Spaces:
Runtime error
Runtime error
init
Browse files- README.md +1 -1
- app.py +237 -0
- files/images/00.png +0 -0
- files/output/00_d.png +0 -0
- files/output/00_g.png +0 -0
- files/output/01_d.jpeg +0 -0
- files/output/01_g.jpeg +0 -0
- files/videos/obama.mp4 +0 -0
- infer.py +244 -0
- pipeline.py +1285 -0
- requirements.txt +23 -0
- utils/__pycache__/image_utils.cpython-310.pyc +0 -0
- utils/__pycache__/image_utils.cpython-39.pyc +0 -0
- utils/__pycache__/seed_all.cpython-310.pyc +0 -0
- utils/__pycache__/seed_all.cpython-39.pyc +0 -0
- utils/args.py +390 -0
- utils/image_utils.py +107 -0
- utils/seed_all.py +33 -0
- utils/visualize.py +119 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🚀
|
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.21.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from gradio_imageslider import ImageSlider
|
3 |
+
import functools
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
import diffusers
|
7 |
+
import gradio as gr
|
8 |
+
import imageio as imageio
|
9 |
+
import numpy as np
|
10 |
+
import spaces
|
11 |
+
import torch as torch
|
12 |
+
from PIL import Image
|
13 |
+
from tqdm import tqdm
|
14 |
+
from pathlib import Path
|
15 |
+
import gradio
|
16 |
+
from gradio.utils import get_cache_folder
|
17 |
+
from infer import lotus
|
18 |
+
|
19 |
+
# def process_image_check(path_input):
|
20 |
+
# if path_input is None:
|
21 |
+
# raise gr.Error(
|
22 |
+
# "Missing image in the first pane: upload a file or use one from the gallery below."
|
23 |
+
# )
|
24 |
+
|
25 |
+
# def infer(path_input, seed=0):
|
26 |
+
# print(f"==> Processing image {path_input}")
|
27 |
+
# return path_input
|
28 |
+
# return [path_input, path_input]
|
29 |
+
# # name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
30 |
+
# # print(f"==> Processing image {name_base}{name_ext}")
|
31 |
+
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
# # print(f"==> Device: {device}")
|
33 |
+
# # output_g, output_d = lotus(path_input, 'depth', seed, device)
|
34 |
+
# # if not os.path.exists("files/output"):
|
35 |
+
# # os.makedirs("files/output")
|
36 |
+
# # g_save_path = os.path.join("files/output", f"{name_base}_g{name_ext}")
|
37 |
+
# # d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
|
38 |
+
# # output_g.save(g_save_path)
|
39 |
+
# # output_d.save(d_save_path)
|
40 |
+
# # yield [path_input, g_save_path], [path_input, d_save_path]
|
41 |
+
|
42 |
+
# def run_demo_server():
|
43 |
+
# gradio_theme = gr.themes.Default()
|
44 |
+
|
45 |
+
# with gr.Blocks(
|
46 |
+
# theme=gradio_theme,
|
47 |
+
# title="LOTUS (Depth)",
|
48 |
+
# css="""
|
49 |
+
# #download {
|
50 |
+
# height: 118px;
|
51 |
+
# }
|
52 |
+
# .slider .inner {
|
53 |
+
# width: 5px;
|
54 |
+
# background: #FFF;
|
55 |
+
# }
|
56 |
+
# .viewport {
|
57 |
+
# aspect-ratio: 4/3;
|
58 |
+
# }
|
59 |
+
# .tabs button.selected {
|
60 |
+
# font-size: 20px !important;
|
61 |
+
# color: crimson !important;
|
62 |
+
# }
|
63 |
+
# h1 {
|
64 |
+
# text-align: center;
|
65 |
+
# display: block;
|
66 |
+
# }
|
67 |
+
# h2 {
|
68 |
+
# text-align: center;
|
69 |
+
# display: block;
|
70 |
+
# }
|
71 |
+
# h3 {
|
72 |
+
# text-align: center;
|
73 |
+
# display: block;
|
74 |
+
# }
|
75 |
+
# .md_feedback li {
|
76 |
+
# margin-bottom: 0px !important;
|
77 |
+
# }
|
78 |
+
# """,
|
79 |
+
# head="""
|
80 |
+
# <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
81 |
+
# <script>
|
82 |
+
# window.dataLayer = window.dataLayer || [];
|
83 |
+
# function gtag() {dataLayer.push(arguments);}
|
84 |
+
# gtag('js', new Date());
|
85 |
+
# gtag('config', 'G-1FWSVCGZTG');
|
86 |
+
# </script>
|
87 |
+
# """,
|
88 |
+
# ) as demo:
|
89 |
+
# gr.Markdown(
|
90 |
+
# """
|
91 |
+
# # LOTUS: Diffusion-based Visual Foundation Model for High-quality Dense Prediction
|
92 |
+
# <p align="center">
|
93 |
+
# <a title="Page" href="https://lotus3d.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
94 |
+
# <img src="https://img.shields.io/badge/Project-Website-pink?logo=googlechrome&logoColor=white">
|
95 |
+
# </a>
|
96 |
+
# <a title="arXiv" href="https://arxiv.org/abs/2409.18124" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
97 |
+
# <img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv&logoColor=white">
|
98 |
+
# </a>
|
99 |
+
# <a title="Github" href="https://github.com/EnVision-Research/Lotus" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
100 |
+
# <img src="https://img.shields.io/github/stars/EnVision-Research/Lotus?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
101 |
+
# </a>
|
102 |
+
# <a title="Social" href="https://x.com/haodongli00/status/1839524569058582884" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
103 |
+
# <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
104 |
+
# </a>
|
105 |
+
# """
|
106 |
+
# )
|
107 |
+
# with gr.Tabs(elem_classes=["tabs"]):
|
108 |
+
# with gr.Tab("IMAGE"):
|
109 |
+
# with gr.Row():
|
110 |
+
# with gr.Column():
|
111 |
+
# image_input = gr.Image(
|
112 |
+
# label="Input Image",
|
113 |
+
# type="filepath",
|
114 |
+
# )
|
115 |
+
# seed = gr.Number(
|
116 |
+
# label="Seed",
|
117 |
+
# minimum=0,
|
118 |
+
# maximum=999999,
|
119 |
+
# )
|
120 |
+
# with gr.Row():
|
121 |
+
# image_submit_btn = gr.Button(
|
122 |
+
# value="Predict Depth!", variant="primary"
|
123 |
+
# )
|
124 |
+
# # image_reset_btn = gr.Button(value="Reset")
|
125 |
+
# with gr.Column():
|
126 |
+
# image_output_g = gr.Image(
|
127 |
+
# label="Output (Generative)",
|
128 |
+
# type="filepath",
|
129 |
+
# )
|
130 |
+
# # image_output_g = ImageSlider(
|
131 |
+
# # label="Output (Generative)",
|
132 |
+
# # type="filepath",
|
133 |
+
# # show_download_button=True,
|
134 |
+
# # show_share_button=True,
|
135 |
+
# # interactive=False,
|
136 |
+
# # elem_classes="slider",
|
137 |
+
# # position=0.25,
|
138 |
+
# # )
|
139 |
+
# # with gr.Row():
|
140 |
+
# # image_output_d = gr.Image(
|
141 |
+
# # label="Output (Generative)",
|
142 |
+
# # type="filepath",
|
143 |
+
# # )
|
144 |
+
# # image_output_d = ImageSlider(
|
145 |
+
# # label="Output (Discriminative)",
|
146 |
+
# # type="filepath",
|
147 |
+
# # show_download_button=True,
|
148 |
+
# # show_share_button=True,
|
149 |
+
# # interactive=False,
|
150 |
+
# # elem_classes="slider",
|
151 |
+
# # position=0.25,
|
152 |
+
# # )
|
153 |
+
|
154 |
+
# # gr.Examples(
|
155 |
+
# # fn=infer,
|
156 |
+
# # examples=sorted([
|
157 |
+
# # os.path.join("files", "images", name)
|
158 |
+
# # for name in os.listdir(os.path.join("files", "images"))
|
159 |
+
# # ]),
|
160 |
+
# # inputs=[image_input],
|
161 |
+
# # outputs=[image_output_g],
|
162 |
+
# # cache_examples=True,
|
163 |
+
# # )
|
164 |
+
|
165 |
+
# with gr.Tab("VIDEO"):
|
166 |
+
# with gr.Column():
|
167 |
+
# gr.Markdown("Coming soon")
|
168 |
+
|
169 |
+
# ### Image
|
170 |
+
# image_submit_btn.click(
|
171 |
+
# fn=infer,
|
172 |
+
# inputs=[
|
173 |
+
# image_input
|
174 |
+
# ],
|
175 |
+
# outputs=image_output_g,
|
176 |
+
# concurrency_limit=1,
|
177 |
+
# )
|
178 |
+
# # image_reset_btn.click(
|
179 |
+
# # fn=lambda: (
|
180 |
+
# # None,
|
181 |
+
# # None,
|
182 |
+
# # None,
|
183 |
+
# # ),
|
184 |
+
# # inputs=[],
|
185 |
+
# # outputs=image_output_g,
|
186 |
+
# # queue=False,
|
187 |
+
# # )
|
188 |
+
|
189 |
+
# ### Video
|
190 |
+
|
191 |
+
# ### Server launch
|
192 |
+
# demo.queue(
|
193 |
+
# api_open=False,
|
194 |
+
# ).launch(
|
195 |
+
# server_name="0.0.0.0",
|
196 |
+
# server_port=7860,
|
197 |
+
# )
|
198 |
+
|
199 |
+
# def main():
|
200 |
+
# os.system("pip freeze")
|
201 |
+
# run_demo_server()
|
202 |
+
|
203 |
+
# if __name__ == "__main__":
|
204 |
+
# main()
|
205 |
+
|
206 |
+
def flip_text(x):
|
207 |
+
return x[::-1]
|
208 |
+
|
209 |
+
def flip_image(x):
|
210 |
+
return np.fliplr(x)
|
211 |
+
|
212 |
+
with gr.Blocks() as demo:
|
213 |
+
gr.Markdown("Flip text or image files using this demo.")
|
214 |
+
with gr.Tab("Flip Text"):
|
215 |
+
text_input = gr.Textbox()
|
216 |
+
text_output = gr.Textbox()
|
217 |
+
text_button = gr.Button("Flip")
|
218 |
+
with gr.Tab("Flip Image"):
|
219 |
+
with gr.Row():
|
220 |
+
image_input = gr.Image()
|
221 |
+
image_output = gr.Image()
|
222 |
+
image_button = gr.Button("Flip")
|
223 |
+
|
224 |
+
with gr.Accordion("Open for More!", open=False):
|
225 |
+
gr.Markdown("Look at me...")
|
226 |
+
temp_slider = gr.Slider(
|
227 |
+
0, 1,
|
228 |
+
value=0.1,
|
229 |
+
step=0.1,
|
230 |
+
interactive=True,
|
231 |
+
label="Slide me",
|
232 |
+
)
|
233 |
+
|
234 |
+
text_button.click(flip_text, inputs=text_input, outputs=text_output)
|
235 |
+
image_button.click(flip_image, inputs=image_input, outputs=image_output)
|
236 |
+
|
237 |
+
demo.launch(share=True)
|
files/images/00.png
ADDED
files/output/00_d.png
ADDED
files/output/00_g.png
ADDED
files/output/01_d.jpeg
ADDED
files/output/01_g.jpeg
ADDED
files/videos/obama.mp4
ADDED
Binary file (320 kB). View file
|
|
infer.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from utils.args import parse_args
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from pathlib import Path
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from tqdm.auto import tqdm
|
11 |
+
from diffusers.utils import check_min_version
|
12 |
+
|
13 |
+
from pipeline import LotusGPipeline, LotusDPipeline
|
14 |
+
from utils.image_utils import colorize_depth_map
|
15 |
+
from utils.seed_all import seed_all
|
16 |
+
|
17 |
+
check_min_version('0.28.0.dev0')
|
18 |
+
|
19 |
+
def infer_pipe(pipe, image_input, task_name, seed, device):
|
20 |
+
if seed is None:
|
21 |
+
generator = None
|
22 |
+
else:
|
23 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
24 |
+
|
25 |
+
test_image = Image.open(image_input).convert('RGB')
|
26 |
+
test_image = np.array(test_image).astype(np.float32)
|
27 |
+
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
28 |
+
test_image = test_image / 127.5 - 1.0
|
29 |
+
test_image = test_image.to(device)
|
30 |
+
|
31 |
+
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
|
32 |
+
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
|
33 |
+
|
34 |
+
# Run
|
35 |
+
pred = pipe(
|
36 |
+
rgb_in=test_image,
|
37 |
+
prompt='',
|
38 |
+
num_inference_steps=1,
|
39 |
+
generator=generator,
|
40 |
+
# guidance_scale=0,
|
41 |
+
output_type='np',
|
42 |
+
timesteps=[999],
|
43 |
+
task_emb=task_emb,
|
44 |
+
).images[0]
|
45 |
+
|
46 |
+
# Post-process the prediction
|
47 |
+
if task_name == 'depth':
|
48 |
+
output_npy = pred.mean(axis=-1)
|
49 |
+
output_color = colorize_depth_map(output_npy)
|
50 |
+
else:
|
51 |
+
output_npy = pred
|
52 |
+
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
53 |
+
|
54 |
+
return output_color
|
55 |
+
|
56 |
+
def lotus(image_input, task_name, seed, device):
|
57 |
+
if task_name == 'depth':
|
58 |
+
model_g = 'jingheya/lotus-depth-g-v1-0'
|
59 |
+
model_d = 'jingheya/lotus-depth-d-v1-0'
|
60 |
+
else:
|
61 |
+
model_g = 'jingheya/lotus-normal-g-v1-0'
|
62 |
+
model_d = 'jingheya/lotus-normal-d-v1-0'
|
63 |
+
|
64 |
+
dtype = torch.float32
|
65 |
+
pipe_g = LotusGPipeline.from_pretrained(
|
66 |
+
model_g,
|
67 |
+
torch_dtype=dtype,
|
68 |
+
)
|
69 |
+
pipe_d = LotusDPipeline.from_pretrained(
|
70 |
+
model_d,
|
71 |
+
torch_dtype=dtype,
|
72 |
+
)
|
73 |
+
pipe_g.to(device)
|
74 |
+
pipe_d.to(device)
|
75 |
+
logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
|
76 |
+
output_g = infer_pipe(pipe_g, image_input, task_name, seed, device)
|
77 |
+
output_d = infer_pipe(pipe_d, image_input, task_name, seed, device)
|
78 |
+
return output_g, output_d
|
79 |
+
|
80 |
+
def parse_args():
|
81 |
+
'''Set the Args'''
|
82 |
+
parser = argparse.ArgumentParser(
|
83 |
+
description="Run Lotus..."
|
84 |
+
)
|
85 |
+
# model settings
|
86 |
+
parser.add_argument(
|
87 |
+
"--pretrained_model_name_or_path",
|
88 |
+
type=str,
|
89 |
+
default=None,
|
90 |
+
help="pretrained model path from hugging face or local dir",
|
91 |
+
)
|
92 |
+
parser.add_argument(
|
93 |
+
"--prediction_type",
|
94 |
+
type=str,
|
95 |
+
default="sample",
|
96 |
+
help="The used prediction_type. ",
|
97 |
+
)
|
98 |
+
parser.add_argument(
|
99 |
+
"--timestep",
|
100 |
+
type=int,
|
101 |
+
default=999,
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--mode",
|
105 |
+
type=str,
|
106 |
+
default="regression", # "generation"
|
107 |
+
help="Whether to use the generation or regression pipeline."
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"--task_name",
|
111 |
+
type=str,
|
112 |
+
default="depth", # "normal"
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
116 |
+
)
|
117 |
+
|
118 |
+
# inference settings
|
119 |
+
parser.add_argument("--seed", type=int, default=None, help="Random seed.")
|
120 |
+
parser.add_argument(
|
121 |
+
"--output_dir", type=str, required=True, help="Output directory."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--input_dir", type=str, required=True, help="Input directory."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--half_precision",
|
128 |
+
action="store_true",
|
129 |
+
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
|
130 |
+
)
|
131 |
+
|
132 |
+
args = parser.parse_args()
|
133 |
+
|
134 |
+
return args
|
135 |
+
|
136 |
+
def main():
|
137 |
+
logging.basicConfig(level=logging.INFO)
|
138 |
+
logging.info(f"Run inference...")
|
139 |
+
|
140 |
+
args = parse_args()
|
141 |
+
|
142 |
+
# -------------------- Preparation --------------------
|
143 |
+
# Random seed
|
144 |
+
if args.seed is not None:
|
145 |
+
seed_all(args.seed)
|
146 |
+
|
147 |
+
# Output directories
|
148 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
149 |
+
logging.info(f"Output dir = {args.output_dir}")
|
150 |
+
|
151 |
+
output_dir_color = os.path.join(args.output_dir, f'{args.task_name}_vis')
|
152 |
+
output_dir_npy = os.path.join(args.output_dir, f'{args.task_name}')
|
153 |
+
if not os.path.exists(output_dir_color): os.makedirs(output_dir_color)
|
154 |
+
if not os.path.exists(output_dir_npy): os.makedirs(output_dir_npy)
|
155 |
+
|
156 |
+
# half_precision
|
157 |
+
if args.half_precision:
|
158 |
+
dtype = torch.float16
|
159 |
+
logging.info(f"Running with half precision ({dtype}).")
|
160 |
+
else:
|
161 |
+
dtype = torch.float32
|
162 |
+
|
163 |
+
# -------------------- Device --------------------
|
164 |
+
if torch.cuda.is_available():
|
165 |
+
device = torch.device("cuda")
|
166 |
+
else:
|
167 |
+
device = torch.device("cpu")
|
168 |
+
logging.warning("CUDA is not available. Running on CPU will be slow.")
|
169 |
+
logging.info(f"Device = {device}")
|
170 |
+
|
171 |
+
# -------------------- Data --------------------
|
172 |
+
root_dir = Path(args.input_dir)
|
173 |
+
test_images = list(root_dir.rglob('*.png')) + list(root_dir.rglob('*.jpg'))
|
174 |
+
test_images = sorted(test_images)
|
175 |
+
print('==> There are', len(test_images), 'images for validation.')
|
176 |
+
# -------------------- Model --------------------
|
177 |
+
|
178 |
+
if args.mode == 'generation':
|
179 |
+
pipeline = LotusGPipeline.from_pretrained(
|
180 |
+
args.pretrained_model_name_or_path,
|
181 |
+
torch_dtype=dtype,
|
182 |
+
)
|
183 |
+
elif args.mode == 'regression':
|
184 |
+
pipeline = LotusDPipeline.from_pretrained(
|
185 |
+
args.pretrained_model_name_or_path,
|
186 |
+
torch_dtype=dtype,
|
187 |
+
)
|
188 |
+
else:
|
189 |
+
raise ValueError(f'Invalid mode: {args.mode}')
|
190 |
+
logging.info(f"Successfully loading pipeline from {args.pretrained_model_name_or_path}.")
|
191 |
+
|
192 |
+
pipeline = pipeline.to(device)
|
193 |
+
pipeline.set_progress_bar_config(disable=True)
|
194 |
+
|
195 |
+
if args.enable_xformers_memory_efficient_attention:
|
196 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
197 |
+
|
198 |
+
|
199 |
+
if args.seed is None:
|
200 |
+
generator = None
|
201 |
+
else:
|
202 |
+
generator = torch.Generator(device=device).manual_seed(args.seed)
|
203 |
+
|
204 |
+
# -------------------- Inference and saving --------------------
|
205 |
+
with torch.no_grad():
|
206 |
+
for i in tqdm(range(len(test_images))):
|
207 |
+
# Preprocess validation image
|
208 |
+
test_image = Image.open(test_images[i]).convert('RGB')
|
209 |
+
test_image = np.array(test_image).astype(np.float32)
|
210 |
+
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
211 |
+
test_image = test_image / 127.5 - 1.0
|
212 |
+
test_image = test_image.to(device)
|
213 |
+
|
214 |
+
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
|
215 |
+
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
|
216 |
+
|
217 |
+
# Run
|
218 |
+
pred = pipeline(
|
219 |
+
rgb_in=test_image,
|
220 |
+
prompt='',
|
221 |
+
num_inference_steps=1,
|
222 |
+
generator=generator,
|
223 |
+
# guidance_scale=0,
|
224 |
+
output_type='np',
|
225 |
+
timesteps=[args.timestep],
|
226 |
+
task_emb=task_emb,
|
227 |
+
).images[0]
|
228 |
+
|
229 |
+
# Post-process the prediction
|
230 |
+
save_file_name = os.path.basename(test_images[i])[:-4]
|
231 |
+
if args.task_name == 'depth':
|
232 |
+
output_npy = pred.mean(axis=-1)
|
233 |
+
output_color = colorize_depth_map(output_npy)
|
234 |
+
else:
|
235 |
+
output_npy = pred
|
236 |
+
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
237 |
+
|
238 |
+
output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
|
239 |
+
np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
|
240 |
+
|
241 |
+
print('==> Inference is done. \n==> Results saved to:', args.output_dir)
|
242 |
+
|
243 |
+
if __name__ == '__main__':
|
244 |
+
main()
|
pipeline.py
ADDED
@@ -0,0 +1,1285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import inspect
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from packaging import version
|
8 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
9 |
+
import tensorboard
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import FrozenDict
|
12 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
13 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
14 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
15 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
16 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
17 |
+
from diffusers.utils import (
|
18 |
+
USE_PEFT_BACKEND,
|
19 |
+
deprecate,
|
20 |
+
logging,
|
21 |
+
replace_example_docstring,
|
22 |
+
scale_lora_layers,
|
23 |
+
unscale_lora_layers,
|
24 |
+
)
|
25 |
+
from diffusers.utils.torch_utils import randn_tensor
|
26 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
27 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
28 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
29 |
+
from diffusers import StableDiffusionPipeline
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
35 |
+
"""
|
36 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
37 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
38 |
+
"""
|
39 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
40 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
41 |
+
# rescale the results from guidance (fixes overexposure)
|
42 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
43 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
44 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
45 |
+
return noise_cfg
|
46 |
+
|
47 |
+
|
48 |
+
def retrieve_timesteps(
|
49 |
+
scheduler,
|
50 |
+
num_inference_steps: Optional[int] = None,
|
51 |
+
device: Optional[Union[str, torch.device]] = None,
|
52 |
+
timesteps: Optional[List[int]] = None,
|
53 |
+
**kwargs,
|
54 |
+
):
|
55 |
+
"""
|
56 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
57 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
scheduler (`SchedulerMixin`):
|
61 |
+
The scheduler to get timesteps from.
|
62 |
+
num_inference_steps (`int`):
|
63 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
64 |
+
must be `None`.
|
65 |
+
device (`str` or `torch.device`, *optional*):
|
66 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
67 |
+
timesteps (`List[int]`, *optional*):
|
68 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
69 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
70 |
+
must be `None`.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
74 |
+
second element is the number of inference steps.
|
75 |
+
"""
|
76 |
+
if timesteps is not None:
|
77 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
78 |
+
if not accepts_timesteps:
|
79 |
+
raise ValueError(
|
80 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
81 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
82 |
+
)
|
83 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
84 |
+
timesteps = scheduler.timesteps
|
85 |
+
num_inference_steps = len(timesteps)
|
86 |
+
else:
|
87 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
88 |
+
timesteps = scheduler.timesteps
|
89 |
+
return timesteps, num_inference_steps
|
90 |
+
|
91 |
+
|
92 |
+
class DirectDiffusionPipeline(
|
93 |
+
DiffusionPipeline,
|
94 |
+
StableDiffusionMixin,
|
95 |
+
TextualInversionLoaderMixin,
|
96 |
+
LoraLoaderMixin,
|
97 |
+
IPAdapterMixin,
|
98 |
+
FromSingleFileMixin,
|
99 |
+
):
|
100 |
+
r"""
|
101 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
102 |
+
|
103 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
104 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
105 |
+
|
106 |
+
The pipeline also inherits the following loading methods:
|
107 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
108 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
109 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
110 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
111 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
112 |
+
|
113 |
+
Args:
|
114 |
+
vae ([`AutoencoderKL`]):
|
115 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
116 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
117 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
118 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
119 |
+
A `CLIPTokenizer` to tokenize text.
|
120 |
+
unet ([`UNet2DConditionModel`]):
|
121 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
122 |
+
scheduler ([`SchedulerMixin`]):
|
123 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
124 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
125 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
126 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
127 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
128 |
+
about a model's potential harms.
|
129 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
130 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
131 |
+
"""
|
132 |
+
|
133 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
134 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
135 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
136 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
137 |
+
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
vae: AutoencoderKL,
|
141 |
+
text_encoder: CLIPTextModel,
|
142 |
+
tokenizer: CLIPTokenizer,
|
143 |
+
unet: UNet2DConditionModel,
|
144 |
+
scheduler: KarrasDiffusionSchedulers,
|
145 |
+
safety_checker: StableDiffusionSafetyChecker,
|
146 |
+
feature_extractor: CLIPImageProcessor,
|
147 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
148 |
+
requires_safety_checker: bool = True,
|
149 |
+
):
|
150 |
+
super().__init__()
|
151 |
+
|
152 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
153 |
+
deprecation_message = (
|
154 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
155 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
156 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
157 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
158 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
159 |
+
" file"
|
160 |
+
)
|
161 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
162 |
+
new_config = dict(scheduler.config)
|
163 |
+
new_config["steps_offset"] = 1
|
164 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
165 |
+
|
166 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
167 |
+
deprecation_message = (
|
168 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
169 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
170 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
171 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
172 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
173 |
+
)
|
174 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
175 |
+
new_config = dict(scheduler.config)
|
176 |
+
new_config["clip_sample"] = False
|
177 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
178 |
+
|
179 |
+
if safety_checker is None and requires_safety_checker:
|
180 |
+
logger.warning(
|
181 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
182 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
183 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
184 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
185 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
186 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
187 |
+
)
|
188 |
+
|
189 |
+
if safety_checker is not None and feature_extractor is None:
|
190 |
+
raise ValueError(
|
191 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
192 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
193 |
+
)
|
194 |
+
|
195 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
196 |
+
version.parse(unet.config._diffusers_version).base_version
|
197 |
+
) < version.parse("0.9.0.dev0")
|
198 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
199 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
200 |
+
deprecation_message = (
|
201 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
202 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
203 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
204 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
205 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
206 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
207 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
208 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
209 |
+
" the `unet/config.json` file"
|
210 |
+
)
|
211 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
212 |
+
new_config = dict(unet.config)
|
213 |
+
new_config["sample_size"] = 64
|
214 |
+
unet._internal_dict = FrozenDict(new_config)
|
215 |
+
|
216 |
+
self.register_modules(
|
217 |
+
vae=vae,
|
218 |
+
text_encoder=text_encoder,
|
219 |
+
tokenizer=tokenizer,
|
220 |
+
unet=unet,
|
221 |
+
scheduler=scheduler,
|
222 |
+
safety_checker=safety_checker,
|
223 |
+
feature_extractor=feature_extractor,
|
224 |
+
image_encoder=image_encoder,
|
225 |
+
)
|
226 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
227 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
228 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
229 |
+
|
230 |
+
def _encode_prompt(
|
231 |
+
self,
|
232 |
+
prompt,
|
233 |
+
device,
|
234 |
+
num_images_per_prompt,
|
235 |
+
do_classifier_free_guidance,
|
236 |
+
negative_prompt=None,
|
237 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
238 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
239 |
+
lora_scale: Optional[float] = None,
|
240 |
+
**kwargs,
|
241 |
+
):
|
242 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
243 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
244 |
+
|
245 |
+
prompt_embeds_tuple = self.encode_prompt(
|
246 |
+
prompt=prompt,
|
247 |
+
device=device,
|
248 |
+
num_images_per_prompt=num_images_per_prompt,
|
249 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
250 |
+
negative_prompt=negative_prompt,
|
251 |
+
prompt_embeds=prompt_embeds,
|
252 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
253 |
+
lora_scale=lora_scale,
|
254 |
+
**kwargs,
|
255 |
+
)
|
256 |
+
|
257 |
+
# concatenate for backwards comp
|
258 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
259 |
+
|
260 |
+
return prompt_embeds
|
261 |
+
|
262 |
+
def encode_prompt(
|
263 |
+
self,
|
264 |
+
prompt,
|
265 |
+
device,
|
266 |
+
num_images_per_prompt,
|
267 |
+
do_classifier_free_guidance,
|
268 |
+
negative_prompt=None,
|
269 |
+
padding_type="do_not_pad",
|
270 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
271 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
272 |
+
lora_scale: Optional[float] = None,
|
273 |
+
clip_skip: Optional[int] = None,
|
274 |
+
):
|
275 |
+
r"""
|
276 |
+
Encodes the prompt into text encoder hidden states.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
prompt (`str` or `List[str]`, *optional*):
|
280 |
+
prompt to be encoded
|
281 |
+
device: (`torch.device`):
|
282 |
+
torch device
|
283 |
+
num_images_per_prompt (`int`):
|
284 |
+
number of images that should be generated per prompt
|
285 |
+
do_classifier_free_guidance (`bool`):
|
286 |
+
whether to use classifier free guidance or not
|
287 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
288 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
289 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
290 |
+
less than `1`).
|
291 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
292 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
293 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
294 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
295 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
296 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
297 |
+
argument.
|
298 |
+
lora_scale (`float`, *optional*):
|
299 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
300 |
+
clip_skip (`int`, *optional*):
|
301 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
302 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
303 |
+
"""
|
304 |
+
# set lora scale so that monkey patched LoRA
|
305 |
+
# function of text encoder can correctly access it
|
306 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
307 |
+
self._lora_scale = lora_scale
|
308 |
+
|
309 |
+
# dynamically adjust the LoRA scale
|
310 |
+
if not USE_PEFT_BACKEND:
|
311 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
312 |
+
else:
|
313 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
314 |
+
|
315 |
+
if prompt is not None and isinstance(prompt, str):
|
316 |
+
batch_size = 1
|
317 |
+
elif prompt is not None and isinstance(prompt, list):
|
318 |
+
batch_size = len(prompt)
|
319 |
+
else:
|
320 |
+
batch_size = prompt_embeds.shape[0]
|
321 |
+
|
322 |
+
if prompt_embeds is None:
|
323 |
+
# textual inversion: process multi-vector tokens if necessary
|
324 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
325 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
326 |
+
|
327 |
+
text_inputs = self.tokenizer(
|
328 |
+
prompt,
|
329 |
+
padding=padding_type,
|
330 |
+
max_length=self.tokenizer.model_max_length,
|
331 |
+
truncation=True,
|
332 |
+
return_tensors="pt",
|
333 |
+
)
|
334 |
+
text_input_ids = text_inputs.input_ids
|
335 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
336 |
+
|
337 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
338 |
+
text_input_ids, untruncated_ids
|
339 |
+
):
|
340 |
+
removed_text = self.tokenizer.batch_decode(
|
341 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
342 |
+
)
|
343 |
+
logger.warning(
|
344 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
345 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
346 |
+
)
|
347 |
+
|
348 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
349 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
350 |
+
else:
|
351 |
+
attention_mask = None
|
352 |
+
|
353 |
+
if clip_skip is None:
|
354 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
355 |
+
prompt_embeds = prompt_embeds[0]
|
356 |
+
else:
|
357 |
+
prompt_embeds = self.text_encoder(
|
358 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
359 |
+
)
|
360 |
+
# Access the `hidden_states` first, that contains a tuple of
|
361 |
+
# all the hidden states from the encoder layers. Then index into
|
362 |
+
# the tuple to access the hidden states from the desired layer.
|
363 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
364 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
365 |
+
# representations. The `last_hidden_states` that we typically use for
|
366 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
367 |
+
# layer.
|
368 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
369 |
+
|
370 |
+
if self.text_encoder is not None:
|
371 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
372 |
+
elif self.unet is not None:
|
373 |
+
prompt_embeds_dtype = self.unet.dtype
|
374 |
+
else:
|
375 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
376 |
+
|
377 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
378 |
+
|
379 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
380 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
381 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
382 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
383 |
+
|
384 |
+
# get unconditional embeddings for classifier free guidance
|
385 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
386 |
+
uncond_tokens: List[str]
|
387 |
+
if negative_prompt is None:
|
388 |
+
uncond_tokens = [""] * batch_size
|
389 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
390 |
+
raise TypeError(
|
391 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
392 |
+
f" {type(prompt)}."
|
393 |
+
)
|
394 |
+
elif isinstance(negative_prompt, str):
|
395 |
+
uncond_tokens = [negative_prompt]
|
396 |
+
elif batch_size != len(negative_prompt):
|
397 |
+
raise ValueError(
|
398 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
399 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
400 |
+
" the batch size of `prompt`."
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
uncond_tokens = negative_prompt
|
404 |
+
|
405 |
+
# textual inversion: process multi-vector tokens if necessary
|
406 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
407 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
408 |
+
|
409 |
+
max_length = prompt_embeds.shape[1]
|
410 |
+
uncond_input = self.tokenizer(
|
411 |
+
uncond_tokens,
|
412 |
+
padding="max_length",
|
413 |
+
max_length=max_length,
|
414 |
+
truncation=True,
|
415 |
+
return_tensors="pt",
|
416 |
+
)
|
417 |
+
|
418 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
419 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
420 |
+
else:
|
421 |
+
attention_mask = None
|
422 |
+
|
423 |
+
negative_prompt_embeds = self.text_encoder(
|
424 |
+
uncond_input.input_ids.to(device),
|
425 |
+
attention_mask=attention_mask,
|
426 |
+
)
|
427 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
428 |
+
|
429 |
+
if do_classifier_free_guidance:
|
430 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
431 |
+
seq_len = negative_prompt_embeds.shape[1]
|
432 |
+
|
433 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
434 |
+
|
435 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
436 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
437 |
+
|
438 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
439 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
440 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
441 |
+
|
442 |
+
return prompt_embeds, negative_prompt_embeds
|
443 |
+
|
444 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
445 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
446 |
+
|
447 |
+
if not isinstance(image, torch.Tensor):
|
448 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
449 |
+
|
450 |
+
image = image.to(device=device, dtype=dtype)
|
451 |
+
if output_hidden_states:
|
452 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
453 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
454 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
455 |
+
torch.zeros_like(image), output_hidden_states=True
|
456 |
+
).hidden_states[-2]
|
457 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
458 |
+
num_images_per_prompt, dim=0
|
459 |
+
)
|
460 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
461 |
+
else:
|
462 |
+
image_embeds = self.image_encoder(image).image_embeds
|
463 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
464 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
465 |
+
|
466 |
+
return image_embeds, uncond_image_embeds
|
467 |
+
|
468 |
+
def prepare_ip_adapter_image_embeds(
|
469 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
470 |
+
):
|
471 |
+
if ip_adapter_image_embeds is None:
|
472 |
+
if not isinstance(ip_adapter_image, list):
|
473 |
+
ip_adapter_image = [ip_adapter_image]
|
474 |
+
|
475 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
476 |
+
raise ValueError(
|
477 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
478 |
+
)
|
479 |
+
|
480 |
+
image_embeds = []
|
481 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
482 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
483 |
+
):
|
484 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
485 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
486 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
487 |
+
)
|
488 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
489 |
+
single_negative_image_embeds = torch.stack(
|
490 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
491 |
+
)
|
492 |
+
|
493 |
+
if do_classifier_free_guidance:
|
494 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
495 |
+
single_image_embeds = single_image_embeds.to(device)
|
496 |
+
|
497 |
+
image_embeds.append(single_image_embeds)
|
498 |
+
else:
|
499 |
+
repeat_dims = [1]
|
500 |
+
image_embeds = []
|
501 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
502 |
+
if do_classifier_free_guidance:
|
503 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
504 |
+
single_image_embeds = single_image_embeds.repeat(
|
505 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
506 |
+
)
|
507 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
508 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
509 |
+
)
|
510 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
511 |
+
else:
|
512 |
+
single_image_embeds = single_image_embeds.repeat(
|
513 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
514 |
+
)
|
515 |
+
image_embeds.append(single_image_embeds)
|
516 |
+
|
517 |
+
return image_embeds
|
518 |
+
|
519 |
+
def run_safety_checker(self, image, device, dtype):
|
520 |
+
if self.safety_checker is None:
|
521 |
+
has_nsfw_concept = None
|
522 |
+
else:
|
523 |
+
if torch.is_tensor(image):
|
524 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
525 |
+
else:
|
526 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
527 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
528 |
+
image, has_nsfw_concept = self.safety_checker(
|
529 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
530 |
+
)
|
531 |
+
return image, has_nsfw_concept
|
532 |
+
|
533 |
+
def decode_latents(self, latents):
|
534 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
535 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
536 |
+
|
537 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
538 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
539 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
540 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
541 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
542 |
+
return image
|
543 |
+
|
544 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
545 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
546 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
547 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
548 |
+
# and should be between [0, 1]
|
549 |
+
|
550 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
551 |
+
extra_step_kwargs = {}
|
552 |
+
if accepts_eta:
|
553 |
+
extra_step_kwargs["eta"] = eta
|
554 |
+
|
555 |
+
# check if the scheduler accepts generator
|
556 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
557 |
+
if accepts_generator:
|
558 |
+
extra_step_kwargs["generator"] = generator
|
559 |
+
return extra_step_kwargs
|
560 |
+
|
561 |
+
def check_inputs(
|
562 |
+
self,
|
563 |
+
prompt,
|
564 |
+
height,
|
565 |
+
width,
|
566 |
+
callback_steps,
|
567 |
+
negative_prompt=None,
|
568 |
+
prompt_embeds=None,
|
569 |
+
negative_prompt_embeds=None,
|
570 |
+
ip_adapter_image=None,
|
571 |
+
ip_adapter_image_embeds=None,
|
572 |
+
callback_on_step_end_tensor_inputs=None,
|
573 |
+
):
|
574 |
+
if height % 8 != 0 or width % 8 != 0:
|
575 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
576 |
+
|
577 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
578 |
+
raise ValueError(
|
579 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
580 |
+
f" {type(callback_steps)}."
|
581 |
+
)
|
582 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
583 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
584 |
+
):
|
585 |
+
raise ValueError(
|
586 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
587 |
+
)
|
588 |
+
|
589 |
+
if prompt is not None and prompt_embeds is not None:
|
590 |
+
raise ValueError(
|
591 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
592 |
+
" only forward one of the two."
|
593 |
+
)
|
594 |
+
elif prompt is None and prompt_embeds is None:
|
595 |
+
raise ValueError(
|
596 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
597 |
+
)
|
598 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
599 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
600 |
+
|
601 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
602 |
+
raise ValueError(
|
603 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
604 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
605 |
+
)
|
606 |
+
|
607 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
608 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
609 |
+
raise ValueError(
|
610 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
611 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
612 |
+
f" {negative_prompt_embeds.shape}."
|
613 |
+
)
|
614 |
+
|
615 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
616 |
+
raise ValueError(
|
617 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
618 |
+
)
|
619 |
+
|
620 |
+
if ip_adapter_image_embeds is not None:
|
621 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
622 |
+
raise ValueError(
|
623 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
624 |
+
)
|
625 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
626 |
+
raise ValueError(
|
627 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
628 |
+
)
|
629 |
+
|
630 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
631 |
+
shape = (
|
632 |
+
batch_size,
|
633 |
+
num_channels_latents,
|
634 |
+
int(height) // self.vae_scale_factor,
|
635 |
+
int(width) // self.vae_scale_factor,
|
636 |
+
)
|
637 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
638 |
+
raise ValueError(
|
639 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
640 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
641 |
+
)
|
642 |
+
|
643 |
+
if latents is None:
|
644 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
645 |
+
else:
|
646 |
+
latents = latents.to(device)
|
647 |
+
|
648 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
649 |
+
latents = latents * self.scheduler.init_noise_sigma
|
650 |
+
return latents
|
651 |
+
|
652 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
653 |
+
def get_guidance_scale_embedding(
|
654 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
655 |
+
) -> torch.FloatTensor:
|
656 |
+
"""
|
657 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
658 |
+
|
659 |
+
Args:
|
660 |
+
w (`torch.Tensor`):
|
661 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
662 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
663 |
+
Dimension of the embeddings to generate.
|
664 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
665 |
+
Data type of the generated embeddings.
|
666 |
+
|
667 |
+
Returns:
|
668 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
669 |
+
"""
|
670 |
+
assert len(w.shape) == 1
|
671 |
+
w = w * 1000.0
|
672 |
+
|
673 |
+
half_dim = embedding_dim // 2
|
674 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
675 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
676 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
677 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
678 |
+
if embedding_dim % 2 == 1: # zero pad
|
679 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
680 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
681 |
+
return emb
|
682 |
+
|
683 |
+
@property
|
684 |
+
def guidance_scale(self):
|
685 |
+
return self._guidance_scale
|
686 |
+
|
687 |
+
@property
|
688 |
+
def guidance_rescale(self):
|
689 |
+
return self._guidance_rescale
|
690 |
+
|
691 |
+
@property
|
692 |
+
def clip_skip(self):
|
693 |
+
return self._clip_skip
|
694 |
+
|
695 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
696 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
697 |
+
# corresponds to doing no classifier free guidance.
|
698 |
+
@property
|
699 |
+
def do_classifier_free_guidance(self):
|
700 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
701 |
+
|
702 |
+
@property
|
703 |
+
def cross_attention_kwargs(self):
|
704 |
+
return self._cross_attention_kwargs
|
705 |
+
|
706 |
+
@property
|
707 |
+
def num_timesteps(self):
|
708 |
+
return self._num_timesteps
|
709 |
+
|
710 |
+
@property
|
711 |
+
def interrupt(self):
|
712 |
+
return self._interrupt
|
713 |
+
|
714 |
+
@torch.no_grad()
|
715 |
+
def __call__(
|
716 |
+
self,
|
717 |
+
rgb_in: Optional[torch.FloatTensor] = None,
|
718 |
+
prompt: Union[str, List[str]] = None,
|
719 |
+
height: Optional[int] = None,
|
720 |
+
width: Optional[int] = None,
|
721 |
+
num_inference_steps: int = 50,
|
722 |
+
timesteps: List[int] = None,
|
723 |
+
guidance_scale: float = 7.5,
|
724 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
725 |
+
num_images_per_prompt: Optional[int] = 1,
|
726 |
+
eta: float = 0.0,
|
727 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
728 |
+
latents: Optional[torch.FloatTensor] = None,
|
729 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
730 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
731 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
732 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
733 |
+
output_type: Optional[str] = "pil",
|
734 |
+
return_dict: bool = True,
|
735 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
736 |
+
guidance_rescale: float = 0.0,
|
737 |
+
clip_skip: Optional[int] = None,
|
738 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
739 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
740 |
+
return_intermediate_timestep_idx: Optional[int] = None,
|
741 |
+
**kwargs,
|
742 |
+
):
|
743 |
+
r"""
|
744 |
+
The call function to the pipeline for generation.
