Edit model card

LiLT-SER-SIN

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1967
  • Precision: 0.7058
  • Recall: 0.7475
  • F1: 0.7261
  • Accuracy: 0.8621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.0739 21.74 500 0.8268 0.5620 0.7143 0.5 0.6416
0.0509 43.48 1000 0.8324 0.5839 0.8499 0.5348 0.6429
0.0004 65.22 1500 0.8398 0.6521 0.9889 0.6256 0.6810
0.0004 86.96 2000 0.8461 0.6678 1.0577 0.6251 0.7167
0.003 108.7 2500 0.8561 0.6929 1.0734 0.6532 0.7377
0.0006 130.43 3000 0.8569 0.6924 1.1114 0.6686 0.7180
0.0022 152.17 3500 0.8245 0.6749 1.4184 0.6774 0.6724
0.0001 173.91 4000 0.8502 0.6937 1.0524 0.6546 0.7377
0.001 195.65 4500 0.8493 0.6900 1.1949 0.6663 0.7155
0.0001 217.39 5000 0.8460 0.6885 1.1462 0.6790 0.6983
0.0001 239.13 5500 0.8641 0.6970 1.1296 0.6697 0.7266
0.0 260.87 6000 0.8529 0.7046 1.2585 0.6929 0.7167
0.0037 282.61 6500 0.8634 0.7139 1.2292 0.6917 0.7377
0.0 304.35 7000 0.8621 0.7261 1.1967 0.7058 0.7475
0.0 326.09 7500 0.8585 0.7230 1.2144 0.7089 0.7377
0.0 347.83 8000 0.8609 0.7180 1.2117 0.6918 0.7463
0.0 369.57 8500 0.8628 0.7135 1.1961 0.6755 0.7562
0.0 391.3 9000 0.8624 0.7220 1.2292 0.7059 0.7389
0.0 413.04 9500 0.8611 0.7262 1.2278 0.7071 0.7463
0.0 434.78 10000 0.8609 0.7242 1.2317 0.7056 0.7438

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-SIN

Finetuned
(29)
this model

Evaluation results