--- license: cc-by-sa-4.0 --- # **koOpenChat-sft🐧** ## Support Me μ‹œλ‚˜νŠΈλΌλŠ” 개인 ν”„λ‘œμ νŠΈλ‘œ, 1인의 μžμ›μœΌλ‘œ 개발되고 μžˆμŠ΅λ‹ˆλ‹€. λͺ¨λΈμ΄ λ§ˆμŒμ— λ“œμ…¨λ‹€λ©΄ μ•½κ°„μ˜ 연ꡬ비 지원은 μ–΄λ–¨κΉŒμš”? [Buy me a Coffee](https://www.buymeacoffee.com/mwell) Wanna be a sponser? (Please) Contact me on Telegram **AlzarTakkarsen** # **Model Details** **Base Model** OpenChat3.5 **Trained On** A100 80GB * 1 **Instruction format** It follows [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) format and **Alpaca(No-Input)** format. # **Model Benchmark** None # **Implementation Code** Since, chat_template already contains insturction format above. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("maywell/koOpenChat-sft") tokenizer = AutoTokenizer.from_pretrained("maywell/koOpenChat-sft") messages = [ {"role": "user", "content": "λ°”λ‚˜λ‚˜λŠ” μ›λž˜ ν•˜μ–€μƒ‰μ΄μ•Ό?"}, ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maywell__koOpenChat-sft) | Metric | Value | |-----------------------|---------------------------| | Avg. | 51.36 | | ARC (25-shot) | 59.81 | | HellaSwag (10-shot) | 78.73 | | MMLU (5-shot) | 61.32 | | TruthfulQA (0-shot) | 51.24 | | Winogrande (5-shot) | 76.4 | | GSM8K (5-shot) | 24.18 | | DROP (3-shot) | 7.82 |