|
745 |
+
|
746 |
+
Args:
|
747 |
+
|
748 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
749 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
750 |
+
The height in pixels of the generated image.
|
751 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
752 |
+
The width in pixels of the generated image.
|
753 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
754 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
755 |
+
expense of slower inference.
|
756 |
+
timesteps (`List[int]`, *optional*):
|
757 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
758 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
759 |
+
passed will be used. Must be in descending order.
|
760 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
761 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
762 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
763 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
764 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
765 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
766 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
767 |
+
The number of images to generate per prompt.
|
768 |
+
eta (`float`, *optional*, defaults to 0.0):
|
769 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
770 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
771 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
772 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
773 |
+
generation deterministic.
|
774 |
+
latents (`torch.FloatTensor`, *optional*):
|
775 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
776 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
777 |
+
tensor is generated by sampling using the supplied random `generator`.
|
778 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
779 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
780 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
781 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
782 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
783 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
784 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
785 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
786 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
787 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
788 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
789 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
790 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
791 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
792 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
793 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
794 |
+
plain tuple.
|
795 |
+
cross_attention_kwargs (`dict`, *optional*):
|
796 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
797 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
798 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
799 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
800 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
801 |
+
using zero terminal SNR.
|
802 |
+
clip_skip (`int`, *optional*):
|
803 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
804 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
805 |
+
callback_on_step_end (`Callable`, *optional*):
|
806 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
807 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
808 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
809 |
+
`callback_on_step_end_tensor_inputs`.
|
810 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
811 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
812 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
813 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
814 |
+
|
815 |
+
Examples:
|
816 |
+
|
817 |
+
Returns:
|
818 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
819 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
820 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
821 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
822 |
+
"not-safe-for-work" (nsfw) content.
|
823 |
+
"""
|
824 |
+
|
825 |
+
callback = kwargs.pop("callback", None)
|
826 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
827 |
+
|
828 |
+
if callback is not None:
|
829 |
+
deprecate(
|
830 |
+
"callback",
|
831 |
+
"1.0.0",
|
832 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
833 |
+
)
|
834 |
+
if callback_steps is not None:
|
835 |
+
deprecate(
|
836 |
+
"callback_steps",
|
837 |
+
"1.0.0",
|
838 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
839 |
+
)
|
840 |
+
|
841 |
+
# 0. Default height and width to unet
|
842 |
+
height, width = rgb_in.shape[2:]
|
843 |
+
|
844 |
+
# to deal with lora scaling and other possible forward hooks
|
845 |
+
|
846 |
+
# # 1. Check inputs. Raise error if not correct
|
847 |
+
|
848 |
+
self._guidance_scale = guidance_scale
|
849 |
+
self._guidance_rescale = guidance_rescale
|
850 |
+
self._clip_skip = clip_skip
|
851 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
852 |
+
self._interrupt = False
|
853 |
+
|
854 |
+
# 2. Define call parameters
|
855 |
+
batch_size = rgb_in.shape[0]
|
856 |
+
|
857 |
+
device = self._execution_device
|
858 |
+
|
859 |
+
# 3. Encode input prompt
|
860 |
+
lora_scale = (
|
861 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
862 |
+
)
|
863 |
+
|
864 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
865 |
+
prompt,
|
866 |
+
device,
|
867 |
+
num_images_per_prompt,
|
868 |
+
self.do_classifier_free_guidance,
|
869 |
+
negative_prompt,
|
870 |
+
prompt_embeds=prompt_embeds,
|
871 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
872 |
+
lora_scale=lora_scale,
|
873 |
+
clip_skip=self.clip_skip,
|
874 |
+
)
|
875 |
+
|
876 |
+
# For classifier free guidance, we need to do two forward passes.
|
877 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
878 |
+
# to avoid doing two forward passes
|
879 |
+
if self.do_classifier_free_guidance:
|
880 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
881 |
+
|
882 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
883 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
884 |
+
ip_adapter_image,
|
885 |
+
ip_adapter_image_embeds,
|
886 |
+
device,
|
887 |
+
batch_size * num_images_per_prompt,
|
888 |
+
self.do_classifier_free_guidance,
|
889 |
+
)
|
890 |
+
|
891 |
+
# 4. Prepare timesteps
|
892 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
893 |
+
|
894 |
+
# 5. Prepare latent variables
|
895 |
+
num_channels_latents = self.unet.config.in_channels // 2
|
896 |
+
latents = self.prepare_latents(
|
897 |
+
batch_size * num_images_per_prompt,
|
898 |
+
num_channels_latents,
|
899 |
+
height,
|
900 |
+
width,
|
901 |
+
prompt_embeds.dtype,
|
902 |
+
device,
|
903 |
+
generator,
|
904 |
+
latents,
|
905 |
+
)
|
906 |
+
|
907 |
+
rgb_latents = self.vae.encode(rgb_in.to(device)).latent_dist.sample()
|
908 |
+
rgb_latents = rgb_latents * self.vae.config.scaling_factor
|
909 |
+
|
910 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
911 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
912 |
+
|
913 |
+
# 6.1 Add image embeds for IP-Adapter
|
914 |
+
added_cond_kwargs = (
|
915 |
+
{"image_embeds": image_embeds}
|
916 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
917 |
+
else None
|
918 |
+
)
|
919 |
+
|
920 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
921 |
+
timestep_cond = None
|
922 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
923 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
924 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
925 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
926 |
+
).to(device=device, dtype=latents.dtype)
|
927 |
+
|
928 |
+
# 7. Denoising loop
|
929 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
930 |
+
self._num_timesteps = len(timesteps)
|
931 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
932 |
+
for i, t in enumerate(timesteps):
|
933 |
+
if self.interrupt:
|
934 |
+
continue
|
935 |
+
|
936 |
+
# expand the latents if we are doing classifier free guidance
|
937 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
938 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
939 |
+
|
940 |
+
latent_model_input = torch.cat(
|
941 |
+
[rgb_latents, latent_model_input], dim=1
|
942 |
+
)
|
943 |
+
|
944 |
+
# predict the noise residual
|
945 |
+
noise_pred = self.unet(
|
946 |
+
latent_model_input,
|
947 |
+
t,
|
948 |
+
encoder_hidden_states=prompt_embeds,
|
949 |
+
timestep_cond=timestep_cond,
|
950 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
951 |
+
added_cond_kwargs=added_cond_kwargs,
|
952 |
+
return_dict=False,
|
953 |
+
)[0]
|
954 |
+
|
955 |
+
# perform guidance
|
956 |
+
if self.do_classifier_free_guidance:
|
957 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
958 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
959 |
+
|
960 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
961 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
962 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
963 |
+
|
964 |
+
# compute the previous noisy sample x_t -> x_t-1
|
965 |
+
pred_latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=True)
|
966 |
+
latents = pred_latents[0]
|
967 |
+
|
968 |
+
if callback_on_step_end is not None:
|
969 |
+
callback_kwargs = {}
|
970 |
+
for k in callback_on_step_end_tensor_inputs:
|
971 |
+
callback_kwargs[k] = locals()[k]
|
972 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
973 |
+
|
974 |
+
latents = callback_outputs.pop("latents", latents)
|
975 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
976 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
977 |
+
|
978 |
+
# call the callback, if provided
|
979 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
980 |
+
progress_bar.update()
|
981 |
+
if callback is not None and i % callback_steps == 0:
|
982 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
983 |
+
callback(step_idx, t, latents)
|
984 |
+
|
985 |
+
if return_intermediate_timestep_idx == i:
|
986 |
+
latents = pred_latents[1]
|
987 |
+
break
|
988 |
+
|
989 |
+
if not output_type == "latent":
|
990 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
991 |
+
0
|
992 |
+
]
|
993 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
994 |
+
else:
|
995 |
+
image = latents
|
996 |
+
has_nsfw_concept = None
|
997 |
+
|
998 |
+
if has_nsfw_concept is None:
|
999 |
+
do_denormalize = [True] * image.shape[0]
|
1000 |
+
else:
|
1001 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1002 |
+
|
1003 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1004 |
+
|
1005 |
+
# Offload all models
|
1006 |
+
self.maybe_free_model_hooks()
|
1007 |
+
|
1008 |
+
if not return_dict:
|
1009 |
+
return (image, has_nsfw_concept)
|
1010 |
+
|
1011 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
1012 |
+
|
1013 |
+
class LotusDPipeline(DirectDiffusionPipeline):
|
1014 |
+
@torch.no_grad()
|
1015 |
+
def __call__(
|
1016 |
+
self,
|
1017 |
+
rgb_in: Optional[torch.FloatTensor] = None,
|
1018 |
+
task_emb: Optional[torch.FloatTensor] = None,
|
1019 |
+
prompt: Union[str, List[str]] = None,
|
1020 |
+
timesteps: List[int] = None,
|
1021 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1022 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1023 |
+
output_type: Optional[str] = "pil",
|
1024 |
+
return_dict: bool = True,
|
1025 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1026 |
+
**kwargs,
|
1027 |
+
):
|
1028 |
+
r"""
|
1029 |
+
The call function to the pipeline for generation.
|
1030 |
+
|
1031 |
+
Args:
|
1032 |
+
rgb_input (`torch.FloatTensor`):
|
1033 |
+
Input RGB tensor, range [-1, 1].
|
1034 |
+
task_emb (`torch.FloatTensor`)
|
1035 |
+
Task switcher for reconstruction or dense prediction (depth or normal).
|
1036 |
+
prompt (`str` or `List[str]`, *optional*):
|
1037 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1038 |
+
timesteps (`List[int]`, *optional*):
|
1039 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1040 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1041 |
+
passed will be used. Must be in descending order.
|
1042 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1043 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1044 |
+
generation deterministic.
|
1045 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1046 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1047 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1048 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1049 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1050 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1051 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1052 |
+
plain tuple.
