Spaces:
Runtime error
Runtime error
supersolar
commited on
Commit
•
7c9838f
1
Parent(s):
42c15b4
Update infer.py
Browse files
infer.py
CHANGED
@@ -16,6 +16,7 @@ from utils.seed_all import seed_all
|
|
16 |
|
17 |
from contextlib import nullcontext
|
18 |
import cv2
|
|
|
19 |
|
20 |
check_min_version('0.28.0.dev0')
|
21 |
|
@@ -53,14 +54,14 @@ def infer_pipe(pipe, image_input, task_name, seed, device):
|
|
53 |
).images[0]
|
54 |
|
55 |
# Post-process the prediction
|
56 |
-
# 在 infer_pipe 函数中
|
57 |
if task_name == 'depth':
|
58 |
output_npy = pred.mean(axis=-1)
|
59 |
-
|
60 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
|
61 |
else:
|
62 |
output_npy = pred
|
63 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
|
|
64 |
return output_color
|
65 |
|
66 |
def lotus_video(input_video, task_name, seed, device):
|
@@ -98,7 +99,7 @@ def lotus_video(input_video, task_name, seed, device):
|
|
98 |
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
|
99 |
|
100 |
output_g = []
|
101 |
-
for frame in frames:
|
102 |
if torch.backends.mps.is_available():
|
103 |
autocast_ctx = nullcontext()
|
104 |
else:
|
@@ -122,16 +123,15 @@ def lotus_video(input_video, task_name, seed, device):
|
|
122 |
task_emb=task_emb,
|
123 |
).images[0]
|
124 |
# Post-process the prediction
|
125 |
-
# 在 lotus_video 函数中
|
126 |
if task_name == 'depth':
|
127 |
-
|
128 |
# 修改为输出灰度图
|
129 |
-
|
130 |
else:
|
131 |
output_npy_g = pred_g
|
132 |
output_color_g = Image.fromarray((output_npy_g * 255).astype(np.uint8))
|
133 |
-
|
134 |
-
|
135 |
|
136 |
return output_g
|
137 |
|
@@ -307,14 +307,14 @@ def main():
|
|
307 |
|
308 |
# Post-process the prediction
|
309 |
save_file_name = os.path.basename(test_images[i])[:-4]
|
310 |
-
|
311 |
-
if task_name == 'depth':
|
312 |
output_npy = pred.mean(axis=-1)
|
313 |
# 修改为输出灰度图
|
314 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
|
315 |
else:
|
316 |
output_npy = pred
|
317 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
|
|
318 |
output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
|
319 |
np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
|
320 |
|
|
|
16 |
|
17 |
from contextlib import nullcontext
|
18 |
import cv2
|
19 |
+
from tqdm import tqdm # 添加这一行以导入 tqdm
|
20 |
|
21 |
check_min_version('0.28.0.dev0')
|
22 |
|
|
|
54 |
).images[0]
|
55 |
|
56 |
# Post-process the prediction
|
|
|
57 |
if task_name == 'depth':
|
58 |
output_npy = pred.mean(axis=-1)
|
59 |
+
# 修改为输出灰度图
|
60 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
|
61 |
else:
|
62 |
output_npy = pred
|
63 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
64 |
+
|
65 |
return output_color
|
66 |
|
67 |
def lotus_video(input_video, task_name, seed, device):
|
|
|
99 |
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
|
100 |
|
101 |
output_g = []
|
102 |
+
for frame in tqdm(frames, desc="Processing frames"): # 使用 tqdm 包裹 frames 列表
|
103 |
if torch.backends.mps.is_available():
|
104 |
autocast_ctx = nullcontext()
|
105 |
else:
|
|
|
123 |
task_emb=task_emb,
|
124 |
).images[0]
|
125 |
# Post-process the prediction
|
|
|
126 |
if task_name == 'depth':
|
127 |
+
output_npy = pred.mean(axis=-1)
|
128 |
# 修改为输出灰度图
|
129 |
+
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
|
130 |
else:
|
131 |
output_npy_g = pred_g
|
132 |
output_color_g = Image.fromarray((output_npy_g * 255).astype(np.uint8))
|
133 |
+
|
134 |
+
output_g.append(output_color_g)
|
135 |
|
136 |
return output_g
|
137 |
|
|
|
307 |
|
308 |
# Post-process the prediction
|
309 |
save_file_name = os.path.basename(test_images[i])[:-4]
|
310 |
+
if args.task_name == 'depth':
|
|
|
311 |
output_npy = pred.mean(axis=-1)
|
312 |
# 修改为输出灰度图
|
313 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8), mode='L')
|
314 |
else:
|
315 |
output_npy = pred
|
316 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
317 |
+
|
318 |
output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
|
319 |
np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
|
320 |
|