text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteSemilatticeSup α
s✝ t : Set α
a b : α
s : ι → α
⊢ a ≤ iSup s ↔ ∀ (b : α), (∀ (i : ι), s i ≤ b) → a ≤ b
[PROOFSTEP]
simp [iSup, le_sSup_iff, upperBounds]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteSemilatticeInf α
s✝ t : Set α
a b : α
s : ι → α
⊢ iInf s ≤ a ↔ ∀ (b : α), (∀ (i : ι), b ≤ s i) → b ≤ a
[PROOFSTEP]
simp [iInf, sInf_le_iff, lowerBounds]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteSemilatticeInf α
s t : Set α
a b : α
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x
⊢ ∀ (c : α), c ≤ sInf t → c ≤ sInf s
[PROOFSTEP]
simp only [le_sInf_iff]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteSemilatticeInf α
s t : Set α
a b : α
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x
⊢ ∀ (c : α), (∀ (b : α), b ∈ t → c ≤ b) → ∀ (b : α), b ∈ s → c ≤ b
[PROOFSTEP]
introv h₀ h₁
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteSemilatticeInf α
s t : Set α
a b✝ : α
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x
c : α
h₀ : ∀ (b : α), b ∈ t → c ≤ b
b : α
h₁ : b ∈ s
⊢ c ≤ b
[PROOFSTEP]
rcases h _ h₁ with ⟨y, hy, hy'⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteSemilatticeInf α
s t : Set α
a b✝ : α
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x
c : α
h₀ : ∀ (b : α), b ∈ t → c ≤ b
b : α
h₁ : b ∈ s
y : α
hy : y ∈ t
hy' : y ≤ b
⊢ c ≤ b
[PROOFSTEP]
solve_by_elim [le_trans _ hy']
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : InfSet α
isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s)
a b c : α
hac : a ≤ c
hbc : b ≤ c
⊢ c ∈ {x | a ≤ x ∧ b ≤ x}
[PROOFSTEP]
simp [*]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : InfSet α
isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s)
a b c : α
hab : a ≤ b
hac : a ≤ c
⊢ a ≤ b ⊓ c
[PROOFSTEP]
apply (isGLB_sInf _).2
[GOAL]
case a
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : InfSet α
isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s)
a b c : α
hab : a ≤ b
hac : a ≤ c
⊢ a ∈ lowerBounds {b, c}
[PROOFSTEP]
simp [*]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : InfSet α
isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s)
a : α
⊢ a ∈ lowerBounds ∅
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : SupSet α
isLUB_sSup : ∀ (s : Set α), IsLUB s (sSup s)
a b c : α
hac : a ≤ c
hbc : b ≤ c
⊢ c ∈ upperBounds {a, b}
[PROOFSTEP]
simp [*]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : SupSet α
isLUB_sSup : ∀ (s : Set α), IsLUB s (sSup s)
a b c : α
hab : a ≤ b
hac : a ≤ c
⊢ a ∈ {x | x ≤ b ∧ x ≤ c}
[PROOFSTEP]
simp [*]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
H1 : PartialOrder α
H2 : SupSet α
isLUB_sSup : ∀ (s : Set α), IsLUB s (sSup s)
x : α
⊢ x ∈ upperBounds ∅
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
i : CompleteLinearOrder α
a b : α
⊢ min a b = if a ≤ b then a else b
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
i : CompleteLinearOrder α
a b : α
h : a ≤ b
⊢ min a b = a
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
i : CompleteLinearOrder α
a b : α
h : ¬a ≤ b
⊢ min a b = b
[PROOFSTEP]
simp [(CompleteLinearOrder.le_total a b).resolve_left h]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
i : CompleteLinearOrder α
a b : α
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
i : CompleteLinearOrder α
a b : α
h : a ≤ b
⊢ max a b = b
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
i : CompleteLinearOrder α
a b : α
h : ¬a ≤ b
⊢ max a b = a
[PROOFSTEP]
simp [(CompleteLinearOrder.le_total a b).resolve_left h]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
s✝ t : Set α
a b : α
s : Set α
h_sup : sSup s = ⊥
hne : Set.Nonempty s
⊢ s = {⊥}
[PROOFSTEP]
rw [Set.eq_singleton_iff_nonempty_unique_mem]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
s✝ t : Set α
a b : α
s : Set α
h_sup : sSup s = ⊥
hne : Set.Nonempty s
⊢ Set.Nonempty s ∧ ∀ (x : α), x ∈ s → x = ⊥
[PROOFSTEP]
rw [sSup_eq_bot] at h_sup
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
s✝ t : Set α
a b : α
s : Set α
h_sup : ∀ (a : α), a ∈ s → a = ⊥
hne : Set.Nonempty s
⊢ Set.Nonempty s ∧ ∀ (x : α), x ∈ s → x = ⊥
[PROOFSTEP]
exact ⟨hne, h_sup⟩
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f g : ι → α
s : Set α
⊢ sSup s = ⨆ (a : ↑s), ↑a
[PROOFSTEP]
rw [iSup, Subtype.range_coe]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g✝ : ι → α
f : ι → ι'
hf : Surjective f
g : ι' → α
⊢ ⨆ (x : ι), g (f x) = ⨆ (y : ι'), g y
[PROOFSTEP]
simp [iSup]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g✝ : ι → α
f : ι → ι'
hf : Surjective f
g : ι' → α
⊢ sSup (range fun x => g (f x)) = sSup (range fun y => g y)
[PROOFSTEP]
congr
[GOAL]
case e_a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g✝ : ι → α
f : ι → ι'
hf : Surjective f
g : ι' → α
⊢ (range fun x => g (f x)) = range fun y => g y
[PROOFSTEP]
exact hf.range_comp g
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f g✝ : ι → α
g : ι' → α
h : ι → ι'
h1 : Surjective h
h2 : ∀ (x : ι), g (h x) = f x
⊢ ⨆ (x : ι), f x = ⨆ (y : ι'), g y
[PROOFSTEP]
convert h1.iSup_comp g
[GOAL]
case h.e'_2.h.e'_4.h
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f g✝ : ι → α
g : ι' → α
h : ι → ι'
h1 : Surjective h
h2 : ∀ (x : ι), g (h x) = f x
x✝ : ι
⊢ f x✝ = g (h x✝)
[PROOFSTEP]
exact (h2 _).symm
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g : ι → α
p q : Prop
f₁ : p → α
f₂ : q → α
pq : p ↔ q
f : ∀ (x : q), f₁ (_ : p) = f₂ x
⊢ iSup f₁ = iSup f₂
[PROOFSTEP]
obtain rfl := propext pq
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g : ι → α
p : Prop
f₁ f₂ : p → α
pq : p ↔ p
f : ∀ (x : p), f₁ (_ : p) = f₂ x
⊢ iSup f₁ = iSup f₂
[PROOFSTEP]
congr with x
[GOAL]
case e_s.h
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g : ι → α
p : Prop
f₁ f₂ : p → α
pq : p ↔ p
f : ∀ (x : p), f₁ (_ : p) = f₂ x
x : p
⊢ f₁ x = f₂ x
[PROOFSTEP]
apply f
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g✝ : ι → α
g : β → α
f : ι → β
⊢ ⨆ (b : ↑(range f)), g ↑b = ⨆ (i : ι), g (f i)
[PROOFSTEP]
rw [iSup, iSup, ← image_eq_range, ← range_comp]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g✝ : ι → α
g : β → α
f : ι → β
⊢ sSup (range (g ∘ f)) = sSup (range fun i => g (f i))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : SupSet α
f✝ g : ι → α
s : Set β
f : β → α
⊢ sSup (f '' s) = ⨆ (a : ↑s), f ↑a
[PROOFSTEP]
rw [iSup, image_eq_range]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : (i : ι) → κ i → α
⊢ ⨆ (i : ι) (j : κ i), f i j ≤ a ↔ ∀ (i : ι) (j : κ i), f i j ≤ a
[PROOFSTEP]
simp_rw [iSup_le_iff]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : (i : ι) → κ i → α
⊢ a ≤ ⨅ (i : ι) (j : κ i), f i j ↔ ∀ (i : ι) (j : κ i), a ≤ f i j
[PROOFSTEP]
simp_rw [le_iInf_iff]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
inst✝ : CompleteLattice β
s : Set α
f : α → β
hf : Monotone f
⊢ ⨆ (a : α) (_ : a ∈ s), f a ≤ f (sSup s)
[PROOFSTEP]
rw [sSup_eq_iSup]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
inst✝ : CompleteLattice β
s : Set α
f : α → β
hf : Monotone f
⊢ ⨆ (a : α) (_ : a ∈ s), f a ≤ f (⨆ (a : α) (_ : a ∈ s), a)
[PROOFSTEP]
exact hf.le_map_iSup₂ _
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s t : ι → α
a b : α
inst✝ : CompleteLattice β
f : α ≃o β
x✝ : ι → α
x : α
⊢ ↑f (⨆ (i : ι), x✝ i) ≤ ↑f x ↔ ⨆ (i : ι), ↑f (x✝ i) ≤ ↑f x
[PROOFSTEP]
simp only [f.le_iff_le, iSup_le_iff]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
inst✝ : CompleteLattice β
f : α ≃o β
s : Set α
⊢ ↑f (sSup s) = ⨆ (a : α) (_ : a ∈ s), ↑f a
[PROOFSTEP]
simp only [sSup_eq_iSup, OrderIso.map_iSup]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
inst✝ : CompleteLattice β
s : Set α
f : α → β
hf : Antitone f
⊢ f (sSup s) ≤ ⨅ (a : α) (_ : a ∈ s), f a
[PROOFSTEP]
rw [sSup_eq_iSup]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
inst✝ : CompleteLattice β
s : Set α
f : α → β
hf : Antitone f
⊢ f (⨆ (a : α) (_ : a ∈ s), a) ≤ ⨅ (a : α) (_ : a ∈ s), f a
[PROOFSTEP]
exact hf.map_iSup₂_le _
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f g s t : ι → α
a b : α
inst✝ : Nonempty ι
⊢ ⨆ (x : ι), a = a
[PROOFSTEP]
rw [iSup, range_const, sSup_singleton]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : (i : ι) → κ i → α
⊢ ⨆ (i : ι) (j : κ i), f i j = ⊥ ↔ ∀ (i : ι) (j : κ i), f i j = ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : (i : ι) → κ i → α
⊢ ⨅ (i : ι) (j : κ i), f i j = ⊤ ↔ ∀ (i : ι) (j : κ i), f i j = ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f g s t : ι → α
a✝ b : α
p : Prop
inst✝ : Decidable p
a : p → α
⊢ ⨆ (h : p), a h = if h : p then a h else ⊥
[PROOFSTEP]
by_cases h : p
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f g s t : ι → α
a✝ b : α
p : Prop
inst✝ : Decidable p
a : p → α
h : p
⊢ ⨆ (h : p), a h = if h : p then a h else ⊥
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f g s t : ι → α
a✝ b : α
p : Prop
inst✝ : Decidable p
a : p → α
h : ¬p
⊢ ⨆ (h : p), a h = if h : p then a h else ⊥
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
ι₁ : Sort u_9
ι₂ : Sort u_10
κ₁ : ι₁ → Sort u_11
κ₂ : ι₂ → Sort u_12
f : (i₁ : ι₁) → κ₁ i₁ → (i₂ : ι₂) → κ₂ i₂ → α
⊢ ⨆ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), f i₁ j₁ i₂ j₂ =
⨆ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), f i₁ j₁ i₂ j₂
[PROOFSTEP]
simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
ι₁ : Sort u_9
ι₂ : Sort u_10
κ₁ : ι₁ → Sort u_11
κ₂ : ι₂ → Sort u_12
f : (i₁ : ι₁) → κ₁ i₁ → (i₂ : ι₂) → κ₂ i₂ → α
⊢ ⨅ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), f i₁ j₁ i₂ j₂ =
⨅ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), f i₁ j₁ i₂ j₂
[PROOFSTEP]
simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b✝ : α
b : β
f : (x : β) → x = b → α
c : β
⊢ ∀ (i : c = b), f c i ≤ f b (_ : b = b)
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
c : β
f : (x : β) → x = c → α
⊢ f c (_ : c = c) ≤ f c (_ : c = c)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b✝ : α
b : β
f : (x : β) → b = x → α
c : β
⊢ ∀ (j : b = c), f c j ≤ f b (_ : b = b)
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b✝ : α
b : β
f : (x : β) → b = x → α
⊢ f b (_ : b = b) ≤ f b (_ : b = b)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι✝ : Sort u_5
ι' : Sort u_6
κ : ι✝ → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s✝ t : ι✝ → α
a✝ b : α
ι : Type u_9
a : α
s : Set ι
hs : Set.Nonempty s
⊢ ⨆ (i : ι) (_ : i ∈ s), a = a
[PROOFSTEP]
haveI : Nonempty s := Set.nonempty_coe_sort.mpr hs
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι✝ : Sort u_5
ι' : Sort u_6
κ : ι✝ → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s✝ t : ι✝ → α
a✝ b : α
ι : Type u_9
a : α
s : Set ι
hs : Set.Nonempty s
this : Nonempty ↑s
⊢ ⨆ (i : ι) (_ : i ∈ s), a = a
[PROOFSTEP]
rw [← iSup_subtype'', iSup_const]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
inst✝ : Nonempty ι
f : ι → α
a : α
⊢ (⨆ (x : ι), f x) ⊔ a = ⨆ (x : ι), f x ⊔ a
[PROOFSTEP]
rw [iSup_sup_eq, iSup_const]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
inst✝ : Nonempty ι
f : ι → α
a : α
⊢ (⨅ (x : ι), f x) ⊓ a = ⨅ (x : ι), f x ⊓ a
[PROOFSTEP]
rw [iInf_inf_eq, iInf_const]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
inst✝ : Nonempty ι
f : ι → α
a : α
⊢ a ⊔ ⨆ (x : ι), f x = ⨆ (x : ι), a ⊔ f x
[PROOFSTEP]
rw [iSup_sup_eq, iSup_const]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
inst✝ : Nonempty ι
f : ι → α
a : α
⊢ a ⊓ ⨅ (x : ι), f x = ⨅ (x : ι), a ⊓ f x
[PROOFSTEP]
rw [iInf_inf_eq, iInf_const]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
p : ι → Prop
f : (i : ι) → p i → α
a : α
h : ∃ i, p i
⊢ (⨆ (i : ι) (h : p i), f i h) ⊔ a = ⨆ (i : ι) (h : p i), f i h ⊔ a
[PROOFSTEP]
haveI : Nonempty { i // p i } :=
let ⟨i, hi⟩ := h
⟨⟨i, hi⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
p : ι → Prop
f : (i : ι) → p i → α
a : α
h : ∃ i, p i
this : Nonempty { i // p i }
⊢ (⨆ (i : ι) (h : p i), f i h) ⊔ a = ⨆ (i : ι) (h : p i), f i h ⊔ a
[PROOFSTEP]
rw [iSup_subtype', iSup_subtype', iSup_sup]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a✝ b : α
p : ι → Prop
f : (i : ι) → p i → α
a : α
h : ∃ i, p i
⊢ a ⊔ ⨆ (i : ι) (h : p i), f i h = ⨆ (i : ι) (h : p i), a ⊔ f i h
[PROOFSTEP]
simpa only [sup_comm] using @biSup_sup α _ _ p _ _ h
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s✝ t : ι → α
a b : α
s : False → α
⊢ iSup s = ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s✝ t : ι → α
a b : α
s : False → α
⊢ iInf s = ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g✝ s t : ι → α
a b : α
p : ι → Prop
inst✝ : DecidablePred p
f : (i : ι) → p i → α
g : (i : ι) → ¬p i → α
⊢ (⨆ (i : ι), if h : p i then f i h else g i h) = (⨆ (i : ι) (h : p i), f i h) ⊔ ⨆ (i : ι) (h : ¬p i), g i h
[PROOFSTEP]
rw [← iSup_sup_eq]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g✝ s t : ι → α
a b : α
p : ι → Prop
inst✝ : DecidablePred p
f : (i : ι) → p i → α
g : (i : ι) → ¬p i → α
⊢ (⨆ (i : ι), if h : p i then f i h else g i h) = ⨆ (x : ι), (⨆ (h : p x), f x h) ⊔ ⨆ (h : ¬p x), g x h
[PROOFSTEP]
congr 1 with i
[GOAL]
case e_s.h
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g✝ s t : ι → α
a b : α
p : ι → Prop
inst✝ : DecidablePred p
f : (i : ι) → p i → α
g : (i : ι) → ¬p i → α
i : ι
⊢ (if h : p i then f i h else g i h) = (⨆ (h : p i), f i h) ⊔ ⨆ (h : ¬p i), g i h
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g✝ s t : ι → α
a b : α
p : ι → Prop
inst✝ : DecidablePred p
f : (i : ι) → p i → α
g : (i : ι) → ¬p i → α
i : ι
h : p i
⊢ f i h = (⨆ (h : p i), f i h) ⊔ ⨆ (h : ¬p i), g i h
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : CompleteLattice α
f✝ g✝ s t : ι → α
a b : α
p : ι → Prop
inst✝ : DecidablePred p
f : (i : ι) → p i → α
g : (i : ι) → ¬p i → α
i : ι
h : ¬p i
⊢ g i h = (⨆ (h : p i), f i h) ⊔ ⨆ (h : ¬p i), g i h
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g✝ s t : ι → α
a b : α
g : β → α
f : ι → β
⊢ ⨆ (b : β) (_ : b ∈ range f), g b = ⨆ (i : ι), g (f i)
[PROOFSTEP]
rw [← iSup_subtype'', iSup_range']
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
s : Set β
f : β → α
⊢ sSup (f '' s) = ⨆ (a : β) (_ : a ∈ s), f a
[PROOFSTEP]
rw [← iSup_subtype'', sSup_image']
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
⊢ ⨆ (x : β) (_ : x ∈ ∅), f x = ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
⊢ ⨅ (x : β) (_ : x ∈ ∅), f x = ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
⊢ ⨆ (x : β) (_ : x ∈ univ), f x = ⨆ (x : β), f x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
⊢ ⨅ (x : β) (_ : x ∈ univ), f x = ⨅ (x : β), f x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t✝ : ι → α
a b : α
f : β → α
s t : Set β
⊢ ⨆ (x : β) (_ : x ∈ s ∪ t), f x = (⨆ (x : β) (_ : x ∈ s), f x) ⊔ ⨆ (x : β) (_ : x ∈ t), f x
[PROOFSTEP]
simp_rw [mem_union, iSup_or, iSup_sup_eq]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
p : β → Prop
⊢ ⨆ (i : β), f i = (⨆ (i : β) (_ : p i), f i) ⊔ ⨆ (i : β) (_ : ¬p i), f i
[PROOFSTEP]
simpa [Classical.em] using @iSup_union _ _ _ f {i | p i} {i | ¬p i}
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
i₀ : β
⊢ ⨆ (i : β), f i = f i₀ ⊔ ⨆ (i : β) (_ : i ≠ i₀), f i
[PROOFSTEP]
convert iSup_split f (fun i => i = i₀)
[GOAL]
case h.e'_3.h.e'_3
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β → α
i₀ : β
⊢ f i₀ = ⨆ (i : β) (_ : i = i₀), f i
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b✝ : α
f : β → α
b : β
⊢ ⨆ (x : β) (_ : x ∈ {b}), f x = f b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b✝ : α
f : β → α
b : β
⊢ ⨅ (x : β) (_ : x ∈ {b}), f x = f b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a✝ b✝ : α
f : β → α
a b : β
⊢ ⨆ (x : β) (_ : x ∈ {a, b}), f x = f a ⊔ f b
[PROOFSTEP]
rw [iSup_insert, iSup_singleton]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a✝ b✝ : α
f : β → α
a b : β
⊢ ⨅ (x : β) (_ : x ∈ {a, b}), f x = f a ⊓ f b
[PROOFSTEP]
rw [iInf_insert, iInf_singleton]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ✝ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g✝ s t✝ : ι → α
a b : α
γ : Type u_9
f : β → γ
g : γ → α
t : Set β
⊢ ⨆ (c : γ) (_ : c ∈ f '' t), g c = ⨆ (b : β) (_ : b ∈ t), g (f b)
[PROOFSTEP]
rw [← sSup_image, ← sSup_image, ← image_comp]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ✝ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g✝ s t✝ : ι → α
a b : α
γ : Type u_9
f : β → γ
g : γ → α
t : Set β
⊢ sSup ((fun c => g c) ∘ f '' t) = sSup ((fun b => g (f b)) '' t)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
e : ι → β
he : Injective e
f : ι → α
⊢ ⨆ (j : β), extend e f ⊥ j = ⨆ (i : ι), f i
[PROOFSTEP]
rw [iSup_split _ fun j => ∃ i, e i = j]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
e : ι → β
he : Injective e
f : ι → α
⊢ (⨆ (i : β) (_ : ∃ i_1, e i_1 = i), extend e f ⊥ i) ⊔ ⨆ (i : β) (_ : ¬∃ i_1, e i_1 = i), extend e f ⊥ i =
⨆ (i : ι), f i
[PROOFSTEP]
simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : Bool → α
⊢ ⨆ (b : Bool), f b = f true ⊔ f false
[PROOFSTEP]
rw [iSup, Bool.range_eq, sSup_pair, sup_comm]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b x y : α
⊢ x ⊔ y = ⨆ (b : Bool), bif b then x else y
[PROOFSTEP]
rw [iSup_bool_eq, Bool.cond_true, Bool.cond_false]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
s : Set β
f : β → α
⊢ IsGLB (f '' s) (⨅ (x : β) (_ : x ∈ s), f x)
[PROOFSTEP]
simpa only [range_comp, Subtype.range_coe, iInf_subtype'] using @isGLB_iInf α s _ (f ∘ fun x => (x : β))
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t : ι → α
a b : α
s : Set β
f : β → α
⊢ IsLUB (f '' s) (⨆ (x : β) (_ : x ∈ s), f x)
[PROOFSTEP]
simpa only [range_comp, Subtype.range_coe, iSup_subtype'] using @isLUB_iSup α s _ (f ∘ fun x => (x : β))
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
p : β → Type u_9
f : Sigma p → α
c : α
⊢ ⨆ (x : Sigma p), f x ≤ c ↔ ⨆ (i : β) (j : p i), f { fst := i, snd := j } ≤ c
[PROOFSTEP]
simp only [iSup_le_iff, Sigma.forall]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β × γ → α
c : α
⊢ ⨆ (x : β × γ), f x ≤ c ↔ ⨆ (i : β) (j : γ), f (i, j) ≤ c
[PROOFSTEP]
simp only [iSup_le_iff, Prod.forall]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t✝ : ι → α
a b : α
f : β × γ → α
s : Set β
t : Set γ
⊢ ⨆ (x : β × γ) (_ : x ∈ s ×ˢ t), f x = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b)
[PROOFSTEP]
simp_rw [iSup_prod, mem_prod, iSup_and]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t✝ : ι → α
a b : α
f : β × γ → α
s : Set β
t : Set γ
⊢ ⨆ (i : β) (j : γ) (_ : i ∈ s) (_ : j ∈ t), f (i, j) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b)
[PROOFSTEP]
exact iSup_congr fun _ => iSup_comm
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : β ⊕ γ → α
c : α
⊢ ⨆ (x : β ⊕ γ), f x ≤ c ↔ (⨆ (i : β), f (Sum.inl i)) ⊔ ⨆ (j : γ), f (Sum.inr j) ≤ c
[PROOFSTEP]
simp only [sup_le_iff, iSup_le_iff, Sum.forall]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : Option β → α
c : α
⊢ ⨆ (o : Option β), f o ≤ c ↔ f none ⊔ ⨆ (b : β), f (some b) ≤ c
[PROOFSTEP]
simp only [iSup_le_iff, sup_le_iff, Option.forall]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a✝ b a : α
f : β → α
⊢ ⨆ (o : Option β), Option.elim o a f = a ⊔ ⨆ (b : β), f b
[PROOFSTEP]
simp [iSup_option]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
⊢ ⨆ (i : { i // f i ≠ ⊥ }), f ↑i = ⨆ (i : ι), f i
[PROOFSTEP]
by_cases htriv : ∀ i, f i = ⊥
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ∀ (i : ι), f i = ⊥
⊢ ⨆ (i : { i // f i ≠ ⊥ }), f ↑i = ⨆ (i : ι), f i
[PROOFSTEP]
simp only [iSup_bot, (funext htriv : f = _)]
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ¬∀ (i : ι), f i = ⊥
⊢ ⨆ (i : { i // f i ≠ ⊥ }), f ↑i = ⨆ (i : ι), f i
[PROOFSTEP]
refine' (iSup_comp_le f _).antisymm (iSup_mono' fun i => _)
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ¬∀ (i : ι), f i = ⊥
i : ι
⊢ ∃ i', f i ≤ f ↑i'
[PROOFSTEP]
by_cases hi : f i = ⊥
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ¬∀ (i : ι), f i = ⊥
i : ι
hi : f i = ⊥
⊢ ∃ i', f i ≤ f ↑i'
[PROOFSTEP]
rw [hi]
[GOAL]
case pos
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ¬∀ (i : ι), f i = ⊥
i : ι
hi : f i = ⊥
⊢ ∃ i', ⊥ ≤ f ↑i'
[PROOFSTEP]
obtain ⟨i₀, hi₀⟩ := not_forall.mp htriv
[GOAL]
case pos.intro
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ¬∀ (i : ι), f i = ⊥
i : ι
hi : f i = ⊥
i₀ : ι
hi₀ : ¬f i₀ = ⊥
⊢ ∃ i', ⊥ ≤ f ↑i'
[PROOFSTEP]
exact ⟨⟨i₀, hi₀⟩, bot_le⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ι → α
htriv : ¬∀ (i : ι), f i = ⊥
i : ι
hi : ¬f i = ⊥
⊢ ∃ i', f i ≤ f ↑i'
[PROOFSTEP]
exact ⟨⟨i, hi⟩, rfl.le⟩
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t✝ : ι → α
a b : α
f : β → γ → α
s : Set β
t : Set γ
⊢ sSup (image2 f s t) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f a b
[PROOFSTEP]
rw [← image_prod, sSup_image, biSup_prod]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s✝ t✝ : ι → α
a b : α
f : β → γ → α
s : Set β
t : Set γ
⊢ sInf (image2 f s t) = ⨅ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f a b
[PROOFSTEP]
rw [← image_prod, sInf_image, biInf_prod]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n : ℕ
⊢ ⨆ (i : ℕ) (_ : i ≥ n), u i = ⨆ (i : ℕ), u (i + n)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n : ℕ
⊢ ⨆ (i : ℕ) (_ : i ≥ n), u i ≤ ⨆ (i : ℕ), u (i + n)
[PROOFSTEP]
simp only [iSup_le_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n : ℕ
⊢ ⨆ (i : ℕ), u (i + n) ≤ ⨆ (i : ℕ) (_ : i ≥ n), u i
[PROOFSTEP]
simp only [iSup_le_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n : ℕ
⊢ ∀ (i : ℕ), i ≥ n → u i ≤ ⨆ (i : ℕ), u (i + n)
[PROOFSTEP]
refine fun i hi => le_sSup ⟨i - n, ?_⟩
[GOAL]
case a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n i : ℕ
hi : i ≥ n
⊢ (fun i => u (i + n)) (i - n) = u i
[PROOFSTEP]
dsimp only
[GOAL]
case a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n i : ℕ
hi : i ≥ n
⊢ u (i - n + n) = u i
[PROOFSTEP]
rw [Nat.sub_add_cancel hi]
[GOAL]
case a
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
n : ℕ
⊢ ∀ (i : ℕ), u (i + n) ≤ ⨆ (i : ℕ) (_ : i ≥ n), u i
[PROOFSTEP]
exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ℕ → α
k : ℕ
⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f i
[PROOFSTEP]
have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => biInf_mono fun i => h.trans
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ℕ → α
k : ℕ
hf : Monotone fun n => ⨅ (i : ℕ) (_ : i ≥ n), f i
⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f i
[PROOFSTEP]
rw [← Monotone.iSup_nat_add hf k]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ℕ → α
k : ℕ
hf : Monotone fun n => ⨅ (i : ℕ) (_ : i ≥ n), f i
⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n + k), f i
[PROOFSTEP]
simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
⊢ u 0 ⊔ ⨆ (i : ℕ), u (i + 1) = ⨆ (x : ℕ) (_ : x ∈ {0} ∪ range Nat.succ), u x
[PROOFSTEP]
{rw [iSup_union, iSup_singleton, iSup_range]
}
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
⊢ u 0 ⊔ ⨆ (i : ℕ), u (i + 1) = ⨆ (x : ℕ) (_ : x ∈ {0} ∪ range Nat.succ), u x
[PROOFSTEP]
rw [iSup_union, iSup_singleton, iSup_range]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f g s t : ι → α
a b : α
u : ℕ → α
⊢ ⨆ (x : ℕ) (_ : x ∈ {0} ∪ range Nat.succ), u x = ⨆ (i : ℕ), u i
[PROOFSTEP]
rw [Nat.zero_union_range_succ, iSup_univ]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ℕ → α
⊢ ⨅ (i : ℕ) (_ : i > 0), f i = ⨅ (i : ℕ), f (i + 1)
[PROOFSTEP]
rw [← iInf_range, Nat.range_succ]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
f : ℕ → α
⊢ ⨅ (i : ℕ) (_ : i > 0), f i = ⨅ (b : ℕ) (_ : b ∈ {i | 0 < i}), f b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLinearOrder α
f : ι → α
⊢ iSup f = ⊤ ↔ ∀ (b : α), b < ⊤ → ∃ i, b < f i
[PROOFSTEP]
simp only [← sSup_range, sSup_eq_top, Set.exists_range_iff]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLinearOrder α
f : ι → α
⊢ iInf f = ⊥ ↔ ∀ (b : α), b > ⊥ → ∃ i, f i < b
[PROOFSTEP]
simp only [← sInf_range, sInf_eq_bot, Set.exists_range_iff]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
β₂ : Type u_3
γ : Type u_4
ι✝ : Sort u_5
ι' : Sort u_6
κ : ι✝ → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
β : α → Type u_10
ι : Sort u_11
inst✝ : (i : α) → SupSet (β i)
f : ι → (a : α) → β a
a : α
⊢ iSup (fun i => f i) a = ⨆ (i : ι), f i a
[PROOFSTEP]
rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ← range_comp]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
β₂ : Type u_3
γ : Type u_4
ι✝ : Sort u_5
ι' : Sort u_6
κ : ι✝ → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
β : α → Type u_10
ι : Sort u_11
inst✝ : (i : α) → SupSet (β i)
f : ι → (a : α) → β a
a : α
⊢ sSup (range ((fun f => f a) ∘ f)) = sSup (range fun i => f i a)
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
s : Set (α → Prop)
a : α
⊢ sSup s a ↔ ∃ r, r ∈ s ∧ r a
[PROOFSTEP]
rw [sSup_apply]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
s : Set (α → Prop)
a : α
⊢ ⨆ (f : ↑s), ↑f a ↔ ∃ r, r ∈ s ∧ r a
[PROOFSTEP]
simp [← eq_iff_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
s : Set (α → Prop)
a : α
⊢ sInf s a ↔ ∀ (r : α → Prop), r ∈ s → r a
[PROOFSTEP]
rw [sInf_apply]
[GOAL]
α✝ : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
s : Set (α → Prop)
a : α
⊢ ⨅ (f : ↑s), ↑f a ↔ ∀ (r : α → Prop), r ∈ s → r a
[PROOFSTEP]
simp [← eq_iff_iff]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
β : Type u_10
s : Set (α → β → Prop)
a : α
b : β
⊢ sSup s a b ↔ ∃ r, r ∈ s ∧ r a b
[PROOFSTEP]
rw [sSup_apply]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
β : Type u_10
s : Set (α → β → Prop)
a : α
b : β
⊢ iSup (fun f => ↑f a) b ↔ ∃ r, r ∈ s ∧ r a b
[PROOFSTEP]
simp [← eq_iff_iff]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
β : Type u_10
s : Set (α → β → Prop)
a : α
b : β
⊢ sInf s a b ↔ ∀ (r : α → β → Prop), r ∈ s → r a b
[PROOFSTEP]
rw [sInf_apply]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
α : Type u_9
β : Type u_10
s : Set (α → β → Prop)
a : α
b : β
⊢ iInf (fun f => ↑f a) b ↔ ∀ (r : α → β → Prop), r ∈ s → r a b
[PROOFSTEP]
simp [← eq_iff_iff]
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : InfSet α
inst✝ : InfSet β
f : ι → α × β
⊢ swap (iInf f) = ⨅ (i : ι), swap (f i)
[PROOFSTEP]
simp_rw [iInf, swap_sInf, ← range_comp, Function.comp]
-- Porting note: need to unfold `∘`
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝¹ : SupSet α
inst✝ : SupSet β
f : ι → α × β
⊢ swap (iSup f) = ⨆ (i : ι), swap (f i)
[PROOFSTEP]
simp_rw [iSup, swap_sSup, ← range_comp, Function.comp]
-- Porting note: need to unfold `∘`
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
s : Set (ULift α)
⊢ (sSup s).down = ⨆ (a : ULift α) (_ : a ∈ s), a.down
[PROOFSTEP]
rw [sSup_eq_iSup', down_iSup, iSup_subtype'']
[GOAL]
α : Type u_1
β : Type u_2
β₂ : Type u_3
γ : Type u_4
ι : Sort u_5
ι' : Sort u_6
κ : ι → Sort u_7
κ' : ι' → Sort u_8
inst✝ : CompleteLattice α
s : Set (ULift α)
⊢ (sInf s).down = ⨅ (a : ULift α) (_ : a ∈ s), a.down
[PROOFSTEP]
rw [sInf_eq_iInf', down_iInf, iInf_subtype'']
| {"mathlib_filename": "Mathlib.Order.CompleteLattice", "llama_tokens": 24681} |
{"mathlib_filename": "Mathlib.Order.KrullDimension", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
finsetIcc : α → α → Finset α
mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b
a b x : α
⊢ x ∈ (fun a b => filter (fun x => ¬b ≤ x) (finsetIcc a b)) a b ↔ a ≤ x ∧ x < b
[PROOFSTEP]
rw [Finset.mem_filter, mem_Icc, and_assoc, lt_iff_le_not_le]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
finsetIcc : α → α → Finset α
mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b
a b x : α
⊢ x ∈ (fun a b => filter (fun x => ¬x ≤ a) (finsetIcc a b)) a b ↔ a < x ∧ x ≤ b
[PROOFSTEP]
rw [Finset.mem_filter, mem_Icc, and_right_comm, lt_iff_le_not_le]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
finsetIcc : α → α → Finset α
mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b
a b x : α
⊢ x ∈ (fun a b => filter (fun x => ¬x ≤ a ∧ ¬b ≤ x) (finsetIcc a b)) a b ↔ a < x ∧ x < b
[PROOFSTEP]
rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_not_le, lt_iff_le_not_le]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : DecidableEq α
finsetIcc : α → α → Finset α
mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b
a b x : α
⊢ x ∈ (fun a b => filter (fun x => x ≠ b) (finsetIcc a b)) a b ↔ a ≤ x ∧ x < b
[PROOFSTEP]
rw [Finset.mem_filter, mem_Icc, and_assoc, lt_iff_le_and_ne]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : DecidableEq α
finsetIcc : α → α → Finset α
mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b
a b x : α
⊢ x ∈ (fun a b => filter (fun x => a ≠ x) (finsetIcc a b)) a b ↔ a < x ∧ x ≤ b
[PROOFSTEP]
rw [Finset.mem_filter, mem_Icc, and_right_comm, lt_iff_le_and_ne]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : DecidableEq α
finsetIcc : α → α → Finset α
mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b
a b x : α
⊢ x ∈ (fun a b => filter (fun x => a ≠ x ∧ x ≠ b) (finsetIcc a b)) a b ↔ a < x ∧ x < b
[PROOFSTEP]
rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_and_ne, lt_iff_le_and_ne]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
finsetIci : α → Finset α
mem_Ici : ∀ (a x : α), x ∈ finsetIci a ↔ a ≤ x
a x : α
⊢ x ∈ (fun a => filter (fun x => ¬x ≤ a) (finsetIci a)) a ↔ a < x
[PROOFSTEP]
rw [mem_filter, mem_Ici, lt_iff_le_not_le]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : DecidableEq α
finsetIci : α → Finset α
mem_Ici : ∀ (a x : α), x ∈ finsetIci a ↔ a ≤ x
a x : α
⊢ x ∈ (fun a => filter (fun x => a ≠ x) (finsetIci a)) a ↔ a < x
[PROOFSTEP]
rw [mem_filter, mem_Ici, lt_iff_le_and_ne]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
finsetIic : α → Finset α
mem_Iic : ∀ (a x : α), x ∈ finsetIic a ↔ x ≤ a
a x : α
⊢ x ∈ (fun a => filter (fun x => ¬a ≤ x) (finsetIic a)) a ↔ x < a
[PROOFSTEP]
rw [mem_filter, mem_Iic, lt_iff_le_not_le]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : DecidableEq α
finsetIic : α → Finset α
mem_Iic : ∀ (a x : α), x ∈ finsetIic a ↔ x ≤ a
a x : α
⊢ x ∈ (fun a => filter (fun x => x ≠ a) (finsetIic a)) a ↔ x < a
[PROOFSTEP]
rw [mem_filter, mem_Iic, lt_iff_le_and_ne]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : LocallyFiniteOrder α
inst✝ : OrderTop α
a✝ x✝ a x : α
⊢ x ∈ (fun b => Icc b ⊤) a ↔ a ≤ x
[PROOFSTEP]
rw [mem_Icc, and_iff_left le_top]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : LocallyFiniteOrder α
inst✝ : OrderTop α
a✝ x✝ a x : α
⊢ x ∈ (fun b => Ioc b ⊤) a ↔ a < x
[PROOFSTEP]
rw [mem_Ioc, and_iff_left le_top]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : LocallyFiniteOrder α
b x✝ a x : α
⊢ x ∈ Icc ⊥ a ↔ x ≤ a
[PROOFSTEP]
rw [mem_Icc, and_iff_right bot_le]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : LocallyFiniteOrder α
b x✝ a x : α
⊢ x ∈ Ico ⊥ a ↔ x < a
[PROOFSTEP]
rw [mem_Ico, and_iff_right bot_le]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrder α
a b x : α
⊢ x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
rw [Icc, ← Finset.mem_def, Finset.mem_Icc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrder α
a b x : α
⊢ x ∈ Ico a b ↔ a ≤ x ∧ x < b
[PROOFSTEP]
rw [Ico, ← Finset.mem_def, Finset.mem_Ico]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrder α
a b x : α
⊢ x ∈ Ioc a b ↔ a < x ∧ x ≤ b
[PROOFSTEP]
rw [Ioc, ← Finset.mem_def, Finset.mem_Ioc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrder α
a b x : α
⊢ x ∈ Ioo a b ↔ a < x ∧ x < b
[PROOFSTEP]
rw [Ioo, ← Finset.mem_def, Finset.mem_Ioo]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
a x : α
⊢ x ∈ Ici a ↔ a ≤ x
[PROOFSTEP]
rw [Ici, ← Finset.mem_def, Finset.mem_Ici]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
a x : α
⊢ x ∈ Ioi a ↔ a < x
[PROOFSTEP]
rw [Ioi, ← Finset.mem_def, Finset.mem_Ioi]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
b x : α
⊢ x ∈ Iic b ↔ x ≤ b
[PROOFSTEP]
rw [Iic, ← Finset.mem_def, Finset.mem_Iic]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
b x : α
⊢ x ∈ Iio b ↔ x < b
[PROOFSTEP]
rw [Iio, ← Finset.mem_def, Finset.mem_Iio]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h : ∀ (a b : α), Set.Finite (Set.Icc a b)
a b x : α
⊢ x ∈ (fun a b => Set.Finite.toFinset (_ : Set.Finite (Set.Icc a b))) a b ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
rw [Set.Finite.mem_toFinset, Set.mem_Icc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Fintype α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a b x : α
⊢ x ∈ (fun a b => Set.toFinset (Set.Icc a b)) a b ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
simp only [Set.mem_toFinset, Set.mem_Icc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Fintype α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a b x : α
⊢ x ∈ (fun a b => Set.toFinset (Set.Ico a b)) a b ↔ a ≤ x ∧ x < b
[PROOFSTEP]
simp only [Set.mem_toFinset, Set.mem_Ico]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Fintype α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a b x : α
⊢ x ∈ (fun a b => Set.toFinset (Set.Ioc a b)) a b ↔ a < x ∧ x ≤ b
[PROOFSTEP]
simp only [Set.mem_toFinset, Set.mem_Ioc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Fintype α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a b x : α
⊢ x ∈ (fun a b => Set.toFinset (Set.Ioo a b)) a b ↔ a < x ∧ x < b
[PROOFSTEP]
simp only [Set.mem_toFinset, Set.mem_Ioo]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀ h₁ : LocallyFiniteOrder α
⊢ h₀ = h₁
[PROOFSTEP]
cases' h₀ with h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo h₀_finset_mem_Icc h₀_finset_mem_Ico
h₀_finset_mem_Ioc h₀_finset_mem_Ioo
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₁ : LocallyFiniteOrder α
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo,
finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc,
finset_mem_Ioo := h₀_finset_mem_Ioo } =
h₁
[PROOFSTEP]
cases' h₁ with h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo h₁_finset_mem_Icc h₁_finset_mem_Ico
h₁_finset_mem_Ioc h₁_finset_mem_Ioo
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo,
finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc,
finset_mem_Ioo := h₀_finset_mem_Ioo } =
{ finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo,
finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc,
finset_mem_Ioo := h₁_finset_mem_Ioo }
[PROOFSTEP]
have hIcc : h₀_finset_Icc = h₁_finset_Icc := by
ext a b x
rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
⊢ h₀_finset_Icc = h₁_finset_Icc
[PROOFSTEP]
ext a b x
[GOAL]
case h.h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
a b x : α
⊢ x ∈ h₀_finset_Icc a b ↔ x ∈ h₁_finset_Icc a b
[PROOFSTEP]
rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo,
finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc,
finset_mem_Ioo := h₀_finset_mem_Ioo } =
{ finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo,
finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc,
finset_mem_Ioo := h₁_finset_mem_Ioo }
[PROOFSTEP]
have hIco : h₀_finset_Ico = h₁_finset_Ico := by
ext a b x
rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
⊢ h₀_finset_Ico = h₁_finset_Ico
[PROOFSTEP]
ext a b x
[GOAL]
case h.h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
a b x : α
⊢ x ∈ h₀_finset_Ico a b ↔ x ∈ h₁_finset_Ico a b
[PROOFSTEP]
rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo,
finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc,
finset_mem_Ioo := h₀_finset_mem_Ioo } =
{ finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo,
finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc,
finset_mem_Ioo := h₁_finset_mem_Ioo }
[PROOFSTEP]
have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by
ext a b x
rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
⊢ h₀_finset_Ioc = h₁_finset_Ioc
[PROOFSTEP]
ext a b x
[GOAL]
case h.h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
a b x : α
⊢ x ∈ h₀_finset_Ioc a b ↔ x ∈ h₁_finset_Ioc a b
[PROOFSTEP]
rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
hIoc : h₀_finset_Ioc = h₁_finset_Ioc
⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo,
finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc,
finset_mem_Ioo := h₀_finset_mem_Ioo } =
{ finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo,
finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc,
finset_mem_Ioo := h₁_finset_mem_Ioo }
[PROOFSTEP]
have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by
ext a b x
rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
hIoc : h₀_finset_Ioc = h₁_finset_Ioc
⊢ h₀_finset_Ioo = h₁_finset_Ioo
[PROOFSTEP]
ext a b x
[GOAL]
case h.h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
hIoc : h₀_finset_Ioc = h₁_finset_Ioc
a b x : α
⊢ x ∈ h₀_finset_Ioo a b ↔ x ∈ h₁_finset_Ioo a b
[PROOFSTEP]
rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α
h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b
h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b
h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α
h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b
h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b
h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b
h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b
hIcc : h₀_finset_Icc = h₁_finset_Icc
hIco : h₀_finset_Ico = h₁_finset_Ico
hIoc : h₀_finset_Ioc = h₁_finset_Ioc
hIoo : h₀_finset_Ioo = h₁_finset_Ioo
⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo,
finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc,
finset_mem_Ioo := h₀_finset_mem_Ioo } =
{ finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo,
finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc,
finset_mem_Ioo := h₁_finset_mem_Ioo }
[PROOFSTEP]
simp_rw [hIcc, hIco, hIoc, hIoo]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀ h₁ : LocallyFiniteOrderTop α
⊢ h₀ = h₁
[PROOFSTEP]
cases' h₀ with h₀_finset_Ioi h₀_finset_Ici h₀_finset_mem_Ici h₀_finset_mem_Ioi
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₁ : LocallyFiniteOrderTop α
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici,
finset_mem_Ioi := h₀_finset_mem_Ioi } =
h₁
[PROOFSTEP]
cases' h₁ with h₁_finset_Ioi h₁_finset_Ici h₁_finset_mem_Ici h₁_finset_mem_Ioi
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici,
finset_mem_Ioi := h₀_finset_mem_Ioi } =
{ finsetIoi := h₁_finset_Ioi, finsetIci := h₁_finset_Ici, finset_mem_Ici := h₁_finset_mem_Ici,
finset_mem_Ioi := h₁_finset_mem_Ioi }
[PROOFSTEP]
have hIci : h₀_finset_Ici = h₁_finset_Ici := by
ext a b
rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
⊢ h₀_finset_Ici = h₁_finset_Ici
[PROOFSTEP]
ext a b
[GOAL]
case h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
a b : α
⊢ b ∈ h₀_finset_Ici a ↔ b ∈ h₁_finset_Ici a
[PROOFSTEP]
rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
hIci : h₀_finset_Ici = h₁_finset_Ici
⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici,
finset_mem_Ioi := h₀_finset_mem_Ioi } =
{ finsetIoi := h₁_finset_Ioi, finsetIci := h₁_finset_Ici, finset_mem_Ici := h₁_finset_mem_Ici,
finset_mem_Ioi := h₁_finset_mem_Ioi }
[PROOFSTEP]
have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by
ext a b
rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
hIci : h₀_finset_Ici = h₁_finset_Ici
⊢ h₀_finset_Ioi = h₁_finset_Ioi
[PROOFSTEP]
ext a b
[GOAL]
case h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
hIci : h₀_finset_Ici = h₁_finset_Ici
a b : α
⊢ b ∈ h₀_finset_Ioi a ↔ b ∈ h₁_finset_Ioi a
[PROOFSTEP]
rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Ioi h₀_finset_Ici : α → Finset α
h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x
h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x
h₁_finset_Ioi h₁_finset_Ici : α → Finset α
h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x
h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x
hIci : h₀_finset_Ici = h₁_finset_Ici
hIoi : h₀_finset_Ioi = h₁_finset_Ioi
⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici,
finset_mem_Ioi := h₀_finset_mem_Ioi } =
{ finsetIoi := h₁_finset_Ioi, finsetIci := h₁_finset_Ici, finset_mem_Ici := h₁_finset_mem_Ici,
finset_mem_Ioi := h₁_finset_mem_Ioi }
[PROOFSTEP]
simp_rw [hIci, hIoi]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀ h₁ : LocallyFiniteOrderBot α
⊢ h₀ = h₁
[PROOFSTEP]
cases' h₀ with h₀_finset_Iio h₀_finset_Iic h₀_finset_mem_Iic h₀_finset_mem_Iio
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₁ : LocallyFiniteOrderBot α
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic,
finset_mem_Iio := h₀_finset_mem_Iio } =
h₁
[PROOFSTEP]
cases' h₁ with h₁_finset_Iio h₁_finset_Iic h₁_finset_mem_Iic h₁_finset_mem_Iio
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic,
finset_mem_Iio := h₀_finset_mem_Iio } =
{ finsetIio := h₁_finset_Iio, finsetIic := h₁_finset_Iic, finset_mem_Iic := h₁_finset_mem_Iic,
finset_mem_Iio := h₁_finset_mem_Iio }
[PROOFSTEP]
have hIic : h₀_finset_Iic = h₁_finset_Iic := by
ext a b
rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
⊢ h₀_finset_Iic = h₁_finset_Iic
[PROOFSTEP]
ext a b
[GOAL]
case h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
a b : α
⊢ b ∈ h₀_finset_Iic a ↔ b ∈ h₁_finset_Iic a
[PROOFSTEP]
rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
hIic : h₀_finset_Iic = h₁_finset_Iic
⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic,
finset_mem_Iio := h₀_finset_mem_Iio } =
{ finsetIio := h₁_finset_Iio, finsetIic := h₁_finset_Iic, finset_mem_Iic := h₁_finset_mem_Iic,
finset_mem_Iio := h₁_finset_mem_Iio }
[PROOFSTEP]
have hIio : h₀_finset_Iio = h₁_finset_Iio := by
ext a b
rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
hIic : h₀_finset_Iic = h₁_finset_Iic
⊢ h₀_finset_Iio = h₁_finset_Iio
[PROOFSTEP]
ext a b
[GOAL]
case h.a
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
hIic : h₀_finset_Iic = h₁_finset_Iic
a b : α
⊢ b ∈ h₀_finset_Iio a ↔ b ∈ h₁_finset_Iio a
[PROOFSTEP]
rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio]
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
h₀_finset_Iio h₀_finset_Iic : α → Finset α
h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a
h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a
h₁_finset_Iio h₁_finset_Iic : α → Finset α
h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a
h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a
hIic : h₀_finset_Iic = h₁_finset_Iic
hIio : h₀_finset_Iio = h₁_finset_Iio
⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic,
finset_mem_Iio := h₀_finset_mem_Iio } =
{ finsetIio := h₁_finset_Iio, finsetIic := h₁_finset_Iic, finset_mem_Iic := h₁_finset_mem_Iic,
finset_mem_Iio := h₁_finset_mem_Iio }
[PROOFSTEP]
simp_rw [hIic, hIio]
-- Should this be called `LocallyFiniteOrder.lift`?