|
1053 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1054 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1055 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1056 |
+
Examples:
|
1057 |
+
|
1058 |
+
Returns:
|
1059 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1060 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1061 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1062 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1063 |
+
"not-safe-for-work" (nsfw) content.
|
1064 |
+
"""
|
1065 |
+
|
1066 |
+
|
1067 |
+
|
1068 |
+
# 1. Define call parameters
|
1069 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1070 |
+
|
1071 |
+
device = self._execution_device
|
1072 |
+
|
1073 |
+
# 2. Encode input prompt
|
1074 |
+
prompt_embeds, _ = self.encode_prompt(
|
1075 |
+
prompt,
|
1076 |
+
device,
|
1077 |
+
num_images_per_prompt=1,
|
1078 |
+
do_classifier_free_guidance=None,
|
1079 |
+
prompt_embeds=prompt_embeds,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
# 3. Prepare timesteps
|
1083 |
+
timesteps = torch.tensor(timesteps, device=device).long()
|
1084 |
+
|
1085 |
+
# 4. Prepare latent variables
|
1086 |
+
rgb_latents = self.vae.encode(rgb_in.to(device)).latent_dist.sample()
|
1087 |
+
rgb_latents = rgb_latents * self.vae.config.scaling_factor
|
1088 |
+
|
1089 |
+
# 5. Denoising
|
1090 |
+
t = timesteps[0]
|
1091 |
+
latent_model_input = rgb_latents
|
1092 |
+
|
1093 |
+
pred = self.unet(
|
1094 |
+
latent_model_input,
|
1095 |
+
t,
|
1096 |
+
encoder_hidden_states=prompt_embeds,
|
1097 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1098 |
+
return_dict=False,
|
1099 |
+
class_labels=task_emb,
|
1100 |
+
)[0]
|
1101 |
+
|
1102 |
+
if not output_type == "latent":
|
1103 |
+
image = self.vae.decode(pred / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1104 |
+
0
|
1105 |
+
]
|
1106 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1107 |
+
else:
|
1108 |
+
image = pred
|
1109 |
+
has_nsfw_concept = None
|
1110 |
+
|
1111 |
+
if has_nsfw_concept is None:
|
1112 |
+
do_denormalize = [True] * image.shape[0]
|
1113 |
+
else:
|
1114 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1115 |
+
|
1116 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1117 |
+
|
1118 |
+
# Offload all models
|
1119 |
+
self.maybe_free_model_hooks()
|
1120 |
+
|
1121 |
+
if not return_dict:
|
1122 |
+
return (image, has_nsfw_concept)
|
1123 |
+
|
1124 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
1125 |
+
|
1126 |
+
class LotusGPipeline(DirectDiffusionPipeline):
|
1127 |
+
@torch.no_grad()
|
1128 |
+
def __call__(
|
1129 |
+
self,
|
1130 |
+
rgb_in: Optional[torch.FloatTensor] = None, # Modification 240430
|
1131 |
+
task_emb: Optional[torch.FloatTensor] = None,
|
1132 |
+
prompt: Union[str, List[str]] = None,
|
1133 |
+
num_inference_steps: int = 50,
|
1134 |
+
timesteps: List[int] = None,
|
1135 |
+
eta: float = 0.0,
|
1136 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1137 |
+
latents: Optional[torch.FloatTensor] = None,
|
1138 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1139 |
+
output_type: Optional[str] = "pil",
|
1140 |
+
return_dict: bool = True,
|
1141 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1142 |
+
**kwargs,
|
1143 |
+
):
|
1144 |
+
r"""
|
1145 |
+
The call function to the pipeline for generation.
|
1146 |
+
|
1147 |
+
Args:
|
1148 |
+
rgb_input (`torch.FloatTensor`):
|
1149 |
+
Input RGB tensor, range [-1, 1].
|
1150 |
+
task_emb (`torch.FloatTensor`)
|
1151 |
+
The task switcher to transfer the model outout domain between prediction and reconstruction.
|
1152 |
+
prompt (`str` or `List[str]`, *optional*):
|
1153 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1154 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1155 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1156 |
+
expense of slower inference.
|
1157 |
+
timesteps (`List[int]`, *optional*):
|
1158 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1159 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1160 |
+
passed will be used. Must be in descending order.
|
1161 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1162 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1163 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1164 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1165 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1166 |
+
generation deterministic.
|
1167 |
+
latents (`torch.FloatTensor`, *optional*):
|
1168 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1169 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1170 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1171 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1172 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1173 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1174 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1175 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1176 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1177 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1178 |
+
plain tuple.
|
1179 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1180 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1181 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1182 |
+
Examples:
|
1183 |
+
|
1184 |
+
Returns:
|
1185 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1186 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1187 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1188 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1189 |
+
"not-safe-for-work" (nsfw) content.
|
1190 |
+
"""
|
1191 |
+
|
1192 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1193 |
+
|
1194 |
+
# 1. Default height and width to unet
|
1195 |
+
height, width = rgb_in.shape[2:]
|
1196 |
+
|
1197 |
+
# 2. Define call parameters
|
1198 |
+
batch_size = rgb_in.shape[0]
|
1199 |
+
device = self._execution_device
|
1200 |
+
print("Device: ", device)
|
1201 |
+
|
1202 |
+
# 3. Encode input prompt
|
1203 |
+
prompt_embeds, _ = self.encode_prompt(
|
1204 |
+
prompt,
|
1205 |
+
device,
|
1206 |
+
num_images_per_prompt=1,
|
1207 |
+
do_classifier_free_guidance=None,
|
1208 |
+
prompt_embeds=prompt_embeds,
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
# 4. Prepare timesteps
|
1212 |
+
timesteps = torch.tensor(timesteps, device=device).long()
|
1213 |
+
|
1214 |
+
# 5. Prepare latent variables
|
1215 |
+
num_channels_latents = self.unet.config.in_channels // 2
|
1216 |
+
latents = self.prepare_latents(
|
1217 |
+
batch_size,
|
1218 |
+
num_channels_latents,
|
1219 |
+
height,
|
1220 |
+
width,
|
1221 |
+
prompt_embeds.dtype,
|
1222 |
+
device,
|
1223 |
+
generator,
|
1224 |
+
latents,
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
rgb_latents = self.vae.encode(rgb_in.to(device)).latent_dist.sample()
|
1228 |
+
rgb_latents = rgb_latents * self.vae.config.scaling_factor
|
1229 |
+
|
1230 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1231 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1232 |
+
|
1233 |
+
# 7. Denoising loop
|
1234 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1235 |
+
self._num_timesteps = len(timesteps)
|
1236 |
+
|
1237 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1238 |
+
for i, t in enumerate(timesteps):
|
1239 |
+
latent_model_input = self.scheduler.scale_model_input(latents, t)
|
1240 |
+
latent_model_input = torch.cat(
|
1241 |
+
[rgb_latents, latent_model_input], dim=1
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
x0_pred = self.unet(
|
1245 |
+
latent_model_input,
|
1246 |
+
t,
|
1247 |
+
encoder_hidden_states=prompt_embeds,
|
1248 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1249 |
+
return_dict=False,
|
1250 |
+
class_labels=task_emb,
|
1251 |
+
)[0]
|
1252 |
+
|
1253 |
+
if len(timesteps) > 1:
|
1254 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1255 |
+
latents = self.scheduler.step(x0_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1256 |
+
else:
|
1257 |
+
latents = x0_pred
|
1258 |
+
|
1259 |
+
# call the callback, if provided
|
1260 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1261 |
+
progress_bar.update()
|
1262 |
+
|
1263 |
+
if not output_type == "latent":
|
1264 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1265 |
+
0
|
1266 |
+
]
|
1267 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1268 |
+
else:
|
1269 |
+
image = latents
|
1270 |
+
has_nsfw_concept = None
|
1271 |
+
|
1272 |
+
if has_nsfw_concept is None:
|
1273 |
+
do_denormalize = [True] * image.shape[0]
|
1274 |
+
else:
|
1275 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1276 |
+
|
1277 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1278 |
+
|
1279 |
+
# Offload all models
|
1280 |
+
self.maybe_free_model_hooks()
|
1281 |
+
|
1282 |
+
if not return_dict:
|
1283 |
+
return (image, has_nsfw_concept)
|
1284 |
+
|
1285 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.3.1 --index-url https://download.pytorch.org/whl/cu121
|
2 |
+
torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu121
|
3 |
+
torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121
|
4 |
+
diffusers==0.28.0
|
5 |
+
accelerate>=0.16.0
|
6 |
+
transformers>=4.25.1
|
7 |
+
datasets==2.21.0
|
8 |
+
ftfy==6.2.3
|
9 |
+
tensorboard==2.17.1
|
10 |
+
Jinja2==3.1.3
|
11 |
+
peft==0.7.0
|
12 |
+
bitsandbytes==0.44.1
|
13 |
+
geffnet==1.0.2
|
14 |
+
opencv-python==4.10.0.82
|
15 |
+
matplotlib==3.8.4
|
16 |
+
h5py==3.11.0
|
17 |
+
omegaconf==2.3.0
|
18 |
+
tabulate==0.9.0
|
19 |
+
imageio==2.35.1
|
20 |
+
spaces==0.28.3
|
21 |
+
gradio==4.21.0
|
22 |
+
gradio-imageslider==0.0.16
|
23 |
+
gradio_client==0.12.0
|
utils/__pycache__/image_utils.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
utils/__pycache__/image_utils.cpython-39.pyc
ADDED
Binary file (2.92 kB). View file
|
|
utils/__pycache__/seed_all.cpython-310.pyc
ADDED
Binary file (472 Bytes). View file
|
|
utils/__pycache__/seed_all.cpython-39.pyc
ADDED
Binary file (476 Bytes). View file
|
|
utils/args.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
def parse_args():
|
5 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
6 |
+
parser.add_argument(
|
7 |
+
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
|
8 |
+
)
|
9 |
+
parser.add_argument(
|
10 |
+
"--pretrained_model_name_or_path",
|
11 |
+
type=str,
|
12 |
+
default=None,
|
13 |
+
required=True,
|
14 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
15 |
+
)
|
16 |
+
parser.add_argument(
|
17 |
+
"--revision",
|
18 |
+
type=str,
|
19 |
+
default=None,
|
20 |
+
required=False,
|
21 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
22 |
+
)
|
23 |
+
parser.add_argument(
|
24 |
+
"--variant",
|
25 |
+
type=str,
|
26 |
+
default=None,
|
27 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--dataset_name",
|
31 |
+
type=str,
|
32 |
+
default=None,
|
33 |
+
help=(
|
34 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
35 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
36 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
37 |
+
),
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"--dataset_config_name",
|
41 |
+
type=str,
|
42 |
+
default=None,
|
43 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--train_data_dir_hypersim",
|
47 |
+
type=str,
|
48 |
+
default=None,
|
49 |
+
help=(
|
50 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
51 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
52 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
53 |
+
),
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--train_data_dir_vkitti",
|
57 |
+
type=str,
|
58 |
+
default=None,
|
59 |
+
help=(
|
60 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
61 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
62 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
63 |
+
),
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--depth_column", type=str, default="depth", help="The column of the dataset containing a depth file."
