File size: 20,707 Bytes
25d2eb7
2827b8a
 
 
 
7a1cd7a
f5eb405
 
2827b8a
f5eb405
 
 
 
 
 
 
 
 
 
 
 
 
2827b8a
 
 
 
 
f5eb405
2827b8a
 
 
f5eb405
 
 
 
2827b8a
 
 
892ceeb
2827b8a
f5eb405
2827b8a
 
 
 
 
 
f5eb405
2827b8a
 
 
f5eb405
2827b8a
 
 
 
 
 
 
 
 
f5eb405
 
 
 
2827b8a
 
 
892ceeb
f5eb405
2827b8a
 
 
f5eb405
2827b8a
 
25d2eb7
7a1cd7a
 
892ceeb
7a1cd7a
2827b8a
 
 
 
7a1cd7a
7ed3881
 
 
 
892ceeb
2827b8a
f5eb405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d2eb7
2827b8a
 
7a1cd7a
7ed3881
 
 
 
 
7a1cd7a
7ed3881
 
 
 
7a1cd7a
7ed3881
 
 
7a1cd7a
7ed3881
 
7a1cd7a
 
7ed3881
 
 
 
 
 
7a1cd7a
2827b8a
7a1cd7a
2827b8a
7a1cd7a
7ed3881
 
 
 
2827b8a
7ed3881
7a1cd7a
7ed3881
 
 
 
 
2827b8a
 
 
7a1cd7a
 
 
 
 
 
 
 
 
 
2827b8a
 
7a1cd7a
2827b8a
f5eb405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
import sys
import tqdm

# Load the model at startup
model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# Load the default datasets at startup
default_dataset1_name = "ag_news"
default_dataset1_split = "train"
default_dataset2_name = "ag_news"
default_dataset2_split = "test"

ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)

def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
    """
    Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
    """
    reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])

    deduplicated_indices = set(range(len(embedding_matrix)))
    duplicate_to_original_mapping = {}

    results = reach.nearest_neighbor_threshold(
        embedding_matrix,
        threshold=threshold,
        batch_size=batch_size,
        show_progressbar=False  # Disable internal progress bar
    )

    # Process duplicates
    for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
        if i not in deduplicated_indices:
            continue

        similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]

        for sim_idx in similar_indices:
            if sim_idx in deduplicated_indices:
                deduplicated_indices.remove(sim_idx)
                duplicate_to_original_mapping[sim_idx] = i

    return np.array(list(deduplicated_indices)), duplicate_to_original_mapping

def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
    """
    Deduplicate embeddings across two datasets and return the indices of duplicates between them.
    """
    reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])

    duplicate_indices_in_test = []
    duplicate_to_original_mapping = {}

    results = reach.nearest_neighbor_threshold(
        embedding_matrix_2,
        threshold=threshold,
        batch_size=batch_size,
        show_progressbar=False  # Disable internal progress bar
    )

    # Process duplicates
    for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
        similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]

        if similar_indices:
            duplicate_indices_in_test.append(i)
            duplicate_to_original_mapping[i] = similar_indices[0]

    return duplicate_indices_in_test, duplicate_to_original_mapping

def display_word_differences(x: str, y: str) -> str:
    diff = ndiff(x.split(), y.split())
    return " ".join([word for word in diff if word.startswith(('+', '-'))])

def perform_deduplication(
    deduplication_type,
    dataset1_name,
    dataset1_split,
    dataset1_text_column,
    dataset2_name="",
    dataset2_split="",
    dataset2_text_column="",
    threshold=0.8,
    progress=gr.Progress(track_tqdm=True)
):
    # Monkey-patch tqdm
    original_tqdm = tqdm.tqdm
    tqdm.tqdm = progress.tqdm
    sys.modules['tqdm'].tqdm = progress.tqdm
    sys.modules['tqdm.auto'].tqdm = progress.tqdm

    try:
        # Convert threshold to float
        threshold = float(threshold)
        
        if deduplication_type == "Single dataset":
            # Check if the dataset is the default one
            if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
                ds = ds_default1
            else:
                ds = load_dataset(dataset1_name, split=dataset1_split)
            
