pauhidalgoo's picture
Add new SentenceTransformer model.
d81294c verified
metadata
language:
  - ca
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:CoSENTLoss
base_model: projecte-aina/roberta-base-ca-v2
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: Dia Internacional del Nen Prematur
    sentences:
      - El 'primer' Dia Internacional de la Dona
      - Les concordances són adjectiu / substantiu o verb / substantiu.
      - >-
        Es conserva la boca, per on s'entrava la llenya a la cambra de
        combustió.
  - source_sentence: Vulneració del dret a la llibertat
    sentences:
      - Vulneració del dret a un jutge imparcial
      - Detenen un home a Malgrat de Mar per apallissar un escombriaire
      - >-
        Hi ha 1.298 nous positius, sumant ja un total de 26.032 casos, 2.249
        greus
  - source_sentence: Agafem un taxi i ens plantem allà.
    sentences:
      - Agafem un cotxe i ens dirigim cap a Marivent.
      - El líder del PSC, Miquel Iceta, serà el nou president del Senat
      - La mitjana anual és de -2.4 °C i la pluviometria de només 336 litres.
  - source_sentence: No ho entenc, però és el que hi ha.
    sentences:
      - La meva percepció és ben diferent.
      - El Punt d'Informació Juvenil és el servei més actiu del centre.
      - >-
        Va ser el primer militant de la Joventut Comunista a ser diputat al
        Congrés.
  - source_sentence: Però que hi ha de cert en tot això?
    sentences:
      - Però, què hi ha de veritat en tot això?
      - Els camioners dissolen la marxa lenta a les rondes de Barcelona
      - >-
        Catalunya és el destí preferit en càmpings, amb més de 1,8 milions de
        pernoctacions
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on projecte-aina/roberta-base-ca-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.9349981863430619
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9898745854094829
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.93632129298827
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.9686713208543439
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.937727418152861
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.9702251672597351
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9162818325389069
            name: Pearson Dot
          - type: spearman_dot
            value: 0.9364241335059265
            name: Spearman Dot
          - type: pearson_max
            value: 0.937727418152861
            name: Pearson Max
          - type: spearman_max
            value: 0.9898745854094829
            name: Spearman Max
          - type: pearson_cosine
            value: 0.7184562914987533
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.731194582268392
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6843033521378273
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.672243797555491
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6853003565335036
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6732492757969866
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.591430532036044
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6075047296209968
            name: Spearman Dot
          - type: pearson_max
            value: 0.7184562914987533
            name: Pearson Max
          - type: spearman_max
            value: 0.731194582268392
            name: Spearman Max
          - type: pearson_cosine
            value: 0.7428580994426089
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.771439206347715
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7146499318383212
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7266919074231987
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7136174727854737
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7268619569548143
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.6408741655346061
            name: Pearson Dot
          - type: spearman_dot
            value: 0.642786988233003
            name: Spearman Dot
          - type: pearson_max
            value: 0.7428580994426089
            name: Pearson Max
          - type: spearman_max
            value: 0.771439206347715
            name: Spearman Max

SentenceTransformer based on projecte-aina/roberta-base-ca-v2

This is a sentence-transformers model finetuned from projecte-aina/roberta-base-ca-v2 on the projecte-aina/sts-ca dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-roberta-base-ca-v2")
# Run inference
sentences = [
    'Però que hi ha de cert en tot això?',
    'Però, què hi ha de veritat en tot això?',
    'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.935
spearman_cosine 0.9899
pearson_manhattan 0.9363
spearman_manhattan 0.9687
pearson_euclidean 0.9377
spearman_euclidean 0.9702
pearson_dot 0.9163
spearman_dot 0.9364
pearson_max 0.9377
spearman_max 0.9899

Semantic Similarity

Metric Value
pearson_cosine 0.7185
spearman_cosine 0.7312
pearson_manhattan 0.6843
spearman_manhattan 0.6722
pearson_euclidean 0.6853
spearman_euclidean 0.6732
pearson_dot 0.5914
spearman_dot 0.6075
pearson_max 0.7185
spearman_max 0.7312

Semantic Similarity

Metric Value
pearson_cosine 0.7429
spearman_cosine 0.7714
pearson_manhattan 0.7146
spearman_manhattan 0.7267
pearson_euclidean 0.7136
spearman_euclidean 0.7269
pearson_dot 0.6409
spearman_dot 0.6428
pearson_max 0.7429
spearman_max 0.7714

Training Details

Training Dataset

projecte-aina/sts-ca

  • Dataset: projecte-aina/sts-ca
  • Size: 2,073 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 7 tokens
    • mean: 22.3 tokens
    • max: 63 tokens
    • min: 7 tokens
    • mean: 21.07 tokens
    • max: 51 tokens
    • min: 0.0
    • mean: 2.56
    • max: 5.0
  • Samples:
    sentence1 sentence2 label
    Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària 3.5
    Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts. Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més. 1.25
    El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE 3.6700000762939453
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

projecte-aina/sts-ca

  • Dataset: projecte-aina/sts-ca
  • Size: 500 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 8 tokens
    • mean: 22.81 tokens
    • max: 60 tokens
    • min: 9 tokens
    • mean: 21.94 tokens
    • max: 65 tokens
    • min: 0.0
    • mean: 2.58
    • max: 5.0
  • Samples:
    sentence1 sentence2 label
    L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes 1.6699999570846558
    Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis 2.0
    Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos 3.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • num_train_epochs: 25
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 25
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss spearman_cosine
3.8462 500 4.3798 -
7.6923 1000 3.6486 -
11.5385 1500 3.2479 -
15.3846 2000 2.9539 -
19.2308 2500 2.6753 -
23.0769 3000 2.4955 -
25.0 3250 - 0.7714

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}