|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-patch16-224-Trial007-YEL_STEM3 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-Trial007-YEL_STEM3 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0840 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 60 |
|
- eval_batch_size: 60 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 240 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.7133 | 0.89 | 2 | 0.6860 | 0.5926 | |
|
| 0.6666 | 1.78 | 4 | 0.6151 | 0.7037 | |
|
| 0.524 | 2.67 | 6 | 0.4915 | 0.8704 | |
|
| 0.3759 | 4.0 | 9 | 0.3304 | 0.9074 | |
|
| 0.3218 | 4.89 | 11 | 0.2177 | 0.9259 | |
|
| 0.2764 | 5.78 | 13 | 0.1735 | 0.9630 | |
|
| 0.2558 | 6.67 | 15 | 0.0840 | 1.0 | |
|
| 0.7446 | 8.0 | 18 | 0.1256 | 0.9815 | |
|
| 0.1251 | 8.89 | 20 | 0.0527 | 1.0 | |
|
| 0.1491 | 9.78 | 22 | 0.0366 | 1.0 | |
|
| 0.1559 | 10.67 | 24 | 0.0225 | 1.0 | |
|
| 0.0916 | 12.0 | 27 | 0.0139 | 1.0 | |
|
| 0.0751 | 12.89 | 29 | 0.0112 | 1.0 | |
|
| 0.084 | 13.78 | 31 | 0.0102 | 1.0 | |
|
| 0.0741 | 14.67 | 33 | 0.0103 | 1.0 | |
|
| 0.065 | 16.0 | 36 | 0.0071 | 1.0 | |
|
| 0.1019 | 16.89 | 38 | 0.0061 | 1.0 | |
|
| 0.061 | 17.78 | 40 | 0.0052 | 1.0 | |
|
| 0.0751 | 18.67 | 42 | 0.0045 | 1.0 | |
|
| 0.0336 | 20.0 | 45 | 0.0064 | 1.0 | |
|
| 0.0362 | 20.89 | 47 | 0.0038 | 1.0 | |
|
| 0.073 | 21.78 | 49 | 0.0037 | 1.0 | |
|
| 0.0748 | 22.67 | 51 | 0.0050 | 1.0 | |
|
| 0.0543 | 24.0 | 54 | 0.0056 | 1.0 | |
|
| 0.0408 | 24.89 | 56 | 0.0048 | 1.0 | |
|
| 0.0729 | 25.78 | 58 | 0.0050 | 1.0 | |
|
| 0.0638 | 26.67 | 60 | 0.0035 | 1.0 | |
|
| 0.042 | 28.0 | 63 | 0.0029 | 1.0 | |
|
| 0.0982 | 28.89 | 65 | 0.0025 | 1.0 | |
|
| 0.0238 | 29.78 | 67 | 0.0023 | 1.0 | |
|
| 0.0536 | 30.67 | 69 | 0.0032 | 1.0 | |
|
| 0.1131 | 32.0 | 72 | 0.0029 | 1.0 | |
|
| 0.0569 | 32.89 | 74 | 0.0030 | 1.0 | |
|
| 0.0717 | 33.78 | 76 | 0.0034 | 1.0 | |
|
| 0.0567 | 34.67 | 78 | 0.0037 | 1.0 | |
|
| 0.0807 | 36.0 | 81 | 0.0039 | 1.0 | |
|
| 0.0888 | 36.89 | 83 | 0.0039 | 1.0 | |
|
| 0.0548 | 37.78 | 85 | 0.0039 | 1.0 | |
|
| 0.078 | 38.67 | 87 | 0.0040 | 1.0 | |
|
| 0.0453 | 40.0 | 90 | 0.0041 | 1.0 | |
|
| 0.0442 | 40.89 | 92 | 0.0042 | 1.0 | |
|
| 0.0425 | 41.78 | 94 | 0.0041 | 1.0 | |
|
| 0.0619 | 42.67 | 96 | 0.0041 | 1.0 | |
|
| 0.0437 | 44.0 | 99 | 0.0040 | 1.0 | |
|
| 0.0552 | 44.44 | 100 | 0.0040 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.1 |
|
|