sbaner24's picture
update model card README.md
fbd8c07
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-Trial007-YEL_STEM3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

vit-base-patch16-224-Trial007-YEL_STEM3

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0840
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 60
  • eval_batch_size: 60
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 240
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7133 0.89 2 0.6860 0.5926
0.6666 1.78 4 0.6151 0.7037
0.524 2.67 6 0.4915 0.8704
0.3759 4.0 9 0.3304 0.9074
0.3218 4.89 11 0.2177 0.9259
0.2764 5.78 13 0.1735 0.9630
0.2558 6.67 15 0.0840 1.0
0.7446 8.0 18 0.1256 0.9815
0.1251 8.89 20 0.0527 1.0
0.1491 9.78 22 0.0366 1.0
0.1559 10.67 24 0.0225 1.0
0.0916 12.0 27 0.0139 1.0
0.0751 12.89 29 0.0112 1.0
0.084 13.78 31 0.0102 1.0
0.0741 14.67 33 0.0103 1.0
0.065 16.0 36 0.0071 1.0
0.1019 16.89 38 0.0061 1.0
0.061 17.78 40 0.0052 1.0
0.0751 18.67 42 0.0045 1.0
0.0336 20.0 45 0.0064 1.0
0.0362 20.89 47 0.0038 1.0
0.073 21.78 49 0.0037 1.0
0.0748 22.67 51 0.0050 1.0
0.0543 24.0 54 0.0056 1.0
0.0408 24.89 56 0.0048 1.0
0.0729 25.78 58 0.0050 1.0
0.0638 26.67 60 0.0035 1.0
0.042 28.0 63 0.0029 1.0
0.0982 28.89 65 0.0025 1.0
0.0238 29.78 67 0.0023 1.0
0.0536 30.67 69 0.0032 1.0
0.1131 32.0 72 0.0029 1.0
0.0569 32.89 74 0.0030 1.0
0.0717 33.78 76 0.0034 1.0
0.0567 34.67 78 0.0037 1.0
0.0807 36.0 81 0.0039 1.0
0.0888 36.89 83 0.0039 1.0
0.0548 37.78 85 0.0039 1.0
0.078 38.67 87 0.0040 1.0
0.0453 40.0 90 0.0041 1.0
0.0442 40.89 92 0.0042 1.0
0.0425 41.78 94 0.0041 1.0
0.0619 42.67 96 0.0041 1.0
0.0437 44.0 99 0.0040 1.0
0.0552 44.44 100 0.0040 1.0

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.12.0
  • Tokenizers 0.13.1