metadata
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
datasets:
- garage-bAInd/Open-Platypus
pipeline_tag: text-generation
model-index:
- name: PlatYi-34B-200k-Q-FastChat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.93
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-200k-Q-FastChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.46
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-200k-Q-FastChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.13
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-200k-Q-FastChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.38
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-200k-Q-FastChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.74
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-200k-Q-FastChat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-200k-Q-FastChat
name: Open LLM Leaderboard
PlatYi-34B-200k-Q-FastChat
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
PlatYi-34B-200k-Q-FastChat is an auto-regressive language model based on the Yi-34B transformer architecture.
Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]
Base Model
01-ai/Yi-34B-200K
Training Dataset
garage-bAInd/Open-Platypus.
Notice
While training, I used QLoRA.lora_r
values is 64.
Apply prompting
References by FastChat.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
PlatYi-34B-200k-Q-FastChat | 67.85 | 64.93 | 84.46 | 77.13 | 48.38 | 80.74 | 51.48 |
PlatYi-34B-Llama-Q-FastChat | 68.31 | 66.31 | 85.25 | 78.37 | 53.62 | 82.16 | 44.35 |
Yi-34B | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/PlatYi-34B-200k-Q-FastChat"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.85 |
AI2 Reasoning Challenge (25-Shot) | 64.93 |
HellaSwag (10-Shot) | 84.46 |
MMLU (5-Shot) | 77.13 |
TruthfulQA (0-shot) | 48.38 |
Winogrande (5-shot) | 80.74 |
GSM8k (5-shot) | 51.48 |