LiLT-SER-SIN / README.md
kavg's picture
End of training
d20f4f0 verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-SIN
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.sin
          split: validation
          args: xfun.sin
        metrics:
          - name: Precision
            type: precision
            value: 0.7058139534883721
          - name: Recall
            type: recall
            value: 0.7475369458128078
          - name: F1
            type: f1
            value: 0.7260765550239234
          - name: Accuracy
            type: accuracy
            value: 0.8621124982465984

LiLT-SER-SIN

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1967
  • Precision: 0.7058
  • Recall: 0.7475
  • F1: 0.7261
  • Accuracy: 0.8621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.0739 21.74 500 0.8268 0.5620 0.7143 0.5 0.6416
0.0509 43.48 1000 0.8324 0.5839 0.8499 0.5348 0.6429
0.0004 65.22 1500 0.8398 0.6521 0.9889 0.6256 0.6810
0.0004 86.96 2000 0.8461 0.6678 1.0577 0.6251 0.7167
0.003 108.7 2500 0.8561 0.6929 1.0734 0.6532 0.7377
0.0006 130.43 3000 0.8569 0.6924 1.1114 0.6686 0.7180
0.0022 152.17 3500 0.8245 0.6749 1.4184 0.6774 0.6724
0.0001 173.91 4000 0.8502 0.6937 1.0524 0.6546 0.7377
0.001 195.65 4500 0.8493 0.6900 1.1949 0.6663 0.7155
0.0001 217.39 5000 0.8460 0.6885 1.1462 0.6790 0.6983
0.0001 239.13 5500 0.8641 0.6970 1.1296 0.6697 0.7266
0.0 260.87 6000 0.8529 0.7046 1.2585 0.6929 0.7167
0.0037 282.61 6500 0.8634 0.7139 1.2292 0.6917 0.7377
0.0 304.35 7000 0.8621 0.7261 1.1967 0.7058 0.7475
0.0 326.09 7500 0.8585 0.7230 1.2144 0.7089 0.7377
0.0 347.83 8000 0.8609 0.7180 1.2117 0.6918 0.7463
0.0 369.57 8500 0.8628 0.7135 1.1961 0.6755 0.7562
0.0 391.3 9000 0.8624 0.7220 1.2292 0.7059 0.7389
0.0 413.04 9500 0.8611 0.7262 1.2278 0.7071 0.7463
0.0 434.78 10000 0.8609 0.7242 1.2317 0.7056 0.7438

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2