Edit model card

LiLT-SER-ZH-SIN

This model is a fine-tuned version of kavg/LiLT-SER-ZH on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2037
  • Precision: 0.7417
  • Recall: 0.7709
  • F1: 0.7560
  • Accuracy: 0.8558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0013 21.74 500 0.9018 0.6843 0.7475 0.7145 0.8599
0.012 43.48 1000 1.0791 0.7115 0.7623 0.7360 0.8561
0.0002 65.22 1500 1.0060 0.7360 0.7623 0.7489 0.8565
0.03 86.96 2000 1.1521 0.7282 0.6700 0.6979 0.8313
0.0013 108.7 2500 1.1517 0.7240 0.7463 0.7350 0.8579
0.0016 130.43 3000 0.9393 0.7319 0.7697 0.7503 0.8732
0.0021 152.17 3500 0.9972 0.7249 0.7562 0.7402 0.8635
0.0001 173.91 4000 1.0485 0.7049 0.7796 0.7404 0.8583
0.0002 195.65 4500 1.0827 0.7055 0.7315 0.7183 0.8433
0.0 217.39 5000 1.0528 0.7354 0.7599 0.7474 0.8586
0.0001 239.13 5500 1.1183 0.7001 0.7131 0.7065 0.8465
0.0002 260.87 6000 1.1749 0.7231 0.7685 0.7451 0.8520
0.0 282.61 6500 1.1206 0.7315 0.7685 0.7495 0.8611
0.0 304.35 7000 1.2037 0.7417 0.7709 0.7560 0.8558
0.0 326.09 7500 1.3737 0.7391 0.75 0.7445 0.8513
0.0 347.83 8000 1.2926 0.7221 0.7648 0.7428 0.8475
0.0 369.57 8500 1.4108 0.6966 0.7549 0.7246 0.8293
0.0 391.3 9000 1.4346 0.7222 0.7586 0.7399 0.8303
0.0 413.04 9500 1.4146 0.7225 0.7599 0.7407 0.8363
0.0 434.78 10000 1.4097 0.7121 0.7586 0.7346 0.8346

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
1
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-ZH-SIN

Finetuned
kavg/LiLT-SER-ZH
Finetuned
(1)
this model

Evaluation results