|
--- |
|
license: other |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
base_model: |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
- meta-llama/Meta-Llama-3-70B-Instruct |
|
--- |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/C-Xw_m97bhXaTA1TEpHB7.jpeg) |
|
|
|
# Meta-Llama-3-120B-Instruct |
|
|
|
Meta-Llama-3-120B-Instruct is a [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main). |
|
|
|
It was inspired by large merges like: |
|
|
|
- [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b) |
|
- [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co/nsfwthrowitaway69/Venus-120b-v1.0) |
|
- [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b) |
|
- [wolfram/miquliz-120b-v2.0](https://huggingface.co/wolfram/miquliz-120b-v2.0). |
|
|
|
Special thanks to [Eric Hartford](https://huggingface.co/ehartford) for both inspiring and evaluating this model and to [Charles Goddard](https://huggingface.co/chargoddard) for creating MergeKit. |
|
|
|
## π Applications |
|
|
|
I recommend using this model for creative writing. It uses the Llama 3 chat template with a default context window of 8K (can be extended with rope theta). |
|
|
|
Check the examples in the evaluation section to get an idea of its performance. The model is generally quite unhinged but has a good writing style. It sometimes outputs typos and is a big fan of uppercase. |
|
|
|
## β‘ Quantized models |
|
|
|
Thanks to [Bartowski](https://huggingface.co/ehartford), [elinas](https://huggingface.co/elinas), the [mlx-community](https://huggingface.co/mlx-community) and others for providing these models. |
|
|
|
* **GGUF**: https://huggingface.co/lmstudio-community/Meta-Llama-3-120B-Instruct-GGUF |
|
* **EXL2**: https://huggingface.co/elinas/Meta-Llama-3-120B-Instruct-4.0bpw-exl2 |
|
* **mlx**: https://huggingface.co/mlx-community/Meta-Llama-3-120B-Instruct-4bit |
|
|
|
## π Evaluation |
|
|
|
This model is great for creative writing but struggles in other tasks. I'd say use it with caution and don't expect it to outperform GPT-4 outside of some very specific use cases. |
|
|
|
* **X thread by Eric Hartford (creative writing)**: https://twitter.com/erhartford/status/1787050962114207886 |
|
* **X thread by Daniel Kaiser (creative writing)**: https://twitter.com/spectate_or/status/1787257261309518101 |
|
* **X thread by Simon (reasoning)**: https://twitter.com/NewDigitalEdu/status/1787403266894020893 |
|
* **r/LocalLLaMa**: https://www.reddit.com/r/LocalLLaMA/comments/1cl525q/goliath_lovers_where_is_the_feedback_about/ |
|
|
|
### Creative Writing |
|
|
|
Thanks to [Sam Paech](https://huggingface.co/sam-paech) for evaluating this model and sending me his outputs! |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/-LJ7ivCRIPR1ur-LJHk3m.png) |
|
|
|
## 𧩠Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- layer_range: [0, 20] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
- sources: |
|
- layer_range: [10, 30] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
- sources: |
|
- layer_range: [20, 40] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
- sources: |
|
- layer_range: [30, 50] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
- sources: |
|
- layer_range: [40, 60] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
- sources: |
|
- layer_range: [50, 70] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
- sources: |
|
- layer_range: [60, 80] |
|
model: meta-llama/Meta-Llama-3-70B-Instruct |
|
merge_method: passthrough |
|
dtype: float16 |
|
``` |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "mlabonne/Meta-Llama-3-120B-Instruct" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |