SentenceTransformer based on projecte-aina/roberta-base-ca-v2
This is a sentence-transformers model finetuned from projecte-aina/roberta-base-ca-v2 on the projecte-aina/sts-ca dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: projecte-aina/roberta-base-ca-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: ca
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-roberta-base-ca-v2")
# Run inference
sentences = [
'Però que hi ha de cert en tot això?',
'Però, què hi ha de veritat en tot això?',
'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.935 |
spearman_cosine | 0.9899 |
pearson_manhattan | 0.9363 |
spearman_manhattan | 0.9687 |
pearson_euclidean | 0.9377 |
spearman_euclidean | 0.9702 |
pearson_dot | 0.9163 |
spearman_dot | 0.9364 |
pearson_max | 0.9377 |
spearman_max | 0.9899 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7185 |
spearman_cosine | 0.7312 |
pearson_manhattan | 0.6843 |
spearman_manhattan | 0.6722 |
pearson_euclidean | 0.6853 |
spearman_euclidean | 0.6732 |
pearson_dot | 0.5914 |
spearman_dot | 0.6075 |
pearson_max | 0.7185 |
spearman_max | 0.7312 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7429 |
spearman_cosine | 0.7714 |
pearson_manhattan | 0.7146 |
spearman_manhattan | 0.7267 |
pearson_euclidean | 0.7136 |
spearman_euclidean | 0.7269 |
pearson_dot | 0.6409 |
spearman_dot | 0.6428 |
pearson_max | 0.7429 |
spearman_max | 0.7714 |
Training Details
Training Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
- Size: 2,073 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
- mean: 22.3 tokens
- max: 63 tokens
- min: 7 tokens
- mean: 21.07 tokens
- max: 51 tokens
- min: 0.0
- mean: 2.56
- max: 5.0
- Samples:
sentence1 sentence2 label Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària
Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària
3.5
Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.
Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.
1.25
El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat
El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE
3.6700000762939453
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
- Size: 500 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 8 tokens
- mean: 22.81 tokens
- max: 60 tokens
- min: 9 tokens
- mean: 21.94 tokens
- max: 65 tokens
- min: 0.0
- mean: 2.58
- max: 5.0
- Samples:
sentence1 sentence2 label L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes
La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes
1.6699999570846558
Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis
L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis
2.0
Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra
Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos
3.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 25warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 25max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
3.8462 | 500 | 4.3798 | - |
7.6923 | 1000 | 3.6486 | - |
11.5385 | 1500 | 3.2479 | - |
15.3846 | 2000 | 2.9539 | - |
19.2308 | 2500 | 2.6753 | - |
23.0769 | 3000 | 2.4955 | - |
25.0 | 3250 | - | 0.7714 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pauhidalgoo/finetuned-sts-roberta-base-ca-v2
Base model
projecte-aina/roberta-base-ca-v2Evaluation results
- Pearson Cosine on Unknownself-reported0.935
- Spearman Cosine on Unknownself-reported0.990
- Pearson Manhattan on Unknownself-reported0.936
- Spearman Manhattan on Unknownself-reported0.969
- Pearson Euclidean on Unknownself-reported0.938
- Spearman Euclidean on Unknownself-reported0.970
- Pearson Dot on Unknownself-reported0.916
- Spearman Dot on Unknownself-reported0.936
- Pearson Max on Unknownself-reported0.938
- Spearman Max on Unknownself-reported0.990