hcy5561 commited on
Commit
e033a29
1 Parent(s): 7e3f0ca

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:91585
19
+ - loss:TripletLoss
20
+ widget:
21
+ - source_sentence: Why do people say "God bless you"?
22
+ sentences:
23
+ - Will the humanity become extinct?
24
+ - Why do people sneeze?
25
+ - Why do they say "God bless you" when you sneeze?
26
+ - source_sentence: What clarinet mouthpieces are the best?
27
+ sentences:
28
+ - What is the name of a good web design company in Delhi?
29
+ - Which instrument should I learn?
30
+ - Which clarinet mouthpiece should I buy?
31
+ - source_sentence: How do l see who viewed my videos on Instagram?
32
+ sentences:
33
+ - What is the possibility of time travel becoming a reality?
34
+ - Why can't I view a live video I posted on Facebook?
35
+ - How can I see who viewed my video on Instagram but didn't like my video?
36
+ - source_sentence: How can I become more social if I am an introvert?
37
+ sentences:
38
+ - What tricks can introverts learn to become more social?
39
+ - Nobody answers my questions on Quora, why?
40
+ - How did you become an introvert?
41
+ - source_sentence: How did Halloween Originate? What country did it originate on?
42
+ sentences:
43
+ - What was Halloween like in the 1990s?
44
+ - In what country did Halloween originate?
45
+ - What are the weirdest/creepiest dreams you have ever had?
46
+ model-index:
47
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: QQP nli dev
54
+ type: QQP-nli-dev
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.987814465408805
58
+ name: Cosine Accuracy
59
+ - type: dot_accuracy
60
+ value: 0.012382075471698114
61
+ name: Dot Accuracy
62
+ - type: manhattan_accuracy
63
+ value: 0.9874213836477987
64
+ name: Manhattan Accuracy
65
+ - type: euclidean_accuracy
66
+ value: 0.987814465408805
67
+ name: Euclidean Accuracy
68
+ - type: max_accuracy
69
+ value: 0.987814465408805
70
+ name: Max Accuracy
71
+ ---
72
+
73
+ # SentenceTransformer based on google-bert/bert-base-uncased
74
+
75
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
76
+
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+ - **Model Type:** Sentence Transformer
81
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
82
+ - **Maximum Sequence Length:** 512 tokens
83
+ - **Output Dimensionality:** 768 tokens
84
+ - **Similarity Function:** Cosine Similarity
85
+ <!-- - **Training Dataset:** Unknown -->
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
100
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-triplets")
120
+ # Run inference
121
+ sentences = [
122
+ 'How did Halloween Originate? What country did it originate on?',
123
+ 'In what country did Halloween originate?',
124
+ 'What was Halloween like in the 1990s?',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 768]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Triplet
165
+ * Dataset: `QQP-nli-dev`
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | Value |
169
+ |:-------------------|:-----------|
170
+ | cosine_accuracy | 0.9878 |
171
+ | dot_accuracy | 0.0124 |
172
+ | manhattan_accuracy | 0.9874 |
173
+ | euclidean_accuracy | 0.9878 |
174
+ | **max_accuracy** | **0.9878** |
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### Unnamed Dataset
193
+
194
+
195
+ * Size: 91,585 training samples
196
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | anchor | positive | negative |
199
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
200
+ | type | string | string | string |
201
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.02 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.68 tokens</li><li>max: 60 tokens</li></ul> |
202
+ * Samples:
203
+ | anchor | positive | negative |
204
+ |:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
205
+ | <code>How can I overcome a bad mood?</code> | <code>How do I break out of a bad mood?</code> | <code>The world around me seems so austere and gloomy because of my mood. It's depressing me considerably. What can I do?</code> |
206
+ | <code>What are symptoms of mild schizophrenia?</code> | <code>What are some symptoms of when you become schizophrenic?</code> | <code>Is confusion another symptom of being schizophrenic?</code> |
207
+ | <code>What are some ideas which transformed ordinary people into millionaires?</code> | <code>What are some things ordinary people know but millionaires don't?</code> | <code>What can billionaires do that millionaire cannot do?</code> |