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ↪o β
a b x : α
⊢ x ∈ (fun a b => preimage (Icc (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Icc (↑f a) (↑f b))))) a b ↔
a ≤ x ∧ x ≤ b
[PROOFSTEP]
rw [mem_preimage, mem_Icc, f.le_iff_le, f.le_iff_le]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ↪o β
a b x : α
⊢ x ∈ (fun a b => preimage (Ico (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Ico (↑f a) (↑f b))))) a b ↔
a ≤ x ∧ x < b
[PROOFSTEP]
rw [mem_preimage, mem_Ico, f.le_iff_le, f.lt_iff_lt]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ↪o β
a b x : α
⊢ x ∈ (fun a b => preimage (Ioc (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Ioc (↑f a) (↑f b))))) a b ↔
a < x ∧ x ≤ b
[PROOFSTEP]
rw [mem_preimage, mem_Ioc, f.lt_iff_lt, f.le_iff_le]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ↪o β
a b x : α
⊢ x ∈ (fun a b => preimage (Ioo (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Ioo (↑f a) (↑f b))))) a b ↔
a < x ∧ x < b
[PROOFSTEP]
rw [mem_preimage, mem_Ioo, f.lt_iff_lt, f.lt_iff_lt]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Icc (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Icc b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Icc (↑toDual a) (↑toDual b) = Icc b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ c ∈ Icc (↑toDual a) (↑toDual b) ↔ c ∈ Icc b a
[PROOFSTEP]
rw [mem_Icc, mem_Icc (α := α)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ ↑toDual a ≤ c ∧ c ≤ ↑toDual b ↔ b ≤ c ∧ c ≤ a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Ico (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Ioc b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Ico (↑toDual a) (↑toDual b) = Ioc b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ c ∈ Ico (↑toDual a) (↑toDual b) ↔ c ∈ Ioc b a
[PROOFSTEP]
rw [mem_Ico, mem_Ioc (α := α)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ ↑toDual a ≤ c ∧ c < ↑toDual b ↔ b < c ∧ c ≤ a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Ioc (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Ico b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Ioc (↑toDual a) (↑toDual b) = Ico b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ c ∈ Ioc (↑toDual a) (↑toDual b) ↔ c ∈ Ico b a
[PROOFSTEP]
rw [mem_Ioc, mem_Ico (α := α)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ ↑toDual a < c ∧ c ≤ ↑toDual b ↔ b ≤ c ∧ c < a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Ioo (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Ioo b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
⊢ Ioo (↑toDual a) (↑toDual b) = Ioo b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ c ∈ Ioo (↑toDual a) (↑toDual b) ↔ c ∈ Ioo b a
[PROOFSTEP]
rw [mem_Ioo, mem_Ioo (α := α)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a b : α
c : (fun x => αᵒᵈ) a
⊢ ↑toDual a < c ∧ c < ↑toDual b ↔ b < c ∧ c < a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Icc (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Icc b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Icc (↑ofDual a) (↑ofDual b) = Icc b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ c ∈ Icc (↑ofDual a) (↑ofDual b) ↔ c ∈ Icc b a
[PROOFSTEP]
rw [mem_Icc, mem_Icc (α := αᵒᵈ)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ ↑ofDual a ≤ c ∧ c ≤ ↑ofDual b ↔ b ≤ c ∧ c ≤ a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Ico (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Ioc b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Ico (↑ofDual a) (↑ofDual b) = Ioc b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ c ∈ Ico (↑ofDual a) (↑ofDual b) ↔ c ∈ Ioc b a
[PROOFSTEP]
rw [mem_Ico, mem_Ioc (α := αᵒᵈ)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ ↑ofDual a ≤ c ∧ c < ↑ofDual b ↔ b < c ∧ c ≤ a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Ioc (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Ico b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Ioc (↑ofDual a) (↑ofDual b) = Ico b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ c ∈ Ioc (↑ofDual a) (↑ofDual b) ↔ c ∈ Ico b a
[PROOFSTEP]
rw [mem_Ioc, mem_Ico (α := αᵒᵈ)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ ↑ofDual a < c ∧ c ≤ ↑ofDual b ↔ b ≤ c ∧ c < a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Ioo (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Ioo b a)
[PROOFSTEP]
refine' Eq.trans _ map_refl.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
⊢ Ioo (↑ofDual a) (↑ofDual b) = Ioo b a
[PROOFSTEP]
ext c
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ c ∈ Ioo (↑ofDual a) (↑ofDual b) ↔ c ∈ Ioo b a
[PROOFSTEP]
rw [mem_Ioo, mem_Ioo (α := αᵒᵈ)]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder α
a✝ b✝ : α
a b : αᵒᵈ
c : (fun x => α) a
⊢ ↑ofDual a < c ∧ c < ↑ofDual b ↔ b < c ∧ c < a
[PROOFSTEP]
exact and_comm
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : LocallyFiniteOrder α
inst✝¹ : LocallyFiniteOrder β
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a b x : α × β
⊢ x ∈ (fun a b => Icc a.fst b.fst ×ˢ Icc a.snd b.snd) a b ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
rw [mem_product, mem_Icc, mem_Icc, and_and_and_comm]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : LocallyFiniteOrder α
inst✝¹ : LocallyFiniteOrder β
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a b x : α × β
⊢ (a.fst ≤ x.fst ∧ a.snd ≤ x.snd) ∧ x.fst ≤ b.fst ∧ x.snd ≤ b.snd ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : LocallyFiniteOrderTop α
inst✝¹ : LocallyFiniteOrderTop β
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a x : α × β
⊢ x ∈ (fun a => Ici a.fst ×ˢ Ici a.snd) a ↔ a ≤ x
[PROOFSTEP]
rw [mem_product, mem_Ici, mem_Ici]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : LocallyFiniteOrderTop α
inst✝¹ : LocallyFiniteOrderTop β
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a x : α × β
⊢ a.fst ≤ x.fst ∧ a.snd ≤ x.snd ↔ a ≤ x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : LocallyFiniteOrderBot α
inst✝¹ : LocallyFiniteOrderBot β
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a x : α × β
⊢ x ∈ (fun a => Iic a.fst ×ˢ Iic a.snd) a ↔ x ≤ a
[PROOFSTEP]
rw [mem_product, mem_Iic, mem_Iic]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : LocallyFiniteOrderBot α
inst✝¹ : LocallyFiniteOrderBot β
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
a x : α × β
⊢ x.fst ≤ a.fst ∧ x.snd ≤ a.snd ↔ x ≤ a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
x : α
p : α → Prop
⊢ (∃ a, p a ∧ Option.some a = Option.some x) ↔ p x
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
x : α
p : α → Prop
⊢ (∃ a, p a ∧ Option.some a = Option.some x) → p x
[PROOFSTEP]
rintro ⟨x', hx, hx'⟩
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
x : α
p : α → Prop
x' : α
hx : p x'
hx' : Option.some x' = Option.some x
⊢ p x
[PROOFSTEP]
obtain rfl := Option.some_inj.mp hx'
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
p : α → Prop
x' : α
hx : p x'
hx' : Option.some x' = Option.some x'
⊢ p x'
[PROOFSTEP]
exact hx
[GOAL]
case mpr
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
x : α
p : α → Prop
⊢ p x → ∃ a, p a ∧ Option.some a = Option.some x
[PROOFSTEP]
exact fun h => ⟨x, h, rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x : WithTop α
a : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, none => {⊤}
| none, Option.some b => ∅
| Option.some a, none => ↑insertNone (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Icc a b))
↑a ⊤ ↔
↑a ≤ ⊤ ∧ ⊤ ≤ ⊤
[PROOFSTEP]
simp [WithTop.some, WithTop.top, insertNone]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x✝ : WithTop α
a x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, none => {⊤}
| none, Option.some b => ∅
| Option.some a, none => ↑insertNone (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Icc a b))
↑a ⊤ ↔
↑a ≤ ↑x ∧ ↑x ≤ ⊤
[PROOFSTEP]
simp only [some, le_eq_subset, some_le_some, le_top, and_true]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x✝ : WithTop α
a x : α
⊢ Option.some x ∈ ↑insertNone (Ici a) ↔ a ≤ x
[PROOFSTEP]
rw [some_mem_insertNone]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x✝ : WithTop α
a x : α
⊢ x ∈ Ici a ↔ a ≤ x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x : WithTop α
a b : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, none => {⊤}
| none, Option.some b => ∅
| Option.some a, none => ↑insertNone (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Icc a b))
↑a ↑b ↔
↑a ≤ ⊤ ∧ ⊤ ≤ ↑b
[PROOFSTEP]
simp only [some, le_eq_subset, mem_map, mem_Icc, le_top, top_le_iff, and_false, iff_false, not_exists, not_and, and_imp,
Embedding.some, forall_const]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x✝ : WithTop α
a b x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, none => {⊤}
| none, Option.some b => ∅
| Option.some a, none => ↑insertNone (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Icc a b))
↑a ↑b ↔
↑a ≤ ↑x ∧ ↑x ≤ ↑b
[PROOFSTEP]
simp only [some, le_eq_subset, Embedding.some, mem_map, mem_Icc, Embedding.coeFn_mk, some_le_some, aux]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x : WithTop α
a : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ico a b))
↑a ⊤ ↔
↑a ≤ ⊤ ∧ ⊤ < ⊤
[PROOFSTEP]
simp [some, Embedding.some]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x✝ : WithTop α
a x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ico a b))
↑a ⊤ ↔
↑a ≤ ↑x ∧ ↑x < ⊤
[PROOFSTEP]
simp only [some, Embedding.some, mem_map, mem_Ici, Embedding.coeFn_mk, some_le_some, aux, top, some_lt_none, and_true]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x : WithTop α
a b : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ico a b))
↑a ↑b ↔
↑a ≤ ⊤ ∧ ⊤ < ↑b
[PROOFSTEP]
simp [some, Embedding.some]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x✝ : WithTop α
a b x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ici a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ico a b))
↑a ↑b ↔
↑a ≤ ↑x ∧ ↑x < ↑b
[PROOFSTEP]
simp [some, Embedding.some, aux]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x : WithTop α
a : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => ↑insertNone (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b))
↑a ⊤ ↔
↑a < ⊤ ∧ ⊤ ≤ ⊤
[PROOFSTEP]
simp [some, insertNone, top]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x✝ : WithTop α
a x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => ↑insertNone (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b))
↑a ⊤ ↔
↑a < ↑x ∧ ↑x ≤ ⊤
[PROOFSTEP]
simp [some, Embedding.some, insertNone, aux]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x : WithTop α
a b : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => ↑insertNone (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b))
↑a ↑b ↔
↑a < ⊤ ∧ ⊤ ≤ ↑b
[PROOFSTEP]
simp [some, Embedding.some, insertNone]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x✝ : WithTop α
a b x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => ↑insertNone (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b))
↑a ↑b ↔
↑a < ↑x ∧ ↑x ≤ ↑b
[PROOFSTEP]
simp [some, Embedding.some, insertNone, aux]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x : WithTop α
a : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b))
↑a ⊤ ↔
↑a < ⊤ ∧ ⊤ < ⊤
[PROOFSTEP]
simp [some, Embedding.some, insertNone]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b x✝ : WithTop α
a x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b))
↑a ⊤ ↔
↑a < ↑x ∧ ↑x < ⊤
[PROOFSTEP]
simp [some, Embedding.some, insertNone, aux, top]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x : WithTop α
a b : α
⊢ ⊤ ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b))
↑a ↑b ↔
↑a < ⊤ ∧ ⊤ < ↑b
[PROOFSTEP]
simp [some, Embedding.some, insertNone]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : LocallyFiniteOrder α
a✝ b✝ x✝ : WithTop α
a b x : α
⊢ ↑x ∈
(fun a b =>
match a, b with
| none, x => ∅
| Option.some a, none => Finset.map Embedding.some (Ioi a)
| Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b))
↑a ↑b ↔
↑a < ↑x ∧ ↑x < ↑b
[PROOFSTEP]
simp [some, Embedding.some, insertNone, aux]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ≃o β
⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Icc (↑f a) (↑f b))) a b ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ≃o β
⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Ico (↑f a) (↑f b))) a b ↔ a ≤ x ∧ x < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ≃o β
⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Ioc (↑f a) (↑f b))) a b ↔ a < x ∧ x ≤ b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrder β
f : α ≃o β
⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Ioo (↑f a) (↑f b))) a b ↔ a < x ∧ x < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrderTop β
f : α ≃o β
⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Ici (↑f a))) a ↔ a ≤ x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrderTop β
f : α ≃o β
⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Ioi (↑f a))) a ↔ a < x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrderBot β
f : α ≃o β
⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Iic (↑f a))) a ↔ x ≤ a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : LocallyFiniteOrderBot β
f : α ≃o β
⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Iio (↑f a))) a ↔ x < a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b x : Subtype p
⊢ x ∈ (fun a b => Finset.subtype p (Icc ↑a ↑b)) a b ↔ a ≤ x ∧ x ≤ b
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Icc, Subtype.coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b x : Subtype p
⊢ x ∈ (fun a b => Finset.subtype p (Ico ↑a ↑b)) a b ↔ a ≤ x ∧ x < b
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Ico, Subtype.coe_le_coe, Subtype.coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b x : Subtype p
⊢ x ∈ (fun a b => Finset.subtype p (Ioc ↑a ↑b)) a b ↔ a < x ∧ x ≤ b
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Ioc, Subtype.coe_le_coe, Subtype.coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b x : Subtype p
⊢ x ∈ (fun a b => Finset.subtype p (Ioo ↑a ↑b)) a b ↔ a < x ∧ x < b
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Ioo, Subtype.coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderTop α
a x : Subtype p
⊢ x ∈ (fun a => Finset.subtype p (Ici ↑a)) a ↔ a ≤ x
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Ici, Subtype.coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderTop α
a x : Subtype p
⊢ x ∈ (fun a => Finset.subtype p (Ioi ↑a)) a ↔ a < x
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Ioi, Subtype.coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderBot α
a x : Subtype p
⊢ x ∈ (fun a => Finset.subtype p (Iic ↑a)) a ↔ x ≤ a
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Iic, Subtype.coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderBot α
a x : Subtype p
⊢ x ∈ (fun a => Finset.subtype p (Iio ↑a)) a ↔ x < a
[PROOFSTEP]
simp_rw [Finset.mem_subtype, mem_Iio, Subtype.coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Icc a b) = Icc ↑a ↑b
[PROOFSTEP]
rw [subtype_Icc_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Icc ↑a ↑b)) = Icc ↑a ↑b
[PROOFSTEP]
refine' Finset.subtype_map_of_mem fun x hx => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : x ∈ Icc ↑a ↑b
⊢ p x
[PROOFSTEP]
rw [mem_Icc] at hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : ↑a ≤ x ∧ x ≤ ↑b
⊢ p x
[PROOFSTEP]
exact hp hx.1 hx.2 a.prop b.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Ico a b) = Ico ↑a ↑b
[PROOFSTEP]
rw [subtype_Ico_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Ico ↑a ↑b)) = Ico ↑a ↑b
[PROOFSTEP]
refine' Finset.subtype_map_of_mem fun x hx => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : x ∈ Ico ↑a ↑b
⊢ p x
[PROOFSTEP]
rw [mem_Ico] at hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : ↑a ≤ x ∧ x < ↑b
⊢ p x
[PROOFSTEP]
exact hp hx.1 hx.2.le a.prop b.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Ioc a b) = Ioc ↑a ↑b
[PROOFSTEP]
rw [subtype_Ioc_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Ioc ↑a ↑b)) = Ioc ↑a ↑b
[PROOFSTEP]
refine' Finset.subtype_map_of_mem fun x hx => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : x ∈ Ioc ↑a ↑b
⊢ p x
[PROOFSTEP]
rw [mem_Ioc] at hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : ↑a < x ∧ x ≤ ↑b
⊢ p x
[PROOFSTEP]
exact hp hx.1.le hx.2 a.prop b.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Ioo a b) = Ioo ↑a ↑b
[PROOFSTEP]
rw [subtype_Ioo_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Ioo ↑a ↑b)) = Ioo ↑a ↑b
[PROOFSTEP]
refine' Finset.subtype_map_of_mem fun x hx => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : x ∈ Ioo ↑a ↑b
⊢ p x
[PROOFSTEP]
rw [mem_Ioo] at hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrder α
a b : Subtype p
hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x
x : α
hx : ↑a < x ∧ x < ↑b
⊢ p x
[PROOFSTEP]
exact hp hx.1.le hx.2.le a.prop b.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderTop α
a : Subtype p
hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x
⊢ map (Embedding.subtype p) (Ici a) = Ici ↑a
[PROOFSTEP]
rw [subtype_Ici_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderTop α
a : Subtype p
hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Ici ↑a)) = Ici ↑a
[PROOFSTEP]
exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderTop α
a : Subtype p
hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x
⊢ map (Embedding.subtype p) (Ioi a) = Ioi ↑a
[PROOFSTEP]
rw [subtype_Ioi_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderTop α
a : Subtype p
hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Ioi ↑a)) = Ioi ↑a
[PROOFSTEP]
exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderBot α
a : Subtype p
hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x
⊢ map (Embedding.subtype p) (Iic a) = Iic ↑a
[PROOFSTEP]
rw [subtype_Iic_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderBot α
a : Subtype p
hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Iic ↑a)) = Iic ↑a
[PROOFSTEP]
exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderBot α
a : Subtype p
hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x
⊢ map (Embedding.subtype p) (Iio a) = Iio ↑a
[PROOFSTEP]
rw [subtype_Iio_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : LocallyFiniteOrderBot α
a : Subtype p
hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x
⊢ map (Embedding.subtype p) (Finset.subtype p (Iio ↑a)) = Iio ↑a
[PROOFSTEP]
exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : SemilatticeSup α
inst✝¹ : LocallyFiniteOrder α
inst✝ : OrderBot α
h : Set.Finite s
x : α
hx : x ∈ s
⊢ x ∈ Finite.toFinset h
[PROOFSTEP]
simpa
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
⊢ Set.Finite s ↔ BddBelow s ∧ BddAbove s
[PROOFSTEP]
obtain (rfl | hs) := s.eq_empty_or_nonempty
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
⊢ Set.Finite ∅ ↔ BddBelow ∅ ∧ BddAbove ∅
[PROOFSTEP]
simp only [Set.finite_empty, bddBelow_empty, bddAbove_empty, and_self]
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
hs : Set.Nonempty s
⊢ Set.Finite s ↔ BddBelow s ∧ BddAbove s
[PROOFSTEP]
exact
⟨fun h ↦
⟨⟨h.toFinset.inf' (by simpa) id, fun x hx ↦ Finset.inf'_le id (by simpa)⟩,
⟨h.toFinset.sup' (by simpa) id, fun x hx ↦ Finset.le_sup' id (by simpa)⟩⟩,
fun ⟨⟨a, ha⟩, ⟨b, hb⟩⟩ ↦ (Set.finite_Icc a b).subset (fun x hx ↦ ⟨ha hx, hb hx⟩)⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
hs : Set.Nonempty s
h : Set.Finite s
⊢ Finset.Nonempty (Finite.toFinset h)
[PROOFSTEP]
simpa
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
hs : Set.Nonempty s
h : Set.Finite s
x : α
hx : x ∈ s
⊢ x ∈ Finite.toFinset h
[PROOFSTEP]
simpa
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
hs : Set.Nonempty s
h : Set.Finite s
⊢ Finset.Nonempty (Finite.toFinset h)
[PROOFSTEP]
simpa
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁴ : Preorder α✝
p : α✝ → Prop
inst✝³ : DecidablePred p
α : Type u_3
s : Set α
inst✝² : Nonempty α
inst✝¹ : Lattice α
inst✝ : LocallyFiniteOrder α
hs : Set.Nonempty s
h : Set.Finite s
x : α
hx : x ∈ s
⊢ x ∈ Finite.toFinset h
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a : { x // x ≤ y }
⊢ y ≤ y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a : { x // x ≤ y }
⊢ y ≤ y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x ≤ y }
⊢ b ∈ (fun a => Icc a { val := y, property := (_ : y ≤ y) }) a ↔ a ≤ b
[PROOFSTEP]
simp only [Finset.mem_Icc, and_iff_left_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x ≤ y }
⊢ a ≤ b → b ≤ { val := y, property := (_ : y ≤ y) }
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x ≤ y }
⊢ b ∈ (fun a => Ioc a { val := y, property := (_ : y ≤ y) }) a ↔ a < b
[PROOFSTEP]
simp only [Finset.mem_Ioc, and_iff_left_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x ≤ y }
⊢ a < b → b ≤ { val := y, property := (_ : y ≤ y) }
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x < y }
⊢ b ∈ (fun a => Finset.subtype (fun x => x < y) (Ico (↑a) y)) a ↔ a ≤ b
[PROOFSTEP]
simp only [Finset.mem_subtype, Finset.mem_Ico, Subtype.coe_le_coe, and_iff_left_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x < y }
⊢ a ≤ b → ↑b < y
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x < y }
⊢ b ∈ (fun a => Finset.subtype (fun x => x < y) (Ioo (↑a) y)) a ↔ a < b
[PROOFSTEP]
simp only [Finset.mem_subtype, Finset.mem_Ioo, Subtype.coe_lt_coe, and_iff_left_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // x < y }
⊢ a < b → ↑b < y
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a : { x // y ≤ x }
⊢ y ≤ y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a : { x // y ≤ x }
⊢ y ≤ y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y ≤ x }
⊢ b ∈ (fun a => Icc { val := y, property := (_ : y ≤ y) } a) a ↔ b ≤ a
[PROOFSTEP]
simp only [Finset.mem_Icc, and_iff_right_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y ≤ x }
⊢ b ≤ a → { val := y, property := (_ : y ≤ y) } ≤ b
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y ≤ x }
⊢ b ∈ (fun a => Ico { val := y, property := (_ : y ≤ y) } a) a ↔ b < a
[PROOFSTEP]
simp only [Finset.mem_Ico, and_iff_right_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y ≤ x }
⊢ b < a → { val := y, property := (_ : y ≤ y) } ≤ b
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y < x }
⊢ b ∈ (fun a => Finset.subtype (fun x => y < x) (Ioc y ↑a)) a ↔ b ≤ a
[PROOFSTEP]
simp only [Finset.mem_subtype, Finset.mem_Ioc, Subtype.coe_le_coe, and_iff_right_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y < x }
⊢ b ≤ a → y < ↑b
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y < x }
⊢ b ∈ (fun a => Finset.subtype (fun x => y < x) (Ioo y ↑a)) a ↔ b < a
[PROOFSTEP]
simp only [Finset.mem_subtype, Finset.mem_Ioo, Subtype.coe_lt_coe, and_iff_right_iff_imp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Preorder α
p : α → Prop
inst✝³ : DecidablePred p
y : α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : LocallyFiniteOrder α
a b : { x // y < x }
⊢ b < a → y < ↑b
[PROOFSTEP]
exact fun _ => b.property
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
⊢ Finite { x // x ≤ y }
[PROOFSTEP]
apply Set.Finite.to_subtype
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
⊢ Set.Finite fun x => Preorder.toLE.1 x y
[PROOFSTEP]
convert (Finset.Iic y).finite_toSet using 1
[GOAL]
case h.e'_2
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
⊢ (fun x => Preorder.toLE.1 x y) = ↑(Iic y)
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLE.1 x y) ↔ x✝ ∈ ↑(Iic y)
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLE.1 x y) ↔ x✝ ≤ y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
⊢ Finite { x // x < y }
[PROOFSTEP]
apply Set.Finite.to_subtype
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
⊢ Set.Finite fun x => Preorder.toLT.1 x y
[PROOFSTEP]
convert (Finset.Iio y).finite_toSet using 1
[GOAL]
case h.e'_2
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
⊢ (fun x => Preorder.toLT.1 x y) = ↑(Iio y)
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLT.1 x y) ↔ x✝ ∈ ↑(Iio y)
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderBot α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLT.1 x y) ↔ x✝ < y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
⊢ Finite { x // y ≤ x }
[PROOFSTEP]
apply Set.Finite.to_subtype
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
⊢ Set.Finite fun x => Preorder.toLE.1 y x
[PROOFSTEP]
convert (Finset.Ici y).finite_toSet using 1
[GOAL]
case h.e'_2
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
⊢ (fun x => Preorder.toLE.1 y x) = ↑(Ici y)
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLE.1 y x) ↔ x✝ ∈ ↑(Ici y)
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLE.1 y x) ↔ y ≤ x✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
⊢ Finite { x // y < x }
[PROOFSTEP]
apply Set.Finite.to_subtype
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
⊢ Set.Finite fun x => Preorder.toLT.1 y x
[PROOFSTEP]
convert (Finset.Ioi y).finite_toSet using 1
[GOAL]
case h.e'_2
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
⊢ (fun x => Preorder.toLT.1 y x) = ↑(Ioi y)
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLT.1 y x) ↔ x✝ ∈ ↑(Ioi y)
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h
α : Type u_1
β : Type u_2
inst✝³ : Preorder α
p : α → Prop
inst✝² : DecidablePred p
y : α
inst✝¹ : Preorder α
inst✝ : LocallyFiniteOrderTop α
x✝ : α
⊢ (x✝ ∈ fun x => Preorder.toLT.1 y x) ↔ y < x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Order.LocallyFinite", "llama_tokens": 41333} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
⊢ ∀ (p q : Bool), p ∆ q = xor p q
[PROOFSTEP]
decide
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ b = b ∆ a
[PROOFSTEP]
simp only [symmDiff, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ a = ⊥
[PROOFSTEP]
rw [symmDiff, sup_idem, sdiff_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ ⊥ = a
[PROOFSTEP]
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ ⊥ ∆ a = a
[PROOFSTEP]
rw [symmDiff_comm, symmDiff_bot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
⊢ a ∆ b = ⊥ ↔ a = b
[PROOFSTEP]
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
h : a ≤ b
⊢ a ∆ b = b \ a
[PROOFSTEP]
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
h : b ≤ a
⊢ a ∆ b = a \ b
[PROOFSTEP]
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c
[PROOFSTEP]
simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ b = (a ⊔ b) \ (a ⊓ b)
[PROOFSTEP]
simp [sup_sdiff, symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
h : Disjoint a b
⊢ a ∆ b = a ⊔ b
[PROOFSTEP]
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
[PROOFSTEP]
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ b \ (a ⊓ b) = a ∆ b
[PROOFSTEP]
rw [symmDiff_sdiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ (b ⊔ a ⊓ b) ⊔ b \ (a ⊔ a ⊓ b) = a ∆ b
[PROOFSTEP]
simp [symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ (b \ a) = a ⊔ b
[PROOFSTEP]
rw [symmDiff, sdiff_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ (b \ a) ⊔ b \ a = a ⊔ b
[PROOFSTEP]
exact
le_antisymm (sup_le_sup sdiff_le sdiff_le)
(sup_le le_sdiff_sup <| le_sdiff_sup.trans <| sup_le le_sup_right le_sdiff_sup)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a \ b) ∆ b = a ⊔ b
[PROOFSTEP]
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ b ⊔ a ⊓ b = a ⊔ b
[PROOFSTEP]
refine' le_antisymm (sup_le symmDiff_le_sup inf_le_sup) _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ⊔ b ≤ a ∆ b ⊔ a ⊓ b
[PROOFSTEP]
rw [sup_inf_left, symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ⊔ b ≤ (a \ b ⊔ b \ a ⊔ a) ⊓ (a \ b ⊔ b \ a ⊔ b)
[PROOFSTEP]
refine' sup_le (le_inf le_sup_right _) (le_inf _ le_sup_right)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ≤ a \ b ⊔ b \ a ⊔ b
[PROOFSTEP]
rw [sup_right_comm]
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ≤ a \ b ⊔ b ⊔ b \ a
[PROOFSTEP]
exact le_sup_of_le_left le_sdiff_sup
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ b ≤ a \ b ⊔ b \ a ⊔ a
[PROOFSTEP]
rw [sup_assoc]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ b ≤ a \ b ⊔ (b \ a ⊔ a)
[PROOFSTEP]
exact le_sup_of_le_right le_sdiff_sup
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ⊓ b ⊔ a ∆ b = a ⊔ b
[PROOFSTEP]
rw [sup_comm, symmDiff_sup_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ b ∆ (a ⊓ b) = a ⊔ b
[PROOFSTEP]
rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a ⊓ b) ∆ (a ∆ b) = a ⊔ b
[PROOFSTEP]
rw [symmDiff_comm, symmDiff_symmDiff_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ∆ c ≤ a ∆ b ⊔ b ∆ c
[PROOFSTEP]
refine' (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
[PROOFSTEP]
rw [@sup_comm _ _ (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⇔ b = b ⇔ a
[PROOFSTEP]
simp only [(· ⇔ ·), inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⇔ a = ⊤
[PROOFSTEP]
rw [bihimp, inf_idem, himp_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⇔ ⊤ = a
[PROOFSTEP]
rw [bihimp, himp_top, top_himp, inf_top_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ ⊤ ⇔ a = a
[PROOFSTEP]
rw [bihimp_comm, bihimp_top]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
h : a ≤ b
⊢ a ⇔ b = b ⇨ a
[PROOFSTEP]
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
h : b ≤ a
⊢ a ⇔ b = a ⇨ b
[PROOFSTEP]
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
[PROOFSTEP]
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⇔ b = a ⊔ b ⇨ a ⊓ b
[PROOFSTEP]
simp [himp_inf_distrib, bihimp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
h : Codisjoint a b
⊢ a ⇔ b = a ⊓ b
[PROOFSTEP]
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
[PROOFSTEP]
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⊔ b ⇨ a ⇔ b = a ⇔ b
[PROOFSTEP]
rw [himp_bihimp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ ((a ⊔ b) ⊓ b ⇨ a) ⊓ ((a ⊔ b) ⊓ a ⇨ b) = a ⇔ b
[PROOFSTEP]
simp [bihimp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : CoheytingAlgebra α
a : α
⊢ a ∆ ⊤ = ¬a
[PROOFSTEP]
simp [symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : CoheytingAlgebra α
a : α
⊢ ⊤ ∆ a = ¬a
[PROOFSTEP]
simp [symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : CoheytingAlgebra α
a : α
⊢ (¬a) ∆ a = ⊤
[PROOFSTEP]
rw [eq_top_iff, symmDiff, hnot_sdiff, sup_sdiff_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : CoheytingAlgebra α
a : α
⊢ ⊤ ≤ ¬a ⊔ a
[PROOFSTEP]
exact Codisjoint.top_le codisjoint_hnot_left
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : CoheytingAlgebra α
a : α
⊢ a ∆ (¬a) = ⊤
[PROOFSTEP]
rw [symmDiff_comm, hnot_symmDiff_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : CoheytingAlgebra α
a✝ a b : α
h : IsCompl a b
⊢ a ∆ b = ⊤
[PROOFSTEP]
rw [h.eq_hnot, hnot_symmDiff_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : HeytingAlgebra α
a : α
⊢ a ⇔ ⊥ = aᶜ
[PROOFSTEP]
simp [bihimp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : HeytingAlgebra α
a : α
⊢ ⊥ ⇔ a = aᶜ
[PROOFSTEP]
simp [bihimp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : HeytingAlgebra α
a✝ a b : α
h : IsCompl a b
⊢ a ⇔ b = ⊥
[PROOFSTEP]
rw [h.eq_compl, compl_bihimp_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ (a ⊔ b) \ (a ⊓ b) = a ∆ b
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ Disjoint (a ∆ b) (a ⊓ b)
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ Disjoint ((a ⊔ b) \ (a ⊓ b)) (a ⊓ b)
[PROOFSTEP]
exact disjoint_sdiff_self_left
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c)
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf, inf_sdiff_distrib_left, inf_sup_left, inf_inf_distrib_left, symmDiff_eq_sup_sdiff_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c)
[PROOFSTEP]
simp_rw [@inf_comm _ _ _ c, inf_symmDiff_distrib_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b
[PROOFSTEP]
simp only [(· ∆ ·), sdiff_sdiff_sup_sdiff']
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b)
[PROOFSTEP]
rw [sdiff_symmDiff, sdiff_sup, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b \ a = b \ a
[PROOFSTEP]
rw [symmDiff_def, sup_sdiff, sdiff_idem, sdiff_sdiff_self, bot_sup_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b \ b = a \ b
[PROOFSTEP]
rw [symmDiff_comm, symmDiff_sdiff_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a \ a ∆ b = a ⊓ b
[PROOFSTEP]
simp [sdiff_symmDiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ b \ a ∆ b = a ⊓ b
[PROOFSTEP]
rw [symmDiff_comm, inf_comm, sdiff_symmDiff_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b = a ⊔ b ↔ Disjoint a b
[PROOFSTEP]
refine' ⟨fun h => _, Disjoint.symmDiff_eq_sup⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
h : a ∆ b = a ⊔ b
⊢ Disjoint a b
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
h : Disjoint (a ⊓ b) (a ⊔ b)
⊢ Disjoint a b
[PROOFSTEP]
exact h.of_disjoint_inf_of_le le_sup_left
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ≤ a ∆ b ↔ Disjoint a b
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.symmDiff_eq_sup.symm ▸ le_sup_left⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
h : a ≤ a ∆ b
⊢ Disjoint a b
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf] at h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
h : a ≤ (a ⊔ b) \ (a ⊓ b)
⊢ Disjoint a b
[PROOFSTEP]
exact disjoint_iff_inf_le.mpr (le_sdiff_iff.1 <| inf_le_of_left_le h).le
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ b ≤ a ∆ b ↔ Disjoint a b
[PROOFSTEP]
rw [symmDiff_comm, le_symmDiff_iff_left, disjoint_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b \ c ⊔ c \ a ∆ b = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b)
[PROOFSTEP]
{rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff]
}
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b \ c ⊔ c \ a ∆ b = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b)
[PROOFSTEP]
rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c
[PROOFSTEP]
ac_rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a \ b ∆ c ⊔ b ∆ c \ a = a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a))
[PROOFSTEP]
{rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff]
}
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a \ b ∆ c ⊔ b ∆ c \ a = a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a))
[PROOFSTEP]
rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a)) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c
[PROOFSTEP]
ac_rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b ∆ c = a ∆ (b ∆ c)
[PROOFSTEP]
rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ (b ∆ c) = b ∆ (a ∆ c)
[PROOFSTEP]
simp_rw [← symmDiff_assoc, symmDiff_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b ∆ c = a ∆ c ∆ b
[PROOFSTEP]
simp_rw [symmDiff_assoc, symmDiff_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b ∆ (c ∆ d) = a ∆ c ∆ (b ∆ d)
[PROOFSTEP]
simp_rw [symmDiff_assoc, symmDiff_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ (a ∆ b) = b
[PROOFSTEP]
simp [← symmDiff_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ b ∆ a ∆ a = b
[PROOFSTEP]
simp [symmDiff_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b ∆ a = b
[PROOFSTEP]
rw [symmDiff_comm, symmDiff_symmDiff_cancel_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b = a ↔ a ∆ b = a ∆ ⊥
[PROOFSTEP]
rw [symmDiff_bot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b = a ∆ ⊥ ↔ b = ⊥
[PROOFSTEP]
rw [symmDiff_right_inj]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
⊢ a ∆ b = b ↔ a = ⊥
[PROOFSTEP]
rw [symmDiff_comm, symmDiff_eq_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
ha : Disjoint a c
hb : Disjoint b c
⊢ Disjoint (a ∆ b) c
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
ha : Disjoint a c
hb : Disjoint b c
⊢ Disjoint ((a ⊔ b) \ (a ⊓ b)) c
[PROOFSTEP]
exact (ha.sup_left hb).disjoint_sdiff_left
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
ha : a ≤ c
⊢ a ∆ b = c ↔ c \ a = b
[PROOFSTEP]
rw [← symmDiff_of_le ha]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : GeneralizedBooleanAlgebra α
a b c d : α
ha : a ≤ c
⊢ a ∆ b = c ↔ a ∆ c = b
[PROOFSTEP]
exact ((symmDiff_right_involutive a).toPerm _).apply_eq_iff_eq_symm_apply.trans eq_comm
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c)
[PROOFSTEP]
simp_rw [← bihimp_assoc, bihimp_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ b ⇔ c = a ⇔ c ⇔ b
[PROOFSTEP]
simp_rw [bihimp_assoc, bihimp_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ b ⇔ (c ⇔ d) = a ⇔ c ⇔ (b ⇔ d)
[PROOFSTEP]
simp_rw [bihimp_assoc, bihimp_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ (a ⇔ b) = b
[PROOFSTEP]
simp [← bihimp_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ b ⇔ a ⇔ a = b
[PROOFSTEP]
simp [bihimp_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ b ⇔ a = b
[PROOFSTEP]
rw [bihimp_comm, bihimp_bihimp_cancel_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ∆ b = a ⊓ bᶜ ⊔ b ⊓ aᶜ
[PROOFSTEP]
simp only [(· ∆ ·), sdiff_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ b = (a ⊔ bᶜ) ⊓ (b ⊔ aᶜ)
[PROOFSTEP]
simp only [(· ⇔ ·), himp_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ)
[PROOFSTEP]
rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq, compl_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ (a ∆ b)ᶜ = a ⇔ b
[PROOFSTEP]
simp_rw [symmDiff, compl_sup_distrib, compl_sdiff, bihimp, inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ bᶜ \ aᶜ ⊔ aᶜ \ bᶜ = a ∆ b
[PROOFSTEP]
simp_rw [compl_sdiff_compl, sdiff_eq, symmDiff_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ∆ b = ⊤ ↔ IsCompl a b
[PROOFSTEP]
rw [symmDiff_eq', ← compl_inf, inf_eq_top_iff, compl_eq_top, isCompl_iff, disjoint_iff, codisjoint_iff, and_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⇔ b = ⊥ ↔ IsCompl a b
[PROOFSTEP]
rw [bihimp_eq', ← compl_sup, sup_eq_bot_iff, compl_eq_bot, isCompl_iff, disjoint_iff, codisjoint_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ∆ (b ∆ c) = a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ
[PROOFSTEP]
{rw [symmDiff_eq, compl_symmDiff, bihimp_eq', symmDiff_eq]
}
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ∆ (b ∆ c) = a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ
[PROOFSTEP]
rw [symmDiff_eq, compl_symmDiff, bihimp_eq', symmDiff_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ
[PROOFSTEP]
{rw [inf_sup_left, inf_sup_right, ← sup_assoc, ← inf_assoc, ← inf_assoc]
}
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ
[PROOFSTEP]
rw [inf_sup_left, inf_sup_right, ← sup_assoc, ← inf_assoc, ← inf_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ ⊔ aᶜ ⊓ bᶜ ⊓ c
[PROOFSTEP]
congr 1
[GOAL]
case e_a
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ
[PROOFSTEP]
congr 1
[GOAL]
case e_a.e_a
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ b ⊓ cᶜ ⊓ aᶜ = aᶜ ⊓ b ⊓ cᶜ
[PROOFSTEP]
rw [inf_comm, inf_assoc]
[GOAL]
case e_a
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
⊢ c ⊓ bᶜ ⊓ aᶜ = aᶜ ⊓ bᶜ ⊓ c
[PROOFSTEP]
apply inf_left_right_swap
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
h : Disjoint a b
⊢ c ≤ a ∆ c ⊔ b ∆ c
[PROOFSTEP]
trans c \ (a ⊓ b)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
h : Disjoint a b
⊢ c ≤ c \ (a ⊓ b)
[PROOFSTEP]
rw [h.eq_bot, sdiff_bot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
h : Disjoint a b
⊢ c \ (a ⊓ b) ≤ a ∆ c ⊔ b ∆ c
[PROOFSTEP]
rw [sdiff_inf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
h : Disjoint a b
⊢ c \ a ⊔ c \ b ≤ a ∆ c ⊔ b ∆ c
[PROOFSTEP]
exact sup_le_sup le_sup_right le_sup_right
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
h : Disjoint b c
⊢ a ≤ a ∆ b ⊔ a ∆ c
[PROOFSTEP]
simp_rw [symmDiff_comm a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
π : ι → Type u_4
inst✝ : BooleanAlgebra α
a b c d : α
h : Disjoint b c
⊢ a ≤ b ∆ a ⊔ c ∆ a
[PROOFSTEP]
exact h.le_symmDiff_sup_symmDiff_left
| {"mathlib_filename": "Mathlib.Order.SymmDiff", "llama_tokens": 13036} |
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
by_cases xy : x ≤ y
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : x ≤ y
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
by_cases yx : y ≤ x
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : ¬x ≤ y
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
by_cases yx : y ≤ x
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : x ≤ y
yx : y ≤ x
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
simp [cmpLE, *, Ordering.swap]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : x ≤ y
yx : ¬y ≤ x
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
simp [cmpLE, *, Ordering.swap]
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : ¬x ≤ y
yx : y ≤ x
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
simp [cmpLE, *, Ordering.swap]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : ¬x ≤ y
yx : ¬y ≤ x
⊢ Ordering.swap (cmpLE x y) = cmpLE y x
[PROOFSTEP]
simp [cmpLE, *, Ordering.swap]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝² : LE α
inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
xy : ¬x ≤ y
yx : ¬y ≤ x
⊢ False
[PROOFSTEP]
cases not_or_of_not xy yx (total_of _ _ _)
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
by_cases xy : x ≤ y
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : x ≤ y
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
by_cases yx : y ≤ x
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : ¬x ≤ y
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
by_cases yx : y ≤ x
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : x ≤ y
yx : y ≤ x
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : x ≤ y
yx : ¬y ≤ x
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing]
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : ¬x ≤ y
yx : y ≤ x
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : ¬x ≤ y
yx : ¬y ≤ x
⊢ cmpLE x y = cmp x y
[PROOFSTEP]
simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝³ : Preorder α
inst✝² : IsTotal α fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
xy : ¬x ≤ y
yx : ¬y ≤ x
⊢ False
[PROOFSTEP]
cases not_or_of_not xy yx (total_of _ _ _)
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
o : Ordering
⊢ Compares (swap o) a b ↔ Compares o b a
[PROOFSTEP]
cases o
[GOAL]
case lt
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
⊢ Compares (swap lt) a b ↔ Compares lt b a
[PROOFSTEP]
exact Iff.rfl
[GOAL]
case eq
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
⊢ Compares (swap eq) a b ↔ Compares eq b a
[PROOFSTEP]
exact eq_comm
[GOAL]
case gt
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
⊢ Compares (swap gt) a b ↔ Compares gt b a
[PROOFSTEP]
exact Iff.rfl
[GOAL]
α : Type u_1
β : Type u_2
o o' : Ordering
⊢ swap o = o' ↔ o = swap o'
[PROOFSTEP]
rw [← swap_inj, swap_swap]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
h✝ : Compares eq a b
h : eq = lt
⊢ a < b
[PROOFSTEP]
injection h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
h✝ : Compares gt a b
h : gt = lt
⊢ a < b
[PROOFSTEP]
injection h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
h✝ : Compares eq a b
x✝ : b ≤ a
h : eq = lt
⊢ False
[PROOFSTEP]
injection h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
h✝ : Compares gt a b
x✝ : b ≤ a
h : gt = lt
⊢ False
[PROOFSTEP]
injection h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
h✝ : Compares lt a b
h : lt = eq
⊢ a = b
[PROOFSTEP]
