koOpenChat-sft / README.md
maywell's picture
Adding Evaluation Results (#1)
a782f4e
metadata
license: cc-by-sa-4.0

koOpenChat-sft๐Ÿง

Support Me

์‹œ๋‚˜ํŠธ๋ผ๋Š” ๊ฐœ์ธ ํ”„๋กœ์ ํŠธ๋กœ, 1์ธ์˜ ์ž์›์œผ๋กœ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ๋งˆ์Œ์— ๋“œ์…จ๋‹ค๋ฉด ์•ฝ๊ฐ„์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์€ ์–ด๋–จ๊นŒ์š”? Buy me a Coffee

Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen

Model Details

Base Model
OpenChat3.5

Trained On
A100 80GB * 1

Instruction format

It follows ChatML format and Alpaca(No-Input) format.

Model Benchmark

None

Implementation Code

Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/koOpenChat-sft")
tokenizer = AutoTokenizer.from_pretrained("maywell/koOpenChat-sft")

messages = [
    {"role": "user", "content": "๋ฐ”๋‚˜๋‚˜๋Š” ์›๋ž˜ ํ•˜์–€์ƒ‰์ด์•ผ?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 51.36
ARC (25-shot) 59.81
HellaSwag (10-shot) 78.73
MMLU (5-shot) 61.32
TruthfulQA (0-shot) 51.24
Winogrande (5-shot) 76.4
GSM8K (5-shot) 24.18
DROP (3-shot) 7.82