208
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
209
+ ```json
210
+ {
211
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
212
+ "triplet_margin": 5
213
+ }
214
+ ```
215
+
216
+ ### Evaluation Dataset
217
+
218
+ #### Unnamed Dataset
219
+
220
+
221
+ * Size: 5,088 evaluation samples
222
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | anchor | positive | negative |
225
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
226
+ | type | string | string | string |
227
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.96 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.8 tokens</li><li>max: 60 tokens</li></ul> |
228
+ * Samples:
229
+ | anchor | positive | negative |
230
+ |:----------------------------------------------------------------------------|:------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
231
+ | <code>Why do I see the exact same questions in my feed all the time?</code> | <code>Why are too many questions repeating in my feed sometimes?</code> | <code>Why does this "question" keep showing up in the Unorganized Questions global_feed? (see description for screenshot)</code> |
232
+ | <code>Can we expect time travel to become a reality?</code> | <code>Can we time travel anyhow?</code> | <code>What do you hAve to say about time travel (I am not science student but I read it on net and its so exciting topic but still no clear idea that is it possible or it's just a rumour)?</code> |
233
+ | <code>Is it too late to start medical school at 32?</code> | <code>Is it too late to go to medical school at 24?</code> | <code>As a 14 year old girl who wants to go to medical school, should I work extremely hard and study a lot now to be ready for it? What should I do?</code> |
234
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
235
+ ```json
236
+ {
237
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
238
+ "triplet_margin": 5
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `per_device_train_batch_size`: 32
246
+ - `per_device_eval_batch_size`: 32
247
+ - `num_train_epochs`: 4
248
+ - `warmup_ratio`: 0.1
249
+ - `batch_sampler`: no_duplicates
250
+
251
+ #### All Hyperparameters
252
+ <details><summary>Click to expand</summary>
253
+
254
+ - `overwrite_output_dir`: False
255
+ - `do_predict`: False
256
+ - `prediction_loss_only`: True
257
+ - `per_device_train_batch_size`: 32
258
+ - `per_device_eval_batch_size`: 32
259
+ - `per_gpu_train_batch_size`: None
260
+ - `per_gpu_eval_batch_size`: None
261
+ - `gradient_accumulation_steps`: 1
262
+ - `eval_accumulation_steps`: None
263
+ - `learning_rate`: 5e-05
264
+ - `weight_decay`: 0.0
265
+ - `adam_beta1`: 0.9
266
+ - `adam_beta2`: 0.999
267
+ - `adam_epsilon`: 1e-08
268
+ - `max_grad_norm`: 1.0
269
+ - `num_train_epochs`: 4
270
+ - `max_steps`: -1
271
+ - `lr_scheduler_type`: linear
272
+ - `lr_scheduler_kwargs`: {}
273
+ - `warmup_ratio`: 0.1
274
+ - `warmup_steps`: 0
275
+ - `log_level`: passive
276
+ - `log_level_replica`: warning
277
+ - `log_on_each_node`: True
278
+ - `logging_nan_inf_filter`: True
279
+ - `save_safetensors`: True
280
+ - `save_on_each_node`: False
281
+ - `save_only_model`: False
282
+ - `no_cuda`: False
283
+ - `use_cpu`: False
284
+ - `use_mps_device`: False
285
+ - `seed`: 42
286
+ - `data_seed`: None
287
+ - `jit_mode_eval`: False
288
+ - `use_ipex`: False
289
+ - `bf16`: False
290
+ - `fp16`: False
291
+ - `fp16_opt_level`: O1
292
+ - `half_precision_backend`: auto
293
+ - `bf16_full_eval`: False
294
+ - `fp16_full_eval`: False
295
+ - `tf32`: None
296
+ - `local_rank`: 0
297
+ - `ddp_backend`: None
298
+ - `tpu_num_cores`: None
299
+ - `tpu_metrics_debug`: False
300
+ - `debug`: []
301
+ - `dataloader_drop_last`: False
302
+ - `dataloader_num_workers`: 0
303
+ - `dataloader_prefetch_factor`: None
304
+ - `past_index`: -1
305
+ - `disable_tqdm`: False
306
+ - `remove_unused_columns`: True
307
+ - `label_names`: None
308
+ - `load_best_model_at_end`: False
309
+ - `ignore_data_skip`: False
310
+ - `fsdp`: []
311
+ - `fsdp_min_num_params`: 0
312
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
313
+ - `fsdp_transformer_layer_cls_to_wrap`: None
314
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
315
+ - `deepspeed`: None
316
+ - `label_smoothing_factor`: 0.0
317
+ - `optim`: adamw_torch
318
+ - `optim_args`: None
319
