|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: speech_ocean_wav2vec_mdd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# speech_ocean_wav2vec_mdd |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3663 |
|
- Wer: 0.0863 |
|
- Cer: 0.0692 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:| |
|
| 45.149 | 0.9873 | 39 | 45.0584 | 1.0258 | 0.7932 | |
|
| 40.7325 | 2.0 | 79 | 32.0660 | 1.0 | 1.0 | |
|
| 14.8164 | 2.9873 | 118 | 8.1694 | 1.0 | 1.0 | |
|
| 5.6535 | 4.0 | 158 | 4.5922 | 1.0 | 1.0 | |
|
| 3.9508 | 4.9873 | 197 | 3.8581 | 1.0 | 1.0 | |
|
| 3.8065 | 6.0 | 237 | 3.7907 | 1.0 | 1.0 | |
|
| 3.766 | 6.9873 | 276 | 3.7769 | 1.0 | 1.0 | |
|
| 3.7552 | 8.0 | 316 | 3.7465 | 1.0 | 1.0 | |
|
| 3.7489 | 8.9873 | 355 | 3.7611 | 1.0 | 1.0 | |
|
| 3.7263 | 10.0 | 395 | 3.7234 | 1.0 | 1.0 | |
|
| 3.7343 | 10.9873 | 434 | 3.6934 | 1.0 | 1.0 | |
|
| 3.6327 | 12.0 | 474 | 3.4204 | 1.0 | 1.0 | |
|
| 3.1861 | 12.9873 | 513 | 2.7907 | 0.9710 | 0.9864 | |
|
| 2.2814 | 14.0 | 553 | 1.7142 | 0.5088 | 0.5401 | |
|
| 1.6854 | 14.9873 | 592 | 1.0573 | 0.2488 | 0.1914 | |
|
| 1.2968 | 16.0 | 632 | 0.7282 | 0.1786 | 0.1391 | |
|
| 0.8626 | 16.9873 | 671 | 0.5435 | 0.1305 | 0.0999 | |
|
| 0.7852 | 18.0 | 711 | 0.4440 | 0.1046 | 0.0831 | |
|
| 0.6332 | 18.9873 | 750 | 0.3847 | 0.0936 | 0.0748 | |
|
| 0.6518 | 19.7468 | 780 | 0.3663 | 0.0863 | 0.0692 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|