End of training
Browse files- README.md +87 -196
- config.json +90 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,90 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
###
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: sayeed99/segformer-b3-fashion
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b3-fashion-finetuned-polo-segments-v1.5
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b3-fashion-finetuned-polo-segments-v1.5
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1007
|
21 |
+
- Mean Iou: 0.8404
|
22 |
+
- Mean Accuracy: 0.9136
|
23 |
+
- Overall Accuracy: 0.9704
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Collar: 0.8876
|
26 |
+
- Accuracy Polo: 0.9746
|
27 |
+
- Accuracy Lines-cuff: 0.7358
|
28 |
+
- Accuracy Lines-chest: 0.9360
|
29 |
+
- Accuracy Human: 0.9631
|
30 |
+
- Accuracy Background: 0.9848
|
31 |
+
- Accuracy Tape: nan
|
32 |
+
- Iou Unlabeled: nan
|
33 |
+
- Iou Collar: 0.7360
|
34 |
+
- Iou Polo: 0.9428
|
35 |
+
- Iou Lines-cuff: 0.6178
|
36 |
+
- Iou Lines-chest: 0.8353
|
37 |
+
- Iou Human: 0.9386
|
38 |
+
- Iou Background: 0.9718
|
39 |
+
- Iou Tape: nan
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 6e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 30
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape |
|
69 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:|
|
70 |
+
| 0.1679 | 2.2222 | 20 | 0.2031 | 0.5532 | 0.5985 | 0.9492 | nan | 0.6856 | 0.9707 | 0.0 | 0.0022 | 0.9482 | 0.9843 | nan | nan | 0.5491 | 0.8882 | 0.0 | 0.0022 | 0.9192 | 0.9604 | nan |
|
71 |
+
| 0.0921 | 4.4444 | 40 | 0.1359 | 0.7103 | 0.7618 | 0.9631 | nan | 0.8586 | 0.9739 | 0.1373 | 0.6598 | 0.9577 | 0.9835 | nan | nan | 0.6786 | 0.9244 | 0.1373 | 0.6217 | 0.9305 | 0.9691 | nan |
|
72 |
+
| 0.0603 | 6.6667 | 60 | 0.1166 | 0.8147 | 0.8651 | 0.9672 | nan | 0.8436 | 0.9795 | 0.6385 | 0.7867 | 0.9586 | 0.9837 | nan | nan | 0.7114 | 0.9315 | 0.5955 | 0.7446 | 0.9352 | 0.9700 | nan |
|
73 |
+
| 0.0581 | 8.8889 | 80 | 0.1121 | 0.8185 | 0.8809 | 0.9677 | nan | 0.8363 | 0.9767 | 0.6995 | 0.8279 | 0.9594 | 0.9857 | nan | nan | 0.7091 | 0.9336 | 0.6009 | 0.7611 | 0.9357 | 0.9709 | nan |
|
74 |
+
| 0.0445 | 11.1111 | 100 | 0.1047 | 0.8317 | 0.9033 | 0.9699 | nan | 0.8719 | 0.9687 | 0.7198 | 0.9070 | 0.9686 | 0.9836 | nan | nan | 0.7263 | 0.9403 | 0.6081 | 0.8045 | 0.9390 | 0.9721 | nan |
|
75 |
+
| 0.0456 | 13.3333 | 120 | 0.1055 | 0.8342 | 0.9151 | 0.9694 | nan | 0.8931 | 0.9687 | 0.7391 | 0.9402 | 0.9614 | 0.9878 | nan | nan | 0.7285 | 0.9405 | 0.6102 | 0.8184 | 0.9371 | 0.9708 | nan |
|
76 |
+
| 0.0443 | 15.5556 | 140 | 0.1034 | 0.8349 | 0.9039 | 0.9700 | nan | 0.8740 | 0.9742 | 0.7208 | 0.9059 | 0.9636 | 0.9851 | nan | nan | 0.7324 | 0.9411 | 0.6091 | 0.8166 | 0.9384 | 0.9717 | nan |
|
77 |
+
| 0.0475 | 17.7778 | 160 | 0.1032 | 0.8384 | 0.9139 | 0.9699 | nan | 0.8885 | 0.9738 | 0.7383 | 0.9356 | 0.9604 | 0.9868 | nan | nan | 0.7341 | 0.9409 | 0.6160 | 0.8300 | 0.9377 | 0.9717 | nan |