injection h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
h✝ : Compares gt a b
h : gt = eq
⊢ a = b
[PROOFSTEP]
injection h
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
⊢ Compares o a b ↔ Compares o a' b'
[PROOFSTEP]
refine' ⟨h, fun ho => _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
⊢ Compares o a b
[PROOFSTEP]
cases' lt_trichotomy a b with hab hab
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab : a < b
⊢ Compares o a b
[PROOFSTEP]
have hab : Compares Ordering.lt a b := hab
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab✝ : a < b
hab : Compares lt a b
⊢ Compares o a b
[PROOFSTEP]
rwa [ho.inj (h hab)]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab : a = b ∨ b < a
⊢ Compares o a b
[PROOFSTEP]
cases' hab with hab hab
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab : a = b
⊢ Compares o a b
[PROOFSTEP]
have hab : Compares Ordering.eq a b := hab
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab✝ : a = b
hab : Compares eq a b
⊢ Compares o a b
[PROOFSTEP]
rwa [ho.inj (h hab)]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab : b < a
⊢ Compares o a b
[PROOFSTEP]
have hab : Compares Ordering.gt a b := hab
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a b : α
a' b' : β
h : ∀ {o : Ordering}, Compares o a b → Compares o a' b'
o : Ordering
ho : Compares o a' b'
hab✝ : b < a
hab : Compares gt a b
⊢ Compares o a b
[PROOFSTEP]
rwa [ho.inj (h hab)]
[GOAL]
α : Type u_1
β : Type u_2
o₁ o₂ : Ordering
⊢ swap (orElse o₁ o₂) = orElse (swap o₁) (swap o₂)
[PROOFSTEP]
cases o₁
[GOAL]
case lt
α : Type u_1
β : Type u_2
o₂ : Ordering
⊢ swap (orElse lt o₂) = orElse (swap lt) (swap o₂)
[PROOFSTEP]
rfl
[GOAL]
case eq
α : Type u_1
β : Type u_2
o₂ : Ordering
⊢ swap (orElse eq o₂) = orElse (swap eq) (swap o₂)
[PROOFSTEP]
rfl
[GOAL]
case gt
α : Type u_1
β : Type u_2
o₂ : Ordering
⊢ swap (orElse gt o₂) = orElse (swap gt) (swap o₂)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
o₁ o₂ : Ordering
⊢ orElse o₁ o₂ = lt ↔ o₁ = lt ∨ o₁ = eq ∧ o₂ = lt
[PROOFSTEP]
cases o₁
[GOAL]
case lt
α : Type u_1
β : Type u_2
o₂ : Ordering
⊢ orElse lt o₂ = lt ↔ lt = lt ∨ lt = eq ∧ o₂ = lt
[PROOFSTEP]
cases o₂
[GOAL]
case eq
α : Type u_1
β : Type u_2
o₂ : Ordering
⊢ orElse eq o₂ = lt ↔ eq = lt ∨ eq = eq ∧ o₂ = lt
[PROOFSTEP]
cases o₂
[GOAL]
case gt
α : Type u_1
β : Type u_2
o₂ : Ordering
⊢ orElse gt o₂ = lt ↔ gt = lt ∨ gt = eq ∧ o₂ = lt
[PROOFSTEP]
cases o₂
[GOAL]
case lt.lt
α : Type u_1
β : Type u_2
⊢ orElse lt lt = lt ↔ lt = lt ∨ lt = eq ∧ lt = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse lt lt = lt ↔ lt = lt ∨ lt = eq ∧ lt = lt
[PROOFSTEP]
decide
[GOAL]
case lt.eq
α : Type u_1
β : Type u_2
⊢ orElse lt eq = lt ↔ lt = lt ∨ lt = eq ∧ eq = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse lt eq = lt ↔ lt = lt ∨ lt = eq ∧ eq = lt
[PROOFSTEP]
decide
[GOAL]
case lt.gt
α : Type u_1
β : Type u_2
⊢ orElse lt gt = lt ↔ lt = lt ∨ lt = eq ∧ gt = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse lt gt = lt ↔ lt = lt ∨ lt = eq ∧ gt = lt
[PROOFSTEP]
decide
[GOAL]
case eq.lt
α : Type u_1
β : Type u_2
⊢ orElse eq lt = lt ↔ eq = lt ∨ eq = eq ∧ lt = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse eq lt = lt ↔ eq = lt ∨ eq = eq ∧ lt = lt
[PROOFSTEP]
decide
[GOAL]
case eq.eq
α : Type u_1
β : Type u_2
⊢ orElse eq eq = lt ↔ eq = lt ∨ eq = eq ∧ eq = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse eq eq = lt ↔ eq = lt ∨ eq = eq ∧ eq = lt
[PROOFSTEP]
decide
[GOAL]
case eq.gt
α : Type u_1
β : Type u_2
⊢ orElse eq gt = lt ↔ eq = lt ∨ eq = eq ∧ gt = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse eq gt = lt ↔ eq = lt ∨ eq = eq ∧ gt = lt
[PROOFSTEP]
decide
[GOAL]
case gt.lt
α : Type u_1
β : Type u_2
⊢ orElse gt lt = lt ↔ gt = lt ∨ gt = eq ∧ lt = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse gt lt = lt ↔ gt = lt ∨ gt = eq ∧ lt = lt
[PROOFSTEP]
decide
[GOAL]
case gt.eq
α : Type u_1
β : Type u_2
⊢ orElse gt eq = lt ↔ gt = lt ∨ gt = eq ∧ eq = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse gt eq = lt ↔ gt = lt ∨ gt = eq ∧ eq = lt
[PROOFSTEP]
decide
[GOAL]
case gt.gt
α : Type u_1
β : Type u_2
⊢ orElse gt gt = lt ↔ gt = lt ∨ gt = eq ∧ gt = lt
[PROOFSTEP]
exact by decide
[GOAL]
α : Type u_1
β : Type u_2
⊢ orElse gt gt = lt ↔ gt = lt ∨ gt = eq ∧ gt = lt
[PROOFSTEP]
decide
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
o : Ordering
⊢ Compares o (↑toDual a) (↑toDual b) ↔ Compares o b a
[PROOFSTEP]
cases o
[GOAL]
case lt
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
⊢ Compares lt (↑toDual a) (↑toDual b) ↔ Compares lt b a
case eq
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
⊢ Compares eq (↑toDual a) (↑toDual b) ↔ Compares eq b a
case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares gt (↑toDual a) (↑toDual b) ↔ Compares gt b a
[PROOFSTEP]
exacts [Iff.rfl, eq_comm, Iff.rfl]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : αᵒᵈ
o : Ordering
⊢ Compares o (↑ofDual a) (↑ofDual b) ↔ Compares o b a
[PROOFSTEP]
cases o
[GOAL]
case lt
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : αᵒᵈ
⊢ Compares lt (↑ofDual a) (↑ofDual b) ↔ Compares lt b a
case eq
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : αᵒᵈ
⊢ Compares eq (↑ofDual a) (↑ofDual b) ↔ Compares eq b a
case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : αᵒᵈ ⊢ Compares gt (↑ofDual a) (↑ofDual b) ↔ Compares gt b a
[PROOFSTEP]
exacts [Iff.rfl, eq_comm, Iff.rfl]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b : α
⊢ Compares (cmp a b) a b
[PROOFSTEP]
obtain h | h | h := lt_trichotomy a b
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b : α
h : a < b
⊢ Compares (cmp a b) a b
[PROOFSTEP]
simp [cmp, cmpUsing, h, h.not_lt]
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b : α
h : a = b
⊢ Compares (cmp a b) a b
[PROOFSTEP]
simp [cmp, cmpUsing, h, h.not_lt]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b : α
h : b < a
⊢ Compares (cmp a b) a b
[PROOFSTEP]
simp [cmp, cmpUsing, h, h.not_lt]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
⊢ swap (cmp a b) = cmp b a
[PROOFSTEP]
unfold cmp cmpUsing
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
by_cases h : a < b
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : a < b
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
by_cases h₂ : b < a
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : ¬a < b
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
by_cases h₂ : b < a
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : a < b
h₂ : b < a
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
simp [h, h₂, Ordering.swap]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : a < b
h₂ : ¬b < a
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
simp [h, h₂, Ordering.swap]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : ¬a < b
h₂ : b < a
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
simp [h, h₂, Ordering.swap]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : ¬a < b
h₂ : ¬b < a
⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) =
if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq
[PROOFSTEP]
simp [h, h₂, Ordering.swap]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a b : α
h : a < b
h₂ : b < a
⊢ False
[PROOFSTEP]
exact lt_asymm h h₂
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
x y : α
⊢ cmp x x = eq
[PROOFSTEP]
rw [cmp_eq_eq_iff]
[GOAL]
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ cmp y x = cmp y' x'
[PROOFSTEP]
rwa [← cmp_swap x', ← cmp_swap, swap_inj]
[GOAL]
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp y x = cmp y' x'
⊢ cmp x y = cmp x' y'
[PROOFSTEP]
rwa [← cmp_swap y', ← cmp_swap, swap_inj]
[GOAL]
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ x < y ↔ x' < y'
[PROOFSTEP]
rw [← cmp_eq_lt_iff, ← cmp_eq_lt_iff, h]
[GOAL]
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ x ≤ y ↔ x' ≤ y'
[PROOFSTEP]
rw [← not_lt, ← not_lt]
[GOAL]
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ ¬y < x ↔ ¬y' < x'
[PROOFSTEP]
apply not_congr
[GOAL]
case h
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ y < x ↔ y' < x'
[PROOFSTEP]
apply lt_iff_lt_of_cmp_eq_cmp
[GOAL]
case h.h
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ cmp y x = cmp y' x'
[PROOFSTEP]
rwa [cmp_eq_cmp_symm]
[GOAL]
α : Type u_1
β✝ : Type u_2
inst✝¹ : LinearOrder α
x y : α
β : Type u_3
inst✝ : LinearOrder β
x' y' : β
h : cmp x y = cmp x' y'
⊢ x = y ↔ x' = y'
[PROOFSTEP]
rw [le_antisymm_iff, le_antisymm_iff, le_iff_le_of_cmp_eq_cmp h, le_iff_le_of_cmp_eq_cmp (cmp_eq_cmp_symm.1 h)]
| {"mathlib_filename": "Mathlib.Order.Compare", "llama_tokens": 9322} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
⊢ IsBounded r ⊥ ↔ Nonempty α
[PROOFSTEP]
simp [IsBounded, exists_true_iff_nonempty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
⊢ IsBounded r ⊤ ↔ ∃ t, ∀ (x : α), r x t
[PROOFSTEP]
simp [IsBounded, eq_univ_iff_forall]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
s : Set α
⊢ IsBounded r (𝓟 s) ↔ ∃ t, ∀ (x : α), x ∈ s → r x t
[PROOFSTEP]
simp [IsBounded, subset_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
inst✝ : Preorder β
l : Filter α
u v : α → β
hu : IsBoundedUnder (fun x x_1 => x ≤ x_1) l u
hv : v ≤ᶠ[l] u
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l v
[PROOFSTEP]
apply hu.imp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
inst✝ : Preorder β
l : Filter α
u v : α → β
hu : IsBoundedUnder (fun x x_1 => x ≤ x_1) l u
hv : v ≤ᶠ[l] u
⊢ ∀ (a : β), (∀ᶠ (x : β) in map u l, (fun x x_1 => x ≤ x_1) x a) → ∀ᶠ (x : β) in map v l, (fun x x_1 => x ≤ x_1) x a
[PROOFSTEP]
exact fun b hb => (eventually_map.1 hb).mp <| hv.mono fun x => le_trans
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝² : Preorder β
inst✝¹ : NoMaxOrder β
f : α → β
l : Filter α
inst✝ : NeBot l
hf : Tendsto f l atTop
⊢ ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
rintro ⟨b, hb⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝² : Preorder β
inst✝¹ : NoMaxOrder β
f : α → β
l : Filter α
inst✝ : NeBot l
hf : Tendsto f l atTop
b : β
hb : ∀ᶠ (x : β) in map f l, (fun x x_1 => x ≤ x_1) x b
⊢ False
[PROOFSTEP]
rw [eventually_map] at hb
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝² : Preorder β
inst✝¹ : NoMaxOrder β
f : α → β
l : Filter α
inst✝ : NeBot l
hf : Tendsto f l atTop
b : β
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b
⊢ False
[PROOFSTEP]
obtain ⟨b', h⟩ := exists_gt b
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝² : Preorder β
inst✝¹ : NoMaxOrder β
f : α → β
l : Filter α
inst✝ : NeBot l
hf : Tendsto f l atTop
b : β
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b
b' : β
h : b < b'
⊢ False
[PROOFSTEP]
have hb' := (tendsto_atTop.mp hf) b'
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝² : Preorder β
inst✝¹ : NoMaxOrder β
f : α → β
l : Filter α
inst✝ : NeBot l
hf : Tendsto f l atTop
b : β
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b
b' : β
h : b < b'
hb' : ∀ᶠ (a : α) in l, b' ≤ f a
⊢ False
[PROOFSTEP]
have : {x : α | f x ≤ b} ∩ {x : α | b' ≤ f x} = ∅ :=
eq_empty_of_subset_empty fun x hx => (not_le_of_lt h) (le_trans hx.2 hx.1)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝² : Preorder β
inst✝¹ : NoMaxOrder β
f : α → β
l : Filter α
inst✝ : NeBot l
hf : Tendsto f l atTop
b : β
hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b
b' : β
h : b < b'
hb' : ∀ᶠ (a : α) in l, b' ≤ f a
this : {x | f x ≤ b} ∩ {x | b' ≤ f x} = ∅
⊢ False
[PROOFSTEP]
exact (nonempty_of_mem (hb.and hb')).ne_empty this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝ : SemilatticeSup β
f : α → β
hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) cofinite f
⊢ BddAbove (range f)
[PROOFSTEP]
rcases hf with ⟨b, hb⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝ : SemilatticeSup β
f : α → β
b : β
hb : ∀ᶠ (x : β) in map f cofinite, (fun x x_1 => x ≤ x_1) x b
⊢ BddAbove (range f)
[PROOFSTEP]
haveI : Nonempty β := ⟨b⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝ : SemilatticeSup β
f : α → β
b : β
hb : ∀ᶠ (x : β) in map f cofinite, (fun x x_1 => x ≤ x_1) x b
this : Nonempty β
⊢ BddAbove (range f)
[PROOFSTEP]
rw [← image_univ, ← union_compl_self {x | f x ≤ b}, image_union, bddAbove_union]
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝ : SemilatticeSup β
f : α → β
b : β
hb : ∀ᶠ (x : β) in map f cofinite, (fun x x_1 => x ≤ x_1) x b
this : Nonempty β
⊢ BddAbove (f '' {x | f x ≤ b}) ∧ BddAbove (f '' {x | f x ≤ b}ᶜ)
[PROOFSTEP]
exact ⟨⟨b, ball_image_iff.2 fun x => id⟩, (hb.image f).bddAbove⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝ : SemilatticeSup β
f : ℕ → β
hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop f
⊢ BddAbove (range f)
[PROOFSTEP]
rw [← Nat.cofinite_eq_atTop] at hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f✝ g : Filter α
inst✝ : SemilatticeSup β
f : ℕ → β
hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) cofinite f
⊢ BddAbove (range f)
[PROOFSTEP]
exact hf.bddAbove_range_of_cofinite
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
⊢ IsCobounded r ⊥ ↔ ∃ b, ∀ (x : α), r b x
[PROOFSTEP]
simp [IsCobounded]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
⊢ IsCobounded r ⊤ ↔ Nonempty α
[PROOFSTEP]
simp (config := { contextual := true }) [IsCobounded, eq_univ_iff_forall, exists_true_iff_nonempty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
r : α → α → Prop
f g : Filter α
s : Set α
⊢ IsCobounded r (𝓟 s) ↔ ∃ b, ∀ (a : α), (∀ (x : α), x ∈ s → r x a) → r b a
[PROOFSTEP]
simp [IsCobounded, subset_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
e : α ≃o β
l : Filter γ
u : γ → α
a : α
⊢ (∀ᶠ (x : β) in map (fun x => ↑e (u x)) l, (fun x x_1 => x ≤ x_1) x (↑e a)) ↔
∀ᶠ (x : α) in map u l, (fun x x_1 => x ≤ x_1) x a
[PROOFSTEP]
simp only [eventually_map, e.le_iff_le]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : SemilatticeSup α
f : Filter β
u v : β → α
bu : α
hu : ∀ᶠ (x : β) in f, u x ≤ bu
bv : α
hv : ∀ᶠ (x : β) in f, v x ≤ bv
⊢ ∀ᶠ (x : β) in f, u x ⊔ v x ≤ bu ⊔ bv
[PROOFSTEP]
filter_upwards [hu, hv] with _ using sup_le_sup
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
⊢ (blimsup u f fun x => True) = limsup u f
[PROOFSTEP]
simp [blimsup_eq, limsup_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
⊢ (bliminf u f fun x => True) = liminf u f
[PROOFSTEP]
simp [bliminf_eq, liminf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
p : β → Prop
⊢ blimsup u f p = limsup (u ∘ Subtype.val) (comap Subtype.val f)
[PROOFSTEP]
simp only [blimsup_eq, limsup_eq, Function.comp_apply, eventually_comap, SetCoe.forall, Subtype.coe_mk, mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
p : β → Prop
⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = sInf {a | ∀ᶠ (b : β) in f, ∀ (a_1 : { x // p x }), ↑a_1 = b → u ↑a_1 ≤ a}
[PROOFSTEP]
congr
[GOAL]
case e_a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
p : β → Prop
⊢ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = {a | ∀ᶠ (b : β) in f, ∀ (a_1 : { x // p x }), ↑a_1 = b → u ↑a_1 ≤ a}
[PROOFSTEP]
ext a
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
p : β → Prop
a : α
⊢ a ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ a ∈ {a | ∀ᶠ (b : β) in f, ∀ (a_1 : { x // p x }), ↑a_1 = b → u ↑a_1 ≤ a}
[PROOFSTEP]
simp_rw [Subtype.forall]
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u : β → α
p : β → Prop
a : α
⊢ a ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ a ∈ {a | ∀ᶠ (b : β) in f, ∀ (a_1 : β), p a_1 → a_1 = b → u a_1 ≤ a}
[PROOFSTEP]
exact
eventually_congr
(eventually_of_forall fun x => ⟨fun hx y hy hxy => hxy.symm ▸ hx (hxy ▸ hy), fun hx hx' => hx x hx' rfl⟩)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
s : Set α
h : BddAbove s
hs : Set.Nonempty s
⊢ limsSup (𝓟 s) = sSup s
[PROOFSTEP]
simp only [limsSup, eventually_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
s : Set α
h : BddAbove s
hs : Set.Nonempty s
⊢ sInf {a | ∀ (x : α), x ∈ s → x ≤ a} = sSup s
[PROOFSTEP]
exact csInf_upper_bounds_eq_csSup h hs
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice α✝
α : Type u_5
inst✝ : ConditionallyCompleteLattice β
f : Filter α
u v : α → β
h : ∀ᶠ (a : α) in f, u a = v a
⊢ limsup u f = limsup v f
[PROOFSTEP]
rw [limsup_eq]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice α✝
α : Type u_5
inst✝ : ConditionallyCompleteLattice β
f : Filter α
u v : α → β
h : ∀ᶠ (a : α) in f, u a = v a
⊢ sInf {a | ∀ᶠ (n : α) in f, u n ≤ a} = limsup v f
[PROOFSTEP]
congr with b
[GOAL]
case e_a.h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice α✝
α : Type u_5
inst✝ : ConditionallyCompleteLattice β
f : Filter α
u v : α → β
h : ∀ᶠ (a : α) in f, u a = v a
b : β
⊢ b ∈ {a | ∀ᶠ (n : α) in f, u n ≤ a} ↔ b ∈ {a | ∀ᶠ (n : β) in map v f, n ≤ a}
[PROOFSTEP]
exact eventually_congr (h.mono fun x hx => by simp [hx])
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice α✝
α : Type u_5
inst✝ : ConditionallyCompleteLattice β
f : Filter α
u v : α → β
h : ∀ᶠ (a : α) in f, u a = v a
b : β
x : α
hx : u x = v x
⊢ u x ≤ b ↔ v x ∈ {x | (fun n => n ≤ b) x}
[PROOFSTEP]
simp [hx]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
⊢ blimsup u f p = blimsup v f p
[PROOFSTEP]
rw [blimsup_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = blimsup v f p
[PROOFSTEP]
congr with b
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
b : α
⊢ b ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ b ∈ {a | ∀ᶠ (x : β) in f, p x → v x ≤ a}
[PROOFSTEP]
refine' eventually_congr (h.mono fun x hx => ⟨fun h₁ h₂ => _, fun h₁ h₂ => _⟩)
[GOAL]
case e_a.h.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
b : α
x : β
hx : p x → u x = v x
h₁ : p x → u x ≤ b
h₂ : p x
⊢ v x ≤ b
[PROOFSTEP]
rw [← hx h₂]
[GOAL]
case e_a.h.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
b : α
x : β
hx : p x → u x = v x
h₁ : p x → u x ≤ b
h₂ : p x
⊢ u x ≤ b
[PROOFSTEP]
exact h₁ h₂
[GOAL]
case e_a.h.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
b : α
x : β
hx : p x → u x = v x
h₁ : p x → v x ≤ b
h₂ : p x
⊢ u x ≤ b
[PROOFSTEP]
rw [hx h₂]
[GOAL]
case e_a.h.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : ConditionallyCompleteLattice α
f : Filter β
u v : β → α
p : β → Prop
h : ∀ᶠ (a : β) in f, p a → u a = v a
b : α
x : β
hx : p x → u x = v x
h₁ : p x → v x ≤ b
h₂ : p x
⊢ v x ≤ b
[PROOFSTEP]
exact h₁ h₂
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝² : ConditionallyCompleteLattice α✝
α : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
f : Filter α
inst✝ : NeBot f
b : β
⊢ limsup (fun x => b) f = b
[PROOFSTEP]
simpa only [limsup_eq, eventually_const] using csInf_Ici
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
⊢ ⊥ ∈ {a | ∀ᶠ (n : α) in ⊥, n ≤ a}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : β → α
⊢ limsup f ⊥ = ⊥
[PROOFSTEP]
simp [limsup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
⊢ ⊤ ∈ {a | ∀ᶠ (n : α) in ⊥, a ≤ n}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : β → α
⊢ liminf f ⊥ = ⊤
[PROOFSTEP]
simp [liminf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
⊢ ∀ (b : α), b ∈ {a | ∀ᶠ (n : α) in ⊤, n ≤ a} → ⊤ ≤ b
[PROOFSTEP]
simp [eq_univ_iff_forall]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
⊢ ∀ (b : α), (∀ (x : α), x ≤ b) → b = ⊤
[PROOFSTEP]
exact fun b hb => top_unique <| hb _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
⊢ ∀ (b : α), b ∈ {a | ∀ᶠ (n : α) in ⊤, a ≤ n} → b ≤ ⊥
[PROOFSTEP]
simp [eq_univ_iff_forall]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
⊢ ∀ (b : α), (∀ (x : α), b ≤ x) → b = ⊥
[PROOFSTEP]
exact fun b hb => bot_unique <| hb _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
u : β → α
⊢ (blimsup u f fun x => False) = ⊥
[PROOFSTEP]
simp [blimsup_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
u : β → α
⊢ (bliminf u f fun x => False) = ⊤
[PROOFSTEP]
simp [bliminf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
⊢ limsup (fun x => ⊥) f = ⊥
[PROOFSTEP]
rw [limsup_eq, eq_bot_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
⊢ sInf {a | ∀ᶠ (n : β) in f, ⊥ ≤ a} ≤ ⊥
[PROOFSTEP]
exact sInf_le (eventually_of_forall fun _ => le_rfl)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
u : β → α
⊢ IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u
[PROOFSTEP]
isBoundedDefault
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
u : β → α
⊢ IsCoboundedUnder (fun x x_1 => x ≥ x_1) f u
[PROOFSTEP]
isBoundedDefault
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
u : β → α
⊢ ⨅ (i : Set β) (_ : i ∈ f), sSup (u '' id i) = ⨅ (s : Set β) (_ : s ∈ f), ⨆ (a : β) (_ : a ∈ s), u a
[PROOFSTEP]
simp only [sSup_image, id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
u : ℕ → α
⊢ ⨅ (i : ℕ) (_ : True), sSup (u '' Ici i) = ⨅ (n : ℕ), ⨆ (i : ℕ) (_ : i ≥ n), u i
[PROOFSTEP]
simp only [sSup_image, iInf_const]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
u : ℕ → α
⊢ ⨅ (i : ℕ), ⨆ (a : ℕ) (_ : a ∈ Ici i), u a = ⨅ (n : ℕ), ⨆ (i : ℕ) (_ : i ≥ n), u i
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
u : ℕ → α
⊢ limsup u atTop = ⨅ (n : ℕ), ⨆ (i : ℕ), u (i + n)
[PROOFSTEP]
simp only [limsup_eq_iInf_iSup_of_nat, iSup_ge_eq_iSup_nat_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
p : ι → Prop
s : ι → Set β
f : Filter β
u : β → α
h : HasBasis f p s
⊢ ⨅ (i : ι) (_ : p i), sSup (u '' s i) = ⨅ (i : ι) (_ : p i), ⨆ (a : β) (_ : a ∈ s i), u a
[PROOFSTEP]
simp only [sSup_image, id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
⊢ blimsup u f p = blimsup u f q
[PROOFSTEP]
simp only [blimsup_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = sInf {a | ∀ᶠ (x : β) in f, q x → u x ≤ a}
[PROOFSTEP]
congr
[GOAL]
case e_a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
⊢ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = {a | ∀ᶠ (x : β) in f, q x → u x ≤ a}
[PROOFSTEP]
ext a
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
a : α
⊢ a ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ a ∈ {a | ∀ᶠ (x : β) in f, q x → u x ≤ a}
[PROOFSTEP]
refine' eventually_congr (h.mono fun b hb => _)
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
a : α
b : β
hb : u b ≠ ⊥ → (p b ↔ q b)
⊢ p b → u b ≤ a ↔ q b → u b ≤ a
[PROOFSTEP]
cases' eq_or_ne (u b) ⊥ with hu hu
[GOAL]
case e_a.h.inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
a : α
b : β
hb : u b ≠ ⊥ → (p b ↔ q b)
hu : u b = ⊥
⊢ p b → u b ≤ a ↔ q b → u b ≤ a
[PROOFSTEP]
simp [hu]
[GOAL]
case e_a.h.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p q : β → Prop
u : β → α
h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x)
a : α
b : β
hb : u b ≠ ⊥ → (p b ↔ q b)
hu : u b ≠ ⊥
⊢ p b → u b ≤ a ↔ q b → u b ≤ a
[PROOFSTEP]
rw [hb hu]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
⊢ blimsup u f p = ⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
refine' le_antisymm (sInf_le_sInf _) (iInf_le_iff.mpr fun a ha => le_sInf_iff.mpr fun a' ha' => _)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
⊢ (range fun s => ⨅ (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b) ⊆ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
[PROOFSTEP]
rintro - ⟨s, rfl⟩
[GOAL]
case refine'_1.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
⊢ (fun s => ⨅ (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b) s ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
[PROOFSTEP]
simp only [mem_setOf_eq, le_iInf_iff]
[GOAL]
case refine'_1.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
⊢ ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
conv =>
congr
ext
rw [Imp.swap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
| ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
congr
ext
rw [Imp.swap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
| ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
congr
ext
rw [Imp.swap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
| ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
congr
[GOAL]
case p
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
| fun x => p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
case f
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
| f
[PROOFSTEP]
ext
[GOAL]
case p.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
x✝ : β
| p x✝ → s ∈ f → u x✝ ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
case f
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
| f
[PROOFSTEP]
rw [Imp.swap]
[GOAL]
case refine'_1.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
⊢ ∀ᶠ (x : β) in f, s ∈ f → p x → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
refine' eventually_imp_distrib_left.mpr fun h => eventually_iff_exists_mem.2 ⟨s, h, fun x h₁ h₂ => _⟩
[GOAL]
case refine'_1.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
s : Set β
h : s ∈ f
x : β
h₁ : x ∈ s
h₂ : p x
⊢ u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
[PROOFSTEP]
exact @le_iSup₂ α β (fun b => p b ∧ b ∈ s) _ (fun b _ => u b) x ⟨h₂, h₁⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
a : α
ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b
a' : α
ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
⊢ a ≤ a'
[PROOFSTEP]
obtain ⟨s, hs, hs'⟩ := eventually_iff_exists_mem.mp ha'
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
a : α
ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b
a' : α
ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
s : Set β
hs : s ∈ f
hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a'
⊢ a ≤ a'
[PROOFSTEP]
have : ∀ (y : β), p y → y ∈ s → u y ≤ a' := fun y ↦ by rw [Imp.swap]; exact hs' y
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
a : α
ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b
a' : α
ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
s : Set β
hs : s ∈ f
hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a'
y : β
⊢ p y → y ∈ s → u y ≤ a'
[PROOFSTEP]
rw [Imp.swap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
a : α
ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b
a' : α
ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
s : Set β
hs : s ∈ f
hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a'
y : β
⊢ y ∈ s → p y → u y ≤ a'
[PROOFSTEP]
exact hs' y
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
a : α
ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b
a' : α
ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
s : Set β
hs : s ∈ f
hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a'
this : ∀ (y : β), p y → y ∈ s → u y ≤ a'
⊢ a ≤ a'
[PROOFSTEP]
exact (le_iInf_iff.mp (ha s) hs).trans (by simpa only [iSup₂_le_iff, and_imp])
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : Filter β
p : β → Prop
u : β → α
a : α
ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b
a' : α
ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}
s : Set β
hs : s ∈ f
hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a'
this : ∀ (y : β), p y → y ∈ s → u y ≤ a'
⊢ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b ≤ a'
[PROOFSTEP]
simpa only [iSup₂_le_iff, and_imp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
p : ℕ → Prop
u : ℕ → α
⊢ blimsup u atTop p = ⨅ (i : ℕ), ⨆ (j : ℕ) (_ : p j ∧ i ≤ j), u j
[PROOFSTEP]
simp only [blimsup_eq_limsup_subtype, Function.comp, (atTop_basis.comap ((↑) : {x | p x} → ℕ)).limsup_eq_iInf_iSup,
iSup_subtype, iSup_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
p : ℕ → Prop
u : ℕ → α
⊢ ⨅ (i : ℕ) (_ : True),
⨆ (i_1 : ℕ) (x : i_1 ∈ {x | p x}) (_ : { val := i_1, property := (_ : i_1 ∈ {x | p x}) } ∈ Subtype.val ⁻¹' Ici i),
u i_1 =
⨅ (i : ℕ), ⨆ (j : ℕ) (_ : p j) (_ : i ≤ j), u j
[PROOFSTEP]
simp only [mem_setOf_eq, mem_preimage, mem_Ici, not_le, iInf_pos]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
⊢ limsup a F = sInf ((fun I => sSup (a '' I)) '' F.sets)
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
⊢ limsup a F ≤ sInf ((fun I => sSup (a '' I)) '' F.sets)
[PROOFSTEP]
rw [limsup_eq]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
⊢ sInf {a_1 | ∀ᶠ (n : ι) in F, a n ≤ a_1} ≤ sInf ((fun I => sSup (a '' I)) '' F.sets)
[PROOFSTEP]
refine' sInf_le_sInf fun x hx => _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
x : R
hx : x ∈ (fun I => sSup (a '' I)) '' F.sets
⊢ x ∈ {a_1 | ∀ᶠ (n : ι) in F, a n ≤ a_1}
[PROOFSTEP]
rcases(mem_image _ F.sets x).mp hx with ⟨I, ⟨I_mem_F, hI⟩⟩
[GOAL]
case refine'_1.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
x : R
hx : x ∈ (fun I => sSup (a '' I)) '' F.sets
I : Set ι
I_mem_F : I ∈ F.sets
hI : sSup (a '' I) = x
⊢ x ∈ {a_1 | ∀ᶠ (n : ι) in F, a n ≤ a_1}
[PROOFSTEP]
filter_upwards [I_mem_F] with i hi
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
x : R
hx : x ∈ (fun I => sSup (a '' I)) '' F.sets
I : Set ι
I_mem_F : I ∈ F.sets
hI : sSup (a '' I) = x
i : ι
hi : i ∈ I
⊢ a i ≤ x
[PROOFSTEP]
exact hI ▸ le_sSup (mem_image_of_mem _ hi)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
⊢ sInf ((fun I => sSup (a '' I)) '' F.sets) ≤ limsup a F
[PROOFSTEP]
refine' le_sInf_iff.mpr fun b hb => sInf_le_of_le (mem_image_of_mem _ <| Filter.mem_sets.mpr hb) <| sSup_le _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
b : R
hb : b ∈ {a_1 | ∀ᶠ (n : R) in map a F, n ≤ a_1}
⊢ ∀ (b_1 : R), b_1 ∈ a '' (a ⁻¹' {x | (fun n => n ≤ b) x}) → b_1 ≤ b
[PROOFSTEP]
rintro _ ⟨_, h, rfl⟩
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
inst✝¹ : CompleteLattice α
ι : Type u_5
R : Type u_6
F : Filter ι
inst✝ : CompleteLattice R
a : ι → R
b : R
hb : b ∈ {a_1 | ∀ᶠ (n : R) in map a F, n ≤ a_1}
w✝ : ι
h : w✝ ∈ a ⁻¹' {x | (fun n => n ≤ b) x}
⊢ a w✝ ≤ b
[PROOFSTEP]
exact h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : ℕ → α
k : ℕ
⊢ liminf (fun i => f (i + k)) atTop = liminf f atTop
[PROOFSTEP]
simp_rw [liminf_eq_iSup_iInf_of_nat]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : ℕ → α
k : ℕ
⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f i
[PROOFSTEP]
exact iSup_iInf_ge_nat_add f k
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x : β
h : ∃ᶠ (a : α) in f, u a ≤ x
⊢ liminf u f ≤ x
[PROOFSTEP]
rw [liminf_eq]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x : β
h : ∃ᶠ (a : α) in f, u a ≤ x
⊢ sSup {a | ∀ᶠ (n : α) in f, a ≤ u n} ≤ x
[PROOFSTEP]
refine' sSup_le fun b hb => _
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x : β
h : ∃ᶠ (a : α) in f, u a ≤ x
b : β
hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n}
⊢ b ≤ x
[PROOFSTEP]
have hbx : ∃ᶠ _ in f, b ≤ x := by
revert h
rw [← not_imp_not, not_frequently, not_frequently]
exact fun h => hb.mp (h.mono fun a hbx hba hax => hbx (hba.trans hax))
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x : β
h : ∃ᶠ (a : α) in f, u a ≤ x
b : β
hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n}
⊢ ∃ᶠ (x_1 : α) in f, b ≤ x
[PROOFSTEP]
revert h
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x b : β
hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n}
⊢ (∃ᶠ (a : α) in f, u a ≤ x) → ∃ᶠ (x_1 : α) in f, b ≤ x
[PROOFSTEP]
rw [← not_imp_not, not_frequently, not_frequently]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x b : β
hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n}
⊢ (∀ᶠ (x_1 : α) in f, ¬b ≤ x) → ∀ᶠ (x_1 : α) in f, ¬u x_1 ≤ x
[PROOFSTEP]
exact fun h => hb.mp (h.mono fun a hbx hba hax => hbx (hba.trans hax))
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α✝
α : Type u_5
β : Type u_6
inst✝ : CompleteLattice β
f : Filter α
u : α → β
x : β
h : ∃ᶠ (a : α) in f, u a ≤ x
b : β
hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n}
hbx : ∃ᶠ (x_1 : α) in f, b ≤ x
⊢ b ≤ x
[PROOFSTEP]
exact hbx.exists.choose_spec
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ↑f (limsup (fun n => (↑f)^[n] a) atTop) = limsup (fun n => (↑f)^[n] a) atTop
[PROOFSTEP]
rw [limsup_eq_iInf_iSup_of_nat', map_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ⨅ (i : ℕ), ↑f (⨆ (i_1 : ℕ), (↑f)^[i_1 + i] a) = ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a
[PROOFSTEP]
simp_rw [_root_.map_iSup, ← Function.comp_apply (f := f), ← Function.iterate_succ' f, ← Nat.add_succ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ⨅ (i : ℕ), ⨆ (i_1 : ℕ), (↑f)^[i_1 + Nat.succ i] a = ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a
[PROOFSTEP]
conv_rhs => rw [iInf_split _ ((· < ·) (0 : ℕ))]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
| ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a
[PROOFSTEP]
rw [iInf_split _ ((· < ·) (0 : ℕ))]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
| ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a
[PROOFSTEP]
rw [iInf_split _ ((· < ·) (0 : ℕ))]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
| ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a
[PROOFSTEP]
rw [iInf_split _ ((· < ·) (0 : ℕ))]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ⨅ (i : ℕ), ⨆ (i_1 : ℕ), (↑f)^[i_1 + Nat.succ i] a =
(⨅ (i : ℕ) (_ : (fun x x_1 => x < x_1) 0 i), ⨆ (i_1 : ℕ), (↑f)^[i_1 + i] a) ⊓
⨅ (i : ℕ) (_ : ¬(fun x x_1 => x < x_1) 0 i), ⨆ (i_1 : ℕ), (↑f)^[i_1 + i] a
[PROOFSTEP]
simp only [not_lt, le_zero_iff, iInf_iInf_eq_left, add_zero, iInf_nat_gt_zero_eq, left_eq_inf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ⨅ (i : ℕ), ⨆ (i_1 : ℕ), (↑f)^[i_1 + Nat.succ i] a ≤ ⨆ (i : ℕ), (↑f)^[i] a
[PROOFSTEP]
refine' (iInf_le (fun i => ⨆ j, f^[j + (i + 1)] a) 0).trans _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ⨆ (j : ℕ), (↑f)^[j + (0 + 1)] a ≤ ⨆ (i : ℕ), (↑f)^[i] a
[PROOFSTEP]
simp only [zero_add, Function.comp_apply, iSup_le_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f : CompleteLatticeHom α α
a : α
⊢ ∀ (i : ℕ), (↑f)^[i + 1] a ≤ ⨆ (i : ℕ), (↑f)^[i] a
[PROOFSTEP]
exact fun i => le_iSup (fun i => f^[i] a) (i + 1)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
h : ∀ (x : β), p x → q x
a : α
ha : a ∈ {a | ∀ᶠ (x : β) in f, q x → u x ≤ a}
⊢ ∀ (x : β), (q x → u x ≤ a) → p x → u x ≤ a
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
h : ∀ (x : β), p x → q x
a : α
ha : a ∈ {a | ∀ᶠ (x : β) in f, q x → a ≤ u x}
⊢ ∀ (x : β), (q x → a ≤ u x) → p x → a ≤ u x
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
⊢ ∀ (x : β), p x ∧ q x → p x
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
⊢ ∀ (x : β), p x ∧ q x → q x
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
⊢ ∀ (x : β), p x → p x ∨ q x
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
⊢ ∀ (x : β), q x → p x ∨ q x
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
e : α ≃o γ
⊢ ↑e (blimsup u f p) = blimsup (↑e ∘ u) f p
[PROOFSTEP]
simp only [blimsup_eq, map_sInf, Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
e : α ≃o γ
⊢ sInf ((fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}) = sInf {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a}
[PROOFSTEP]
congr
[GOAL]
case e_a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
e : α ≃o γ
⊢ (fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a}
[PROOFSTEP]
ext c
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
e : α ≃o γ
c : γ
⊢ c ∈ (fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ c ∈ {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a}
[PROOFSTEP]
obtain ⟨a, rfl⟩ := e.surjective c
[GOAL]
case e_a.h.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
e : α ≃o γ
a : α
⊢ ↑e a ∈ (fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ ↑e a ∈ {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g✝ : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
g : sSupHom α γ
⊢ ↑g (blimsup u f p) ≤ blimsup (↑g ∘ u) f p
[PROOFSTEP]
simp only [blimsup_eq_iInf_biSup, Function.comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g✝ : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
g : sSupHom α γ
⊢ ↑g (⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b) ≤
⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), ↑g (u b)
[PROOFSTEP]
refine' ((OrderHomClass.mono g).map_iInf₂_le _).trans _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteLattice α
f g✝ : Filter β
p q : β → Prop
u v : β → α
inst✝ : CompleteLattice γ
g : sSupHom α γ
⊢ ⨅ (i : Set β) (_ : i ∈ f), ↑g (⨆ (b : β) (_ : p b ∧ b ∈ i), u b) ≤
⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), ↑g (u b)
[PROOFSTEP]
simp only [_root_.map_iSup, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
⊢ (blimsup u f fun x => p x ∨ q x) = blimsup u f p ⊔ blimsup u f q
[PROOFSTEP]
refine' le_antisymm _ blimsup_sup_le_or
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
⊢ (blimsup u f fun x => p x ∨ q x) ≤ blimsup u f p ⊔ blimsup u f q
[PROOFSTEP]
simp only [blimsup_eq, sInf_sup_eq, sup_sInf_eq, le_iInf₂_iff, mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
⊢ ∀ (i : α),
(∀ᶠ (x : β) in f, q x → u x ≤ i) →
∀ (i_1 : α), (∀ᶠ (x : β) in f, p x → u x ≤ i_1) → sInf {a | ∀ᶠ (x : β) in f, p x ∨ q x → u x ≤ a} ≤ i_1 ⊔ i
[PROOFSTEP]
refine' fun a' ha' a ha => sInf_le ((ha.and ha').mono fun b h hb => _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
a' : α
ha' : ∀ᶠ (x : β) in f, q x → u x ≤ a'
a : α
ha : ∀ᶠ (x : β) in f, p x → u x ≤ a
b : β
h : (p b → u b ≤ a) ∧ (q b → u b ≤ a')
hb : p b ∨ q b
⊢ u b ≤ a ⊔ a'
[PROOFSTEP]
exact Or.elim hb (fun hb => le_sup_of_le_left <| h.1 hb) fun hb => le_sup_of_le_right <| h.2 hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
⊢ a ⊔ limsup u f = limsup (fun x => a ⊔ u x) f
[PROOFSTEP]
simp only [limsup_eq_iInf_iSup, iSup_sup_eq, sup_iInf₂_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
⊢ ⨅ (i : Set β) (_ : i ∈ f), a ⊔ ⨆ (a : β) (_ : a ∈ i), u a =
⨅ (s : Set β) (_ : s ∈ f), (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x
[PROOFSTEP]
congr
[GOAL]
case e_s
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
⊢ (fun i => ⨅ (_ : i ∈ f), a ⊔ ⨆ (a : β) (_ : a ∈ i), u a) = fun s =>
⨅ (_ : s ∈ f), (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x
[PROOFSTEP]
ext s
[GOAL]
case e_s.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
s : Set β
⊢ ⨅ (_ : s ∈ f), a ⊔ ⨆ (a : β) (_ : a ∈ s), u a = ⨅ (_ : s ∈ f), (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x
[PROOFSTEP]
congr
[GOAL]
case e_s.h.e_s
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
s : Set β
⊢ (fun j => a ⊔ ⨆ (a : β) (_ : a ∈ s), u a) = fun x => (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x
[PROOFSTEP]
ext hs
[GOAL]
case e_s.h.e_s.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
s : Set β
hs : s ∈ f
⊢ a ⊔ ⨆ (a : β) (_ : a ∈ s), u a = (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x
[PROOFSTEP]
congr
[GOAL]
case e_s.h.e_s.h.e_a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
inst✝ : NeBot f
a : α
s : Set β
hs : s ∈ f
⊢ a = ⨆ (x : β) (_ : x ∈ s), a
[PROOFSTEP]
exact (biSup_const (nonempty_of_mem hs)).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
a : α
⊢ a ⊔ liminf u f = liminf (fun x => a ⊔ u x) f
[PROOFSTEP]
simp only [liminf_eq_iSup_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
a : α
⊢ a ⊔ ⨆ (s : Set β) (_ : s ∈ f), ⨅ (a : β) (_ : a ∈ s), u a =
⨆ (s : Set β) (_ : s ∈ f), ⨅ (a_1 : β) (_ : a_1 ∈ s), a ⊔ u a_1
[PROOFSTEP]
rw [sup_comm, biSup_sup (⟨univ, univ_mem⟩ : ∃ i : Set β, i ∈ f)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteDistribLattice α
f : Filter β
p q : β → Prop
u : β → α
a : α
⊢ ⨆ (i : Set β) (_ : i ∈ f), (⨅ (a : β) (_ : a ∈ i), u a) ⊔ a =
⨆ (s : Set β) (_ : s ∈ f), ⨅ (a_1 : β) (_ : a_1 ∈ s), a ⊔ u a_1
[PROOFSTEP]
simp_rw [iInf₂_sup_eq, sup_comm (a := a)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
⊢ (limsup u f)ᶜ = liminf (compl ∘ u) f
[PROOFSTEP]
simp only [limsup_eq_iInf_iSup, compl_iInf, compl_iSup, liminf_eq_iSup_iInf, Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
⊢ (liminf u f)ᶜ = limsup (compl ∘ u) f
[PROOFSTEP]
simp only [limsup_eq_iInf_iSup, compl_iInf, compl_iSup, liminf_eq_iSup_iInf, Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
a : α
⊢ limsup u f \ a = limsup (fun b => u b \ a) f
[PROOFSTEP]
simp only [limsup_eq_iInf_iSup, sdiff_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
a : α
⊢ (⨅ (s : Set β) (_ : s ∈ f), ⨆ (a : β) (_ : a ∈ s), u a) ⊓ aᶜ =
⨅ (s : Set β) (_ : s ∈ f), ⨆ (a_1 : β) (_ : a_1 ∈ s), u a_1 ⊓ aᶜ
[PROOFSTEP]
rw [biInf_inf (⟨univ, univ_mem⟩ : ∃ i : Set β, i ∈ f)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
a : α
⊢ ⨅ (i : Set β) (_ : i ∈ f), (⨆ (a : β) (_ : a ∈ i), u a) ⊓ aᶜ =
⨅ (s : Set β) (_ : s ∈ f), ⨆ (a_1 : β) (_ : a_1 ∈ s), u a_1 ⊓ aᶜ
[PROOFSTEP]
simp_rw [inf_comm, inf_iSup₂_eq, inf_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
inst✝ : NeBot f
a : α
⊢ liminf u f \ a = liminf (fun b => u b \ a) f
[PROOFSTEP]
simp only [sdiff_eq, inf_comm (b := aᶜ), inf_liminf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
inst✝ : NeBot f
a : α
⊢ a \ limsup u f = liminf (fun b => a \ u b) f
[PROOFSTEP]
rw [← compl_inj_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
inst✝ : NeBot f
a : α
⊢ (a \ limsup u f)ᶜ = (liminf (fun b => a \ u b) f)ᶜ
[PROOFSTEP]
simp only [sdiff_eq, liminf_compl, (· ∘ ·), compl_inf, compl_compl, sup_limsup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
a : α
⊢ a \ liminf u f = limsup (fun b => a \ u b) f
[PROOFSTEP]
rw [← compl_inj_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝ : CompleteBooleanAlgebra α
f : Filter β
u : β → α
a : α
⊢ (a \ liminf u f)ᶜ = (limsup (fun b => a \ u b) f)ᶜ
[PROOFSTEP]
simp only [sdiff_eq, limsup_compl, (· ∘ ·), compl_inf, compl_compl, sup_liminf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ blimsup s cofinite p = {x | Set.Infinite {n | p n ∧ x ∈ s n}}
[PROOFSTEP]
simp only [blimsup_eq, le_eq_subset, eventually_cofinite, not_forall, sInf_eq_sInter, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} = {x | Set.Infinite {n | p n ∧ x ∈ s n}}
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
⊢ x ∈ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} ↔ x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
[PROOFSTEP]
refine' ⟨fun h => _, fun hx t h => _⟩
[GOAL]
case h.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
h : x ∈ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}}
⊢ x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
[PROOFSTEP]
contrapose! h
[GOAL]
case h.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
hx : x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
t : Set α
h : t ∈ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}}
⊢ x ∈ t
[PROOFSTEP]
contrapose! h
[GOAL]
case h.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
⊢ ¬x ∈ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}}
[PROOFSTEP]
simp only [mem_sInter, mem_setOf_eq, not_forall, exists_prop]
[GOAL]
case h.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
⊢ ∃ x_1, Set.Finite {x | p x ∧ ¬s x ⊆ x_1} ∧ ¬x ∈ x_1
[PROOFSTEP]
exact ⟨{ x }ᶜ, by simpa using h, by simp⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
⊢ Set.Finite {x_1 | p x_1 ∧ ¬s x_1 ⊆ {x}ᶜ}
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
⊢ ¬x ∈ {x}ᶜ
[PROOFSTEP]
simp
[GOAL]
case h.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
x : α
hx : x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}}
t : Set α
h : ¬x ∈ t
⊢ ¬t ∈ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}}
[PROOFSTEP]
exact hx.mono fun i hi => ⟨hi.1, fun hit => h (hit hi.2)⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ bliminf s cofinite p = {x | Set.Finite {n | p n ∧ ¬x ∈ s n}}
[PROOFSTEP]