            # Extract texts
            texts = [example[dataset1_text_column] for example in ds]
            
            # Compute embeddings
            embedding_matrix = model.encode(texts, show_progressbar=False)  # Disable internal progress bar
            
            # Show progress bar for embedding computation
            embedding_matrix = progress.tqdm(embedding_matrix, desc="Computing embeddings")

            # Deduplicate
            deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
            
            # Prepare the results
            num_duplicates = len(duplicate_to_original_mapping)
            num_total = len(texts)
            num_deduplicated = len(deduplicated_indices)
            
            result_text = f"**Total documents:** {num_total}\n"
            result_text += f"**Number of duplicates found:** {num_duplicates}\n"
            result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
            
            # Show deduplicated examples
            result_text += "**Examples of duplicates found:**\n\n"
            num_examples = min(5, num_duplicates)
            for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
                original_text = texts[original_idx]
                duplicate_text = texts[duplicate_idx]
                differences = display_word_differences(original_text, duplicate_text)
                result_text += f"**Original text:**\n{original_text}\n\n"
                result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
                result_text += f"**Differences:**\n{differences}\n"
                result_text += "-" * 50 + "\n\n"
            
            return result_text
                
        elif deduplication_type == "Cross-dataset":
            # Dataset 1
            if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
                ds1 = ds_default1
            else:
                ds1 = load_dataset(dataset1_name, split=dataset1_split)
            
            # Dataset 2
            if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
                ds2 = ds_default2
            else:
                ds2 = load_dataset(dataset2_name, split=dataset2_split)
            
            # Extract texts
            texts1 = [example[dataset1_text_column] for example in ds1]
            texts2 = [example[dataset2_text_column] for example in ds2]
            
            # Compute embeddings
            embedding_matrix1 = model.encode(texts1, show_progressbar=False)  # Disable internal progress bar
            embedding_matrix2 = model.encode(texts2, show_progressbar=False)  # Disable internal progress bar
            
            # Show progress bar for embedding computation
            embedding_matrix1 = progress.tqdm(embedding_matrix1, desc="Computing embeddings for Dataset 1")
            embedding_matrix2 = progress.tqdm(embedding_matrix2, desc="Computing embeddings for Dataset 2")
            
            # Deduplicate across datasets
            duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
            
            num_duplicates = len(duplicate_indices_in_ds2)
            num_total_ds2 = len(texts2)
            num_unique_ds2 = num_total_ds2 - num_duplicates
            
            result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
            result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
            result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
            
            # Show deduplicated examples
            result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
            num_examples = min(5, num_duplicates)
            for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
                original_idx = duplicate_to_original_mapping[duplicate_idx]
                original_text = texts1[original_idx]
                duplicate_text = texts2[duplicate_idx]
                differences = display_word_differences(original_text, duplicate_text)
                result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
                result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
                result_text += f"**Differences:**\n{differences}\n"
                result_text += "-" * 50 + "\n\n"
            
            return result_text

    finally:
        # Restore original tqdm
        tqdm.tqdm = original_tqdm
        sys.modules['tqdm'].tqdm = original_tqdm
        sys.modules['tqdm.auto'].tqdm = original_tqdm

with gr.Blocks() as demo:
    gr.Markdown("# Semantic Deduplication")
    
    deduplication_type = gr.Radio(
        choices=["Single dataset", "Cross-dataset"],
        label="Deduplication Type",
        value="Single dataset"
    )
    
    with gr.Row():
        dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
        dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
        dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
    
    dataset2_inputs = gr.Column(visible=False)
    with dataset2_inputs:
        gr.Markdown("### Dataset 2")
        with gr.Row():
            dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
            dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
            dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
    
    threshold = gr.Slider(
        minimum=0.0,
        maximum=1.0,
        value=0.8,
        label="Similarity Threshold"
    )
    
    compute_button = gr.Button("Compute")
    
    output = gr.Markdown()
    
    # Function to update the visibility of dataset2_inputs
    def update_visibility(deduplication_type_value):
        if deduplication_type_value == "Cross-dataset":
            return gr.update(visible=True)
        else:
            return gr.update(visible=False)
    
    deduplication_type.change(
        update_visibility,
        inputs=deduplication_type,
        outputs=dataset2_inputs
    )
    
    compute_button.click(
        fn=perform_deduplication,
        inputs=[
            deduplication_type, 
            dataset1_name, 
            dataset1_split, 
            dataset1_text_column,
            dataset2_name, 
            dataset2_split, 
            dataset2_text_column,
            threshold
        ],
        outputs=output
    )
    
demo.launch()


# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# from model2vec import StaticModel
# from reach import Reach
# from difflib import ndiff

# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[np.ndarray, dict[int, int]]:
#     """
#     Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
#     """
#     reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])

#     # Use a set for deduplicated indices and keep track of duplicates
#     deduplicated_indices = set(range(len(embedding_matrix)))  # Start with all indices as deduplicated
#     duplicate_to_original_mapping = {}

#     results = reach.nearest_neighbor_threshold(
#         embedding_matrix, 
#         threshold=threshold, 
#         batch_size=batch_size, 
#         show_progressbar=True
#     )

#     # Process duplicates
#     for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
#         if i not in deduplicated_indices:
#             continue  # Skip already marked duplicates

#         # Similar items are returned as (index, score), we are only interested in the index
#         similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]

#         # Mark similar documents as duplicates and map them to the original
#         for sim_idx in similar_indices:
#             if sim_idx in deduplicated_indices:
#                 deduplicated_indices.remove(sim_idx)
#                 duplicate_to_original_mapping[sim_idx] = i  # Map duplicate to original

#     return np.array(list(deduplicated_indices)), duplicate_to_original_mapping

# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[list[int], dict[int, int]]:
#     """
#     Deduplicate embeddings across two datasets and return the indices of duplicates between them.
#     """
#     reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])

#     # Keep track of duplicates in the second dataset
#     duplicate_indices_in_test = []
#     duplicate_to_original_mapping = {}

#     # Find nearest neighbors from the test set in the train set
#     results = reach.nearest_neighbor_threshold(
#         embedding_matrix_2, 
#         threshold=threshold, 
#         batch_size=batch_size, 
#         show_progressbar=True
#     )

#     # Process duplicates
#     for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
#         # Similar items are returned as (index, score), we are only interested in the index
#         similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]  # Keep those above the threshold

#         # If we find a similar item in the train set, mark it as a duplicate
#         if similar_indices:
#             duplicate_indices_in_test.append(i)
#             duplicate_to_original_mapping[i] = similar_indices[0]  # Map duplicate in test to original in train

#     return duplicate_indices_in_test, duplicate_to_original_mapping

# def display_word_differences(x: str, y: str) -> str:
#     diff = ndiff(x.split(), y.split())
#     return " ".join([word for word in diff if word.startswith(('+', '-'))])

# def perform_deduplication(
#     deduplication_type,
#     dataset1_name,
#     dataset1_split,
#     dataset1_text_column,
#     dataset2_name="",
#     dataset2_split="",
#     dataset2_text_column="",
#     threshold=0.8,
#     progress=gr.Progress(track_tqdm=True)
# ):
#     # Convert threshold to float
#     threshold = float(threshold)
    
#     if deduplication_type == "Single dataset":
#         # Load the dataset
#         ds = load_dataset(dataset1_name, split=dataset1_split)
        
#         # Extract texts
#         texts = [example[dataset1_text_column] for example in ds]
        
#         # Compute embeddings
#         model = StaticModel.from_pretrained("minishlab/M2V_base_output")
#         embedding_matrix = model.encode(texts, show_progressbar=True)
        
