File size: 15,373 Bytes
25d2eb7 2827b8a 38ed48e 2827b8a 7a1cd7a 2827b8a f5eb405 e49e0e9 3b4c438 f5eb405 3b4c438 f5eb405 3b4c438 f5eb405 75ff340 1d331c4 75ff340 38ed48e 1d331c4 38ed48e 1d331c4 82a1d00 75ff340 1d331c4 75ff340 38ed48e 82a1d00 75ff340 1d331c4 75ff340 6b0e834 58d8f1a d90d4c0 58d8f1a 7a1cd7a 58d8f1a 7a1cd7a 4f0286f 2827b8a 7a1cd7a 7ed3881 3b4c438 58d8f1a 2827b8a f5eb405 3bd0812 9f13004 f5eb405 3b4c438 9f13004 58d8f1a f5eb405 3bd0812 4b1ac5a 9f13004 4b1ac5a 3bd0812 38ed48e 4b1ac5a 9f13004 82a1d00 9f13004 82a1d00 1d331c4 3bd0812 f5eb405 9f13004 4f0286f 6b0e834 3b4c438 3bd0812 5422464 3bd0812 5422464 58d8f1a 3bd0812 5422464 3bd0812 9f13004 3bd0812 f5eb405 4f0286f e49e0e9 f5eb405 6b0e834 3b4c438 e49e0e9 50c3ede e49e0e9 d90d4c0 e49e0e9 4f0286f 58d8f1a 4f0286f 58d8f1a 4f0286f d90d4c0 4f0286f 58d8f1a 4f0286f 58d8f1a 4f0286f 58d8f1a 4f0286f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
import model2vec
from reach import Reach
from difflib import ndiff
# Load the model at startup
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# Default dataset parameters
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9
# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# Patch tqdm to use Gradio's progress bar
from tqdm import tqdm as original_tqdm
# Patch tqdm to use Gradio's progress bar
# Patch tqdm to use Gradio's progress bar
def patch_tqdm_for_gradio(progress):
class GradioTqdm(original_tqdm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.progress = progress
self.total_batches = kwargs.get('total', len(args[0])) if len(args) > 0 else 1
self.update_interval = max(1, self.total_batches // 100) # Update every 1%
def update(self, n=1):
super().update(n)
# Update Gradio progress bar every update_interval steps
if self.n % self.update_interval == 0 or self.n == self.total_batches:
self.progress(self.n / self.total_batches)
return GradioTqdm
def patch_model2vec_tqdm(progress):
patched_tqdm = patch_tqdm_for_gradio(progress)
model2vec.tqdm = patched_tqdm # Replace tqdm in model2vec
# Function to patch the original encode function with our Gradio tqdm
def original_encode_with_tqdm(original_encode_func, patched_tqdm):
def new_encode(*args, **kwargs):
original_tqdm_backup = original_tqdm
try:
# Patch the `tqdm` within encode
globals()['tqdm'] = patched_tqdm
return original_encode_func(*args, **kwargs)
finally:
# Restore original tqdm after calling encode
globals()['tqdm'] = original_tqdm_backup
return new_encode
def batch_iterable(iterable, batch_size):
"""Helper function to create batches from an iterable."""
for i in range(0, len(iterable), batch_size):
yield iterable[i:i + batch_size]
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
embeddings = []
total_batches = (len(texts) + batch_size - 1) // batch_size
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
embeddings.append(batch_embeddings)
progress((i + 1) / total_batches, desc=desc)
return np.concatenate(embeddings, axis=0)
def deduplicate(
embedding_matrix: np.ndarray,
threshold: float,
batch_size: int = 1024,
progress=None
) -> tuple[np.ndarray, dict[int, int]]:
# Building the index
progress(0, desc="Building search index...")
reach = Reach(
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
)
deduplicated_indices = set(range(len(embedding_matrix)))
duplicate_to_original_mapping = {}
# Finding nearest neighbors
progress(0, desc="Finding nearest neighbors...")
results = reach.nearest_neighbor_threshold(
embedding_matrix,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False, # Disable internal progress bar
)
# Processing duplicates with a progress bar
total_items = len(embedding_matrix)
for i, similar_items in enumerate(
progress.tqdm(results, desc="Processing duplicates", total=total_items)
):
if i not in deduplicated_indices:
continue
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
for sim_idx in similar_indices:
if sim_idx in deduplicated_indices:
deduplicated_indices.remove(sim_idx)
duplicate_to_original_mapping[sim_idx] = i
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
def display_word_differences(x: str, y: str) -> str:
diff = ndiff(x.split(), y.split())
return " ".join([word for word in diff if word.startswith(("+", "-"))])
def perform_deduplication(
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name="",
dataset2_split="",
dataset2_text_column="",
threshold=default_threshold,
progress=gr.Progress(track_tqdm=True),
):
try:
# Convert threshold to float
threshold = float(threshold)
# Initialize status message
status = ""
if deduplication_type == "Single dataset":
# Load Dataset 1
status = "Loading Dataset 1..."
yield status, ""
if (
dataset1_name == default_dataset1_name
and dataset1_split == default_dataset1_split
):
ds = ds_default1
else:
ds = load_dataset(dataset1_name, split=dataset1_split)
# Extract texts
status = "Extracting texts from Dataset 1..."
yield status, ""
texts = [example[dataset1_text_column] for example in ds]
#patched_tqdm = patch_tqdm_for_gradio(progress)
patch_model2vec_tqdm(progress)
#model.encode = original_encode_with_tqdm(model.encode, patched_tqdm)
# Compute embeddings
status = "Computing embeddings for Dataset 1..."
