metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-Trial007-YEL_STEM3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
vit-base-patch16-224-Trial007-YEL_STEM3
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0840
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 60
- eval_batch_size: 60
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 240
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7133 | 0.89 | 2 | 0.6860 | 0.5926 |
0.6666 | 1.78 | 4 | 0.6151 | 0.7037 |
0.524 | 2.67 | 6 | 0.4915 | 0.8704 |
0.3759 | 4.0 | 9 | 0.3304 | 0.9074 |
0.3218 | 4.89 | 11 | 0.2177 | 0.9259 |
0.2764 | 5.78 | 13 | 0.1735 | 0.9630 |
0.2558 | 6.67 | 15 | 0.0840 | 1.0 |
0.7446 | 8.0 | 18 | 0.1256 | 0.9815 |
0.1251 | 8.89 | 20 | 0.0527 | 1.0 |
0.1491 | 9.78 | 22 | 0.0366 | 1.0 |
0.1559 | 10.67 | 24 | 0.0225 | 1.0 |
0.0916 | 12.0 | 27 | 0.0139 | 1.0 |
0.0751 | 12.89 | 29 | 0.0112 | 1.0 |
0.084 | 13.78 | 31 | 0.0102 | 1.0 |
0.0741 | 14.67 | 33 | 0.0103 | 1.0 |
0.065 | 16.0 | 36 | 0.0071 | 1.0 |
0.1019 | 16.89 | 38 | 0.0061 | 1.0 |
0.061 | 17.78 | 40 | 0.0052 | 1.0 |
0.0751 | 18.67 | 42 | 0.0045 | 1.0 |
0.0336 | 20.0 | 45 | 0.0064 | 1.0 |
0.0362 | 20.89 | 47 | 0.0038 | 1.0 |
0.073 | 21.78 | 49 | 0.0037 | 1.0 |
0.0748 | 22.67 | 51 | 0.0050 | 1.0 |
0.0543 | 24.0 | 54 | 0.0056 | 1.0 |
0.0408 | 24.89 | 56 | 0.0048 | 1.0 |
0.0729 | 25.78 | 58 | 0.0050 | 1.0 |
0.0638 | 26.67 | 60 | 0.0035 | 1.0 |
0.042 | 28.0 | 63 | 0.0029 | 1.0 |
0.0982 | 28.89 | 65 | 0.0025 | 1.0 |
0.0238 | 29.78 | 67 | 0.0023 | 1.0 |
0.0536 | 30.67 | 69 | 0.0032 | 1.0 |
0.1131 | 32.0 | 72 | 0.0029 | 1.0 |
0.0569 | 32.89 | 74 | 0.0030 | 1.0 |
0.0717 | 33.78 | 76 | 0.0034 | 1.0 |
0.0567 | 34.67 | 78 | 0.0037 | 1.0 |
0.0807 | 36.0 | 81 | 0.0039 | 1.0 |
0.0888 | 36.89 | 83 | 0.0039 | 1.0 |
0.0548 | 37.78 | 85 | 0.0039 | 1.0 |
0.078 | 38.67 | 87 | 0.0040 | 1.0 |
0.0453 | 40.0 | 90 | 0.0041 | 1.0 |
0.0442 | 40.89 | 92 | 0.0042 | 1.0 |
0.0425 | 41.78 | 94 | 0.0041 | 1.0 |
0.0619 | 42.67 | 96 | 0.0041 | 1.0 |
0.0437 | 44.0 | 99 | 0.0040 | 1.0 |
0.0552 | 44.44 | 100 | 0.0040 | 1.0 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 1.12.1
- Datasets 2.12.0
- Tokenizers 0.13.1