album.update().values(**params).where(album.c.id == album_id)) async def count_total(conn): return await conn.scalar(album.count()) async def count_new(conn, since): return await conn.scalar(select([func.count()]).where(album.c.first_play >= since)) async def submit(conn, artist_id, name, date): data = await find_one(conn, artist_id=artist_id, name=name) if data: album_id = data['id'] await update( conn=conn, album_id=album_id, plays=album.c.plays + 1, last_play=date ) else: album_id = await create( conn=conn, artist_id=artist_id, name=name, plays=1, first_play=date, last_play=date ) return album_id
""" Module that provides a class that filters profanities """ __author__ = "leoluk" __version__ = '0.0.1' import random import re arrBad = [ '2g1c', '2 girls 1 cup', 'acrotomophilia', 'anal', 'anilingus', 'anus', 'arsehole', 'ass', 'asshole', 'assmunch', 'auto erotic', 'autoerotic', 'babeland', 'baby batter', 'ball gag', 'ball gravy', 'ball kicking', 'ball licking', 'ball sack', 'ball sucking', 'bangbros', 'bareback', 'barely legal', 'barenaked', 'bastardo', 'bastinado', 'bbw', 'bdsm', 'beaver cleaver', 'beaver lips', 'bestiality', 'bi curious', 'big black', 'big breasts', 'big knockers', 'big tits', 'bimbos', 'birdlock', 'bitch', 'black cock', 'blonde action', 'blonde on blonde action', 'blow j', 'blow your l', 'blue waffle', 'blumpkin', 'bollocks', 'bondage', 'boner', 'boob', 'boobs', 'booty call', 'brown showers', 'brunette action', 'bukkake', 'bulldyke', 'bullet vibe', 'bung hole', 'bunghole', 'busty', 'butt', 'buttcheeks', 'butthole', 'camel toe', 'camgirl', 'camslut', 'camwhore', 'carpet muncher', 'carpetmuncher', 'chocolate rosebuds', 'circlejerk', 'cleveland steamer', 'clit', 'clitoris', 'clover clamps', 'clusterfuck', 'cock', 'cocks', 'coprolagnia', 'coprophilia', 'cornhole', 'cum', 'cumming', 'cunnilingus', 'cunt', 'darkie', 'date rape', 'daterape', 'deep throat', 'deepthroat', 'dick', 'dildo', 'dirty pillows', 'dirty sanchez', 'dog style', 'doggie style', 'doggiestyle', 'doggy style', 'doggystyle', 'dolcett', 'domination', 'dominatrix', 'dommes', 'donkey punch', 'double dong', 'double penetration', 'dp action', 'eat my ass', 'ecchi', 'ejaculation', 'erotic', 'erotism', 'escort', 'ethical slut', 'eunuch', 'faggot', 'fecal', 'felch', 'fellatio', 'feltch', 'female squirting', 'femdom', 'figging', 'fingering', 'fisting', 'foot fetish', 'footjob', 'frotting', 'fuck', 'fucking', 'fuck buttons', 'fudge packer', 'fudgepacker', 'futanari', 'g-spot', 'gang bang', 'gay sex', 'genitals', 'giant cock', 'girl on', 'girl on top', 'girls gone wild', 'goatcx', 'goatse', 'gokkun', 'golden shower', 'goo girl', 'goodpoop', 'goregasm', 'grope', 'group sex', 'guro', 'hand job', 'handjob', 'hard core', 'hardcore', 'hentai', 'homoerotic', 'honkey', 'hooker', 'hot chick', 'how to kill', 'how to murder', 'huge fat', 'humping', 'incest', 'intercourse', 'jack off', 'jail bait', 'jailbait', 'jerk off', 'jigaboo', 'jiggaboo', 'jiggerboo', 'jizz', 'juggs', 'kike', 'kinbaku', 'kinkster', 'kinky', 'knobbing', 'leather restraint', 'leather straight jacket', 'lemon party', 'lolita', 'lovemaking', 'make me come', 'male squirting', 'masturbate', 'menage a trois', 'milf', 'missionary position', 'motherfucker', 'mound of venus', 'mr hands', 'muff diver', 'muffdiving', 'nambla', 'nawashi', 'negro', 'neonazi', 'nig nog', 'nigga', 'nigger', 'nimphomania', 'nipple', 'nipples', 'nsfw images', 'nude', 'nudity', 'nympho', 'nymphomania', 'octopussy', 'omorashi', 'one cup two girls', 'one guy one jar', 'orgasm', 'orgy', 'paedophile', 'panties', 'panty', 'pedobear', 'pedophile', 'pegging', 'penis', 'phone sex', 'piece of shit', 'piss pig', 'pissing', 'pisspig', 'playboy', 'pleasure chest', 'pole smoker', 'ponyplay', 'poof', 'poop chute', 'poopchute', 'porn', 'porno', 'pornography', 'prince albert piercing', 'pthc', 'pubes', 'pussy', 'queaf', 'raghead', 'raging boner', 'rape', 'raping', 'rapist', 'rectum', 'reverse cowgirl', 'rimjob', 'rimming', 'rosy palm', 'rosy palm and her 5 sisters', 'rusty trombone', 's&m', 'sadism', 'scat', 'schlong', 'scissoring', 'semen', 'sex', 'sexo', 'sexy', 'shaved beaver', 'shaved pussy', 'shemale', 'shibari', 'shit', 'shota', 'shrimping', 'slanteye', 'slut', 'smut', 'snatch', 'snowballing', 'sodomize', 'sodomy', 'spic', 'spooge', 'spread legs', 'strap on', 'strapon', 'strappado', 'strip club', 'style doggy', 'suck', 'sucks', 'suicide girls', 'sultry women', 'swastika', 'swinger', 'tainted love', 'taste my', 'tea bagging', 'threesome', 'throating', 'tied up', 'tight white', 'tit', 'tits', 'titties', 'titty', 'tongue in a', 'topless', 'tosser', 'towelhead', 'tranny', 'tribadism', 'tub girl', 'tubgirl', 'tushy', 'twat', 'twink', 'twinkie', 'two girls one cup', 'undressing', 'upskirt', 'urethra play', 'urophilia', 'vagina', 'venus mound', 'vibrator', 'violet blue', 'violet wand', 'vorarephilia', 'voyeur', 'vulva', 'wank', 'wet dream', 'wetback', 'white power', 'women rapping', 'wrapping men', 'wrinkled starfish', 'xx', 'xxx', 'yaoi', 'yellow showers', 'yiffy', 'zoophilia'] class ProfanitiesFilter(object): def __init__(self, filterlist=arrBad, ignore_case=True, replacements="$@%-?!", complete=True, inside_words=False): """ Inits the profanity filter. filterlist -- a list of regular expressions that matches words that are forbidden ignore_case -- ignore capitalization replacements -- string with characters to replace the forbidden word complete -- completely remove the word or keep the first and last char? inside_words -- search inside other words? """ self.badwords = filterlist self.ignore_case = ignore_case self.replacements = replacements self.complete = complete self.inside_words = inside_words def _make_clean_word(self, length): """ Generates a random replacement string of a given length using the chars in self.replacements. """ return ''.join([random.choice(self.replacements) for i in range(length)]) def __replacer(self, match): value = match.group() if self.complete: return self._make_clean_word(len(value)) else: return value[0] + self._make_clean_word(len(value) - 2) + value[-1] def clean(self, text): """Cleans a string from profanity.""" if text is None: return text regexp_insidewords = { True: r'(%s)', False: r'\b(%s)\b', } regexp = (regexp_insidewords[self.inside_words] % '|'.join(self.badwords)) r = re.compile(regexp, re.IGNORECASE if self.ignore_case else 0) return r.sub(self.__replacer, text) if __name__ == '__main__': f = ProfanitiesFilter(['bad', 'un\w+'], replacements="-") example = "I am doing bad ungood badlike things." print(f.clean(example)) # Returns "I am doing --- ------ badlike things." f.inside_words = True print(f.clean(example)) # Returns "I am doing --- ------ ---like things." f.complete = False print(f.clean(example)) # Returns "I am doing b-d u----d b-dlike things."
#!/usr/bin/python from mod_pywebsocket import msgutil, util def web_socket_do_extra_handshake(request): pass # Always accept. def web_socket_transfer_data(request): msgutil.send_message(request, request.ws_location.split('?', 1)[1])
from django.shortcuts import render from formtools.wizard.views import SessionWizardView from .forms import StepOneForm, StepTwoForm def index(request): return render(request, 'multistepapp/index.html') class FormWizardView(SessionWizardView): template_name ='multistepapp/steps.html' form_list = [StepOneForm, StepTwoForm] def get(self, request, *args, **kwargs): try: return self.render(self.get_form()) except KeyError: return super().get(request, *args, **kwargs) def done(self, form_list, **kwargs): return render( self.request, 'multistepapp/done.html', { 'form_data': [form.cleaned_data for form in form_list], } )
from django.db import models from django.db.models import CharField # Create your models here. class Category(models.Model): name = models.CharField(max_length = 20) def __str__(self): return self.name class Post(models.Model): title = models.CharField(max_length = 255) body = models.TextField() created_on = models.DateTimeField(auto_now_add = True) last_modified = models.DateTimeField(auto_now = True) categories = models.ManyToManyField('Category', related_name = "posts") def __str__(self): return self.title class Comment(models.Model): author = models.CharField(max_length = 60) body = models.TextField() created_on = models.DateTimeField(auto_now_add=True) post = models.ForeignKey("Post", on_delete = models.CASCADE)
from typing import Union class MessageTransfer: id: str text: Union[str, None] skip: bool terminate_group: bool def __init__( self, *, id: str, text: Union[str, None] = None, skip: bool = False, terminate_group: bool = False ) -> None: self.id = id self.text = text self.skip = skip self.terminate_group = terminate_group
import config as cfig import bot as udpbot import commands as twitchcommands import sys import urllib.request import random # Load the config settings print('==> Loading settings') conf = cfig.config() # Check if we have generated a default config.ini, if so exit if conf.default == True: print('[!] Could not find config.ini. A default config.ini has been generated in the bot folder response. Please edit it and run the bot again.') sys.exit() # If we haven't generated a default config.ini, check if it's valid if conf.verifyConfigFile() == False: print('[!] Invalid config file') sys.exit() else: print('==> Settings loaded') # Load commands.ini print('==> Loading commands') cmd = twitchcommands.commands() # Check if we have generated a default commands.ini, if so exit if cmd.default == True: print('[!] Could not find command.ini. A default command.ini has been generated in the bot folder response. Please edit it and run the bot again.') sys.exit() # Ini files are valid, create a bot instance print('==> Connecting to Twitch IRC server') bot = udpbot.bot(conf.config['auth']['host'], int(conf.config['auth']['port']), conf.config['auth']['username'], conf.config['auth']['password'], conf.config['auth']['channel'], int(conf.config['auth']['timeout'])) # Connect to IRC server if bot.connect() == False: print('[!] Connection error response. Please check your internet connection and config.ini file') sys.exit() # Send login packets print('==> Logging in') bot.login() # Check login errors response = bot.getResponse() if response.lower().find('error') != -1: print('[!] Login error response. Please check your config.ini file') if conf.config['debug']['showServerOutput']: print('/r/n/r/n' + response) sys.exit() # Send start message if needed if conf.config['chat']['startMessage'] != '': bot.sendChatMessage(conf.config['chat']['startMessage']) # No errors, start the loop print('==> smoonybot is listening!') while 1: # Debug message conf.debugMessage('==> Looping...') # Loop through all file hooks for i in cmd.fileHooks: try: # Get content of that file oldContent = cmd.fileHooks[i] newContent = open(cmd.commands[i]['response'], 'r').read() # If content is different, update fileHook and send message if newContent != oldContent and newContent != '': cmd.fileHooks[i] = newContent print('==> Content changed, sending new content to chat (' + i + ')') bot.sendChatMessage(newContent) except: print('[!] Error while reading file (' + i + ')') try: # Get new packets response = bot.getResponse().lower() # Check if we have new packets # TODO: this if is probably useless if response != None: # Make sure this is a PRIVMSG packet if response.find('privmsg') != -1: # Increment received messages bot.receivedMessages += 1 # Get who has sent the message rFrom = response.split('!')[0][1:] # Set final message to empty message='' # Check if that message triggered an interal command if response.find('!reloadcmd') != -1: # Reload commands (!reloadCmd) bot.sendChatMessage('Commands reloaded!') cmd.reloadCommands() # elif response.find('!othercommand') != -1: ... # Check if that message triggered a custom command # Loop through all commands for i in cmd.commands: # Get command data cmdName = i cmdType = int(cmd.commands[i]['type']) cmdTrigger = cmd.commands[i]['trigger'].lower() cmdResponse = cmd.commands[i]['response'] cmdDefaultResponse = cmd.commands[i]['defaultResponse'] cmdReply = int(cmd.commands[i]['reply']) cmdPeriod = int(cmd.commands[i]['period']) cmdAdminOnly = int(cmd.commands[i]['adminOnly']) cmdFirstValue = int(cmd.commands[i]['firstValue']) cmdSecondValue = int(cmd.commands[i]['secondValue']) cmdPossibleAnswers = [x for x in cmd.commands[i]['possibleAnswers'].split(',')] # Make sure the command has valid response and period (default for non-periodic commands is -1) if cmdResponse != '' and cmdPeriod != 0: if cmdType == 1: # Normal command if response.find(cmdTrigger) != -1: if cmdAdminOnly == 1 and not conf.isAdmin(rFrom): print('==> ' + rFrom + ' triggered a simple admin command, but they are not an admin') else: print('==> ' + rFrom + ' triggered a simple command (' + cmdName + ')') message=cmdResponse if cmdReply == 1: message=rFrom + ' >> ' + message elif cmdType == 2: # Periodic command if bot.receivedMessages % cmdPeriod == 0: print('==> Sending periodic command (' + cmdName + ')') message=cmdResponse bot.receivedMessages = 0 elif cmdType == 3: # API command if response.find(cmdTrigger) != -1: try: # Get API content and send it req = urllibot.request.Request(cmdResponse,data=None,headers={'User-Agent': 'Mozilla/5.0'}) apiResponse = urllibot.request.urlopen(req).read().decode('UTF-8') message=apiResponse if cmdReply == 1: message=rFrom + ' >> ' + message print('==> ' + rFrom + ' triggered an API command (' + cmdName + ')') except: print('[!] Error while requesting API command (' + cmdName + ')') elif cmdType == 5: # File read command if response.find(cmdTrigger) != -1: try: # Read file content and send it print('==> ' + rFrom + ' triggered a file read command (' + cmdName + ')') content = open(cmdResponse, 'r').read() # If content is empty, send default response if content == '': message = cmdDefaultResponse else: message = content if cmdReply == 1: message=rFrom + ' >> ' + message except: print('[!] Error while reading file (' + i + ')') elif cmdType == 6: # Callout command, any command that uses a recipient name at the end if response.find(cmdTrigger) != -1: if cmdAdminOnly == 1 and not conf.isAdmin(rFrom): print('==> ' + rFrom + ' triggered a simple admin command, but they are not an admin') else: print('==> ' + rFrom + ' triggered a simple command (' + cmdName + ')') recipient = response.split(' ')[-1] message=cmdResponse + recipient if cmdReply == 1: message=rFrom + ' >> ' + message elif cmdType == 7: # any type of command that uses the form: subject cmdReplay user name if response.find(cmdTrigger) != -1: if cmdAdminOnly == 1 and not conf.isAdmin(rFrom): print('==> ' + rFrom + ' triggered a simple admin command, but they are not an admin') else: print('==> ' + rFrom + ' triggered a simple command (' + cmdName + ')') recipient = response.split(' ')[-1].strip('\r\n') message = recipient + ' ' + cmdResponse + ' ' + rFrom if cmdReply == 1: message=rFrom+' >> ' + message elif cmdType == 8: # Command that answers yes or no questions with if response.find(cmdTrigger) != -1: text = response.split(':')[2] try: question = text.split(' ', 1)[1].strip('\r\n') except: question = False if cmdAdminOnly == 1 and not conf.isAdmin(rFrom): print('==> ' + rFrom + ' triggered a simple admin command, but they are not an admin') else: if question: print('==> ' + rFrom + ' triggered a simple command (' + cmdName + ')') answerIndex = random.randint(cmdFirstValue, cmdSecondValue) message = rFrom + ' asked: ' + question + ' '*30 + cmdResponse + ' ' + cmdPossibleAnswers[answerIndex] if cmdReply == 1: message=rFrom+' >> ' + message else: print('==> ' + rFrom + ' triggered a simple command (' + cmdName + ') without a question!') answerIndex = random.randint(cmdFirstValue, cmdSecondValue) message = 'You must ask me a question if you want an answer ' + rFrom if cmdReply == 1: message=rFrom + ' >> ' + message # Send final message if needed if message != '': bot.sendChatMessage(message) # Print received packet if needed if int(conf.config['debug']['showServerOutput']) == 1: print(response, end='') except: pass
# IMAGE FILE import struct import imghdr def getImageSize(fname): with open(fname, 'rb') as fhandle: head = fhandle.read(24) if len(head) != 24: raise RuntimeError("Invalid Header") if imghdr.what(fname) == 'png': check = struct.unpack('>i', head[4:8])[0] if check != 0x0d0a1a0a: raise RuntimeError("PNG: Invalid check") width, height = struct.unpack('>ii', head[16:24]) elif imghdr.what(fname) == 'gif': width, height = struct.unpack('<HH', head[6:10]) elif imghdr.what(fname) == 'jpeg': fhandle.seek(0) # Read 0xff next size = 2 ftype = 0 while not 0xc0 <= ftype <= 0xcf: fhandle.seek(size, 1) byte = fhandle.read(1) while ord(byte) == 0xff: byte = fhandle.read(1) ftype = ord(byte) size = struct.unpack('>H', fhandle.read(2))[0] - 2 # We are at a SOFn block fhandle.seek(1, 1) # Skip `precision' byte. height, width = struct.unpack('>HH', fhandle.read(4)) else: raise RuntimeError("Unsupported format") return width, height
#!/usr/bin/python3 import argparse parser = argparse.ArgumentParser( description="Caesar Encryptor/Decryptor.") parser.add_argument("-dec",dest="mode",action="store_true",help="For decryption.") args = parser.parse_args() if args.mode == 0: text = input("Message to be encrypted: ") key = int(input("Key(Integer): ")) #luam cheia de tip integer encrypted = "" for char in text: if char != ' ': encrypted = encrypted + chr(ord(char)+key) #transformam caracterul in integer (ASCII) else: #si adunam cheia dupa care transformam inapoi in caracter encrypted = encrypted + ' ' print ("Encrypted text is: {}".format(encrypted)) else: encrypted = input("Encrypted message to be decrypted: ") key = int(input("Key(Integer): ")) text = "" for char in encrypted: if char != ' ': text = text + chr(ord(char)-key) #transformam caracterul in integer (ASCII) else: #si scadem cheia dupa care transformam inapoi in caracter encrypted = encrypted + ' ' print ("Decrypted text is: {}".format(text))
from __future__ import absolute_import from sentry.relay.projectconfig_debounce_cache.base import ProjectConfigDebounceCache from sentry.utils.redis import get_dynamic_cluster_from_options, validate_dynamic_cluster REDIS_CACHE_TIMEOUT = 3600 # 1 hr def _get_redis_key(project_id, organization_id): if organization_id: return "relayconfig-debounce:o:%s" % (organization_id,) elif project_id: return "relayconfig-debounce:p:%s" % (project_id,) else: raise ValueError() class RedisProjectConfigDebounceCache(ProjectConfigDebounceCache): def __init__(self, **options): self.is_redis_cluster, self.cluster, options = get_dynamic_cluster_from_options( "SENTRY_RELAY_PROJECTCONFIG_DEBOUNCE_CACHE_OPTIONS", options ) super(RedisProjectConfigDebounceCache, self).__init__(**options) def validate(self): validate_dynamic_cluster(self.is_redis_cluster, self.cluster) def __get_redis_client(self, routing_key): if self.is_redis_cluster: return self.cluster else: return self.cluster.get_local_client_for_key(routing_key) def check_is_debounced(self, project_id, organization_id): key = _get_redis_key(project_id, organization_id) client = self.__get_redis_client(key) if client.get(key): return True client.setex(key, REDIS_CACHE_TIMEOUT, 1) return False def mark_task_done(self, project_id, organization_id): key = _get_redis_key(project_id, organization_id) client = self.__get_redis_client(key) client.delete(key)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import torch import torch.nn as nn import torch.nn.functional as F from .utils import register_grad_sampler @register_grad_sampler(nn.GroupNorm) def compute_group_norm_grad_sample( layer: nn.GroupNorm, activations: torch.Tensor, backprops: torch.Tensor, ) -> Dict[nn.Parameter, torch.Tensor]: """ Computes per sample gradients for GroupNorm Args: layer: Layer activations: Activations backprops: Backpropagations """ gs = F.group_norm(activations, layer.num_groups, eps=layer.eps) * backprops ret = {layer.weight: torch.einsum("ni...->ni", gs)} if layer.bias is not None: ret[layer.bias] = torch.einsum("ni...->ni", backprops) return ret
import sys import os cwd = os.getcwd() path = "files" try: os.mkdir(path) except OSError: print ("Creation of the directory %s failed" % path) else: print ("Successfully created the directory %s " % path) filename = 'files/yourprogram' writefile = open(filename, "w+") writefile.write("the current working directory is:") writefile.write(cwd) writefile.write("\r\n") for i in range(10): writefile.write("This is line %d\r\n" % (i+1)) writefile.close()
from abc import abstractmethod from typing import List from open_mafia_engine.core.all import ( Actor, EPrePhaseChange, Faction, Game, handler, Event, ) from .auxiliary import TempPhaseAux class ECreateFactionChat(Event): """Event that signals creating a faction chat.""" def __init__(self, game: Game, /, faction: Faction): super().__init__(game) self.faction = faction @property def actors(self) -> List[Actor]: return self.faction.actors class FactionChatCreatorAux(TempPhaseAux): """Base class to create the faction chat for some faction.""" def __init__(self, game: Game, /, faction: Faction): self.faction = faction key = f"create chat for {self.faction.name}" super().__init__(game, key=key, use_default_constraints=False) @handler def handle_startup(self, event: EPrePhaseChange): if event.old_phase != self.game.phase_system.startup: return # NOTE: Rather than create an action, since it's startup, we should # just be able to trigger event responses. self.game.process_event(ECreateFactionChat(self.game, self.faction)) @property def actors(self) -> List[Actor]: return self.faction.actors
import numpy as np from numpy.linalg import lstsq from scipy.optimize import lsq_linear from . import moduleFrame class FitSignals(moduleFrame.Strategy): def __call__(self, signalVars, knownSpectra): # rows are additions, columns are contributors knownMask = ~np.isnan(knownSpectra[:, 0]) knownSignals = signalVars[:, knownMask] unknownSignals = signalVars[:, ~knownMask] knownSpectrum = knownSignals @ knownSpectra[knownMask, :] unknownSpectrum = self.titration.processedData - knownSpectrum fittedSignals, residuals, _, _ = lstsq( unknownSignals, unknownSpectrum, rcond=None ) fittedCurves = unknownSignals @ fittedSignals + knownSpectrum allSignals = knownSpectra.copy() allSignals[~knownMask, :] = fittedSignals return allSignals, residuals, fittedCurves class FitSignalsNonnegative(moduleFrame.Strategy): # TODO: account for known spectra def __call__(self, signalVars, knownSpectra): fittedSignals = np.empty((0, signalVars.shape[1])) residuals = np.empty((1, 0)) for signal in self.titration.processedData.T: result = lsq_linear(signalVars, signal, (0, np.inf), method="bvls") fittedSignals = np.vstack((fittedSignals, result.x)) residuals = np.append(residuals, result.cost) fittedSignals = fittedSignals.T fittedCurves = signalVars @ fittedSignals return fittedSignals, residuals, fittedCurves class ModuleFrame(moduleFrame.ModuleFrame): frameLabel = "Fit signals" dropdownLabelText = "Fit signals to curve using:" # TODO: add least squares with linear constraints dropdownOptions = { "Ordinary least squares": FitSignals, "Nonnegative least squares": FitSignalsNonnegative, } attributeName = "fitSignals"
""" Created on Wed Jan 20 10:15:31 2021 @author: Lucas.singier """ import socket import select IP = "127.0.0.1" PORT = 1234 # Creation de la socket server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # On set les options du socket server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) #Binding de la socket = permet de lier une communication par une adresse et un port server_socket.bind((IP, PORT)) # Mise en place d'un serveur pour écouter les connexions server_socket.listen() #Liste des socket listeSocket = [server_socket] # création d'un dictionnaire-> cle=pseudo,valeur=message clients = {} #Affiche sur le serveur que le serveur fonctionne bien et qu'il attend des conenxions print(f'Le serveur fonctionne sur {IP}:{PORT} \n') # fonction de récupération du message def recup_message(client_socket): try: # on recois la taille du message tailledumessage = client_socket.recv(10) # Si on ne reçois rien.. if not len(tailledumessage): return False # Convertis en int la taille du message (etait en byt) tailledumessageint = int(tailledumessage.decode('utf-8')) #On retourne donc un dictionnaire return {'cle': tailledumessage, 'mess': client_socket.recv(tailledumessageint)} except: # Exception si le client ferme sa connection ctrl+c return False while True: #Connecteur lecturesockets, _, exceptionssockets = select.select(listeSocket, [], listeSocket) # parcours la liste de socket for sock in lecturesockets: #Accepte les nouvelles connections if sock == server_socket: client_socket, client_address = server_socket.accept() # Recuperation du pseudo cli_mess = recup_message(client_socket) # Si le client se deconnecte if cli_mess is False: continue # apprend le client dans la liste de socket listeSocket.append(client_socket) clients[client_socket] = cli_mess print('Nouvel arrivant: {}'.format(cli_mess['mess'].decode('utf-8'))) # Si il existe une socket on envoie un message else: # Utilisation de la fonction de reception de messages message = recup_message(sock) # Si client se deconnecte if message is False: print('Déconnexion de {}'.format(clients[sock]['mess'].decode('utf-8'))) # Enleve le client de la liste listeSocket.remove(sock) # suppression dans la liste client del clients[sock] continue # Pour savoir qui envoie le message user = clients[sock] print(f'{user["mess"].decode("utf-8")}: {message["mess"].decode("utf-8")}') # On parcours la liste des clients socket for clisock in clients: if clisock != sock: # Affichage du pseudo et de son message clisock.send(user['cle'] + user['mess'] + message['cle'] + message['mess'])