# Remove?
yield status, ""
embedding_matrix = model.encode(texts, show_progressbar=True)
# embedding_matrix = compute_embeddings(
# texts,
# batch_size=64,
# progress=progress,
# desc="Computing embeddings for Dataset 1",
# )
# Deduplicate
status = "Deduplicating embeddings..."
yield status, ""
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
embedding_matrix, threshold, progress=progress
)
# Prepare the results
num_duplicates = len(duplicate_to_original_mapping)
num_total = len(texts)
num_deduplicated = len(deduplicated_indices)
result_text = f"**Total documents:** {num_total}\n"
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
result_text += (
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
)
# Show deduplicated examples
if num_duplicates > 0:
result_text += "**Examples of duplicates found:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
original_text = texts[original_idx]
duplicate_text = texts[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text:**\n{original_text}\n\n"
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
# Final status
status = "Deduplication completed."
yield status, result_text
elif deduplication_type == "Cross-dataset":
# Similar code for cross-dataset deduplication
# Load Dataset 1
status = "Loading Dataset 1..."
yield status, ""
if (
dataset1_name == default_dataset1_name
and dataset1_split == default_dataset1_split
):
ds1 = ds_default1
else:
ds1 = load_dataset(dataset1_name, split=dataset1_split)
# Load Dataset 2
status = "Loading Dataset 2..."
yield status, ""
if (
dataset2_name == default_dataset2_name
and dataset2_split == default_dataset2_split
):
ds2 = ds_default2
else:
ds2 = load_dataset(dataset2_name, split=dataset2_split)
# Extract texts from Dataset 1
status = "Extracting texts from Dataset 1..."
yield status, ""
texts1 = [example[dataset1_text_column] for example in ds1]
# Extract texts from Dataset 2
status = "Extracting texts from Dataset 2..."
yield status, ""
texts2 = [example[dataset2_text_column] for example in ds2]
# Compute embeddings for Dataset 1
status = "Computing embeddings for Dataset 1..."
yield status, ""
embedding_matrix1 = compute_embeddings(
texts1,
batch_size=64,
progress=progress,
desc="Computing embeddings for Dataset 1",
)
# Compute embeddings for Dataset 2
status = "Computing embeddings for Dataset 2..."
yield status, ""
embedding_matrix2 = compute_embeddings(
texts2,
batch_size=64,
progress=progress,
desc="Computing embeddings for Dataset 2",
)
# Deduplicate across datasets
status = "Deduplicating embeddings across datasets..."
yield status, ""
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
embedding_matrix1, embedding_matrix2, threshold, progress=progress
)
num_duplicates = len(duplicate_indices_in_ds2)
num_total_ds2 = len(texts2)
num_unique_ds2 = num_total_ds2 - num_duplicates
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# Show deduplicated examples
if num_duplicates > 0:
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
original_idx = duplicate_to_original_mapping[duplicate_idx]
original_text = texts1[original_idx]
duplicate_text = texts2[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
# Final status
status = "Deduplication completed."
yield status, result_text
except Exception as e:
yield f"An error occurred: {e}", ""
raise e
def deduplicate_across_datasets(
embedding_matrix_1: np.ndarray,
embedding_matrix_2: np.ndarray,
threshold: float,
batch_size: int = 1024,
progress=None
) -> tuple[list[int], dict[int, int]]:
# Building the index from Dataset 1
progress(0, desc="Building search index from Dataset 1...")
reach = Reach(
vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
)
duplicate_indices_in_test = []
duplicate_to_original_mapping = {}
# Finding nearest neighbors between datasets
progress(0, desc="Finding nearest neighbors between datasets...")
results = reach.nearest_neighbor_threshold(
embedding_matrix_2,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False, # Disable internal progress bar
)
total_items = len(embedding_matrix_2)
# Processing duplicates with a progress bar
for i, similar_items in enumerate(
progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
):
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
if similar_indices:
duplicate_indices_in_test.append(i)
duplicate_to_original_mapping[i] = similar_indices[0]
return duplicate_indices_in_test, duplicate_to_original_mapping
# Adjust the height of the status_output component using custom CSS
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
gr.Markdown("# Semantic Deduplication")
deduplication_type = gr.Radio(
choices=["Single dataset", "Cross-dataset"],
label="Deduplication Type",
value="Single dataset",
)
with gr.Row():
dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
dataset2_inputs = gr.Column(visible=False)
with dataset2_inputs:
gr.Markdown("### Dataset 2")
with gr.Row():
dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
)
compute_button = gr.Button("Compute")
# Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
status_output = gr.Markdown(elem_id="status_output")
result_output = gr.Markdown()
# Function to update the visibility of dataset2_inputs
def update_visibility(deduplication_type_value):
if deduplication_type_value == "Cross-dataset":
return gr.update(visible=True)
else:
return gr.update(visible=False)
deduplication_type.change(
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
)
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold,
],
outputs=[status_output, result_output],
)
demo.launch()
|