File size: 15,373 Bytes
25d2eb7
2827b8a
 
 
38ed48e
2827b8a
7a1cd7a
2827b8a
f5eb405
 
 
e49e0e9
3b4c438
f5eb405
3b4c438
 
 
 
f5eb405
3b4c438
f5eb405
 
 
75ff340
 
1d331c4
75ff340
38ed48e
1d331c4
 
 
 
 
 
 
38ed48e
 
1d331c4
 
82a1d00
75ff340
 
1d331c4
 
75ff340
38ed48e
 
82a1d00
75ff340
1d331c4
 
 
 
 
 
 
 
 
 
 
 
 
 
75ff340
6b0e834
 
 
 
 
58d8f1a
d90d4c0
 
 
 
 
 
 
58d8f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1cd7a
 
58d8f1a
7a1cd7a
4f0286f
2827b8a
 
 
7a1cd7a
7ed3881
 
 
3b4c438
58d8f1a
2827b8a
f5eb405
 
 
3bd0812
9f13004
 
 
f5eb405
3b4c438
9f13004
 
58d8f1a
 
 
 
f5eb405
 
 
3bd0812
4b1ac5a
9f13004
 
4b1ac5a
3bd0812
38ed48e
 
 
4b1ac5a
9f13004
82a1d00
 
9f13004
82a1d00
 
1d331c4
 
 
 
 
 
 
3bd0812
f5eb405
9f13004
 
4f0286f
6b0e834
3b4c438
3bd0812
5422464
 
 
 
3bd0812
5422464
 
58d8f1a
 
 
3bd0812
5422464
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd0812
9f13004
 
 
3bd0812
f5eb405
4f0286f
e49e0e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5eb405
6b0e834
 
 
3b4c438
e49e0e9
 
 
 
 
 
 
 
 
 
 
 
50c3ede
e49e0e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d90d4c0
 
e49e0e9
4f0286f
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
d90d4c0
 
4f0286f
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
58d8f1a
4f0286f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
import model2vec
from reach import Reach
from difflib import ndiff

# Load the model at startup
model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# Default dataset parameters
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9

# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)


# Patch tqdm to use Gradio's progress bar
from tqdm import tqdm as original_tqdm

# Patch tqdm to use Gradio's progress bar
# Patch tqdm to use Gradio's progress bar
def patch_tqdm_for_gradio(progress):
    class GradioTqdm(original_tqdm):
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            self.progress = progress
            self.total_batches = kwargs.get('total', len(args[0])) if len(args) > 0 else 1
            self.update_interval = max(1, self.total_batches // 100)  # Update every 1%

        def update(self, n=1):
            super().update(n)
            # Update Gradio progress bar every update_interval steps
            if self.n % self.update_interval == 0 or self.n == self.total_batches:
                self.progress(self.n / self.total_batches)

    return GradioTqdm

def patch_model2vec_tqdm(progress):
    patched_tqdm = patch_tqdm_for_gradio(progress)
    model2vec.tqdm = patched_tqdm  # Replace tqdm in model2vec

# Function to patch the original encode function with our Gradio tqdm
def original_encode_with_tqdm(original_encode_func, patched_tqdm):
    def new_encode(*args, **kwargs):
        original_tqdm_backup = original_tqdm
        try:
            # Patch the `tqdm` within encode
            globals()['tqdm'] = patched_tqdm
            return original_encode_func(*args, **kwargs)
        finally:
            # Restore original tqdm after calling encode
            globals()['tqdm'] = original_tqdm_backup

    return new_encode


def batch_iterable(iterable, batch_size):
    """Helper function to create batches from an iterable."""
    for i in range(0, len(iterable), batch_size):
        yield iterable[i:i + batch_size]

def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
    embeddings = []
    total_batches = (len(texts) + batch_size - 1) // batch_size
    for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
        batch_embeddings = model.encode(batch_texts, show_progressbar=False)
        embeddings.append(batch_embeddings)
        progress((i + 1) / total_batches, desc=desc)
    return np.concatenate(embeddings, axis=0)

def deduplicate(
    embedding_matrix: np.ndarray,
    threshold: float,
    batch_size: int = 1024,
    progress=None
) -> tuple[np.ndarray, dict[int, int]]:
    # Building the index
    progress(0, desc="Building search index...")
    reach = Reach(
        vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
    )

    deduplicated_indices = set(range(len(embedding_matrix)))
    duplicate_to_original_mapping = {}

    # Finding nearest neighbors
    progress(0, desc="Finding nearest neighbors...")
    results = reach.nearest_neighbor_threshold(
        embedding_matrix,
        threshold=threshold,
        batch_size=batch_size,
        show_progressbar=False,  # Disable internal progress bar
    )

    # Processing duplicates with a progress bar
    total_items = len(embedding_matrix)
    for i, similar_items in enumerate(
        progress.tqdm(results, desc="Processing duplicates", total=total_items)
    ):
        if i not in deduplicated_indices:
            continue

        similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]

        for sim_idx in similar_indices:
            if sim_idx in deduplicated_indices:
                deduplicated_indices.remove(sim_idx)
                duplicate_to_original_mapping[sim_idx] = i

    return np.array(list(deduplicated_indices)), duplicate_to_original_mapping

def display_word_differences(x: str, y: str) -> str:
    diff = ndiff(x.split(), y.split())
    return " ".join([word for word in diff if word.startswith(("+", "-"))])

def perform_deduplication(
    deduplication_type,
    dataset1_name,
    dataset1_split,
    dataset1_text_column,
    dataset2_name="",
    dataset2_split="",
    dataset2_text_column="",
    threshold=default_threshold,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        # Convert threshold to float
        threshold = float(threshold)

        # Initialize status message
        status = ""

        if deduplication_type == "Single dataset":
            # Load Dataset 1
            status = "Loading Dataset 1..."
            yield status, ""
            if (
                dataset1_name == default_dataset1_name
                and dataset1_split == default_dataset1_split
            ):
                ds = ds_default1
            else:
                ds = load_dataset(dataset1_name, split=dataset1_split)

            # Extract texts
            status = "Extracting texts from Dataset 1..."
            yield status, ""
            texts = [example[dataset1_text_column] for example in ds]

            #patched_tqdm = patch_tqdm_for_gradio(progress)
            patch_model2vec_tqdm(progress)
            #model.encode = original_encode_with_tqdm(model.encode, patched_tqdm)
            # Compute embeddings
            status = "Computing embeddings for Dataset 1..."
            
            # Remove?
            yield status, ""
            
            
            embedding_matrix = model.encode(texts, show_progressbar=True)
            # embedding_matrix = compute_embeddings(
            #     texts,
            #     batch_size=64,
            #     progress=progress,
            #     desc="Computing embeddings for Dataset 1",
            # )

            # Deduplicate
            status = "Deduplicating embeddings..."
            yield status, ""
            deduplicated_indices, duplicate_to_original_mapping = deduplicate(
                embedding_matrix, threshold, progress=progress
            )

            # Prepare the results
            num_duplicates = len(duplicate_to_original_mapping)
            num_total = len(texts)
            num_deduplicated = len(deduplicated_indices)

            result_text = f"**Total documents:** {num_total}\n"
            result_text += f"**Number of duplicates found:** {num_duplicates}\n"
            result_text += (
                f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
            )

            # Show deduplicated examples
            if num_duplicates > 0:
                result_text += "**Examples of duplicates found:**\n\n"
                num_examples = min(5, num_duplicates)
                for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
                    original_text = texts[original_idx]
                    duplicate_text = texts[duplicate_idx]
                    differences = display_word_differences(original_text, duplicate_text)
                    result_text += f"**Original text:**\n{original_text}\n\n"
                    result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
                    result_text += f"**Differences:**\n{differences}\n"
                    result_text += "-" * 50 + "\n\n"
            else:
                result_text += "No duplicates found."

            # Final status
            status = "Deduplication completed."
            yield status, result_text

        elif deduplication_type == "Cross-dataset":
            # Similar code for cross-dataset deduplication
            # Load Dataset 1
            status = "Loading Dataset 1..."
            yield status, ""
            if (
                dataset1_name == default_dataset1_name
                and dataset1_split == default_dataset1_split
            ):
                ds1 = ds_default1
            else:
                ds1 = load_dataset(dataset1_name, split=dataset1_split)

            # Load Dataset 2
            status = "Loading Dataset 2..."
            yield status, ""
            if (
                dataset2_name == default_dataset2_name
                and dataset2_split == default_dataset2_split
            ):
                ds2 = ds_default2
            else:
                ds2 = load_dataset(dataset2_name, split=dataset2_split)

            # Extract texts from Dataset 1
            status = "Extracting texts from Dataset 1..."
            yield status, ""
            texts1 = [example[dataset1_text_column] for example in ds1]

            # Extract texts from Dataset 2
            status = "Extracting texts from Dataset 2..."
            yield status, ""
            texts2 = [example[dataset2_text_column] for example in ds2]

            # Compute embeddings for Dataset 1
            status = "Computing embeddings for Dataset 1..."
            yield status, ""
            embedding_matrix1 = compute_embeddings(
                texts1,
                batch_size=64,
                progress=progress,
                desc="Computing embeddings for Dataset 1",
            )

            # Compute embeddings for Dataset 2
            status = "Computing embeddings for Dataset 2..."
            yield status, ""
            embedding_matrix2 = compute_embeddings(
                texts2,
                batch_size=64,
                progress=progress,
                desc="Computing embeddings for Dataset 2",
            )

            # Deduplicate across datasets
            status = "Deduplicating embeddings across datasets..."
            yield status, ""
            duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
                embedding_matrix1, embedding_matrix2, threshold, progress=progress
            )

            num_duplicates = len(duplicate_indices_in_ds2)
            num_total_ds2 = len(texts2)
            num_unique_ds2 = num_total_ds2 - num_duplicates

            result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
            result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
            result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"

            # Show deduplicated examples
            if num_duplicates > 0:
                result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
                num_examples = min(5, num_duplicates)
                for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
                    original_idx = duplicate_to_original_mapping[duplicate_idx]
                    original_text = texts1[original_idx]
                    duplicate_text = texts2[duplicate_idx]
                    differences = display_word_differences(original_text, duplicate_text)
                    result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
                    result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
                    result_text += f"**Differences:**\n{differences}\n"
                    result_text += "-" * 50 + "\n\n"
            else:
                result_text += "No duplicates found."

            # Final status
            status = "Deduplication completed."
            yield status, result_text

    except Exception as e:
        yield f"An error occurred: {e}", ""
        raise e

def deduplicate_across_datasets(
    embedding_matrix_1: np.ndarray,
    embedding_matrix_2: np.ndarray,
    threshold: float,
    batch_size: int = 1024,
    progress=None
) -> tuple[list[int], dict[int, int]]:
    # Building the index from Dataset 1
    progress(0, desc="Building search index from Dataset 1...")
    reach = Reach(
        vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
    )

    duplicate_indices_in_test = []
    duplicate_to_original_mapping = {}

    # Finding nearest neighbors between datasets
    progress(0, desc="Finding nearest neighbors between datasets...")
    results = reach.nearest_neighbor_threshold(
        embedding_matrix_2,
        threshold=threshold,
        batch_size=batch_size,
        show_progressbar=False,  # Disable internal progress bar
    )

    total_items = len(embedding_matrix_2)
    # Processing duplicates with a progress bar
    for i, similar_items in enumerate(
        progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
    ):
        similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]

        if similar_indices:
            duplicate_indices_in_test.append(i)
            duplicate_to_original_mapping[i] = similar_indices[0]

    return duplicate_indices_in_test, duplicate_to_original_mapping

# Adjust the height of the status_output component using custom CSS
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
    gr.Markdown("# Semantic Deduplication")

    deduplication_type = gr.Radio(
        choices=["Single dataset", "Cross-dataset"],
        label="Deduplication Type",
        value="Single dataset",
    )

    with gr.Row():
        dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
        dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
        dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    dataset2_inputs = gr.Column(visible=False)
    with dataset2_inputs:
        gr.Markdown("### Dataset 2")
        with gr.Row():
            dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
            dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
            dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    threshold = gr.Slider(
        minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
    )

    compute_button = gr.Button("Compute")

    # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
    status_output = gr.Markdown(elem_id="status_output")
    result_output = gr.Markdown()

    # Function to update the visibility of dataset2_inputs
    def update_visibility(deduplication_type_value):
        if deduplication_type_value == "Cross-dataset":
            return gr.update(visible=True)
        else:
            return gr.update(visible=False)

    deduplication_type.change(
        update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
    )

    compute_button.click(
        fn=perform_deduplication,
        inputs=[
            deduplication_type,
            dataset1_name,
            dataset1_split,
            dataset1_text_column,
            dataset2_name,
            dataset2_split,
            dataset2_text_column,
            threshold,
        ],
        outputs=[status_output, result_output],
    )

demo.launch()