+ - `adafactor`: False
320
+ - `group_by_length`: False
321
+ - `length_column_name`: length
322
+ - `ddp_find_unused_parameters`: None
323
+ - `ddp_bucket_cap_mb`: None
324
+ - `ddp_broadcast_buffers`: False
325
+ - `dataloader_pin_memory`: True
326
+ - `dataloader_persistent_workers`: False
327
+ - `skip_memory_metrics`: True
328
+ - `use_legacy_prediction_loop`: False
329
+ - `push_to_hub`: False
330
+ - `resume_from_checkpoint`: None
331
+ - `hub_model_id`: None
332
+ - `hub_strategy`: every_save
333
+ - `hub_private_repo`: False
334
+ - `hub_always_push`: False
335
+ - `gradient_checkpointing`: False
336
+ - `gradient_checkpointing_kwargs`: None
337
+ - `include_inputs_for_metrics`: False
338
+ - `fp16_backend`: auto
339
+ - `push_to_hub_model_id`: None
340
+ - `push_to_hub_organization`: None
341
+ - `mp_parameters`:
342
+ - `auto_find_batch_size`: False
343
+ - `full_determinism`: False
344
+ - `torchdynamo`: None
345
+ - `ray_scope`: last
346
+ - `ddp_timeout`: 1800
347
+ - `torch_compile`: False
348
+ - `torch_compile_backend`: None
349
+ - `torch_compile_mode`: None
350
+ - `dispatch_batches`: None
351
+ - `split_batches`: None
352
+ - `include_tokens_per_second`: False
353
+ - `include_num_input_tokens_seen`: False
354
+ - `neftune_noise_alpha`: None
355
+ - `optim_target_modules`: None
356
+ - `batch_sampler`: no_duplicates
357
+ - `multi_dataset_batch_sampler`: proportional
358
+
359
+ </details>
360
+
361
+ ### Training Logs
362
+ | Epoch | Step | Training Loss | loss | QQP-nli-dev_max_accuracy |
363
+ |:------:|:-----:|:-------------:|:------:|:------------------------:|
364
+ | 0 | 0 | - | - | 0.8783 |
365
+ | 0.1746 | 500 | 2.3079 | 0.8664 | 0.9581 |
366
+ | 0.3493 | 1000 | 0.9367 | 0.5027 | 0.9737 |
367
+ | 0.5239 | 1500 | 0.6747 | 0.4471 | 0.9743 |
368
+ | 0.6986 | 2000 | 0.5323 | 0.3740 | 0.9776 |
369
+ | 0.8732 | 2500 | 0.4765 | 0.3178 | 0.9825 |
370
+ | 1.0479 | 3000 | 0.4104 | 0.2809 | 0.9866 |
371
+ | 1.2225 | 3500 | 0.3266 | 0.2633 | 0.9870 |
372
+ | 1.3971 | 4000 | 0.2129 | 0.2566 | 0.9862 |
373
+ | 1.5718 | 4500 | 0.1559 | 0.2542 | 0.9858 |
374
+ | 1.7464 | 5000 | 0.1432 | 0.2482 | 0.9853 |
375
+ | 1.9211 | 5500 | 0.1361 | 0.2370 | 0.9845 |
376
+ | 2.0957 | 6000 | 0.1179 | 0.2102 | 0.9880 |
377
+ | 2.2703 | 6500 | 0.0921 | 0.2201 | 0.9870 |
378
+ | 2.4450 | 7000 | 0.0656 | 0.2075 | 0.9878 |
379
+ | 2.6196 | 7500 | 0.0497 | 0.2011 | 0.9876 |
380
+ | 2.7943 | 8000 | 0.0455 | 0.1960 | 0.9878 |
381
+ | 2.9689 | 8500 | 0.0422 | 0.1973 | 0.9872 |
382
+ | 3.1436 | 9000 | 0.0349 | 0.1863 | 0.9890 |
383
+ | 3.3182 | 9500 | 0.0319 | 0.1850 | 0.9882 |
384
+ | 3.4928 | 10000 | 0.02 | 0.1854 | 0.9882 |
385
+ | 3.6675 | 10500 | 0.0184 | 0.1849 | 0.9884 |
386
+ | 3.8421 | 11000 | 0.0178 | 0.1828 | 0.9878 |
387
+
388
+
389
+ ### Framework Versions
390
+ - Python: 3.10.6
391
+ - Sentence Transformers: 3.0.1
392
+ - Transformers: 4.39.3
393
+ - PyTorch: 2.2.2+cu118
394
+ - Accelerate: 0.28.0
395
+ - Datasets: 2.20.0
396
+ - Tokenizers: 0.15.2
397
+
398
+ ## Citation
399
+
400
+ ### BibTeX
401
+
402
+ #### Sentence Transformers
403
+ ```bibtex
404
+ @inproceedings{reimers-2019-sentence-bert,
405
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
406
+ author = "Reimers, Nils and Gurevych, Iryna",
407
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
408
+ month = "11",
409
+ year = "2019",
410
+ publisher = "Association for Computational Linguistics",
411
+ url = "https://arxiv.org/abs/1908.10084",
412
+ }
413
+ ```
414
+
415
+ #### TripletLoss
416
+ ```bibtex
417
+ @misc{hermans2017defense,
418
+ title={In Defense of the Triplet Loss for Person Re-Identification},
419
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
420
+ year={2017},
421
+ eprint={1703.07737},
422
+ archivePrefix={arXiv},
423
+ primaryClass={cs.CV}
424
+ }
425
+ ```
426
+
427
+ <!--
428
+ ## Glossary
429
+
430
+ *Clearly define terms in order to be accessible across audiences.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Authors
435
+
436
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
437
+ -->
438
+
439
+ <!--
440
+ ## Model Card Contact
441
+
442
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
443
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.2.2+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d1417918baba9b234e6aea24ee06e16abdad8b007fffe2c13413f0b882677bc
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff