Spaces:
vilarin
/
Running on Zero

vilarin commited on
Commit
d06d30a
1 Parent(s): 308ba89

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -8
app.py CHANGED
@@ -8,7 +8,7 @@ import spaces
8
  from PIL import Image
9
  import requests
10
  import transformers
11
- from transformers import T5EncoderModel
12
  from translatepy import Translator
13
 
14
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
@@ -54,9 +54,15 @@ text_encoder_3 = T5EncoderModel.from_pretrained(
54
  torch_dtype=torch.float16,
55
  )
56
 
 
 
 
 
 
 
57
  # Ensure model and scheduler are initialized in GPU-enabled function
58
  if torch.cuda.is_available():
59
- pipe = StableDiffusion3Pipeline.from_pretrained(repo, vae=vae, transformer=transformer, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")
60
 
61
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
62
 
@@ -73,14 +79,23 @@ def generate_image(
73
 
74
  if seed == -1:
75
  seed = random.randint(0, MAX_SEED)
76
- generator = torch.Generator().manual_seed(seed)
77
 
78
- prompt = str(translator.translate(prompt, 'English'))
79
-
80
  print(f'prompt:{prompt}')
81
 
 
 
 
 
 
 
 
 
 
 
 
82
  image = pipe(
83
- prompt,
 
84
  negative_prompt=negative,
85
  width=width,
86
  height=height,
@@ -109,10 +124,10 @@ examples = [
109
 
110
  with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
111
  gr.HTML("<h1><center>SD3M🦄</center></h1>")
112
- gr.HTML("<p><center><a href='https://huggingface.co/stabilityai/stable-diffusion-3-medium'>sd3m</a> text-to-image generation</center></p>")
113
  with gr.Group():
114
  with gr.Row():
115
- prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', value="best quality, HD, aesthetic", scale=6)
116
  submit = gr.Button(scale=1, variant='primary')
117
  img = gr.Image(label='SD3M Generated Image')
118
  with gr.Accordion("Advanced Options", open=False):
 
8
  from PIL import Image
9
  import requests
10
  import transformers
11
+ from transformers import AutoTokenizer, T5EncoderModel
12
  from translatepy import Translator
13
 
14
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
 
54
  torch_dtype=torch.float16,
55
  )
56
 
57
+ tokenizer_3 = AutoTokenizer.from_pretrained(
58
+ repo,
59
+ subfolder="tokenizer_3",
60
+ torch_dtype=torch.float16,
61
+ )
62
+
63
  # Ensure model and scheduler are initialized in GPU-enabled function
64
  if torch.cuda.is_available():
65
+ pipe = StableDiffusion3Pipeline.from_pretrained(repo, vae=vae, transformer=transformer, tokenizer_3=tokenizer_3, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")
66
 
67
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
68
 
 
79
 
80
  if seed == -1:
81
  seed = random.randint(0, MAX_SEED)
 
82
 
 
 
83
  print(f'prompt:{prompt}')
84
 
85
+ text = str(translator.translate(prompt['text'], 'English'))
86
+
87
+
88
+ if prompt['files']:
89
+ images = Image.open(prompt['files'][-1]).convert('RGB')
90
+ else:
91
+ images = None
92
+ generator = torch.Generator().manual_seed(seed)
93
+
94
+
95
+
96
  image = pipe(
97
+ text,
98
+ image=images,
99
  negative_prompt=negative,
100
  width=width,
101
  height=height,
 
124
 
125
  with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
126
  gr.HTML("<h1><center>SD3M🦄</center></h1>")
127
+ gr.HTML("<p><center><a href='https://huggingface.co/stabilityai/stable-diffusion-3-medium'>sd3m</a> text/img-to-image generation</center></p>")
128
  with gr.Group():
129
  with gr.Row():
130
+ prompt = gr.MultimodalTextbox(label='Enter Your Prompt (Multi-Languages)', value="best quality, HD", file_types=['image'], scale=6)
131
  submit = gr.Button(scale=1, variant='primary')
132
  img = gr.Image(label='SD3M Generated Image')
133
  with gr.Accordion("Advanced Options", open=False):