Edit model card

LiLT-SER-ZH

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8792
  • Precision: 0.8408
  • Recall: 0.9348
  • F1: 0.8853
  • Accuracy: 0.8117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2166 10.64 500 0.7724 0.8544 1.1239 0.7932 0.9260
0.0238 21.28 1000 0.8201 0.8624 1.0535 0.8572 0.8676
0.0034 31.91 1500 0.8057 0.8599 1.4675 0.8088 0.9178
0.0163 42.55 2000 0.8232 0.8729 1.2837 0.8572 0.8893
0.0037 53.19 2500 0.8114 0.8627 1.5315 0.8142 0.9174
0.0003 63.83 3000 0.8137 0.8652 1.4604 0.8471 0.8840
0.0005 74.47 3500 0.8115 0.8767 1.5980 0.8409 0.9158
0.0005 85.11 4000 0.8129 0.8634 1.5108 0.8261 0.9043
0.0004 95.74 4500 0.8161 0.8817 1.7719 0.8397 0.9282
0.0001 106.38 5000 0.8203 0.8813 1.4313 0.8600 0.9037
0.0001 117.02 5500 0.8181 0.8832 1.5232 0.8509 0.9181
0.0 127.66 6000 0.8069 0.8808 1.6845 0.8532 0.9102
0.0179 138.3 6500 0.8192 0.8793 1.6293 0.8398 0.9227
0.0 148.94 7000 0.8081 0.8815 1.8209 0.8381 0.9296
0.0 159.57 7500 1.8224 0.8443 0.9184 0.8798 0.8070
0.0 170.21 8000 1.7810 0.8450 0.9305 0.8857 0.8127
0.0 180.85 8500 1.7531 0.8454 0.9230 0.8825 0.8088
0.0 191.49 9000 1.8757 0.8394 0.9302 0.8825 0.8070
0.0 202.13 9500 1.8757 0.8417 0.9338 0.8854 0.8123
0.0 212.77 10000 1.8792 0.8408 0.9348 0.8853 0.8117

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
0
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-ZH

Finetuned
(29)
this model
Finetunes
1 model

Evaluation results