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--caption_column",
|
73 |
+
type=str,
|
74 |
+
default="text",
|
75 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
76 |
+
)
|
77 |
+
parser.add_argument(
|
78 |
+
"--max_train_samples",
|
79 |
+
type=int,
|
80 |
+
default=None,
|
81 |
+
help=(
|
82 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
83 |
+
"value if set."
|
84 |
+
),
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--timestep",
|
88 |
+
type=int,
|
89 |
+
default=999,
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--base_test_data_dir",
|
93 |
+
type=str,
|
94 |
+
default="datasets/eval/"
|
95 |
+
)
|
96 |
+
parser.add_argument(
|
97 |
+
"--task_name",
|
98 |
+
type=str,
|
99 |
+
default="depth", # "normal"
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--validation_images",
|
103 |
+
type=str,
|
104 |
+
default=None,
|
105 |
+
help=("A set of images evaluated every `--validation_steps` and logged to `--report_to`."),
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--output_dir",
|
109 |
+
type=str,
|
110 |
+
default="sd-model-finetuned",
|
111 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--cache_dir",
|
115 |
+
type=str,
|
116 |
+
default=None,
|
117 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
118 |
+
)
|
119 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
120 |
+
parser.add_argument(
|
121 |
+
"--resolution_hypersim",
|
122 |
+
type=int,
|
123 |
+
default=512,
|
124 |
+
help=(
|
125 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
126 |
+
" resolution"
|
127 |
+
),
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--resolution_vkitti",
|
131 |
+
type=int,
|
132 |
+
default=512,
|
133 |
+
help=(
|
134 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
135 |
+
" resolution"
|
136 |
+
),
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--prob_hypersim",
|
140 |
+
type=float,
|
141 |
+
default=0.9,
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--mix_dataset",
|
145 |
+
action="store_true"
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--mode",
|
149 |
+
type=str,
|
150 |
+
default="regression", # "generation"
|
151 |
+
help="Whether to use the generation or regression pipeline."
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--norm_type",
|
155 |
+
type=str,
|
156 |
+
choices=['instnorm','truncnorm'],
|
157 |
+
default='truncnorm'
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--center_crop",
|
161 |
+
default=False,
|
162 |
+
action="store_true",
|
163 |
+
help=(
|
164 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
165 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
166 |
+
),
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--random_flip",
|
170 |
+
action="store_true",
|
171 |
+
help="whether to randomly flip images horizontally",
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
175 |
+
)
|
176 |
+
parser.add_argument("--num_train_epochs", type=int, default=100)
|
177 |
+
parser.add_argument(
|
178 |
+
"--max_train_steps",
|
179 |
+
type=int,
|
180 |
+
default=None,
|
181 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--gradient_accumulation_steps",
|
185 |
+
type=int,
|
186 |
+
default=1,
|
187 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--gradient_checkpointing",
|
191 |
+
action="store_true",
|
192 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--learning_rate",
|
196 |
+
type=float,
|
197 |
+
default=1e-4,
|
198 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
199 |
+
)
|
200 |
+
parser.add_argument(
|
201 |
+
"--scale_lr",
|
202 |
+
action="store_true",
|
203 |
+
default=False,
|
204 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--lr_scheduler",
|
208 |
+
type=str,
|
209 |
+
default="constant",
|
210 |
+
help=(
|
211 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
212 |
+
' "constant", "constant_with_warmup"]'
|
213 |
+
),
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
217 |
+
)
|
218 |
+
parser.add_argument(
|
219 |
+
"--snr_gamma",
|
220 |
+
type=float,
|
221 |
+
default=None,
|
222 |
+
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
|
223 |
+
"More details here: https://arxiv.org/abs/2303.09556.",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--dream_training",
|
227 |
+
action="store_true",
|
228 |
+
help=(
|
229 |
+
"Use the DREAM training method, which makes training more efficient and accurate at the ",
|
230 |
+
"expense of doing an extra forward pass. See: https://arxiv.org/abs/2312.00210",
|
231 |
+
),
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--dream_detail_preservation",
|
235 |
+
type=float,
|
236 |
+
default=1.0,
|
237 |
+
help="Dream detail preservation factor p (should be greater than 0; default=1.0, as suggested in the paper)",
|
238 |
+
)
|
239 |
+
parser.add_argument(
|
240 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--allow_tf32",
|
244 |
+
action="store_true",
|
245 |
+
help=(
|
246 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
247 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
248 |
+
),
|
249 |
+
)
|
250 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
251 |
+
parser.add_argument(
|
252 |
+
"--non_ema_revision",
|
253 |
+
type=str,
|
254 |
+
default=None,
|
255 |
+
required=False,
|
256 |
+
help=(
|
257 |
+
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
|
258 |
+
" remote repository specified with --pretrained_model_name_or_path."
|
259 |
+
),
|
260 |
+
)
|
261 |
+
parser.add_argument(
|
262 |
+
"--dataloader_num_workers",
|
263 |
+
type=int,
|
264 |
+
default=0,
|
265 |
+
help=(
|
266 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
267 |
+
),
|
268 |
+
)
|
269 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
270 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
271 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
272 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
273 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
274 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
275 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
276 |
+
parser.add_argument(
|
277 |
+
"--prediction_type",
|
278 |
+
type=str,
|
279 |
+
default="sample",
|
280 |
+
help="The used prediction_type. ",
|
281 |
+
)
|
282 |
+
parser.add_argument(
|
283 |
+
"--hub_model_id",
|
284 |
+
type=str,
|
285 |
+
default=None,
|
286 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
287 |
+
)
|
288 |
+
parser.add_argument(
|
289 |
+
"--logging_dir",
|
290 |
+
type=str,
|
291 |
+
default="logs",
|
292 |
+
help=(
|
293 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
294 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
295 |
+
),
|
296 |
+
)
|
297 |
+
parser.add_argument(
|
298 |
+
"--mixed_precision",
|
299 |
+
type=str,
|
300 |
+
default=None,
|
301 |
+
choices=["no", "fp16", "bf16"],
|
302 |
+
help=(
|
303 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
304 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
305 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
306 |
+
),
|
307 |
+
)
|
308 |
+
parser.add_argument(
|
309 |
+
"--report_to",
|
310 |
+
type=str,
|
311 |
+
default="tensorboard",
|
312 |
+
help=(
|
313 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
314 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
315 |
+
),
|
316 |
+
)
|
317 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
318 |
+
parser.add_argument(
|
319 |
+
"--checkpointing_steps",
|
320 |
+
type=int,
|
321 |
+
default=500,
|
322 |
+
help=(
|
323 |
+
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
324 |
+
" training using `--resume_from_checkpoint`."
|
325 |
+
),
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--checkpoints_total_limit",
|
329 |
+
type=int,
|
330 |
+
default=None,
|
331 |
+
help=("Max number of checkpoints to store."),
|
332 |
+
)
|
333 |
+
parser.add_argument(
|
334 |
+
"--resume_from_checkpoint",
|
335 |
+
type=str,
|
336 |
+
default=None,
|
337 |
+
help=(
|
338 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
339 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
340 |
+
),
|
341 |
+
)
|
342 |
+
parser.add_argument(
|
343 |
+
"--checkpoint_dir",
|
344 |
+
type=str,
|
345 |
+
default=None,
|
346 |
+
)
|
347 |
+
parser.add_argument(
|
348 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
349 |
+
)
|
350 |
+
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
|
351 |
+
parser.add_argument("--use_pretrained_sd", action="store_true")
|
352 |
+
parser.add_argument(
|
353 |
+
"--truncnorm_min",
|
354 |
+
type=float,
|
355 |
+
default=0.02,
|
356 |
+
)
|
357 |
+
parser.add_argument(
|
358 |
+
"--validation_steps",
|
359 |
+
type=int,
|
360 |
+
default=500,
|
361 |
+
help="Run validation every X steps.",
|
362 |
+
)
|
363 |
+
parser.add_argument(
|
364 |
+
"--tracker_project_name",
|
365 |
+
type=str,
|
366 |
+
default="text2image-fine-tune",
|
367 |
+
help=(
|
368 |
+
"The `project_name` argument passed to Accelerator.init_trackers for"
|
369 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
370 |
+
),
|
371 |
+
)
|
372 |
+
parser.add_argument(
|
373 |
+
"--inference",
|
374 |
+
action="store_true"
|
375 |
+
)
|
376 |
+
|
377 |
+
args = parser.parse_args()
|
378 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
379 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
380 |
+
args.local_rank = env_local_rank
|
381 |
+
|
382 |
+
# Sanity checks
|
383 |
+
if not args.inference and args.dataset_name is None and args.train_data_dir_hypersim is None:
|
384 |
+
raise ValueError("Need either a dataset name or a training folder.")