import distdl import distdl.nn as dnn import matplotlib.pyplot as plt import numpy as np import os import time import torch from argparse import ArgumentParser from distdl.utilities.torch import * from dfno import * from mat73 import loadmat from matplotlib.animation import FuncAnimation from mpi4py import MPI from pathlib import Path from scipy import io Partition = distdl.backend.backend.Partition parser = ArgumentParser() parser.add_argument('--input', '-i', type=Path) parser.add_argument('--partition-shape', '-ps', type=int, default=(1,1,2,2,1), nargs=5) parser.add_argument('--num-data', '-nd', type=int, default=1000) parser.add_argument('--sampling-rate', '-sr', type=int, default=1) parser.add_argument('--in-timesteps', '-it', type=int, default=10) parser.add_argument('--out-timesteps', '-ot', type=int, default=40) parser.add_argument('--num-gpus', '-ng', type=int, default=1) parser.add_argument('--train-split', '-ts', type=float, default=0.8) parser.add_argument('--width', '-w', type=int, default=20) parser.add_argument('--modes', '-m', type=int, default=(4, 4, 4), nargs=3) parser.add_argument('--decomposition-order', '-do', type=int, default=1) parser.add_argument('--num-blocks', '-nb', type=int, default=4) parser.add_argument('--num-epochs', '-ne', type=int, default=500) parser.add_argument('--batch-size', '-bs', type=int, default=10) parser.add_argument('--checkpoint-interval', '-ci', type=int, default=25) parser.add_argument('--generate-visualization', '-gv', action='store_true') args = parser.parse_args() if np.prod(args.partition_shape) != MPI.COMM_WORLD.size: raise ValueError(f'The number of processes {MPI.COMM_WORLD.size} does not match the partition shape {args.partition_shape}.') P_world, P_x, P_0 = create_standard_partitions(args.partition_shape) use_cuda, cuda_aware, device_ordinal, device, ctx = get_env(P_x, num_gpus=args.num_gpus) with ctx: torch.manual_seed(P_x.rank + 123) np.random.seed(P_x.rank + 123) B = dnn.Broadcast(P_0, P_x) timestamp = torch.tensor([int(time.time())]) if P_0.active else zero_volume_tensor() timestamp = B(timestamp).item() torch.set_anomaly_enabled(True) out_dir = Path(f'data/{args.input.stem}_{timestamp}') if P_0.active: os.makedirs(out_dir) print(f'created output directory: {out_dir.resolve()}') if P_0.active: #u = torch.rand(args.num_data, 1, 64, 64, args.in_timesteps+args.out_timesteps, device=device, dtype=torch.float32) u = torch.tensor(loadmat(args.input)['u'], dtype=torch.float32)[:args.num_data].unsqueeze(1).to(device) x_slice = (slice(None, args.num_data, 1), slice(None, None, 1), *[slice(None, None, args.sampling_rate)]*(dim-3), slice(None, args.in_timesteps, 1)) y_slice = (slice(None, args.num_data, 1), slice(None, None, 1), *[slice(None, None, args.sampling_rate)]*(dim-3), slice(args.in_timesteps, args.in_timesteps+args.out_timesteps, 1)) data = {} x, data['mu_x'], data['std_x'] = unit_guassian_normalize(u[x_slice]) y, data['mu_y'], data['std_y'] = unit_guassian_normalize(u[y_slice]) split_index = int(args.train_split*args.num_data) data['x_train'] = x[:split_index, ...] data['x_test'] = x[split_index:, ...] data['y_train'] = y[:split_index, ...] data['y_test'] = y[split_index:, ...] for k, v in data.items(): print(f'{k}.shape = {v.shape}') else: data = {} data['x_train'] = zero_volume_tensor(device=device) data['x_test'] = zero_volume_tensor(device=device) data['y_train'] = zero_volume_tensor(device=device) data['y_test'] = zero_volume_tensor(device=device) data['mu_x'] = zero_volume_tensor(device=device) data['std_x'] = zero_volume_tensor(device=device) data['mu_y'] = zero_volume_tensor(device=device) data['std_y'] = zero_volume_tensor(device=device) for k, v in sorted(data.items(), key=lambda i: i[0]): S = dnn.DistributedTranspose(P_0, P_x) vars()[k] = S(v) del data print(f'index = {P_x.index}, x_train.shape = {x_train.shape}') print(f'index = {P_x.index}, x_test.shape = {x_test.shape}') print(f'index = {P_x.index}, mu_x.shape = {mu_x.shape}') print(f'index = {P_x.index}, std_x.shape = {std_x.shape}') print(f'index = {P_x.index}, y_train.shape = {y_train.shape}') print(f'index = {P_x.index}, y_test.shape = {y_test.shape}') print(f'index = {P_x.index}, mu_y.shape = {mu_y.shape}') print(f'index = {P_x.index}, std_y.shape = {std_y.shape}') x_train.requires_grad = True y_train.requires_grad = True network = DistributedFNO(P_x, [args.batch_size, 1, 64//args.sampling_rate, 64//args.sampling_rate, args.in_timesteps], args.out_timesteps, args.width, args.modes, num_blocks=args.num_blocks, device=device, dtype=x_train.dtype) parameters = [p for p in network.parameters()] criterion = dnn.DistributedMSELoss(P_x).to(device) mse = dnn.DistributedMSELoss(P_x).to(device) optimizer = torch.optim.Adam(parameters, lr=1e-3, weight_decay=1e-4) if P_0.active and args.generate_visualization: steps = [] train_accs = [] test_accs = [] for i in range(args.num_epochs): network.train() batch_indices = generate_batch_indices(P_x, x_train.shape[0], args.batch_size, shuffle=True) train_loss = 0.0 n_train_batch = 0.0 for j, (a, b) in enumerate(batch_indices): optimizer.zero_grad() x = x_train[a:b] y = y_train[a:b] y_hat = network(x) y = unit_gaussian_denormalize(y, mu_y, std_y) y_hat = unit_gaussian_denormalize(y_hat, mu_y, std_y) loss = criterion(y_hat, y) if P_0.active: print(f'epoch = {i}, batch = {j}, loss = {loss.item()}') train_loss += loss.item() n_train_batch += 1 loss.backward() optimizer.step() if P_0.active: print(f'epoch = {i}, average train loss = {train_loss/n_train_batch}') steps.append(i) train_accs.append(train_loss/n_train_batch) network.eval() with torch.no_grad(): test_loss, test_mse = 0.0, 0.0 y_true, y_pred = [], [] batch_indices = generate_batch_indices(P_x, x_test.shape[0], args.batch_size, shuffle=False) n_test_batch = 0 for j, (a, b) in enumerate(batch_indices): x = x_test[a:b] y = y_test[a:b] y_hat = network(x) y = unit_gaussian_denormalize(y, mu_y, std_y) y_hat = unit_gaussian_denormalize(y_hat, mu_y, std_y) loss = criterion(y_hat, y) mse_loss = mse(y_hat, y) test_loss += loss.item() test_mse += mse_loss.item() y_true.append(y) y_pred.append(y_hat) n_test_batch += 1 if P_0.active: print(f'average test loss = {test_loss/n_test_batch}') print(f'average test mse = {test_mse/n_test_batch}') test_accs.append(test_loss/n_test_batch) j = i+1 if j % args.checkpoint_interval == 0: with torch.no_grad(): model_path = out_dir.joinpath(f'model_{j:04d}_{P_x.rank:04d}.pt') torch.save(network.state_dict(), model_path) print(f'saved model: {model_path.resolve()}') y_true = torch.cat(tuple(y_true)) y_pred = torch.cat(tuple(y_pred)) mdict = {'y_true': y_true, 'y_pred': y_pred} mat_path = out_dir.joinpath(f'mat_{j:04d}_{P_x.rank:04d}.mat') io.savemat(mat_path, mdict) print(f'saved mat: {mat_path.resolve()}') if args.generate_visualization: G = dnn.DistributedTranspose(P_x, P_0) y_true = G(y_true).cpu().detach().numpy() y_pred = G(y_pred).cpu().detach().numpy() if P_0.active: fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) im1 = ax1.imshow(np.squeeze(y_true[0, :, :, :, 0]), animated=True) im2 = ax2.imshow(np.squeeze(y_pred[0, :, :, :, 0]), animated=True) def animate(k): im1.set_data(np.squeeze(y_true[0, :, :, :, k])) im2.set_data(np.squeeze(y_pred[0, :, :, :, k])) return (im1, im2) anim_path = out_dir.joinpath(f'anim_{j:04d}.gif') ax1.title.set_text(r'$y_{true}$') ax2.title.set_text(r'$y_{pred}$') plt.axis('on') anim = FuncAnimation(fig, animate, frames=args.out_timesteps, repeat=True) anim.save(anim_path) print(f'saved animation: {anim_path.resolve()}') curve_path = out_dir.joinpath(f'curves_{j:04d}.png') fig = plt.figure() ax = fig.add_subplot(111) ax.plot(steps, train_accs, label='Average Train Loss') ax.plot(steps, test_accs, label='Average Test Loss') plt.axis('on') plt.legend() plt.xlabel('Epoch') plt.ylabel('Loss') plt.savefig(curve_path) print(f'saved training curve plot: {curve_path.resolve()}')
import tradeStock as t import robin_stocks as r import financial as f import trading_algorithms as a import numpy as np import signal import concurrent.futures import time import matplotlib.pyplot as plt import indicators as ind from Method_kd import KD from long_algo import Long_algo from Method_BOLL_SMA import BOLL_SMA #user input robinhood account and password #you may be asked to provide text message verify code t.login() def algo_buy(tker): try: data = ind.load_stock_30min(tker) timeFrame = 20 bar = BOLL_SMA(tker,data,timeFrame) if bar.buy(): print(tker,'is to buy') money = 50 check = a.checkCap(tker,200) if check: return a.buyStock(tker,money) except Exception as exc: print('failed to track ', tker,'error:',exc) #this is for test purpose def algo_buy_test(tker): try: data = ind.load_stock_30min(tker) timeFrame = 20 bar = BOLL_SMA(tker,20, 3, data,timeFrame) if bar.buy(): print(tker,'is to buy') return tker else: pass except Exception as exc: print('failed to track ', tker,'error:',exc) while True: df = f.read_stocks('stocks/stocks.csv') watch_list = list(df['tiker']) long_list = [] buy_list = [] for tk in watch_list: try: data = ind.load_stock(tk, 200) timeFrame = 20 a = Long_algo(tk,data,timeFrame) if a.buy(): print('long position:', tk) long_list.append(tk) except Exception as exc: print('error:', exc) while not f.isMarketOpen(): #scan the long list of history price, check if any stock in long position #if in long position, put it into watch list with if len(long_list) > 0: #print('stock list',my_stock_list) print('[Info]:Long_list:',long_list) print('[Info]:buy_list:', buy_list) #sell loss """try: with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: results = list(map(lambda x: executor.submit(a.sellByReturn, x), my_stock_list)) for result in concurrent.futures.as_completed(results): if result.result() in my_stock_list: print('sell', result.result()) my_stock_list.remove(result.result()) except Exception as exc: print('error:', exc)""" """try: with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: results = list(map(lambda x: executor.submit(a.buyByAverage,x), my_stock_list)) for result in concurrent.futures.as_completed(results): data = result.result() if data not in watch_list and data is not None: print(result.result(),'add to watch list') watch_list.append(result.result()) except Exception as exc: print('buy evarage error: ', exc)""" #This section is buy action try: with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: results = list(map(lambda x: executor.submit(algo_buy_test,x), long_list)) for result in concurrent.futures.as_completed(results): if result.result() in long_list: long_list.remove(result.result()) buy_list.append(result.result()) except Exception as exc: print('error: ',exc) time.sleep(3) print('in the market loop') print('still alive') time.sleep(60)
#!/usr/bin/env python import argparse import sys import jinja2 import markdown from os import listdir, makedirs from os.path import isfile, join, exists reload(sys) sys.setdefaultencoding('utf-8') def main(args=None): src_path = 'src/pages' dist_path = 'dist' with open('src/layouts/template.html', 'r') as f: template = f.read() if not exists(dist_path): makedirs(dist_path) onlyfiles = [f for f in listdir(src_path) if isfile(join(src_path, f))] for file in onlyfiles: name, ext = file.split('.') if ext == 'md': infile = join(src_path, file) outfile = '{}/{}.{}'.format(dist_path, name, 'html') title = "Markdown to HTML from {}".format(name) with open(infile, 'r') as f: md = f.read() html = markdown.markdown(md, output_format='html5') doc = jinja2.Template(template).render(body=html, subject=title) out = open(outfile, 'w') out.write(doc) out.close() if __name__ == '__main__': sys.exit(main())
# -*- coding: utf-8 -*- """ meraki This file was automatically generated for meraki by APIMATIC v2.0 ( https://apimatic.io ). """ class UpdateDeviceSwitchPortModel(object): """Implementation of the 'updateDeviceSwitchPort' model. TODO: type model description here. Attributes: name (string): The name of the switch port tags (string): The tags of the switch port enabled (bool): The status of the switch port mtype (string): The type of the switch port ("access" or "trunk") vlan (int): The VLAN of the switch port. A null value will clear the value set for trunk ports. voice_vlan (int): The voice VLAN of the switch port. Only applicable to access ports. allowed_vlans (string): The VLANs allowed on the switch port. Only applicable to trunk ports. poe_enabled (bool): The PoE status of the switch port isolation_enabled (bool): The isolation status of the switch port rstp_enabled (bool): The rapid spanning tree protocol status stp_guard (string): The state of the STP guard ("disabled", "Root guard", "BPDU guard", "Loop guard") access_policy_number (int): The number of the access policy of the switch port. Only applicable to access ports. link_negotiation (string): The link speed for the switch port port_schedule_id (string): The ID of the port schedule. A value of null will clear the port schedule. udld (UdldEnum): The action to take when Unidirectional Link is detected (Alert only, Enforce). Default configuration is Alert only. mac_whitelist (list of string): Only devices with MAC addresses specified in this list will have access to this port. Up to 20 MAC addresses can be defined. sticky_mac_whitelist (list of string): The initial list of MAC addresses for sticky Mac whitelist. sticky_mac_whitelist_limit (int): The maximum number of MAC addresses for sticky MAC whitelist. """ # Create a mapping from Model property names to API property names _names = { "name":'name', "tags":'tags', "enabled":'enabled', "mtype":'type', "vlan":'vlan', "voice_vlan":'voiceVlan', "allowed_vlans":'allowedVlans', "poe_enabled":'poeEnabled', "isolation_enabled":'isolationEnabled', "rstp_enabled":'rstpEnabled', "stp_guard":'stpGuard', "access_policy_number":'accessPolicyNumber', "link_negotiation":'linkNegotiation', "port_schedule_id":'portScheduleId', "udld":'udld', "mac_whitelist":'macWhitelist', "sticky_mac_whitelist":'stickyMacWhitelist', "sticky_mac_whitelist_limit":'stickyMacWhitelistLimit' } def __init__(self, name=None, tags=None, enabled=None, mtype=None, vlan=None, voice_vlan=None, allowed_vlans=None, poe_enabled=None, isolation_enabled=None, rstp_enabled=None, stp_guard=None, access_policy_number=None, link_negotiation=None, port_schedule_id=None, udld=None, mac_whitelist=None, sticky_mac_whitelist=None, sticky_mac_whitelist_limit=None): """Constructor for the UpdateDeviceSwitchPortModel class""" # Initialize members of the class self.name = name self.tags = tags self.enabled = enabled self.mtype = mtype self.vlan = vlan self.voice_vlan = voice_vlan self.allowed_vlans = allowed_vlans self.poe_enabled = poe_enabled self.isolation_enabled = isolation_enabled self.rstp_enabled = rstp_enabled self.stp_guard = stp_guard self.access_policy_number = access_policy_number self.link_negotiation = link_negotiation self.port_schedule_id = port_schedule_id self.udld = udld self.mac_whitelist = mac_whitelist self.sticky_mac_whitelist = sticky_mac_whitelist self.sticky_mac_whitelist_limit = sticky_mac_whitelist_limit @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary name = dictionary.get('name') tags = dictionary.get('tags') enabled = dictionary.get('enabled') mtype = dictionary.get('type') vlan = dictionary.get('vlan') voice_vlan = dictionary.get('voiceVlan') allowed_vlans = dictionary.get('allowedVlans') poe_enabled = dictionary.get('poeEnabled') isolation_enabled = dictionary.get('isolationEnabled') rstp_enabled = dictionary.get('rstpEnabled') stp_guard = dictionary.get('stpGuard') access_policy_number = dictionary.get('accessPolicyNumber') link_negotiation = dictionary.get('linkNegotiation') port_schedule_id = dictionary.get('portScheduleId') udld = dictionary.get('udld') mac_whitelist = dictionary.get('macWhitelist') sticky_mac_whitelist = dictionary.get('stickyMacWhitelist') sticky_mac_whitelist_limit = dictionary.get('stickyMacWhitelistLimit') # Return an object of this model return cls(name, tags, enabled, mtype, vlan, voice_vlan, allowed_vlans, poe_enabled, isolation_enabled, rstp_enabled, stp_guard, access_policy_number, link_negotiation, port_schedule_id, udld, mac_whitelist, sticky_mac_whitelist, sticky_mac_whitelist_limit)
from flask import Flask, request, render_template, jsonify from flask_cors import CORS from flask_sqlalchemy import SQLAlchemy # Time zones import pytz # time & atexit: scheduler of temperature recording import time import atexit from apscheduler.schedulers.background import BackgroundScheduler import datetime import math import requests import random as rdm from backend import motor as motor import board import busio import adafruit_sht31d i2c = busio.I2C(board.SCL, board.SDA) sensor = adafruit_sht31d.SHT31D(i2c) tz = pytz.timezone('Europe/Paris') status = { 'temperature': sensor.temperature, 'humidity': sensor.relative_humidity, 'regulation': 'manual', 'percentageMotor': 0, 'motorStatus': "OK" } # ## ------------------------ ## # # ## -- SERVER -- ## # # ## ------------------------ ## # FLASK_DEBUG = 1 app = Flask(__name__, static_folder="./dist/static", template_folder="./dist") app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////var/www/flaskregul/test1.db' db = SQLAlchemy(app) cors = CORS(app, resources={r"/api/*": {"origins": "*"}}) # ## RANDOM TEST ## # @app.route('/api/random') def random_number(): response = { 'randomNumber': rdm.randint(1, 100) } return jsonify(response) # ## INITITALIZATION OF MOTOR POSITION ## # @app.route('/api/initmotor') def init_motor_request(): global status print("Motor asked for init... ") isOK = motor.initPosition() status["motorStatus"] = isOK status["percentageMotor"] = 0 if isOK == "OK": return jsonify({'motorStatus': isOK}) else: return jsonify({'motorStatus': isOK}), 500 # ## GET TEMPERATURE ## # @app.route('/api/gettemperature', methods=['GET']) def send_temperature(): # demand = float(request.get_data('demanded')) temp = measure_temperature() return jsonify({'temperature': temp}) # ## GET HUMIDITY ## # @app.route('/api/gethumidity', methods=['GET']) def send_humidity(): # demand = float(request.get_data('demanded')) return jsonify({'humidity': measure_humidity()}) # ## GET TEMPERATURE HISTORY ## # def date_handler(obj): if isinstance(obj, (datetime.datetime, datetime.date)): return obj.isoformat() else: return None @app.route('/api/gettemperaturehistory', methods=['GET']) def send_temperature_history(): db.create_all() # only to be created once # demand = float(request.get_data('demanded')) Temp_History = get_measurement_history() Dictionary = {'time': [], 'temperature': []} for i in range(1, Temp_History.__len__()): Dictionary['time'].append(Temp_History[i].time) Dictionary['temperature'].append(Temp_History[i].temperature) return jsonify(Dictionary) # ## MANUAL COMMAND ## # @app.route('/api/manualdemand', methods=['POST']) def receive_manual_demand(): demanded = request.get_json()["demanded"] print("I received manual demand = " + str(demanded) + " %") print("Executing...") newPercentage = demand_motor(demanded) print("Executed = " + str(math.floor(newPercentage))) return jsonify({'realized': math.floor(newPercentage)}) # ## GET REGULATION STATUS (AUTO/MANUAL) ## # @app.route('/api/getregulation', methods=['GET']) def send_regulation(): global status # retrieving regulation status from client regulation = status["regulation"] print("sending info on regulation type = " + regulation) if regulation == 'manual': return jsonify({'regulation': regulation, 'realized': status["percentageMotor"]}) else: return jsonify({'regulation': regulation}) # ## SET REGULATION STATUS (AUTO/MANUAL) ## # @app.route('/api/setregulation', methods=['POST']) def receive_regulation(): global status # retrieving regulation status from client regulation = request.get_json()["regulation"] print("I received the regulation type = " + regulation) # sanity check of the demanded status if (regulation != "auto" and regulation != "manual"): return jsonify({'error': 'unauthorized regulation mode: ' + '\'' + regulation + '\'' }), 400 else: status["regulation"] = regulation return jsonify({'realized': regulation}) # ## ROUTING ## # @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): if app.debug: return requests.get('http://192.168.1.67/{}'.format(path)).text return render_template("index.html") # ## ------------------------- ## # # ## -- MEASURE -- ## # # ## ------------------------- ## # def measure_temperature(): return sensor.temperature def measure_humidity(): return sensor.relative_humidity def get_measurement_history(): return TimeAndTemp.query.all() # ## ------------------------- ## # # ## -- COMMAND -- ## # # ## ------------------------- ## # def demand_motor(percentage): global status oldPercentage = status["percentageMotor"] newPercentage = motor.setPercentage(oldPercentage, percentage) status["percentageMotor"] = newPercentage return newPercentage # ## ------------------------- ## # # ## -- REGULATION -- ## # # ## ------------------------- ## # def regulation(temperature, demand): return True # ## ------------------------- ## # # ## -- TEMPERATURE LOG -- ## # # ## ------------------------- ## # class TimeAndTemp(db.Model): id = db.Column(db.Integer, primary_key=True) time = db.Column(db.DateTime(timezone=True), nullable=False, default=datetime.datetime.utcnow) temperature = db.Column(db.Float, unique=False, nullable=False) def __repr__(self): tempstr = "%.1f" % self.temperature return "\n<Time: " + tz.localize(self.time).__str__() + " // Temp. = " + tempstr + " °C>" def RecordTemperature(): fTemp = measure_temperature() T0 = TimeAndTemp(time=db.func.now(), temperature=fTemp) db.session.add(T0) db.session.commit() # scheduler scheduler = BackgroundScheduler() scheduler.add_job(func=RecordTemperature, trigger="interval", seconds=30) scheduler.start() atexit.register(lambda: scheduler.shutdown()) # ## ------------------------- ## # # ## -- LAUNCH -- ## # # ## ------------------------- ## # if __name__ == '__main__': global status temperature = measure_temperature() print("Starting... // temperature = " + str(temperature)) # Motor checking for initPosition print("Motor intialization...") isOK = motor.initPosition() status = { 'temperature': temperature, 'regulation': 'auto', 'percentageMotor': 0, 'motorStatus': isOK } # app launch app.run() # Creation of database if not existing db.create_all() # only to be created once RecordTemperature(temperature) # scheduler scheduler = BackgroundScheduler() scheduler.add_job(func=RecordTemperature, trigger="interval", seconds=30) scheduler.start()
# Compare between two learning rates for the same model and dataset EXP_GROUPS = {'mnist': [ {'lr':1e-3, 'model':'mlp', 'dataset':'mnist'}, {'lr':1e-4, 'model':'mlp', 'dataset':'mnist'} ] }
# # MIT License # # Copyright (c) 2018 WillQ # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from typing import Dict, List import pandas from monkq.exception import DataError from monkq.utils.i18n import _ class LazyHDFTableStore(): def __init__(self, hdf_path: str): self.hdf_path = hdf_path self._cached: Dict[str, pandas.DataFrame] = dict() @property def cached_table(self) -> List[str]: return [key.strip('/') for key in self._cached.keys()] def get(self, key: str) -> pandas.DataFrame: if key in self._cached: return self._cached[key] else: try: df = pandas.read_hdf(self.hdf_path, key) self._cached[key] = df return df except KeyError: raise DataError(_("Not found hdf data {} in {}").format(key, self.hdf_path))
import demistomock as demisto import pytest import ShowCampaignSenders INCIDENT_IDS = [{"id": '1'}, {"id": '2'}, {"id": '3'}] DEMISTO_RESULT = [ { 'Contents': '[{"emailfrom": "[email protected]"}, {"emailfrom": "[email protected]"}, ' '{"emailfrom": "[email protected]"}, {"emailfrom": "[email protected]"},' '{"emailfrom": "[email protected]"}, {"emailfrom": "[email protected]"},' '{"emailfrom": "[email protected]"}]', 'Type': 3 } ] EXPECTED_TABLE = '|Email|Number Of Appearances|\n|---|---|\n| [email protected] | 4 |\n| ' \ '[email protected] | 2 |\n| [email protected] | 1 |\n' @pytest.mark.parametrize('execute_command_result, expected_md_result', [ (DEMISTO_RESULT, EXPECTED_TABLE), ([{'Contents': '[]', 'Type': 3}], 'No incidents found.'), ([{'Contents': '[{}]', 'Type': 3}], 'No incident senders found.') ]) def test_show_campaign_senders(mocker, execute_command_result, expected_md_result): """ Given: - Campaign incidents. When: - Running the show campaign senders script main function. Then: - Ensure the returned markdown result as expected. """ mocker.patch.object(demisto, 'get', return_value=INCIDENT_IDS) mocker.patch.object(demisto, 'executeCommand', return_value=execute_command_result) mocker.patch.object(ShowCampaignSenders, 'return_results') ShowCampaignSenders.main() res = ShowCampaignSenders.return_results.call_args[0][0].readable_output assert expected_md_result == res
# -*- coding: utf-8 -*- """ VTK Point Cloud Rendered using PyVista Library Create and render car shapes Author: Jari Honkanen """ import numpy as np import math import pyvista as pv from pyvista import examples def get_example_point_cloud(decimateFactor = 0.05): """ Create numpy array of points from PyVista LiDAR example """ # Get PyVista Lidar Example Data print("Downloading PyVista LiDAR Example data ...") dataset = examples.download_lidar() print(f"Downloading complete. Downloaded {dataset.n_points} points") print(f"Data type {type(dataset)}") # Get random points from the dataset pointIds = np.random.randint(low=0, high=dataset.n_points-1, size=int(dataset.n_points * decimateFactor) ) print(f"Number of points after decimation: {len(pointIds)}") return dataset.points[pointIds] def create_ellipse_points(radius=0.5, height=2.0, step=0.05, x_pos=0.0, y_pos=0.0, z_pos=0.0): """ Create an ellipse shape points array """ points_array = [] z_range = abs(height/2) for z in np.arange(-z_range, z_range, step): for angle in np.arange(0.0, 2*math.pi, step): x = radius * math.cos(angle) y = math.sin(angle) point = [x + x_pos, y + y_pos, z + z_pos] points_array.append(point) return np.array(points_array) def create_torus_points(torus_radius=1.0, tube_radius=0.4, step=0.05, x_pos=0.0, y_pos=0.0, z_pos=0.0): """ Create an trous shape points array """ points_array = [] for theta in np.arange(0.0, 2*math.pi, step): for phi in np.arange(0.0, 2*math.pi, step): x = (torus_radius + tube_radius * math.cos(theta))*math.cos(phi) z = (torus_radius + tube_radius * math.cos(theta))*math.sin(phi) y = tube_radius*math.sin(theta) point = [x + x_pos, y + y_pos, z + z_pos] points_array.append(point) return np.array(points_array) def create_box_points(x_size=1.0, y_size=1.0, z_size=1.0, step=0.05, x_pos=0.0, y_pos=0.0, z_pos=0.0): """ Create an box shape points array """ points_array = [] for z in [0, z_size]: for x in np.arange(0.0, x_size, step): for y in np.arange(0.0, y_size, step): point = [x + x_pos, y + y_pos, z + z_pos] points_array.append(point) for y in [0, y_size]: for x in np.arange(0, x_size, step): for z in np.arange(0, z_size, step): point = [x + x_pos, y + y_pos, z + z_pos] points_array.append(point) for x in [0, x_size]: for y in np.arange(0.0, y_size, step): for z in np.arange(0.0, z_size, step): point = [x + x_pos, y + y_pos, z + z_pos] points_array.append(point) return np.array(points_array) def create_car_sedan_points(x_size=4.1, y_size=1.8, z_size=1.5, step=0.05, x_pos=0.0, y_pos=0.0, z_pos=0.0): # Typical Sedan # Length = 4.1m, Width = 1.8m, height = 1.5m body_lower = create_box_points(x_size, y_size, 0.5*z_size, step, x_pos, y_pos, z_pos) body_upper = create_box_points(0.5*x_size, 0.9*y_size, 0.5*z_size, step, x_pos + 0.25*x_size, y_pos + 0.05*y_size, z_pos + 0.5*z_size) wheel_rr = create_torus_points(torus_radius=0.15*z_size, tube_radius=0.05*z_size, step=2*step, x_pos=x_pos + 0.2*x_size, y_pos=y_pos, z_pos=z_pos) wheel_rf = create_torus_points(torus_radius=0.15*z_size, tube_radius=0.05*z_size, step=2*step, x_pos=x_pos + 0.8*x_size, y_pos=y_pos, z_pos=z_pos) wheel_lr = create_torus_points(torus_radius=0.15*z_size, tube_radius=0.05*z_size, step=2*step, x_pos=x_pos + 0.2*x_size, y_pos=y_pos + y_size, z_pos=z_pos) wheel_lf = create_torus_points(torus_radius=0.15*z_size, tube_radius=0.05*z_size, step=2*step, x_pos=x_pos + 0.8*x_size, y_pos=y_pos + y_size, z_pos=z_pos) car = np.concatenate((body_lower, body_upper, wheel_rr, wheel_rf, wheel_lr, wheel_lf), axis=0) #return upper_body return car class Car: """ Simple Car Point Cloud Class """ def __init__(self, x_size=4.1, y_size=1.8, z_size=1.5, step=0.05): self.x_size = x_size self.y_size = y_size self.z_size = z_size self.step = step def setSize(self, x_size=4.1, y_size=1.8, z_size=1.5, step=0.05): self.x_size = x_size self.y_size = y_size self.z_size = z_size self.step = step def spawn(self, x_pos = 0.0, y_pos=0.0, z_pos=0.0): return create_car_sedan_points(self.x_size, self.y_size, self.z_size, self.step, x_pos, y_pos, z_pos) if __name__ == "__main__": car1 = Car() car1_points = car1.spawn() car2 = Car() car2_points = car2.spawn(x_pos = 5.0, y_pos = 2.5) points_array = np.concatenate((car1_points, car2_points), axis=0) # Create PyVista Mesh point_cloud = pv.PolyData(points_array) # Get a Z component of the point array #zData = points_array[:,-1] xData = points_array[:,0] print(f"xData points Array type: {type(xData)}") print(f"xData points Array shape: {xData.shape}") # Add to mesh #point_cloud["height"] = zData point_cloud["distance"] = xData # Plot PyVista mesh point_cloud.plot(render_points_as_spheres=True)
"""Serializer fields""" import collections from django.contrib.gis import geos, forms from django.db.models.query import QuerySet from rest_framework import renderers from rest_framework.fields import Field, FileField from spillway.compat import json from spillway.forms import fields class GeometryField(Field): def bind(self, field_name, parent): try: renderer = parent.context["request"].accepted_renderer except (AttributeError, KeyError): pass else: obj = parent.root.instance try: has_format = renderer.format in obj.query.annotations except AttributeError: if not isinstance(obj, QuerySet): try: obj = obj[0] except (IndexError, TypeError): pass has_format = hasattr(obj, renderer.format) if has_format: self.source = renderer.format super().bind(field_name, parent) def get_attribute(self, instance): # SpatiaLite returns empty/invalid geometries in WKT or GeoJSON with # exceedingly high simplification tolerances. try: return super().get_attribute(instance) except geos.GEOSException: return None def to_internal_value(self, data): # forms.GeometryField cannot handle geojson dicts. if isinstance(data, collections.Mapping): data = json.dumps(data) field = fields.GeometryField(widget=forms.BaseGeometryWidget()) return field.to_python(data) def to_representation(self, value): # Create a dict from the GEOSGeometry when the value is not previously # serialized from the spatial db. try: return {"type": value.geom_type, "coordinates": value.coords} # Value is already serialized as geojson, kml, etc. except AttributeError: return value
