Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,239 Bytes
fd454d5 59c3dd8 ef187eb 3cf95dc 22d57bf 0cffd40 c3bdaa9 ef187eb 11fa80e b351bc6 92f9e1d 63b6eaf 2b0f02c eb7c9df 4b68e4e 11fa80e d9aab39 8b1e96d a434ddd ca39da7 3cf95dc 3599676 ec35e66 4efab5c ec35e66 4efab5c f7eaa68 5d300f8 f7eaa68 78536aa 9cdf1dd ad74aca 4efab5c ad74aca d06d30a 9cdf1dd 8b1e96d a0f72b8 aba9c4d f7eaa68 a0f72b8 aba9c4d f7eaa68 a0f72b8 9cdf1dd 92f9e1d ee458f2 70c3578 8b1e96d f286ae5 a434ddd 3fc8ee9 e2aa9c9 508b41e 82f7667 4429dd4 3cf95dc d94350f 79f7937 a434ddd 11fa80e d06d30a c3bdaa9 0f370cf d06d30a c3bdaa9 d06d30a c3bdaa9 ac63aaa c3bdaa9 5d1149a 3fc8ee9 c3bdaa9 508b41e c3bdaa9 4515b07 3fc8ee9 c3bdaa9 ac63aaa 5d1149a c3bdaa9 3fc8ee9 c3bdaa9 4515b07 b914b6d 3fc8ee9 4515b07 0cffd40 8b3ca8d 3958ec9 8b3ca8d 0cffd40 3958ec9 8b1e96d 0cffd40 4efab5c 8a9699c db04c05 8b3ca8d 73cd9af 8b3ca8d fe16630 4b5a4e3 8b3ca8d 8b1e96d ee06822 3fc8ee9 8b1e96d 4515b07 8b1e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import subprocess
command = 'pip install git+https://github.com/snekkenull/diffusers.git'
subprocess.run(command, shell=True)
import os
import gradio as gr
import torch
import numpy as np
import random
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, SD3Transformer2DModel, StableDiffusion3Img2ImgPipeline, FlowMatchEulerDiscreteScheduler
import spaces
from diffusers.utils import load_image
from PIL import Image
import requests
import transformers
from transformers import AutoTokenizer, T5EncoderModel
from translatepy import Translator
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
model = "stabilityai/stable-diffusion-3-medium"
repo= "stabilityai/stable-diffusion-3-medium-diffusers"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
vae = AutoencoderKL.from_pretrained(
repo,
subfolder="vae",
torch_dtype=torch.float16,
)
transformer = SD3Transformer2DModel.from_pretrained(
repo,
subfolder="transformer",
torch_dtype=torch.float16,
)
# text_encoder_3 = T5EncoderModel.from_pretrained(
# repo,
# subfolder="text_encoder_3",
# )
# tokenizer_3 = AutoTokenizer.from_pretrained(
# repo,
# subfolder="tokenizer_3",
# torch_dtype=torch.float16,
# )
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
pipe = StableDiffusion3Pipeline.from_pretrained(
repo,
vae=vae,
transformer=transformer,
torch_dtype=torch.float16).to("cuda")
pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(
repo,
vae=vae,
transformer=transformer,
torch_dtype=torch.float16).to("cuda")
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe2.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe2.scheduler.config)
print(pipe.tokenizer_max_length)
# Function
@spaces.GPU()
def generate_image(
prompt,
negative="low quality",
width=1024,
height=1024,
scales=5,
steps=30,
strength=0.7,
seed: int =-1,
nums=1,
progress=gr.Progress(track_tqdm=True)):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f'prompt:{prompt}')
text = str(translator.translate(prompt['text'], 'English'))
if prompt['files']:
#images = Image.open(prompt['files'][-1]).convert('RGB')
init_image = load_image(prompt['files'][-1]).resize((height, width))
else:
init_image = None
generator = torch.Generator().manual_seed(seed)
if init_image:
image = pipe2(
prompt=text,
image=init_image,
negative_prompt=negative,
guidance_scale=scales,
num_inference_steps=steps,
strength=strength,
generator = generator,
num_images_per_prompt = nums,
).images
else:
image = pipe(
prompt=text,
negative_prompt=negative,
width=width,
height=height,
guidance_scale=scales,
num_inference_steps=steps,
generator = generator,
num_images_per_prompt = nums,
).images
print(image)
print(seed)
return image, seed
examples = [
