Edit model card

PlatYi-34B-200k-Q-FastChat

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
PlatYi-34B-200k-Q-FastChat is an auto-regressive language model based on the Yi-34B transformer architecture.

Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]

Base Model
01-ai/Yi-34B-200K

Training Dataset
garage-bAInd/Open-Platypus.

Notice
While training, I used QLoRA.
lora_r values is 64.

Apply prompting
References by FastChat.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
PlatYi-34B-200k-Q-FastChat 67.85 64.93 84.46 77.13 48.38 80.74 51.48
PlatYi-34B-Llama-Q-FastChat 68.31 66.31 85.25 78.37 53.62 82.16 44.35
Yi-34B 69.42 64.59 85.69 76.35 56.23 83.03 50.64

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/PlatYi-34B-200k-Q-FastChat"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.85
AI2 Reasoning Challenge (25-Shot) 64.93
HellaSwag (10-Shot) 84.46
MMLU (5-Shot) 77.13
TruthfulQA (0-shot) 48.38
Winogrande (5-shot) 80.74
GSM8k (5-shot) 51.48
Downloads last month
1,247
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kyujinpy/PlatYi-34B-200k-Q-FastChat

Evaluation results