Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#52
by
davidberenstein1957
HF staff
- opened
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import random
|
4 |
import spaces
|
5 |
import torch
|
|
|
6 |
from diffusers import DiffusionPipeline
|
7 |
|
8 |
dtype = torch.bfloat16
|
@@ -19,104 +21,53 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
19 |
seed = random.randint(0, MAX_SEED)
|
20 |
generator = torch.Generator().manual_seed(seed)
|
21 |
image = pipe(
|
22 |
-
prompt
|
23 |
-
width
|
24 |
-
height
|
25 |
-
num_inference_steps
|
26 |
-
generator
|
27 |
guidance_scale=0.0
|
28 |
-
).images[0]
|
29 |
-
return image
|
30 |
-
|
31 |
examples = [
|
32 |
-
"a tiny astronaut hatching from an egg on the moon",
|
33 |
-
"a cat holding a sign that says hello world",
|
34 |
-
"an anime illustration of a wiener schnitzel",
|
35 |
]
|
36 |
|
37 |
-
css="""
|
38 |
#col-container {
|
39 |
margin: 0 auto;
|
40 |
max-width: 520px;
|
41 |
}
|
42 |
"""
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
with gr.Column(elem_id="col-container"):
|
47 |
-
gr.Markdown(f"""# FLUX.1 [schnell]
|
48 |
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
49 |
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
50 |
-
|
51 |
-
|
52 |
-
with gr.Row():
|
53 |
-
|
54 |
-
prompt = gr.Text(
|
55 |
-
label="Prompt",
|
56 |
-
show_label=False,
|
57 |
-
max_lines=1,
|
58 |
-
placeholder="Enter your prompt",
|
59 |
-
container=False,
|
60 |
-
)
|
61 |
-
|
62 |
-
run_button = gr.Button("Run", scale=0)
|
63 |
-
|
64 |
-
result = gr.Image(label="Result", show_label=False)
|
65 |
-
|
66 |
-
with gr.Accordion("Advanced Settings", open=False):
|
67 |
-
|
68 |
-
seed = gr.Slider(
|
69 |
-
label="Seed",
|
70 |
-
minimum=0,
|
71 |
-
maximum=MAX_SEED,
|
72 |
-
step=1,
|
73 |
-
value=0,
|
74 |
-
)
|
75 |
-
|
76 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
77 |
-
|
78 |
-
with gr.Row():
|
79 |
-
|
80 |
-
width = gr.Slider(
|
81 |
-
label="Width",
|
82 |
-
minimum=256,
|
83 |
-
maximum=MAX_IMAGE_SIZE,
|
84 |
-
step=32,
|
85 |
-
value=1024,
|
86 |
-
)
|
87 |
-
|
88 |
-
height = gr.Slider(
|
89 |
-
label="Height",
|
90 |
-
minimum=256,
|
91 |
-
maximum=MAX_IMAGE_SIZE,
|
92 |
-
step=32,
|
93 |
-
value=1024,
|
94 |
-
)
|
95 |
-
|
96 |
-
with gr.Row():
|
97 |
-
|
98 |
-
|
99 |
-
num_inference_steps = gr.Slider(
|
100 |
-
label="Number of inference steps",
|
101 |
-
minimum=1,
|
102 |
-
maximum=50,
|
103 |
-
step=1,
|
104 |
-
value=4,
|
105 |
-
)
|
106 |
-
|
107 |
-
gr.Examples(
|
108 |
-
examples = examples,
|
109 |
-
fn = infer,
|
110 |
-
inputs = [prompt],
|
111 |
-
outputs = [result, seed],
|
112 |
-
cache_examples="lazy"
|
113 |
-
)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
5 |
import spaces
|
6 |
import torch
|
7 |
+
from dataset_viber import CollectorInterface
|
8 |
from diffusers import DiffusionPipeline
|
9 |
|
10 |
dtype = torch.bfloat16
|
|
|
21 |
seed = random.randint(0, MAX_SEED)
|
22 |
generator = torch.Generator().manual_seed(seed)
|
23 |
image = pipe(
|
24 |
+
prompt=prompt,
|
25 |
+
width=width,
|
26 |
+
height=height,
|
27 |
+
num_inference_steps=num_inference_steps,
|
28 |
+
generator=generator,
|
29 |
guidance_scale=0.0
|
30 |
+
).images[0]
|
31 |
+
return image
|
32 |
+
|
33 |
examples = [
|
34 |
+
["a tiny astronaut hatching from an egg on the moon", 0, True, 1024, 1024, 4],
|
35 |
+
["a cat holding a sign that says hello world", 0, True, 1024, 1024, 4],
|
36 |
+
["an anime illustration of a wiener schnitzel", 0, True, 1024, 1024, 4],
|
37 |
]
|
38 |
|
39 |
+
css = """
|
40 |
#col-container {
|
41 |
margin: 0 auto;
|
42 |
max-width: 520px;
|
43 |
}
|
44 |
"""
|
45 |
|
46 |
+
description = """# FLUX.1 [schnell]
|
|
|
|
|
|
|
47 |
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
48 |
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
49 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
interface = CollectorInterface(
|
52 |
+
fn=infer,
|
53 |
+
inputs=[
|
54 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt")
|
55 |
+
],
|
56 |
+
outputs=[
|
57 |
+
gr.Image(label="Result"),
|
58 |
+
],
|
59 |
+
additional_inputs=[
|
60 |
+
gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0),
|
61 |
+
gr.Checkbox(label="Randomize seed", value=True),
|
62 |
+
gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024),
|
63 |
+
gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024),
|
64 |
+
gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4),
|
65 |
+
],
|
66 |
+
title="FLUX.1 [schnell] - with Dataset Viber data collection",
|
67 |
+
description=description,
|
68 |
+
examples=examples,
|
69 |
+
css=css,
|
70 |
+
dataset_name="image-generation-flux1-schnell"
|
71 |
+
)
|
72 |
|
73 |
+
interface.launch()
|