rw [← compl_inj_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ (bliminf s cofinite p)ᶜ = {x | Set.Finite {n | p n ∧ ¬x ∈ s n}}ᶜ
[PROOFSTEP]
simp only [bliminf_eq_iSup_biInf, compl_iInf, compl_iSup, ← blimsup_eq_iInf_biSup, cofinite.blimsup_set_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ {x | Set.Infinite {n | p n ∧ x ∈ (s n)ᶜ}} = {x | Set.Finite {n | p n ∧ ¬x ∈ s n}}ᶜ
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ limsup s cofinite = {x | Set.Infinite {n | x ∈ s n}}
[PROOFSTEP]
simp only [← cofinite.blimsup_true s, cofinite.blimsup_set_eq, true_and_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p : ι → Prop
s : ι → Set α
⊢ liminf s cofinite = {x | Set.Finite {n | ¬x ∈ s n}}
[PROOFSTEP]
simp only [← cofinite.bliminf_true s, cofinite.bliminf_set_eq, true_and_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
q : ι → Prop
hl : HasBasis l q b
u : β → Set α
p : β → Prop
x : α
hx : x ∈ blimsup u l p
⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i
[PROOFSTEP]
rw [blimsup_eq_iInf_biSup] at hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
q : ι → Prop
hl : HasBasis l q b
u : β → Set α
p : β → Prop
x : α
hx : x ∈ ⨅ (s : Set β) (_ : s ∈ l), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b
⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i
[PROOFSTEP]
simp only [iSup_eq_iUnion, iInf_eq_iInter, mem_iInter, mem_iUnion, exists_prop] at hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
q : ι → Prop
hl : HasBasis l q b
u : β → Set α
p : β → Prop
x : α
hx : ∀ (i : Set β), i ∈ l → ∃ i_2, (p i_2 ∧ i_2 ∈ i) ∧ x ∈ u i_2
⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i
[PROOFSTEP]
choose g hg hg' using hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
q : ι → Prop
hl : HasBasis l q b
u : β → Set α
p : β → Prop
x : α
g : (i : Set β) → i ∈ l → β
hg : ∀ (i : Set β) (i_1 : i ∈ l), p (g i i_1) ∧ g i i_1 ∈ i
hg' : ∀ (i : Set β) (i_1 : i ∈ l), x ∈ u (g i i_1)
⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i
[PROOFSTEP]
refine' ⟨fun i : {i | q i} => g (b i) (hl.mem_of_mem i.2), fun i => ⟨_, _⟩⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
q : ι → Prop
hl : HasBasis l q b
u : β → Set α
p : β → Prop
x : α
g : (i : Set β) → i ∈ l → β
hg : ∀ (i : Set β) (i_1 : i ∈ l), p (g i i_1) ∧ g i i_1 ∈ i
hg' : ∀ (i : Set β) (i_1 : i ∈ l), x ∈ u (g i i_1)
i : ↑{i | q i}
⊢ x ∈ u ((fun i => g (b ↑i) (_ : b ↑i ∈ l)) i)
[PROOFSTEP]
exact hg' (b i) (hl.mem_of_mem i.2)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
q : ι → Prop
hl : HasBasis l q b
u : β → Set α
p : β → Prop
x : α
g : (i : Set β) → i ∈ l → β
hg : ∀ (i : Set β) (i_1 : i ∈ l), p (g i i_1) ∧ g i i_1 ∈ i
hg' : ∀ (i : Set β) (i_1 : i ∈ l), x ∈ u (g i i_1)
i : ↑{i | q i}
⊢ p ((fun i => g (b ↑i) (_ : b ↑i ∈ l)) i) ∧ (fun i => g (b ↑i) (_ : b ↑i ∈ l)) i ∈ b ↑i
[PROOFSTEP]
exact hg (b i) (hl.mem_of_mem i.2)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
hl : HasBasis l (fun x => True) b
u : β → Set α
p : β → Prop
x : α
hx : x ∈ blimsup u l p
⊢ ∃ f, ∀ (i : ι), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b i
[PROOFSTEP]
obtain ⟨f, hf⟩ := exists_forall_mem_of_hasBasis_mem_blimsup hl hx
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
p✝ : ι → Prop
s : ι → Set α
l : Filter β
b : ι → Set β
hl : HasBasis l (fun x => True) b
u : β → Set α
p : β → Prop
x : α
hx : x ∈ blimsup u l p
f : ↑{i | True} → β
hf : ∀ (i : ↑{i | True}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i
⊢ ∃ f, ∀ (i : ι), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b i
[PROOFSTEP]
exact ⟨fun i => f ⟨i, trivial⟩, fun i => hf ⟨i, trivial⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder α
a : α
hf : autoParam (IsCobounded (fun x x_1 => x ≤ x_1) f) _auto✝
h : a < limsSup f
⊢ ∃ᶠ (n : α) in f, a < n
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder α
a : α
hf : autoParam (IsCobounded (fun x x_1 => x ≤ x_1) f) _auto✝
h : ¬∃ᶠ (n : α) in f, a < n
⊢ limsSup f ≤ a
[PROOFSTEP]
simp only [not_frequently, not_lt] at h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder α
a : α
hf : autoParam (IsCobounded (fun x x_1 => x ≤ x_1) f) _auto✝
h : ∀ᶠ (x : α) in f, x ≤ a
⊢ limsSup f ≤ a
[PROOFSTEP]
exact limsSup_le_of_le hf h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder β
u : α → β
b : β
h : b < liminf u f
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝
⊢ ∀ᶠ (a : α) in f, b < u a
[PROOFSTEP]
obtain ⟨c, hc, hbc⟩ : ∃ (c : β) (_ : c ∈ {c : β | ∀ᶠ n : α in f, c ≤ u n}), b < c :=
by
simp_rw [exists_prop]
exact exists_lt_of_lt_csSup hu h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder β
u : α → β
b : β
h : b < liminf u f
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝
⊢ ∃ c x, b < c
[PROOFSTEP]
simp_rw [exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder β
u : α → β
b : β
h : b < liminf u f
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝
⊢ ∃ c, c ∈ {c | ∀ᶠ (n : α) in f, c ≤ u n} ∧ b < c
[PROOFSTEP]
exact exists_lt_of_lt_csSup hu h
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
f : Filter α
inst✝ : ConditionallyCompleteLinearOrder β
u : α → β
b : β
h : b < liminf u f
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝
c : β
hc : c ∈ {c | ∀ᶠ (n : α) in f, c ≤ u n}
hbc : b < c
⊢ ∀ᶠ (a : α) in f, b < u a
[PROOFSTEP]
exact hc.mono fun x hx => lt_of_lt_of_le hbc hx
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu_le : ∃ᶠ (x : α) in f, b ≤ u x
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
⊢ b ≤ limsup u f
[PROOFSTEP]
revert hu_le
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
⊢ (∃ᶠ (x : α) in f, b ≤ u x) → b ≤ limsup u f
[PROOFSTEP]
rw [← not_imp_not, not_frequently]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
⊢ ¬b ≤ limsup u f → ∀ᶠ (x : α) in f, ¬b ≤ u x
[PROOFSTEP]
simp_rw [← lt_iff_not_ge]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
⊢ limsup u f < b → ∀ᶠ (x : α) in f, u x < b
[PROOFSTEP]
exact fun h => eventually_lt_of_limsup_lt h hu
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
h : b < limsup u f
⊢ ∃ᶠ (x : α) in f, b < u x
[PROOFSTEP]
contrapose! h
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
h : ¬∃ᶠ (x : α) in f, b < u x
⊢ limsup u f ≤ b
[PROOFSTEP]
apply limsSup_le_of_le hu
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Type u_4
α : Type u_5
β : Type u_6
inst✝ : ConditionallyCompleteLinearOrder β
f : Filter α
u : α → β
b : β
hu : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
h : ¬∃ᶠ (x : α) in f, b < u x
⊢ ∀ᶠ (n : β) in map u f, n ≤ b
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝³ : Nonempty β
inst✝² : LinearOrder β
inst✝¹ : Preorder γ
inst✝ : NoMaxOrder γ
g : β → γ
f : α → β
l : Filter α
hg : Monotone g
hg' : Tendsto g atTop atTop
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
refine' ⟨_, fun h => h.isBoundedUnder (α := β) hg⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝³ : Nonempty β
inst✝² : LinearOrder β
inst✝¹ : Preorder γ
inst✝ : NoMaxOrder γ
g : β → γ
f : α → β
l : Filter α
hg : Monotone g
hg' : Tendsto g atTop atTop
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) → IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝³ : Nonempty β
inst✝² : LinearOrder β
inst✝¹ : Preorder γ
inst✝ : NoMaxOrder γ
g : β → γ
f : α → β
l : Filter α
hg : Monotone g
hg' : Tendsto g atTop atTop
c : γ
hc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x x_1 => x ≤ x_1) x c
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
rw [eventually_map] at hc
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝³ : Nonempty β
inst✝² : LinearOrder β
inst✝¹ : Preorder γ
inst✝ : NoMaxOrder γ
g : β → γ
f : α → β
l : Filter α
hg : Monotone g
hg' : Tendsto g atTop atTop
c : γ
hc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
obtain ⟨b, hb⟩ : ∃ b, ∀ a ≥ b, c < g a := eventually_atTop.1 (hg'.eventually_gt_atTop c)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝³ : Nonempty β
inst✝² : LinearOrder β
inst✝¹ : Preorder γ
inst✝ : NoMaxOrder γ
g : β → γ
f : α → β
l : Filter α
hg : Monotone g
hg' : Tendsto g atTop atTop
c : γ
hc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c
b : β
hb : ∀ (a : β), a ≥ b → c < g a
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f
[PROOFSTEP]
exact ⟨b, hc.mono fun x hx => not_lt.1 fun h => (hb _ h.le).not_le hx⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
v : α → β
l : β → γ
u : γ → β
gc : GaloisConnection l u
hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝
hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝
⊢ l (limsup v f) ≤ limsup (fun x => l (v x)) f
[PROOFSTEP]
refine' le_limsSup_of_le hlv fun c hc => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
v : α → β
l : β → γ
u : γ → β
gc : GaloisConnection l u
hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝
hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝
c : γ
hc : ∀ᶠ (n : γ) in map (fun x => l (v x)) f, n ≤ c
⊢ l (limsup v f) ≤ c
[PROOFSTEP]
rw [Filter.eventually_map] at hc
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
v : α → β
l : β → γ
u : γ → β
gc : GaloisConnection l u
hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝
hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝
c : γ
hc : ∀ᶠ (a : α) in f, l (v a) ≤ c
⊢ l (limsup v f) ≤ c
[PROOFSTEP]
simp_rw [gc _ _] at hc ⊢
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
v : α → β
l : β → γ
u : γ → β
gc : GaloisConnection l u
hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝
hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝
c : γ
hc : ∀ᶠ (a : α) in f, v a ≤ u c
⊢ limsup v f ≤ u c
[PROOFSTEP]
exact limsSup_le_of_le hv_co hc
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
⊢ ↑g (limsup u f) = limsup (fun x => ↑g (u x)) f
[PROOFSTEP]
refine' le_antisymm ((OrderIso.to_galoisConnection g).l_limsup_le hgu hu_co) _
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
⊢ limsup (fun x => ↑g (u x)) f ≤ ↑g (limsup u f)
[PROOFSTEP]
rw [← g.symm.symm_apply_apply <| limsup (fun x => g (u x)) f, g.symm_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
⊢ ↑g (↑(symm g) (limsup (fun x => ↑g (u x)) f)) ≤ ↑g (limsup u f)
[PROOFSTEP]
refine' g.monotone _
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
⊢ ↑(symm g) (limsup (fun x => ↑g (u x)) f) ≤ limsup u f
[PROOFSTEP]
have hf : u = fun i => g.symm (g (u i)) := funext fun i => (g.symm_apply_apply (u i)).symm
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hf : u = fun i => ↑(symm g) (↑g (u i))
⊢ ↑(symm g) (limsup (fun x => ↑g (u x)) f) ≤ limsup u f
[PROOFSTEP]
nth_rw 2 [hf]
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hf : u = fun i => ↑(symm g) (↑g (u i))
⊢ ↑(symm g) (limsup (fun x => ↑g (u x)) f) ≤ limsup (fun i => ↑(symm g) (↑g (u i))) f
[PROOFSTEP]
refine' (OrderIso.to_galoisConnection g.symm).l_limsup_le _ hgu_co
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hf : u = fun i => ↑(symm g) (↑g (u i))
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑(symm g) (↑g (u x))
[PROOFSTEP]
simp_rw [g.symm_apply_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
ι : Type u_4
γ : Type u_5
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : Filter α
u : α → β
g : β ≃o γ
hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝
hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝
hf : u = fun i => ↑(symm g) (↑g (u i))
⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => u x
[PROOFSTEP]
exact hu
| {"mathlib_filename": "Mathlib.Order.LiminfLimsup", "llama_tokens": 34866} |
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
inst✝¹ : IsPreorder α r
inst✝ : Inhabited α
⊢ Inhabited (Antisymmetrization α r)
[PROOFSTEP]
unfold Antisymmetrization
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
inst✝¹ : IsPreorder α r
inst✝ : Inhabited α
⊢ Inhabited (Quotient (AntisymmRel.setoid α r))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b : α
⊢ Relation.Fibration (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (toAntisymmetrization fun x x_1 => x ≤ x_1)
[PROOFSTEP]
rintro a ⟨b⟩ h
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a✝ b✝¹ a : α
b✝ : Antisymmetrization α fun x x_1 => x ≤ x_1
b : α
h : Quot.mk Setoid.r b < toAntisymmetrization (fun x x_1 => x ≤ x_1) a
⊢ ∃ a', (fun x x_1 => x < x_1) a' a ∧ toAntisymmetrization (fun x x_1 => x ≤ x_1) a' = Quot.mk Setoid.r b
[PROOFSTEP]
exact ⟨b, h, rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a✝¹ b : α
a✝ : (Antisymmetrization α fun x x_1 => x ≤ x_1)ᵒᵈ
a : α
⊢ Quotient.map' id
(_ :
∀ (x x_1 : αᵒᵈ),
(fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x →
(fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1)
(Quotient.map' id
(_ :
∀ (x x_1 : α),
(fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x →
(fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1)
(Quotient.mk'' a)) =
Quotient.mk'' a
[PROOFSTEP]
simp_rw [Quotient.map'_mk'', id]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a✝¹ b : α
a✝ : Antisymmetrization αᵒᵈ fun x x_1 => x ≤ x_1
a : αᵒᵈ
⊢ Quotient.map' id
(_ :
∀ (x x_1 : α),
(fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x →
(fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1)
(Quotient.map' id
(_ :
∀ (x x_1 : αᵒᵈ),
(fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x →
(fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1)
(Quotient.mk'' a)) =
Quotient.mk'' a
[PROOFSTEP]
simp_rw [Quotient.map'_mk'', id]
| {"mathlib_filename": "Mathlib.Order.Antisymmetrization", "llama_tokens": 1171} |
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
⊢ IsCoatomic α
[PROOFSTEP]
refine ⟨fun x => le_top.eq_or_lt.imp_right fun hx => ?_⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
⊢ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
have : ∃ y ∈ Ico x ⊤, x ≤ y ∧ ∀ z ∈ Ico x ⊤, y ≤ z → z = y :=
by
refine zorn_nonempty_partialOrder₀ (Ico x ⊤) (fun c hxc hc y hy => ?_) x (left_mem_Ico.2 hx)
rcases h c hc ⟨y, hy⟩ fun h => (hxc h).2.ne rfl with ⟨z, hz, hcz⟩
exact ⟨z, ⟨le_trans (hxc hy).1 (hcz hy), hz.lt_top⟩, hcz⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
⊢ ∃ y, y ∈ Ico x ⊤ ∧ x ≤ y ∧ ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y
[PROOFSTEP]
refine zorn_nonempty_partialOrder₀ (Ico x ⊤) (fun c hxc hc y hy => ?_) x (left_mem_Ico.2 hx)
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
c : Set α
hxc : c ⊆ Ico x ⊤
hc : IsChain (fun x x_1 => x ≤ x_1) c
y : α
hy : y ∈ c
⊢ ∃ ub, ub ∈ Ico x ⊤ ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
rcases h c hc ⟨y, hy⟩ fun h => (hxc h).2.ne rfl with ⟨z, hz, hcz⟩
[GOAL]
case intro.intro
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
c : Set α
hxc : c ⊆ Ico x ⊤
hc : IsChain (fun x x_1 => x ≤ x_1) c
y : α
hy : y ∈ c
z : α
hz : z ≠ ⊤
hcz : z ∈ upperBounds c
⊢ ∃ ub, ub ∈ Ico x ⊤ ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
exact ⟨z, ⟨le_trans (hxc hy).1 (hcz hy), hz.lt_top⟩, hcz⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
this : ∃ y, y ∈ Ico x ⊤ ∧ x ≤ y ∧ ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y
⊢ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
rcases this with ⟨y, ⟨hxy, hy⟩, -, hy'⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
y : α
hxy : x ≤ y
hy : y < ⊤
hy' : ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y
⊢ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
refine ⟨y, ⟨hy.ne, fun z hyz => le_top.eq_or_lt.resolve_right fun hz => ?_⟩, hxy⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c
x : α
hx : x < ⊤
y : α
hxy : x ≤ y
hy : y < ⊤
hy' : ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y
z : α
hyz : y < z
hz : z < ⊤
⊢ False
[PROOFSTEP]
exact hyz.ne' (hy' z ⟨hxy.trans hyz.le, hz⟩ hyz.le)
| {"mathlib_filename": "Mathlib.Order.ZornAtoms", "llama_tokens": 1705} |
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
f : (x : { x // x ∈ U }) → Localizations R ↑x
hf : IsFraction f
⊢ ∃ r s,
∀ (x : { x // x ∈ U }),
∃ hs, f x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) r { val := s, property := hs }
[PROOFSTEP]
rcases hf with ⟨r, s, h⟩
[GOAL]
case intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
f : (x : { x // x ∈ U }) → Localizations R ↑x
r s : R
h :
∀ (x : { x // x ∈ U }),
¬s ∈ (↑x).asIdeal ∧ f x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r
⊢ ∃ r s,
∀ (x : { x // x ∈ U }),
∃ hs, f x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) r { val := s, property := hs }
[PROOFSTEP]
refine' ⟨r, s, fun x => ⟨(h x).1, (IsLocalization.mk'_eq_iff_eq_mul.mpr _).symm⟩⟩
[GOAL]
case intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
f : (x : { x // x ∈ U }) → Localizations R ↑x
r s : R
h :
∀ (x : { x // x ∈ U }),
¬s ∈ (↑x).asIdeal ∧ f x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r
x : { x // x ∈ U }
⊢ ↑(algebraMap R (Localizations R ↑x)) r =
f x * ↑(algebraMap R (Localizations R ↑x)) ↑{ val := s, property := (_ : ¬s ∈ (↑x).asIdeal) }
[PROOFSTEP]
exact (h x).2.symm
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ ∀ {U V : Opens ↑(PrimeSpectrum.Top R)} (i : U ⟶ V) (f : (x : { x // x ∈ V }) → Localizations R ↑x),
(fun {U} f => IsFraction f) f →
(fun {U} f => IsFraction f) fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)
[PROOFSTEP]
rintro V U i f ⟨r, s, w⟩
[GOAL]
case intro.intro
R : Type u
inst✝ : CommRing R
V U : Opens ↑(PrimeSpectrum.Top R)
i : V ⟶ U
f : (x : { x // x ∈ U }) → Localizations R ↑x
r s : R
w :
∀ (x : { x // x ∈ U }),
¬s ∈ (↑x).asIdeal ∧ f x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r
⊢ IsFraction fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)
[PROOFSTEP]
exact ⟨r, s, fun x => w (i x)⟩
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
⊢ ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
a * b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
[PROOFSTEP]
intro a b ha hb x
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases ha x with ⟨Va, ma, ia, ra, sa, wa⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases hb x with ⟨Vb, mb, ib, rb, sb, wb⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
refine' ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ra * rb, sa * sb, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
⊢ ∀ (x : { x // x ∈ Va ⊓ Vb }),
¬sa * sb ∈ (↑x).asIdeal ∧
(fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) (sa * sb) =
↑(algebraMap R (Localizations R ↑x)) (ra * rb)
[PROOFSTEP]
intro y
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
⊢ ¬sa * sb ∈ (↑y).asIdeal ∧
(fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * rb)
[PROOFSTEP]
rcases wa (Opens.infLELeft _ _ y) with ⟨nma, wa⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
⊢ ¬sa * sb ∈ (↑y).asIdeal ∧
(fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * rb)
[PROOFSTEP]
rcases wb (Opens.infLERight _ _ y) with ⟨nmb, wb⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ ¬sa * sb ∈ (↑y).asIdeal ∧
(fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * rb)
[PROOFSTEP]
fconstructor
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ ¬sa * sb ∈ (↑y).asIdeal
[PROOFSTEP]
intro H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
H : sa * sb ∈ (↑y).asIdeal
⊢ False
[PROOFSTEP]
cases y.1.IsPrime.mem_or_mem H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inl
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
H : sa * sb ∈ (↑y).asIdeal
h✝ : sa ∈ (↑y).asIdeal
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inr
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
H : sa * sb ∈ (↑y).asIdeal
h✝ : sb ∈ (↑y).asIdeal
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * rb)
[PROOFSTEP]
simp only [Pi.mul_apply, RingHom.map_mul]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) =
↑(algebraMap R (Localizations R ↑y)) ra * ↑(algebraMap R (Localizations R ↑y)) rb
[PROOFSTEP]
erw [← wa, ← wb]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) =
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa *
((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb)
[PROOFSTEP]
simp only [mul_left_comm, mul_assoc, mul_comm]
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
⊢ 1 ∈
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.carrier
[PROOFSTEP]
refine' fun x => ⟨unop U, x.2, 𝟙 _, 1, 1, fun y => ⟨_, _⟩⟩
[GOAL]
case refine'_1
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
x y : { x // x ∈ U.unop }
⊢ ¬1 ∈ (↑y).asIdeal
[PROOFSTEP]
rw [← Ideal.ne_top_iff_one]
[GOAL]
case refine'_1
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
x y : { x // x ∈ U.unop }
⊢ (↑y).asIdeal ≠ ⊤
[PROOFSTEP]
exact y.1.IsPrime.1
[GOAL]
case refine'_2
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
x y : { x // x ∈ U.unop }
⊢ (fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) 1 =
↑(algebraMap R (Localizations R ↑y)) 1
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
⊢ ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
[PROOFSTEP]
intro a b ha hb x
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases ha x with ⟨Va, ma, ia, ra, sa, wa⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases hb x with ⟨Vb, mb, ib, rb, sb, wb⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
refine' ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ra * sb + rb * sa, sa * sb, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
⊢ ∀ (x : { x // x ∈ Va ⊓ Vb }),
¬sa * sb ∈ (↑x).asIdeal ∧
(fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) (sa * sb) =
↑(algebraMap R (Localizations R ↑x)) (ra * sb + rb * sa)
[PROOFSTEP]
intro y
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
⊢ ¬sa * sb ∈ (↑y).asIdeal ∧
(fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa)
[PROOFSTEP]
rcases wa (Opens.infLELeft _ _ y) with ⟨nma, wa⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
⊢ ¬sa * sb ∈ (↑y).asIdeal ∧
(fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa)
[PROOFSTEP]
rcases wb (Opens.infLERight _ _ y) with ⟨nmb, wb⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ ¬sa * sb ∈ (↑y).asIdeal ∧
(fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa)
[PROOFSTEP]
fconstructor
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ ¬sa * sb ∈ (↑y).asIdeal
[PROOFSTEP]
intro H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
H : sa * sb ∈ (↑y).asIdeal
⊢ False
[PROOFSTEP]
cases y.1.IsPrime.mem_or_mem H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inl
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
H : sa * sb ∈ (↑y).asIdeal
h✝ : sa ∈ (↑y).asIdeal
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inr
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
H : sa * sb ∈ (↑y).asIdeal
h✝ : sb ∈ (↑y).asIdeal
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) (sa * sb) =
↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa)
[PROOFSTEP]
simp only [add_mul, RingHom.map_add, Pi.add_apply, RingHom.map_mul]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) +
b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) =
↑(algebraMap R (Localizations R ↑y)) ra * ↑(algebraMap R (Localizations R ↑y)) sb +
↑(algebraMap R (Localizations R ↑y)) rb * ↑(algebraMap R (Localizations R ↑y)) sa
[PROOFSTEP]
erw [← wa, ← wb]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) +
b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) =
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa *
↑(algebraMap R (Localizations R ↑y)) sb +
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb *
↑(algebraMap R (Localizations R ↑y)) sa
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) +
b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) =
a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) +
b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } *
(↑(algebraMap R (Localizations R ↑y)) sb * ↑(algebraMap R (Localizations R ↑y)) sa)
[PROOFSTEP]
congr 2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right.e_a.e_a
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
hb :
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
Va : Opens ↑(PrimeSpectrum.Top R)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ra sa : R
wa✝ :
∀ (x : { x // x ∈ Va }),
¬sa ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sa =
↑(algebraMap R (Localizations R ↑x)) ra
Vb : Opens ↑(PrimeSpectrum.Top R)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
rb sb : R
wb✝ :
∀ (x : { x // x ∈ Vb }),
¬sb ∈ (↑x).asIdeal ∧
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) sb =
↑(algebraMap R (Localizations R ↑x)) rb
y : { x // x ∈ Va ⊓ Vb }
nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal
wa :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra
nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal
wb :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) *
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb =
↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb
⊢ ↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb =
↑(algebraMap R (Localizations R ↑y)) sb * ↑(algebraMap R (Localizations R ↑y)) sa
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
⊢ 0 ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier
[PROOFSTEP]
refine' fun x => ⟨unop U, x.2, 𝟙 _, 0, 1, fun y => ⟨_, _⟩⟩
[GOAL]
case refine'_1
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
x y : { x // x ∈ U.unop }
⊢ ¬1 ∈ (↑y).asIdeal
[PROOFSTEP]
rw [← Ideal.ne_top_iff_one]
[GOAL]
case refine'_1
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
x y : { x // x ∈ U.unop }
⊢ (↑y).asIdeal ≠ ⊤
[PROOFSTEP]
exact y.1.IsPrime.1
[GOAL]
case refine'_2
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
x y : { x // x ∈ U.unop }
⊢ (fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) 1 =
↑(algebraMap R (Localizations R ↑y)) 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
⊢ ∀ {x : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈
{f |
PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{
carrier :=
{f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{f |
PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈
{f |
PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate
f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier →
-x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈
{f |
PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{
carrier :=
{f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{f |
PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈
{f |
PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate
f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
intro a ha x
[GOAL]
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases ha x with ⟨V, m, i, r, s, w⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
refine' ⟨V, m, i, -r, s, _⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
⊢ ∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) (-r)
[PROOFSTEP]
intro y
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
y : { x // x ∈ V }
⊢ ¬s ∈ (↑y).asIdeal ∧
(fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) (-r)
[PROOFSTEP]
rcases w y with ⟨nm, w⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w✝ :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
y : { x // x ∈ V }
nm : ¬s ∈ (↑y).asIdeal
w :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) r
⊢ ¬s ∈ (↑y).asIdeal ∧
(fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) (-r)
[PROOFSTEP]
fconstructor
[GOAL]
case intro.intro.intro.intro.intro.intro.left
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w✝ :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
y : { x // x ∈ V }
nm : ¬s ∈ (↑y).asIdeal
w :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) r
⊢ ¬s ∈ (↑y).asIdeal
[PROOFSTEP]
exact nm
[GOAL]
case intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w✝ :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
y : { x // x ∈ V }
nm : ¬s ∈ (↑y).asIdeal
w :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) r
⊢ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) (-r)
[PROOFSTEP]
simp only [RingHom.map_neg, Pi.neg_apply]
[GOAL]
case intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w✝ :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
y : { x // x ∈ V }
nm : ¬s ∈ (↑y).asIdeal
w :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) r
⊢ -a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * ↑(algebraMap R (Localizations R ↑y)) s =
-↑(algebraMap R (Localizations R ↑y)) r
[PROOFSTEP]
erw [← w]
[GOAL]
case intro.intro.intro.intro.intro.intro.right
R : Type u
inst✝ : CommRing R
U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → Localizations R ↑x
ha :
a ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
add_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f},
mul_mem' :=
(_ :
∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x},
a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a * b)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) },
one_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 1
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubsemigroup.carrier →
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)),
zero_mem' :=
(_ :
∀ (x : { x // x ∈ U.unop }),
∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
OfNat.ofNat 0
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) })
x)) }.toSubmonoid.toSubsemigroup.carrier
x : { x // x ∈ U.unop }
V : Opens ↑(PrimeSpectrum.Top R)
m : ↑x ∈ V
i : V ⟶ U.unop
r s : R
w✝ :
∀ (x : { x // x ∈ V }),
¬s ∈ (↑x).asIdeal ∧
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x *
↑(algebraMap R (Localizations R ↑x)) s =
↑(algebraMap R (Localizations R ↑x)) r
y : { x // x ∈ V }
nm : ¬s ∈ (↑y).asIdeal
w :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s =
↑(algebraMap R (Localizations R ↑y)) r
⊢ -a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * ↑(algebraMap R (Localizations R ↑y)) s =
-((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y *
↑(algebraMap R (Localizations R ↑y)) s)
[PROOFSTEP]
simp only [neg_mul]
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
U : Opens ↑(PrimeSpectrum.Top R)
hu : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → f ∈ Ideal.primeCompl x.asIdeal
x : { x // x ∈ (op U).unop }
⊢ ↑(algebraMap R (Localizations R ↑x)) 0 =
↑0 x * ↑(algebraMap R (Localizations R ↑x)) ↑{ val := f, property := (_ : f ∈ Ideal.primeCompl (↑x).asIdeal) }
[PROOFSTEP]
erw [RingHom.map_zero, Subring.coe_zero, Pi.zero_apply, zero_mul]
[GOAL]
R : Type u
inst✝ : CommRing R
f₁ f₂ g₁ g₂ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal
x : { x // x ∈ (op U).unop }
⊢ ↑(const R (f₁ * f₂) (g₁ * g₂) U (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ * g₂ ∈ Ideal.primeCompl x.asIdeal))
x =
↑(const R f₁ g₁ U hu₁ * const R f₂ g₂ U hu₂) x
[PROOFSTEP]
convert IsLocalization.mk'_mul _ f₁ f₂ ⟨g₁, hu₁ x x.2⟩ ⟨g₂, hu₂ x x.2⟩
[GOAL]
R : Type u
inst✝ : CommRing R
f₁ f₂ g₁ g₂ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal
h : f₁ * g₂ = f₂ * g₁
x : { x // x ∈ (op U).unop }
⊢ ↑{ val := g₁, property := (_ : g₁ ∈ Ideal.primeCompl (↑x).asIdeal) } * f₂ =
↑{ val := g₂, property := (_ : g₂ ∈ Ideal.primeCompl (↑x).asIdeal) } * f₁
[PROOFSTEP]
rw [mul_comm, Subtype.coe_mk, ← h, mul_comm, Subtype.coe_mk]
[GOAL]
R : Type u
inst✝ : CommRing R
f₁ f₂ g₁ g₂ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
hf : f₁ = f₂
hg : g₁ = g₂
⊢ const R f₁ g₁ U hu = const R f₂ g₂ U (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
substs hf hg
[GOAL]
R : Type u
inst✝ : CommRing R
f₁ g₁ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
⊢ const R f₁ g₁ U hu = const R f₁ g₁ U (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
f g : R
U : Opens ↑(PrimeSpectrum.Top R)
hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g ∈ Ideal.primeCompl x.asIdeal
hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → f ∈ Ideal.primeCompl x.asIdeal
⊢ const R f g U hu₁ * const R g f U hu₂ = 1
[PROOFSTEP]
rw [const_mul, const_congr R rfl (mul_comm g f), const_self]
[GOAL]
R : Type u
inst✝ : CommRing R
f g₁ g₂ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal
⊢ const R f g₁ U hu₁ * const R g₁ g₂ U hu₂ = const R f g₂ U hu₂
[PROOFSTEP]
rw [const_mul, const_ext]
[GOAL]
case h
R : Type u
inst✝ : CommRing R
f g₁ g₂ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal
⊢ f * g₁ * g₂ = f * (g₁ * g₂)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
R : Type u
inst✝ : CommRing R
f g₁ g₂ : R
U : Opens ↑(PrimeSpectrum.Top R)
hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal
hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal
⊢ const R g₁ g₂ U hu₂ * const R f g₁ U hu₁ = const R f g₂ U hu₂
[PROOFSTEP]
rw [mul_comm, const_mul_cancel]
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
f : ↑(CommRingCat.of R)
x : { x // x ∈ (op U).unop }
y : { x // x ∈ U }
⊢ (fun x =>
(fun x => ↑(algebraMap R (Localizations R ↑x)) f)
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x))
y *
↑(algebraMap R (Localizations R ↑y)) 1 =
↑(algebraMap R (Localizations R ↑y)) f
[PROOFSTEP]
rw [RingHom.map_one, mul_one]
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
⊢ x ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
x : { x // x ∈ U }
⊢ toOpen R U ≫ germ (Sheaf.presheaf (structureSheaf R)) x = toStalk R ↑x
[PROOFSTEP]
rw [← toOpen_res R ⊤ U (homOfLE le_top : U ⟶ ⊤), Category.assoc, Presheaf.germ_res]
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
x : { x // x ∈ U }
⊢ toOpen R ⊤ ≫ germ (structureSheaf R).val ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑⊤) }) x) = toStalk R ↑x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
x : { x // x ∈ U }
f : R
⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) x) (↑(toOpen R U) f) = ↑(toStalk R ↑x) f
[PROOFSTEP]
rw [← toOpen_germ]
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
x : { x // x ∈ U }
f : R
⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) x) (↑(toOpen R U) f) =
↑(toOpen R U ≫ germ (Sheaf.presheaf (structureSheaf R)) x) f
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
⊢ ↑(toOpen R (PrimeSpectrum.basicOpen f)) f *
const R 1 f (PrimeSpectrum.basicOpen f)
(_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → x ∈ PrimeSpectrum.basicOpen f) =
1
[PROOFSTEP]
rw [toOpen_eq_const, const_mul_rev]
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
f : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal }
⊢ IsUnit (↑(toStalk R x) ↑f)
[PROOFSTEP]
erw [← germ_toOpen R (PrimeSpectrum.basicOpen (f : R)) ⟨x, f.2⟩ (f : R)]
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
f : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal }
⊢ IsUnit
(↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := (_ : ↑f ∈ Ideal.primeCompl x.asIdeal) })
(↑(toOpen R (PrimeSpectrum.basicOpen ↑f)) ↑f))
[PROOFSTEP]
exact RingHom.isUnit_map _ (isUnit_to_basicOpen_self R f)
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
f : R
s : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal }
⊢ ↑(toStalk R x) f =
↑(toStalk R x) ↑s *
↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := (_ : ↑s ∈ Ideal.primeCompl x.asIdeal) })
(const R f (↑s) (PrimeSpectrum.basicOpen ↑s)
(_ : ∀ (x_1 : ↑(PrimeSpectrum.Top R)), x_1 ∈ PrimeSpectrum.basicOpen ↑s → x_1 ∈ PrimeSpectrum.basicOpen ↑s))
[PROOFSTEP]
erw [← germ_toOpen R (PrimeSpectrum.basicOpen s) ⟨x, s.2⟩, ← germ_toOpen R (PrimeSpectrum.basicOpen s) ⟨x, s.2⟩, ←
RingHom.map_mul, toOpen_eq_const, toOpen_eq_const, const_mul_cancel']
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
x : { x // x ∈ U }
s : ↑((structureSheaf R).val.obj (op U))
⊢ ↑(stalkToFiberRingHom R ↑x) (↑(germ (Sheaf.presheaf (structureSheaf R)) x) s) = ↑s x
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
val✝ : ↑(PrimeSpectrum.Top R)
property✝ : val✝ ∈ U
⊢ ↑(stalkToFiberRingHom R ↑{ val := val✝, property := property✝ })
(↑(germ (Sheaf.presheaf (structureSheaf R)) { val := val✝, property := property✝ }) s) =
↑s { val := val✝, property := property✝ }
[PROOFSTEP]
exact stalkToFiberRingHom_germ' R U _ _ _
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
⊢ toStalk R x ≫ stalkToFiberRingHom R x = algebraMap R (Localization.AtPrime x.asIdeal)
[PROOFSTEP]
erw [toStalk, Category.assoc, germ_comp_stalkToFiberRingHom]
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
⊢ toOpen R ⊤ ≫
openToLocalization R ⊤ ↑{ val := x, property := True.intro } (_ : ↑{ val := x, property := True.intro } ∈ ⊤) =
algebraMap R (Localization.AtPrime x.asIdeal)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
⊢ stalkToFiberRingHom R x ≫ localizationToStalk R x = 𝟙 (stalk (Sheaf.presheaf (structureSheaf R)) x)
[PROOFSTEP]
ext U hxU s
[GOAL]
case ih.w
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU } ≫
stalkToFiberRingHom R x ≫ localizationToStalk R x)
s =
↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU } ≫
𝟙 (stalk (Sheaf.presheaf (structureSheaf R)) x))
s
[PROOFSTEP]
simp only [FunctorToTypes.map_comp_apply, CommRingCat.forget_map, CommRingCat.coe_of, Category.comp_id]
[GOAL]
case ih.w
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU } ≫
stalkToFiberRingHom R x ≫ localizationToStalk R x)
s =
↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s
[PROOFSTEP]
rw [comp_apply, comp_apply, stalkToFiberRingHom_germ']
[GOAL]
case ih.w
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
⊢ ↑(localizationToStalk R x) (↑s { val := x, property := hxU }) =
↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s
[PROOFSTEP]
obtain ⟨V, hxV, iVU, f, g, (hg : V ≤ PrimeSpectrum.basicOpen _), hs⟩ := exists_const _ _ s x hxU
[GOAL]
case ih.w.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
V : Opens ↑(PrimeSpectrum.Top R)
hxV : x ∈ V
iVU : V ⟶ U
f g : R
hg : V ≤ PrimeSpectrum.basicOpen g
hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s
⊢ ↑(localizationToStalk R x) (↑s { val := x, property := hxU }) =
↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s
[PROOFSTEP]
erw [← res_apply R U V iVU s ⟨x, hxV⟩, ← hs, const_apply, localizationToStalk_mk']
[GOAL]
case ih.w.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
V : Opens ↑(PrimeSpectrum.Top R)
hxV : x ∈ V
iVU : V ⟶ U
f g : R
hg : V ≤ PrimeSpectrum.basicOpen g
hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s
⊢ ↑(germ (Sheaf.presheaf (structureSheaf R))
{ val := x,
property :=
(_ :
↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) } ∈
Ideal.primeCompl x.asIdeal) })
(const R f
(↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })
(PrimeSpectrum.basicOpen
↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })
(_ :
∀ (x_1 : ↑(PrimeSpectrum.Top R)),
x_1 ∈
PrimeSpectrum.basicOpen
↑{ val := g,
property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) } →
x_1 ∈
PrimeSpectrum.basicOpen
↑{ val := g,
property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })) =
↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s
[PROOFSTEP]
refine' (structureSheaf R).presheaf.germ_ext V hxV (homOfLE hg) iVU _
[GOAL]
case ih.w.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
V : Opens ↑(PrimeSpectrum.Top R)
hxV : x ∈ V
iVU : V ⟶ U
f g : R
hg : V ≤ PrimeSpectrum.basicOpen g
hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s
⊢ ↑((Sheaf.presheaf (structureSheaf R)).map (homOfLE hg).op)
(const R f
(↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })
(PrimeSpectrum.basicOpen
↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })
(_ :
∀ (x_1 : ↑(PrimeSpectrum.Top R)),
x_1 ∈
PrimeSpectrum.basicOpen
↑{ val := g,
property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) } →
x_1 ∈
PrimeSpectrum.basicOpen
↑{ val := g,
property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })) =
↑((Sheaf.presheaf (structureSheaf R)).map iVU.op) s
[PROOFSTEP]
dsimp
[GOAL]
case ih.w.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
U : Opens ↑(PrimeSpectrum.Top R)
hxU : x ∈ U
s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U))
V : Opens ↑(PrimeSpectrum.Top R)
hxV : x ∈ V
iVU : V ⟶ U
f g : R
hg : V ≤ PrimeSpectrum.basicOpen g
hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s
⊢ ↑((Sheaf.presheaf (structureSheaf R)).map (homOfLE hg).op)
(const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen g → x ∈ PrimeSpectrum.basicOpen g)) =
↑((Sheaf.presheaf (structureSheaf R)).map iVU.op) s
[PROOFSTEP]
erw [← hs, res_const']
[GOAL]
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
⊢ RingHom.comp (RingHom.comp (stalkToFiberRingHom R x) (localizationToStalk R x))
(algebraMap R (Localization.AtPrime x.asIdeal)) =
RingHom.comp (RingHom.id (Localization.AtPrime x.asIdeal)) (algebraMap R (Localization.AtPrime x.asIdeal))
[PROOFSTEP]
ext f
[GOAL]
case a
R : Type u
inst✝ : CommRing R
x : ↑(PrimeSpectrum.Top R)
f : R
⊢ ↑(RingHom.comp (RingHom.comp (stalkToFiberRingHom R x) (localizationToStalk R x))
(algebraMap R (Localization.AtPrime x.asIdeal)))
f =
↑(RingHom.comp (RingHom.id (Localization.AtPrime x.asIdeal)) (algebraMap R (Localization.AtPrime x.asIdeal))) f
[PROOFSTEP]
rw [RingHom.comp_apply, RingHom.comp_apply, localizationToStalk_of, stalkToFiberRingHom_toStalk, RingHom.comp_apply,
RingHom.id_apply]
[GOAL]
R : Type u
inst✝ : CommRing R
s f : R
g : { x // x ∈ Submonoid.powers s }
⊢ ↑(toOpen R (PrimeSpectrum.basicOpen s)) f =
↑(toOpen R (PrimeSpectrum.basicOpen s)) ↑g *
const R f (↑g) (PrimeSpectrum.basicOpen s)
(_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen s → ↑g ∈ Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
rw [toOpen_eq_const, toOpen_eq_const, const_mul_cancel']
[GOAL]
R : Type u
inst✝ : CommRing R
f g : R
⊢ ↑(RingHom.comp (toBasicOpen R f) (algebraMap R (Localization.Away f))) g = ↑(toOpen R (PrimeSpectrum.basicOpen f)) g
[PROOFSTEP]
rw [toBasicOpen, IsLocalization.Away.lift, RingHom.comp_apply, IsLocalization.lift_eq]
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
⊢ Function.Injective ↑(toBasicOpen R f)
[PROOFSTEP]
intro s t h_eq
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s t : Localization.Away f
h_eq : ↑(toBasicOpen R f) s = ↑(toBasicOpen R f) t
⊢ s = t
[PROOFSTEP]
obtain ⟨a, ⟨b, hb⟩, rfl⟩ := IsLocalization.mk'_surjective (Submonoid.powers f) s
[GOAL]
case intro.intro.mk
R : Type u
inst✝ : CommRing R
f : R
t : Localization.Away f
a b : R
hb : b ∈ Submonoid.powers f
h_eq :
↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) a { val := b, property := hb }) = ↑(toBasicOpen R f) t
⊢ IsLocalization.mk' (Localization.Away f) a { val := b, property := hb } = t
[PROOFSTEP]
obtain ⟨c, ⟨d, hd⟩, rfl⟩ := IsLocalization.mk'_surjective (Submonoid.powers f) t
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) a { val := b, property := hb }) =
↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) c { val := d, property := hd })
⊢ IsLocalization.mk' (Localization.Away f) a { val := b, property := hb } =
IsLocalization.mk' (Localization.Away f) c { val := d, property := hd }
[PROOFSTEP]
simp only [toBasicOpen_mk'] at h_eq
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
⊢ IsLocalization.mk' (Localization.Away f) a { val := b, property := hb } =
IsLocalization.mk' (Localization.Away f) c { val := d, property := hd }
[PROOFSTEP]
rw [IsLocalization.eq]
-- We know that the fractions `a/b` and `c/d` are equal as sections of the structure sheaf on
-- `basicOpen f`. We need to show that they agree as elements in the localization of `R` at `f`.