|
78 |
+
| 0.0411 | 20.0 | 180 | 0.1018 | 0.8403 | 0.9150 | 0.9702 | nan | 0.8911 | 0.9770 | 0.7389 | 0.9378 | 0.9592 | 0.9862 | nan | nan | 0.7362 | 0.9417 | 0.6194 | 0.8346 | 0.9383 | 0.9716 | nan |
|
79 |
+
| 0.0345 | 22.2222 | 200 | 0.1003 | 0.8397 | 0.9112 | 0.9704 | nan | 0.8885 | 0.9768 | 0.7359 | 0.9201 | 0.9625 | 0.9836 | nan | nan | 0.7355 | 0.9423 | 0.6157 | 0.8345 | 0.9387 | 0.9716 | nan |
|
80 |
+
| 0.0403 | 24.4444 | 220 | 0.1007 | 0.8397 | 0.9140 | 0.9705 | nan | 0.8826 | 0.9745 | 0.7393 | 0.9392 | 0.9633 | 0.9851 | nan | nan | 0.7353 | 0.9434 | 0.6172 | 0.8319 | 0.9388 | 0.9716 | nan |
|
81 |
+
| 0.0563 | 26.6667 | 240 | 0.1009 | 0.8406 | 0.9140 | 0.9704 | nan | 0.8914 | 0.9765 | 0.7306 | 0.9391 | 0.9603 | 0.9859 | nan | nan | 0.7360 | 0.9427 | 0.6202 | 0.8344 | 0.9383 | 0.9718 | nan |
|
82 |
+
| 0.0464 | 28.8889 | 260 | 0.1007 | 0.8404 | 0.9136 | 0.9704 | nan | 0.8876 | 0.9746 | 0.7358 | 0.9360 | 0.9631 | 0.9848 | nan | nan | 0.7360 | 0.9428 | 0.6178 | 0.8353 | 0.9386 | 0.9718 | nan |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.44.0
|
88 |
+
- Pytorch 2.4.0+cu121
|
89 |
+
- Datasets 2.21.0
|
90 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sayeed99/segformer-b3-fashion",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
18,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "collar",
|
33 |
+
"2": "polo",
|
34 |
+
"3": "lines-cuff",
|
35 |
+
"4": "lines-chest",
|
36 |
+
"5": "human",
|
37 |
+
"6": "background",
|
38 |
+
"7": "tape"
|
39 |
+
},
|
40 |
+
"image_size": 224,
|
41 |
+
"initializer_range": 0.02,
|
42 |
+
"label2id": {
|
43 |
+
"background": 6,
|
44 |
+
"collar": 1,
|
45 |
+
"human": 5,
|
46 |
+
"lines-chest": 4,
|
47 |
+
"lines-cuff": 3,
|
48 |
+
"polo": 2,
|
49 |
+
"tape": 7,
|
50 |
+
"unlabeled": 0
|
51 |
+
},
|
52 |
+
"layer_norm_eps": 1e-06,
|
53 |
+
"mlp_ratios": [
|
54 |
+
4,
|
55 |
+
4,
|
56 |
+
4,
|
57 |
+
4
|
58 |
+
],
|
59 |
+
"model_type": "segformer",
|
60 |
+
"num_attention_heads": [
|
61 |
+
1,
|
62 |
+
2,
|
63 |
+
5,
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"num_channels": 3,
|
67 |
+
"num_encoder_blocks": 4,
|
68 |
+
"patch_sizes": [
|
69 |
+
7,
|
70 |
+
3,
|
71 |
+
3,
|
72 |
+
3
|
73 |
+
],
|
74 |
+
"reshape_last_stage": true,
|
75 |
+
"semantic_loss_ignore_index": 255,
|
76 |
+
"sr_ratios": [
|
77 |
+
8,
|
78 |
+
4,
|
79 |
+
2,
|
80 |
+
1
|
81 |
+
],
|
82 |
+
"strides": [
|
83 |
+
4,
|
84 |
+
2,
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
"torch_dtype": "float32",
|
89 |
+
"transformers_version": "4.44.0"
|
90 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03992b83e1960706dd974418c37e6917d3944be9c1e3952f79a6e732ede6f27f
|
3 |
+
size 188998232
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:184cc442e5e5d0c55a150f39960cde9b4aa83b8b30feb734282f8513c27d1c99
|
3 |
+
size 5304
|