SECRET_KEY = 'secret' DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'priorities', 'USER': 'vagrant', } } # This should be a local folder created for use with the install_media command MEDIA_ROOT = '/usr/local/apps/madrona-priorities/mediaroot/' MEDIA_URL = 'http://localhost:8000/media/' STATIC_URL = 'http://localhost:8000/media/' POSTGIS_TEMPLATE='template1' DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('Madrona', '[email protected]') ) import logging logging.getLogger('django.db.backends').setLevel(logging.ERROR) import os LOG_FILE = os.path.join(os.path.dirname(__file__),'..','seak.log') MARXAN_OUTDIR = '/home/vagrant/marxan_output' # for vagrant boxes, put this outside the shared dir so we can symlink MARXAN_TEMPLATEDIR = os.path.join(MARXAN_OUTDIR, 'template')
#!/usr/bin/python3 # server.py - Test server for web services. # Monitor a TCP port for messages to be displayed on the pimoroni scroll phat hd. import socket import scrollphathd import configparser import logging import signal import sys import os import datetime sock = 0 # expand_file_name - If file_name is not an absolute path, prepend the root # path of the executing file. def expand_file_name(file_name): if os.path.isabs(file_name): return file_name else: return os.path.join(os.path.dirname(os.path.realpath(__file__)), file_name) # get_server_address - get the host and port values from an .ini file def get_server_address(file_name): file_name = expand_file_name(file_name) parser = configparser.ConfigParser() parser.read(file_name) host = parser.get('server_address', 'host') port = parser.getint('server_address', 'port') return host, port # cleanup - Close any open resource def cleanup(): logging.debug(str(datetime.datetime.now()) + " Server terminated") sock.close() logging.shutdown() # sig_term_handler - Handle SIGTERM (e.g. kill) signal def sig_term_handler(signal, frame): cleanup() sys.exit(0) # Main - recive and print messages. def Main(): # Setup signal handler so we can run in background. signal.signal(signal.SIGTERM, sig_term_handler) # Enable basic logging file_name = expand_file_name('server.log') logging.basicConfig(filename=file_name, filemode='w', level=logging.DEBUG) # Get socket infomration. server_address = get_server_address('socket.ini') # Create and intilize a TCP/IP socket. global sock sock = socket.socket() sock.bind(server_address) sock.settimeout(0.05) # Set defaults for scrolling display. scrollphathd.set_brightness(0.25) isFliped = False # Let the user know the server has started. logging.debug(str(datetime.datetime.now()) + " Server started") if os.getpgrp() == os.tcgetpgrp(sys.stdout.fileno()): print("Server started, ctrl-c to exit") else: print("Server started, 'kill {}' to exit".format(os.getpid())) # Listen for incomming connections. sock.listen(1) try: while True: # Wait for a connection. try: conn, addr = sock.accept() logging.debug(str(datetime.datetime.now()) +" Connection from: " + str(addr)) while True: data = conn.recv(1024).decode() if not data: conn.close() break command, junk, data = data.partition(':') # Parse the command. if command == "0": # message scrollphathd.clear() scrollphathd.write_string(data, x=17) # 17 for scroll # 0 for static elif command == "1": # set brightness scrollphathd.set_brightness(float(data)) elif command == "2": # invert display if isFliped: scrollphathd.flip(x=False, y=False) isFliped = False else: scrollphathd.flip(x=True, y=True) isFliped = True except socket.timeout: # On socket timeout, scroll the displayed message. scrollphathd.show() scrollphathd.scroll(1) # comment this out for static except KeyboardInterrupt: cleanup() if __name__ == '__main__': Main()
#!/usr/bin/python3 import socket import sys if len(sys.argv) < 2: print('usage: tcp_server port') sys.exit(1) GREEN = '\033[38;5;82m' RED = '\033[38;5;' print(GREEN) # Banner print("================") print("|| TCP Server ||") print("================") port = int(sys.argv[1]) server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind(('', port)) server.listen(1) client, addr = server.accept() print("Received connection from {}:\033[1m\033[7m{}\033[27m\033[21m".format(addr[0], addr[1])) # Server loop: while 1: data = client.recv(1024) if not data: client.shutdown(socket.SHUT_RDWR) break # if there's no more data to receive. print("Received Data:\n", data) client.send("ACK!".encode()) client.close()
import os import requests import json import pandas as pd from datetime import datetime, timedelta ENV = "sandbox" #Use "sandbox" when testing, and "api" if you have an account at Tradier API_TOKEN = "" #Fill in your Tradier API Token here ### #Script starts here ### def main(): #Get list of symbols from file filename_in = "symbols.csv" listOfSymbols = importCSV(filename_in) #Find Cash Secured Puts #Parameters: Symbols, min DTE, max DTE findCashSecuredPuts(listOfSymbols, 10, 47) ### #API Functions ### #Get Data from Tradier API def getAPIData(url): bearer_token = f"Bearer {API_TOKEN}" headers={'Authorization': bearer_token, 'Accept': 'application/json'} response = requests.get(url, headers=headers) if response.status_code == 200: return json.loads(response.content.decode('utf-8')) #Get all the upcoming expirations for given symbol def getOptionExpirations(symbol): url = f"https://{ENV}.tradier.com/v1/markets/options/expirations?symbol={symbol}" expirations_data = getAPIData(url) expirations = [] if (expirations_data['expirations']): expirations = expirations_data['expirations']['date'] return expirations #Retrieve the options chain for given symbol and expiration def getOptionsChain(symbol, expiration): url = f"https://{ENV}.tradier.com/v1/markets/options/chains?symbol={symbol}&expiration={expiration}&greeks=true" options_chain_data = getAPIData(url) options_chain = [] if (options_chain_data['options']): options_chain = options_chain_data['options']['option'] return options_chain #Retrieves latest stock price from Tradier Market API def getLastStockPrice(symbol): url = f"https://{ENV}.tradier.com/v1/markets/quotes?symbols={symbol}" quote_data = getAPIData(url) last_price = -1 if ('quote' in quote_data['quotes']): last_price = quote_data['quotes']['quote']['last'] return last_price ### #Utility functions ### #Import CSV files using Pandas library def importCSV(filename_in): data = pd.read_csv(filename_in) symbols = data['Symbol'].to_list() return symbols #Limit expirations of symbol to provided min_dte (Min Days Until Expiration) and max_dte (Max Days Until Expiration) def listOfLimitedExpirations(symbol, min_dte, max_dte): #Get option expirations for symbol expirations_list = getOptionExpirations(symbol) expirations = [] if(isinstance(expirations_list, str)): return [] for expiration_date in expirations_list: #Extract dates within set DTE date_object = datetime.strptime(expiration_date,"%Y-%m-%d") expiration_min_date = datetime.now() + timedelta(min_dte) expiration_max_date = datetime.now() + timedelta(max_dte) if (date_object <= expiration_min_date): continue if (date_object >= expiration_max_date): continue expirations.append(expiration_date) return expirations def exportToFile(data, filename_out): output = pd.DataFrame(data, columns=['Symbol','Expiration','Strike','Bid','Ask','Volume','Delta','Premium']) output.to_csv(filename_out,index=False) #Creates a new dictionary with options data def gatherOptionData(option): option_data = {} option_data['symbol'] = option['underlying'] option_data['type'] = option['option_type'] option_data['expiration'] = option['expiration_date'] option_data['strike'] = option['strike'] option_data['bid'] = option['bid'] option_data['ask'] = option['ask'] option_data['volume'] = option['volume'] option_data['open_int'] = option['open_interest'] #Add necessary greeks here option_greeks = option.get('greeks',None) if (option_greeks): option_data['delta'] = option_greeks['delta'] option_data['theta'] = option_greeks['theta'] option_data['gamma'] = option_greeks['gamma'] return option_data ### # Main function for filtering the PUT options we are looking for # You will have to set your own critera # Generally, for minimum critera, you want: # tight bid/ask spreads (under .15) # Some liquidity (Looking for volume greater than 0) # Certain delta, minium premium, etc. ### def findCashSecuredPuts(ListOfSymbols, minDays, maxDays): #Adjust these according to your criteria MAX_BID_ASK_SPREAD = .15 MIN_PRICE = 10 MAX_PRICE = 70 MIN_PREM = .30 MAX_DELTA = -.2 matching_options = [] data_frame = [] for symbol in ListOfSymbols: print(f"Processing {symbol}...") #Depending on your list of symbols, you may want to filter by current price, since you will need buying power last_price = getLastStockPrice(symbol) if (last_price <= MIN_PRICE or last_price >= MAX_PRICE): continue #We only want options expiring within a certain timeframe expirations_list = listOfLimitedExpirations(symbol, minDays, maxDays) numOptions = 0 for expiration in expirations_list: #First we need the options chain options = getOptionsChain(symbol, expiration) for option_item in options: #This will just gather data from option into a more useful dictionary option = gatherOptionData(option_item) #Start filtering by your criteria here #Make sure there is a bid/ask, otherwise there's probably no liquidity if (option['bid'] is None or option['ask'] is None): continue #Estimated premium (this goes by the approx mid price) premium = round((option['bid'] + option['ask']) / 2,2) #Check for delta if it exists delta = -999 if ('delta' in option): delta = option['delta'] #Filter out the options we actually want if (option['type'] == "put" and option['bid'] > 0 and delta >= MAX_DELTA and premium >= MIN_PREM and (option['ask'] - option['bid']) <= MAX_BID_ASK_SPREAD and option['volume'] > 0 ): #Format the output option_output = '{}, {}, BID:{}, ASK:{}, {}, {}(D), Premium: {}'\ .format( option['expiration'], option['strike'], option['bid'], option['ask'], option['volume'], delta, premium) #Separate by symbol if (numOptions == 0): matching_options.append(f"Symbol: {symbol}") numOptions += 1 #Print the screen when a match is found print(f"Wheel: {option_output}") #Add data to Pandas DataFrame data_frame.append([symbol, option['expiration'], option['strike'], option['bid'], option['ask'], option['volume'], delta, premium]) #Export results to a new csv file exportToFile(data_frame, "output_cash_secured_puts.csv") if __name__ == '__main__': main()
"""Modified code from https://developers.google.com/optimization/routing/tsp#or-tools """ # Copyright Matthew Mack (c) 2020 under CC-BY 4.0: https://creativecommons.org/licenses/by/4.0/ from __future__ import print_function import math from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp from PIL import Image, ImageDraw import os import time import copy from itertools import permutations # Change these file names to the relevant files. ORIGINAL_IMAGE = "images/brother-1024-stipple.png" IMAGE_TSP = "images/brother-1024-stipple.tsp" # Change the number of points according to the base tsp file you are using. NUMBER_OF_POINTS = 1024 NUMBER_OF_PARTITIONS = 8 INITIAL_VERTEX = 0 def create_data_model(): """Stores the data for the problem.""" # Extracts coordinates from IMAGE_TSP and puts them into an array list_of_nodes = [] with open(IMAGE_TSP) as f: for _ in range(6): next(f) for line in f: i,x,y = line.split() list_of_nodes.append((int(float(x)),int(float(y)))) data = {} # Locations in block units data['locations'] = list_of_nodes # yapf: disable data['num_vehicles'] = 1 data['depot'] = 0 return data def compute_euclidean_distance_matrix(locations): """Creates callback to return distance between points.""" distances = {} for from_counter, from_node in enumerate(locations): distances[from_counter] = {} for to_counter, to_node in enumerate(locations): if from_counter == to_counter: distances[from_counter][to_counter] = 0 else: # Euclidean distance distances[from_counter][to_counter] = (int( math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1])))) return distances def print_solution(manager, routing, solution): """Prints solution on console.""" print('Objective: {}'.format(solution.ObjectiveValue())) index = routing.Start(0) plan_output = 'Route:\n' route_distance = 0 while not routing.IsEnd(index): plan_output += ' {} ->'.format(manager.IndexToNode(index)) previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) plan_output += ' {}\n'.format(manager.IndexToNode(index)) print(plan_output) plan_output += 'Objective: {}m\n'.format(route_distance) def get_routes(solution, routing, manager): """Get vehicle routes from a solution and store them in an array.""" # Get vehicle routes and store them in a two dimensional array whose # i,j entry is the jth location visited by vehicle i along its route. routes = [] for route_nbr in range(routing.vehicles()): index = routing.Start(route_nbr) route = [manager.IndexToNode(index)] #while not routing.IsEnd(index): # index = solution.Value(routing.NextVar(index)) counter = 0 while counter < len(solution): counter += 1 index = solution[index] route.append(manager.IndexToNode(index)) routes.append(route) return routes[0] def draw_routes(nodes, path): """Takes a set of nodes and a path, and outputs an image of the drawn TSP path""" tsp_path = [] for location in path: tsp_path.append(nodes[int(location)]) original_image = Image.open(ORIGINAL_IMAGE) width, height = original_image.size tsp_image = Image.new("RGBA",(width,height),color='white') tsp_image_draw = ImageDraw.Draw(tsp_image) #tsp_image_draw.point(tsp_path,fill='black') tsp_image_draw.line(tsp_path,fill='black',width=1) tsp_image = tsp_image.transpose(Image.FLIP_TOP_BOTTOM) FINAL_IMAGE = IMAGE_TSP.replace("-stipple.tsp","-tsp.png") tsp_image.save(FINAL_IMAGE) print("TSP solution has been drawn and can be viewed at", FINAL_IMAGE) def nearest_neighbors_solution(distance_matrix): visited = {i: False for i in range(NUMBER_OF_POINTS)} nearest_neighbors = {i: -1 for i in range(NUMBER_OF_POINTS)} last_vertex = INITIAL_VERTEX should_continue = True while should_continue: should_continue = False visited[last_vertex] = True shortest_distance = float("inf") closest_neighbor = -1 for i in distance_matrix[last_vertex]: if distance_matrix[last_vertex][i] < shortest_distance and not (visited[i]): shortest_distance = distance_matrix[last_vertex][i] closest_neighbor = i should_continue = True if should_continue: nearest_neighbors[last_vertex] = closest_neighbor last_vertex = closest_neighbor else: nearest_neighbors[last_vertex] = INITIAL_VERTEX return nearest_neighbors def two_opt_solution(distance_matrix): solution = nearest_neighbors_solution(distance_matrix) original_group = convert_solution_to_group(solution) partitions = NUMBER_OF_PARTITIONS while(partitions > 0): two_opt(distance_matrix, original_group, partitions) partitions = int(partitions / 2) new_solution = convert_group_to_solution(original_group) return new_solution def two_opt(distance_matrix, group, partitions): partition_size = int(len(group)/partitions) for k in range(partitions): while True: min_change = 0 min_i = -1 min_j = -1 for i in range(1 + (k*partition_size), ((k+1)*partition_size)-2): for j in range(i+1, ((k+1)*partition_size)): u = group[i-1] v = group[i] w = group[j] x = group[(j+1) % ((k+1)*partition_size)] current_distance = (distance_matrix[u][v] + distance_matrix[w][x]) new_distance = (distance_matrix[u][w] + distance_matrix[v][x]) change = new_distance - current_distance if change < min_change: min_change = change min_i = i min_j = j swap_edges(group, min_i, min_j) if min_change == 0: break print(min_change) def swap_edges(group, v, w): #Reverses the entire slice, from vertex v to vertex w (including v and w) group[v:w+1] = group[v:w+1][::-1] def convert_group_to_solution(group): solution = {} for i in range(len(group)-1): solution[group[i]] = group[i+1] solution[group[-1]] = NUMBER_OF_POINTS print(solution) return solution def convert_solution_to_group(solution): head = INITIAL_VERTEX group = [] for i in range(NUMBER_OF_POINTS): group.append(head) head = solution[head] return group def calculate_group_cost(distance_matrix, group): cost = 0 for i in range(len(group)): cost += distance_matrix[group[i]][group[(i+1) % len(group)]] return cost def main(): """Entry point of the program.""" starting_moment = time.time() # Instantiate the data problem. print("Step 1/5: Initialising variables") data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager(len(data['locations']), data['num_vehicles'], data['depot']) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) print("Step 2/5: Computing distance matrix") distance_matrix = compute_euclidean_distance_matrix(data['locations']) def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return distance_matrix[from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Setting first solution heuristic. print("Step 3/5: Setting an initial solution") search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) # Solve the problem. print("Step 4/5: Solving") #solution = routing.SolveWithParameters(search_parameters) #solution = nearest_neighbors_solution(distance_matrix) solution = two_opt_solution(distance_matrix) # Print solution on console. if solution: #print_solution(manager, routing, solution) print("Step 5/5: Drawing the solution") routes = get_routes(solution, routing, manager) draw_routes(data['locations'], routes) else: print("A solution couldn't be found :(") finishing_moment = time.time() print("Total time elapsed during execution: " + str(finishing_moment - starting_moment) + " seconds") print("Total distance: " + str(calculate_group_cost(distance_matrix, convert_solution_to_group(solution)))) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2020 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.nsx_policy.infra.domains. #--------------------------------------------------------------------------- """ """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class CommunicationMaps(VapiInterface): """ """ REVISE_OPERATION_TOP = "insert_top" """ Possible value for ``operation`` of method :func:`CommunicationMaps.revise`. """ REVISE_OPERATION_BOTTOM = "insert_bottom" """ Possible value for ``operation`` of method :func:`CommunicationMaps.revise`. """ REVISE_OPERATION_AFTER = "insert_after" """ Possible value for ``operation`` of method :func:`CommunicationMaps.revise`. """ REVISE_OPERATION_BEFORE = "insert_before" """ Possible value for ``operation`` of method :func:`CommunicationMaps.revise`. """ _VAPI_SERVICE_ID = 'com.vmware.nsx_policy.infra.domains.communication_maps' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _CommunicationMapsStub) self._VAPI_OPERATION_IDS = {} def delete(self, domain_id, communication_map_id, ): """ Deletes the communication map along with all the communication entries This API is deprecated. Please use the following API instead. DELETE /infra/domains/domain-id/security-policies/security-policy-id :type domain_id: :class:`str` :param domain_id: (required) :type communication_map_id: :class:`str` :param communication_map_id: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'domain_id': domain_id, 'communication_map_id': communication_map_id, }) def get(self, domain_id, communication_map_id, ): """ Read communication-map for a domain. This API is deprecated. Please use the following API instead. GET /infra/domains/domain-id/security-policies/security-policy-id :type domain_id: :class:`str` :param domain_id: (required) :type communication_map_id: :class:`str` :param communication_map_id: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.CommunicationMap` :return: com.vmware.nsx_policy.model.CommunicationMap :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'domain_id': domain_id, 'communication_map_id': communication_map_id, }) def list(self, domain_id, cursor=None, include_mark_for_delete_objects=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ List all communication maps for a domain. This API is deprecated. Please use the following API instead. GET /infra/domains/domain-id/security-policies :type domain_id: :class:`str` :param domain_id: (required) :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type include_mark_for_delete_objects: :class:`bool` or ``None`` :param include_mark_for_delete_objects: Include objects that are marked for deletion in results (optional, default to false) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.CommunicationMapListResult` :return: com.vmware.nsx_policy.model.CommunicationMapListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'domain_id': domain_id, 'cursor': cursor, 'include_mark_for_delete_objects': include_mark_for_delete_objects, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def patch(self, domain_id, communication_map_id, communication_map, ): """ Patch the communication map for a domain. If a communication map for the given communication-map-id is not present, the object will get created and if it is present it will be updated. This is a full replace This API is deprecated. Please use the following API instead. PATCH /infra/domains/domain-id/security-policies/security-policy-id :type domain_id: :class:`str` :param domain_id: (required) :type communication_map_id: :class:`str` :param communication_map_id: (required) :type communication_map: :class:`com.vmware.nsx_policy.model_client.CommunicationMap` :param communication_map: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('patch', { 'domain_id': domain_id, 'communication_map_id': communication_map_id, 'communication_map': communication_map, }) def revise(self, domain_id, communication_map_id, communication_map, anchor_path=None, operation=None, ): """ This is used to set a precedence of a communication map w.r.t others. This API is deprecated. Please use the following API instead. POST /infra/domains/domain-id/security-policies/security-policy-id?action=revise :type domain_id: :class:`str` :param domain_id: (required) :type communication_map_id: :class:`str` :param communication_map_id: (required) :type communication_map: :class:`com.vmware.nsx_policy.model_client.CommunicationMap` :param communication_map: (required) :type anchor_path: :class:`str` or ``None`` :param anchor_path: The communication map/communication entry path if operation is 'insert_after' or 'insert_before' (optional) :type operation: :class:`str` or ``None`` :param operation: Operation (optional, default to insert_top) :rtype: :class:`com.vmware.nsx_policy.model_client.CommunicationMap` :return: com.vmware.nsx_policy.model.CommunicationMap :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('revise', { 'domain_id': domain_id, 'communication_map_id': communication_map_id, 'communication_map': communication_map, 'anchor_path': anchor_path, 'operation': operation, }) def update(self, domain_id, communication_map_id, communication_map, ): """ Create or Update the communication map for a domain. This is a full replace. All the CommunicationEntries are replaced. This API is deprecated. Please use the following API instead. PUT /infra/domains/domain-id/security-policies/security-policy-id :type domain_id: :class:`str` :param domain_id: (required) :type communication_map_id: :class:`str` :param communication_map_id: (required) :type communication_map: :class:`com.vmware.nsx_policy.model_client.CommunicationMap` :param communication_map: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.CommunicationMap` :return: com.vmware.nsx_policy.model.CommunicationMap :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'domain_id': domain_id, 'communication_map_id': communication_map_id, 'communication_map': communication_map, }) class GatewayPolicies(VapiInterface): """ """ REVISE_OPERATION_TOP = "insert_top" """ Possible value for ``operation`` of method :func:`GatewayPolicies.revise`. """ REVISE_OPERATION_BOTTOM = "insert_bottom" """ Possible value for ``operation`` of method :func:`GatewayPolicies.revise`. """ REVISE_OPERATION_AFTER = "insert_after" """ Possible value for ``operation`` of method :func:`GatewayPolicies.revise`. """ REVISE_OPERATION_BEFORE = "insert_before" """ Possible value for ``operation`` of method :func:`GatewayPolicies.revise`. """ _VAPI_SERVICE_ID = 'com.vmware.nsx_policy.infra.domains.gateway_policies' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _GatewayPoliciesStub) self._VAPI_OPERATION_IDS = {} def delete(self, domain_id, gateway_policy_id, ): """ Delete GatewayPolicy :type domain_id: :class:`str` :param domain_id: (required) :type gateway_policy_id: :class:`str` :param gateway_policy_id: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'domain_id': domain_id, 'gateway_policy_id': gateway_policy_id, }) def get(self, domain_id, gateway_policy_id, ): """ Read gateway policy for a domain. :type domain_id: :class:`str` :param domain_id: (required) :type gateway_policy_id: :class:`str` :param gateway_policy_id: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.GatewayPolicy` :return: com.vmware.nsx_policy.model.GatewayPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'domain_id': domain_id, 'gateway_policy_id': gateway_policy_id, }) def list(self, domain_id, cursor=None, include_mark_for_delete_objects=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ List all gateway policies for specified Domain. :type domain_id: :class:`str` :param domain_id: (required) :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type include_mark_for_delete_objects: :class:`bool` or ``None`` :param include_mark_for_delete_objects: Include objects that are marked for deletion in results (optional, default to false) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.GatewayPolicyListResult` :return: com.vmware.nsx_policy.model.GatewayPolicyListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'domain_id': domain_id, 'cursor': cursor, 'include_mark_for_delete_objects': include_mark_for_delete_objects, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def patch(self, domain_id, gateway_policy_id, gateway_policy, ): """ Update the gateway policy for a domain. This is a full replace. All the rules are replaced. :type domain_id: :class:`str` :param domain_id: (required) :type gateway_policy_id: :class:`str` :param gateway_policy_id: (required) :type gateway_policy: :class:`com.vmware.nsx_policy.model_client.GatewayPolicy` :param gateway_policy: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('patch', { 'domain_id': domain_id, 'gateway_policy_id': gateway_policy_id, 'gateway_policy': gateway_policy, }) def revise(self, domain_id, gateway_policy_id, gateway_policy, anchor_path=None, operation=None, ): """ This is used to set a precedence of a gateway policy w.r.t others. :type domain_id: :class:`str` :param domain_id: (required) :type gateway_policy_id: :class:`str` :param gateway_policy_id: (required) :type gateway_policy: :class:`com.vmware.nsx_policy.model_client.GatewayPolicy` :param gateway_policy: (required) :type anchor_path: :class:`str` or ``None`` :param anchor_path: The security policy/rule path if operation is 'insert_after' or 'insert_before' (optional) :type operation: :class:`str` or ``None`` :param operation: Operation (optional, default to insert_top) :rtype: :class:`com.vmware.nsx_policy.model_client.GatewayPolicy` :return: com.vmware.nsx_policy.model.GatewayPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('revise', { 'domain_id': domain_id, 'gateway_policy_id': gateway_policy_id, 'gateway_policy': gateway_policy, 'anchor_path': anchor_path, 'operation': operation, }) def update(self, domain_id, gateway_policy_id, gateway_policy, ): """ Update the gateway policy for a domain. This is a full replace. All the rules are replaced. :type domain_id: :class:`str` :param domain_id: (required) :type gateway_policy_id: :class:`str` :param gateway_policy_id: (required) :type gateway_policy: :class:`com.vmware.nsx_policy.model_client.GatewayPolicy` :param gateway_policy: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.GatewayPolicy` :return: com.vmware.nsx_policy.model.GatewayPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'domain_id': domain_id, 'gateway_policy_id': gateway_policy_id, 'gateway_policy': gateway_policy, }) class Groups(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx_policy.infra.domains.groups' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _GroupsStub) self._VAPI_OPERATION_IDS = {} def delete(self, domain_id, group_id, fail_if_subtree_exists=None, force=None, ): """ Delete Group :type domain_id: :class:`str` :param domain_id: Domain ID (required) :type group_id: :class:`str` :param group_id: Group ID (required) :type fail_if_subtree_exists: :class:`bool` or ``None`` :param fail_if_subtree_exists: Do not delete if the group subtree has any entities (optional, default to false) :type force: :class:`bool` or ``None`` :param force: Force delete the resource even if it is being used somewhere (optional, default to false) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'domain_id': domain_id, 'group_id': group_id, 'fail_if_subtree_exists': fail_if_subtree_exists, 'force': force, }) def get(self, domain_id, group_id, ): """ Read group :type domain_id: :class:`str` :param domain_id: Domain ID (required) :type group_id: :class:`str` :param group_id: Group ID (required) :rtype: :class:`com.vmware.nsx_policy.model_client.Group` :return: com.vmware.nsx_policy.model.Group :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'domain_id': domain_id, 'group_id': group_id, }) def list(self, domain_id, cursor=None, include_mark_for_delete_objects=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ List Groups for a domain :type domain_id: :class:`str` :param domain_id: Domain ID (required) :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type include_mark_for_delete_objects: :class:`bool` or ``None`` :param include_mark_for_delete_objects: Include objects that are marked for deletion in results (optional, default to false) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.GroupListResult` :return: com.vmware.nsx_policy.model.GroupListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'domain_id': domain_id, 'cursor': cursor, 'include_mark_for_delete_objects': include_mark_for_delete_objects, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def patch(self, domain_id, group_id, group, ): """ If a group with the group-id is not already present, create a new group. If it already exists, patch the group. :type domain_id: :class:`str` :param domain_id: Domain ID (required) :type group_id: :class:`str` :param group_id: Group ID (required) :type group: :class:`com.vmware.nsx_policy.model_client.Group` :param group: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('patch', { 'domain_id': domain_id, 'group_id': group_id, 'group': group, }) def update(self, domain_id, group_id, group, ): """ If a group with the group-id is not already present, create a new group. If it already exists, update the group. :type domain_id: :class:`str` :param domain_id: Domain ID (required) :type group_id: :class:`str` :param group_id: Group ID (required) :type group: :class:`com.vmware.nsx_policy.model_client.Group` :param group: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.Group` :return: com.vmware.nsx_policy.model.Group :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'domain_id': domain_id, 'group_id': group_id, 'group': group, }) class RedirectionPolicies(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx_policy.infra.domains.redirection_policies' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _RedirectionPoliciesStub) self._VAPI_OPERATION_IDS = {} def delete(self, domain_id, redirection_policy_id, ): """ Delete redirection policy. :type domain_id: :class:`str` :param domain_id: Domain id (required) :type redirection_policy_id: :class:`str` :param redirection_policy_id: Redirection map id (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'domain_id': domain_id, 'redirection_policy_id': redirection_policy_id, }) def get(self, domain_id, redirection_policy_id, ): """ Read redirection policy. :type domain_id: :class:`str` :param domain_id: Domain id (required) :type redirection_policy_id: :class:`str` :param redirection_policy_id: Redirection map id (required) :rtype: :class:`com.vmware.nsx_policy.model_client.RedirectionPolicy` :return: com.vmware.nsx_policy.model.RedirectionPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'domain_id': domain_id, 'redirection_policy_id': redirection_policy_id, }) def list(self, cursor=None, include_mark_for_delete_objects=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ List all redirection policys across all domains ordered by precedence. :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type include_mark_for_delete_objects: :class:`bool` or ``None`` :param include_mark_for_delete_objects: Include objects that are marked for deletion in results (optional, default to false) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.RedirectionPolicyListResult` :return: com.vmware.nsx_policy.model.RedirectionPolicyListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'cursor': cursor, 'include_mark_for_delete_objects': include_mark_for_delete_objects, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def list_0(self, domain_id, cursor=None, include_mark_for_delete_objects=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ List redirection policys for a domain :type domain_id: :class:`str` :param domain_id: Domain id (required) :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type include_mark_for_delete_objects: :class:`bool` or ``None`` :param include_mark_for_delete_objects: Include objects that are marked for deletion in results (optional, default to false) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.RedirectionPolicyListResult` :return: com.vmware.nsx_policy.model.RedirectionPolicyListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list_0', { 'domain_id': domain_id, 'cursor': cursor, 'include_mark_for_delete_objects': include_mark_for_delete_objects, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def patch(self, domain_id, redirection_policy_id, redirection_policy, ): """ Create or update the redirection policy. :type domain_id: :class:`str` :param domain_id: Domain id (required) :type redirection_policy_id: :class:`str` :param redirection_policy_id: Redirection map id (required) :type redirection_policy: :class:`com.vmware.nsx_policy.model_client.RedirectionPolicy` :param redirection_policy: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('patch', { 'domain_id': domain_id, 'redirection_policy_id': redirection_policy_id, 'redirection_policy': redirection_policy, }) def update(self, domain_id, redirection_policy_id, redirection_policy, ): """ Create or update the redirection policy. :type domain_id: :class:`str` :param domain_id: Domain id (required) :type redirection_policy_id: :class:`str` :param redirection_policy_id: Redirection map id (required) :type redirection_policy: :class:`com.vmware.nsx_policy.model_client.RedirectionPolicy` :param redirection_policy: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.RedirectionPolicy` :return: com.vmware.nsx_policy.model.RedirectionPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'domain_id': domain_id, 'redirection_policy_id': redirection_policy_id, 'redirection_policy': redirection_policy, }) class SecurityPolicies(VapiInterface): """ """ REVISE_OPERATION_TOP = "insert_top" """ Possible value for ``operation`` of method :func:`SecurityPolicies.revise`. """ REVISE_OPERATION_BOTTOM = "insert_bottom" """ Possible value for ``operation`` of method :func:`SecurityPolicies.revise`. """ REVISE_OPERATION_AFTER = "insert_after" """ Possible value for ``operation`` of method :func:`SecurityPolicies.revise`. """ REVISE_OPERATION_BEFORE = "insert_before" """ Possible value for ``operation`` of method :func:`SecurityPolicies.revise`. """ _VAPI_SERVICE_ID = 'com.vmware.nsx_policy.infra.domains.security_policies' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _SecurityPoliciesStub) self._VAPI_OPERATION_IDS = {} def delete(self, domain_id, security_policy_id, ): """ Deletes the security policy along with all the rules :type domain_id: :class:`str` :param domain_id: (required) :type security_policy_id: :class:`str` :param security_policy_id: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'domain_id': domain_id, 'security_policy_id': security_policy_id, }) def get(self, domain_id, security_policy_id, ): """ Read security policy for a domain. :type domain_id: :class:`str` :param domain_id: (required) :type security_policy_id: :class:`str` :param security_policy_id: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.SecurityPolicy` :return: com.vmware.nsx_policy.model.SecurityPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'domain_id': domain_id, 'security_policy_id': security_policy_id, }) def list(self, domain_id, cursor=None, include_mark_for_delete_objects=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ List all security policies for a domain. :type domain_id: :class:`str` :param domain_id: (required) :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type include_mark_for_delete_objects: :class:`bool` or ``None`` :param include_mark_for_delete_objects: Include objects that are marked for deletion in results (optional, default to false) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.SecurityPolicyListResult` :return: com.vmware.nsx_policy.model.SecurityPolicyListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'domain_id': domain_id, 'cursor': cursor, 'include_mark_for_delete_objects': include_mark_for_delete_objects, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def patch(self, domain_id, security_policy_id, security_policy, ): """ Patch the security policy for a domain. If a security policy for the given security-policy-id is not present, the object will get created and if it is present it will be updated. This is a full replace :type domain_id: :class:`str` :param domain_id: (required) :type security_policy_id: :class:`str` :param security_policy_id: (required) :type security_policy: :class:`com.vmware.nsx_policy.model_client.SecurityPolicy` :param security_policy: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('patch', { 'domain_id': domain_id, 'security_policy_id': security_policy_id, 'security_policy': security_policy, }) def revise(self, domain_id, security_policy_id, security_policy, anchor_path=None, operation=None, ): """ This is used to set a precedence of a security policy w.r.t others. :type domain_id: :class:`str` :param domain_id: (required) :type security_policy_id: :class:`str` :param security_policy_id: (required) :type security_policy: :class:`com.vmware.nsx_policy.model_client.SecurityPolicy` :param security_policy: (required) :type anchor_path: :class:`str` or ``None`` :param anchor_path: The security policy/rule path if operation is 'insert_after' or 'insert_before' (optional) :type operation: :class:`str` or ``None`` :param operation: Operation (optional, default to insert_top) :rtype: :class:`com.vmware.nsx_policy.model_client.SecurityPolicy` :return: com.vmware.nsx_policy.model.SecurityPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('revise', { 'domain_id': domain_id, 'security_policy_id': security_policy_id, 'security_policy': security_policy, 'anchor_path': anchor_path, 'operation': operation, }) def update(self, domain_id, security_policy_id, security_policy, ): """ Create or Update the security policy for a domain. This is a full replace. All the rules are replaced. :type domain_id: :class:`str` :param domain_id: (required) :type security_policy_id: :class:`str` :param security_policy_id: (required) :type security_policy: :class:`com.vmware.nsx_policy.model_client.SecurityPolicy` :param security_policy: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.SecurityPolicy` :return: com.vmware.nsx_policy.model.SecurityPolicy :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'domain_id': domain_id, 'security_policy_id': security_policy_id, 'security_policy': security_policy, }) class _CommunicationMapsStub(ApiInterfaceStub): def __init__(self, config): # properties for delete operation delete_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'communication_map_id': type.StringType(), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/policy/api/v1/infra/domains/{domain-id}/communication-maps/{communication-map-id}', path_variables={ 'domain_id': 'domain-id', 'communication_map_id': 'communication-map-id', }, query_parameters={ }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'communication_map_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/communication-maps/{communication-map-id}', path_variables={ 'domain_id': 'domain-id', 'communication_map_id': 'communication-map-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'cursor': type.OptionalType(type.StringType()), 'include_mark_for_delete_objects': type.OptionalType(type.BooleanType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/communication-maps', path_variables={ 'domain_id': 'domain-id', }, query_parameters={ 'cursor': 'cursor', 'include_mark_for_delete_objects': 'include_mark_for_delete_objects', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for patch operation patch_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'communication_map_id': type.StringType(), 'communication_map': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMap'), }) patch_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } patch_input_value_validator_list = [ HasFieldsOfValidator() ] patch_output_validator_list = [ ] patch_rest_metadata = OperationRestMetadata( http_method='PATCH', url_template='/policy/api/v1/infra/domains/{domain-id}/communication-maps/{communication-map-id}', request_body_parameter='communication_map', path_variables={ 'domain_id': 'domain-id', 'communication_map_id': 'communication-map-id', }, query_parameters={ }, content_type='application/json' ) # properties for revise operation revise_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'communication_map_id': type.StringType(), 'communication_map': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMap'), 'anchor_path': type.OptionalType(type.StringType()), 'operation': type.OptionalType(type.StringType()), }) revise_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } revise_input_value_validator_list = [ HasFieldsOfValidator() ] revise_output_validator_list = [ HasFieldsOfValidator() ] revise_rest_metadata = OperationRestMetadata( http_method='POST', url_template='/policy/api/v1/infra/domains/{domain-id}/communication-maps/{communication-map-id}?action=revise', request_body_parameter='communication_map', path_variables={ 'domain_id': 'domain-id', 'communication_map_id': 'communication-map-id', }, query_parameters={ 'anchor_path': 'anchor_path', 'operation': 'operation', }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'communication_map_id': type.StringType(), 'communication_map': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMap'), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/policy/api/v1/infra/domains/{domain-id}/communication-maps/{communication-map-id}', request_body_parameter='communication_map', path_variables={ 'domain_id': 'domain-id', 'communication_map_id': 'communication-map-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMap'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMapListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'patch': { 'input_type': patch_input_type, 'output_type': type.VoidType(), 'errors': patch_error_dict, 'input_value_validator_list': patch_input_value_validator_list, 'output_validator_list': patch_output_validator_list, 'task_type': TaskType.NONE, }, 'revise': { 'input_type': revise_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMap'), 'errors': revise_error_dict, 'input_value_validator_list': revise_input_value_validator_list, 'output_validator_list': revise_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'CommunicationMap'), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'patch': patch_rest_metadata, 'revise': revise_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx_policy.infra.domains.communication_maps', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class _GatewayPoliciesStub(ApiInterfaceStub): def __init__(self, config): # properties for delete operation delete_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'gateway_policy_id': type.StringType(), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/policy/api/v1/infra/domains/{domain-id}/gateway-policies/{gateway-policy-id}', path_variables={ 'domain_id': 'domain-id', 'gateway_policy_id': 'gateway-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'gateway_policy_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/gateway-policies/{gateway-policy-id}', path_variables={ 'domain_id': 'domain-id', 'gateway_policy_id': 'gateway-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'cursor': type.OptionalType(type.StringType()), 'include_mark_for_delete_objects': type.OptionalType(type.BooleanType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/gateway-policies', path_variables={ 'domain_id': 'domain-id', }, query_parameters={ 'cursor': 'cursor', 'include_mark_for_delete_objects': 'include_mark_for_delete_objects', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for patch operation patch_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'gateway_policy_id': type.StringType(), 'gateway_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicy'), }) patch_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } patch_input_value_validator_list = [ HasFieldsOfValidator() ] patch_output_validator_list = [ ] patch_rest_metadata = OperationRestMetadata( http_method='PATCH', url_template='/policy/api/v1/infra/domains/{domain-id}/gateway-policies/{gateway-policy-id}', request_body_parameter='gateway_policy', path_variables={ 'domain_id': 'domain-id', 'gateway_policy_id': 'gateway-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for revise operation revise_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'gateway_policy_id': type.StringType(), 'gateway_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicy'), 'anchor_path': type.OptionalType(type.StringType()), 'operation': type.OptionalType(type.StringType()), }) revise_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } revise_input_value_validator_list = [ HasFieldsOfValidator() ] revise_output_validator_list = [ HasFieldsOfValidator() ] revise_rest_metadata = OperationRestMetadata( http_method='POST', url_template='/policy/api/v1/infra/domains/{domain-id}/gateway-policies/{gateway-policy-id}?action=revise', request_body_parameter='gateway_policy', path_variables={ 'domain_id': 'domain-id', 'gateway_policy_id': 'gateway-policy-id', }, query_parameters={ 'anchor_path': 'anchor_path', 'operation': 'operation', }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'gateway_policy_id': type.StringType(), 'gateway_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicy'), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/policy/api/v1/infra/domains/{domain-id}/gateway-policies/{gateway-policy-id}', request_body_parameter='gateway_policy', path_variables={ 'domain_id': 'domain-id', 'gateway_policy_id': 'gateway-policy-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicy'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicyListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'patch': { 'input_type': patch_input_type, 'output_type': type.VoidType(), 'errors': patch_error_dict, 'input_value_validator_list': patch_input_value_validator_list, 'output_validator_list': patch_output_validator_list, 'task_type': TaskType.NONE, }, 'revise': { 'input_type': revise_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicy'), 'errors': revise_error_dict, 'input_value_validator_list': revise_input_value_validator_list, 'output_validator_list': revise_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GatewayPolicy'), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'patch': patch_rest_metadata, 'revise': revise_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx_policy.infra.domains.gateway_policies', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class _GroupsStub(ApiInterfaceStub): def __init__(self, config): # properties for delete operation delete_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'group_id': type.StringType(), 'fail_if_subtree_exists': type.OptionalType(type.BooleanType()), 'force': type.OptionalType(type.BooleanType()), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/policy/api/v1/infra/domains/{domain-id}/groups/{group-id}', path_variables={ 'domain_id': 'domain-id', 'group_id': 'group-id', }, query_parameters={ 'fail_if_subtree_exists': 'fail_if_subtree_exists', 'force': 'force', }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'group_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/groups/{group-id}', path_variables={ 'domain_id': 'domain-id', 'group_id': 'group-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'cursor': type.OptionalType(type.StringType()), 'include_mark_for_delete_objects': type.OptionalType(type.BooleanType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/groups', path_variables={ 'domain_id': 'domain-id', }, query_parameters={ 'cursor': 'cursor', 'include_mark_for_delete_objects': 'include_mark_for_delete_objects', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for patch operation patch_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'group_id': type.StringType(), 'group': type.ReferenceType('com.vmware.nsx_policy.model_client', 'Group'), }) patch_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } patch_input_value_validator_list = [ HasFieldsOfValidator() ] patch_output_validator_list = [ ] patch_rest_metadata = OperationRestMetadata( http_method='PATCH', url_template='/policy/api/v1/infra/domains/{domain-id}/groups/{group-id}', request_body_parameter='group', path_variables={ 'domain_id': 'domain-id', 'group_id': 'group-id', }, query_parameters={ }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'group_id': type.StringType(), 'group': type.ReferenceType('com.vmware.nsx_policy.model_client', 'Group'), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/policy/api/v1/infra/domains/{domain-id}/groups/{group-id}', request_body_parameter='group', path_variables={ 'domain_id': 'domain-id', 'group_id': 'group-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'Group'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'GroupListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'patch': { 'input_type': patch_input_type, 'output_type': type.VoidType(), 'errors': patch_error_dict, 'input_value_validator_list': patch_input_value_validator_list, 'output_validator_list': patch_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'Group'), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'patch': patch_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx_policy.infra.domains.groups', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class _RedirectionPoliciesStub(ApiInterfaceStub): def __init__(self, config): # properties for delete operation delete_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'redirection_policy_id': type.StringType(), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/policy/api/v1/infra/domains/{domain-id}/redirection-policies/{redirection-policy-id}', path_variables={ 'domain_id': 'domain-id', 'redirection_policy_id': 'redirection-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'redirection_policy_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/redirection-policies/{redirection-policy-id}', path_variables={ 'domain_id': 'domain-id', 'redirection_policy_id': 'redirection-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'cursor': type.OptionalType(type.StringType()), 'include_mark_for_delete_objects': type.OptionalType(type.BooleanType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/redirection-policies', path_variables={ }, query_parameters={ 'cursor': 'cursor', 'include_mark_for_delete_objects': 'include_mark_for_delete_objects', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for list_0 operation list_0_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'cursor': type.OptionalType(type.StringType()), 'include_mark_for_delete_objects': type.OptionalType(type.BooleanType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_0_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_0_input_value_validator_list = [ ] list_0_output_validator_list = [ HasFieldsOfValidator() ] list_0_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/redirection-policies', path_variables={ 'domain_id': 'domain-id', }, query_parameters={ 'cursor': 'cursor', 'include_mark_for_delete_objects': 'include_mark_for_delete_objects', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for patch operation