-- This amounts showing that `r * (d * a) = r * (b * c)`, for some power `r = f ^ n` of `f`.
-- We define `I` as the ideal of *all* elements `r` satisfying the above equation.
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c)
[PROOFSTEP]
let I : Ideal R :=
{ carrier := {r : R | r * (d * a) = r * (b * c)}
zero_mem' := by simp only [Set.mem_setOf_eq, zero_mul]
add_mem' := fun {r₁ r₂} hr₁ hr₂ => by dsimp at hr₁ hr₂ ⊢; simp only [add_mul, hr₁, hr₂]
smul_mem' := fun {r₁ r₂} hr₂ => by dsimp at hr₂ ⊢; simp only [mul_assoc, hr₂] }
-- Our claim now reduces to showing that `f` is contained in the radical of `I`
[GOAL]
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
r₁ r₂ : R
hr₁ : r₁ ∈ {r | r * (d * a) = r * (b * c)}
hr₂ : r₂ ∈ {r | r * (d * a) = r * (b * c)}
⊢ r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}
[PROOFSTEP]
dsimp at hr₁ hr₂ ⊢
[GOAL]
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
r₁ r₂ : R
hr₁ : r₁ * (d * a) = r₁ * (b * c)
hr₂ : r₂ * (d * a) = r₂ * (b * c)
⊢ (r₁ + r₂) * (d * a) = (r₁ + r₂) * (b * c)
[PROOFSTEP]
simp only [add_mul, hr₁, hr₂]
[GOAL]
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
⊢ 0 ∈
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }.carrier
[PROOFSTEP]
simp only [Set.mem_setOf_eq, zero_mul]
[GOAL]
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
r₁ r₂ : R
hr₂ :
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier
⊢ r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier
[PROOFSTEP]
dsimp at hr₂ ⊢
[GOAL]
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
r₁ r₂ : R
hr₂ : r₂ * (d * a) = r₂ * (b * c)
⊢ r₁ * r₂ * (d * a) = r₁ * r₂ * (b * c)
[PROOFSTEP]
simp only [mul_assoc, hr₂]
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c)
[PROOFSTEP]
suffices f ∈ I.radical by
cases' this with n hn
exact ⟨⟨f ^ n, n, rfl⟩, hn⟩
[GOAL]
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
this : f ∈ Ideal.radical I
⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c)
[PROOFSTEP]
cases' this with n hn
[GOAL]
case intro
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
n : ℕ
hn : f ^ n ∈ I
⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c)
[PROOFSTEP]
exact ⟨⟨f ^ n, n, rfl⟩, hn⟩
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
⊢ f ∈ Ideal.radical I
[PROOFSTEP]
rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.mem_vanishingIdeal]
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
⊢ ∀ (x : PrimeSpectrum R), x ∈ PrimeSpectrum.zeroLocus ↑I → f ∈ x.asIdeal
[PROOFSTEP]
intro p hfp
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : p ∈ PrimeSpectrum.zeroLocus ↑I
⊢ f ∈ p.asIdeal
[PROOFSTEP]
contrapose hfp
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : ¬f ∈ p.asIdeal
⊢ ¬p ∈ PrimeSpectrum.zeroLocus ↑I
[PROOFSTEP]
rw [PrimeSpectrum.mem_zeroLocus, Set.not_subset]
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : ¬f ∈ p.asIdeal
⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal
[PROOFSTEP]
have := congr_fun (congr_arg Subtype.val h_eq) ⟨p, hfp⟩
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : ¬f ∈ p.asIdeal
this :
↑(const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal))
{ val := p, property := hfp } =
↑(const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal))
{ val := p, property := hfp }
⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal
[PROOFSTEP]
dsimp at this
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : ¬f ∈ p.asIdeal
this :
IsLocalization.mk' (Localizations R p) a { val := b, property := (_ : b ∈ Ideal.primeCompl p.asIdeal) } =
IsLocalization.mk' (Localizations R p) c { val := d, property := (_ : d ∈ Ideal.primeCompl p.asIdeal) }
⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal
[PROOFSTEP]
erw [IsLocalization.eq (S := Localization.AtPrime p.asIdeal)] at this
[GOAL]
case intro.intro.mk.intro.intro.mk
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : ¬f ∈ p.asIdeal
this :
∃ c_1,
↑c_1 * (↑{ val := d, property := (_ : d ∈ Ideal.primeCompl p.asIdeal) } * a) =
↑c_1 * (↑{ val := b, property := (_ : b ∈ Ideal.primeCompl p.asIdeal) } * c)
⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal
[PROOFSTEP]
cases' this with r hr
[GOAL]
case intro.intro.mk.intro.intro.mk.intro
R : Type u
inst✝ : CommRing R
f a b : R
hb : b ∈ Submonoid.powers f
c d : R
hd : d ∈ Submonoid.powers f
h_eq :
const R a b (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) =
const R c d (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)
I : Ideal R :=
{
toAddSubmonoid :=
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) },
smul_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier →
r₁ • r₂ ∈
{
toAddSubsemigroup :=
{ carrier := {r | r * (d * a) = r * (b * c)},
add_mem' :=
(_ :
∀ {r₁ r₂ : R},
r₁ ∈ {r | r * (d * a) = r * (b * c)} →
r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) },
zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) }
p : PrimeSpectrum R
hfp : ¬f ∈ p.asIdeal
r : { x // x ∈ Ideal.primeCompl p.asIdeal }
hr :
↑r * (↑{ val := d, property := (_ : d ∈ Ideal.primeCompl p.asIdeal) } * a) =
↑r * (↑{ val := b, property := (_ : b ∈ Ideal.primeCompl p.asIdeal) } * c)
⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal
[PROOFSTEP]
exact ⟨r.1, hr, r.2⟩
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
obtain ⟨V, hxV : x.1 ∈ V.1, iVU, f, g, hVDg : V ≤ PrimeSpectrum.basicOpen g, s_eq⟩ := exists_const R U s x.1 x.2
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
obtain ⟨_, ⟨h, rfl⟩, hxDh, hDhV : PrimeSpectrum.basicOpen h ≤ V⟩ :=
PrimeSpectrum.isTopologicalBasis_basic_opens.exists_subset_of_mem_open hxV
V.2
-- The problem is of course, that `g` and `h` don't need to coincide.
-- But, since `basicOpen h ≤ basicOpen g`, some power of `h` must be a multiple of `g`
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
cases' (PrimeSpectrum.basicOpen_le_basicOpen_iff h g).mp (Set.Subset.trans hDhV hVDg) with n hn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
hn : h ^ n ∈ Ideal.span {g}
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
replace hn := Ideal.mul_mem_left (Ideal.span { g }) h hn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
hn : h * h ^ n ∈ Ideal.span {g}
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
rw [← pow_succ, Ideal.mem_span_singleton'] at hn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
hn : ∃ a, a * g = h ^ (n + 1)
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
cases' hn with c hc
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
have basic_opens_eq := PrimeSpectrum.basicOpen_pow h (n + 1) (by linarith)
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
⊢ 0 < n + 1
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
have i_basic_open := eqToHom basic_opens_eq ≫ homOfLE hDhV
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ ∃ f g i,
↑x ∈ PrimeSpectrum.basicOpen g ∧
const R f g (PrimeSpectrum.basicOpen g)
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) =
↑((structureSheaf R).val.map i.op) s
[PROOFSTEP]
use f * c, h ^ (n + 1), i_basic_open ≫ iVU, (basic_opens_eq.symm.le : _) hxDh
[GOAL]
case right
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1)))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) =
↑((structureSheaf R).val.map (i_basic_open ≫ iVU).op) s
[PROOFSTEP]
rw [op_comp, Functor.map_comp]
--, comp_apply, ← s_eq, res_const]
-- Porting note : `comp_apply` can't be rewritten, so use a change
[GOAL]
case right
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1)))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) =
↑((structureSheaf R).val.map iVU.op ≫ (structureSheaf R).val.map i_basic_open.op) s
[PROOFSTEP]
change const R _ _ _ _ = (structureSheaf R).1.map i_basic_open.op ((structureSheaf R).1.map iVU.op s)
[GOAL]
case right
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1)))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) =
↑((structureSheaf R).val.map i_basic_open.op) (↑((structureSheaf R).val.map iVU.op) s)
[PROOFSTEP]
rw [← s_eq, res_const]
-- Note that the last rewrite here generated an additional goal, which was a parameter
-- of `res_const`. We prove this goal first
[GOAL]
case right
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1)))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) =
const R f g (PrimeSpectrum.basicOpen (h ^ (n + 1))) ?right.hv
case right.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → g ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
swap
[GOAL]
case right.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → g ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
intro y hy
[GOAL]
case right.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
y : ↑(PrimeSpectrum.Top R)
hy : y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))
⊢ g ∈ Ideal.primeCompl y.asIdeal
[PROOFSTEP]
rw [basic_opens_eq] at hy
[GOAL]
case right.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
y : ↑(PrimeSpectrum.Top R)
hy : y ∈ PrimeSpectrum.basicOpen h
⊢ g ∈ Ideal.primeCompl y.asIdeal
[PROOFSTEP]
exact (Set.Subset.trans hDhV hVDg : _) hy
[GOAL]
case right
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1)))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) =
const R f g (PrimeSpectrum.basicOpen (h ^ (n + 1)))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ ↑(PrimeSpectrum.basicOpen g))
[PROOFSTEP]
apply const_ext
[GOAL]
case right.h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
x : { x // x ∈ U }
V : Opens ↑(PrimeSpectrum.Top R)
hxV : ↑x ∈ V.carrier
iVU : V ⟶ U
f g : R
hVDg : V ≤ PrimeSpectrum.basicOpen g
s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s
h : R
hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h
hDhV : PrimeSpectrum.basicOpen h ≤ V
n : ℕ
c : R
hc : c * g = h ^ (n + 1)
basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h
i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V
⊢ f * c * g = f * h ^ (n + 1)
[PROOFSTEP]
rw [mul_assoc f c g, hc]
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
have fractions_eq :
∀ i j : ι,
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) ⟨h i * h j, Submonoid.mem_powers _⟩ =
IsLocalization.mk' _ (h i * a j) ⟨h i * h j, Submonoid.mem_powers _⟩ :=
by
intro i j
let D := PrimeSpectrum.basicOpen (h i * h j)
let iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (PrimeSpectrum.basicOpen_mul_le_left _ _)
let iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE
(PrimeSpectrum.basicOpen_mul_le_right _ _)
-- Crucially, we need injectivity of `toBasicOpen`
apply toBasicOpen_injective R (h i * h j)
rw [toBasicOpen_mk', toBasicOpen_mk']
simp only []
-- Here, both sides of the equation are equal to a restriction of `s`
trans
convert congr_arg ((structureSheaf R).1.map iDj.op) (hs j).symm using 1
convert congr_arg ((structureSheaf R).1.map iDi.op) (hs i) using 1; swap
all_goals rw [res_const]; apply const_ext;
ring
-- The remaining two goals were generated during the rewrite of `res_const`
-- These can be solved immediately
exacts [PrimeSpectrum.basicOpen_mul_le_right _ _, PrimeSpectrum.basicOpen_mul_le_left _ _]
-- From the equality in the localization, we obtain for each `(i,j)` some power `(h i * h j) ^ n`
-- which equalizes `a i * h j` and `h i * a j`
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
⊢ ∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
[PROOFSTEP]
intro i j
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
[PROOFSTEP]
let D := PrimeSpectrum.basicOpen (h i * h j)
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
[PROOFSTEP]
let iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (PrimeSpectrum.basicOpen_mul_le_left _ _)
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
[PROOFSTEP]
let iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE
(PrimeSpectrum.basicOpen_mul_le_right _ _)
-- Crucially, we need injectivity of `toBasicOpen`
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
[PROOFSTEP]
apply toBasicOpen_injective R (h i * h j)
[GOAL]
case a
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ↑(toBasicOpen R (h i * h j))
(IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }) =
↑(toBasicOpen R (h i * h j))
(IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) })
[PROOFSTEP]
rw [toBasicOpen_mk', toBasicOpen_mk']
[GOAL]
case a
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) })
(PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
const R (h i * a j) (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) })
(PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
simp only []
-- Here, both sides of the equation are equal to a restriction of `s`
[GOAL]
case a
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
trans
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
?m.984852
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ?m.984852 =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen (h i * h j))))
[PROOFSTEP]
convert congr_arg ((structureSheaf R).1.map iDj.op) (hs j).symm using 1
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
↑((structureSheaf R).val.map iDj.op) (↑((structureSheaf R).val.map (iDh j).op) s)
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ↑((structureSheaf R).val.map iDj.op)
(const R (a j) (h j) (PrimeSpectrum.basicOpen (h j))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
convert congr_arg ((structureSheaf R).1.map iDi.op) (hs i) using 1
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
↑((structureSheaf R).val.map iDi.op)
(const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)))
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ↑((structureSheaf R).val.map iDj.op)
(const R (a j) (h j) (PrimeSpectrum.basicOpen (h j))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
swap
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ↑((structureSheaf R).val.map iDj.op)
(const R (a j) (h j) (PrimeSpectrum.basicOpen (h j))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
↑((structureSheaf R).val.map iDi.op)
(const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)))
[PROOFSTEP]
all_goals rw [res_const]; apply const_ext;
ring
-- The remaining two goals were generated during the rewrite of `res_const`
-- These can be solved immediately
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ↑((structureSheaf R).val.map iDj.op)
(const R (a j) (h j) (PrimeSpectrum.basicOpen (h j))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
[PROOFSTEP]
rw [res_const]
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a j) (h j) D ?hv =
const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal)
case hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h j ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
apply const_ext
[GOAL]
case h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ a j * (h i * h j) = h i * a j * h j
case hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h j ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
ring
-- The remaining two goals were generated during the rewrite of `res_const`
-- These can be solved immediately
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
↑((structureSheaf R).val.map iDi.op)
(const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)))
[PROOFSTEP]
rw [res_const]
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j))
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen (h i * h j) →
↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈
Ideal.primeCompl x.asIdeal) =
const R (a i) (h i) D ?h.e'_2.hv
case h.e'_2.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h i ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
apply const_ext
[GOAL]
case h.e'_2.h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ a i * h j * h i = a i * (h i * h j)
case h.e'_2.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h i ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
ring
-- The remaining two goals were generated during the rewrite of `res_const`
-- These can be solved immediately
[GOAL]
case hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h j ∈ Ideal.primeCompl x.asIdeal
case h.e'_2.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
i j : ι
D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j)
iDi : D ⟶ PrimeSpectrum.basicOpen (h i) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i))
iDj : D ⟶ PrimeSpectrum.basicOpen (h j) :=
homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j))
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h i ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
exacts [PrimeSpectrum.basicOpen_mul_le_right _ _, PrimeSpectrum.basicOpen_mul_le_left _ _]
-- From the equality in the localization, we obtain for each `(i,j)` some power `(h i * h j) ^ n`
-- which equalizes `a i * h j` and `h i * a j`
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
have exists_power : ∀ i j : ι, ∃ n : ℕ, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n :=
by
intro i j
obtain ⟨⟨c, n, rfl⟩, hc⟩ := IsLocalization.eq.mp (fractions_eq i j)
use n + 1
rw [pow_succ]
dsimp at hc
convert hc using 1 <;> ring
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
⊢ ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
[PROOFSTEP]
intro i j
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
⊢ ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
[PROOFSTEP]
obtain ⟨⟨c, n, rfl⟩, hc⟩ := IsLocalization.eq.mp (fractions_eq i j)
[GOAL]
case intro.mk.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
n : ℕ
hc :
↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } *
(↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (a i * h j)) =
↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } *
(↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (h i * a j))
⊢ ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
[PROOFSTEP]
use n + 1
[GOAL]
case h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
n : ℕ
hc :
↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } *
(↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (a i * h j)) =
↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } *
(↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (h i * a j))
⊢ a i * h j * (h i * h j) ^ (n + 1) = h i * a j * (h i * h j) ^ (n + 1)
[PROOFSTEP]
rw [pow_succ]
[GOAL]
case h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
n : ℕ
hc :
↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } *
(↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (a i * h j)) =
↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } *
(↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (h i * a j))
⊢ a i * h j * (h i * h j * (h i * h j) ^ n) = h i * a j * (h i * h j * (h i * h j) ^ n)
[PROOFSTEP]
dsimp at hc
[GOAL]
case h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
n : ℕ
hc : (h i * h j) ^ n * (h i * h j * (a i * h j)) = (h i * h j) ^ n * (h i * h j * (h i * a j))
⊢ a i * h j * (h i * h j * (h i * h j) ^ n) = h i * a j * (h i * h j * (h i * h j) ^ n)
[PROOFSTEP]
convert hc using 1
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
n : ℕ
hc : (h i * h j) ^ n * (h i * h j * (a i * h j)) = (h i * h j) ^ n * (h i * h j * (h i * a j))
⊢ a i * h j * (h i * h j * (h i * h j) ^ n) = (h i * h j) ^ n * (h i * h j * (a i * h j))
[PROOFSTEP]
ring
[GOAL]
case h.e'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
i j : ι
n : ℕ
hc : (h i * h j) ^ n * (h i * h j * (a i * h j)) = (h i * h j) ^ n * (h i * h j * (h i * a j))
⊢ h i * a j * (h i * h j * (h i * h j) ^ n) = (h i * h j) ^ n * (h i * h j * (h i * a j))
[PROOFSTEP]
ring
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
let n := fun p : ι × ι => (exists_power p.1 p.2).choose
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
have n_spec := fun p : ι × ι => (exists_power p.fst p.snd).choose_spec
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
let N := (t ×ˢ t).sup n
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
have basic_opens_eq : ∀ i : ι, PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) := fun i =>
PrimeSpectrum.basicOpen_pow _ _
(by linarith)
-- Expanding the fraction `a i / h i` by the power `(h i) ^ n` gives the desired normalization
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
i : ι
⊢ 0 < N + 1
[PROOFSTEP]
linarith
[GOAL]
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
⊢ ∃ a' h' iDh',
U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧
(∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh' i).op) s =
const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i))
[PROOFSTEP]
refine' ⟨fun i => a i * h i ^ N, fun i => h i ^ (N + 1), fun i => eqToHom (basic_opens_eq i) ≫ iDh i, _, _, _⟩
[GOAL]
case refine'_1
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
⊢ U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)
[PROOFSTEP]
simpa only [basic_opens_eq] using h_cover
[GOAL]
case refine'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
⊢ ∀ (i : ι),
i ∈ t →
∀ (j : ι),
j ∈ t →
(fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j =
(fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j
[PROOFSTEP]
intro i hi j hj
[GOAL]
case refine'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
⊢ (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j
[PROOFSTEP]
have n_le_N : n (i, j) ≤ N := Finset.le_sup (Finset.mem_product.mpr ⟨hi, hj⟩)
[GOAL]
case refine'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
⊢ (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j
[PROOFSTEP]
cases' Nat.le.dest n_le_N with k hk
[GOAL]
case refine'_2.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
k : ℕ
hk : n (i, j) + k = N
⊢ (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j
[PROOFSTEP]
simp only [← hk, pow_add, pow_one]
-- To accommodate for the difference `k`, we multiply both sides of the equation `n_spec (i, j)`
-- by `(h i * h j) ^ k`
[GOAL]
case refine'_2.intro
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
k : ℕ
hk : n (i, j) + k = N
⊢ a i *
(h i ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h i ^ k) *
(h j ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h j ^ k *
h j) =
h i ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h i ^ k *
h i *
(a j *
(h j ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h j ^ k))
[PROOFSTEP]
convert congr_arg (fun z => z * (h i * h j) ^ k) (n_spec (i, j)) using 1
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
k : ℕ
hk : n (i, j) + k = N
⊢ a i *
(h i ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h i ^ k) *
(h j ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h j ^ k *
h j) =
a (i, j).fst * h (i, j).snd *
(h (i, j).fst * h (i, j).snd) ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
(h i * h j) ^ k
[PROOFSTEP]
simp only [mul_pow]
[GOAL]
case h.e'_2
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
k : ℕ
hk : n (i, j) + k = N
⊢ a i *
(h i ^
Exists.choose
(_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) *
h i ^ k) *
(h j ^
Exists.choose
(_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) *
h j ^ k *
h j) =
a i * h j *
(h i ^
Exists.choose
(_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1) *
h j ^
Exists.choose
(_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1)) *
(h i ^ k * h j ^ k)
[PROOFSTEP]
ring
-- Lastly, we need to show that the new fractions still represent our original `s`
[GOAL]
case h.e'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
k : ℕ
hk : n (i, j) + k = N
⊢ h i ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h i ^ k *
h i *
(a j *
(h j ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
h j ^ k)) =
h (i, j).fst * a (i, j).snd *
(h (i, j).fst * h (i, j).snd) ^
Exists.choose
(_ :
∃ n,
a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n =
h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) *
(h i * h j) ^ k
[PROOFSTEP]
simp only [mul_pow]
[GOAL]
case h.e'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
hi : i ∈ t
j : ι
hj : j ∈ t
n_le_N : n (i, j) ≤ N
k : ℕ
hk : n (i, j) + k = N
⊢ h i ^ Exists.choose (_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) *
h i ^ k *
h i *
(a j *
(h j ^
Exists.choose
(_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) *
h j ^ k)) =
h i * a j *
(h i ^
Exists.choose
(_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1) *
h j ^
Exists.choose
(_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1)) *
(h i ^ k * h j ^ k)
[PROOFSTEP]
ring
-- Lastly, we need to show that the new fractions still represent our original `s`
[GOAL]
case refine'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
⊢ ∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map
((fun i => eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)) ≫ iDh i)
i).op)
s =
const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i)
(PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) →
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
[PROOFSTEP]
intro i _
[GOAL]
case refine'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ ↑((structureSheaf R).val.map
((fun i => eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)) ≫ iDh i)
i).op)
s =
const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i)
(PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) →
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
[PROOFSTEP]
rw [op_comp, Functor.map_comp]
-- Porting note : `comp_apply` can't be rewritten, so use a change
[GOAL]
case refine'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ ↑((structureSheaf R).val.map (iDh i).op ≫
(structureSheaf R).val.map
(eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i))).op)
s =
const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i)
(PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) →
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
[PROOFSTEP]
change (structureSheaf R).1.map (eqToHom (basic_opens_eq _)).op ((structureSheaf R).1.map (iDh i).op s) = _
[GOAL]
case refine'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ ↑((structureSheaf R).val.map
(eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i))).op)
(↑((structureSheaf R).val.map (iDh i).op) s) =
const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i)
(PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) →
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
[PROOFSTEP]
rw [← hs, res_const]
-- additional goal spit out by `res_const`
[GOAL]
case refine'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ const R (a i) (h i) (PrimeSpectrum.basicOpen (h i ^ (N + 1))) ?refine'_3.hv =
const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i)
(PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) →
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
case refine'_3.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i ^ (N + 1)) → h i ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
swap
[GOAL]
case refine'_3.hv
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i ^ (N + 1)) → h i ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
exact (basic_opens_eq i).le
[GOAL]
case refine'_3
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ const R (a i) (h i) (PrimeSpectrum.basicOpen (h i ^ (N + 1)))
(_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) ≤ PrimeSpectrum.basicOpen (h i)) =
const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i)
(PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)),
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) →
y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i))
[PROOFSTEP]
apply const_ext
[GOAL]
case refine'_3.h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ a i * (fun i => h i ^ (N + 1)) i = (fun i => a i * h i ^ N) i * h i
[PROOFSTEP]
dsimp
[GOAL]
case refine'_3.h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ a i *
h i ^
((Finset.sup (t ×ˢ t) fun p =>
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) +
1) =
(a i *
h i ^
Finset.sup (t ×ˢ t) fun p =>
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) *
h i
[PROOFSTEP]
rw [pow_succ]
[GOAL]
case refine'_3.h
R : Type u
inst✝ : CommRing R
U : Opens ↑(PrimeSpectrum.Top R)
s : ↑((structureSheaf R).val.obj (op U))
ι : Type u_1
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U
h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
hs :
∀ (i : ι),
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) =
↑((structureSheaf R).val.map (iDh i).op) s
fractions_eq :
∀ (i j : ι),
IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } =
IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j)
{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }
exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n
n : ι × ι → ℕ :=
fun p =>
Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
n_spec :
∀ (p : ι × ι),
a p.fst * h p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) =
h p.fst * a p.snd *
(h p.fst * h p.snd) ^
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)
N : ℕ := Finset.sup (t ×ˢ t) n
basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)
i : ι
a✝ : i ∈ t
⊢ a i *
(h i *
h i ^
Finset.sup (t ×ˢ t) fun p =>
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) =
(a i *
h i ^
Finset.sup (t ×ˢ t) fun p =>
Exists.choose
(_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) *
h i
[PROOFSTEP]
ring
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
⊢ Function.Surjective ↑(toBasicOpen R f)
[PROOFSTEP]
intro s
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
let ι : Type u := PrimeSpectrum.basicOpen f
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
choose a' h' iDh' hxDh' s_eq' using locally_const_basicOpen R (PrimeSpectrum.basicOpen f) s
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R
iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f
hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)
s_eq' :
∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),
const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =
↑((structureSheaf R).val.map (iDh' x).op) s
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
obtain ⟨t, ht_cover'⟩ :=
(PrimeSpectrum.isCompact_basicOpen f).elim_finite_subcover (fun i : ι => PrimeSpectrum.basicOpen (h' i))
(fun i => PrimeSpectrum.isOpen_basicOpen)
-- Here, we need to show that our basic opens actually form a cover of `basicOpen f`
fun x hx => by rw [Set.mem_iUnion]; exact ⟨⟨x, hx⟩, hxDh' ⟨x, hx⟩⟩
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R
iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f
hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)
s_eq' :
∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),
const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =
↑((structureSheaf R).val.map (iDh' x).op) s
x : PrimeSpectrum R
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
⊢ x ∈ ⋃ (i : ι), (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R
iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f
hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)
s_eq' :
∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),
const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =
↑((structureSheaf R).val.map (iDh' x).op) s
x : PrimeSpectrum R
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
⊢ ∃ i, x ∈ (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i
[PROOFSTEP]
exact ⟨⟨x, hx⟩, hxDh' ⟨x, hx⟩⟩
[GOAL]
case intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R
iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f
hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)
s_eq' :
∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),
const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =
↑((structureSheaf R).val.map (iDh' x).op) s
t : Finset ι
ht_cover' : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h' i))
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
simp only [← Opens.coe_iSup, SetLike.coe_subset_coe] at ht_cover'
[GOAL]
case intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R
iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f
hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)
s_eq' :
∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),
const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =
↑((structureSheaf R).val.map (iDh' x).op) s
t : Finset ι
ht_cover' :
PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
obtain ⟨a, h, iDh, ht_cover, ah_ha, s_eq⟩ :=
normalize_finite_fraction_representation R (PrimeSpectrum.basicOpen f) s t a' h' iDh' ht_cover' s_eq'
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R
iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f
hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)
s_eq' :
∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),
const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =
↑((structureSheaf R).val.map (iDh' x).op) s
t : Finset ι
ht_cover' :
PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i)
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
clear s_eq' iDh' hxDh' ht_cover' a' h'
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
rw [← SetLike.coe_subset_coe, Opens.coe_iSup] at ht_cover
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
replace ht_cover :
(PrimeSpectrum.basicOpen f : Set <| PrimeSpectrum R) ⊆ ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.basicOpen (h i) : Set _)
[GOAL]
case ht_cover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
⊢ ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
[PROOFSTEP]
convert ht_cover using 2
[GOAL]
case h.e'_4.h.h.e'_3.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
e_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R)
e_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R)
⊢ (fun i => ⋃ (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))) = fun i => ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))
[PROOFSTEP]
exact
funext fun j => by
rw [Opens.coe_iSup]
-- Next we show that some power of `f` is a linear combination of the `h i`
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
e_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R)
e_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R)
j : ι
⊢ ⋃ (_ : j ∈ t), ↑(PrimeSpectrum.basicOpen (h j)) = ↑(⨆ (_ : j ∈ t), PrimeSpectrum.basicOpen (h j))
[PROOFSTEP]
rw [Opens.coe_iSup]
-- Next we show that some power of `f` is a linear combination of the `h i`
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
obtain ⟨n, hn⟩ : f ∈ (Ideal.span (h '' ↑t)).radical :=
by
rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.zeroLocus_span]
-- Porting note : simp with `PrimeSpectrum.basicOpen_eq_zeroLocus_compl` does not work
replace ht_cover : (PrimeSpectrum.zeroLocus { f })ᶜ ⊆ ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ
· convert ht_cover
· rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl]
· simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]
rw [Set.compl_subset_comm] at ht_cover
simp_rw [Set.compl_iUnion, compl_compl, ← PrimeSpectrum.zeroLocus_iUnion, ← Finset.set_biUnion_coe, ←
Set.image_eq_iUnion] at ht_cover
apply PrimeSpectrum.vanishingIdeal_anti_mono ht_cover
exact PrimeSpectrum.subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f)
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
⊢ f ∈ Ideal.radical (Ideal.span (h '' ↑t))
[PROOFSTEP]
rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.zeroLocus_span]
-- Porting note : simp with `PrimeSpectrum.basicOpen_eq_zeroLocus_compl` does not work
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))
[PROOFSTEP]
replace ht_cover : (PrimeSpectrum.zeroLocus { f })ᶜ ⊆ ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ
[GOAL]
case ht_cover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
⊢ (PrimeSpectrum.zeroLocus {f})ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ
[PROOFSTEP]
convert ht_cover
[GOAL]
case h.e'_3
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
⊢ (PrimeSpectrum.zeroLocus {f})ᶜ = ↑(PrimeSpectrum.basicOpen f)
[PROOFSTEP]
rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl]
[GOAL]
case h.e'_4.h.e'_3.h.f
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
x✝¹ : ι
x✝ : x✝¹ ∈ t
⊢ (PrimeSpectrum.zeroLocus {h x✝¹})ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹))
[PROOFSTEP]
simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : (PrimeSpectrum.zeroLocus {f})ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ
⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))
[PROOFSTEP]
rw [Set.compl_subset_comm] at ht_cover
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : (⋃ (i : ι) (_ : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ)ᶜ ⊆ PrimeSpectrum.zeroLocus {f}
⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))
[PROOFSTEP]
simp_rw [Set.compl_iUnion, compl_compl, ← PrimeSpectrum.zeroLocus_iUnion, ← Finset.set_biUnion_coe, ←
Set.image_eq_iUnion] at ht_cover
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f}
⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))
[PROOFSTEP]
apply PrimeSpectrum.vanishingIdeal_anti_mono ht_cover
[GOAL]
case a
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f}
⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus {f})
[PROOFSTEP]
exact PrimeSpectrum.subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
hn : f ^ n ∈ Ideal.span (h '' ↑t)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
replace hn := Ideal.mul_mem_left _ f hn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
hn : f * f ^ n ∈ Ideal.span (h '' ↑t)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
erw [← pow_succ, Finsupp.mem_span_image_iff_total] at hn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
hn : ∃ l, l ∈ Finsupp.supported R R ↑t ∧ ↑(Finsupp.total ι R R h) l = f ^ (n + 1)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
rcases hn with ⟨b, b_supp, hb⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ↑(Finsupp.total ι R R h) b = f ^ (n + 1)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
rw [Finsupp.total_apply_of_mem_supported R b_supp] at hb
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i • h i = f ^ (n + 1)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
dsimp at hb
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
⊢ ∃ a, ↑(toBasicOpen R f) a = s
[PROOFSTEP]
use IsLocalization.mk' (Localization.Away f) (∑ i : ι in t, b i * a i) (⟨f ^ (n + 1), n + 1, rfl⟩ : Submonoid.powers _)
[GOAL]
case h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
⊢ ↑(toBasicOpen R f)
(IsLocalization.mk' (Localization.Away f) (∑ i in t, ↑b i * a i)
{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) =
s
[PROOFSTEP]
rw [toBasicOpen_mk']
-- Since the structure sheaf is a sheaf, we can show the desired equality locally.
-- Annoyingly, `Sheaf.eq_of_locally_eq'` requires an open cover indexed by a *type*, so we need to
-- coerce our finset `t` to a type first.
