hcy5561's picture
Add new SentenceTransformer model.
e033a29 verified
---
base_model: google-bert/bert-base-uncased
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:91585
- loss:TripletLoss
widget:
- source_sentence: Why do people say "God bless you"?
sentences:
- Will the humanity become extinct?
- Why do people sneeze?
- Why do they say "God bless you" when you sneeze?
- source_sentence: What clarinet mouthpieces are the best?
sentences:
- What is the name of a good web design company in Delhi?
- Which instrument should I learn?
- Which clarinet mouthpiece should I buy?
- source_sentence: How do l see who viewed my videos on Instagram?
sentences:
- What is the possibility of time travel becoming a reality?
- Why can't I view a live video I posted on Facebook?
- How can I see who viewed my video on Instagram but didn't like my video?
- source_sentence: How can I become more social if I am an introvert?
sentences:
- What tricks can introverts learn to become more social?
- Nobody answers my questions on Quora, why?
- How did you become an introvert?
- source_sentence: How did Halloween Originate? What country did it originate on?
sentences:
- What was Halloween like in the 1990s?
- In what country did Halloween originate?
- What are the weirdest/creepiest dreams you have ever had?
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: triplet
name: Triplet
dataset:
name: QQP nli dev
type: QQP-nli-dev
metrics:
- type: cosine_accuracy
value: 0.987814465408805
name: Cosine Accuracy
- type: dot_accuracy
value: 0.012382075471698114
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9874213836477987
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.987814465408805
name: Euclidean Accuracy
- type: max_accuracy
value: 0.987814465408805
name: Max Accuracy
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-triplets")
# Run inference
sentences = [
'How did Halloween Originate? What country did it originate on?',
'In what country did Halloween originate?',
'What was Halloween like in the 1990s?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `QQP-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9878 |
| dot_accuracy | 0.0124 |
| manhattan_accuracy | 0.9874 |
| euclidean_accuracy | 0.9878 |
| **max_accuracy** | **0.9878** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 91,585 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.02 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.68 tokens</li><li>max: 60 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| <code>How can I overcome a bad mood?</code> | <code>How do I break out of a bad mood?</code> | <code>The world around me seems so austere and gloomy because of my mood. It's depressing me considerably. What can I do?</code> |
| <code>What are symptoms of mild schizophrenia?</code> | <code>What are some symptoms of when you become schizophrenic?</code> | <code>Is confusion another symptom of being schizophrenic?</code> |
| <code>What are some ideas which transformed ordinary people into millionaires?</code> | <code>What are some things ordinary people know but millionaires don't?</code> | <code>What can billionaires do that millionaire cannot do?</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 5,088 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.96 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.8 tokens</li><li>max: 60 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------|:------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Why do I see the exact same questions in my feed all the time?</code> | <code>Why are too many questions repeating in my feed sometimes?</code> | <code>Why does this "question" keep showing up in the Unorganized Questions global_feed? (see description for screenshot)</code> |
| <code>Can we expect time travel to become a reality?</code> | <code>Can we time travel anyhow?</code> | <code>What do you hAve to say about time travel (I am not science student but I read it on net and its so exciting topic but still no clear idea that is it possible or it's just a rumour)?</code> |
| <code>Is it too late to start medical school at 32?</code> | <code>Is it too late to go to medical school at 24?</code> | <code>As a 14 year old girl who wants to go to medical school, should I work extremely hard and study a lot now to be ready for it? What should I do?</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | QQP-nli-dev_max_accuracy |
|:------:|:-----:|:-------------:|:------:|:------------------------:|
| 0 | 0 | - | - | 0.8783 |
| 0.1746 | 500 | 2.3079 | 0.8664 | 0.9581 |
| 0.3493 | 1000 | 0.9367 | 0.5027 | 0.9737 |
| 0.5239 | 1500 | 0.6747 | 0.4471 | 0.9743 |
| 0.6986 | 2000 | 0.5323 | 0.3740 | 0.9776 |
| 0.8732 | 2500 | 0.4765 | 0.3178 | 0.9825 |
| 1.0479 | 3000 | 0.4104 | 0.2809 | 0.9866 |
| 1.2225 | 3500 | 0.3266 | 0.2633 | 0.9870 |
| 1.3971 | 4000 | 0.2129 | 0.2566 | 0.9862 |
| 1.5718 | 4500 | 0.1559 | 0.2542 | 0.9858 |
| 1.7464 | 5000 | 0.1432 | 0.2482 | 0.9853 |
| 1.9211 | 5500 | 0.1361 | 0.2370 | 0.9845 |
| 2.0957 | 6000 | 0.1179 | 0.2102 | 0.9880 |
| 2.2703 | 6500 | 0.0921 | 0.2201 | 0.9870 |
| 2.4450 | 7000 | 0.0656 | 0.2075 | 0.9878 |
| 2.6196 | 7500 | 0.0497 | 0.2011 | 0.9876 |
| 2.7943 | 8000 | 0.0455 | 0.1960 | 0.9878 |
| 2.9689 | 8500 | 0.0422 | 0.1973 | 0.9872 |
| 3.1436 | 9000 | 0.0349 | 0.1863 | 0.9890 |
| 3.3182 | 9500 | 0.0319 | 0.1850 | 0.9882 |
| 3.4928 | 10000 | 0.02 | 0.1854 | 0.9882 |
| 3.6675 | 10500 | 0.0184 | 0.1849 | 0.9884 |
| 3.8421 | 11000 | 0.0178 | 0.1828 | 0.9878 |
### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->