|
385 |
+
|
386 |
+
# default to using the same revision for the non-ema model if not specified
|
387 |
+
if args.non_ema_revision is None:
|
388 |
+
args.non_ema_revision = args.revision
|
389 |
+
|
390 |
+
return args
|
utils/image_utils.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import matplotlib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms.functional import resize
|
10 |
+
|
11 |
+
def concatenate_images(*image_lists):
|
12 |
+
# Ensure at least one image list is provided
|
13 |
+
if not image_lists or not image_lists[0]:
|
14 |
+
raise ValueError("At least one non-empty image list must be provided")
|
15 |
+
|
16 |
+
# Determine the maximum width of any single row and the total height
|
17 |
+
max_width = 0
|
18 |
+
total_height = 0
|
19 |
+
row_widths = []
|
20 |
+
row_heights = []
|
21 |
+
|
22 |
+
# Compute dimensions for each row
|
23 |
+
for image_list in image_lists:
|
24 |
+
if image_list: # Ensure the list is not empty
|
25 |
+
width = sum(img.width for img in image_list)
|
26 |
+
height = image_list[0].height # Assuming all images in the list have the same height
|
27 |
+
max_width = max(max_width, width)
|
28 |
+
total_height += height
|
29 |
+
row_widths.append(width)
|
30 |
+
row_heights.append(height)
|
31 |
+
|
32 |
+
# Create a new image to concatenate everything into
|
33 |
+
new_image = Image.new('RGB', (max_width, total_height))
|
34 |
+
|
35 |
+
# Concatenate each row of images
|
36 |
+
y_offset = 0
|
37 |
+
for i, image_list in enumerate(image_lists):
|
38 |
+
x_offset = 0
|
39 |
+
for img in image_list:
|
40 |
+
new_image.paste(img, (x_offset, y_offset))
|
41 |
+
x_offset += img.width
|
42 |
+
y_offset += row_heights[i] # Move the offset down to the next row
|
43 |
+
|
44 |
+
return new_image
|
45 |
+
|
46 |
+
|
47 |
+
def colorize_depth_map(depth, mask=None):
|
48 |
+
cm = matplotlib.colormaps["Spectral"]
|
49 |
+
# normalize
|
50 |
+
depth = ((depth - depth.min()) / (depth.max() - depth.min()))
|
51 |
+
# colorize
|
52 |
+
img_colored_np = cm(depth, bytes=False)[:, :, 0:3] # (h,w,3)
|
53 |
+
depth_colored = (img_colored_np * 255).astype(np.uint8)
|
54 |
+
if mask is not None:
|
55 |
+
masked_image = np.zeros_like(depth_colored)
|
56 |
+
masked_image[mask.numpy()] = depth_colored[mask.numpy()]
|
57 |
+
depth_colored_img = Image.fromarray(masked_image)
|
58 |
+
else:
|
59 |
+
depth_colored_img = Image.fromarray(depth_colored)
|
60 |
+
return depth_colored_img
|
61 |
+
|
62 |
+
|
63 |
+
def resize_max_res(
|
64 |
+
img: torch.Tensor,
|
65 |
+
max_edge_resolution: int,
|
66 |
+
resample_method: InterpolationMode = InterpolationMode.BILINEAR,
|
67 |
+
) -> torch.Tensor:
|
68 |
+
"""
|
69 |
+
Resize image to limit maximum edge length while keeping aspect ratio.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
img (`torch.Tensor`):
|
73 |
+
Image tensor to be resized. Expected shape: [B, C, H, W]
|
74 |
+
max_edge_resolution (`int`):
|
75 |
+
Maximum edge length (pixel).
|
76 |
+
resample_method (`PIL.Image.Resampling`):
|
77 |
+
Resampling method used to resize images.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
`torch.Tensor`: Resized image.
|
81 |
+
"""
|
82 |
+
assert 4 == img.dim(), f"Invalid input shape {img.shape}"
|
83 |
+
|
84 |
+
original_height, original_width = img.shape[-2:]
|
85 |
+
downscale_factor = min(
|
86 |
+
max_edge_resolution / original_width, max_edge_resolution / original_height
|
87 |
+
)
|
88 |
+
|
89 |
+
new_width = int(original_width * downscale_factor)
|
90 |
+
new_height = int(original_height * downscale_factor)
|
91 |
+
|
92 |
+
resized_img = resize(img, (new_height, new_width), resample_method, antialias=True)
|
93 |
+
return resized_img
|
94 |
+
|
95 |
+
|
96 |
+
def get_tv_resample_method(method_str: str) -> InterpolationMode:
|
97 |
+
resample_method_dict = {
|
98 |
+
"bilinear": InterpolationMode.BILINEAR,
|
99 |
+
"bicubic": InterpolationMode.BICUBIC,
|
100 |
+
"nearest": InterpolationMode.NEAREST_EXACT,
|
101 |
+
"nearest-exact": InterpolationMode.NEAREST_EXACT,
|
102 |
+
}
|
103 |
+
resample_method = resample_method_dict.get(method_str, None)
|
104 |
+
if resample_method is None:
|
105 |
+
raise ValueError(f"Unknown resampling method: {resample_method}")
|
106 |
+
else:
|
107 |
+
return resample_method
|
utils/seed_all.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import random
|
23 |
+
import torch
|
24 |
+
|
25 |
+
|
26 |
+
def seed_all(seed: int = 0):
|
27 |
+
"""
|
28 |
+
Set random seeds of all components.
|
29 |
+
"""
|
30 |
+
random.seed(seed)
|
31 |
+
np.random.seed(seed)
|
32 |
+
torch.manual_seed(seed)
|
33 |
+
torch.cuda.manual_seed_all(seed)
|
utils/visualize.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from matplotlib import cm
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
import logging
|
10 |
+
logger = logging.getLogger('root')
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
def tensor_to_numpy(tensor_in):
|
15 |
+
""" torch tensor to numpy array
|
16 |
+
"""
|
17 |
+
if tensor_in is not None:
|
18 |
+
if tensor_in.ndim == 3:
|
19 |
+
# (C, H, W) -> (H, W, C)
|
20 |
+
tensor_in = tensor_in.detach().cpu().permute(1, 2, 0).numpy()
|
21 |
+
elif tensor_in.ndim == 4:
|
22 |
+
# (B, C, H, W) -> (B, H, W, C)
|
23 |
+
tensor_in = tensor_in.detach().cpu().permute(0, 2, 3, 1).numpy()
|
24 |
+
else:
|
25 |
+
raise Exception('invalid tensor size')
|
26 |
+
return tensor_in
|
27 |
+
|
28 |
+
# def unnormalize(img_in, img_stats={'mean': [0.485, 0.456, 0.406],
|
29 |
+
# 'std': [0.229, 0.224, 0.225]}):
|
30 |
+
def unnormalize(img_in, img_stats={'mean': [0.5,0.5,0.5], 'std': [0.5,0.5,0.5]}):
|
31 |
+
""" unnormalize input image
|
32 |
+
"""
|
33 |
+
if torch.is_tensor(img_in):
|
34 |
+
img_in = tensor_to_numpy(img_in)
|
35 |
+
|
36 |
+
img_out = np.zeros_like(img_in)
|
37 |
+
for ich in range(3):
|
38 |
+
img_out[..., ich] = img_in[..., ich] * img_stats['std'][ich]
|
39 |
+
img_out[..., ich] += img_stats['mean'][ich]
|
40 |
+
img_out = (img_out * 255.0).astype(np.uint8)
|
41 |
+
return img_out
|
42 |
+
|
43 |
+
def normal_to_rgb(normal, normal_mask=None):
|
44 |
+
""" surface normal map to RGB
|
45 |
+
(used for visualization)
|
46 |
+
|
47 |
+
NOTE: x, y, z are mapped to R, G, B
|
48 |
+
NOTE: [-1, 1] are mapped to [0, 255]
|
49 |
+
"""
|
50 |
+
if torch.is_tensor(normal):
|
51 |
+
normal = tensor_to_numpy(normal)
|
52 |
+
normal_mask = tensor_to_numpy(normal_mask)
|
53 |
+
|
54 |
+
normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True)
|
55 |
+
normal_norm[normal_norm < 1e-12] = 1e-12
|
56 |
+
normal = normal / normal_norm
|
57 |
+
|
58 |
+
normal_rgb = (((normal + 1) * 0.5) * 255).astype(np.uint8)
|
59 |
+
if normal_mask is not None:
|
60 |
+
normal_rgb = normal_rgb * normal_mask # (B, H, W, 3)
|
61 |
+
return normal_rgb
|
62 |
+
|
63 |
+
def kappa_to_alpha(pred_kappa, to_numpy=True):
|
64 |
+
""" Confidence kappa to uncertainty alpha
|
65 |
+
Assuming AngMF distribution (introduced in https://arxiv.org/abs/2109.09881)
|
66 |
+
"""
|
67 |
+
if torch.is_tensor(pred_kappa) and to_numpy:
|
68 |
+
pred_kappa = tensor_to_numpy(pred_kappa)
|
69 |
+
|
70 |
+
if torch.is_tensor(pred_kappa):
|
71 |
+
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
|
72 |
+
+ ((torch.exp(- pred_kappa * np.pi) * np.pi) / (1 + torch.exp(- pred_kappa * np.pi)))
|
73 |
+
alpha = torch.rad2deg(alpha)
|
74 |
+
else:
|
75 |
+
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
|
76 |
+
+ ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi)))
|
77 |
+
alpha = np.degrees(alpha)
|
78 |
+
|
79 |
+
return alpha
|
80 |
+
|
81 |
+
|
82 |
+
def visualize_normal(target_dir, prefixs, img, pred_norm, pred_kappa,
|
83 |
+
gt_norm, gt_norm_mask, pred_error, num_vis=-1):
|
84 |
+
""" visualize normal
|
85 |
+
"""
|
86 |
+
error_max = 60.0
|
87 |
+
|
88 |
+
img = tensor_to_numpy(img) # (B, H, W, 3)
|
89 |
+
pred_norm = tensor_to_numpy(pred_norm) # (B, H, W, 3)
|
90 |
+
pred_kappa = tensor_to_numpy(pred_kappa) # (B, H, W, 1)
|
91 |
+
gt_norm = tensor_to_numpy(gt_norm) # (B, H, W, 3)
|
92 |
+
gt_norm_mask = tensor_to_numpy(gt_norm_mask) # (B, H, W, 1)
|
93 |
+
pred_error = tensor_to_numpy(pred_error) # (B, H, W, 1)
|
94 |
+
|
95 |
+
num_vis = len(prefixs) if num_vis == -1 else num_vis
|
96 |
+
for i in range(num_vis):
|
97 |
+
# img
|
98 |
+
img_ = unnormalize(img[i, ...])
|
99 |
+
target_path = '%s/%s_img.png' % (target_dir, prefixs[i])
|
100 |
+
plt.imsave(target_path, img_)
|
101 |
+
|
102 |
+
# pred_norm
|
103 |
+
target_path = '%s/%s_norm.png' % (target_dir, prefixs[i])
|
104 |
+
plt.imsave(target_path, normal_to_rgb(pred_norm[i, ...]))
|
105 |
+
|
106 |
+
# pred_kappa
|
107 |
+
if pred_kappa is not None:
|
108 |
+
pred_alpha = kappa_to_alpha(pred_kappa[i, :, :, 0])
|
109 |
+
target_path = '%s/%s_pred_alpha.png' % (target_dir, prefixs[i])
|
110 |
+
plt.imsave(target_path, pred_alpha, vmin=0.0, vmax=error_max, cmap='jet')
|
111 |
+
|
112 |
+
# gt_norm, pred_error
|
113 |
+
if gt_norm is not None:
|
114 |
+
target_path = '%s/%s_gt.png' % (target_dir, prefixs[i])
|
115 |
+
plt.imsave(target_path, normal_to_rgb(gt_norm[i, ...], gt_norm_mask[i, ...]))
|
116 |
+
|
117 |
+
E = pred_error[i, :, :, 0] * gt_norm_mask[i, :, :, 0]
|
118 |
+
target_path = '%s/%s_pred_error.png' % (target_dir, prefixs[i])
|
119 |
+
plt.imsave(target_path, E, vmin=0, vmax=error_max, cmap='jet')
|