[GOAL]
case h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
⊢ const R (∑ i in t, ↑b i * a i)
(↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })
(PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f →
↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈
Ideal.primeCompl x.asIdeal) =
s
[PROOFSTEP]
let tt := ((t : Set (PrimeSpectrum.basicOpen f)) : Type u)
[GOAL]
case h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
⊢ const R (∑ i in t, ↑b i * a i)
(↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })
(PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f →
↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈
Ideal.primeCompl x.asIdeal) =
s
[PROOFSTEP]
apply
(structureSheaf R).eq_of_locally_eq' (fun i : tt => PrimeSpectrum.basicOpen (h i)) (PrimeSpectrum.basicOpen f)
fun i : tt => iDh i
[GOAL]
case h.hcover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
⊢ PrimeSpectrum.basicOpen f ≤ ⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i)
[PROOFSTEP]
intro x hx
[GOAL]
case h.hcover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
x : ↑(PrimeSpectrum.Top R)
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
⊢ x ∈ ↑(⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i))
[PROOFSTEP]
erw [TopologicalSpace.Opens.mem_iSup]
[GOAL]
case h.hcover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
x : ↑(PrimeSpectrum.Top R)
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)
[PROOFSTEP]
have := ht_cover hx
[GOAL]
case h.hcover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
x : ↑(PrimeSpectrum.Top R)
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
this : x ∈ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)
[PROOFSTEP]
rw [← Finset.set_biUnion_coe, Set.mem_iUnion₂] at this
[GOAL]
case h.hcover
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
x : ↑(PrimeSpectrum.Top R)
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
this : ∃ i j, x ∈ ↑(PrimeSpectrum.basicOpen (h i))
⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)
[PROOFSTEP]
rcases this with ⟨i, i_mem, x_mem⟩
[GOAL]
case h.hcover.intro.intro
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
x : ↑(PrimeSpectrum.Top R)
hx : x ∈ ↑(PrimeSpectrum.basicOpen f)
i : ι
i_mem : i ∈ ↑t
x_mem : x ∈ ↑(PrimeSpectrum.basicOpen (h i))
⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)
[PROOFSTEP]
refine ⟨⟨i, i_mem⟩, x_mem⟩
[GOAL]
case h.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
⊢ ∀ (i : tt),
↑((structureSheaf R).val.map (iDh ↑i).op)
(const R (∑ i in t, ↑b i * a i)
(↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })
(PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f →
↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈
Ideal.primeCompl x.asIdeal)) =
↑((structureSheaf R).val.map (iDh ↑i).op) s
[PROOFSTEP]
rintro ⟨i, hi⟩
[GOAL]
case h.h.mk
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ↑((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op)
(const R (∑ i in t, ↑b i * a i)
(↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })
(PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)),
x ∈ PrimeSpectrum.basicOpen f →
↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈
Ideal.primeCompl x.asIdeal)) =
↑((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op) s
[PROOFSTEP]
dsimp
[GOAL]
case h.h.mk
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ↑((structureSheaf R).val.map (iDh i).op)
(const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) =
↑((structureSheaf R).val.map (iDh i).op) s
[PROOFSTEP]
change (structureSheaf R).1.map _ _ = (structureSheaf R).1.map _ _
[GOAL]
case h.h.mk
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ↑((structureSheaf R).val.map (iDh i).op)
(const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f)
(_ :
∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) =
↑((structureSheaf R).val.map (iDh i).op) s
[PROOFSTEP]
rw [s_eq i hi, res_const]
-- Again, `res_const` spits out an additional goal
[GOAL]
case h.h.mk
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i)) ?h.h.mk.hv =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
case h.h.mk.hv
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
swap
[GOAL]
case h.h.mk.hv
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal
[PROOFSTEP]
intro y hy
[GOAL]
case h.h.mk.hv
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
y : ↑(PrimeSpectrum.Top R)
hy : y ∈ PrimeSpectrum.basicOpen (h i)
⊢ f ^ (n + 1) ∈ Ideal.primeCompl y.asIdeal
[PROOFSTEP]
change y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))
[GOAL]
case h.h.mk.hv
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
y : ↑(PrimeSpectrum.Top R)
hy : y ∈ PrimeSpectrum.basicOpen (h i)
⊢ y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))
[PROOFSTEP]
rw [PrimeSpectrum.basicOpen_pow f (n + 1) (by linarith)]
[GOAL]
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
y : ↑(PrimeSpectrum.Top R)
hy : y ∈ PrimeSpectrum.basicOpen (h i)
⊢ 0 < n + 1
[PROOFSTEP]
linarith
[GOAL]
case h.h.mk.hv
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
y : ↑(PrimeSpectrum.Top R)
hy : y ∈ PrimeSpectrum.basicOpen (h i)
⊢ y ∈ PrimeSpectrum.basicOpen f
[PROOFSTEP]
exact (leOfHom (iDh i) : _) hy
[GOAL]
case h.h.mk
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i))
(_ :
∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))) =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
[PROOFSTEP]
apply const_ext
[GOAL]
case h.h.mk.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ (∑ i in t, ↑b i * a i) * h i = a i * f ^ (n + 1)
[PROOFSTEP]
rw [← hb, Finset.sum_mul, Finset.mul_sum]
[GOAL]
case h.h.mk.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ∑ x in t, ↑b x * a x * h i = ∑ x in t, a i * (↑b x * h x)
[PROOFSTEP]
apply Finset.sum_congr rfl
[GOAL]
case h.h.mk.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
⊢ ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), x ∈ t → ↑b x * a x * h i = a i * (↑b x * h x)
[PROOFSTEP]
intro j hj
[GOAL]
case h.h.mk.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
j : { x // x ∈ PrimeSpectrum.basicOpen f }
hj : j ∈ t
⊢ ↑b j * a j * h i = a i * (↑b j * h j)
[PROOFSTEP]
rw [mul_assoc, ah_ha j hj i hi]
[GOAL]
case h.h.mk.h
R : Type u
inst✝ : CommRing R
f : R
s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f)))
ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }
t : Finset ι
a h : ι → R
iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f
ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j
s_eq :
∀ (i : ι),
i ∈ t →
↑((structureSheaf R).val.map (iDh i).op) s =
const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))
(_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))
ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))
n : ℕ
b : ι →₀ R
b_supp : b ∈ Finsupp.supported R R ↑t
hb : ∑ i in t, ↑b i * h i = f ^ (n + 1)
tt : Type u := ↑↑t
i : ι
hi : i ∈ ↑t
j : { x // x ∈ PrimeSpectrum.basicOpen f }
hj : j ∈ t
⊢ ↑b j * (h j * a i) = a i * (↑b j * h j)
[PROOFSTEP]
ring
[GOAL]
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
⊢ IsLocalization.AtPrime (↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) p.asIdeal
[PROOFSTEP]
convert
(IsLocalization.isLocalization_iff_of_ringEquiv (S := Localization.AtPrime p.asIdeal) _
(stalkIso R p).symm.commRingCatIsoToRingEquiv).mp
Localization.isLocalization
[GOAL]
case h.e'_5.h
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
⊢ stalkAlgebra R p =
RingHom.toAlgebra
(RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (stalkIso R p).symm))
(algebraMap R (Localization.AtPrime p.asIdeal)))
[PROOFSTEP]
apply Algebra.algebra_ext
[GOAL]
case h.e'_5.h.h
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
⊢ ∀ (r : R),
↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r =
↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r
[PROOFSTEP]
intro
[GOAL]
case h.e'_5.h.h
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
r✝ : R
⊢ ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r✝ =
↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r✝
[PROOFSTEP]
rw [stalkAlgebra_map]
[GOAL]
case h.e'_5.h.h
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
r✝ : R
⊢ ↑(toStalk R p) r✝ = ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r✝
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_5.h.h.e_a
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
r✝ : R
⊢ toStalk R p = algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)
[PROOFSTEP]
change toStalk R p = _ ≫ (stalkIso R p).inv
[GOAL]
case h.e'_5.h.h.e_a
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
r✝ : R
⊢ toStalk R p = algebraMap R (Localization.AtPrime p.asIdeal) ≫ (stalkIso R p).inv
[PROOFSTEP]
erw [Iso.eq_comp_inv]
[GOAL]
case h.e'_5.h.h.e_a
R : Type u
inst✝ : CommRing R
p : PrimeSpectrum R
r✝ : R
⊢ toStalk R p ≫ (stalkIso R p).hom = algebraMap R (Localization.AtPrime p.asIdeal)
[PROOFSTEP]
exact toStalk_comp_stalkToFiberRingHom R p
[GOAL]
R : Type u
inst✝ : CommRing R
r : R
⊢ IsLocalization.Away r ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))
[PROOFSTEP]
convert
(IsLocalization.isLocalization_iff_of_ringEquiv (S := Localization.Away r) _
(basicOpenIso R r).symm.commRingCatIsoToRingEquiv).mp
Localization.isLocalization
[GOAL]
case h.e'_3
R : Type u
inst✝ : CommRing R
r : R
⊢ openAlgebra R (op (PrimeSpectrum.basicOpen r)) =
RingHom.toAlgebra
(RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (basicOpenIso R r).symm))
(algebraMap R (Localization.Away r)))
[PROOFSTEP]
apply Algebra.algebra_ext
[GOAL]
case h.e'_3.h
R : Type u
inst✝ : CommRing R
r : R
⊢ ∀ (r_1 : R),
↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) r_1 =
↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) r_1
[PROOFSTEP]
intro x
[GOAL]
case h.e'_3.h
R : Type u
inst✝ : CommRing R
r x : R
⊢ ↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) x =
↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) x
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.h.e_a
R : Type u
inst✝ : CommRing R
r x : R
⊢ algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r))) =
algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))
[PROOFSTEP]
exact (localization_toBasicOpen R r).symm
[GOAL]
R : Type u
inst✝ : CommRing R
r : R
S : CommRingCat
f g : (structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)) ⟶ S
h : toOpen R (PrimeSpectrum.basicOpen r) ≫ f = toOpen R (PrimeSpectrum.basicOpen r) ≫ g
⊢ f = g
[PROOFSTEP]
refine' IsLocalization.ringHom_ext (R := R) (S := (structureSheaf R).val.obj (op <| PrimeSpectrum.basicOpen r)) _ _
[GOAL]
R : Type u
inst✝ : CommRing R
r : R
S : CommRingCat
f g : (structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)) ⟶ S
h : toOpen R (PrimeSpectrum.basicOpen r) ≫ f = toOpen R (PrimeSpectrum.basicOpen r) ≫ g
⊢ RingHom.comp f (algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) =
RingHom.comp g (algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r))))
[PROOFSTEP]
exact h
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ toOpen R ⊤ =
CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫
toBasicOpen R 1 ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op
[PROOFSTEP]
rw [← Category.assoc]
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ toOpen R ⊤ =
(CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫ toBasicOpen R 1) ≫
(structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op
[PROOFSTEP]
change
toOpen R ⊤ =
(CommRingCat.ofHom <| (toBasicOpen R 1).comp (algebraMap R (Localization.Away 1))) ≫
(structureSheaf R).1.map (eqToHom _).op
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ toOpen R ⊤ =
CommRingCat.ofHom (RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1))) ≫
(structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op
[PROOFSTEP]
unfold CommRingCat.ofHom
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ toOpen R ⊤ =
RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1)) ≫
(structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op
[PROOFSTEP]
rw [localization_toBasicOpen R, toOpen_res]
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ IsIso (toOpen R ⊤)
[PROOFSTEP]
let hom := CommRingCat.ofHom (algebraMap R (Localization.Away (1 : R)))
[GOAL]
R : Type u
inst✝ : CommRing R
hom : CommRingCat.of R ⟶ CommRingCat.of (Localization.Away 1) := CommRingCat.ofHom (algebraMap R (Localization.Away 1))
⊢ IsIso (toOpen R ⊤)
[PROOFSTEP]
haveI : IsIso hom := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso
[GOAL]
R : Type u
inst✝ : CommRing R
hom : CommRingCat.of R ⟶ CommRingCat.of (Localization.Away 1) := CommRingCat.ofHom (algebraMap R (Localization.Away 1))
this : IsIso hom
⊢ IsIso (toOpen R ⊤)
[PROOFSTEP]
rw [to_global_factors R]
[GOAL]
R : Type u
inst✝ : CommRing R
hom : CommRingCat.of R ⟶ CommRingCat.of (Localization.Away 1) := CommRingCat.ofHom (algebraMap R (Localization.Away 1))
this : IsIso hom
⊢ IsIso
(CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫
toBasicOpen R 1 ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op)
[PROOFSTEP]
infer_instance
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ toStalk R y ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h = toStalk R x
[PROOFSTEP]
dsimp [toStalk]
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ (toOpen R ⊤ ≫ germ (Sheaf.presheaf (structureSheaf R)) { val := y, property := True.intro }) ≫
stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h =
toOpen R ⊤ ≫ germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := True.intro }
[PROOFSTEP]
simp [-toOpen_germ]
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ localizationToStalk R y ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h =
CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x
[PROOFSTEP]
apply IsLocalization.ringHom_ext (S := Localization.AtPrime y.asIdeal) y.asIdeal.primeCompl
[GOAL]
case h
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ RingHom.comp (localizationToStalk R y ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h)
(algebraMap R (Localization.AtPrime y.asIdeal)) =
RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x)
(algebraMap R (Localization.AtPrime y.asIdeal))
[PROOFSTEP]
erw [RingHom.comp_assoc]
[GOAL]
case h
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h)
(RingHom.comp (localizationToStalk R y) (algebraMap R (Localization.AtPrime y.asIdeal))) =
RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x)
(algebraMap R (Localization.AtPrime y.asIdeal))
[PROOFSTEP]
conv_rhs => erw [RingHom.comp_assoc]
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
| RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x)
(algebraMap R (Localization.AtPrime y.asIdeal))
[PROOFSTEP]
erw [RingHom.comp_assoc]
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
| RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x)
(algebraMap R (Localization.AtPrime y.asIdeal))
[PROOFSTEP]
erw [RingHom.comp_assoc]
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
| RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x)
(algebraMap R (Localization.AtPrime y.asIdeal))
[PROOFSTEP]
erw [RingHom.comp_assoc]
[GOAL]
case h
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h)
(RingHom.comp (localizationToStalk R y) (algebraMap R (Localization.AtPrime y.asIdeal))) =
RingHom.comp (localizationToStalk R x)
(RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h))
(algebraMap R (Localization.AtPrime y.asIdeal)))
[PROOFSTEP]
dsimp [CommRingCat.ofHom, localizationToStalk, PrimeSpectrum.localizationMapOfSpecializes]
[GOAL]
case h
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h)
(RingHom.comp
(IsLocalization.lift (_ : ∀ (f : { x // x ∈ Ideal.primeCompl y.asIdeal }), IsUnit (↑(toStalk R y) ↑f)))
(algebraMap R (Localization.AtPrime y.asIdeal))) =
RingHom.comp
(IsLocalization.lift (_ : ∀ (f : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal }), IsUnit (↑(toStalk R x) ↑f)))
(RingHom.comp
(IsLocalization.lift
(_ :
∀ (y_1 : { x // x ∈ Ideal.primeCompl y.asIdeal }),
IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑y_1)))
(algebraMap R (Localization.AtPrime y.asIdeal)))
[PROOFSTEP]
rw [IsLocalization.lift_comp, IsLocalization.lift_comp, IsLocalization.lift_comp]
[GOAL]
case h
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h) (toStalk R y) = toStalk R x
[PROOFSTEP]
exact toStalk_stalkSpecializes h
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h ≫ stalkToFiberRingHom R x =
stalkToFiberRingHom R y ≫
let_fun this := PrimeSpectrum.localizationMapOfSpecializes h;
this
[PROOFSTEP]
change _ ≫ (StructureSheaf.stalkIso R x).hom = (StructureSheaf.stalkIso R y).hom ≫ _
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h ≫ (stalkIso R x).hom =
(stalkIso R y).hom ≫
let_fun this := PrimeSpectrum.localizationMapOfSpecializes h;
this
[PROOFSTEP]
rw [← Iso.eq_comp_inv, Category.assoc, ← Iso.inv_comp_eq]
[GOAL]
R✝ : Type u
inst✝¹ : CommRing R✝
R : Type u_1
inst✝ : CommRing R
x y : PrimeSpectrum R
h : x ⤳ y
⊢ (stalkIso R y).inv ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h =
(let_fun this := PrimeSpectrum.localizationMapOfSpecializes h;
this) ≫
(stalkIso R x).inv
[PROOFSTEP]
exact localizationToStalk_stalkSpecializes h
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
⊢ PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV s)
[PROOFSTEP]
rintro
⟨p, hpV⟩
-- Since `s` is locally fraction, we can find a neighborhood `W` of `PrimeSpectrum.comap f p`
-- in `U`, such that `s = a / b` on `W`, for some ring elements `a, b : R`.
[GOAL]
case mk
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
⊢ ∃ V_1 x i,
PrelocalPredicate.pred (isFractionPrelocal S) fun x =>
comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)
[PROOFSTEP]
rcases hs ⟨PrimeSpectrum.comap f p, hUV hpV⟩ with
⟨W, m, iWU, a, b, h_frac⟩
-- We claim that we can write our new section as the fraction `f a / f b` on the neighborhood
-- `(comap f) ⁻¹ W ⊓ V` of `p`.
[GOAL]
case mk.intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
h_frac :
∀ (x : { x // x ∈ W }),
¬b ∈ (↑x).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) b =
↑(algebraMap R (Localizations R ↑x)) a
⊢ ∃ V_1 x i,
PrelocalPredicate.pred (isFractionPrelocal S) fun x =>
comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)
[PROOFSTEP]
refine' ⟨Opens.comap (PrimeSpectrum.comap f) W ⊓ V, ⟨m, hpV⟩, Opens.infLERight _ _, f a, f b, _⟩
[GOAL]
case mk.intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
h_frac :
∀ (x : { x // x ∈ W }),
¬b ∈ (↑x).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) b =
↑(algebraMap R (Localizations R ↑x)) a
⊢ ∀ (x : { x // x ∈ ↑(Opens.comap (PrimeSpectrum.comap f)) W ⊓ V }),
¬↑f b ∈ (↑x).asIdeal ∧
(fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) x *
↑(algebraMap S (Localizations S ↑x)) (↑f b) =
↑(algebraMap S (Localizations S ↑x)) (↑f a)
[PROOFSTEP]
rintro ⟨q, ⟨hqW, hqV⟩⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.mk.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
h_frac :
∀ (x : { x // x ∈ W }),
¬b ∈ (↑x).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) b =
↑(algebraMap R (Localizations R ↑x)) a
q : ↑(PrimeSpectrum.Top S)
hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W)
hqV : q ∈ ↑V
⊢ ¬↑f b ∈ (↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }).asIdeal ∧
(fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x))
{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } *
↑(algebraMap S
(Localizations S
↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }))
(↑f b) =
↑(algebraMap S
(Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }))
(↑f a)
[PROOFSTEP]
specialize h_frac ⟨PrimeSpectrum.comap f q, hqW⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.mk.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
q : ↑(PrimeSpectrum.Top S)
hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W)
hqV : q ∈ ↑V
h_frac :
¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x))
{ val := ↑(PrimeSpectrum.comap f) q, property := hqW } *
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b =
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a
⊢ ¬↑f b ∈ (↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }).asIdeal ∧
(fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x))
{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } *
↑(algebraMap S
(Localizations S
↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }))
(↑f b) =
↑(algebraMap S
(Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }))
(↑f a)
[PROOFSTEP]
refine' ⟨h_frac.1, _⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.mk.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
q : ↑(PrimeSpectrum.Top S)
hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W)
hqV : q ∈ ↑V
h_frac :
¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x))
{ val := ↑(PrimeSpectrum.comap f) q, property := hqW } *
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b =
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a
⊢ (fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x))
{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } *
↑(algebraMap S
(Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }))
(↑f b) =
↑(algebraMap S
(Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }))
(↑f a)
[PROOFSTEP]
dsimp only [comapFun]
[GOAL]
case mk.intro.intro.intro.intro.intro.mk.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
q : ↑(PrimeSpectrum.Top S)
hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W)
hqV : q ∈ ↑V
h_frac :
¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x))
{ val := ↑(PrimeSpectrum.comap f) q, property := hqW } *
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b =
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) q).asIdeal q.asIdeal f
(_ :
(↑(PrimeSpectrum.comap f)
↑{ val := q,
property :=
(_ :
↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } ∈
↑V) }).asIdeal =
(↑(PrimeSpectrum.comap f)
↑{ val := q,
property :=
(_ :
↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } ∈
↑V) }).asIdeal))
(s
{ val := ↑(PrimeSpectrum.comap f) q,
property :=
(_ :
↑{ val := q,
property :=
(_ :
↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } ∈
↑V) } ∈
↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) *
↑(algebraMap S (Localizations S q)) (↑f b) =
↑(algebraMap S (Localizations S q)) (↑f a)
[PROOFSTEP]
erw [← Localization.localRingHom_to_map (PrimeSpectrum.comap f q).asIdeal, ← RingHom.map_mul, h_frac.2,
Localization.localRingHom_to_map]
[GOAL]
case mk.intro.intro.intro.intro.intro.mk.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s : (x : { x // x ∈ U }) → Localizations R ↑x
hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s
p : ↑(PrimeSpectrum.Top S)
hpV : p ∈ V
W : Opens ↑(PrimeSpectrum.Top R)
m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W
iWU : W ⟶ U
a b : R
q : ↑(PrimeSpectrum.Top S)
hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W)
hqV : q ∈ ↑V
h_frac :
¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧
(fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x))
{ val := ↑(PrimeSpectrum.comap f) q, property := hqW } *
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b =
↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a
⊢ ↑(algebraMap ((fun x => S) a) (Localization.AtPrime q.asIdeal)) (↑f a) = ↑(algebraMap S (Localizations S q)) (↑f a)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
p : { x // x ∈ (op V).unop }
⊢ ↑((fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) })
1)
p =
↑1 p
[PROOFSTEP]
dsimp
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
p : { x // x ∈ (op V).unop }
⊢ comapFun f U V hUV (↑1) p = ↑1 p
[PROOFSTEP]
rw [comapFun, (sectionsSubring R (op U)).coe_one, Pi.one_apply, RingHom.map_one]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
p : { x // x ∈ (op V).unop }
⊢ 1 = ↑1 p
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s t : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ ↑(OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) })
1 =
1) }
(s * t))
p =
↑(OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
s *
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
t)
p
[PROOFSTEP]
dsimp
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s t : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ comapFun f U V hUV (↑(s * t)) p =
↑({ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } *
{ val := comapFun f U V hUV ↑t,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) })
p
[PROOFSTEP]
rw [comapFun, (sectionsSubring R (op U)).coe_mul, Pi.mul_apply, RingHom.map_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s t : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f
(_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) *
↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f
(_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal))
(↑t { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) =
↑({ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } *
{ val := comapFun f U V hUV ↑t,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) })
p
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
p : { x // x ∈ (op V).unop }
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) },
map_mul' :=
(_ :
∀ (s t : ↑((structureSheaf R).val.obj (op U))),
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
(s * t) =
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
s *
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
t) })
0)
p =
↑0 p
[PROOFSTEP]
dsimp
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
p : { x // x ∈ (op V).unop }
⊢ comapFun f U V hUV (↑0) p = ↑0 p
[PROOFSTEP]
rw [comapFun, (sectionsSubring R (op U)).coe_zero, Pi.zero_apply, RingHom.map_zero]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
p : { x // x ∈ (op V).unop }
⊢ 0 = ↑0 p
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s t : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ ↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) },
map_mul' :=
(_ :
∀ (s t : ↑((structureSheaf R).val.obj (op U))),
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
(s * t) =
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
s *
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
t) })
(s + t))
p =
↑(OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) },
map_mul' :=
(_ :
∀ (s t : ↑((structureSheaf R).val.obj (op U))),
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
(s * t) =
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
s *
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
t) })
s +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) },
map_mul' :=
(_ :
∀ (s t : ↑((structureSheaf R).val.obj (op U))),
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
(s * t) =
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
s *
OneHom.toFun
{
toFun := fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) },
map_one' :=
(_ :
(fun s =>
{ val := comapFun f U V hUV ↑s,
property :=
(_ :
PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate
(comapFun f U V hUV ↑s)) })
1 =
1) }
t) })
t)
p
[PROOFSTEP]
dsimp
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s t : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ comapFun f U V hUV (↑(s + t)) p =
↑({ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } +
{ val := comapFun f U V hUV ↑t,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) })
p
[PROOFSTEP]
rw [comapFun, (sectionsSubring R (op U)).coe_add, Pi.add_apply, RingHom.map_add]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
s t : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f
(_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) +
↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f
(_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal))
(↑t { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) =
↑({ val := comapFun f U V hUV ↑s,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } +
{ val := comapFun f U V hUV ↑t,
property :=
(_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) })
p
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
a b : R
hb : ∀ (x : PrimeSpectrum R), x ∈ U → b ∈ Ideal.primeCompl x.asIdeal
p : { x // x ∈ (op V).unop }
⊢ ↑(↑(comap f U V hUV) (const R a b U hb)) p =
↑(const S (↑f a) (↑f b) V
(_ : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → b ∈ Ideal.primeCompl (↑(PrimeSpectrum.comap f) p).asIdeal))
p
[PROOFSTEP]
rw [comap_apply, const_apply, const_apply]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
a b : R
hb : ∀ (x : PrimeSpectrum R), x ∈ U → b ∈ Ideal.primeCompl x.asIdeal
p : { x // x ∈ (op V).unop }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f
(_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal))
(IsLocalization.mk'
(Localizations R
↑{ val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) })
a
{ val := b,
property :=
(_ :
b ∈
Ideal.primeCompl
(↑{ val := ↑(PrimeSpectrum.comap f) ↑p,
property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }).asIdeal) }) =
IsLocalization.mk' (Localizations S ↑p) (↑f a)
{ val := ↑f b, property := (_ : b ∈ Ideal.primeCompl (↑(PrimeSpectrum.comap f) ↑p).asIdeal) }
[PROOFSTEP]
erw [Localization.localRingHom_mk']
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier
a b : R
hb : ∀ (x : PrimeSpectrum R), x ∈ U → b ∈ Ideal.primeCompl x.asIdeal
p : { x // x ∈ (op V).unop }
⊢ IsLocalization.mk' (Localization.AtPrime (↑p).asIdeal) (↑f a)
{
val :=
↑f
↑{ val := b,
property :=
(_ :
b ∈
Ideal.primeCompl
(↑{ val := ↑(PrimeSpectrum.comap f) ↑p,
property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }).asIdeal) },
property :=
(_ :
↑{ val := b,
property :=
(_ :
b ∈
Ideal.primeCompl
(↑{ val := ↑(PrimeSpectrum.comap f) ↑p,
property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }).asIdeal) } ∈
Submonoid.comap f (Ideal.primeCompl (↑p).asIdeal)) } =
IsLocalization.mk' (Localizations S ↑p) (↑f a)
{ val := ↑f b, property := (_ : b ∈ Ideal.primeCompl (↑(PrimeSpectrum.comap f) ↑p).asIdeal) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ ↑(↑(comap (RingHom.id R) U V (_ : ∀ (p : ↑(PrimeSpectrum.Top R)), p ∈ V.carrier → p ∈ ↑U)) s) p =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
rw [comap_apply]
-- Unfortunately, we cannot use `Localization.localRingHom_id` here, because
-- `PrimeSpectrum.comap (RingHom.id R) p` is not *definitionally* equal to `p`. Instead, we use
-- that we can write `s` as a fraction `a/b` in a small neighborhood around `p`. Since
-- `PrimeSpectrum.comap (RingHom.id R) p` equals `p`, it is also contained in the same
-- neighborhood, hence `s` equals `a/b` there too.
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R)
(_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
obtain ⟨W, hpW, iWU, h⟩ := s.2 (iVU p)
[GOAL]
case intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
W : Opens ↑(PrimeSpectrum.Top R)
hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W
iWU : W ⟶ (op U).unop
h :
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R)
(_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
obtain ⟨a, b, h'⟩ := h.eq_mk'
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
W : Opens ↑(PrimeSpectrum.Top R)
hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W
iWU : W ⟶ (op U).unop
h :
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)
a b : R
h' :
∀ (x : { x // x ∈ W }),
∃ hs,
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x =
IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R)
(_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
obtain ⟨hb₁, s_eq₁⟩ := h' ⟨p, hpW⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
W : Opens ↑(PrimeSpectrum.Top R)
hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W
iWU : W ⟶ (op U).unop
h :
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)
a b : R
h' :
∀ (x : { x // x ∈ W }),
∃ hs,
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x =
IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs }
hb₁ : ¬b ∈ (↑{ val := ↑p, property := hpW }).asIdeal
s_eq₁ :
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) { val := ↑p, property := hpW } =
IsLocalization.mk' (Localization.AtPrime (↑{ val := ↑p, property := hpW }).asIdeal) a { val := b, property := hb₁ }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R)
(_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
obtain ⟨hb₂, s_eq₂⟩ := h' ⟨PrimeSpectrum.comap (RingHom.id _) p.1, hpW⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
W : Opens ↑(PrimeSpectrum.Top R)
hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W
iWU : W ⟶ (op U).unop
h :
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)
a b : R
h' :
∀ (x : { x // x ∈ W }),
∃ hs,
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x =
IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs }
hb₁ : ¬b ∈ (↑{ val := ↑p, property := hpW }).asIdeal
s_eq₁ :
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) { val := ↑p, property := hpW } =
IsLocalization.mk' (Localization.AtPrime (↑{ val := ↑p, property := hpW }).asIdeal) a { val := b, property := hb₁ }
hb₂ : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW }).asIdeal
s_eq₂ :
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x))
{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW } =
IsLocalization.mk'
(Localization.AtPrime (↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW }).asIdeal) a
{ val := b, property := hb₂ }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R)
(_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
dsimp only at s_eq₁ s_eq₂
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
iVU : V ⟶ U
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op V).unop }
W : Opens ↑(PrimeSpectrum.Top R)
hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W
iWU : W ⟶ (op U).unop
h :
PrelocalPredicate.pred (isFractionPrelocal R) fun x =>
↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)
a b : R
h' :
∀ (x : { x // x ∈ W }),
∃ hs,
(fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x =
IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs }
hb₁ : ¬b ∈ (↑{ val := ↑p, property := hpW }).asIdeal
s_eq₁ :
↑s { val := ↑p, property := (_ : ↑{ val := ↑p, property := hpW } ∈ ↑(op U).unop) } =
IsLocalization.mk' (Localization.AtPrime (↑p).asIdeal) a { val := b, property := hb₁ }
hb₂ : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW }).asIdeal
s_eq₂ :
↑s
{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p,
property := (_ : ↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW } ∈ ↑(op U).unop) } =
IsLocalization.mk' (Localization.AtPrime (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal) a
{ val := b, property := hb₂ }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R)
(_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal))
(↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) =
↑(↑((structureSheaf R).val.map iVU.op) s) p
[PROOFSTEP]
erw [s_eq₂, Localization.localRingHom_mk', ← s_eq₁, ← res_apply _ _ _ iVU]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
hUV : U = V
p : ↑(PrimeSpectrum.Top R)
hpV : p ∈ V.carrier
⊢ p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier
[PROOFSTEP]
rwa [hUV, PrimeSpectrum.comap_id]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
hUV : U = V
⊢ (structureSheaf R).val.obj (op U) = (structureSheaf R).val.obj (op V)
[PROOFSTEP]
rw [hUV]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U V : Opens ↑(PrimeSpectrum.Top R)
hUV : U = V
⊢ comap (RingHom.id R) U V
(_ : ∀ (p : ↑(PrimeSpectrum.Top R)), p ∈ V.carrier → p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier) =
eqToHom (_ : (structureSheaf R).val.obj (op U) = (structureSheaf R).val.obj (op V))
[PROOFSTEP]
erw [comap_id_eq_map U V (eqToHom hUV.symm), eqToHom_op, eqToHom_map]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U : Opens ↑(PrimeSpectrum.Top R)
p : ↑(PrimeSpectrum.Top R)
hpU : p ∈ U.carrier
⊢ p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier
[PROOFSTEP]
rwa [PrimeSpectrum.comap_id]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U : Opens ↑(PrimeSpectrum.Top R)
⊢ comap (RingHom.id R) U U
(_ : ∀ (p : ↑(PrimeSpectrum.Top R)), p ∈ U.carrier → p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier) =
RingHom.id ↑((structureSheaf R).val.obj (op U))
[PROOFSTEP]
rw [comap_id U U rfl]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
U : Opens ↑(PrimeSpectrum.Top R)
⊢ eqToHom (_ : (structureSheaf R).val.obj (op U) = (structureSheaf R).val.obj (op U)) =
RingHom.id ↑((structureSheaf R).val.obj (op U))
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
g : S →+* P
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
W : Opens ↑(PrimeSpectrum.Top P)
hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U
hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op W).unop }
⊢ ↑(↑(comap (RingHom.comp g f) U W
(_ :
∀ (p : ↑(PrimeSpectrum.Top P)),
p ∈ W.carrier → ↑(PrimeSpectrum.comap f) (↑(PrimeSpectrum.comap g) p) ∈ U))
s)
p =
↑(↑(RingHom.comp (comap g V W hVW) (comap f U V hUV)) s) p
[PROOFSTEP]
rw [comap_apply]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
g : S →+* P
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
W : Opens ↑(PrimeSpectrum.Top P)
hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U
hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op W).unop }
⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal (↑p).asIdeal (RingHom.comp g f)
(_ :
(↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal =
(↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal))
(↑s
{ val := ↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p,
property := (_ : ↑(PrimeSpectrum.comap f) (↑(PrimeSpectrum.comap g) ↑p) ∈ U) }) =
↑(↑(RingHom.comp (comap g V W hVW) (comap f U V hUV)) s) p
[PROOFSTEP]
erw [Localization.localRingHom_comp _ (PrimeSpectrum.comap g p.1).asIdeal]
[GOAL]
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
g : S →+* P
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
W : Opens ↑(PrimeSpectrum.Top P)
hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U
hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op W).unop }
⊢ ↑(RingHom.comp (Localization.localRingHom (↑(PrimeSpectrum.comap g) ↑p).asIdeal (↑p).asIdeal g ?hJK)
(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal
(↑(PrimeSpectrum.comap g) ↑p).asIdeal f ?hIJ))
(↑s
{ val := ↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p,
property := (_ : ↑(PrimeSpectrum.comap f) (↑(PrimeSpectrum.comap g) ↑p) ∈ U) }) =
↑(↑(RingHom.comp (comap g V W hVW) (comap f U V hUV)) s) p
[PROOFSTEP]
rfl
[GOAL]
case hJK
R : Type u
inst✝² : CommRing R
S : Type u
inst✝¹ : CommRing S
P : Type u
inst✝ : CommRing P
f : R →+* S
g : S →+* P
U : Opens ↑(PrimeSpectrum.Top R)
V : Opens ↑(PrimeSpectrum.Top S)
W : Opens ↑(PrimeSpectrum.Top P)
hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U
hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V
s : ↑((structureSheaf R).val.obj (op U))
p : { x // x ∈ (op W).unop }
⊢ (↑(PrimeSpectrum.comap g) ↑p).asIdeal = Ideal.comap g (↑p).asIdeal
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.StructureSheaf", "llama_tokens": 189626} |
[GOAL]
P : Type u_1
inst✝ : Preorder P
x y : P
F s t : PFilter P
p q : P
⊢ principal q ≤ principal p ↔ p ≤ q
[PROOFSTEP]
simp
[GOAL]
P : Type u_1
inst✝ : CompleteSemilatticeInf P
F✝ : PFilter P
x : P
F : (PFilter P)ᵒᵈ
⊢ (fun x => ↑toDual (principal x)) x ≤ F ↔ x ≤ (fun F => sInf ↑(↑ofDual F)) F
[PROOFSTEP]
simp
[GOAL]
P : Type u_1
inst✝ : CompleteSemilatticeInf P
F✝ : PFilter P
x : P
F : (PFilter P)ᵒᵈ
⊢ ↑toDual (principal x) ≤ F ↔ ∀ (b : P), b ∈ ↑ofDual F → x ≤ b
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Order.PFilter", "llama_tokens": 262} |
[GOAL]
α : Type u
β : Type u_1
w x✝ y✝ z : α
inst✝ : GeneralizedBooleanAlgebra α
x y : α
⊢ x \ y ⊔ x ⊓ y = x
[PROOFSTEP]
rw [sup_comm, sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x✝ y✝ z : α
inst✝ : GeneralizedBooleanAlgebra α
x y : α
⊢ x \ y ⊓ (x ⊓ y) = ⊥
[PROOFSTEP]
rw [inf_comm, inf_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
src✝ : Bot α := toBot
a : α
⊢ ⊥ ≤ a
[PROOFSTEP]
rw [← inf_inf_sdiff a a, inf_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
src✝ : Bot α := toBot
a : α
⊢ a ⊓ (a ⊓ a \ a) ≤ a
[PROOFSTEP]
exact inf_le_left
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : x ⊓ y ⊔ z = x
i : x ⊓ y ⊓ z = ⊥
⊢ x \ y = z
[PROOFSTEP]
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : x ⊓ y ⊔ z = x
i : x ⊓ y ⊓ z = ⊥
| x
[PROOFSTEP]
rw [← sup_inf_sdiff x y, sup_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : x ⊓ y ⊔ z = x
i : x ⊓ y ⊓ z = ⊥
| x
[PROOFSTEP]
rw [← sup_inf_sdiff x y, sup_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : x ⊓ y ⊔ z = x
i : x ⊓ y ⊓ z = ⊥
| x
[PROOFSTEP]
rw [← sup_inf_sdiff x y, sup_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : x ⊓ y ⊔ z = x \ y ⊔ x ⊓ y
i : x ⊓ y ⊓ z = ⊥
⊢ x \ y = z
[PROOFSTEP]
rw [sup_comm] at s
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y
i : x ⊓ y ⊓ z = ⊥
⊢ x \ y = z
[PROOFSTEP]
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y
i : x ⊓ y ⊓ z = ⊥
| ⊥
[PROOFSTEP]
rw [← inf_inf_sdiff x y, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y
i : x ⊓ y ⊓ z = ⊥
| ⊥
[PROOFSTEP]
rw [← inf_inf_sdiff x y, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y
i : x ⊓ y ⊓ z = ⊥
| ⊥
[PROOFSTEP]
rw [← inf_inf_sdiff x y, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y
i : x ⊓ y ⊓ z = x \ y ⊓ (x ⊓ y)
⊢ x \ y = z
[PROOFSTEP]
rw [inf_comm] at i
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y
i : z ⊓ (x ⊓ y) = x \ y ⊓ (x ⊓ y)
⊢ x \ y = z
[PROOFSTEP]
exact (eq_of_inf_eq_sup_eq i s).symm
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y)
[PROOFSTEP]
rw [sup_inf_self]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y \ x ⊔ (x ⊔ x ⊓ y) = y ⊓ x ⊔ y \ x ⊔ x
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y ⊓ x ⊔ y \ x ⊔ x = y ⊔ x
[PROOFSTEP]
rw [sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ ⊥ = x ⊓ y ⊓ x \ y
[PROOFSTEP]
rw [inf_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ x \ y = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y
[PROOFSTEP]
rw [sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y
[PROOFSTEP]
rw [inf_sup_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y
[PROOFSTEP]
rw [inf_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y
[PROOFSTEP]
rw [inf_sup_right, @inf_comm _ _ x y]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y = x ⊓ y \ x ⊓ x \ y
[PROOFSTEP]
rw [inf_inf_sdiff, bot_sup_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ x ⊓ x \ y = x ⊓ x \ y ⊓ y \ x
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ x \ y ⊓ y \ x = x \ y ⊓ y \ x
[PROOFSTEP]
rw [inf_of_le_right sdiff_le']
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x
[PROOFSTEP]
rw [sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊓ y ⊔ x \ y) ⊓ y \ x = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x
[PROOFSTEP]
rw [inf_sup_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x = ⊥
[PROOFSTEP]
rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y \ x ⊓ x = ⊥
[PROOFSTEP]
rw [inf_comm, inf_sdiff_self_right]
[GOAL]
α : Type u
β : Type u_1
w x✝ y✝ z✝ : α
inst✝ : GeneralizedBooleanAlgebra α
src✝¹ : GeneralizedBooleanAlgebra α := inst✝
src✝ : OrderBot α := toOrderBot
y x z : α
h : y \ x ≤ z
⊢ y \ x = x ⊓ y \ x ⊔ z ⊓ y \ x
[PROOFSTEP]
rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
[GOAL]
α : Type u
β : Type u_1
w x✝ y✝ z✝ : α
inst✝ : GeneralizedBooleanAlgebra α
src✝¹ : GeneralizedBooleanAlgebra α := inst✝
src✝ : OrderBot α := toOrderBot
y x z : α
h : y \ x ≤ z
⊢ y ⊔ (x ⊔ z) = y \ x ⊔ x ⊔ z
[PROOFSTEP]
rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
[GOAL]
α : Type u
β : Type u_1
w x✝ y✝ z✝ : α
inst✝ : GeneralizedBooleanAlgebra α
src✝¹ : GeneralizedBooleanAlgebra α := inst✝
src✝ : OrderBot α := toOrderBot
y x z : α
h : y \ x ≤ z
⊢ y \ x ⊔ x ⊔ z = x ⊔ z ⊔ y \ x
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x✝ y✝ z✝ : α
inst✝ : GeneralizedBooleanAlgebra α
src✝¹ : GeneralizedBooleanAlgebra α := inst✝
src✝ : OrderBot α := toOrderBot
y x z : α
h : y ≤ x ⊔ z
⊢ x ⊔ z ⊔ x ≤ z ⊔ x
[PROOFSTEP]
rw [sup_assoc, sup_comm, sup_assoc, sup_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x ≤ y ∧ Disjoint x z
⊢ x ≤ y \ z
[PROOFSTEP]
rw [← h.2.sdiff_eq_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x ≤ y ∧ Disjoint x z
⊢ x \ z ≤ y \ z
[PROOFSTEP]
exact sdiff_le_sdiff_right h.1
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hi : Disjoint x z
hs : x ⊔ z = y
h : y ⊓ x = x
⊢ y ⊓ x ⊔ z = y
[PROOFSTEP]
rw [h, hs]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hi : Disjoint x z
hs : x ⊔ z = y
h : y ⊓ x = x
⊢ y ⊓ x ⊓ z = ⊥
[PROOFSTEP]
rw [h, hi.eq_bot]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hd : Disjoint x z
hz : z ≤ y
hs : y ≤ x ⊔ z
⊢ y ⊓ x ⊔ z = y
[PROOFSTEP]
rw [← inf_eq_right] at hs
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hd : Disjoint x z
hz : z ≤ y
hs : (x ⊔ z) ⊓ y = y
⊢ y ⊓ x ⊔ z = y
[PROOFSTEP]
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hd : Disjoint x z
hz : z ≤ y
hs : y ≤ x ⊔ z
⊢ y ⊓ x ⊓ z = ⊥
[PROOFSTEP]
rw [inf_assoc, hd.eq_bot, inf_bot_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : Disjoint z (y \ x)
⊢ z ⊔ y \ x ≤ x ⊔ y \ x
[PROOFSTEP]
rw [sup_sdiff_cancel_right hx]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : Disjoint z (y \ x)
⊢ z ⊔ y \ x ≤ y
[PROOFSTEP]
refine' le_trans (sup_le_sup_left sdiff_le z) _
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : Disjoint z (y \ x)
⊢ z ⊔ y ≤ y
[PROOFSTEP]
rw [sup_eq_right.2 hz]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
⊢ z ⊓ y \ x = ⊥ ↔ z ≤ x
[PROOFSTEP]
rw [← disjoint_iff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
⊢ Disjoint z (y \ x) ↔ z ≤ x
[PROOFSTEP]
exact disjoint_sdiff_iff_le hz hx
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ y = z ⊔ y \ x
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ y ≤ z ⊔ y \ x
[PROOFSTEP]
conv_lhs => rw [← sup_inf_sdiff y x]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
| y
[PROOFSTEP]
rw [← sup_inf_sdiff y x]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
| y
[PROOFSTEP]
rw [← sup_inf_sdiff y x]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
| y
[PROOFSTEP]
rw [← sup_inf_sdiff y x]
[GOAL]
case a
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ y ⊓ x ⊔ y \ x ≤ z ⊔ y \ x
[PROOFSTEP]
apply sup_le_sup_right
[GOAL]
case a.h₁
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ y ⊓ x ≤ z
[PROOFSTEP]
rwa [inf_eq_right.2 hx]
[GOAL]
case a
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ z ⊔ y \ x ≤ y
[PROOFSTEP]
apply le_trans
[GOAL]
case a.a
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ z ⊔ y \ x ≤ ?a.b✝
[PROOFSTEP]
apply sup_le_sup_right hz
[GOAL]
case a.a
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ≤ z
⊢ y ⊔ y \ x ≤ y
[PROOFSTEP]
rw [sup_sdiff_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : y = z ⊔ y \ x
⊢ x ≤ z
[PROOFSTEP]
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : y = z ⊔ y \ x
| y
[PROOFSTEP]
rw [← sup_sdiff_cancel_right hx]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : y = z ⊔ y \ x
| y
[PROOFSTEP]
rw [← sup_sdiff_cancel_right hx]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : y = z ⊔ y \ x
| y
[PROOFSTEP]
rw [← sup_sdiff_cancel_right hx]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ⊔ y \ x = z ⊔ y \ x
⊢ x ≤ z
[PROOFSTEP]
refine' le_of_inf_le_sup_le _ H.le
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ⊔ y \ x = z ⊔ y \ x
⊢ x ⊓ y \ x ≤ z ⊓ y \ x
[PROOFSTEP]
rw [inf_sdiff_self_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hz : z ≤ y
hx : x ≤ y
H : x ⊔ y \ x = z ⊔ y \ x
⊢ ⊥ ≤ z ⊓ y \ x
[PROOFSTEP]
exact bot_le
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z)
[PROOFSTEP]
rw [sup_inf_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z)
[PROOFSTEP]
rw [@inf_sup_left _ _ y]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y)
[PROOFSTEP]
rw [sup_inf_sdiff, sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) = y
[PROOFSTEP]
rw [sup_inf_self, sup_inf_self, inf_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z)
[PROOFSTEP]
rw [inf_sup_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z)
[PROOFSTEP]
rw [inf_sup_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) = ⊥
[PROOFSTEP]
rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y \ x = y \ z
⊢ y ⊓ x ⊓ ?m.20593 h = y ⊓ z ⊓ ?m.20593 h
[PROOFSTEP]
rw [inf_inf_sdiff, h, inf_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y \ x = y \ z
⊢ y ⊓ x ⊔ y \ x = y ⊓ z ⊔ y \ x
[PROOFSTEP]
rw [sup_inf_sdiff, h, sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y ⊓ x = y ⊓ z
⊢ y \ x = y \ z
[PROOFSTEP]
rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ y = x ↔ x \ y = x \ ⊥
[PROOFSTEP]
rw [sdiff_bot]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y = x ⊓ ⊥ ↔ Disjoint y x
[PROOFSTEP]
rw [inf_bot_eq, inf_comm, disjoint_iff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ y = x ↔ Disjoint x y
[PROOFSTEP]
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hx : y ≤ x
hy : y ≠ ⊥
⊢ x \ y < x
[PROOFSTEP]
refine' sdiff_le.lt_of_ne fun h => hy _
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hx : y ≤ x
hy : y ≠ ⊥
h : x \ y = x
⊢ y = ⊥
[PROOFSTEP]
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hx : y ≤ x
hy : y ≠ ⊥
h : x ⊓ y = ⊥
⊢ y = ⊥
[PROOFSTEP]
rw [← h, inf_eq_right.mpr hx]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z
[PROOFSTEP]
rw [inf_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y ⊓ z) ⊔ y \ z = (x ⊔ y \ z) ⊓ y
[PROOFSTEP]
rw [sup_inf_right, sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊔ y \ z) ⊓ y = x ⊓ y ⊔ y \ z
[PROOFSTEP]
rw [inf_sup_right, inf_sdiff_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z
[PROOFSTEP]
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ (y \ z) = z ⊓ x ⊔ x \ y
[PROOFSTEP]
apply sdiff_unique
[GOAL]
case s
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = x
[PROOFSTEP]
calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by
rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y))
[PROOFSTEP]
rw [sup_inf_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y)
[PROOFSTEP]
rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y)
[PROOFSTEP]
rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y)
[PROOFSTEP]
rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y)))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z))
[PROOFSTEP]
rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) = x
[PROOFSTEP]
rw [sup_inf_self, sup_comm, inf_sup_self]
[GOAL]
case i
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = ⊥
[PROOFSTEP]
calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y
[PROOFSTEP]
rw [inf_sup_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y = x ⊓ y \ z ⊓ x \ y
[PROOFSTEP]
rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y \ z ⊓ x \ y = x ⊓ (y \ z ⊓ y) ⊓ x \ y
[PROOFSTEP]
conv_lhs => rw [← inf_sdiff_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
| x ⊓ y \ z ⊓ x \ y
[PROOFSTEP]
rw [← inf_sdiff_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
| x ⊓ y \ z ⊓ x \ y
[PROOFSTEP]
rw [← inf_sdiff_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
| x ⊓ y \ z ⊓ x \ y
[PROOFSTEP]
rw [← inf_sdiff_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊓ y) ⊓ x \ y = x ⊓ (y \ z ⊓ (y ⊓ x \ y))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y \ z ⊓ (y ⊓ x \ y)) = ⊥
[PROOFSTEP]
rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ y ⊔ x ⊓ y ⊓ z = z ⊓ x ⊓ y ⊔ x \ y
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ x ⊓ y ⊔ x \ y = x \ y ⊔ x ⊓ z
[PROOFSTEP]
rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : z ≤ x
⊢ x \ (y \ z) = x \ y ⊔ z
[PROOFSTEP]
rw [sdiff_sdiff_right', inf_eq_right.2 h]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ (x \ y) = x ⊓ y
[PROOFSTEP]
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y ≤ x
⊢ x \ (x \ y) = y
[PROOFSTEP]
rw [sdiff_sdiff_right_self, inf_of_le_right h]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hy : y ≤ x
h : x \ y = z
⊢ x \ z = y
[PROOFSTEP]
rw [← h, sdiff_sdiff_eq_self hy]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hxz : x ≤ z
hyz : y ≤ z
h : z \ x = z \ y
⊢ x = y
[PROOFSTEP]
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x \ y) \ z = x \ y ⊓ x \ z
[PROOFSTEP]
rw [sdiff_sdiff_left, sdiff_sup]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
[PROOFSTEP]
rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
[PROOFSTEP]
rw [sup_inf_left, sup_comm, sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x))
[PROOFSTEP]
rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
[PROOFSTEP]
rw [inf_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z \ (x \ y) ⊓ z \ (y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
[PROOFSTEP]
rw [sdiff_sdiff_right, sdiff_sdiff_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
[PROOFSTEP]
rw [sup_inf_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
[PROOFSTEP]
rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z)
[PROOFSTEP]
rw [inf_sup_self, sup_inf_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) = x ⊓ y ⊔ x \ z ⊓ y \ z
[PROOFSTEP]
rw [@inf_comm _ _ y, sup_inf_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z = ⊥
[PROOFSTEP]
rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z
[PROOFSTEP]
rw [inf_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y ⊓ z ⊔ y \ z) = x ⊓ y
[PROOFSTEP]
rw [sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) = ⊥
[PROOFSTEP]
rw [inf_inf_sdiff, inf_bot_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ z ⊓ y = (x ⊓ y) \ z
[PROOFSTEP]
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
a b c : α
⊢ a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c)
[PROOFSTEP]
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
a b c : α
⊢ a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c)
[PROOFSTEP]
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ Disjoint (x \ z) y ↔ Disjoint x (y \ z)
[PROOFSTEP]
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y)
[PROOFSTEP]
rw [sup_inf_left]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) = (x ⊔ y \ x) ⊓ (x \ y ⊔ y)
[PROOFSTEP]
rw [sup_sdiff_right, sup_sdiff_right]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊔ y \ x) ⊓ (x \ y ⊔ y) = x ⊔ y
[PROOFSTEP]
rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
⊢ x ⊔ y < z
[PROOFSTEP]
rw [← sup_sdiff_cancel_right hxz]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
⊢ x ⊔ y < x ⊔ z \ x
[PROOFSTEP]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
h' : x ⊔ z \ x ≤ x ⊔ y
⊢ z \ x ≤ y
[PROOFSTEP]
rw [← sdiff_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
h' : x ⊔ z \ x ≤ x ⊔ y
⊢ (z \ x) \ x ≤ y
[PROOFSTEP]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
⊢ x ⊔ y < z
[PROOFSTEP]
rw [← sdiff_sup_cancel hyz]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
⊢ x ⊔ y < z \ y ⊔ y
[PROOFSTEP]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
h' : z \ y ⊔ y ≤ x ⊔ y
⊢ z \ y ≤ x
[PROOFSTEP]
rw [← sdiff_idem]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
h' : z \ y ⊔ y ≤ x ⊔ y
⊢ (z \ y) \ y ≤ x
[PROOFSTEP]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : OrderTop α
src✝² : GeneralizedBooleanAlgebra α := inst✝¹
src✝¹ : OrderBot α := toOrderBot
src✝ : OrderTop α := inst✝
x✝¹ x✝ : α
⊢ x✝¹ \ x✝ = x✝¹ ⊓ x✝ᶜ
[PROOFSTEP]
erw [← inf_sdiff_assoc, inf_top_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝ : BooleanAlgebra α := inst✝
a b : α
⊢ a ⊓ b ⊔ a \ b = a
[PROOFSTEP]
rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝ : BooleanAlgebra α := inst✝
a b : α
⊢ a ⊓ b ⊓ a \ b = ⊥
[PROOFSTEP]
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝¹ : BooleanAlgebra α := inst✝
src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
a b c : α
⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
[PROOFSTEP]
rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝¹ : BooleanAlgebra α := inst✝
src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
a : α
⊢ ⊤ \ a = ¬a
[PROOFSTEP]
rw [sdiff_eq, top_inf_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝¹ : BooleanAlgebra α := inst✝
src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
a : α
⊢ aᶜ = ¬a
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : x = yᶜ
⊢ IsCompl x y
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : x = yᶜ
⊢ IsCompl yᶜ y
[PROOFSTEP]
exact isCompl_compl.symm
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : xᶜ = y
⊢ IsCompl x y
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : xᶜ = y
⊢ IsCompl x xᶜ
[PROOFSTEP]
exact isCompl_compl
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ xᶜ = y ↔ yᶜ = x
[PROOFSTEP]
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ x = yᶜ ↔ y = xᶜ
[PROOFSTEP]
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : yᶜ ≤ xᶜ
⊢ x ≤ y
[PROOFSTEP]
have h := compl_le_compl h
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h✝ : yᶜ ≤ xᶜ
h : xᶜᶜ ≤ yᶜᶜ
⊢ x ≤ y
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h✝ : yᶜ ≤ xᶜ
h : x ≤ y
⊢ x ≤ y
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : yᶜ ≤ x
⊢ xᶜ ≤ y
[PROOFSTEP]
simpa only [compl_compl] using compl_le_compl h
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ xᶜ ≤ x ↔ x = ⊤
[PROOFSTEP]
simpa using le_compl_self (a := xᶜ)
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝¹ : BooleanAlgebra α
inst✝ : Nontrivial α
⊢ xᶜ < x ↔ x = ⊤
[PROOFSTEP]
simpa using lt_compl_self (a := xᶜ)
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ x \ yᶜ = x ⊓ y
[PROOFSTEP]
rw [sdiff_eq, compl_compl]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ x ⊓ y ⊔ x ⊓ yᶜ = x
[PROOFSTEP]
rw [← sdiff_eq, sup_inf_sdiff _ _]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ (x \ y)ᶜ = x ⇨ y
[PROOFSTEP]
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ xᶜ \ yᶜ = y \ x
[PROOFSTEP]
rw [sdiff_compl, sdiff_eq, inf_comm]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ Disjoint xᶜ y ↔ y ≤ x
[PROOFSTEP]
rw [← le_compl_iff_disjoint_left, compl_compl]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ Disjoint x yᶜ ↔ x ≤ y
[PROOFSTEP]
rw [← le_compl_iff_disjoint_right, compl_compl]
[GOAL]
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ x ⊓ xᶜ ≤ ⊥
[PROOFSTEP]
constructor
[GOAL]
case left
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ (x ⊓ xᶜ).fst ≤ ⊥.fst
[PROOFSTEP]
simp
[GOAL]
case right
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ (x ⊓ xᶜ).snd ≤ ⊥.snd
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ ⊤ ≤ x ⊔ xᶜ
[PROOFSTEP]
constructor
[GOAL]
case left
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ ⊤.fst ≤ (x ⊔ xᶜ).fst
[PROOFSTEP]
simp
[GOAL]
case right
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ ⊤.snd ≤ (x ⊔ xᶜ).snd
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ x \ y = x ⊓ yᶜ
[PROOFSTEP]
ext
[GOAL]
case h₁
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x \ y).fst = (x ⊓ yᶜ).fst
[PROOFSTEP]
simp [sdiff_eq]
[GOAL]
case h₂
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x \ y).snd = (x ⊓ yᶜ).snd
[PROOFSTEP]
simp [sdiff_eq]
[GOAL]
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ x ⇨ y = y ⊔ xᶜ
[PROOFSTEP]
ext
[GOAL]
case h₁
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x ⇨ y).fst = (y ⊔ xᶜ).fst
[PROOFSTEP]
simp [himp_eq]
[GOAL]
case h₂
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.67933
β : Type ?u.67936
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x ⇨ y).snd = (y ⊔ xᶜ).snd
[PROOFSTEP]
simp [himp_eq]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
src✝¹ : LinearOrder Bool := Bool.linearOrder
src✝ : BoundedOrder Bool := Bool.boundedOrder
⊢ ∀ (x y z : Bool), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
[PROOFSTEP]
decide
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedBooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf
a b : α
⊢ f (a ⊓ b ⊔ a \ b) = f a
[PROOFSTEP]
erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedBooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf
a b : α
⊢ f (a ⊓ b ⊓ a \ b) = f ⊥
[PROOFSTEP]
erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a : α
⊢ f a ⊓ f aᶜ = f ⊥
[PROOFSTEP]
rw [map_compl, inf_compl_eq_bot, map_bot]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a : α
⊢ f a ⊔ f aᶜ = f ⊤
[PROOFSTEP]
rw [map_compl, sup_compl_eq_top, map_top]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a b : α
⊢ a \ b = a ⊓ bᶜ
[PROOFSTEP]
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
[GOAL]
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a b : α
⊢ f a ⊓ (f b)ᶜ = f (a ⊓ bᶜ)
[PROOFSTEP]
rw [map_inf, map_compl]
[GOAL]
α : Type u
β : Type u_1
w x y z : α
⊢ BooleanAlgebra PUnit
[PROOFSTEP]
refine' { PUnit.biheytingAlgebra with .. }
[GOAL]
case refine'_1
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
⊢ ∀ (x y z : PUnit), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
x✝ y✝ z✝ : PUnit
⊢ (x✝ ⊔ y✝) ⊓ (x✝ ⊔ z✝) ≤ x✝ ⊔ y✝ ⊓ z✝
[PROOFSTEP]
trivial
[GOAL]
case refine'_2
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
⊢ ∀ (x : PUnit), x ⊓ xᶜ ≤ ⊥
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
x✝ : PUnit
⊢ x✝ ⊓ x✝ᶜ ≤ ⊥
[PROOFSTEP]
trivial
[GOAL]
case refine'_3
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
⊢ ∀ (x : PUnit), ⊤ ≤ x ⊔ xᶜ
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
x✝ : PUnit
⊢ ⊤ ≤ x✝ ⊔ x✝ᶜ
[PROOFSTEP]
trivial
[GOAL]
case refine'_4
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
⊢ ∀ (x y : PUnit), x \ y = x ⊓ yᶜ
[PROOFSTEP]
intros
[GOAL]
case refine'_4
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
x✝ y✝ : PUnit
⊢ x✝ \ y✝ = x✝ ⊓ y✝ᶜ
[PROOFSTEP]
trivial
[GOAL]
case refine'_5
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
⊢ ∀ (x y : PUnit), x ⇨ y = y ⊔ xᶜ
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit := biheytingAlgebra
x✝ y✝ : PUnit
⊢ x✝ ⇨ y✝ = y✝ ⊔ x✝ᶜ
[PROOFSTEP]
trivial
| {"mathlib_filename": "Mathlib.Order.BooleanAlgebra", "llama_tokens": 23922} |
[GOAL]
α : Type u_1
r✝ : α → α → Prop
inst✝ : IsStrictOrder α r✝
a : α
r : α → α → Prop
h : ¬Acc r a
⊢ ∃ b, ¬Acc r b ∧ r b a
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
r✝ : α → α → Prop
inst✝ : IsStrictOrder α r✝
a : α
r : α → α → Prop
h : ∀ (b : α), ¬Acc r b → ¬r b a
⊢ Acc r a
[PROOFSTEP]
refine' ⟨_, fun b hr => _⟩
[GOAL]
α : Type u_1
r✝ : α → α → Prop
inst✝ : IsStrictOrder α r✝
a : α
r : α → α → Prop
h : ∀ (b : α), ¬Acc r b → ¬r b a
b : α
hr : r b a
⊢ Acc r b
[PROOFSTEP]
by_contra hb
[GOAL]
α : Type u_1
r✝ : α → α → Prop
inst✝ : IsStrictOrder α r✝
a : α
r : α → α → Prop
h : ∀ (b : α), ¬Acc r b → ¬r b a
b : α
hr : r b a
hb : ¬Acc r b
⊢ False
[PROOFSTEP]
exact h b hb hr
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
⊢ Acc r x ↔ IsEmpty { f // x ∈ Set.range ↑f }
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
⊢ Acc r x → IsEmpty { f // x ∈ Set.range ↑f }
[PROOFSTEP]
refine' fun h => h.recOn fun x _ IH => _
[GOAL]
case mp
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝¹ : α
h : Acc r x✝¹
x : α
x✝ : ∀ (y : α), r y x → Acc r y
IH : ∀ (y : α), r y x → IsEmpty { f // y ∈ Set.range ↑f }
⊢ IsEmpty { f // x ∈ Set.range ↑f }
[PROOFSTEP]
constructor
[GOAL]
case mp.false
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝¹ : α
h : Acc r x✝¹
x : α
x✝ : ∀ (y : α), r y x → Acc r y
IH : ∀ (y : α), r y x → IsEmpty { f // y ∈ Set.range ↑f }
⊢ { f // x ∈ Set.range ↑f } → False
[PROOFSTEP]
rintro ⟨f, k, hf⟩
[GOAL]
case mp.false.mk.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝¹ : α
h : Acc r x✝¹
x : α
x✝ : ∀ (y : α), r y x → Acc r y
IH : ∀ (y : α), r y x → IsEmpty { f // y ∈ Set.range ↑f }
f : (fun x x_1 => x > x_1) ↪r r
k : ℕ
hf : ↑f k = x
⊢ False
[PROOFSTEP]
exact IsEmpty.elim' (IH (f (k + 1)) (hf ▸ f.map_rel_iff.2 (lt_add_one k))) ⟨f, _, rfl⟩
[GOAL]
case mpr
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
⊢ IsEmpty { f // x ∈ Set.range ↑f } → Acc r x
[PROOFSTEP]
have : ∀ x : { a // ¬Acc r a }, ∃ y : { a // ¬Acc r a }, r y.1 x.1 :=
by
rintro ⟨x, hx⟩
cases exists_not_acc_lt_of_not_acc hx with
| intro w h => exact ⟨⟨w, h.1⟩, h.2⟩
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
⊢ ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mk
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝ x : α
hx : ¬Acc r x
⊢ ∃ y, r ↑y ↑{ val := x, property := hx }
[PROOFSTEP]
cases exists_not_acc_lt_of_not_acc hx with
| intro w h => exact ⟨⟨w, h.1⟩, h.2⟩
[GOAL]
case mk
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝¹ x : α
hx : ¬Acc r x
x✝ : ∃ b, ¬Acc r b ∧ r b x
⊢ ∃ y, r ↑y ↑{ val := x, property := hx }
[PROOFSTEP]
cases exists_not_acc_lt_of_not_acc hx with
| intro w h => exact ⟨⟨w, h.1⟩, h.2⟩
[GOAL]
case mk.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝ x : α
hx : ¬Acc r x
w : α
h : ¬Acc r w ∧ r w x
⊢ ∃ y, r ↑y ↑{ val := x, property := hx }
[PROOFSTEP]
| intro w h => exact ⟨⟨w, h.1⟩, h.2⟩
[GOAL]
case mk.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x✝ x : α
hx : ¬Acc r x
w : α
h : ¬Acc r w ∧ r w x
⊢ ∃ y, r ↑y ↑{ val := x, property := hx }
[PROOFSTEP]
exact ⟨⟨w, h.1⟩, h.2⟩
[GOAL]
case mpr
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x
⊢ IsEmpty { f // x ∈ Set.range ↑f } → Acc r x
[PROOFSTEP]
obtain ⟨f, h⟩ := Classical.axiom_of_choice this
[GOAL]
case mpr.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x
f : { a // ¬Acc r a } → { a // ¬Acc r a }
h : ∀ (x : { a // ¬Acc r a }), r ↑(f x) ↑x
⊢ IsEmpty { f // x ∈ Set.range ↑f } → Acc r x
[PROOFSTEP]
refine' fun E => by_contradiction fun hx => E.elim' ⟨natGT (fun n => (f^[n] ⟨x, hx⟩).1) fun n => _, 0, rfl⟩
[GOAL]
case mpr.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x
f : { a // ¬Acc r a } → { a // ¬Acc r a }
h : ∀ (x : { a // ¬Acc r a }), r ↑(f x) ↑x
E : IsEmpty { f // x ∈ Set.range ↑f }
hx : ¬Acc r x
n : ℕ
⊢ r ((fun n => ↑(f^[n] { val := x, property := hx })) (n + 1)) ((fun n => ↑(f^[n] { val := x, property := hx })) n)
[PROOFSTEP]
simp only [Function.iterate_succ']
[GOAL]
case mpr.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
x : α
this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x
f : { a // ¬Acc r a } → { a // ¬Acc r a }
h : ∀ (x : { a // ¬Acc r a }), r ↑(f x) ↑x
E : IsEmpty { f // x ∈ Set.range ↑f }
hx : ¬Acc r x
n : ℕ
⊢ r ↑((f ∘ f^[n]) { val := x, property := hx }) ↑(f^[n] { val := x, property := hx })
[PROOFSTEP]
apply h
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
f : (fun x x_1 => x > x_1) ↪r r
k : ℕ
⊢ ¬Acc r (↑f k)
[PROOFSTEP]
rw [acc_iff_no_decreasing_seq, not_isEmpty_iff]
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
f : (fun x x_1 => x > x_1) ↪r r
k : ℕ
⊢ Nonempty { f_1 // ↑f k ∈ Set.range ↑f_1 }
[PROOFSTEP]
exact ⟨⟨f, k, rfl⟩⟩
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
⊢ WellFounded r ↔ IsEmpty ((fun x x_1 => x > x_1) ↪r r)
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
⊢ WellFounded r → IsEmpty ((fun x x_1 => x > x_1) ↪r r)
[PROOFSTEP]
rintro ⟨h⟩
[GOAL]
case mp.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
h : ∀ (a : α), Acc r a
⊢ IsEmpty ((fun x x_1 => x > x_1) ↪r r)
[PROOFSTEP]
exact ⟨fun f => not_acc_of_decreasing_seq f 0 (h _)⟩
[GOAL]
case mpr
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
⊢ IsEmpty ((fun x x_1 => x > x_1) ↪r r) → WellFounded r
[PROOFSTEP]
intro h
[GOAL]
case mpr
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
h : IsEmpty ((fun x x_1 => x > x_1) ↪r r)
⊢ WellFounded r
[PROOFSTEP]
exact ⟨fun x => acc_iff_no_decreasing_seq.2 inferInstance⟩
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
f : (fun x x_1 => x > x_1) ↪r r
⊢ ¬WellFounded r
[PROOFSTEP]
rw [wellFounded_iff_no_descending_seq, not_isEmpty_iff]
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsStrictOrder α r
f : (fun x x_1 => x > x_1) ↪r r
⊢ Nonempty ((fun x x_1 => x > x_1) ↪r r)
[PROOFSTEP]
exact ⟨f⟩
[GOAL]
α : Type u_1
s : Set ℕ
inst✝ : Infinite ↑s
⊢ ℕ ≃o ↑s
[PROOFSTEP]
classical exact
RelIso.ofSurjective
(RelEmbedding.orderEmbeddingOfLTEmbedding
(RelEmbedding.natLT (Nat.Subtype.ofNat s) fun n => Nat.Subtype.lt_succ_self _))
Nat.Subtype.ofNat_surjective
[GOAL]
α : Type u_1
s : Set ℕ
inst✝ : Infinite ↑s
⊢ ℕ ≃o ↑s
[PROOFSTEP]
exact
RelIso.ofSurjective
(RelEmbedding.orderEmbeddingOfLTEmbedding
(RelEmbedding.natLT (Nat.Subtype.ofNat s) fun n => Nat.Subtype.lt_succ_self _))
Nat.Subtype.ofNat_surjective
[GOAL]
α : Type u_1
s : Set ℕ
inst✝ : Infinite ↑s
dP : DecidablePred fun x => x ∈ s
n : ℕ
⊢ ↑(orderIsoOfNat s) n = ofNat s n
[PROOFSTEP]
simp [orderIsoOfNat]
[GOAL]
α : Type u_1
s : Set ℕ
inst✝ : Infinite ↑s
dP : DecidablePred fun x => x ∈ s
n : ℕ
⊢ ofNat s n = ofNat s n
[PROOFSTEP]
congr!
[GOAL]
α : Type u_1
s✝ : Set ℕ
inst✝ : Infinite ↑s✝
s t : Set α
e : ℕ → α
he : ∀ (n : ℕ), e n ∈ s ∪ t
⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t
[PROOFSTEP]
classical
have : Infinite (e ⁻¹' s) ∨ Infinite (e ⁻¹' t) := by
simp only [Set.infinite_coe_iff, ← Set.infinite_union, ← Set.preimage_union,
Set.eq_univ_of_forall fun n => Set.mem_preimage.2 (he n), Set.infinite_univ]
cases this
exacts [⟨Nat.orderEmbeddingOfSet (e ⁻¹' s), Or.inl fun n => (Nat.Subtype.ofNat (e ⁻¹' s) _).2⟩,
⟨Nat.orderEmbeddingOfSet (e ⁻¹' t), Or.inr fun n => (Nat.Subtype.ofNat (e ⁻¹' t) _).2⟩]
[GOAL]
α : Type u_1
s✝ : Set ℕ
inst✝ : Infinite ↑s✝
s t : Set α
e : ℕ → α
he : ∀ (n : ℕ), e n ∈ s ∪ t
⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t
[PROOFSTEP]
have : Infinite (e ⁻¹' s) ∨ Infinite (e ⁻¹' t) := by
simp only [Set.infinite_coe_iff, ← Set.infinite_union, ← Set.preimage_union,
Set.eq_univ_of_forall fun n => Set.mem_preimage.2 (he n), Set.infinite_univ]
[GOAL]
α : Type u_1
s✝ : Set ℕ
inst✝ : Infinite ↑s✝
s t : Set α
e : ℕ → α
he : ∀ (n : ℕ), e n ∈ s ∪ t
⊢ Infinite ↑(e ⁻¹' s) ∨ Infinite ↑(e ⁻¹' t)
[PROOFSTEP]
simp only [Set.infinite_coe_iff, ← Set.infinite_union, ← Set.preimage_union,
Set.eq_univ_of_forall fun n => Set.mem_preimage.2 (he n), Set.infinite_univ]
[GOAL]
α : Type u_1
s✝ : Set ℕ
inst✝ : Infinite ↑s✝
s t : Set α
e : ℕ → α
he : ∀ (n : ℕ), e n ∈ s ∪ t
this : Infinite ↑(e ⁻¹' s) ∨ Infinite ↑(e ⁻¹' t)
⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t
[PROOFSTEP]
cases this
[GOAL]
case inl
α : Type u_1
s✝ : Set ℕ
inst✝ : Infinite ↑s✝
s t : Set α
e : ℕ → α
he : ∀ (n : ℕ), e n ∈ s ∪ t
h✝ : Infinite ↑(e ⁻¹' s)
⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t
case inr
α : Type u_1
s✝ : Set ℕ
inst✝ : Infinite ↑s✝
s t : Set α
e : ℕ → α
he : ∀ (n : ℕ), e n ∈ s ∪ t
h✝ : Infinite ↑(e ⁻¹' t)
⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t
[PROOFSTEP]
exacts [⟨Nat.orderEmbeddingOfSet (e ⁻¹' s), Or.inl fun n => (Nat.Subtype.ofNat (e ⁻¹' s) _).2⟩,
⟨Nat.orderEmbeddingOfSet (e ⁻¹' t), Or.inr fun n => (Nat.Subtype.ofNat (e ⁻¹' t) _).2⟩]
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
classical
let bad : Set ℕ := {m | ∀ n, m < n → ¬r (f m) (f n)}
by_cases hbad : Infinite bad
· haveI := hbad
refine' ⟨Nat.orderEmbeddingOfSet bad, Or.intro_right _ fun m n mn => _⟩
have h := @Set.mem_range_self _ _ (↑(Nat.orderEmbeddingOfSet bad)) m
rw [Nat.orderEmbeddingOfSet_range bad] at h
exact h _ ((OrderEmbedding.lt_iff_lt _).2 mn)
· rw [Set.infinite_coe_iff, Set.Infinite, not_not] at hbad
obtain ⟨m, hm⟩ : ∃ m, ∀ n, m ≤ n → ¬n ∈ bad :=
by
by_cases he : hbad.toFinset.Nonempty
·
refine'
⟨(hbad.toFinset.max' he).succ, fun n hn nbad =>
Nat.not_succ_le_self _ (hn.trans (hbad.toFinset.le_max' n (hbad.mem_toFinset.2 nbad)))⟩
· exact ⟨0, fun n _ nbad => he ⟨n, hbad.mem_toFinset.2 nbad⟩⟩
have h : ∀ n : ℕ, ∃ n' : ℕ, n < n' ∧ r (f (n + m)) (f (n' + m)) :=
by
intro n
have h := hm _ (le_add_of_nonneg_left n.zero_le)
simp only [exists_prop, not_not, Set.mem_setOf_eq, not_forall] at h
obtain ⟨n', hn1, hn2⟩ := h
obtain ⟨x, hpos, rfl⟩ := exists_pos_add_of_lt hn1
refine' ⟨n + x, add_lt_add_left hpos n, _⟩
rw [add_assoc, add_comm x m, ← add_assoc]
exact hn2
let g' : ℕ → ℕ := @Nat.rec (fun _ => ℕ) m fun n gn => Nat.find (h gn)
exact
⟨(RelEmbedding.natLT (fun n => g' n + m) fun n =>
Nat.add_lt_add_right (Nat.find_spec (h (g' n))).1 m).orderEmbeddingOfLTEmbedding,
Or.intro_left _ fun n => (Nat.find_spec (h (g' n))).2⟩
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
let bad : Set ℕ := {m | ∀ n, m < n → ¬r (f m) (f n)}
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
by_cases hbad : Infinite bad
[GOAL]
case pos
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Infinite ↑bad
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
haveI := hbad
[GOAL]
case pos
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad this : Infinite ↑bad
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
refine' ⟨Nat.orderEmbeddingOfSet bad, Or.intro_right _ fun m n mn => _⟩
[GOAL]
case pos
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad this : Infinite ↑bad
m n : ℕ
mn : m < n
⊢ ¬r (f (↑(Nat.orderEmbeddingOfSet bad) m)) (f (↑(Nat.orderEmbeddingOfSet bad) n))
[PROOFSTEP]
have h := @Set.mem_range_self _ _ (↑(Nat.orderEmbeddingOfSet bad)) m
[GOAL]
case pos
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad this : Infinite ↑bad
m n : ℕ
mn : m < n
h : ↑(Nat.orderEmbeddingOfSet bad) m ∈ Set.range ↑(Nat.orderEmbeddingOfSet bad)
⊢ ¬r (f (↑(Nat.orderEmbeddingOfSet bad) m)) (f (↑(Nat.orderEmbeddingOfSet bad) n))
[PROOFSTEP]
rw [Nat.orderEmbeddingOfSet_range bad] at h
[GOAL]
case pos
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad this : Infinite ↑bad
m n : ℕ
mn : m < n
h : ↑(Nat.orderEmbeddingOfSet bad) m ∈ bad
⊢ ¬r (f (↑(Nat.orderEmbeddingOfSet bad) m)) (f (↑(Nat.orderEmbeddingOfSet bad) n))
[PROOFSTEP]
exact h _ ((OrderEmbedding.lt_iff_lt _).2 mn)
[GOAL]
case neg
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : ¬Infinite ↑bad
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
rw [Set.infinite_coe_iff, Set.Infinite, not_not] at hbad
[GOAL]
case neg
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
obtain ⟨m, hm⟩ : ∃ m, ∀ n, m ≤ n → ¬n ∈ bad :=
by
by_cases he : hbad.toFinset.Nonempty
·
refine'
⟨(hbad.toFinset.max' he).succ, fun n hn nbad =>
Nat.not_succ_le_self _ (hn.trans (hbad.toFinset.le_max' n (hbad.mem_toFinset.2 nbad)))⟩
· exact ⟨0, fun n _ nbad => he ⟨n, hbad.mem_toFinset.2 nbad⟩⟩
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
⊢ ∃ m, ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
[PROOFSTEP]
by_cases he : hbad.toFinset.Nonempty
[GOAL]
case pos
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
he : Finset.Nonempty (Set.Finite.toFinset hbad)
⊢ ∃ m, ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
[PROOFSTEP]
refine'
⟨(hbad.toFinset.max' he).succ, fun n hn nbad =>
Nat.not_succ_le_self _ (hn.trans (hbad.toFinset.le_max' n (hbad.mem_toFinset.2 nbad)))⟩
[GOAL]
case neg
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
he : ¬Finset.Nonempty (Set.Finite.toFinset hbad)
⊢ ∃ m, ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
[PROOFSTEP]
exact ⟨0, fun n _ nbad => he ⟨n, hbad.mem_toFinset.2 nbad⟩⟩
[GOAL]
case neg.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
have h : ∀ n : ℕ, ∃ n' : ℕ, n < n' ∧ r (f (n + m)) (f (n' + m)) :=
by
intro n
have h := hm _ (le_add_of_nonneg_left n.zero_le)
simp only [exists_prop, not_not, Set.mem_setOf_eq, not_forall] at h
obtain ⟨n', hn1, hn2⟩ := h
obtain ⟨x, hpos, rfl⟩ := exists_pos_add_of_lt hn1
refine' ⟨n + x, add_lt_add_left hpos n, _⟩
rw [add_assoc, add_comm x m, ← add_assoc]
exact hn2
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
⊢ ∀ (n : ℕ), ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
[PROOFSTEP]
intro n
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n : ℕ
⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
[PROOFSTEP]
have h := hm _ (le_add_of_nonneg_left n.zero_le)
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n : ℕ
h : ¬n + m ∈ bad
⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
[PROOFSTEP]
simp only [exists_prop, not_not, Set.mem_setOf_eq, not_forall] at h
[GOAL]
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n : ℕ
h : ∃ x, n + m < x ∧ r (f (n + m)) (f x)
⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
[PROOFSTEP]
obtain ⟨n', hn1, hn2⟩ := h
[GOAL]
case intro.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n n' : ℕ
hn1 : n + m < n'
hn2 : r (f (n + m)) (f n')
⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
[PROOFSTEP]
obtain ⟨x, hpos, rfl⟩ := exists_pos_add_of_lt hn1
[GOAL]
case intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n x : ℕ
hpos : 0 < x
hn1 : n + m < n + m + x
hn2 : r (f (n + m)) (f (n + m + x))
⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
[PROOFSTEP]
refine' ⟨n + x, add_lt_add_left hpos n, _⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n x : ℕ
hpos : 0 < x
hn1 : n + m < n + m + x
hn2 : r (f (n + m)) (f (n + m + x))
⊢ r (f (n + m)) (f (n + x + m))
[PROOFSTEP]
rw [add_assoc, add_comm x m, ← add_assoc]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
n x : ℕ
hpos : 0 < x
hn1 : n + m < n + m + x
hn2 : r (f (n + m)) (f (n + m + x))
⊢ r (f (n + m)) (f (n + m + x))
[PROOFSTEP]
exact hn2
[GOAL]
case neg.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
h : ∀ (n : ℕ), ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
let g' : ℕ → ℕ := @Nat.rec (fun _ => ℕ) m fun n gn => Nat.find (h gn)
[GOAL]
case neg.intro
α : Type u_1
r : α → α → Prop
f : ℕ → α
bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)}
hbad : Set.Finite bad
m : ℕ
hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad
h : ∀ (n : ℕ), ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m))
g' : ℕ → ℕ := Nat.rec m fun n gn => Nat.find (_ : ∃ n', gn < n' ∧ r (f (gn + m)) (f (n' + m)))
⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
exact
⟨(RelEmbedding.natLT (fun n => g' n + m) fun n =>
Nat.add_lt_add_right (Nat.find_spec (h (g' n))).1 m).orderEmbeddingOfLTEmbedding,
Or.intro_left _ fun n => (Nat.find_spec (h (g' n))).2⟩
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
⊢ ∃ g, (∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
obtain ⟨g, hr | hnr⟩ := exists_increasing_or_nonincreasing_subseq' r f
[GOAL]
case intro.inl
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))
⊢ ∃ g, (∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
refine' ⟨g, Or.intro_left _ fun m n mn => _⟩
[GOAL]
case intro.inl
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))
m n : ℕ
mn : m < n
⊢ r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
obtain ⟨x, rfl⟩ := exists_add_of_le (Nat.succ_le_iff.2 mn)
[GOAL]
case intro.inl.intro
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))
m x : ℕ
mn : m < Nat.succ m + x
⊢ r (f (↑g m)) (f (↑g (Nat.succ m + x)))
[PROOFSTEP]
induction' x with x ih
[GOAL]
case intro.inl.intro.zero
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))
m x : ℕ
mn✝ : m < Nat.succ m + x
mn : m < Nat.succ m + Nat.zero
⊢ r (f (↑g m)) (f (↑g (Nat.succ m + Nat.zero)))
[PROOFSTEP]
apply hr
[GOAL]
case intro.inl.intro.succ
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))
m x✝ : ℕ
mn✝ : m < Nat.succ m + x✝
x : ℕ
ih : m < Nat.succ m + x → r (f (↑g m)) (f (↑g (Nat.succ m + x)))
mn : m < Nat.succ m + Nat.succ x
⊢ r (f (↑g m)) (f (↑g (Nat.succ m + Nat.succ x)))
[PROOFSTEP]
apply IsTrans.trans _ _ _ _ (hr _)
[GOAL]
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))
m x✝ : ℕ
mn✝ : m < Nat.succ m + x✝
x : ℕ
ih : m < Nat.succ m + x → r (f (↑g m)) (f (↑g (Nat.succ m + x)))
mn : m < Nat.succ m + Nat.succ x
⊢ r (f (↑g m)) (f (↑g (Nat.add (Nat.succ m) x)))
[PROOFSTEP]
exact ih (lt_of_lt_of_le m.lt_succ_self (Nat.le_add_right _ _))
[GOAL]
case intro.inr
α : Type u_1
r : α → α → Prop
inst✝ : IsTrans α r
f : ℕ → α
g : ℕ ↪o ℕ
hnr : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
⊢ ∃ g, (∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
exact ⟨g, Or.intro_right _ hnr⟩
[GOAL]
α : Type u_1
inst✝ : Preorder α
⊢ (WellFounded fun x x_1 => x > x_1) ↔ ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
[PROOFSTEP]
refine' ⟨fun h a => _, fun h => _⟩
[GOAL]
case refine'_1
α : Type u_1
inst✝ : Preorder α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
⊢ ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
[PROOFSTEP]
have hne : (Set.range a).Nonempty := ⟨a 0, by simp⟩
[GOAL]
α : Type u_1
inst✝ : Preorder α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
⊢ ↑a 0 ∈ Set.range ↑a
[PROOFSTEP]
simp
[GOAL]
case refine'_1
α : Type u_1
inst✝ : Preorder α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
hne : Set.Nonempty (Set.range ↑a)
⊢ ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
[PROOFSTEP]
obtain ⟨x, ⟨n, rfl⟩, H⟩ := h.has_min _ hne
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
inst✝ : Preorder α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
hne : Set.Nonempty (Set.range ↑a)
n : ℕ
H : ∀ (x : α), x ∈ Set.range ↑a → ¬x > ↑a n
⊢ ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
[PROOFSTEP]
exact ⟨n, fun m _ => H _ (Set.mem_range_self _)⟩
[GOAL]
case refine'_2
α : Type u_1
inst✝ : Preorder α
h : ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
⊢ WellFounded fun x x_1 => x > x_1
[PROOFSTEP]
refine' RelEmbedding.wellFounded_iff_no_descending_seq.2 ⟨fun a => _⟩
[GOAL]
case refine'_2
α : Type u_1
inst✝ : Preorder α
h : ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ False
[PROOFSTEP]
obtain ⟨n, hn⟩ := h (a.swap : ((· < ·) : ℕ → ℕ → Prop) →r ((· < ·) : α → α → Prop)).toOrderHom
[GOAL]
case refine'_2.intro
α : Type u_1
inst✝ : Preorder α
h : ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
n : ℕ
hn :
∀ (m : ℕ),
n ≤ m →
¬↑(RelHom.toOrderHom (RelEmbedding.toRelHom (RelEmbedding.swap a))) n <
↑(RelHom.toOrderHom (RelEmbedding.toRelHom (RelEmbedding.swap a))) m
⊢ False
[PROOFSTEP]
exact hn n.succ n.lt_succ_self.le ((RelEmbedding.map_rel_iff _).2 n.lt_succ_self)
[GOAL]
α : Type u_1
inst✝ : PartialOrder α
⊢ (∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m) ↔ ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ↑a n = ↑a m
[PROOFSTEP]
congr! 4
[GOAL]
case a.h.h.e'_2.h.h.a
α : Type u_1
inst✝ : PartialOrder α
a✝¹ : ℕ →o α
x✝ a✝ : ℕ
⊢ x✝ ≤ a✝ → ¬↑a✝¹ x✝ < ↑a✝¹ a✝ ↔ x✝ ≤ a✝ → ↑a✝¹ x✝ = ↑a✝¹ a✝
[PROOFSTEP]
rename_i a n m
[GOAL]
case a.h.h.e'_2.h.h.a
α : Type u_1
inst✝ : PartialOrder α
a : ℕ →o α
n m : ℕ
⊢ n ≤ m → ¬↑a n < ↑a m ↔ n ≤ m → ↑a n = ↑a m
[PROOFSTEP]
simp (config := { contextual := true }) [lt_iff_le_and_ne, fun h => a.mono h]
[GOAL]
α : Type u_1
inst✝ : CompleteLattice α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
⊢ iSup ↑a = monotonicSequenceLimit a
[PROOFSTEP]
refine' (iSup_le fun m => _).antisymm (le_iSup a _)
[GOAL]
α : Type u_1
inst✝ : CompleteLattice α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
m : ℕ
⊢ ↑a m ≤ monotonicSequenceLimit a
[PROOFSTEP]
cases' le_or_lt m (monotonicSequenceLimitIndex a) with hm hm
[GOAL]
case inl
α : Type u_1
inst✝ : CompleteLattice α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
m : ℕ
hm : m ≤ monotonicSequenceLimitIndex a
⊢ ↑a m ≤ monotonicSequenceLimit a
[PROOFSTEP]
exact a.monotone hm
[GOAL]
case inr
α : Type u_1
inst✝ : CompleteLattice α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
m : ℕ
hm : monotonicSequenceLimitIndex a < m
⊢ ↑a m ≤ monotonicSequenceLimit a
[PROOFSTEP]
