import gradio as gr | |
from datasets import load_dataset | |
import numpy as np | |
from model2vec import StaticModel | |
from reach import Reach | |
from difflib import ndiff | |
import sys | |
import tqdm | |
# Load the model at startup | |
model = StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# Load the default datasets at startup | |
default_dataset1_name = "ag_news" | |
default_dataset1_split = "train" | |
default_dataset2_name = "ag_news" | |
default_dataset2_split = "test" | |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split) | |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split) | |
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]: | |
""" | |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices. | |
""" | |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]) | |
deduplicated_indices = set(range(len(embedding_matrix))) | |
duplicate_to_original_mapping = {} | |
results = reach.nearest_neighbor_threshold( | |
embedding_matrix, | |
threshold=threshold, | |
batch_size=batch_size, | |
show_progressbar=False # Disable internal progress bar | |
) | |
# Process duplicates | |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")): | |
if i not in deduplicated_indices: | |
continue | |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i] | |
for sim_idx in similar_indices: | |
if sim_idx in deduplicated_indices: | |
deduplicated_indices.remove(sim_idx) | |
duplicate_to_original_mapping[sim_idx] = i | |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping | |
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]: | |
""" | |
Deduplicate embeddings across two datasets and return the indices of duplicates between them. | |
""" | |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]) | |
duplicate_indices_in_test = [] | |
duplicate_to_original_mapping = {} | |
results = reach.nearest_neighbor_threshold( | |
embedding_matrix_2, | |
threshold=threshold, | |
batch_size=batch_size, | |
show_progressbar=False # Disable internal progress bar | |
) | |
# Process duplicates | |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")): | |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] | |
if similar_indices: | |
duplicate_indices_in_test.append(i) | |
duplicate_to_original_mapping[i] = similar_indices[0] | |
return duplicate_indices_in_test, duplicate_to_original_mapping | |
def display_word_differences(x: str, y: str) -> str: | |
diff = ndiff(x.split(), y.split()) | |
return " ".join([word for word in diff if word.startswith(('+', '-'))]) | |
def perform_deduplication( | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name="", | |
dataset2_split="", | |
dataset2_text_column="", | |
threshold=0.8, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
# Monkey-patch tqdm | |
original_tqdm = tqdm.tqdm | |
tqdm.tqdm = progress.tqdm | |
sys.modules['tqdm'].tqdm = progress.tqdm | |
sys.modules['tqdm.auto'].tqdm = progress.tqdm | |
try: | |
# Convert threshold to float | |
threshold = float(threshold) | |
if deduplication_type == "Single dataset": | |
# Check if the dataset is the default one | |
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split: | |
ds = ds_default1 | |
else: | |
ds = load_dataset(dataset1_name, split=dataset1_split) | |
# Extract texts | |
texts = [example[dataset1_text_column] for example in ds] | |
# Compute embeddings | |
embedding_matrix = model.encode(texts, show_progressbar=False) # Disable internal progress bar | |
# Show progress bar for embedding computation | |
embedding_matrix = progress.tqdm(embedding_matrix, desc="Computing embeddings") | |
# Deduplicate | |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress) | |
# Prepare the results | |
num_duplicates = len(duplicate_to_original_mapping) | |
num_total = len(texts) | |
num_deduplicated = len(deduplicated_indices) | |
result_text = f"**Total documents:** {num_total}\n" | |
result_text += f"**Number of duplicates found:** {num_duplicates}\n" | |
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n" | |
# Show deduplicated examples | |
result_text += "**Examples of duplicates found:**\n\n" | |
num_examples = min(5, num_duplicates) | |
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]: | |
original_text = texts[original_idx] | |
duplicate_text = texts[duplicate_idx] | |
differences = display_word_differences(original_text, duplicate_text) | |
result_text += f"**Original text:**\n{original_text}\n\n" | |
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n" | |
result_text += f"**Differences:**\n{differences}\n" | |
result_text += "-" * 50 + "\n\n" | |
return result_text | |
elif deduplication_type == "Cross-dataset": | |
# Dataset 1 | |
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split: | |
ds1 = ds_default1 | |
else: | |
ds1 = load_dataset(dataset1_name, split=dataset1_split) | |
# Dataset 2 | |
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split: | |
ds2 = ds_default2 | |
else: | |
ds2 = load_dataset(dataset2_name, split=dataset2_split) | |
# Extract texts | |
texts1 = [example[dataset1_text_column] for example in ds1] | |
texts2 = [example[dataset2_text_column] for example in ds2] | |
# Compute embeddings | |
embedding_matrix1 = model.encode(texts1, show_progressbar=False) # Disable internal progress bar | |
embedding_matrix2 = model.encode(texts2, show_progressbar=False) # Disable internal progress bar | |
# Show progress bar for embedding computation | |
embedding_matrix1 = progress.tqdm(embedding_matrix1, desc="Computing embeddings for Dataset 1") | |