#         # Deduplicate
#         deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
        
#         # Prepare the results
#         num_duplicates = len(duplicate_to_original_mapping)
#         num_total = len(texts)
#         num_deduplicated = len(deduplicated_indices)
        
#         result_text = f"**Total documents:** {num_total}\n"
#         result_text += f"**Number of duplicates found:** {num_duplicates}\n"
#         result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
        
#         # Show deduplicated examples
#         result_text += "**Examples of duplicates found:**\n\n"
#         num_examples = min(5, num_duplicates)
#         for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
#             original_text = texts[original_idx]
#             duplicate_text = texts[duplicate_idx]
#             differences = display_word_differences(original_text, duplicate_text)
#             result_text += f"**Original text:**\n{original_text}\n\n"
#             result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
#             result_text += f"**Differences:**\n{differences}\n"
#             result_text += "-" * 50 + "\n\n"
        
#         return result_text
        
#     elif deduplication_type == "Cross-dataset":
#         # Load datasets
#         ds1 = load_dataset(dataset1_name, split=dataset1_split)
#         ds2 = load_dataset(dataset2_name, split=dataset2_split)
        
#         # Extract texts
#         texts1 = [example[dataset1_text_column] for example in ds1]
#         texts2 = [example[dataset2_text_column] for example in ds2]
        
#         # Compute embeddings
#         model = StaticModel.from_pretrained("minishlab/M2V_base_output")
#         embedding_matrix1 = model.encode(texts1, show_progressbar=True)
#         embedding_matrix2 = model.encode(texts2, show_progressbar=True)
        
#         # Deduplicate across datasets
#         duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
        
#         num_duplicates = len(duplicate_indices_in_ds2)
#         num_total_ds2 = len(texts2)
#         num_unique_ds2 = num_total_ds2 - num_duplicates
        
#         result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
#         result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
#         result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
        
#         # Show deduplicated examples
#         result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
#         num_examples = min(5, num_duplicates)
#         for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
#             original_idx = duplicate_to_original_mapping[duplicate_idx]
#             original_text = texts1[original_idx]
#             duplicate_text = texts2[duplicate_idx]
#             differences = display_word_differences(original_text, duplicate_text)
#             result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
#             result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
#             result_text += f"**Differences:**\n{differences}\n"
#             result_text += "-" * 50 + "\n\n"
        
#         return result_text

# with gr.Blocks() as demo:
#     gr.Markdown("# Semantic Deduplication")
    
#     deduplication_type = gr.Radio(
#         choices=["Single dataset", "Cross-dataset"],
#         label="Deduplication Type",
#         value="Single dataset"
#     )
    
#     with gr.Row():
#         dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
#         dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
#         dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
    
#     dataset2_inputs = gr.Column(visible=False)
#     with dataset2_inputs:
#         gr.Markdown("### Dataset 2")
#         with gr.Row():
#             dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
#             dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
#             dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
    
#     threshold = gr.Slider(
#         minimum=0.0,
#         maximum=1.0,
#         value=0.8,
#         label="Similarity Threshold"
#     )
    
#     compute_button = gr.Button("Compute")
    
#     output = gr.Markdown()
    
#     # Function to update the visibility of dataset2_inputs
#     def update_visibility(deduplication_type_value):
#         if deduplication_type_value == "Cross-dataset":
#             return gr.update(visible=True)
#         else:
#             return gr.update(visible=False)
    
#     deduplication_type.change(
#         update_visibility,
#         inputs=deduplication_type,
#         outputs=dataset2_inputs
#     )
    
#     compute_button.click(
#         fn=perform_deduplication,
#         inputs=[
#             deduplication_type, 
#             dataset1_name, 
#             dataset1_split, 
#             dataset1_text_column,
#             dataset2_name, 
#             dataset2_split, 
#             dataset2_text_column,
#             threshold
#         ],
#         outputs=output
#     )
    
# demo.launch()