sshk's picture
End of training
09c6f4d verified
|
raw
history blame
7.27 kB
metadata
license: other
base_model: sayeed99/segformer-b3-fashion
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b3-fashion-finetuned-polo-segments-v1.5
    results: []

segformer-b3-fashion-finetuned-polo-segments-v1.5

This model is a fine-tuned version of sayeed99/segformer-b3-fashion on the sshk/polo-badges-segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1007
  • Mean Iou: 0.8404
  • Mean Accuracy: 0.9136
  • Overall Accuracy: 0.9704
  • Accuracy Unlabeled: nan
  • Accuracy Collar: 0.8876
  • Accuracy Polo: 0.9746
  • Accuracy Lines-cuff: 0.7358
  • Accuracy Lines-chest: 0.9360
  • Accuracy Human: 0.9631
  • Accuracy Background: 0.9848
  • Accuracy Tape: nan
  • Iou Unlabeled: nan
  • Iou Collar: 0.7360
  • Iou Polo: 0.9428
  • Iou Lines-cuff: 0.6178
  • Iou Lines-chest: 0.8353
  • Iou Human: 0.9386
  • Iou Background: 0.9718
  • Iou Tape: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Collar Accuracy Polo Accuracy Lines-cuff Accuracy Lines-chest Accuracy Human Accuracy Background Accuracy Tape Iou Unlabeled Iou Collar Iou Polo Iou Lines-cuff Iou Lines-chest Iou Human Iou Background Iou Tape
0.1679 2.2222 20 0.2031 0.5532 0.5985 0.9492 nan 0.6856 0.9707 0.0 0.0022 0.9482 0.9843 nan nan 0.5491 0.8882 0.0 0.0022 0.9192 0.9604 nan
0.0921 4.4444 40 0.1359 0.7103 0.7618 0.9631 nan 0.8586 0.9739 0.1373 0.6598 0.9577 0.9835 nan nan 0.6786 0.9244 0.1373 0.6217 0.9305 0.9691 nan
0.0603 6.6667 60 0.1166 0.8147 0.8651 0.9672 nan 0.8436 0.9795 0.6385 0.7867 0.9586 0.9837 nan nan 0.7114 0.9315 0.5955 0.7446 0.9352 0.9700 nan
0.0581 8.8889 80 0.1121 0.8185 0.8809 0.9677 nan 0.8363 0.9767 0.6995 0.8279 0.9594 0.9857 nan nan 0.7091 0.9336 0.6009 0.7611 0.9357 0.9709 nan
0.0445 11.1111 100 0.1047 0.8317 0.9033 0.9699 nan 0.8719 0.9687 0.7198 0.9070 0.9686 0.9836 nan nan 0.7263 0.9403 0.6081 0.8045 0.9390 0.9721 nan
0.0456 13.3333 120 0.1055 0.8342 0.9151 0.9694 nan 0.8931 0.9687 0.7391 0.9402 0.9614 0.9878 nan nan 0.7285 0.9405 0.6102 0.8184 0.9371 0.9708 nan
0.0443 15.5556 140 0.1034 0.8349 0.9039 0.9700 nan 0.8740 0.9742 0.7208 0.9059 0.9636 0.9851 nan nan 0.7324 0.9411 0.6091 0.8166 0.9384 0.9717 nan
0.0475 17.7778 160 0.1032 0.8384 0.9139 0.9699 nan 0.8885 0.9738 0.7383 0.9356 0.9604 0.9868 nan nan 0.7341 0.9409 0.6160 0.8300 0.9377 0.9717 nan
0.0411 20.0 180 0.1018 0.8403 0.9150 0.9702 nan 0.8911 0.9770 0.7389 0.9378 0.9592 0.9862 nan nan 0.7362 0.9417 0.6194 0.8346 0.9383 0.9716 nan
0.0345 22.2222 200 0.1003 0.8397 0.9112 0.9704 nan 0.8885 0.9768 0.7359 0.9201 0.9625 0.9836 nan nan 0.7355 0.9423 0.6157 0.8345 0.9387 0.9716 nan
0.0403 24.4444 220 0.1007 0.8397 0.9140 0.9705 nan 0.8826 0.9745 0.7393 0.9392 0.9633 0.9851 nan nan 0.7353 0.9434 0.6172 0.8319 0.9388 0.9716 nan
0.0563 26.6667 240 0.1009 0.8406 0.9140 0.9704 nan 0.8914 0.9765 0.7306 0.9391 0.9603 0.9859 nan nan 0.7360 0.9427 0.6202 0.8344 0.9383 0.9718 nan
0.0464 28.8889 260 0.1007 0.8404 0.9136 0.9704 nan 0.8876 0.9746 0.7358 0.9360 0.9631 0.9848 nan nan 0.7360 0.9428 0.6178 0.8353 0.9386 0.9718 nan

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1