File size: 4,413 Bytes
45fcb6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff45e2
 
faacc69
45fcb6c
0348118
45fcb6c
2ed062e
1294f9e
2ed062e
 
 
 
 
0348118
 
2ed062e
 
 
 
0348118
2ed062e
 
 
78a8f80
2ed062e
78a8f80
2ed062e
 
 
 
 
78a8f80
2ed062e
 
a68b640
2ed062e
 
1294f9e
0348118
 
 
 
 
 
45fcb6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c232480
45fcb6c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: other
tags:
- merge
- mergekit
- lazymergekit
base_model:
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/C-Xw_m97bhXaTA1TEpHB7.jpeg)

# Meta-Llama-3-120B-Instruct

Meta-Llama-3-120B-Instruct is a [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).

It was inspired by large merges like:

- [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
- [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co/nsfwthrowitaway69/Venus-120b-v1.0)
- [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b)
- [wolfram/miquliz-120b-v2.0](https://huggingface.co/wolfram/miquliz-120b-v2.0).

Special thanks to [Eric Hartford](https://huggingface.co/ehartford) for both inspiring and evaluating this model and to [Charles Goddard](https://huggingface.co/chargoddard) for creating MergeKit.

## 🔍 Applications

I recommend using this model for creative writing. It uses the Llama 3 chat template with a default context window of 8K (can be extended with rope theta).

Check the examples in the evaluation section to get an idea of its performance. The model is generally quite unhinged but has a good writing style. It sometimes outputs typos and is a big fan of uppercase.

## ⚡ Quantized models

Thanks to [Bartowski](https://huggingface.co/ehartford), [elinas](https://huggingface.co/elinas), the [mlx-community](https://huggingface.co/mlx-community) and others for providing these models.

* **GGUF**: https://huggingface.co/lmstudio-community/Meta-Llama-3-120B-Instruct-GGUF
* **EXL2**: https://huggingface.co/elinas/Meta-Llama-3-120B-Instruct-4.0bpw-exl2
* **mlx**: https://huggingface.co/mlx-community/Meta-Llama-3-120B-Instruct-4bit

## 🏆 Evaluation

This model is great for creative writing but struggles in other tasks. I'd say use it with caution and don't expect it to outperform GPT-4 outside of some very specific use cases.

* **X thread by Eric Hartford (creative writing)**: https://twitter.com/erhartford/status/1787050962114207886
* **X thread by Daniel Kaiser (creative writing)**: https://twitter.com/spectate_or/status/1787257261309518101
* **X thread by Simon (reasoning)**: https://twitter.com/NewDigitalEdu/status/1787403266894020893
* **r/LocalLLaMa**: https://www.reddit.com/r/LocalLLaMA/comments/1cl525q/goliath_lovers_where_is_the_feedback_about/

### Creative Writing

Thanks to [Sam Paech](https://huggingface.co/sam-paech) for evaluating this model and sending me his outputs! 

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/-LJ7ivCRIPR1ur-LJHk3m.png)

## 🧩 Configuration

```yaml
slices:
- sources:
  - layer_range: [0, 20]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [10, 30]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [20, 40]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [30, 50]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [40, 60]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [50, 70]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [60, 80]
    model: meta-llama/Meta-Llama-3-70B-Instruct
merge_method: passthrough
dtype: float16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Meta-Llama-3-120B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```