[{"text": "a female character with long, flowing hair that appears to be made of ethereal, swirling patterns resembling the Northern Lights or Aurora Borealis. The background is dominated by deep blues and purples, creating a mysterious and dramatic atmosphere. The character's face is serene, with pale skin and striking features. She wears a dark-colored outfit with subtle patterns. The overall style of the artwork is reminiscent of fantasy or supernatural genres", "files": []}],
[{"text": "Digital art, portrait of an anthropomorphic roaring Tiger warrior with full armor, close up in the middle of a battle, behind him there is a banner with the text \"Open Source\".", "files": []}],
[{"text": "photo of a dog and a cat both standing on a red box, with a blue ball in the middle with a parrot standing on top of the ball. The box has the text \"SD3\"", "files": []}],
[{"text": "selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", "files": []}],
[{"text": "A vibrant street wall covered in colorful graffiti, the centerpiece spells \"SD3 MEDIUM\", in a storm of colors", "files": []}],
[{"text": "photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", "files": []}],
[{"text": "anime art of a steampunk inventor in their workshop, surrounded by gears, gadgets, and steam. He is holding a blue potion and a red potion, one in each hand", "files": []}],
[{"text": "photo of picturesque scene of a road surrounded by lush green trees and shrubs. The road is wide and smooth, leading into the distance. On the right side of the road, there's a blue sports car parked with the license plate spelling \"SD32B\". The sky above is partly cloudy, suggesting a pleasant day. The trees have a mix of green and brown foliage. There are no people visible in the image. The overall composition is balanced, with the car serving as a focal point.", "files": []}],
[{"text": "photo of young man in a black suit, white shirt, and black tie. He has a neatly styled haircut and is looking directly at the camera with a neutral expression. The background consists of a textured wall with horizontal lines. The photograph is in black and white, emphasizing contrasts and shadows. The man appears to be in his late twenties or early thirties, with fair skin and short, dark hair.", "files": []}],
[{"text": "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", "files": []}],
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
gr.HTML("<h1><center>SD3M🐉T5</center></h1>")
gr.HTML("<p><center><a href='https://huggingface.co/stabilityai/stable-diffusion-3-medium'>sd3m</a> text/image-to-image generation<br><b>Update</b>: fix diffuser to support 512 token</center></p>")
with gr.Row():
with gr.Column(scale=10):
img = gr.Gallery(label='SD3M Generated Image', columns = 1, preview=True, height=600)
prompt = gr.MultimodalTextbox(label='Enter Your Prompt (Multi-Languages)', interactive=True, placeholder="Enter prompt, add one image.", file_types=['image'])
with gr.Accordion("Advanced Options", open=False):
with gr.Column(scale=1):
negative = gr.Textbox(label="Negative prompt", value="low quality, ugly, blurry, poor face, bad anatomy")
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
scales = gr.Slider(
label="Guidance",
minimum=3.5,
maximum=7,
step=0.1,
value=5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
seed = gr.Slider(
label="Seed (-1 Get Random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
scale=2,
)
nums = gr.Slider(
label="Image Numbers",
minimum=1,
maximum=4,
step=1,
value=1,
scale=1,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[img, seed],
fn=generate_image,
cache_examples="lazy",
examples_per_page=4,
)
prompt.submit(fn=generate_image,
inputs=[prompt, negative, width, height, scales, steps, strength, seed, nums],
outputs=[img, seed],
)
demo.queue().launch() |