patch_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'redirection_policy_id': type.StringType(), 'redirection_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'RedirectionPolicy'), }) patch_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } patch_input_value_validator_list = [ HasFieldsOfValidator() ] patch_output_validator_list = [ ] patch_rest_metadata = OperationRestMetadata( http_method='PATCH', url_template='/policy/api/v1/infra/domains/{domain-id}/redirection-policies/{redirection-policy-id}', request_body_parameter='redirection_policy', path_variables={ 'domain_id': 'domain-id', 'redirection_policy_id': 'redirection-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'redirection_policy_id': type.StringType(), 'redirection_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'RedirectionPolicy'), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/policy/api/v1/infra/domains/{domain-id}/redirection-policies/{redirection-policy-id}', request_body_parameter='redirection_policy', path_variables={ 'domain_id': 'domain-id', 'redirection_policy_id': 'redirection-policy-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'RedirectionPolicy'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'RedirectionPolicyListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'list_0': { 'input_type': list_0_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'RedirectionPolicyListResult'), 'errors': list_0_error_dict, 'input_value_validator_list': list_0_input_value_validator_list, 'output_validator_list': list_0_output_validator_list, 'task_type': TaskType.NONE, }, 'patch': { 'input_type': patch_input_type, 'output_type': type.VoidType(), 'errors': patch_error_dict, 'input_value_validator_list': patch_input_value_validator_list, 'output_validator_list': patch_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'RedirectionPolicy'), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'list_0': list_0_rest_metadata, 'patch': patch_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx_policy.infra.domains.redirection_policies', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class _SecurityPoliciesStub(ApiInterfaceStub): def __init__(self, config): # properties for delete operation delete_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'security_policy_id': type.StringType(), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/policy/api/v1/infra/domains/{domain-id}/security-policies/{security-policy-id}', path_variables={ 'domain_id': 'domain-id', 'security_policy_id': 'security-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'security_policy_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/security-policies/{security-policy-id}', path_variables={ 'domain_id': 'domain-id', 'security_policy_id': 'security-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'cursor': type.OptionalType(type.StringType()), 'include_mark_for_delete_objects': type.OptionalType(type.BooleanType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/domains/{domain-id}/security-policies', path_variables={ 'domain_id': 'domain-id', }, query_parameters={ 'cursor': 'cursor', 'include_mark_for_delete_objects': 'include_mark_for_delete_objects', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for patch operation patch_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'security_policy_id': type.StringType(), 'security_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicy'), }) patch_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } patch_input_value_validator_list = [ HasFieldsOfValidator() ] patch_output_validator_list = [ ] patch_rest_metadata = OperationRestMetadata( http_method='PATCH', url_template='/policy/api/v1/infra/domains/{domain-id}/security-policies/{security-policy-id}', request_body_parameter='security_policy', path_variables={ 'domain_id': 'domain-id', 'security_policy_id': 'security-policy-id', }, query_parameters={ }, content_type='application/json' ) # properties for revise operation revise_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'security_policy_id': type.StringType(), 'security_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicy'), 'anchor_path': type.OptionalType(type.StringType()), 'operation': type.OptionalType(type.StringType()), }) revise_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } revise_input_value_validator_list = [ HasFieldsOfValidator() ] revise_output_validator_list = [ HasFieldsOfValidator() ] revise_rest_metadata = OperationRestMetadata( http_method='POST', url_template='/policy/api/v1/infra/domains/{domain-id}/security-policies/{security-policy-id}?action=revise', request_body_parameter='security_policy', path_variables={ 'domain_id': 'domain-id', 'security_policy_id': 'security-policy-id', }, query_parameters={ 'anchor_path': 'anchor_path', 'operation': 'operation', }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'domain_id': type.StringType(), 'security_policy_id': type.StringType(), 'security_policy': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicy'), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/policy/api/v1/infra/domains/{domain-id}/security-policies/{security-policy-id}', request_body_parameter='security_policy', path_variables={ 'domain_id': 'domain-id', 'security_policy_id': 'security-policy-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicy'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicyListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'patch': { 'input_type': patch_input_type, 'output_type': type.VoidType(), 'errors': patch_error_dict, 'input_value_validator_list': patch_input_value_validator_list, 'output_validator_list': patch_output_validator_list, 'task_type': TaskType.NONE, }, 'revise': { 'input_type': revise_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicy'), 'errors': revise_error_dict, 'input_value_validator_list': revise_input_value_validator_list, 'output_validator_list': revise_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'SecurityPolicy'), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'patch': patch_rest_metadata, 'revise': revise_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx_policy.infra.domains.security_policies', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class StubFactory(StubFactoryBase): _attrs = { 'CommunicationMaps': CommunicationMaps, 'GatewayPolicies': GatewayPolicies, 'Groups': Groups, 'RedirectionPolicies': RedirectionPolicies, 'SecurityPolicies': SecurityPolicies, 'communication_maps': 'com.vmware.nsx_policy.infra.domains.communication_maps_client.StubFactory', 'gateway_policies': 'com.vmware.nsx_policy.infra.domains.gateway_policies_client.StubFactory', 'groups': 'com.vmware.nsx_policy.infra.domains.groups_client.StubFactory', 'redirection_policies': 'com.vmware.nsx_policy.infra.domains.redirection_policies_client.StubFactory', 'security_policies': 'com.vmware.nsx_policy.infra.domains.security_policies_client.StubFactory', }
import sys sys.setrecursionlimit(10**6) def DFS(u): global found visisted[u] = True checkedLoop[u] = True for x in graph[u]: if checkedLoop[x] == True: found = True return if visisted[x] == False: DFS(x) checkedLoop[u] = False TC = int(input()) for _ in range(TC): found = False N, M = map(int, input().split()) graph = [[] for i in range(N + 5)] visisted = [False] * (N + 5) checkedLoop = [False] * (N + 5) for i in range(M): u, v = map(int, input().split()) graph[u].append(v) for i in range(N): if visisted[i] == False: DFS(i) print("YES" if found else "NO")
#!/usr/bin/env python3 with open('input', 'r') as f: data = [line.rstrip().split() for line in f.readlines()] valid_lines = 0 for line in data: if len(set(line)) == len(line): valid_lines += 1 print('There were {} valid lines'.format(valid_lines))
from muzero.network.muzero import MuZero, MuZeroAtariConfig import gym import asyncio if __name__ == '__main__': environment = gym.make('Breakout-v0') muzero_config = MuZeroAtariConfig(environment=environment) muzero = MuZero(muzero_config) muzero.start_training()
"""nla_client_lib.py provides a wrapper to calls to the REST-style API which interfaces with the CEDA NLA system. Common calls, such as `ls`, `quota` and making requests are wrapped in a few functions.""" __author__ = 'sjp23' import os import requests import json from nla_client.nla_client_settings import NLA_SERVER_URL user = os.environ["USER"] baseurl = NLA_SERVER_URL def ls(match, stages): """.. |br| raw:: html <br /> Return a list of files in the NLA system given a pattern to match against, and a combination of stages of the files to filter on. :param string match: A pattern to match filenames against - i.e. does a filename contain this substring :param string stages: Filter the files based on the stage of the file within the NLA system. Stages can be any combination of **UDTAR** - **U**: UNVERIFIED - **D**: ONDISK - **T**: ONTAPE - **A**: RESTORING - **R**: RESTORED :return: A dictionary containing information about the files which match the pattern and stages, consisting of these keys: - **count** (*integer*) : The number of files in the NLA system matching the pattern and stage - **files** (*List[Dictionary]*]) : A list of information about each file |br| Each "files" Dictionary can contain the following keys (for each TapeFile): - **path** (`string`): logical path to the file. - **stage** (`char`): current stage of the file, one of **UDTAR** as above. - **verified** (`DateTime`): the date and time the file was verified on. - **size** (`integer`): the size of the file in bytes. :rtype: Dictionary """ url = baseurl + "/api/v1/files?match=%s&stages=%s" % (match, stages) response = requests.get(url) return response.json() def make_request(patterns=None, retention=None, files=None, label=None): """Add a retrieval request into the NLA system :param string patterns: (`optional`) pattern to match in a logical file path in request to restore files, e.g. "1986" to request to restore all files containing "1986" :param DateTime retention: (`optional`) time and date until when the files will remain in the restore area. Default is 20 days. :param List[string] files: (`optional`) list of files to request to restore :param string label: (`optional`) user supplied label for the request, visible when user examines their requests :return: A HTTP Response object. The two most important elements of this object are: - **status_code** (`integer`): the HTTP status code: - 200 OK: Request was successful - 403 FORBIDDEN: error with user quota: either the user quota is full or the user could not be found - **json()** (`Dictionary`): information about the request, the possible keys are: - **req_id** (`integer`): the unique numeric identifier for the request - **error** (`string`): error message if request fails :rtype: `requests.Response <http://docs.python-requests.org/en/master/api/#requests.Response>`_ """ url = baseurl + "/api/v1/requests" data = {"quota": user} assert patterns is None or files is None, "Can't define request files from list and pattern." if patterns: data["patterns"] = patterns if files: data["files"] = files if retention: data["retention"] = retention if label: data["label"] = label response = requests.post(url, data=json.dumps(data)) return response def update_request(request_id, retention=None, label=None, notify_first=None, notify_last=None): """Update an existing retrieval request in the NLA system :param integer request_id: the unique integer id of the request :param DateTime retention: (`optional`) time and date until when the files will remain in the restore area. Default is 20 days. :param string label: (`optional`) user supplied label for the request, visible when user examines their requests :param string notify_first: (`optional`) email address to notify when first restored file is available in the restore area :param string notify_last: (`optional`) email address to notify when last file is available in restore area - i.e. the request is complete :return: A HTTP Response object. The two most important elements of this object are: - **status_code** (`integer`): the HTTP status code: - 200 OK: Request was successful - 403 FORBIDDEN: error with user quota: the user could not be found - 404 NOT FOUND: the request with `request_id` could not be found - **json()** (`Dictionary`): information about the request, the possible keys are: - **req_id** (`integer`): the unique numeric identifier for the request - **error** (`string`): error message if request fails :rtype: `requests.Response <http://docs.python-requests.org/en/master/api/#requests.Response>`_ """ url = baseurl + "/api/v1/requests/%s" % request_id data = {"quota": user} if retention: data["retention"] = retention if label: data["label"] = label if notify_first is not None: # allow null string so that the default email in the user's quota can be used data["notify_on_first_file"] = notify_first if notify_last is not None: data["notify_on_last_file"] = notify_last response = requests.put(url, data=json.dumps(data)) return response def list_requests(): """List all retrieval requests which have not passed their retention date for the current user. :return: A dictionary containing details about the user and the user's requests, consisting of the following keys: - **used** (`integer`): the amount of quota the user has used, in bytes - **notes** (`string`): any notes about the user - affliations, projects, etc. - **email** (`string`): the email address for the user - **user** (`string`): the user id of the user - currently their JASMIN login - **requests** (`List[Dictionary]`): A list of dictionaries giving information about each request the user has made to the NLA system - **id** (`integer`): integer identifier for the user - **size** (`integer`): the size of the allocated quota for the current user |br| Each "requests" Dictionary can contain the following keys (for each TapeRequest): - **id** (`integer`): the integer identifier of the request - **request_date** (`DateTime`): the date and time the request was made - **retention** (`DateTime`): the date and time the request will expire on - **label** (`string`): the label assigned to the request by the user, or a default of the request pattern or first file in a listing request - **storaged_request_start** (`DateTime`): the date and time the retrieval request started on StorageD - **storaged_request_end** (`DateTime`): the date and time the retrieval request concluded on StorageD - **first_files_on_disk** (`DateTime`): the date and time the first files arrived on the restore disk - **last_files_on_disk** (`DateTime`): the date and time the last files arrived on the restore disk :returntype: Dictionary""" url = baseurl + "/api/v1/quota/%s" % user response = requests.get(url) if response.status_code == 200: return response.json() else: return None def show_request(request_number): """Show the information for a single request, given the integer identifier of the request. :param integer request_number: the unique integer identifier for the request :return: A dictionary containing details about the request, consisting of the following keys: - **id** (`integer`): unique id of the request - **quota** (`string`): the user id for the quota to use in making the request - **retention** (`DateTime`): date when restored files will be removed from restore area - **request_date** (`DateTime`): date when a request was made - **request_patterns** (`string`): pattern to match against to retrieve files from tape - **notify_on_first_file** (`string`): email address to notify when first restored file is available in the restore area - **notify_on_last_file** (`string`): email address to notify when last file is available in restore area - i.e. the request is complete - **label** (`string`): a user defined label for the request - **storaged_request_start** (`string`): (*optional*) the date and time the retrieval request started on StorageD - **storaged_request_end** (`string`): (*optional*) the date and time the retrieval request concluded on StorageD - **first_files_on_disk** (`string`): (*optional*) the date and time the first files arrived on the restore disk - **last_files_on_disk** (`string`): (*optional*) the date and time the last files arrived on the restore disk - **files** (`List[string]`): list of files in the request """ url = baseurl + "/api/v1/requests/%s" % request_number response = requests.get(url) if response.status_code == 200: return response.json() else: return None
# file openpyxl/tests/test_dump.py # Copyright (c) 2010-2011 openpyxl # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # @license: http://www.opensource.org/licenses/mit-license.php # @author: see AUTHORS file # Python stdlib imports from datetime import time, datetime from tempfile import NamedTemporaryFile import os import os.path import shutil # 3rd party imports from nose.tools import eq_, raises from openpyxl.workbook import Workbook from openpyxl.writer import dump_worksheet from openpyxl.cell import get_column_letter from openpyxl.reader.excel import load_workbook from openpyxl.writer.strings import StringTableBuilder from openpyxl.shared.compat import xrange from openpyxl.shared.exc import WorkbookAlreadySaved def _get_test_filename(): test_file = NamedTemporaryFile(mode='w', prefix='openpyxl.', suffix='.xlsx', delete=False) test_file.close() return test_file.name def test_dump_sheet_title(): test_filename = _get_test_filename() wb = Workbook(optimized_write=True) ws = wb.create_sheet(title='Test1') wb.save(test_filename) wb2 = load_workbook(test_filename) ws = wb2.get_sheet_by_name('Test1') eq_('Test1', ws.title) def test_dump_sheet(): test_filename = _get_test_filename() wb = Workbook(optimized_write=True) ws = wb.create_sheet() letters = [get_column_letter(x + 1) for x in xrange(20)] expected_rows = [] for row in xrange(20): expected_rows.append(['%s%d' % (letter, row + 1) for letter in letters]) for row in xrange(20): expected_rows.append([(row + 1) for letter in letters]) for row in xrange(10): expected_rows.append([datetime(2010, ((x % 12) + 1), row + 1) for x in range(len(letters))]) for row in xrange(20): expected_rows.append(['=%s%d' % (letter, row + 1) for letter in letters]) for row in expected_rows: ws.append(row) wb.save(test_filename) wb2 = load_workbook(test_filename) ws = wb2.worksheets[0] for ex_row, ws_row in zip(expected_rows[:-20], ws.rows): for ex_cell, ws_cell in zip(ex_row, ws_row): eq_(ex_cell, ws_cell.value) os.remove(test_filename) def test_table_builder(): sb = StringTableBuilder() result = {'a':0, 'b':1, 'c':2, 'd':3} for letter in sorted(result.keys()): for x in range(5): sb.add(letter) table = dict(sb.get_table()) for key, idx in result.items(): eq_(idx, table[key]) def test_open_too_many_files(): test_filename = _get_test_filename() wb = Workbook(optimized_write=True) for i in range(200): # over 200 worksheets should raise an OSError ('too many open files') wb.create_sheet() wb.save(test_filename) os.remove(test_filename) def test_create_temp_file(): f = dump_worksheet.create_temporary_file() if not os.path.isfile(f): raise Exception("The file %s does not exist" % f) @raises(WorkbookAlreadySaved) def test_dump_twice(): test_filename = _get_test_filename() wb = Workbook(optimized_write=True) ws = wb.create_sheet() ws.append(['hello']) wb.save(test_filename) os.remove(test_filename) wb.save(test_filename) @raises(WorkbookAlreadySaved) def test_append_after_save(): test_filename = _get_test_filename() wb = Workbook(optimized_write=True) ws = wb.create_sheet() ws.append(['hello']) wb.save(test_filename) os.remove(test_filename) ws.append(['hello'])
from __future__ import print_function, division, absolute_import import itertools import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import skimage import skimage.data import skimage.morphology import scipy import scipy.special import imgaug as ia import imgaug.random as iarandom from imgaug import parameters as iap from imgaug.testutils import reseed def _eps(arr): if ia.is_np_array(arr) and arr.dtype.kind == "f": return np.finfo(arr.dtype).eps return 1e-4 class Test_handle_continuous_param(unittest.TestCase): def test_value_range_is_none(self): result = iap.handle_continuous_param( 1, "[test1]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_nones(self): result = iap.handle_continuous_param( 1, "[test1b]", value_range=(None, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_stochastic_parameter(self): result = iap.handle_continuous_param( iap.Deterministic(1), "[test2]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_integers(self): result = iap.handle_continuous_param( 1, "[test3]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range(self): with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test4]", value_range=(2, 12), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test4]" in str(context.exception)) def test_param_is_inside_value_range_and_no_lower_bound(self): # value within value range (without lower bound) result = iap.handle_continuous_param( 1, "[test5]", value_range=(None, 12), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range_and_no_lower_bound(self): # value outside of value range (without lower bound) with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test6]", value_range=(None, 0), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test6]" in str(context.exception)) def test_param_is_inside_value_range_and_no_upper_bound(self): # value within value range (without upper bound) result = iap.handle_continuous_param( 1, "[test7]", value_range=(-1, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range_and_no_upper_bound(self): # value outside of value range (without upper bound) with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test8]", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test8]" in str(context.exception)) def test_tuple_as_value_but_no_tuples_allowed(self): # tuple as value, but no tuples allowed with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test9]", value_range=None, tuple_to_uniform=False, list_to_choice=True) self.assertTrue("[test9]" in str(context.exception)) def test_tuple_as_value_and_tuples_allowed(self): # tuple as value and tuple allowed result = iap.handle_continuous_param( (1, 2), "[test10]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Uniform)) def test_tuple_as_value_and_tuples_allowed_and_inside_value_range(self): # tuple as value and tuple allowed and tuple within value range result = iap.handle_continuous_param( (1, 2), "[test11]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Uniform)) def test_tuple_value_and_allowed_and_partially_outside_value_range(self): # tuple as value and tuple allowed and tuple partially outside of # value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test12]", value_range=(1.5, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test12]" in str(context.exception)) def test_tuple_value_and_allowed_and_fully_outside_value_range(self): # tuple as value and tuple allowed and tuple fully outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test13]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test13]" in str(context.exception)) def test_list_as_value_but_no_lists_allowed(self): # list as value, but no list allowed with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2, 3], "[test14]", value_range=None, tuple_to_uniform=True, list_to_choice=False) self.assertTrue("[test14]" in str(context.exception)) def test_list_as_value_and_lists_allowed(self): # list as value and list allowed result = iap.handle_continuous_param( [1, 2, 3], "[test15]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Choice)) def test_list_value_and_allowed_and_partially_outside_value_range(self): # list as value and list allowed and list partially outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2], "[test16]", value_range=(1.5, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test16]" in str(context.exception)) def test_list_value_and_allowed_and_fully_outside_of_value_range(self): # list as value and list allowed and list fully outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2], "[test17]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test17]" in str(context.exception)) def test_value_inside_value_range_and_value_range_given_as_callable(self): # single value within value range given as callable def _value_range(x): return -1 < x < 1 result = iap.handle_continuous_param( 1, "[test18]", value_range=_value_range, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_bad_datatype_as_value_range(self): # bad datatype for value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test19]", value_range=False, tuple_to_uniform=True, list_to_choice=True) self.assertTrue( "Unexpected input for value_range" in str(context.exception)) class Test_handle_discrete_param(unittest.TestCase): def test_float_value_inside_value_range_but_no_floats_allowed(self): # float value without value range when no float value is allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1.5, "[test0]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.assertTrue("[test0]" in str(context.exception)) def test_value_range_is_none(self): # value without value range result = iap.handle_discrete_param( 1, "[test1]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_nones(self): # value without value range as (None, None) result = iap.handle_discrete_param( 1, "[test1b]", value_range=(None, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_is_stochastic_parameter(self): # stochastic parameter result = iap.handle_discrete_param( iap.Deterministic(1), "[test2]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_inside_value_range(self): # value within value range result = iap.handle_discrete_param( 1, "[test3]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range(self): # value outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test4]", value_range=(2, 12), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test4]" in str(context.exception)) def test_value_inside_value_range_no_lower_bound(self): # value within value range (without lower bound) result = iap.handle_discrete_param( 1, "[test5]", value_range=(None, 12), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range_no_lower_bound(self): # value outside of value range (without lower bound) with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test6]", value_range=(None, 0), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test6]" in str(context.exception)) def test_value_inside_value_range_no_upper_bound(self): # value within value range (without upper bound) result = iap.handle_discrete_param( 1, "[test7]", value_range=(-1, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range_no_upper_bound(self): # value outside of value range (without upper bound) with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test8]", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test8]" in str(context.exception)) def test_value_is_tuple_but_no_tuples_allowed(self): # tuple as value, but no tuples allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 2), "[test9]", value_range=None, tuple_to_uniform=False, list_to_choice=True, allow_floats=True) self.assertTrue("[test9]" in str(context.exception)) def test_value_is_tuple_and_tuples_allowed(self): # tuple as value and tuple allowed result = iap.handle_discrete_param( (1, 2), "[test10]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_inside_value_range(self): # tuple as value