metadata
language:
- ca
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:CoSENTLoss
base_model: projecte-aina/roberta-base-ca-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Dia Internacional del Nen Prematur
sentences:
- El 'primer' Dia Internacional de la Dona
- Les concordances són adjectiu / substantiu o verb / substantiu.
- >-
Es conserva la boca, per on s'entrava la llenya a la cambra de
combustió.
- source_sentence: Vulneració del dret a la llibertat
sentences:
- Vulneració del dret a un jutge imparcial
- Detenen un home a Malgrat de Mar per apallissar un escombriaire
- >-
Hi ha 1.298 nous positius, sumant ja un total de 26.032 casos, 2.249
greus
- source_sentence: Agafem un taxi i ens plantem allà.
sentences:
- Agafem un cotxe i ens dirigim cap a Marivent.
- El líder del PSC, Miquel Iceta, serà el nou president del Senat
- La mitjana anual és de -2.4 °C i la pluviometria de només 336 litres.
- source_sentence: No ho entenc, però és el que hi ha.
sentences:
- La meva percepció és ben diferent.
- El Punt d'Informació Juvenil és el servei més actiu del centre.
- >-
Va ser el primer militant de la Joventut Comunista a ser diputat al
Congrés.
- source_sentence: Però que hi ha de cert en tot això?
sentences:
- Però, què hi ha de veritat en tot això?
- Els camioners dissolen la marxa lenta a les rondes de Barcelona
- >-
Catalunya és el destí preferit en càmpings, amb més de 1,8 milions de
pernoctacions
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on projecte-aina/roberta-base-ca-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.9349981863430619
name: Pearson Cosine
- type: spearman_cosine
value: 0.9898745854094829
name: Spearman Cosine
- type: pearson_manhattan
value: 0.93632129298827
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9686713208543439
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.937727418152861
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9702251672597351
name: Spearman Euclidean
- type: pearson_dot
value: 0.9162818325389069
name: Pearson Dot
- type: spearman_dot
value: 0.9364241335059265
name: Spearman Dot
- type: pearson_max
value: 0.937727418152861
name: Pearson Max
- type: spearman_max
value: 0.9898745854094829
name: Spearman Max
- type: pearson_cosine
value: 0.7184562914987533
name: Pearson Cosine
- type: spearman_cosine
value: 0.731194582268392
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6843033521378273
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.672243797555491
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6853003565335036
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6732492757969866
name: Spearman Euclidean
- type: pearson_dot
value: 0.591430532036044
name: Pearson Dot
- type: spearman_dot
value: 0.6075047296209968
name: Spearman Dot
- type: pearson_max
value: 0.7184562914987533
name: Pearson Max
- type: spearman_max
value: 0.731194582268392
name: Spearman Max
- type: pearson_cosine
value: 0.7428580994426089
name: Pearson Cosine
- type: spearman_cosine
value: 0.771439206347715
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7146499318383212
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7266919074231987
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7136174727854737
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7268619569548143
name: Spearman Euclidean
- type: pearson_dot
value: 0.6408741655346061
name: Pearson Dot
- type: spearman_dot
value: 0.642786988233003
name: Spearman Dot
- type: pearson_max
value: 0.7428580994426089
name: Pearson Max
- type: spearman_max
value: 0.771439206347715
name: Spearman Max
SentenceTransformer based on projecte-aina/roberta-base-ca-v2
This is a sentence-transformers model finetuned from projecte-aina/roberta-base-ca-v2 on the projecte-aina/sts-ca dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: projecte-aina/roberta-base-ca-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: ca
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-roberta-base-ca-v2")
# Run inference
sentences = [
'Però que hi ha de cert en tot això?',
'Però, què hi ha de veritat en tot això?',
'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.935 |
spearman_cosine | 0.9899 |
pearson_manhattan | 0.9363 |
spearman_manhattan | 0.9687 |
pearson_euclidean | 0.9377 |
spearman_euclidean | 0.9702 |
pearson_dot | 0.9163 |
spearman_dot | 0.9364 |
pearson_max | 0.9377 |
spearman_max | 0.9899 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7185 |
spearman_cosine | 0.7312 |
pearson_manhattan | 0.6843 |
spearman_manhattan | 0.6722 |
pearson_euclidean | 0.6853 |
spearman_euclidean | 0.6732 |
pearson_dot | 0.5914 |
spearman_dot | 0.6075 |
pearson_max | 0.7185 |
spearman_max | 0.7312 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7429 |
spearman_cosine | 0.7714 |
pearson_manhattan | 0.7146 |
spearman_manhattan | 0.7267 |
pearson_euclidean | 0.7136 |
spearman_euclidean | 0.7269 |
pearson_dot | 0.6409 |
spearman_dot | 0.6428 |
pearson_max | 0.7429 |
spearman_max | 0.7714 |
Training Details
Training Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
- Size: 2,073 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
- mean: 22.3 tokens
- max: 63 tokens
- min: 7 tokens
- mean: 21.07 tokens
- max: 51 tokens
- min: 0.0
- mean: 2.56
- max: 5.0
- Samples:
sentence1 sentence2 label Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària
Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària
3.5
Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.
Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.
1.25
El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat
El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE
3.6700000762939453
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
- Size: 500 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 8 tokens
- mean: 22.81 tokens
- max: 60 tokens
- min: 9 tokens
- mean: 21.94 tokens
- max: 65 tokens
- min: 0.0
- mean: 2.58
- max: 5.0
- Samples:
sentence1 sentence2 label L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes
La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes
1.6699999570846558
Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis
L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis
2.0
Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra
Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos
3.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 25warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 25max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
3.8462 | 500 | 4.3798 | - |
7.6923 | 1000 | 3.6486 | - |
11.5385 | 1500 | 3.2479 | - |
15.3846 | 2000 | 2.9539 | - |
19.2308 | 2500 | 2.6753 | - |
23.0769 | 3000 | 2.4955 | - |
25.0 | 3250 | - | 0.7714 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}