Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -67,43 +67,19 @@ tokenizer_3 = AutoTokenizer.from_pretrained(
|
|
67 |
torch_dtype=torch.float16,
|
68 |
)
|
69 |
|
70 |
-
torch.set_float32_matmul_precision("high")
|
71 |
-
|
72 |
-
torch._inductor.config.conv_1x1_as_mm = True
|
73 |
-
torch._inductor.config.coordinate_descent_tuning = True
|
74 |
-
torch._inductor.config.epilogue_fusion = False
|
75 |
-
torch._inductor.config.coordinate_descent_check_all_directions = True
|
76 |
|
77 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
78 |
-
|
79 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
pipe.set_progress_bar_config(disable=True)
|
91 |
-
|
92 |
-
pipe.transformer.to(memory_format=torch.channels_last)
|
93 |
-
pipe.vae.to(memory_format=torch.channels_last)
|
94 |
-
|
95 |
-
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
96 |
-
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
97 |
-
|
98 |
-
|
99 |
-
pipe2.set_progress_bar_config(disable=True)
|
100 |
-
|
101 |
-
pipe2.transformer.to(memory_format=torch.channels_last)
|
102 |
-
pipe2.vae.to(memory_format=torch.channels_last)
|
103 |
-
|
104 |
-
pipe2.transformer = torch.compile(pipe2.transformer, mode="max-autotune", fullgraph=True)
|
105 |
-
pipe2.vae.decode = torch.compile(pipe2.vae.decode, mode="max-autotune", fullgraph=True)
|
106 |
-
|
107 |
|
108 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
109 |
pipe2.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe2.scheduler.config)
|
|
|
67 |
torch_dtype=torch.float16,
|
68 |
)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
74 |
+
repo,
|
75 |
+
tokenizer_3=tokenizer_3,
|
76 |
+
text_encoder_3=text_encoder_3,
|
77 |
+
torch_dtype=torch.float16).to("cuda")
|
78 |
+
pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(
|
79 |
+
repo,
|
80 |
+
tokenizer_3=tokenizer_3,
|
81 |
+
text_encoder_3=text_encoder_3,
|
82 |
+
torch_dtype=torch.float16).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
85 |
pipe2.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe2.scheduler.config)
|