and tuple allowed and tuple within value range result = iap.handle_discrete_param( (1, 2), "[test11]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_inside_vr_allow_floats_false(self): # tuple as value and tuple allowed and tuple within value range with # allow_floats=False result = iap.handle_discrete_param( (1, 2), "[test11b]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_partially_outside_value_range(self): # tuple as value and tuple allowed and tuple partially outside of # value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 3), "[test12]", value_range=(2, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test12]" in str(context.exception)) def test_value_tuple_and_allowed_and_fully_outside_value_range(self): # tuple as value and tuple allowed and tuple fully outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 2), "[test13]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test13]" in str(context.exception)) def test_value_list_but_not_allowed(self): # list as value, but no list allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 2, 3], "[test14]", value_range=None, tuple_to_uniform=True, list_to_choice=False, allow_floats=True) self.assertTrue("[test14]" in str(context.exception)) def test_value_list_and_allowed(self): # list as value and list allowed result = iap.handle_discrete_param( [1, 2, 3], "[test15]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Choice)) def test_value_list_and_allowed_and_partially_outside_value_range(self): # list as value and list allowed and list partially outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 3], "[test16]", value_range=(2, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test16]" in str(context.exception)) def test_value_list_and_allowed_and_fully_outside_value_range(self): # list as value and list allowed and list fully outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 2], "[test17]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test17]" in str(context.exception)) def test_value_inside_value_range_given_as_callable(self): # single value within value range given as callable def _value_range(x): return -1 < x < 1 result = iap.handle_discrete_param( 1, "[test18]", value_range=_value_range, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_bad_datatype_as_value_range(self): # bad datatype for value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test19]", value_range=False, tuple_to_uniform=True, list_to_choice=True) self.assertTrue( "Unexpected input for value_range" in str(context.exception)) class Test_handle_categorical_string_param(unittest.TestCase): def test_arg_is_all(self): valid_values = ["class1", "class2"] param = iap.handle_categorical_string_param( ia.ALL, "foo", valid_values) assert isinstance(param, iap.Choice) assert param.a == valid_values def test_arg_is_valid_str(self): valid_values = ["class1", "class2"] param = iap.handle_categorical_string_param( "class1", "foo", valid_values) assert isinstance(param, iap.Deterministic) assert param.value == "class1" def test_arg_is_invalid_str(self): valid_values = ["class1", "class2"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( "class3", "foo", valid_values) expected = ( "Expected parameter 'foo' to be one of: class1, class2. " "Got: class3.") assert expected == str(ctx.exception) def test_arg_is_valid_list(self): valid_values = ["class1", "class2", "class3"] param = iap.handle_categorical_string_param( ["class1", "class3"], "foo", valid_values) assert isinstance(param, iap.Choice) assert param.a == ["class1", "class3"] def test_arg_is_list_with_invalid_types(self): valid_values = ["class1", "class2", "class3"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( ["class1", False], "foo", valid_values) expected = ( "Expected list provided for parameter 'foo' to only contain " "strings, got types: str, bool." ) assert expected in str(ctx.exception) def test_arg_is_invalid_list(self): valid_values = ["class1", "class2", "class3"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( ["class1", "class4"], "foo", valid_values) expected = ( "Expected list provided for parameter 'foo' to only contain " "the following allowed strings: class1, class2, class3. " "Got strings: class1, class4." ) assert expected in str(ctx.exception) def test_arg_is_stochastic_param(self): param = iap.Deterministic("class1") param_out = iap.handle_categorical_string_param( param, "foo", ["class1"]) assert param_out is param def test_arg_is_invalid_datatype(self): with self.assertRaises(Exception) as ctx: _ = iap.handle_categorical_string_param( False, "foo", ["class1"]) expected = "Expected parameter 'foo' to be imgaug.ALL" assert expected in str(ctx.exception) class Test_handle_probability_param(unittest.TestCase): def test_bool_like_values(self): for val in [True, False, 0, 1, 0.0, 1.0]: with self.subTest(param=val): p = iap.handle_probability_param(val, "[test1]") assert isinstance(p, iap.Deterministic) assert p.value == int(val) def test_float_probabilities(self): for val in [0.0001, 0.001, 0.01, 0.1, 0.9, 0.99, 0.999, 0.9999]: with self.subTest(param=val): p = iap.handle_probability_param(val, "[test2]") assert isinstance(p, iap.Binomial) assert isinstance(p.p, iap.Deterministic) assert val-1e-8 < p.p.value < val+1e-8 def test_probability_is_stochastic_parameter(self): det = iap.Deterministic(1) p = iap.handle_probability_param(det, "[test3]") assert p == det def test_probability_has_bad_datatype(self): with self.assertRaises(Exception) as context: _p = iap.handle_probability_param("test", "[test4]") self.assertTrue("Expected " in str(context.exception)) def test_probability_is_negative(self): with self.assertRaises(AssertionError): _p = iap.handle_probability_param(-0.01, "[test5]") def test_probability_is_above_100_percent(self): with self.assertRaises(AssertionError): _p = iap.handle_probability_param(1.01, "[test6]") class Test_force_np_float_dtype(unittest.TestCase): def test_common_dtypes(self): dtypes = [ ("float16", "float16"), ("float32", "float32"), ("float64", "float64"), ("uint8", "float64"), ("int32", "float64") ] for dtype_in, expected in dtypes: with self.subTest(dtype_in=dtype_in): arr = np.zeros((1,), dtype=dtype_in) observed = iap.force_np_float_dtype(arr).dtype assert observed.name == expected class Test_both_np_float_if_one_is_float(unittest.TestCase): def test_float16_float32(self): a1 = np.zeros((1,), dtype=np.float16) b1 = np.zeros((1,), dtype=np.float32) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float16" assert b2.dtype.name == "float32" def test_float16_int32(self): a1 = np.zeros((1,), dtype=np.float16) b1 = np.zeros((1,), dtype=np.int32) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float16" assert b2.dtype.name == "float64" def test_int32_float16(self): a1 = np.zeros((1,), dtype=np.int32) b1 = np.zeros((1,), dtype=np.float16) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float64" assert b2.dtype.name == "float16" def test_int32_uint8(self): a1 = np.zeros((1,), dtype=np.int32) b1 = np.zeros((1,), dtype=np.uint8) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float64" assert b2.dtype.name == "float64" class Test_draw_distributions_grid(unittest.TestCase): def setUp(self): reseed() def test_basic_functionality(self): params = [mock.Mock(), mock.Mock()] params[0].draw_distribution_graph.return_value = \ np.zeros((1, 1, 3), dtype=np.uint8) params[1].draw_distribution_graph.return_value = \ np.zeros((1, 1, 3), dtype=np.uint8) draw_grid_mock = mock.Mock() draw_grid_mock.return_value = np.zeros((4, 3, 2), dtype=np.uint8) with mock.patch('imgaug.imgaug.draw_grid', draw_grid_mock): grid_observed = iap.draw_distributions_grid( params, rows=2, cols=3, graph_sizes=(20, 21), sample_sizes=[(1, 2), (3, 4)], titles=["A", "B"]) assert grid_observed.shape == (4, 3, 2) assert params[0].draw_distribution_graph.call_count == 1 assert params[1].draw_distribution_graph.call_count == 1 assert params[0].draw_distribution_graph.call_args[1]["size"] == (1, 2) assert params[0].draw_distribution_graph.call_args[1]["title"] == "A" assert params[1].draw_distribution_graph.call_args[1]["size"] == (3, 4) assert params[1].draw_distribution_graph.call_args[1]["title"] == "B" assert draw_grid_mock.call_count == 1 assert draw_grid_mock.call_args[0][0][0].shape == (20, 21, 3) assert draw_grid_mock.call_args[0][0][1].shape == (20, 21, 3) assert draw_grid_mock.call_args[1]["rows"] == 2 assert draw_grid_mock.call_args[1]["cols"] == 3 class Test_draw_distributions_graph(unittest.TestCase): def test_basic_functionality(self): # this test is very rough as we get a not-very-well-defined image out # of the function param = iap.Uniform(0.0, 1.0) graph_img = param.draw_distribution_graph(title=None, size=(10000,), bins=100) # at least 10% of the image should be white-ish (background) nb_white = np.sum(graph_img[..., :] > [200, 200, 200]) nb_all = np.prod(graph_img.shape) graph_img_title = param.draw_distribution_graph(title="test", size=(10000,), bins=100) assert graph_img.ndim == 3 assert graph_img.shape[2] == 3 assert nb_white > 0.1 * nb_all assert graph_img_title.ndim == 3 assert graph_img_title.shape[2] == 3 assert not np.array_equal(graph_img_title, graph_img) class TestStochasticParameter(unittest.TestCase): def setUp(self): reseed() def test_copy(self): other_param = iap.Uniform(1.0, 10.0) param = iap.Discretize(other_param) other_param.a = [1.0] param_copy = param.copy() param.other_param.a[0] += 1 assert isinstance(param_copy, iap.Discretize) assert isinstance(param_copy.other_param, iap.Uniform) assert param_copy.other_param.a[0] == param.other_param.a[0] def test_deepcopy(self): other_param = iap.Uniform(1.0, 10.0) param = iap.Discretize(other_param) other_param.a = [1.0] param_copy = param.deepcopy() param.other_param.a[0] += 1 assert isinstance(param_copy, iap.Discretize) assert isinstance(param_copy.other_param, iap.Uniform) assert param_copy.other_param.a[0] != param.other_param.a[0] class TestStochasticParameterOperators(unittest.TestCase): def setUp(self): reseed() def test_multiply_stochasic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 * param2 assert isinstance(param3, iap.Multiply) assert param3.other_param == param1 assert param3.val == param2 def test_multiply_stochastic_param_with_integer(self): param1 = iap.Normal(0, 1) param3 = param1 * 2 assert isinstance(param3, iap.Multiply) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_multiply_integer_with_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 * param1 assert isinstance(param3, iap.Multiply) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_multiply_string_with_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" * param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_multiply_stochastic_param_with_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 * "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_divide_stochastic_params(self): # Divide (__truediv__) param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 / param2 assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert param3.val == param2 def test_divide_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1 / 2 assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_divide_integer_by_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 / param1 assert isinstance(param3, iap.Divide) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_divide_string_by_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" / param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_divide_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 / "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_div_stochastic_params(self): # Divide (__div__) param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1.__div__(param2) assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert param3.val == param2 def test_div_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1.__div__(2) assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_div_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1.__div__("test") self.assertTrue("Invalid datatypes" in str(context.exception)) def test_rdiv_stochastic_param_by_integer(self): # Divide (__rdiv__) param1 = iap.Normal(0, 1) param3 = param1.__rdiv__(2) assert isinstance(param3, iap.Divide) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_rdiv_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1.__rdiv__("test") self.assertTrue("Invalid datatypes" in str(context.exception)) def test_floordiv_stochastic_params(self): # Divide (__floordiv__) param1_int = iap.DiscreteUniform(0, 10) param2_int = iap.Choice([1, 2]) param3 = param1_int // param2_int assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert param3.other_param.other_param == param1_int assert param3.other_param.val == param2_int def test_floordiv_symbol_stochastic_param_by_integer(self): param1_int = iap.DiscreteUniform(0, 10) param3 = param1_int // 2 assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert param3.other_param.other_param == param1_int assert isinstance(param3.other_param.val, iap.Deterministic) assert param3.other_param.val.value == 2 def test_floordiv_symbol_integer_by_stochastic_param(self): param1_int = iap.DiscreteUniform(0, 10) param3 = 2 // param1_int assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert isinstance(param3.other_param.other_param, iap.Deterministic) assert param3.other_param.other_param.value == 2 assert param3.other_param.val == param1_int def test_floordiv_symbol_string_by_stochastic_should_fail(self): param1_int = iap.DiscreteUniform(0, 10) with self.assertRaises(Exception) as context: _ = "test" // param1_int self.assertTrue("Invalid datatypes" in str(context.exception)) def test_floordiv_symbol_stochastic_param_by_string_should_fail(self): param1_int = iap.DiscreteUniform(0, 10) with self.assertRaises(Exception) as context: _ = param1_int // "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_add_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 + param2 assert isinstance(param3, iap.Add) assert param3.other_param == param1 assert param3.val == param2 def test_add_integer_to_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = param1 + 2 assert isinstance(param3, iap.Add) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_add_stochastic_param_to_integer(self): param1 = iap.Normal(0, 1) param3 = 2 + param1 assert isinstance(param3, iap.Add) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_add_stochastic_param_to_string(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" + param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_add_string_to_stochastic_param(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 + "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_subtract_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 - param2 assert isinstance(param3, iap.Subtract) assert param3.other_param == param1 assert param3.val == param2 def test_subtract_integer_from_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = param1 - 2 assert isinstance(param3, iap.Subtract) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_subtract_stochastic_param_from_integer(self): param1 = iap.Normal(0, 1) param3 = 2 - param1 assert isinstance(param3, iap.Subtract) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_subtract_stochastic_param_from_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" - param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_subtract_string_from_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 - "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_exponentiate_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 ** param2 assert isinstance(param3, iap.Power) assert param3.other_param == param1 assert param3.val == param2 def test_exponentiate_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1 ** 2 assert isinstance(param3, iap.Power) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_exponentiate_integer_by_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 ** param1 assert isinstance(param3, iap.Power) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_exponentiate_string_by_stochastic_param(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" ** param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_exponentiate_stochastic_param_by_string(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 ** "test" self.assertTrue("Invalid datatypes" in str(context.exception)) class TestBinomial(unittest.TestCase): def setUp(self): reseed() def test___init___p_is_zero(self): param = iap.Binomial(0) assert ( param.__str__() == param.__repr__() == "Binomial(Deterministic(int 0))" ) def test___init___p_is_one(self): param = iap.Binomial(1.0) assert ( param.__str__() == param.__repr__() == "Binomial(Deterministic(float 1.00000000))" ) def test_p_is_zero(self): param = iap.Binomial(0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 0 assert np.all(samples == 0) def test_p_is_one(self): param = iap.Binomial(1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_p_is_50_percent(self): param = iap.Binomial(0.5) sample = param.draw_sample() samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert sample.shape == tuple() assert samples.shape == (10000,) assert sample in [0, 1] assert len(unique) == 2 for val, count in zip(unique, counts): if val == 0: assert 5000 - 500 < count < 5000 + 500 elif val == 1: assert 5000 - 500 < count < 5000 + 500 else: assert False def test_p_is_list(self): param = iap.Binomial(iap.Choice([0.25, 0.75])) for _ in sm.xrange(10): samples = param.draw_samples((1000,)) p = np.sum(samples) / samples.size assert ( (0.25 - 0.05 < p < 0.25 + 0.05) or (0.75 - 0.05 < p < 0.75 + 0.05) ) def test_p_is_tuple(self): param = iap.Binomial((0.0, 1.0)) last_p = 0.5 diffs = [] for _ in sm.xrange(30): samples = param.draw_samples((1000,)) p = np.sum(samples).astype(np.float32) / samples.size diffs.append(abs(p - last_p)) last_p = p nb_p_changed = sum([diff > 0.05 for diff in diffs]) assert nb_p_changed > 15 def test_samples_same_values_for_same_seeds(self): param = iap.Binomial(0.5) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestChoice(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Choice([0, 1, 2]) assert ( param.__str__() == param.__repr__() == "Choice(a=[0, 1, 2], replace=True, p=None)" ) def test_value_is_list(self): param = iap.Choice([0, 1, 2]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1, 2] assert np.all( np.logical_or( np.logical_or(samples == 0, samples == 1), samples == 2 ) ) def test_sampled_values_match_expected_counts(self): param = iap.Choice([0, 1, 2]) samples = param.draw_samples((10000,)) expected = 10000/3 expected_tolerance = expected * 0.05 for v in [0, 1, 2]: count = np.sum(samples == v) assert ( expected - expected_tolerance < count < expected + expected_tolerance ) def test_value_is_list_containing_negative_number(self): param = iap.Choice([-1, 1]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 1] assert np.all(np.logical_or(samples == -1, samples == 1)) def test_value_is_list_of_floats(self): param = iap.Choice([-1.2, 1.7]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert ( ( -1.2 - _eps(sample) < sample < -1.2 + _eps(sample) ) or ( 1.7 - _eps(sample) < sample < 1.7 + _eps(sample) ) ) assert np.all( np.logical_or( np.logical_and( -1.2 - _eps(sample) < samples, samples < -1.2 + _eps(sample) ), np.logical_and( 1.7 - _eps(sample) < samples, samples < 1.7 + _eps(sample) ) ) ) def test_value_is_list_of_strings(self): param = iap.Choice(["first", "second", "third"]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in ["first", "second", "third"] assert np.all( np.logical_or( np.logical_or( samples == "first", samples == "second" ), samples == "third" ) ) def test_sample_without_replacing(self): param = iap.Choice([1+i for i in sm.xrange(100)], replace=False) samples = param.draw_samples((50,)) seen = [0 for _ in sm.xrange(100)] for sample in samples: seen[sample-1] += 1 assert all([count in [0, 1] for count in seen]) def test_non_uniform_probabilities_over_elements(self): param = iap.Choice([0, 1], p=[0.25, 0.75]) samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert len(unique) == 2 for val, count in zip(unique, counts): if val == 0: assert 2500 - 500 < count < 2500 + 500 elif val == 1: assert 7500 - 500 < count < 7500 + 500 else: assert False def test_list_contains_stochastic_parameter(self): param = iap.Choice([iap.Choice([0, 1]), 2]) samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert len(unique) == 3 for val, count in zip(unique, counts): if val in [0, 1]: assert 2500 - 500 < count < 2500 + 500 elif val == 2: assert 5000 - 500 < count < 5000 + 500 else: assert False def test_samples_same_values_for_same_seeds(self): param = iap.Choice([-1, 0, 1, 2, 3]) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) def test_value_is_bad_datatype(self): with self.assertRaises(Exception) as context: _ = iap.Choice(123) self.assertTrue( "Expected a to be an iterable" in str(context.exception)) def test_p_is_bad_datatype(self): with self.assertRaises(Exception) as context: _ = iap.Choice([1, 2], p=123) self.assertTrue("Expected p to be" in str(context.exception)) def test_value_and_p_have_unequal_lengths(self): with self.assertRaises(Exception) as context: _ = iap.Choice([1, 2], p=[1]) self.assertTrue("Expected lengths of" in str(context.exception)) class TestDiscreteUniform(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.DiscreteUniform(0, 2) assert ( param.__str__() == param.__repr__() == "DiscreteUniform(Deterministic(int 0), Deterministic(int 2))" ) def test_bounds_are_ints(self): param = iap.DiscreteUniform(0, 2) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1, 2] assert np.all( np.logical_or( np.logical_or(samples == 0, samples == 1), samples == 2 ) ) def test_samples_match_expected_counts(self): param = iap.DiscreteUniform(0, 2) samples = param.draw_samples((10000,)) expected = 10000/3 expected_tolerance = expected * 0.05 for v in [0, 1, 2]: count = np.sum(samples == v) assert ( expected - expected_tolerance < count < expected + expected_tolerance ) def test_lower_bound_is_negative(self): param = iap.DiscreteUniform(-1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or(samples == -1, samples == 0), samples == 1 ) ) def test_bounds_are_floats(self): param = iap.DiscreteUniform(-1.2, 1.2) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or( samples == -1, samples == 0 ), samples == 1 ) ) def test_lower_and_upper_bound_have_wrong_order(self): param = iap.DiscreteUniform(1, -1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or( samples == -1, samples == 0 ), samples == 1 ) ) def test_lower_and_upper_bound_are_the_same(self): param = iap.DiscreteUniform(1, 1) sample = param.draw_sample() samples = param.draw_samples((100,)) assert sample == 1 assert np.all(samples == 1) def test_samples_same_values_for_same_seeds(self): param = iap.Uniform(-1, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestPoisson(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Poisson(1) assert ( param.__str__() == param.__repr__() == "Poisson(Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Poisson(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_poisson(self): param = iap.Poisson(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).poisson( lam=1, size=(100, 1000)) assert samples.shape == (100, 1000) for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: count_direct = int(np.sum(samples_direct == i)) count = np.sum(samples == i) tolerance = max(count_direct * 0.1, 250) assert count_direct - tolerance < count < count_direct + tolerance def test_samples_same_values_for_same_seeds(self): param = iap.Poisson(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestNormal(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Normal(0, 1) assert ( param.__str__() == param.__repr__() == "Normal(loc=Deterministic(int 0), scale=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Normal(0, 1) sample = param.draw_sample() assert sample.shape == tuple() def test_via_comparison_to_np_normal(self): param = iap.Normal(0, 1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).normal(loc=0, scale=1, size=(100, 1000)) samples = np.clip(samples, -1, 1) samples_direct = np.clip(samples_direct, -1, 1) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(-1.0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(-1.0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_loc_is_stochastic_parameter(self): param = iap.Normal(iap.Choice([-100, 100]), 1) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if -100 - 10 < exp < -100 + 10: seen[0] += 1 elif 100 - 10 < exp < 100 + 10: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_scale(self): param1 = iap.Normal(0, 1) param2 = iap.Normal(0, 100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.std(samples1) < np.std(samples2) assert 100 - 10 < np.std(samples2) < 100 + 10 def test_samples_same_values_for_same_seeds(self): param = iap.Normal(0, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestTruncatedNormal(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.TruncatedNormal(0, 1) expected = ( "TruncatedNormal(" "loc=Deterministic(int 0), " "scale=Deterministic(int 1), " "low=Deterministic(float -inf), " "high=Deterministic(float inf)" ")" ) assert ( param.__str__() == param.__repr__() == expected ) def test___init___custom_range(self): param = iap.TruncatedNormal(0, 1, low=-100, high=50.0) expected = ( "TruncatedNormal(" "loc=Deterministic(int 0), " "scale=Deterministic(int 1), " "low=Deterministic(int -100), " "high=Deterministic(float 50.00000000)" ")" ) assert ( param.__str__() == param.__repr__() == expected ) def test_scale_is_zero(self): param = iap.TruncatedNormal(0.5, 0, low=-10, high=10) samples = param.draw_samples((100,)) assert np.allclose(samples, 0.5) def test_scale(self): param1 = iap.TruncatedNormal(0.0, 0.1, low=-100, high=100) param2 = iap.TruncatedNormal(0.0, 5.0, low=-100, high=100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.std(samples1) < np.std(samples2) assert np.isclose(np.std(samples1), 0.1, rtol=0, atol=0.20) assert np.isclose(np.std(samples2), 5.0, rtol=0, atol=0.40) def test_loc_is_stochastic_parameter(self): param = iap.TruncatedNormal(iap.Choice([-100, 100]), 0.01, low=-1000, high=1000) seen = [0, 0] for _ in sm.xrange(200): samples = param.draw_samples((5,)) observed = np.mean(samples) dist1 = np.abs(-100 - observed) dist2 = np.abs(100 - observed) if dist1 < 1: seen[0] += 1 elif dist2 < 1: seen[1] += 1 else: assert False assert np.isclose(seen[0], 100, rtol=0, atol=20) assert np.isclose(seen[1], 100, rtol=0, atol=20) def test_samples_are_within_bounds(self): param = iap.TruncatedNormal(0, 10.0, low=-5, high=7.5) samples = param.draw_samples((1000,)) # are all within bounds assert np.all(samples >= -5.0 - 1e-4) assert np.all(samples <= 7.5 + 1e-4) # at least some samples close to bounds assert np.any(samples <= -4.5) assert np.any(samples >= 7.0) # at least some samples close to loc assert np.any(np.abs(samples) < 0.5) def test_samples_same_values_for_same_seeds(self): param = iap.TruncatedNormal(0, 1) samples1 = param.draw_samples((10, 5), random_state=1234) samples2 = param.draw_samples((10, 5), random_state=1234) assert np.allclose(samples1, samples2) def test_samples_different_values_for_different_seeds(self): param = iap.TruncatedNormal(0, 1) samples1 = param.draw_samples((10, 5), random_state=1234) samples2 = param.draw_samples((10, 5), random_state=2345) assert not np.allclose(samples1, samples2) class TestLaplace(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Laplace(0, 1) assert ( param.__str__() == param.__repr__() == "Laplace(loc=Deterministic(int 0), scale=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Laplace(0, 1) sample = param.draw_sample() assert sample.shape == tuple() def test_via_comparison_to_np_laplace(self): param = iap.Laplace(0, 1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).laplace(loc=0, scale=1, size=(100, 1000)) assert samples.shape == (100, 1000) samples = np.clip(samples, -1, 1) samples_direct = np.clip(samples_direct, -1, 1) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(-1.0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(-1.0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_loc_is_stochastic_parameter(self): param = iap.Laplace(iap.Choice([-100, 100]), 1) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if -100 - 10 < exp < -100 + 10: seen[0] += 1 elif 100 - 10 < exp < 100 + 10: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_scale(self): param1 = iap.Laplace(0, 1) param2 = iap.Laplace(0, 100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.var(samples1) < np.var(samples2) def test_scale_is_zero(self): param1 = iap.Laplace(1, 0) samples = param1.draw_samples((100,)) assert np.all(np.logical_and( samples > 1 - _eps(samples), samples < 1 + _eps(samples) )) def test_samples_same_values_for_same_seeds(self): param = iap.Laplace(0, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestChiSquare(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.ChiSquare(1) assert ( param.__str__() == param.__repr__() == "ChiSquare(df=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.ChiSquare(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_chisquare(self): param = iap.ChiSquare(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).chisquare(df=1, size=(100, 1000)) assert samples.shape == (100, 1000) assert np.all(0 <= samples) samples = np.clip(samples, 0, 3) samples_direct = np.clip(samples_direct, 0, 3) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 3.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 3.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_df_is_stochastic_parameter(self): param = iap.ChiSquare(iap.Choice([1, 10])) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if 1 - 1.0 < exp < 1 + 1.0: seen[0] += 1 elif 10 - 4.0 < exp < 10 + 4.0: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_larger_df_leads_to_more_variance(self): param1 = iap.ChiSquare(1) param2 = iap.ChiSquare(10) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.var(samples1) < np.var(samples2) assert 2*1 - 1.0 < np.var(samples1) < 2*1 + 1.0 assert 2*10 - 5.0 < np.var(samples2) < 2*10 + 5.0 def test_samples_same_values_for_same_seeds(self): param = iap.ChiSquare(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestWeibull(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Weibull(1) assert ( param.__str__() == param.__repr__() == "Weibull(a=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Weibull(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_weibull(self): param = iap.Weibull(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).weibull(a=1, size=(100, 1000)) assert samples.shape == (100, 1000) assert np.all(0 <= samples) samples = np.clip(samples, 0, 2) samples_direct = np.clip(samples_direct, 0, 2) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 2.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 2.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_argument_is_stochastic_parameter(self): param = iap.Weibull(iap.Choice([1, 0.5])) expected_first = scipy.special.gamma(1 + 1/1) expected_second = scipy.special.gamma(1 + 1/0.5) seen = [0, 0] for _ in sm.xrange(100): samples = param.draw_samples((50000,)) observed = np.mean(samples) matches_first = ( expected_first - 0.2 * expected_first < observed < expected_first + 0.2 * expected_first ) matches_second = ( expected_second - 0.2 * expected_second < observed < expected_second + 0.2 * expected_second ) if matches_first: seen[0] += 1 elif matches_second: seen[1] += 1 else: assert False assert 50 - 25 < seen[0] < 50 + 25 assert 50 - 25 < seen[1] < 50 + 25 def test_different_strengths(self): param1 = iap.Weibull(1) param2 = iap.Weibull(0.5) samples1 = param1.draw_samples((10000,)) samples2 = param2.draw_samples((10000,)) expected_first = ( scipy.special.gamma(1 + 2/1) - (scipy.special.gamma(1 + 1/1))**2 ) expected_second = ( scipy.special.gamma(1 + 2/0.5) - (scipy.special.gamma(1 + 1/0.5))**2 ) assert np.var(samples1) < np.var(samples2) assert ( expected_first - 0.2 * expected_first < np.var(samples1) < expected_first + 0.2 * expected_first ) assert ( expected_second - 0.2 * expected_second < np.var(samples2) < expected_second + 0.2 * expected_second ) def test_samples_same_values_for_same_seeds(self): param = iap.Weibull(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestUniform(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Uniform(0, 1.0) assert ( param.__str__() == param.__repr__() == "Uniform(Deterministic(int 0), Deterministic(float 1.00000000))" ) def test_draw_sample(self): param = iap.Uniform(0, 1.0) sample = param.draw_sample() assert sample.shape == tuple() assert 0 - _eps(sample) < sample < 1.0 + _eps(sample) def test_draw_samples(self): param = iap.Uniform(0, 1.0) samples = param.draw_samples((10, 5)) assert samples.shape == (10, 5) assert np.all( np.logical_and( 0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_via_density_histogram(self): param = iap.Uniform(0, 1.0) samples = param.draw_samples((10000,)) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0.0, 1.0), density=False) density_expected = 1.0/nb_bins density_tolerance = 0.05 for nb_samples in hist: density = nb_samples / samples.size assert ( density_expected - density_tolerance < density < density_expected + density_tolerance ) def test_negative_value(self): param = iap.Uniform(-1.0, 1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_wrong_argument_order(self): param = iap.Uniform(1.0, -1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_arguments_are_integers(self): param = iap.Uniform(-1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_arguments_are_identical(self): param = iap.Uniform(1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert 1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( 1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_samples_same_values_for_same_seeds(self): param = iap.Uniform(-1.0, 1.0) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestBeta(unittest.TestCase): @classmethod def _mean(cls, alpha, beta): return alpha / (alpha + beta) @classmethod def _var(cls, alpha, beta): return (alpha * beta) / ((alpha + beta)**2 * (alpha + beta + 1)) def setUp(self): reseed() def test___init__(self): param = iap.Beta(0.5, 0.5) assert ( param.__str__() == param.__repr__() == "Beta(" "Deterministic(float 0.50000000), " "Deterministic(float 0.50000000)" ")" ) def test_draw_sample(self): param = iap.Beta(0.5, 0.5) sample = param.draw_sample() assert sample.shape == tuple() assert 0 - _eps(sample) < sample < 1.0 + _eps(sample) def test_draw_samples(self): param = iap.Beta(0.5, 0.5) samples = param.draw_samples((100, 1000)) assert samples.shape == (100, 1000) assert np.all( np.logical_and( 0 - _eps(samples) <= samples, samples <= 1.0 + _eps(samples) ) ) def test_via_comparison_to_np_beta(self): param = iap.Beta(0.5, 0.5) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).beta( a=0.5, b=0.5, size=(100, 1000)) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_argument_is_stochastic_parameter(self): param = iap.Beta(iap.Choice([0.5, 2]), 0.5) expected_first = self._mean(0.5, 0.5) expected_second = self._mean(2, 0.5) seen = [0, 0] for _ in sm.xrange(100): samples = param.draw_samples((10000,)) observed = np.mean(samples) if expected_first - 0.05 < observed < expected_first + 0.05: seen[0] += 1 elif expected_second - 0.05 < observed < expected_second + 0.05: seen[1] += 1 else: assert False assert 50 - 25 < seen[0] < 50 + 25 assert 50 - 25 < seen[1] < 50 + 25 def test_compare_curves_of_different_arguments(self): param1 = iap.Beta(2, 2) param2 = iap.Beta(0.5, 0.5) samples1 = param1.draw_samples((10000,)) samples2 = param2.draw_samples((10000,)) expected_first = self._var(2, 2) expected_second = self._var(0.5, 0.5) assert np.var(samples1) < np.var(samples2) assert ( expected_first - 0.1 * expected_first < np.var(samples1) < expected_first + 0.1 * expected_first ) assert ( expected_second - 0.1 * expected_second < np.var(samples2) < expected_second + 0.1 * expected_second ) def test_samples_same_values_for_same_seeds(self): param = iap.Beta(0.5, 0.5) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestDeterministic(unittest.TestCase): def setUp(self): reseed() def test___init__(self): pairs = [ (0, "Deterministic(int 0)"), (1.0, "Deterministic(float 1.00000000)"), ("test", "Deterministic(test)") ] for value, expected in pairs: with self.subTest(value=value): param = iap.Deterministic(value) assert ( param.__str__() == param.__repr__() == expected ) def test_samples_same_values_for_same_seeds(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0 ] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) rs1 = iarandom.RNG(123456) rs2 = iarandom.RNG(123456) samples1 = param.draw_samples(20, random_state=rs1) samples2 = param.draw_samples(20, random_state=rs2) assert np.array_equal(samples1, samples2) def test_draw_sample_int(self): values = [-100, -54, -1, 0, 1, 54, 100] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) sample1 = param.draw_sample() sample2 = param.draw_sample() assert sample1.shape == tuple() assert sample1 == sample2 def test_draw_sample_float(self): values = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) sample1 = param.draw_sample() sample2 = param.draw_sample() assert sample1.shape == tuple() assert np.isclose( sample1, sample2, rtol=0, atol=_eps(sample1)) def test_draw_samples_int(self): values = [-100, -54, -1, 0, 1, 54, 100] shapes = [10, 10, (5, 3), (5, 3), (4, 5, 3), (4, 5, 3)] for value, shape in itertools.product(values, shapes): with self.subTest(value=value, shape=shape): param = iap.Deterministic(value) samples = param.draw_samples(shape) shape_expected = ( shape if isinstance(shape, tuple) else tuple([shape])) assert samples.shape == shape_expected assert np.all(samples == value) def test_draw_samples_float(self): values = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] shapes = [10, 10, (5, 3), (5, 3), (4, 5, 3), (4, 5, 3)] for value, shape in itertools.product(values, shapes): with self.subTest(value=value, shape=shape): param = iap.Deterministic(value) samples = param.draw_samples(shape) shape_expected = ( shape if isinstance(shape, tuple) else tuple([shape])) assert samples.shape == shape_expected assert np.allclose(samples, value, rtol=0, atol=_eps(samples)) def test_argument_is_stochastic_parameter(self): seen = [0, 0] for _ in sm.xrange(200): param = iap.Deterministic(iap.Choice([0, 1])) seen[param.value] += 1 assert 100 - 50 < seen[0] < 100 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_argument_has_invalid_type(self): with self.assertRaises(Exception) as context: _ = iap.Deterministic([1, 2, 3]) self.assertTrue( "Expected StochasticParameter object or number or string" in str(context.exception)) class TestFromLowerResolution(unittest.TestCase): def setUp(self): reseed() def test___init___size_percent(self): param = iap.FromLowerResolution(other_param=iap.Deterministic(0), size_percent=1, method="nearest") assert ( param.__str__() == param.__repr__() == "FromLowerResolution(" "size_percent=Deterministic(int 1), " "method=Deterministic(nearest), " "other_param=Deterministic(int 0)" ")" ) def test___init___size_px(self): param = iap.FromLowerResolution(other_param=iap.Deterministic(0), size_px=1, method="nearest") assert ( param.__str__() == param.__repr__() == "FromLowerResolution(" "size_px=Deterministic(int 1), " "method=Deterministic(nearest), " "other_param=Deterministic(int 0)" ")" ) def test_binomial_hwc(self): param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples = param.draw_samples((8, 8, 1)) uq = np.unique(samples) assert samples.shape == (8, 8, 1) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_binomial_nhwc(self): param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples_nhwc = param.draw_samples((1, 8, 8, 1)) uq = np.unique(samples_nhwc) assert samples_nhwc.shape == (1, 8, 8, 1) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_draw_samples_with_too_many_dimensions(self): # (N, H, W, C, something) causing error param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) with self.assertRaises(Exception) as context: _ = param.draw_samples((1, 8, 8, 1, 1)) self.assertTrue( "FromLowerResolution can only generate samples of shape" in str(context.exception) ) def test_binomial_hw3(self): # C=3 param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples = param.draw_samples((8, 8, 3)) uq = np.unique(samples) assert samples.shape == (8, 8, 3) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_different_size_px_arguments(self): # different sizes in px param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=16) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_different_size_px_arguments_with_tuple(self): # different sizes in px, one given as tuple (a, b) param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=(2, 16)) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(400): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_different_size_px_argument_with_stochastic_parameters(self): # different sizes in px, given as StochasticParameter param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=iap.Deterministic(1)) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=iap.Choice([8, 16])) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_px_has_invalid_datatype(self): # bad datatype for size_px with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_px=False) self.assertTrue("Expected " in str(context.exception)) def test_min_size(self): # min_size param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=1, min_size=16) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent(self): # different sizes in percent param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=0.01) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=0.8) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent_as_stochastic_parameters(self): # different sizes in percent, given as StochasticParameter param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=iap.Deterministic(0.01)) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=iap.Choice([0.4, 0.8])) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent_has_invalid_datatype(self): # bad datatype for size_percent with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=False) self.assertTrue("Expected " in str(context.exception)) def test_method(self): # method given as StochasticParameter param = iap.FromLowerResolution( iap.Binomial(0.5), size_px=4, method=iap.Choice(["nearest", "linear"])) seen = [0, 0] for _ in sm.xrange(200): samples = param.draw_samples((16, 16, 1)) nb_in_between = np.sum( np.logical_and(0.05 < samples, samples < 0.95)) if nb_in_between == 0: seen[0] += 1 else: seen[1] += 1 assert 100 - 50 < seen[0] < 100 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_method_has_invalid_datatype(self): # bad datatype for method with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_px=4, method=False) self.assertTrue("Expected " in str(context.exception)) def test_samples_same_values_for_same_seeds(self): # multiple calls with same random_state param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) samples1 = param.draw_samples((10, 5, 1), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5, 1), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestClip(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Clip(iap.Deterministic(0), -1, 1) assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), -1.000000, 1.000000)" ) def test_value_within_bounds(self): param = iap.Clip(iap.Deterministic(0), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 0 assert np.all(samples == 0) def test_value_exactly_at_upper_bound(self): param = iap.Clip(iap.Deterministic(1), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_value_exactly_at_lower_bound(self): param = iap.Clip(iap.Deterministic(-1), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == -1 assert np.all(samples == -1) def test_value_is_within_bounds_and_float(self): param = iap.Clip(iap.Deterministic(0.5), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert 0.5 - _eps(sample) < sample < 0.5 + _eps(sample) assert np.all( np.logical_and( 0.5 - _eps(sample) <= samples, samples <= 0.5 + _eps(sample) ) ) def test_value_is_above_upper_bound(self): param = iap.Clip(iap.Deterministic(2), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_value_is_below_lower_bound(self): param = iap.Clip(iap.Deterministic(-2), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == -1 assert np.all(samples == -1) def test_value_is_sometimes_without_bounds_sometimes_beyond(self): param = iap.Clip(iap.Choice([0, 2]), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1] assert np.all(np.logical_or(samples == 0, samples == 1)) def test_samples_same_values_for_same_seeds(self): param = iap.Clip(iap.Choice([0, 2]), -1, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) def test_lower_bound_is_none(self): param = iap.Clip(iap.Deterministic(0), None, 1) sample = param.draw_sample() assert sample == 0 assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), None, 1.000000)" ) def test_upper_bound_is_none(self): param = iap.Clip(iap.Deterministic(0), 0, None) sample = param.draw_sample() assert sample == 0 assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), 0.000000, None)" ) def test_both_bounds_are_none(self): param = iap.Clip(iap.Deterministic(0), None, None) sample = param.draw_sample() assert sample == 0 assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), None, None)" ) class TestDiscretize(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Discretize(iap.Deterministic(0)) assert ( param.__str__() == param.__repr__() == "Discretize(Deterministic(int 0))" ) def test_applied_to_deterministic(self): values = [-100.2, -54.3, -1.0, -1, -0.7, -0.00043, 0, 0.00043, 0.7, 1.0, 1, 54.3, 100.2] for value in values: with self.subTest(value=value): param = iap.Discretize(iap.Deterministic(value)) value_expected = np.round( np.float64([value]) ).astype(np.int32)[0] sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == value_expected assert np.all(samples == value_expected) # TODO why are these tests applied to DiscreteUniform instead of Uniform? def test_applied_to_discrete_uniform(self): param_orig = iap.DiscreteUniform(0, 1) param = iap.Discretize(param_orig) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1] assert np.all(np.logical_or(samples == 0, samples == 1)) def test_applied_to_discrete_uniform_with_wider_range(self): param_orig = iap.DiscreteUniform(0, 2) param = iap.Discretize(param_orig) samples1 = param_orig.draw_samples((10000,)) samples2 = param.draw_samples((10000,)) assert np.all(np.abs(samples1 - samples2) < 0.2*(10000/3)) def test_samples_same_values_for_same_seeds(self): param_orig = iap.DiscreteUniform(0, 2) param = iap.Discretize(param_orig) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Multiply(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Multiply(Deterministic(int 0), Deterministic(int 1), False)" ) def test_multiply_example_integer_values(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), v2) samples = p.draw_samples((2, 3)) assert p.draw_sample() == v1 * v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int64) + v1 * v2 ) def test_multiply_example_integer_values_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), iap.Deterministic(v2)) samples = p.draw_samples((2, 3)) assert p.draw_sample() == v1 * v2 assert samples.dtype.name == "int32" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int32) + v1 * v2 ) def test_multiply_example_float_values(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 * v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 * v2 ) def test_multiply_example_float_values_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 * v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 * v2 ) def test_multiply_by_stochastic_parameter(self): param = iap.Multiply(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 1.0 * 2.0 + _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_multiply_by_stochastic_parameter_elementwise(self): param = iap.Multiply(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 1.0 * 2.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_multiply_stochastic_parameter_by_fixed_value(self): param = iap.Multiply(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 2.0 * 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_multiply_stochastic_parameter_by_fixed_value_elementwise(self): param = iap.Multiply(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 2.0 * 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestDivide(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Divide(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Divide(Deterministic(int 0), Deterministic(int 1), False)" ) def test_divide_integers(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == (v1 / v2) assert samples.dtype.kind == "f" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_integers_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == (v1 / v2) assert samples.dtype.kind == "f" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_floats(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( (v1 / v2) - _eps(sample) <= sample <= (v1 / v2) + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_floats_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( (v1 / v2) - _eps(sample) <= sample <= (v1 / v2) + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_by_stochastic_parameter(self): param = iap.Divide(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 2.0) - _eps(samples)) assert np.all(samples < (1.0 / 1.0) + _eps(samples)) assert ( samples_sorted[0] - _eps(samples) < samples_sorted[-1] < samples_sorted[0] + _eps(samples) ) def test_divide_by_stochastic_parameter_elementwise(self): param = iap.Divide(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 2.0) - _eps(samples)) assert np.all(samples < (1.0 / 1.0) + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples) < samples_sorted[-1] < samples_sorted[0] + _eps(samples) ) def test_divide_stochastic_parameter_by_float(self): param = iap.Divide(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 1.0) - _eps(samples)) assert np.all(samples < (2.0 / 1.0) + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples) < samples_sorted[-1] < samples_sorted[0] + _eps(samples) ) def test_divide_stochastic_parameter_by_float_elementwise(self): param = iap.Divide(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 1.0) - _eps(samples)) assert np.all(samples < (2.0 / 1.0) + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted) < samples_sorted[-1] < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted) ) def test_divide_by_stochastic_parameter_that_can_by_zero(self): # test division by zero automatically being converted to division by 1 param = iap.Divide(2, iap.Choice([0, 2]), elementwise=True) samples = param.draw_samples((10, 20)) samples_unique = np.sort(np.unique(samples.flatten())) assert samples_unique[0] == 1 and samples_unique[1] == 2 def test_divide_by_zero(self): param = iap.Divide(iap.Deterministic(1), 0, elementwise=False) sample = param.draw_sample() assert sample == 1 class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Add(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Add(Deterministic(int 0), Deterministic(int 1), False)" ) def test_add_integers(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 + v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int32) + v1 + v2 ) def test_add_integers_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 + v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int32) + v1 + v2 ) def test_add_floats(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 + v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 + v2 ) def test_add_floats_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 + v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 + v2 ) def test_add_stochastic_parameter(self): param = iap.Add(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 1.0 + 2.0 + _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_add_stochastic_parameter_elementwise(self): param = iap.Add(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 1.0 + 2.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_add_to_stochastic_parameter(self): param = iap.Add(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 2.0 + 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_add_to_stochastic_parameter_elementwise(self): param = iap.Add(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 2.0 + 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestSubtract(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Subtract(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Subtract(Deterministic(int 0), Deterministic(int 1), False)" ) def test_subtract_integers(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 - v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int64) + v1 - v2 ) def test_subtract_integers_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 - v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int64) + v1 - v2 ) def test_subtract_floats(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert v1 - v2 - _eps(sample) < sample < v1 - v2 + _eps(sample) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + v1 - v2 ) def test_subtract_floats_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert v1 - v2 - _eps(sample) < sample < v1 - v2 + _eps(sample) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + v1 - v2 ) def test_subtract_stochastic_parameter(self): param = iap.Subtract(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 2.0 - _eps(samples)) assert np.all(samples < 1.0 - 1.0 + _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_subtract_stochastic_parameter_elementwise(self): param = iap.Subtract(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 2.0 - _eps(samples)) assert np.all(samples < 1.0 - 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_subtract_from_stochastic_parameter(self): param = iap.Subtract(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 1.0 - _eps(samples)) assert np.all(samples < 2.0 - 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_subtract_from_stochastic_parameter_elementwise(self): param = iap.Subtract(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 1.0 - _eps(samples)) assert np.all(samples < 2.0 - 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestPower(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Power(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Power(Deterministic(int 0), Deterministic(int 1), False)" ) def test_pairs(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.0, -1.0, 0.0, 1.0, 54.0, 100.0 ] exponents = [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] for base, exponent in itertools.product(values, exponents): if base < 0 and ia.is_single_float(exponent): continue if base == 0 and exponent < 0: continue with self.subTest(base=base, exponent=exponent): p = iap.Power(iap.Deterministic(base), exponent) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( base ** exponent - _eps(sample) < sample < base ** exponent + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + base ** exponent ) def test_pairs_both_deterministic(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.0, -1.0, 0.0, 1.0, 54.0, 100.0 ] exponents = [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] for base, exponent in itertools.product(values, exponents): if base < 0 and ia.is_single_float(exponent): continue if base == 0 and exponent < 0: continue with self.subTest(base=base, exponent=exponent): p = iap.Power(iap.Deterministic(base), iap.Deterministic(exponent)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( base ** exponent - _eps(sample) < sample < base ** exponent + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + base ** exponent ) def test_exponent_is_stochastic_parameter(self): param = iap.Power(iap.Deterministic(1.5), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.5 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 1.5 ** 2.0 + 2 * _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_exponent_is_stochastic_parameter_elementwise(self): param = iap.Power(iap.Deterministic(1.5), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.5 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 1.5 ** 2.0 + 2 * _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_value_is_uniform(self): param = iap.Power(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 2.0 ** 1.0 + 2 * _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_value_is_uniform_elementwise(self): param = iap.Power(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 2.0 ** 1.0 + 2 * _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestAbsolute(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Absolute(iap.Deterministic(0)) assert ( param.__str__() == param.__repr__() == "Absolute(Deterministic(int 0))" ) def test_fixed_values(self): simple_values = [-1.5, -1, -1.0, -0.1, 0, 0.0, 0.1, 1, 1.0, 1.5] for value in simple_values: with self.subTest(value=value): param = iap.Absolute(iap.Deterministic(value)) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) if ia.is_single_float(value): assert ( abs(value) - _eps(sample) < sample < abs(value) + _eps(sample) ) assert np.all(abs(value) - _eps(samples) < samples) assert np.all(samples < abs(value) + _eps(samples)) else: assert sample == abs(value) assert np.all(samples == abs(value)) def test_value_is_stochastic_parameter(self): param = iap.Absolute(iap.Choice([-3, -1, 1, 3])) sample = param.draw_sample() samples = param.draw_samples((10, 10)) samples_uq = np.sort(np.unique(samples)) assert sample.shape == tuple() assert sample in [3, 1] assert samples.shape == (10, 10) assert len(samples_uq) == 2 assert samples_uq[0] == 1 and samples_uq[1] == 3 class TestRandomSign(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.RandomSign(iap.Deterministic(0), 0.5) assert ( param.__str__() == param.__repr__() == "RandomSign(Deterministic(int 0), 0.50)" ) def test_value_is_deterministic(self): param = iap.RandomSign(iap.Deterministic(1)) samples = param.draw_samples((1000,)) n_positive = np.sum(samples == 1) n_negative = np.sum(samples == -1) assert samples.shape == (1000,) assert n_positive + n_negative == 1000 assert 350 < n_positive < 750 def test_value_is_deterministic_many_samples(self): param = iap.RandomSign(iap.Deterministic(1)) seen = [0, 0] for _ in sm.xrange(1000): sample = param.draw_sample() assert sample.shape == tuple() if sample == 1: seen[1] += 1 else: seen[0] += 1 n_negative, n_positive = seen assert n_positive + n_negative == 1000 assert 350 < n_positive < 750 def test_value_is_stochastic_parameter(self): param = iap.RandomSign(iap.Choice([1, 2])) samples = param.draw_samples((4000,)) seen = [0, 0, 0, 0] seen[0] = np.sum(samples == -2) seen[1] = np.sum(samples == -1) seen[2] = np.sum(samples == 1) seen[3] = np.sum(samples == 2) assert np.sum(seen) == 4000 assert all([700 < v < 1300 for v in seen]) def test_samples_same_values_for_same_seeds(self): param = iap.RandomSign(iap.Choice([1, 2])) samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.array_equal(samples1, samples2) assert np.sum(samples1 == -2) > 50 assert np.sum(samples1 == -1) > 50 assert np.sum(samples1 == 1) > 50 assert np.sum(samples1 == 2) > 50 class TestForceSign(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.ForceSign(iap.Deterministic(0), True, "invert", 1) assert ( param.__str__() == param.__repr__() == "ForceSign(Deterministic(int 0), True, invert, 1)" ) def test_single_sample_positive(self): param = iap.ForceSign(iap.Deterministic(1), positive=True, mode="invert") sample = param.draw_sample() assert sample.shape == tuple() assert sample == 1 def test_single_sample_negative(self): param = iap.ForceSign(iap.Deterministic(1), positive=False, mode="invert") sample = param.draw_sample() assert sample.shape == tuple() assert sample == -1 def test_many_samples_positive(self): param = iap.ForceSign(iap.Deterministic(1), positive=True, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == 1) def test_many_samples_negative(self): param = iap.ForceSign(iap.Deterministic(1), positive=False, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == -1) def test_many_samples_negative_value_to_positive(self): param = iap.ForceSign(iap.Deterministic(-1), positive=True, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == 1) def test_many_samples_negative_value_to_negative(self): param = iap.ForceSign(iap.Deterministic(-1), positive=False, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == -1) def test_many_samples_stochastic_value_to_positive(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="invert") samples = param.draw_samples(1000) n_twos = np.sum(samples == 2) n_ones = np.sum(samples == 1) assert samples.shape == (1000,) assert n_twos + n_ones == 1000 assert 200 < n_twos < 700 assert 200 < n_ones < 700 def test_many_samples_stochastic_value_to_positive_reroll(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="reroll") samples = param.draw_samples(1000) n_twos = np.sum(samples == 2) n_ones = np.sum(samples == 1) assert samples.shape == (1000,) assert n_twos + n_ones == 1000 assert n_twos > 0 assert n_ones > 0 def test_many_samples_stochastic_value_to_positive_reroll_max_count(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="reroll", reroll_count_max=100) samples = param.draw_samples(100) n_twos = np.sum(samples == 2) n_ones = np.sum(samples == 1) assert samples.shape == (100,) assert n_twos + n_ones == 100 assert n_twos < 5 def test_samples_same_values_for_same_seeds(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="invert") samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.array_equal(samples1, samples2) class TestPositive(unittest.TestCase): def setUp(self): reseed() def test_many_samples_reroll(self): param = iap.Positive(iap.Deterministic(-1), mode="reroll", reroll_count_max=1) samples = param.draw_samples((100,)) assert samples.shape == (100,) assert np.all(samples == 1) class TestNegative(unittest.TestCase): def setUp(self): reseed() def test_many_samples_reroll(self): param = iap.Negative(iap.Deterministic(1), mode="reroll", reroll_count_max=1) samples = param.draw_samples((100,)) assert samples.shape == (100,) assert np.all(samples == -1) class TestIterativeNoiseAggregator(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.IterativeNoiseAggregator(iap.Deterministic(0), iterations=(1, 3), aggregation_method="max") assert ( param.__str__() == param.__repr__() == ( "IterativeNoiseAggregator(" "Deterministic(int 0), " "DiscreteUniform(Deterministic(int 1), " "Deterministic(int 3)" "), " "Deterministic(max)" ")" ) ) def test_value_is_deterministic_max_1_iter(self): param = iap.IterativeNoiseAggregator(iap.Deterministic(1), iterations=1, aggregation_method="max") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert sample == 1 assert np.all(samples == 1) def test_value_is_stochastic_avg_200_iter(self): param = iap.IterativeNoiseAggregator(iap.Choice([0, 50]), iterations=200, aggregation_method="avg") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert 25 - 10 < sample < 25 + 10 assert np.all(np.logical_and(25 - 10 < samples, samples < 25 + 10)) def test_value_is_stochastic_max_100_iter(self): param = iap.IterativeNoiseAggregator(iap.Choice([0, 50]), iterations=100, aggregation_method="max") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert sample == 50 assert np.all(samples == 50) def test_value_is_stochastic_min_100_iter(self): param = iap.IterativeNoiseAggregator(iap.Choice([0, 50]), iterations=100, aggregation_method="min") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert sample == 0 assert np.all(samples == 0) def test_value_is_stochastic_avg_or_max_100_iter_evaluate_counts(self): seen = [0, 0, 0, 0] for _ in sm.xrange(100): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=100, aggregation_method=["avg", "max"]) samples = param.draw_samples((1, 1)) diff_0 = abs(0 - samples[0, 0]) diff_25 = abs(25 - samples[0, 0]) diff_50 = abs(50 - samples[0, 0]) if diff_25 < 10.0: seen[0] += 1 elif diff_50 < _eps(samples): seen[1] += 1 elif diff_0 < _eps(samples): seen[2] += 1 else: seen[3] += 1 assert seen[2] <= 2 # around 0.0 assert seen[3] <= 2 # 0.0+eps <= x < 15.0 or 35.0 < x < 50.0 or >50.0 assert 50 - 20 < seen[0] < 50 + 20 assert 50 - 20 < seen[1] < 50 + 20 def test_value_is_stochastic_avg_tuple_as_iter_evaluate_histograms(self): # iterations as tuple param = iap.IterativeNoiseAggregator( iap.Uniform(-1.0, 1.0), iterations=(1, 100), aggregation_method="avg") diffs = [] for _ in sm.xrange(100): samples = param.draw_samples((1, 1)) diff = abs(samples[0, 0] - 0.0) diffs.append(diff) nb_bins = 3 hist, _ = np.histogram(diffs, bins=nb_bins, range=(-1.0, 1.0), density=False) assert hist[1] > hist[0] assert hist[1] > hist[2] def test_value_is_stochastic_max_list_as_iter_evaluate_counts(self): # iterations as list seen = [0, 0] for _ in sm.xrange(400): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=[1, 100], aggregation_method=["max"]) samples = param.draw_samples((1, 1)) diff_0 = abs(0 - samples[0, 0]) diff_50 = abs(50 - samples[0, 0]) if diff_50 < _eps(samples): seen[0] += 1 elif diff_0 < _eps(samples): seen[1] += 1 else: assert False assert 300 - 50 < seen[0] < 300 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_value_is_stochastic_all_100_iter(self): # test ia.ALL as aggregation_method # note that each method individually and list of methods are already # tested, so no in depth test is needed here param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=100, aggregation_method=ia.ALL) assert isinstance(param.aggregation_method, iap.Choice) assert len(param.aggregation_method.a) == 3 assert [v in param.aggregation_method.a for v in ["min", "avg", "max"]] def test_value_is_stochastic_max_2_iter(self): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=2, aggregation_method="max") samples = param.draw_samples((2, 1000)) nb_0 = np.sum(samples == 0) nb_50 = np.sum(samples == 50) assert nb_0 + nb_50 == 2 * 1000 assert 0.25 - 0.05 < nb_0 / (2 * 1000) < 0.25 + 0.05 def test_samples_same_values_for_same_seeds(self): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=5, aggregation_method="avg") samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.allclose(samples1, samples2) def test_stochastic_param_as_aggregation_method(self): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=5, aggregation_method=iap.Deterministic("max")) assert isinstance(param.aggregation_method, iap.Deterministic) assert param.aggregation_method.value == "max" def test_bad_datatype_for_aggregation_method(self): with self.assertRaises(Exception) as context: _ = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=5, aggregation_method=False) self.assertTrue( "Expected aggregation_method to be" in str(context.exception)) def test_bad_datatype_for_iterations(self): with self.assertRaises(Exception) as context: _ = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=False, aggregation_method="max") self.assertTrue("Expected iterations to be" in str(context.exception)) class TestSigmoid(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Sigmoid( iap.Deterministic(0), threshold=(-10, 10), activated=True, mul=1, add=0) assert ( param.__str__() == param.__repr__() == ( "Sigmoid(" "Deterministic(int 0), " "Uniform(" "Deterministic(int -10), " "Deterministic(int 10)" "), " "Deterministic(int 1), " "1, " "0)" ) ) def test_activated_is_true(self): param = iap.Sigmoid( iap.Deterministic(5), add=0, mul=1, threshold=0.5, activated=True) expected = 1 / (1 + np.exp(-(5 * 1 + 0 - 0.5))) sample = param.draw_sample() samples = param.draw_samples((5, 10)) assert sample.shape == tuple() assert samples.shape == (5, 10) assert expected - _eps(sample) < sample < expected + _eps(sample) assert np.all( np.logical_and( expected - _eps(samples) < samples, samples < expected + _eps(samples) ) ) def test_activated_is_false(self): param = iap.Sigmoid( iap.Deterministic(5), add=0, mul=1, threshold=0.5, activated=False) expected = 5 sample = param.draw_sample() samples = param.draw_samples((5, 10)) assert sample.shape == tuple() assert samples.shape == (5, 10) assert expected - _eps(sample) < sample < expected + _eps(sample) assert np.all( np.logical_and( expected - _eps(sample) < samples, samples < expected + _eps(sample) ) ) def test_activated_is_probabilistic(self): param = iap.Sigmoid( iap.Deterministic(5), add=0, mul=1, threshold=0.5, activated=0.5) expected_first = 5 expected_second = 1 / (1 + np.exp(-(5 * 1 + 0 - 0.5))) seen = [0, 0] for _ in sm.xrange(1000): sample = param.draw_sample() diff_first = abs(sample - expected_first) diff_second = abs(sample - expected_second) if diff_first < _eps(sample): seen[0] += 1 elif diff_second < _eps(sample): seen[1] += 1 else: assert False assert 500 - 150 < seen[0] < 500 + 150 assert 500 - 150 < seen[1] < 500 + 150 def test_value_is_stochastic_param(self): param = iap.Sigmoid( iap.Choice([1, 10]), add=0, mul=1, threshold=0.5, activated=True) expected_first = 1 / (1 + np.exp(-(1 * 1 + 0 - 0.5))) expected_second = 1 / (1 + np.exp(-(10 * 1 + 0 - 0.5))) seen = [0, 0] for _ in sm.xrange(1000): sample = param.draw_sample() diff_first = abs(sample - expected_first) diff_second = abs(sample - expected_second) if diff_first < _eps(sample): seen[0] += 1 elif diff_second < _eps(sample): seen[1] += 1 else: assert False assert 500 - 150 < seen[0] < 500 + 150 assert 500 - 150 < seen[1] < 500 + 150 def test_mul_add_threshold_with_various_fixed_values(self): muls = [0.1, 1, 10.3] adds = [-5.7, -0.0734, 0, 0.0734, 5.7] vals = [-1, -0.7, 0, 0.7, 1] threshs = [-5.7, -0.0734, 0, 0.0734, 5.7] for mul, add, val, thresh in itertools.product(muls, adds, vals, threshs): with self.subTest(mul=mul, add=add, val=val, threshold=thresh): param = iap.Sigmoid( iap.Deterministic(val), add=add, mul=mul, threshold=thresh) sample = param.draw_sample() samples = param.draw_samples((2, 3)) dt = sample.dtype val_ = np.array([val], dtype=dt) mul_ = np.array([mul], dtype=dt) add_ = np.array([add], dtype=dt) thresh_ = np.array([thresh], dtype=dt) expected = ( 1 / ( 1 + np.exp( -(val_ * mul_ + add_ - thresh_) ) ) ) assert sample.shape == tuple() assert samples.shape == (2, 3) assert ( expected - 5*_eps(sample) < sample < expected + 5*_eps(sample) ) assert np.all( np.logical_and( expected - 5*_eps(sample) < samples, samples < expected + 5*_eps(sample) ) ) def test_samples_same_values_for_same_seeds(self): param = iap.Sigmoid( iap.Choice([1, 10]), add=0, mul=1, threshold=0.5, activated=True) samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.array_equal(samples1, samples2)
import time import logging from healthtools.scrapers.base_scraper import Scraper from healthtools.config import SITES, SMALL_BATCH_NHIF log = logging.getLogger(__name__) class NhifInpatientScraper(Scraper): """Scraper for the NHIF accredited inpatient facilities""" def __init__(self): super(NhifInpatientScraper, self).__init__() self.site_url = SITES["NHIF_INPATIENT"] self.fields = ["hospital", "postal_addr", "beds", "branch", "category", "id"] self.es_doc = "nhif-inpatient" self.data_key = "nhif_inpatient.json" self.data_archive_key = "archive/nhif_inpatient-{}.json" def scrape_page(self, tab_num, page_retries): """ Get entries from each tab panel :param tab_num: the tab number :page_retries: Number of times to retry :return: tuple consisting of entries and records to be deleted """ try: soup = self.make_soup(self.site_url) regions = soup.findAll("a", {"data-toggle": "tab"}) tabs = [(region["href"].split("#")[1], str(region.getText())) for region in regions] results = [] results_es = [] for tab in tabs: table = soup.find("div", {"id": tab[0]}).tbody if self.small_batch: rows = table.find_all("tr")[:SMALL_BATCH_NHIF] else: rows = table.find_all("tr") for row in rows: columns = row.find_all("td") columns = [str(text.get_text()) for text in columns] columns.append(self.doc_id) entry = dict(zip(self.fields, columns)) # Nairobi region isn't included correctly if tab[1] == "": entry["region"] = "Nairobi Region" else: entry["region"] = tab[1] meta, entry = self.elasticsearch_format(entry) results_es.append(meta) results_es.append(entry) results.append(entry) self.doc_id += 1 return results, results_es except Exception as err: if page_retries >= 5: error = { "ERROR": "Failed to scrape data from NHIH Inpatient page.", "SOURCE": "scrape_page() url: %s" % tab_num, "MESSAGE": str(err) } self.print_error(error) return err else: page_retries += 1 log.warning("Try %d/5 has failed... \n%s \nGoing to sleep for %d seconds.", page_retries, err, page_retries*5) time.sleep(page_retries*5) self.scrape_page(tab_num, page_retries) def set_site_pages_no(self): """ Get the total number of pages """ try: soup = self.make_soup(self.site_url) # get number of tabs to scrape self.site_pages_no = len( [tag.name for tag in soup.find("div", {"class": "tab-content"}) if tag.name == 'div']) except Exception as err: error = { "ERROR": "NHIF Inpatient: set_site_pages_no()", "SOURCE": "url: %s" % self.site_url, "MESSAGE": str(err) } self.print_error(error) return
from fpdf import FPDF import os import re from scipy.signal.spectral import spectrogram class PDF(FPDF): def __init__(self): super().__init__() self.WIDTH = 210 self.HEIGHT = 297 def header(self): # Custom logo and positioning # Create an `assets` folder and put any wide and short image inside # Name the image `logo.png` # 10 distance from left 8 distance from top 33 size self.image('.\\assets/logo.png', 10, 8, 35) self.image('.\\assets/CUFE.png', 170, 6, 25) self.set_font('helvetica', 'B', 15) self.cell(self.WIDTH - 142) self.cell(60, 1, 'Sound Equalizer', 0, 0, 'C') self.ln(20) def footer(self): # Page numbers in the footer self.set_y(-15) self.set_font('helvetica', 'I', 8) self.set_text_color(128) self.cell(0, 10, 'Page ' + str(self.page_no()), 0, 0, 'C') def print_page(self, images, PLOT_DIR): # Generates the report self.add_page() # image 15 from left 25 from top self.width - 30 -> distance to right (width of the graph) self.image(PLOT_DIR + '/' + images[0], 15, 30, self.WIDTH - 30) self.image(PLOT_DIR + '/' + images[1], 15, self.WIDTH / 2 + 20, self.WIDTH - 30) def construct(self, PLOT_DIR): pages_data = [] # Get all plots files = os.listdir(PLOT_DIR) # Sort them by month - a bit tricky because the file names are strings files = sorted(os.listdir(PLOT_DIR), key=lambda x: x.split('.')[0]) pages = len(files) // 2 for i in range(pages): pages_data.append([files[0+i], files[pages+i]]) return pages_data
from typing import Optional import colorful as cf from kolga.utils.models import SubprocessResult class Logger: """ Class for logging of events in the DevOps pipeline """ def _create_message(self, message: str, icon: Optional[str] = None) -> str: icon_string = f"{icon} " if icon else "" return f"{icon_string}{message}" def error( self, message: str = "", icon: Optional[str] = None, error: Optional[Exception] = None, raise_exception: bool = True, ) -> None: """ Log formatted errors to stdout and optionally raise them Args: message: Verbose/Custom error message of the exception icon: Icon to place as before the output error: Exception should be logged and optionally raised raise_exception: If True, raise `error` if passed, otherwise raise `Exception` """ message_string = message if message else "An error occured" _message = self._create_message(message_string, icon) if error and not raise_exception: _message += f"{error}" print(f"{cf.red}{_message}{cf.reset}") # noqa: T001 if raise_exception: error = error or Exception(message_string) raise error def warning(self, message: str, icon: Optional[str] = None) -> None: """ Log formatted warnings to stdout Args: message: Verbose/Custom error message of the exception icon: Icon to place as before the output """ _message = self._create_message(message, icon) print(f"{cf.yellow}{_message}{cf.reset}") # noqa: T001 def success(self, message: str = "", icon: Optional[str] = None) -> None: """ Log formatted successful events to stdout Args: message: Verbose/Custom error message of the exception icon: Icon to place as before the output """ message_string = message if message else "Done" _message = self._create_message(message_string, icon) print(f"{cf.green}{_message}{cf.reset}") # noqa: T001 def info( self, message: str = "", title: str = "", icon: Optional[str] = None, end: str = "\n", ) -> None: """ Log formatted info events to stdout Args: title: Title of the message, printed in bold message: Verbose/Custom error message of the exception icon: Icon to place as before the output end: Ending char of the message, for controlling new line for instance """ message_string = ( f"{cf.bold}{title}{cf.reset}{message}" if title else f"{message}" ) _message = self._create_message(message_string, icon) print(f"{_message}", end=end, flush=True) # noqa: T001 def std( self, std: SubprocessResult, raise_exception: bool = False, log_error: bool = True, ) -> None: """ Log results of :class:`SubprocessResult` warnings to stdout Args: std: Result from a subprocess call raise_exception: If True, raise `Exception` log_error: If True, log the error part of the result with :func:`~Logger.error` """ if log_error: logger.error(message=std.err, raise_exception=False) output_string = f"\n{cf.green}stdout:\n{cf.reset}{std.out}\n{cf.red}stderr:\n{cf.reset}{std.err}" if raise_exception: raise Exception(output_string) else: print(output_string) # noqa: T001 logger = Logger()
# This contains all helper functions for the project import re # -------------------------------------------------- USERS ------------------------------------------------------------- def find_special_chars(string): regex = re.compile('[@_!#$%^&*()<>?/\|}{~:]') if regex.search(string) == None: return False elif string == '': return True else: return True
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Software License Agreement (BSD License) # # Copyright (c) 2013 PAL Robotics SL. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Authors: # * Siegfried-A. Gevatter <[email protected]> import roslib; roslib.load_manifest('hector_exploration_node') import rospy from actionlib import SimpleActionClient, GoalStatus from move_base_msgs.msg import * from hector_nav_msgs.srv import GetRobotTrajectory class ExplorationController: def __init__(self): self._plan_service = rospy.ServiceProxy('get_exploration_path', GetRobotTrajectory) self._move_base = SimpleActionClient('planner/move_base', MoveBaseAction) def run(self): r = rospy.Rate(1 / 7.0) while not rospy.is_shutdown(): self.run_once() r.sleep() def run_once(self): path = self._plan_service().trajectory poses = path.poses if not path.poses: rospy.loginfo('No frontiers left.') return rospy.loginfo('Moving to frontier...') self.move_to_pose(poses[-1]) def move_to_pose(self, pose_stamped, timeout=20.0): rospy.loginfo('move_to_pose') self._move_base.wait_for_server(rospy.Duration(timeout)) rospy.loginfo('server up/timeout') goal = MoveBaseGoal() #pose_stamped.header.frame_id = "base_link"; pose_stamped.header.stamp = rospy.Time.now() #pose_stamped.pose.position.x = pose_stamped.pose.position.x + 1 #pose_stamped.pose.position.y = pose_stamped.pose.position.y + 1 goal.target_pose = pose_stamped rospy.loginfo(goal) self._move_base.send_goal(goal) rospy.loginfo('goal sent') self._move_base.wait_for_result(rospy.Duration(timeout)) rospy.loginfo('result') return self._move_base.get_state() == GoalStatus.SUCCEEDED if __name__ == '__main__': rospy.init_node('hector_to_move_base') controller = ExplorationController() controller.run()
# Generated by Django 3.1.7 on 2021-04-22 15:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Carletapp', '0015_auto_20210421_1451'), ] operations = [ migrations.CreateModel( name='Wallet', fields=[ ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='Carletapp.carletuser')), ('amount', models.PositiveIntegerField(default=0)), ('proof_of_payment', models.ImageField(blank=True, null=True, upload_to='proof_of_payment/')), ('payment_amount', models.PositiveIntegerField(default=0)), ('payment_approved', models.BooleanField(default=False)), ], ), migrations.RemoveField( model_name='carletuser', name='wallet', ), migrations.AddField( model_name='carletuser', name='rating_counter', field=models.PositiveIntegerField(default=1), ), migrations.AddField( model_name='tripdetail', name='payment', field=models.BooleanField(default=False), ), ]
#!/usr/bin/env python """ Artesanal example Pipe without Pipe class. """ __author__ = "Rafael García Cuéllar" __email__ = "[email protected]" __copyright__ = "Copyright (c) 2018 Rafael García Cuéllar" __license__ = "MIT" from concurrent.futures import ProcessPoolExecutor import time import random def worker(arg): time.sleep(random.random()) return arg def pipeline(future): pools[1].submit(worker, future.result()).add_done_callback(printer) def printer(future): pools[2].submit(worker, future.result()).add_done_callback(spout) def spout(future): print(future.result()) def instanceProcessPool(): pools = [] for i in range(3): pool = ProcessPoolExecutor(2) pools.append(pool) return pools def shutdownPools(pools): for pool in pools: pool.shutdown() def runThreadsInPipeline(pools): for pool in pools: pool.submit(worker, random.random()).add_done_callback(pipeline) if __name__ == "__main__": __spec__ = None # Fix multiprocessing in Spyder's IPython pools = instanceProcessPool() # pool = ProcessPoolExecutor([max_workers]) runThreadsInPipeline(pools) # pools[0].submit(worker, random.random()).add_done_callback(pipeline) shutdownPools(pools) # pool.shutdown()
import os DEBUG = os.getenv('DEBUG', False) PORT = os.getenv('PORT', 80)
""" Test model creation with custom fields """ from django.test import TestCase from django_any.models import any_model from testapp.models import ModelWithCustomField class CustomFieldsTest(TestCase): def test_created_model_with_custom_field(self): model = any_model(ModelWithCustomField) self.assertEqual(type(model), ModelWithCustomField) self.assertEqual(len(model._meta.fields), len( ModelWithCustomField._meta.local_fields)) self.assertTrue(model.slug) self.assertTrue(isinstance(model.slug, str))