Spaces:
Runtime error
Runtime error
File size: 10,755 Bytes
44189a1 dc78df8 7c9838f dc78df8 44189a1 dc78df8 44189a1 dc78df8 44189a1 dc78df8 7c9838f 42c15b4 dc78df8 7c9838f dc78df8 44189a1 dc78df8 44189a1 dc78df8 44189a1 dc78df8 2c27418 dc78df8 7c9838f dc78df8 3b80096 42c15b4 3b80096 dc78df8 7c9838f dc78df8 2c27418 44189a1 dc78df8 44189a1 2c27418 44189a1 2c27418 dc78df8 2c27418 44189a1 2c27418 44189a1 dc78df8 44189a1 dc78df8 44189a1 7c9838f 44189a1 42c15b4 44189a1 7c9838f 44189a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# from utils.args import parse_args
import logging
import os
import argparse
from pathlib import Path
from PIL import Image
import numpy as np
import torch
from tqdm.auto import tqdm
from diffusers.utils import check_min_version
from pipeline import LotusGPipeline, LotusDPipeline
from utils.image_utils import colorize_depth_map
from utils.seed_all import seed_all
from contextlib import nullcontext
import cv2
from tqdm import tqdm # 添加这一行以导入 tqdm
check_min_version('0.28.0.dev0')
def infer_pipe(pipe, image_input, task_name, seed, device):
if seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(seed)
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe.device.type)
with autocast_ctx:
test_image = Image.open(image_input).convert('RGB')
test_image = np.array(test_image).astype(np.float16)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
# Run
pred = pipe(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[999],
task_emb=task_emb,
).images[0]
# Post-process the prediction
if task_name == 'depth':
output_npy = pred.mean(axis=-1)
# 修改为输出灰度图
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
else:
output_npy = pred
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
return output_color
def lotus_video(input_video, task_name, seed, device):
if task_name == 'depth':
model_g = 'jingheya/lotus-depth-g-v1-0'
else:
model_g = 'jingheya/lotus-normal-g-v1-0'
dtype = torch.float16
pipe_g = LotusGPipeline.from_pretrained(
model_g,
torch_dtype=dtype,
)
pipe_g.to(device)
pipe_g.set_progress_bar_config(disable=True)
logging.info(f"Successfully loading pipeline from {model_g}.")
# load the video and split it into frames
cap = cv2.VideoCapture(input_video)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
logging.info(f"There are {len(frames)} frames in the video.")
if seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(seed)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
output_g = []
for frame in tqdm(frames, desc="Processing frames"): # 使用 tqdm 包裹 frames 列表
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe_g.device.type)
with autocast_ctx:
test_image = frame
test_image = np.array(test_image).astype(np.float16)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
# Run
pred_g = pipe_g(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[999],
task_emb=task_emb,
).images[0]
# Post-process the prediction
if task_name == 'depth':
output_npy = pred_g.mean(axis=-1)
# 修改为输出灰度图
output_color_g = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
else:
output_npy_g = pred_g
output_color_g = Image.fromarray((output_npy_g * 255).astype(np.uint8))
output_g.append(output_color_g)
return output_g
def lotus(image_input, task_name, seed, device):
if task_name == 'depth':
model_g = 'jingheya/lotus-depth-g-v1-0'
else:
model_g = 'jingheya/lotus-normal-g-v1-0'
dtype = torch.float16
pipe_g = LotusGPipeline.from_pretrained(
model_g,
torch_dtype=dtype,
)
pipe_g.to(device)
pipe_g.set_progress_bar_config(disable=True)
logging.info(f"Successfully loading pipeline from {model_g}.")
output_g = infer_pipe(pipe_g, image_input, task_name, seed, device)
return output_g
def parse_args():
'''Set the Args'''
parser = argparse.ArgumentParser(
description="Run Lotus..."
)
# model settings
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="pretrained model path from hugging face or local dir",
)
parser.add_argument(
"--prediction_type",
type=str,
default="sample",
help="The used prediction_type. ",
)
parser.add_argument(
"--timestep",
type=int,
default=999,
)
parser.add_argument(
"--mode",
type=str,
default="regression", # "generation"
help="Whether to use the generation or regression pipeline."
)
parser.add_argument(
"--task_name",
type=str,
default="depth", # "normal"
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
# inference settings
parser.add_argument("--seed", type=int, default=None, help="Random seed.")
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
parser.add_argument(
"--input_dir", type=str, required=True, help="Input directory."
)
parser.add_argument(
"--half_precision",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
args = parser.parse_args()
return args
def main():
logging.basicConfig(level=logging.INFO)
logging.info(f"Run inference...")
args = parse_args()
# -------------------- Preparation --------------------
# Random seed
if args.seed is not None:
seed_all(args.seed)
# Output directories
os.makedirs(args.output_dir, exist_ok=True)
logging.info(f"Output dir = {args.output_dir}")
output_dir_color = os.path.join(args.output_dir, f'{args.task_name}_vis')
output_dir_npy = os.path.join(args.output_dir, f'{args.task_name}')
if not os.path.exists(output_dir_color): os.makedirs(output_dir_color)
if not os.path.exists(output_dir_npy): os.makedirs(output_dir_npy)
# half_precision
if args.half_precision:
dtype = torch.float16
logging.info(f"Running with half precision ({dtype}).")
else:
dtype = torch.float16
# -------------------- Device --------------------
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"Device = {device}")
# -------------------- Data --------------------
root_dir = Path(args.input_dir)
test_images = list(root_dir.rglob('*.png')) + list(root_dir.rglob('*.jpg'))
test_images = sorted(test_images)
print('==> There are', len(test_images), 'images for validation.')
# -------------------- Model --------------------
if args.mode == 'generation':
pipeline = LotusGPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
elif args.mode == 'regression':
pipeline = LotusDPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
else:
raise ValueError(f'Invalid mode: {args.mode}')
logging.info(f"Successfully loading pipeline from {args.pretrained_model_name_or_path}.")
pipeline = pipeline.to(device)
pipeline.set_progress_bar_config(disable=True)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(args.seed)
# -------------------- Inference and saving --------------------
with torch.no_grad():
for i in tqdm(range(len(test_images))):
# Preprocess validation image
test_image = Image.open(test_images[i]).convert('RGB')
test_image = np.array(test_image).astype(np.float16)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
# Run
pred = pipeline(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[args.timestep],
task_emb=task_emb,
).images[0]
# Post-process the prediction
save_file_name = os.path.basename(test_images[i])[:-4]
if args.task_name == 'depth':
output_npy = pred.mean(axis=-1)
# 修改为输出灰度图
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
else:
output_npy = pred
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
print('==> Inference is done. \n==> Results saved to:', args.output_dir)
if __name__ == '__main__':
main()
|