embedding_matrix2 = progress.tqdm(embedding_matrix2, desc="Computing embeddings for Dataset 2") | |
# Deduplicate across datasets | |
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress) | |
num_duplicates = len(duplicate_indices_in_ds2) | |
num_total_ds2 = len(texts2) | |
num_unique_ds2 = num_total_ds2 - num_duplicates | |
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n" | |
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n" | |
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n" | |
# Show deduplicated examples | |
result_text += "**Examples of duplicates found in Dataset 2:**\n\n" | |
num_examples = min(5, num_duplicates) | |
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]: | |
original_idx = duplicate_to_original_mapping[duplicate_idx] | |
original_text = texts1[original_idx] | |
duplicate_text = texts2[duplicate_idx] | |
differences = display_word_differences(original_text, duplicate_text) | |
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n" | |
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n" | |
result_text += f"**Differences:**\n{differences}\n" | |
result_text += "-" * 50 + "\n\n" | |
return result_text | |
finally: | |
# Restore original tqdm | |
tqdm.tqdm = original_tqdm | |
sys.modules['tqdm'].tqdm = original_tqdm | |
sys.modules['tqdm.auto'].tqdm = original_tqdm | |
with gr.Blocks() as demo: | |
gr.Markdown("# Semantic Deduplication") | |
deduplication_type = gr.Radio( | |
choices=["Single dataset", "Cross-dataset"], | |
label="Deduplication Type", | |
value="Single dataset" | |
) | |
with gr.Row(): | |
dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name") | |
dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split") | |
dataset1_text_column = gr.Textbox(value="text", label="Text Column Name") | |
dataset2_inputs = gr.Column(visible=False) | |
with dataset2_inputs: | |
gr.Markdown("### Dataset 2") | |
with gr.Row(): | |
dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name") | |
dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split") | |
dataset2_text_column = gr.Textbox(value="text", label="Text Column Name") | |
threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.8, | |
label="Similarity Threshold" | |
) | |
compute_button = gr.Button("Compute") | |
output = gr.Markdown() | |
# Function to update the visibility of dataset2_inputs | |
def update_visibility(deduplication_type_value): | |
if deduplication_type_value == "Cross-dataset": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
deduplication_type.change( | |
update_visibility, | |
inputs=deduplication_type, | |
outputs=dataset2_inputs | |
) | |
compute_button.click( | |
fn=perform_deduplication, | |
inputs=[ | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name, | |
dataset2_split, | |
dataset2_text_column, | |
threshold | |
], | |
outputs=output | |
) | |
demo.launch() | |
# import gradio as gr | |
# from datasets import load_dataset | |
# import numpy as np | |
# from model2vec import StaticModel | |
# from reach import Reach | |
# from difflib import ndiff | |
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[np.ndarray, dict[int, int]]: | |
# """ | |
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices. | |
# """ | |
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]) | |
# # Use a set for deduplicated indices and keep track of duplicates | |
# deduplicated_indices = set(range(len(embedding_matrix))) # Start with all indices as deduplicated | |
# duplicate_to_original_mapping = {} | |
# results = reach.nearest_neighbor_threshold( | |
# embedding_matrix, | |
# threshold=threshold, | |
# batch_size=batch_size, | |
# show_progressbar=True | |
# ) | |
# # Process duplicates | |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")): | |
# if i not in deduplicated_indices: | |
# continue # Skip already marked duplicates | |
# # Similar items are returned as (index, score), we are only interested in the index | |
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i] | |
# # Mark similar documents as duplicates and map them to the original | |
# for sim_idx in similar_indices: | |
# if sim_idx in deduplicated_indices: | |
# deduplicated_indices.remove(sim_idx) | |
# duplicate_to_original_mapping[sim_idx] = i # Map duplicate to original | |
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping | |
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[list[int], dict[int, int]]: | |
# """ | |
# Deduplicate embeddings across two datasets and return the indices of duplicates between them. | |
# """ | |
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]) | |
# # Keep track of duplicates in the second dataset | |
# duplicate_indices_in_test = [] | |
# duplicate_to_original_mapping = {} | |
# # Find nearest neighbors from the test set in the train set | |
# results = reach.nearest_neighbor_threshold( | |
# embedding_matrix_2, | |
# threshold=threshold, | |
# batch_size=batch_size, | |
# show_progressbar=True | |
# ) | |
# # Process duplicates | |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")): | |
# # Similar items are returned as (index, score), we are only interested in the index | |
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold | |
# # If we find a similar item in the train set, mark it as a duplicate | |
# if similar_indices: | |
# duplicate_indices_in_test.append(i) | |
# duplicate_to_original_mapping[i] = similar_indices[0] # Map duplicate in test to original in train | |
# return duplicate_indices_in_test, duplicate_to_original_mapping | |
# def display_word_differences(x: str, y: str) -> str: | |
# diff = ndiff(x.split(), y.split()) | |
# return " ".join([word for word in diff if word.startswith(('+', '-'))]) | |
# def perform_deduplication( | |
# deduplication_type, | |
# dataset1_name, | |
# dataset1_split, | |
# dataset1_text_column, | |
# dataset2_name="", | |
# dataset2_split="", | |
# dataset2_text_column="", | |
# threshold=0.8, | |
# progress=gr.Progress(track_tqdm=True) | |
# ): | |
# # Convert threshold to float | |
# threshold = float(threshold) | |
# if deduplication_type == "Single dataset": | |
# # Load the dataset | |
# ds = load_dataset(dataset1_name, split=dataset1_split) | |
# # Extract texts | |
# texts = [example[dataset1_text_column] for example in ds] | |
# # Compute embeddings | |
# model = StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# embedding_matrix = model.encode(texts, show_progressbar=True) | |
# # Deduplicate | |
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress) | |
# # Prepare the results | |
# num_duplicates = len(duplicate_to_original_mapping) | |
# num_total = len(texts) | |
# num_deduplicated = len(deduplicated_indices) | |
# result_text = f"**Total documents:** {num_total}\n" | |
# result_text += f"**Number of duplicates found:** {num_duplicates}\n" | |
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n" | |
# # Show deduplicated examples | |
# result_text += "**Examples of duplicates found:**\n\n" | |
# num_examples = min(5, num_duplicates) | |
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]: | |
# original_text = texts[original_idx] | |
# duplicate_text = texts[duplicate_idx] | |
# differences = display_word_differences(original_text, duplicate_text) | |
# result_text += f"**Original text:**\n{original_text}\n\n" | |
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n" | |
# result_text += f"**Differences:**\n{differences}\n" | |
# result_text += "-" * 50 + "\n\n" | |
# return result_text | |
# elif deduplication_type == "Cross-dataset": | |
# # Load datasets | |
# ds1 = load_dataset(dataset1_name, split=dataset1_split) | |
# ds2 = load_dataset(dataset2_name, split=dataset2_split) | |
# # Extract texts | |
# texts1 = [example[dataset1_text_column] for example in ds1] | |
# texts2 = [example[dataset2_text_column] for example in ds2] | |
# # Compute embeddings | |
# model = StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# embedding_matrix1 = model.encode(texts1, show_progressbar=True) | |
# embedding_matrix2 = model.encode(texts2, show_progressbar=True) | |
# # Deduplicate across datasets | |
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress) | |
# num_duplicates = len(duplicate_indices_in_ds2) | |
# num_total_ds2 = len(texts2) | |
# num_unique_ds2 = num_total_ds2 - num_duplicates | |
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n" | |
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n" | |
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n" | |
# # Show deduplicated examples | |
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n" | |
# num_examples = min(5, num_duplicates) | |
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]: | |
# original_idx = duplicate_to_original_mapping[duplicate_idx] | |
# original_text = texts1[original_idx] | |
# duplicate_text = texts2[duplicate_idx] | |
# differences = display_word_differences(original_text, duplicate_text) | |
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n" | |
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n" | |
# result_text += f"**Differences:**\n{differences}\n" | |
# result_text += "-" * 50 + "\n\n" | |
# return result_text | |
# with gr.Blocks() as demo: | |
# gr.Markdown("# Semantic Deduplication") | |
# deduplication_type = gr.Radio( | |
# choices=["Single dataset", "Cross-dataset"], | |
# label="Deduplication Type", | |
# value="Single dataset" | |
# ) | |
# with gr.Row(): | |
# dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name") | |
# dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split") | |
# dataset1_text_column = gr.Textbox(value="text", label="Text Column Name") | |
# dataset2_inputs = gr.Column(visible=False) | |
# with dataset2_inputs: | |
# gr.Markdown("### Dataset 2") | |
# with gr.Row(): | |
# dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name") | |
# dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split") | |
# dataset2_text_column = gr.Textbox(value="text", label="Text Column Name") | |
# threshold = gr.Slider( | |
# minimum=0.0, | |
# maximum=1.0, | |
# value=0.8, | |
# label="Similarity Threshold" | |
# ) | |
# compute_button = gr.Button("Compute") | |
# output = gr.Markdown() | |
# # Function to update the visibility of dataset2_inputs | |
# def update_visibility(deduplication_type_value): | |
# if deduplication_type_value == "Cross-dataset": | |
# return gr.update(visible=True) | |
# else: | |
# return gr.update(visible=False) | |
# deduplication_type.change( | |
# update_visibility, | |
# inputs=deduplication_type, | |
# outputs=dataset2_inputs | |
# ) | |
# compute_button.click( | |
# fn=perform_deduplication, | |
# inputs=[ | |
# deduplication_type, | |
# dataset1_name, | |
# dataset1_split, | |
# dataset1_text_column, | |
# dataset2_name, | |
# dataset2_split, | |
# dataset2_text_column, | |
# threshold | |
# ], | |
# outputs=output | |
# ) | |
# demo.launch() | |