File size: 2,929 Bytes
29be462
8b4e2c1
 
 
 
 
 
 
 
 
29be462
 
8b4e2c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: speech_ocean_wav2vec_mdd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speech_ocean_wav2vec_mdd

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3663
- Wer: 0.0863
- Cer: 0.0692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 45.149        | 0.9873  | 39   | 45.0584         | 1.0258 | 0.7932 |
| 40.7325       | 2.0     | 79   | 32.0660         | 1.0    | 1.0    |
| 14.8164       | 2.9873  | 118  | 8.1694          | 1.0    | 1.0    |
| 5.6535        | 4.0     | 158  | 4.5922          | 1.0    | 1.0    |
| 3.9508        | 4.9873  | 197  | 3.8581          | 1.0    | 1.0    |
| 3.8065        | 6.0     | 237  | 3.7907          | 1.0    | 1.0    |
| 3.766         | 6.9873  | 276  | 3.7769          | 1.0    | 1.0    |
| 3.7552        | 8.0     | 316  | 3.7465          | 1.0    | 1.0    |
| 3.7489        | 8.9873  | 355  | 3.7611          | 1.0    | 1.0    |
| 3.7263        | 10.0    | 395  | 3.7234          | 1.0    | 1.0    |
| 3.7343        | 10.9873 | 434  | 3.6934          | 1.0    | 1.0    |
| 3.6327        | 12.0    | 474  | 3.4204          | 1.0    | 1.0    |
| 3.1861        | 12.9873 | 513  | 2.7907          | 0.9710 | 0.9864 |
| 2.2814        | 14.0    | 553  | 1.7142          | 0.5088 | 0.5401 |
| 1.6854        | 14.9873 | 592  | 1.0573          | 0.2488 | 0.1914 |
| 1.2968        | 16.0    | 632  | 0.7282          | 0.1786 | 0.1391 |
| 0.8626        | 16.9873 | 671  | 0.5435          | 0.1305 | 0.0999 |
| 0.7852        | 18.0    | 711  | 0.4440          | 0.1046 | 0.0831 |
| 0.6332        | 18.9873 | 750  | 0.3847          | 0.0936 | 0.0748 |
| 0.6518        | 19.7468 | 780  | 0.3663          | 0.0863 | 0.0692 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1