cases' WellFounded.monotone_chain_condition'.1 h a with n hn
[GOAL]
case inr.intro
α : Type u_1
inst✝ : CompleteLattice α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
m : ℕ
hm : monotonicSequenceLimitIndex a < m
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
⊢ ↑a m ≤ monotonicSequenceLimit a
[PROOFSTEP]
have : n ∈ {n | ∀ m, n ≤ m → a n = a m} := fun k hk => (a.mono hk).eq_of_not_lt (hn k hk)
[GOAL]
case inr.intro
α : Type u_1
inst✝ : CompleteLattice α
h : WellFounded fun x x_1 => x > x_1
a : ℕ →o α
m : ℕ
hm : monotonicSequenceLimitIndex a < m
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m
this : n ∈ {n | ∀ (m : ℕ), n ≤ m → ↑a n = ↑a m}
⊢ ↑a m ≤ monotonicSequenceLimit a
[PROOFSTEP]
exact (Nat.sInf_mem ⟨n, this⟩ m hm.le).ge
| {"mathlib_filename": "Mathlib.Order.OrderIsoNat", "llama_tokens": 13882} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d y : α
x : WithBot α
⊢ unbot' d x = y ↔ x = ↑y ∨ x = ⊥ ∧ y = d
[PROOFSTEP]
induction x using recBotCoe
[GOAL]
case bot
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d y : α
⊢ unbot' d ⊥ = y ↔ ⊥ = ↑y ∨ ⊥ = ⊥ ∧ y = d
[PROOFSTEP]
simp [@eq_comm _ d]
[GOAL]
case coe
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d y a✝ : α
⊢ unbot' d ↑a✝ = y ↔ ↑a✝ = ↑y ∨ ↑a✝ = ⊥ ∧ y = d
[PROOFSTEP]
simp [@eq_comm _ d]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d : α
x : WithBot α
⊢ unbot' d x = d ↔ x = ↑d ∨ x = ⊥
[PROOFSTEP]
simp [unbot'_eq_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d : α
x y : WithBot α
⊢ unbot' d x = unbot' d y ↔ x = y ∨ x = ↑d ∧ y = ⊥ ∨ x = ⊥ ∧ y = ↑d
[PROOFSTEP]
induction y using recBotCoe
[GOAL]
case bot
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d : α
x : WithBot α
⊢ unbot' d x = unbot' d ⊥ ↔ x = ⊥ ∨ x = ↑d ∧ ⊥ = ⊥ ∨ x = ⊥ ∧ ⊥ = ↑d
[PROOFSTEP]
simp [unbot'_eq_iff, or_comm]
[GOAL]
case coe
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b d : α
x : WithBot α
a✝ : α
⊢ unbot' d x = unbot' d ↑a✝ ↔ x = ↑a✝ ∨ x = ↑d ∧ ↑a✝ = ⊥ ∨ x = ⊥ ∧ ↑a✝ = ↑d
[PROOFSTEP]
simp [unbot'_eq_iff, or_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
x : WithBot α
h : x ≠ ⊥
⊢ ↑(unbot x h) = x
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
h : none ≠ ⊥
⊢ ↑(unbot none h) = none
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b val✝ : α
h : Option.some val✝ ≠ ⊥
⊢ ↑(unbot (Option.some val✝) h) = Option.some val✝
[PROOFSTEP]
exact (h rfl).elim
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b val✝ : α
h : Option.some val✝ ≠ ⊥
⊢ ↑(unbot (Option.some val✝) h) = Option.some val✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
⊢ Option.some a ≤ Option.some b ↔ a ≤ b
[PROOFSTEP]
simp [LE.le]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝¹ : LE α
inst✝ : OrderTop α
o : WithBot α
a : α
ha : a ∈ o
⊢ ∃ b, b ∈ ⊤ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝¹ : LE α
inst✝ : OrderTop α
a : α
⊢ ∃ b, b ∈ ⊤ ∧ a ≤ b
[PROOFSTEP]
exact ⟨_, rfl, le_top⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
x : α
⊢ ↑a ≤ Option.some x ↔ ∃ b, Option.some x = ↑b ∧ a ≤ b
[PROOFSTEP]
simp [some_eq_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
⊢ ¬∃ b, none = ↑b ∧ a ≤ b
[PROOFSTEP]
simp [none_eq_bot]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : LE α
b : α
⊢ Option.some b ≤ ↑b✝ ↔ ∀ (a : α), Option.some b = ↑a → a ≤ b✝
[PROOFSTEP]
simp [some_eq_coe, coe_eq_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
⊢ none ≤ ↑b ↔ ∀ (a : α), none = ↑a → a ≤ b
[PROOFSTEP]
simp [none_eq_bot]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : LE α
a : α
b : WithBot α
h : b ≠ ⊥
⊢ a ≤ unbot b h ↔ ↑a ≤ b
[PROOFSTEP]
match b, h with
| some _, _ => simp only [unbot_coe, coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : LE α
a : α
b : WithBot α
h : b ≠ ⊥
val✝ : α
x✝ : ↑val✝ ≠ ⊥
⊢ a ≤ unbot (↑val✝) x✝ ↔ ↑a ≤ ↑val✝
[PROOFSTEP]
simp only [unbot_coe, coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : LE α
a : WithBot α
h : a ≠ ⊥
b : α
⊢ unbot a h ≤ b ↔ a ≤ ↑b
[PROOFSTEP]
match a, h with
| some _, _ => simp only [unbot_coe, coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : LE α
a : WithBot α
h : a ≠ ⊥
b val✝ : α
x✝ : ↑val✝ ≠ ⊥
⊢ unbot (↑val✝) x✝ ≤ b ↔ ↑val✝ ≤ ↑b
[PROOFSTEP]
simp only [unbot_coe, coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LT α
⊢ Option.some a < Option.some b ↔ a < b
[PROOFSTEP]
simp [LT.lt]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : LT α
a : WithBot α
b : α
⊢ a < Option.some b ↔ ∃ p, Option.some b = ↑p ∧ a < ↑p
[PROOFSTEP]
simp [some_eq_coe, coe_eq_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : LT α
a : WithBot α
⊢ ¬∃ p, none = ↑p ∧ a < ↑p
[PROOFSTEP]
simp [none_eq_bot]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : LT α
b : α
⊢ Option.some b < ↑b✝ ↔ ∀ (a : WithBot α), Option.some b = a → a < ↑b✝
[PROOFSTEP]
simp [some_eq_coe, coe_eq_coe, coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LT α
⊢ none < ↑b ↔ ∀ (a : WithBot α), none = a → a < ↑b
[PROOFSTEP]
simp [none_eq_bot, bot_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LT α
⊢ ⊥ < ⊥ ↔ ⊥ ≠ ⊥
[PROOFSTEP]
simpa using not_lt_none ⊥
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LT α
x : α
⊢ ⊥ < ↑x ↔ ↑x ≠ ⊥
[PROOFSTEP]
simp [bot_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : Preorder α
⊢ ∀ (a b : WithBot α), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
intros a b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : Preorder α
a b : WithBot α
⊢ a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : Preorder α
b : WithBot α
⊢ none < b ↔ none ≤ b ∧ ¬b ≤ none
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : Preorder α
b : WithBot α
val✝ : α
⊢ Option.some val✝ < b ↔ Option.some val✝ ≤ b ∧ ¬b ≤ Option.some val✝
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : Preorder α
⊢ none < none ↔ none ≤ none ∧ ¬none ≤ none
[PROOFSTEP]
simp [lt_iff_le_not_le]
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : Preorder α
val✝ : α
⊢ none < Option.some val✝ ↔ none ≤ Option.some val✝ ∧ ¬Option.some val✝ ≤ none
[PROOFSTEP]
simp [lt_iff_le_not_le]
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : Preorder α
val✝ : α
⊢ Option.some val✝ < none ↔ Option.some val✝ ≤ none ∧ ¬none ≤ Option.some val✝
[PROOFSTEP]
simp [lt_iff_le_not_le]
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : Preorder α
val✝¹ val✝ : α
⊢ Option.some val✝¹ < Option.some val✝ ↔ Option.some val✝¹ ≤ Option.some val✝ ∧ ¬Option.some val✝ ≤ Option.some val✝¹
[PROOFSTEP]
simp [lt_iff_le_not_le]
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : Preorder α
val✝ : α
⊢ none < Option.some val✝ ↔ ¬Option.some val✝ ≤ none
[PROOFSTEP]
simp [LE.le, LT.lt]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
o₁ o₂ : WithBot α
h₁ : o₁ ≤ o₂
h₂ : o₂ ≤ o₁
⊢ o₁ = o₂
[PROOFSTEP]
cases' o₁ with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
o₂ : WithBot α
h₁ : none ≤ o₂
h₂ : o₂ ≤ none
⊢ none = o₂
[PROOFSTEP]
cases' o₂ with b
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
h₁ h₂ : none ≤ none
⊢ none = none
[PROOFSTEP]
rfl
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
b : α
h₁ : none ≤ Option.some b
h₂ : Option.some b ≤ none
⊢ none = Option.some b
[PROOFSTEP]
rcases h₂ b rfl with ⟨_, ⟨⟩, _⟩
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
o₂ : WithBot α
a : α
h₁ : Option.some a ≤ o₂
h₂ : o₂ ≤ Option.some a
⊢ Option.some a = o₂
[PROOFSTEP]
rcases h₁ a rfl with ⟨b, ⟨⟩, h₁'⟩
[GOAL]
case some.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
a b : α
h₁' : a ≤ b
h₁ : Option.some a ≤ Option.some b
h₂ : Option.some b ≤ Option.some a
⊢ Option.some a = Option.some b
[PROOFSTEP]
rcases h₂ b rfl with ⟨_, ⟨⟩, h₂'⟩
[GOAL]
case some.intro.intro.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : PartialOrder α
src✝ : Preorder (WithBot α) := preorder
a b : α
h₁' : a ≤ b
h₁ : Option.some a ≤ Option.some b
h₂ : Option.some b ≤ Option.some a
h₂' : b ≤ a
⊢ Option.some a = Option.some b
[PROOFSTEP]
rw [le_antisymm h₁' h₂']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
⊢ ((Monotone fun a => map f ↑a) ∧ ∀ (x : α), map f ⊥ ≤ map f ↑x) ↔ Monotone f
[PROOFSTEP]
simp [Monotone]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
⊢ ((StrictMono fun a => map f ↑a) ∧ ∀ (x : α), map f ⊥ < map f ↑x) ↔ StrictMono f
[PROOFSTEP]
simp [StrictMono, bot_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b
x✝ : WithBot α
⊢ map f ⊥ ≤ map f x✝ ↔ ⊥ ≤ x✝
[PROOFSTEP]
simp only [map_bot, bot_le]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b
a : α
⊢ map f ↑a ≤ map f ⊥ ↔ ↑a ≤ ⊥
[PROOFSTEP]
simp only [map_coe, map_bot, coe_ne_bot, not_coe_le_bot _]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b
a b : α
⊢ map f ↑a ≤ map f ↑b ↔ ↑a ≤ ↑b
[PROOFSTEP]
simpa only [map_coe, coe_le_coe] using mono_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝¹ : LE α
inst✝ : OrderBot α
a : WithBot α
b : α
⊢ unbot' ⊥ a ≤ b ↔ a ≤ ↑b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝¹ : LE α
inst✝ : OrderBot α
b : α
⊢ unbot' ⊥ none ≤ b ↔ none ≤ ↑b
[PROOFSTEP]
simp [none_eq_bot, some_eq_coe]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝¹ : LE α
inst✝ : OrderBot α
b val✝ : α
⊢ unbot' ⊥ (Option.some val✝) ≤ b ↔ Option.some val✝ ≤ ↑b
[PROOFSTEP]
simp [none_eq_bot, some_eq_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : LT α
a : WithBot α
b c : α
ha : a ≠ ⊥
⊢ unbot' b a < c ↔ a < ↑c
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : LT α
b c : α
ha : none ≠ ⊥
⊢ unbot' b none < c ↔ none < ↑c
[PROOFSTEP]
exact (ha rfl).elim
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : LT α
b c val✝ : α
ha : Option.some val✝ ≠ ⊥
⊢ unbot' b (Option.some val✝) < c ↔ Option.some val✝ < ↑c
[PROOFSTEP]
rw [some_eq_coe, unbot'_coe, coe_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ o₂ : WithBot α
a : α
ha : a ∈ o₁
⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₂ : WithBot α
a : α
⊢ ∃ b, b ∈ Option.some a ⊔ o₂ ∧ a ≤ b
[PROOFSTEP]
cases o₂
[GOAL]
case refl.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a : α
⊢ ∃ b, b ∈ Option.some a ⊔ none ∧ a ≤ b
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
case refl.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a val✝ : α
⊢ ∃ b, b ∈ Option.some a ⊔ Option.some val✝ ∧ a ≤ b
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ o₂ : WithBot α
a : α
ha : a ∈ o₂
⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ : WithBot α
a : α
⊢ ∃ b, b ∈ o₁ ⊔ Option.some a ∧ a ≤ b
[PROOFSTEP]
cases o₁
[GOAL]
case refl.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a : α
⊢ ∃ b, b ∈ none ⊔ Option.some a ∧ a ≤ b
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
case refl.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a val✝ : α
⊢ ∃ b, b ∈ Option.some val✝ ⊔ Option.some a ∧ a ≤ b
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ o₂ o₃ : WithBot α
h₁ : o₁ ≤ o₃
h₂ : o₂ ≤ o₃
a : α
ha : a ∈ o₁ ⊔ o₂
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases' o₁ with b
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₂ o₃ : WithBot α
h₂ : o₂ ≤ o₃
a : α
h₁ : none ≤ o₃
ha : a ∈ none ⊔ o₂
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases' o₂ with c
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₂ o₃ : WithBot α
h₂ : o₂ ≤ o₃
a b : α
h₁ : Option.some b ≤ o₃
ha : a ∈ Option.some b ⊔ o₂
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases' o₂ with c
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a : α
h₁ h₂ : none ≤ o₃
ha : a ∈ none ⊔ none
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a : α
h₁ : none ≤ o₃
c : α
h₂ : Option.some c ≤ o₃
ha : a ∈ none ⊔ Option.some c
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a b : α
h₁ : Option.some b ≤ o₃
h₂ : none ≤ o₃
ha : a ∈ Option.some b ⊔ none
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a b : α
h₁ : Option.some b ≤ o₃
c : α
h₂ : Option.some c ≤ o₃
ha : a ∈ Option.some b ⊔ Option.some c
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case none.some.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a : α
h₁ : none ≤ o₃
h₂ : Option.some a ≤ o₃
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
exact h₂ a rfl
[GOAL]
case some.none.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a : α
h₂ : none ≤ o₃
h₁ : Option.some a ≤ o₃
⊢ ∃ b, b ∈ o₃ ∧ a ≤ b
[PROOFSTEP]
exact h₁ a rfl
[GOAL]
case some.some.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
b : α
h₁ : Option.some b ≤ o₃
c : α
h₂ : Option.some c ≤ o₃
⊢ ∃ b_1, b_1 ∈ o₃ ∧ (fun x x_1 => x ⊔ x_1) b c ≤ b_1
[PROOFSTEP]
rcases h₁ b rfl with ⟨d, ⟨⟩, h₁'⟩
[GOAL]
case some.some.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
b c d : α
h₁' : b ≤ d
h₁ : Option.some b ≤ Option.some d
h₂ : Option.some c ≤ Option.some d
⊢ ∃ b_1, b_1 ∈ Option.some d ∧ (fun x x_1 => x ⊔ x_1) b c ≤ b_1
[PROOFSTEP]
simp at h₂
[GOAL]
case some.some.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b✝ : α
inst✝ : SemilatticeSup α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
b c d : α
h₁' : b ≤ d
h₁ : Option.some b ≤ Option.some d
h₂ : c ≤ d
⊢ ∃ b_1, b_1 ∈ Option.some d ∧ (fun x x_1 => x ⊔ x_1) b c ≤ b_1
[PROOFSTEP]
exact ⟨d, rfl, sup_le h₁' h₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ o₂ : WithBot α
a : α
ha : a ∈ o₁ ⊓ o₂
⊢ ∃ b, b ∈ o₁ ∧ a ≤ b
[PROOFSTEP]
rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a b : α
ha : a ⊓ b ∈ Option.some a ⊓ Option.some b
⊢ ∃ b_1, b_1 ∈ Option.some a ∧ a ⊓ b ≤ b_1
[PROOFSTEP]
exact ⟨_, rfl, inf_le_left⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ o₂ : WithBot α
a : α
ha : a ∈ o₁ ⊓ o₂
⊢ ∃ b, b ∈ o₂ ∧ a ≤ b
[PROOFSTEP]
rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a b : α
ha : a ⊓ b ∈ Option.some a ⊓ Option.some b
⊢ ∃ b_1, b_1 ∈ Option.some b ∧ a ⊓ b ≤ b_1
[PROOFSTEP]
exact ⟨_, rfl, inf_le_right⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₁ o₂ o₃ : WithBot α
h₁ : o₁ ≤ o₂
h₂ : o₁ ≤ o₃
a : α
ha : a ∈ o₁
⊢ ∃ b, b ∈ o₂ ⊓ o₃ ∧ a ≤ b
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₂ o₃ : WithBot α
a : α
h₁ : Option.some a ≤ o₂
h₂ : Option.some a ≤ o₃
⊢ ∃ b, b ∈ o₂ ⊓ o₃ ∧ a ≤ b
[PROOFSTEP]
rcases h₁ a rfl with ⟨b, ⟨⟩, ab⟩
[GOAL]
case refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
o₃ : WithBot α
a : α
h₂ : Option.some a ≤ o₃
b : α
ab : a ≤ b
h₁ : Option.some a ≤ Option.some b
⊢ ∃ b_1, b_1 ∈ Option.some b ⊓ o₃ ∧ a ≤ b_1
[PROOFSTEP]
rcases h₂ a rfl with ⟨c, ⟨⟩, ac⟩
[GOAL]
case refl.intro.intro.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝ : SemilatticeInf α
src✝¹ : PartialOrder (WithBot α) := partialOrder
src✝ : OrderBot (WithBot α) := orderBot
a b : α
ab : a ≤ b
h₁ : Option.some a ≤ Option.some b
c : α
ac : a ≤ c
h₂ : Option.some a ≤ Option.some c
⊢ ∃ b_1, b_1 ∈ Option.some b ⊓ Option.some c ∧ a ≤ b_1
[PROOFSTEP]
exact ⟨_, rfl, le_inf ab ac⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LE α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x y : α
h : ¬x ≤ y
⊢ ¬(fun x x_1 => x ≤ x_1) (Option.some x) (Option.some y)
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LE α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
x : α
h : (fun x x_1 => x ≤ x_1) (Option.some x) none
⊢ False
[PROOFSTEP]
rcases h x rfl with ⟨y, ⟨_⟩, _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LT α
inst✝ : DecidableRel fun x x_1 => x < x_1
x : α
⊢ (fun x x_1 => x < x_1) none (Option.some x)
[PROOFSTEP]
exists x, rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LT α
inst✝ : DecidableRel fun x x_1 => x < x_1
x : α
⊢ ∀ (a : α), a ∈ none → a < x
[PROOFSTEP]
rintro _ ⟨⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LT α
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
h : x < y
⊢ (fun x x_1 => x < x_1) (Option.some x) (Option.some y)
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LT α
inst✝ : DecidableRel fun x x_1 => x < x_1
x y : α
h : ¬x < y
⊢ ¬(fun x x_1 => x < x_1) (Option.some x) (Option.some y)
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝¹ : LT α
inst✝ : DecidableRel fun x x_1 => x < x_1
x : WithBot α
⊢ ¬(fun x x_1 => x < x_1) x none
[PROOFSTEP]
rintro ⟨a, ⟨⟨⟩⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LT α
h : WellFounded fun x x_1 => x < x_1
not_lt_bot : ∀ (a : WithBot α), ¬a < ⊥
⊢ ∀ (y : WithBot α), y < ⊥ → Acc (fun x x_1 => x < x_1) y
[PROOFSTEP]
simp [not_lt_bot]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LE α
inst✝¹ : NoTopOrder α
inst✝ : Nonempty α
⊢ ∀ (a : WithBot α), ∃ b, ¬b ≤ a
[PROOFSTEP]
apply recBotCoe
[GOAL]
case bot
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LE α
inst✝¹ : NoTopOrder α
inst✝ : Nonempty α
⊢ ∃ b, ¬b ≤ ⊥
[PROOFSTEP]
exact ‹Nonempty α›.elim fun a => ⟨a, not_coe_le_bot a⟩
[GOAL]
case coe
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LE α
inst✝¹ : NoTopOrder α
inst✝ : Nonempty α
⊢ ∀ (a : α), ∃ b, ¬b ≤ ↑a
[PROOFSTEP]
intro a
[GOAL]
case coe
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝² : LE α
inst✝¹ : NoTopOrder α
inst✝ : Nonempty α
a : α
⊢ ∃ b, ¬b ≤ ↑a
[PROOFSTEP]
obtain ⟨b, h⟩ := exists_not_le a
[GOAL]
case coe.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝² : LE α
inst✝¹ : NoTopOrder α
inst✝ : Nonempty α
a b : α
h : ¬b ≤ a
⊢ ∃ b, ¬b ≤ ↑a
[PROOFSTEP]
exact ⟨b, by rwa [coe_le_coe]⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝² : LE α
inst✝¹ : NoTopOrder α
inst✝ : Nonempty α
a b : α
h : ¬b ≤ a
⊢ ¬↑b ≤ ↑a
[PROOFSTEP]
rwa [coe_le_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LT α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
⊢ ∀ (a : WithBot α), ∃ b, a < b
[PROOFSTEP]
apply WithBot.recBotCoe
[GOAL]
case bot
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LT α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
⊢ ∃ b, ⊥ < b
[PROOFSTEP]
apply ‹Nonempty α›.elim
[GOAL]
case bot
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LT α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
⊢ α → ∃ b, ⊥ < b
[PROOFSTEP]
exact fun a => ⟨a, WithBot.bot_lt_coe a⟩
[GOAL]
case coe
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝² : LT α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
⊢ ∀ (a : α), ∃ b, ↑a < b
[PROOFSTEP]
intro a
[GOAL]
case coe
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝² : LT α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
a : α
⊢ ∃ b, ↑a < b
[PROOFSTEP]
obtain ⟨b, ha⟩ := exists_gt a
[GOAL]
case coe.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b✝ : α
inst✝² : LT α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
a b : α
ha : a < b
⊢ ∃ b, ↑a < b
[PROOFSTEP]
exact ⟨b, coe_lt_coe.mpr ha⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
⊢ ↑a ≤ ↑b ↔ a ≤ b
[PROOFSTEP]
simp only [← toDual_le_toDual_iff, toDual_apply_coe, WithBot.coe_le_coe, toDual_le_toDual]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝¹ : LE α
inst✝ : OrderBot α
o : WithTop α
a : α
ha : a ∈ o
⊢ ∃ b, b ∈ ⊥ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a✝ b : α
inst✝¹ : LE α
inst✝ : OrderBot α
a : α
⊢ ∃ b, b ∈ ⊥ ∧ b ≤ a
[PROOFSTEP]
exact ⟨_, rfl, bot_le⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
h : IsMin a
⊢ IsMin ↑a
[PROOFSTEP]
intro _ hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
h : IsMin a
b✝ : WithTop α
hb : b✝ ≤ ↑a
⊢ ↑a ≤ b✝
[PROOFSTEP]
rw [← toDual_le_toDual_iff] at hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
a b : α
inst✝ : LE α
h : IsMin a
b✝ : WithTop α
hb : ↑WithTop.toDual ↑a ≤ ↑WithTop.toDual b✝
⊢ ↑a ≤ b✝
[PROOFSTEP]
simpa [toDual_le_iff] using (IsMax.withBot h : IsMax (toDual a : WithBot αᵒᵈ)) hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a b : α
⊢ ↑a < ↑b ↔ a < b
[PROOFSTEP]
simp only [← toDual_lt_toDual_iff, toDual_apply_coe, WithBot.coe_lt_coe, toDual_lt_toDual]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a✝ b a : α
⊢ ↑a < ⊤
[PROOFSTEP]
simp [← toDual_lt_toDual_iff, WithBot.bot_lt_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a✝ b : α
a : WithTop α
⊢ ¬none < a
[PROOFSTEP]
rw [← toDual_lt_toDual_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a✝ b : α
a : WithTop α
⊢ ¬↑WithTop.toDual a < ↑WithTop.toDual none
[PROOFSTEP]
exact WithBot.not_lt_none _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a✝ b✝ : α
a b : WithTop α
⊢ a < b ↔ ∃ p, a = ↑p ∧ ↑p < b
[PROOFSTEP]
rw [← toDual_lt_toDual_iff, WithBot.lt_iff_exists_coe, OrderDual.exists]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a✝ b✝ : α
a b : WithTop α
⊢ (∃ a_1, ↑WithTop.toDual a = ↑(↑toDual a_1) ∧ ↑WithTop.toDual b < ↑(↑toDual a_1)) ↔ ∃ p, a = ↑p ∧ ↑p < b
[PROOFSTEP]
exact exists_congr fun _ => and_congr_left' Iff.rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
a b : α
x : WithTop α
⊢ ↑a < x ↔ ∀ (b : WithTop α), x = b → ↑a < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : Preorder α
x✝² x✝¹ x✝ : WithTop α
⊢ x✝² ≤ x✝¹ → x✝¹ ≤ x✝ → x✝² ≤ x✝
[PROOFSTEP]
simp_rw [← toDual_le_toDual_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : Preorder α
x✝² x✝¹ x✝ : WithTop α
⊢ ↑WithTop.toDual x✝¹ ≤ ↑WithTop.toDual x✝² →
↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝¹ → ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝²
[PROOFSTEP]
exact Function.swap le_trans
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : Preorder α
⊢ ∀ (a b : WithTop α), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
simp [← toDual_lt_toDual_iff, lt_iff_le_not_le]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : PartialOrder α
src✝ : Preorder (WithTop α) := preorder
x✝¹ x✝ : WithTop α
⊢ x✝¹ ≤ x✝ → x✝ ≤ x✝¹ → x✝¹ = x✝
[PROOFSTEP]
simp_rw [← toDual_le_toDual_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : PartialOrder α
src✝ : Preorder (WithTop α) := preorder
x✝¹ x✝ : WithTop α
⊢ ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝¹ → ↑WithTop.toDual x✝¹ ≤ ↑WithTop.toDual x✝ → x✝¹ = x✝
[PROOFSTEP]
exact Function.swap le_antisymm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
⊢ ((Monotone fun a => map f ↑a) ∧ ∀ (x : α), map f ↑x ≤ map f ⊤) ↔ Monotone f
[PROOFSTEP]
simp [Monotone]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
⊢ ((StrictMono fun a => map f ↑a) ∧ ∀ (x : α), map f ↑x < map f ⊤) ↔ StrictMono f
[PROOFSTEP]
simp [StrictMono, coe_lt_top]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
a b : WithTop α
mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b
⊢ map f a ≤ map f b ↔ a ≤ b
[PROOFSTEP]
erw [← toDual_le_toDual_iff, toDual_map, toDual_map, WithBot.map_le_iff, toDual_le_toDual_iff]
[GOAL]
case mono_iff
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
a b : WithTop α
mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b
⊢ ∀ {a b : αᵒᵈ}, (↑OrderDual.toDual ∘ f ∘ ↑OrderDual.ofDual) a ≤ (↑OrderDual.toDual ∘ f ∘ ↑OrderDual.ofDual) b ↔ a ≤ b
[PROOFSTEP]
simp [mono_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ : WithTop α
a : α
ha : a ∈ o₁
⊢ ∃ b, b ∈ o₁ ⊓ o₂ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₂ : WithTop α
a : α
⊢ ∃ b, b ∈ Option.some a ⊓ o₂ ∧ b ≤ a
[PROOFSTEP]
cases o₂
[GOAL]
case refl.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
a : α
⊢ ∃ b, b ∈ Option.some a ⊓ none ∧ b ≤ a
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
case refl.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
a val✝ : α
⊢ ∃ b, b ∈ Option.some a ⊓ Option.some val✝ ∧ b ≤ a
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ : WithTop α
a : α
ha : a ∈ o₂
⊢ ∃ b, b ∈ o₁ ⊓ o₂ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a : α
⊢ ∃ b, b ∈ o₁ ⊓ Option.some a ∧ b ≤ a
[PROOFSTEP]
cases o₁
[GOAL]
case refl.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
a : α
⊢ ∃ b, b ∈ none ⊓ Option.some a ∧ b ≤ a
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
case refl.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
a val✝ : α
⊢ ∃ b, b ∈ Option.some val✝ ⊓ Option.some a ∧ b ≤ a
[PROOFSTEP]
simp [Option.liftOrGet]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ o₃ : WithTop α
h₁ : o₁ ≤ o₂
h₂ : o₁ ≤ o₃
a : α
ha : a ∈ o₂ ⊓ o₃
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases' o₂ with b
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₃ : WithTop α
h₂ : o₁ ≤ o₃
a : α
h₁ : o₁ ≤ none
ha : a ∈ none ⊓ o₃
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases' o₃ with c
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₃ : WithTop α
h₂ : o₁ ≤ o₃
a b : α
h₁ : o₁ ≤ Option.some b
ha : a ∈ Option.some b ⊓ o₃
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases' o₃ with c
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a : α
h₁ h₂ : o₁ ≤ none
ha : a ∈ none ⊓ none
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a : α
h₁ : o₁ ≤ none
c : α
h₂ : o₁ ≤ Option.some c
ha : a ∈ none ⊓ Option.some c
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a b : α
h₁ : o₁ ≤ Option.some b
h₂ : o₁ ≤ none
ha : a ∈ Option.some b ⊓ none
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a b : α
h₁ : o₁ ≤ Option.some b
c : α
h₂ : o₁ ≤ Option.some c
ha : a ∈ Option.some b ⊓ Option.some c
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case none.some.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a : α
h₁ : o₁ ≤ none
h₂ : o₁ ≤ Option.some a
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
exact h₂ a rfl
[GOAL]
case some.none.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
a : α
h₂ : o₁ ≤ none
h₁ : o₁ ≤ Option.some a
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
exact h₁ a rfl
[GOAL]
case some.some.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ : WithTop α
b : α
h₁ : o₁ ≤ Option.some b
c : α
h₂ : o₁ ≤ Option.some c
⊢ ∃ b_1, b_1 ∈ o₁ ∧ b_1 ≤ (fun x x_1 => x ⊓ x_1) b c
[PROOFSTEP]
rcases h₁ b rfl with ⟨d, ⟨⟩, h₁'⟩
[GOAL]
case some.some.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
b c d : α
h₁' : d ≤ b
h₁ : Option.some d ≤ Option.some b
h₂ : Option.some d ≤ Option.some c
⊢ ∃ b_1, b_1 ∈ Option.some d ∧ b_1 ≤ (fun x x_1 => x ⊓ x_1) b c
[PROOFSTEP]
simp at h₂
[GOAL]
case some.some.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeInf α
src✝ : PartialOrder (WithTop α) := partialOrder
b c d : α
h₁' : d ≤ b
h₁ : Option.some d ≤ Option.some b
h₂ : d ≤ c
⊢ ∃ b_1, b_1 ∈ Option.some d ∧ b_1 ≤ (fun x x_1 => x ⊓ x_1) b c
[PROOFSTEP]
exact ⟨d, rfl, le_inf h₁' h₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ : WithTop α
a : α
ha : a ∈ o₁ ⊔ o₂
⊢ ∃ b, b ∈ o₁ ∧ b ≤ a
[PROOFSTEP]
rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
a b : α
ha : a ⊔ b ∈ Option.some a ⊔ Option.some b
⊢ ∃ b_1, b_1 ∈ Option.some a ∧ b_1 ≤ a ⊔ b
[PROOFSTEP]
exact ⟨_, rfl, le_sup_left⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ : WithTop α
a : α
ha : a ∈ o₁ ⊔ o₂
⊢ ∃ b, b ∈ o₂ ∧ b ≤ a
[PROOFSTEP]
rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
a b : α
ha : a ⊔ b ∈ Option.some a ⊔ Option.some b
⊢ ∃ b_1, b_1 ∈ Option.some b ∧ b_1 ≤ a ⊔ b
[PROOFSTEP]
exact ⟨_, rfl, le_sup_right⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ o₃ : WithTop α
h₁ : o₁ ≤ o₃
h₂ : o₂ ≤ o₃
a : α
ha : a ∈ o₃
⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ b ≤ a
[PROOFSTEP]
cases ha
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
o₁ o₂ : WithTop α
a : α
h₁ : o₁ ≤ Option.some a
h₂ : o₂ ≤ Option.some a
⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ b ≤ a
[PROOFSTEP]
rcases h₁ a rfl with ⟨b, ⟨⟩, ab⟩
[GOAL]
case refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
o₂ : WithTop α
a : α
h₂ : o₂ ≤ Option.some a
b : α
ab : b ≤ a
h₁ : Option.some b ≤ Option.some a
⊢ ∃ b_1, b_1 ∈ Option.some b ⊔ o₂ ∧ b_1 ≤ a
[PROOFSTEP]
rcases h₂ a rfl with ⟨c, ⟨⟩, ac⟩
[GOAL]
case refl.intro.intro.refl.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : SemilatticeSup α
src✝ : PartialOrder (WithTop α) := partialOrder
a b : α
ab : b ≤ a
h₁ : Option.some b ≤ Option.some a
c : α
ac : c ≤ a
h₂ : Option.some c ≤ Option.some a
⊢ ∃ b_1, b_1 ∈ Option.some b ⊔ Option.some c ∧ b_1 ≤ a
[PROOFSTEP]
exact ⟨_, rfl, sup_le ab ac⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : LE α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x✝¹ x✝ : WithTop α
⊢ x✝¹ ≤ x✝ ∨ x✝ ≤ x✝¹
[PROOFSTEP]
simp_rw [← toDual_le_toDual_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : LE α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x✝¹ x✝ : WithTop α
⊢ ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝¹ ∨ ↑WithTop.toDual x✝¹ ≤ ↑WithTop.toDual x✝
[PROOFSTEP]
exact total_of _ _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
have : Acc (· < ·) (WithTop.toDual a) := WellFounded.apply (WithBot.wellFounded_lt (by convert h using 1)) _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
convert h using 1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
this : Acc (fun x x_1 => x < x_1) (↑WithTop.toDual a)
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
revert this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
⊢ Acc (fun x x_1 => x < x_1) (↑WithTop.toDual a) → Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
generalize ha : WithBot.toDual a = b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a = b
⊢ Acc (fun x x_1 => x < x_1) b → Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
intro ac
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a = b
ac : Acc (fun x x_1 => x < x_1) b
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
dsimp at ac
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithTop α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a = b
ac : Acc (fun x x_1 => x < x_1) b
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
induction' ac with _ H IH generalizing a
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a✝ : WithTop α
b : WithTop αᵒᵈ
ha✝ : ↑WithBot.toDual a✝ = b
x✝ : WithTop αᵒᵈ
H : ∀ (y : WithTop αᵒᵈ), y < x✝ → Acc (fun x x_1 => x < x_1) y
IH : ∀ (y : WithTop αᵒᵈ), y < x✝ → ∀ (a : WithTop α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a
a : WithTop α
ha : ↑WithBot.toDual a = x✝
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
subst ha
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a✝ : WithTop α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a✝ = b
a : WithTop α
H : ∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → Acc (fun x x_1 => x < x_1) y
IH :
∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → ∀ (a : WithTop α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
exact ⟨_, fun a' h => IH (WithTop.toDual a') (toDual_lt_toDual.mpr h) _ rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
have : Acc (· < ·) (WithBot.toDual a) := WellFounded.apply (WithTop.wellFounded_lt (by convert h using 1)) _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
convert h using 1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
this : Acc (fun x x_1 => x < x_1) (↑WithBot.toDual a)
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
revert this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
⊢ Acc (fun x x_1 => x < x_1) (↑WithBot.toDual a) → Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
generalize ha : WithBot.toDual a = b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a = b
⊢ Acc (fun x x_1 => x < x_1) b → Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
intro ac
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a = b
ac : Acc (fun x x_1 => x < x_1) b
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
dsimp at ac
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a : WithBot α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a = b
ac : Acc (fun x x_1 => x < x_1) b
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
induction' ac with _ H IH generalizing a
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a✝ : WithBot α
b : WithTop αᵒᵈ
ha✝ : ↑WithBot.toDual a✝ = b
x✝ : WithTop αᵒᵈ
H : ∀ (y : WithTop αᵒᵈ), y < x✝ → Acc (fun x x_1 => x < x_1) y
IH : ∀ (y : WithTop αᵒᵈ), y < x✝ → ∀ (a : WithBot α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a
a : WithBot α
ha : ↑WithBot.toDual a = x✝
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
subst ha
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : LT α
h : WellFounded fun x x_1 => x > x_1
a✝ : WithBot α
b : WithTop αᵒᵈ
ha : ↑WithBot.toDual a✝ = b
a : WithBot α
H : ∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → Acc (fun x x_1 => x < x_1) y
IH :
∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → ∀ (a : WithBot α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a
⊢ Acc (fun x x_1 => x > x_1) a
[PROOFSTEP]
exact ⟨_, fun a' h => IH (WithBot.toDual a') (toDual_lt_toDual.mpr h) _ rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x < x_1
⊢ ∀ (a b : WithTop α), a < b ∨ a = b ∨ b < a
[PROOFSTEP]
rintro (a | a) (b | b)
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x < x_1
⊢ none < none ∨ none = none ∨ none < none
[PROOFSTEP]
simp
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x < x_1
b : α
⊢ none < Option.some b ∨ none = Option.some b ∨ Option.some b < none
[PROOFSTEP]
simp
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x < x_1
a : α
⊢ Option.some a < none ∨ Option.some a = none ∨ none < Option.some a
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x < x_1
a b : α
⊢ Option.some a < Option.some b ∨ Option.some a = Option.some b ∨ Option.some b < Option.some a
[PROOFSTEP]
simpa [some_eq_coe, IsTrichotomous, coe_eq_coe] using @trichotomous α (· < ·) _ a b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x > x_1
⊢ ∀ (a b : WithTop α), a > b ∨ a = b ∨ b > a
[PROOFSTEP]
rintro (a | a) (b | b)
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x > x_1
⊢ none > none ∨ none = none ∨ none > none
[PROOFSTEP]
simp
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x > x_1
b : α
⊢ none > Option.some b ∨ none = Option.some b ∨ Option.some b > none
[PROOFSTEP]
simp
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x > x_1
a : α
⊢ Option.some a > none ∨ Option.some a = none ∨ none > Option.some a
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : Preorder α
inst✝ : IsTrichotomous α fun x x_1 => x > x_1
a b : α
⊢ Option.some a > Option.some b ∨ Option.some a = Option.some b ∨ Option.some b > Option.some a
[PROOFSTEP]
simpa [some_eq_coe, IsTrichotomous, coe_eq_coe] using @trichotomous α (· > ·) _ a b
| {"mathlib_filename": "Mathlib.Order.WithBot", "llama_tokens": 24425} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
g : β → α
h : IsOrderRightAdjoint f g
e : β ≃o γ
y : γ
⊢ IsLUB {x | (↑e ∘ f) x ≤ y} ((g ∘ ↑(OrderIso.symm e)) y)
[PROOFSTEP]
simpa [e.le_symm_apply] using h (e.symm y)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
g : β → α
h : IsOrderRightAdjoint f g
e : γ ≃o α
⊢ IsOrderRightAdjoint (f ∘ ↑e) (↑(OrderIso.symm e) ∘ g)
[PROOFSTEP]
intro y
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
g : β → α
h : IsOrderRightAdjoint f g
e : γ ≃o α
y : β
⊢ IsLUB {x | (f ∘ ↑e) x ≤ y} ((↑(OrderIso.symm e) ∘ g) y)
[PROOFSTEP]
change IsLUB (e ⁻¹' {x | f x ≤ y}) (e.symm (g y))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
g : β → α
h : IsOrderRightAdjoint f g
e : γ ≃o α
y : β
⊢ IsLUB (↑e ⁻¹' {x | f x ≤ y}) (↑(OrderIso.symm e) (g y))
[PROOFSTEP]
rw [e.isLUB_preimage, e.apply_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
g : β → α
h : IsOrderRightAdjoint f g
e : γ ≃o α
y : β
⊢ IsLUB {x | f x ≤ y} (g y)
[PROOFSTEP]
exact h y
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder α
inst✝ : Preorder β
fa : α ≃o α
fb : β ↪o β
g : α → β
h : Semiconj g ↑fa ↑fb
g' : β → α
hg' : IsOrderRightAdjoint g g'
⊢ Semiconj g' ↑fb ↑fa
[PROOFSTEP]
refine' fun y => (hg' _).unique _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder α
inst✝ : Preorder β
fa : α ≃o α
fb : β ↪o β
g : α → β
h : Semiconj g ↑fa ↑fb
g' : β → α
hg' : IsOrderRightAdjoint g g'
y : β
⊢ IsLUB {x | g x ≤ ↑fb y} (↑fa (g' y))
[PROOFSTEP]
rw [← fa.surjective.image_preimage {x | g x ≤ fb y}, preimage_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder α
inst✝ : Preorder β
fa : α ≃o α
fb : β ↪o β
g : α → β
h : Semiconj g ↑fa ↑fb
g' : β → α
hg' : IsOrderRightAdjoint g g'
y : β
⊢ IsLUB (↑fa '' {a | g (↑fa a) ≤ ↑fb y}) (↑fa (g' y))
[PROOFSTEP]
simp only [h.eq, fb.le_iff_le, fa.leftOrdContinuous (hg' _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
G : Type u_4
inst✝¹ : PartialOrder α
inst✝ : Group G
f₁ f₂ : G →* α ≃o α
h : α → α
H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x)
g : G
⊢ Semiconj h ↑(↑f₂ g) ↑(↑f₁ g)
[PROOFSTEP]
refine' fun y => (H _).unique _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
G : Type u_4
inst✝¹ : PartialOrder α
inst✝ : Group G
f₁ f₂ : G →* α ≃o α
h : α → α
H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x)
g : G
y : α
⊢ IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') (↑(↑f₂ g) y))) (↑(↑f₁ g) (h y))
[PROOFSTEP]
have := (f₁ g).leftOrdContinuous (H y)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
G : Type u_4
inst✝¹ : PartialOrder α
inst✝ : Group G
f₁ f₂ : G →* α ≃o α
h : α → α
H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x)
g : G
y : α
this : IsLUB (↑(↑f₁ g) '' range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') y)) (↑(↑f₁ g) (h y))
⊢ IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') (↑(↑f₂ g) y))) (↑(↑f₁ g) (h y))
[PROOFSTEP]
rw [← range_comp, ← (Equiv.mulRight g).surjective.range_comp _] at this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
G : Type u_4
inst✝¹ : PartialOrder α
inst✝ : Group G
f₁ f₂ : G →* α ≃o α
h : α → α
H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x)
g : G
y : α
this : IsLUB (range ((↑(↑f₁ g) ∘ fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') y)) ∘ ↑(Equiv.mulRight g))) (↑(↑f₁ g) (h y))
⊢ IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') (↑(↑f₂ g) y))) (↑(↑f₁ g) (h y))
[PROOFSTEP]
simpa [(· ∘ ·)] using this
| {"mathlib_filename": "Mathlib.Order.SemiconjSup", "llama_tokens": 2127} |
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
⊢ Unbounded (fun x x_1 => x ≤ x_1) s ↔ ∀ (a : α), ∃ b, b ∈ s ∧ a < b
[PROOFSTEP]
simp only [Unbounded, not_le]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
⊢ Unbounded (fun x x_1 => x < x_1) s ↔ ∀ (a : α), ∃ b, b ∈ s ∧ a ≤ b
[PROOFSTEP]
simp only [Unbounded, not_lt]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
⊢ Bounded (fun x x_1 => x ≤ x_1) s ↔ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
refine' ⟨fun h => _, bounded_le_of_bounded_lt⟩
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
h : Bounded (fun x x_1 => x ≤ x_1) s
⊢ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
cases' h with a ha
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
a : α
ha : ∀ (b : α), b ∈ s → (fun x x_1 => x ≤ x_1) b a
⊢ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
cases' exists_gt a with b hb
[GOAL]
case intro.intro
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
a : α
ha : ∀ (b : α), b ∈ s → (fun x x_1 => x ≤ x_1) b a
b : α
hb : a < b
⊢ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
exact ⟨b, fun c hc => lt_of_le_of_lt (ha c hc) hb⟩
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
⊢ Unbounded (fun x x_1 => x < x_1) s ↔ Unbounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
a : α
⊢ Bounded (fun x x_1 => x < x_1) (Iic a)
[PROOFSTEP]
simp only [← bounded_le_iff_bounded_lt, bounded_le_Iic]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
a : α
⊢ Bounded (fun x x_1 => x > x_1) (Ici a)
[PROOFSTEP]
simp only [← bounded_ge_iff_bounded_gt, bounded_ge_Ici]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m
a : α
⊢ Bounded r (s ∩ {b | ¬r b a}) ↔ Bounded r s
[PROOFSTEP]
refine' ⟨_, Bounded.mono (Set.inter_subset_left s _)⟩
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m
a : α
⊢ Bounded r (s ∩ {b | ¬r b a}) → Bounded r s
[PROOFSTEP]
rintro ⟨b, hb⟩
[GOAL]
case intro
α : Type u_1
r : α → α → Prop
s t : Set α
H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m
a b : α
hb : ∀ (b_1 : α), b_1 ∈ s ∩ {b | ¬r b a} → r b_1 b
⊢ Bounded r s
[PROOFSTEP]
cases' H a b with m hm
[GOAL]
case intro.intro
α : Type u_1
r : α → α → Prop
s t : Set α
H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m
a b : α
hb : ∀ (b_1 : α), b_1 ∈ s ∩ {b | ¬r b a} → r b_1 b
m : α
hm : ∀ (c : α), r c a ∨ r c b → r c m
⊢ Bounded r s
[PROOFSTEP]
exact ⟨m, fun c hc => hm c (or_iff_not_imp_left.2 fun hca => hb c ⟨hc, hca⟩)⟩
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m
a : α
⊢ Unbounded r (s ∩ {b | ¬r b a}) ↔ Unbounded r s
[PROOFSTEP]
simp_rw [← not_bounded_iff, bounded_inter_not H]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : SemilatticeSup α
a : α
⊢ Unbounded (fun x x_1 => x ≤ x_1) (s ∩ {b | ¬b ≤ a}) ↔ Unbounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : SemilatticeSup α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | ¬b ≤ a}) ↔ Bounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
exact bounded_le_inter_not_le a
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
simp_rw [← not_le, bounded_le_inter_not_le]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Unbounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) ↔ Unbounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
convert @unbounded_le_inter_not_le _ s _ a
[GOAL]
case h.e'_1.h.e'_3.h.e'_4.h.e'_2.h.a
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a x✝ : α
⊢ a < x✝ ↔ ¬x✝ ≤ a
[PROOFSTEP]
exact lt_iff_not_le
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
refine' ⟨_, Bounded.mono (Set.inter_subset_left s _)⟩
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) → Bounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
rw [← @bounded_le_inter_lt _ s _ a]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) → Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b})
[PROOFSTEP]
exact Bounded.mono fun x ⟨hx, hx'⟩ => ⟨hx, le_of_lt hx'⟩
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Unbounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) ↔ Unbounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
exact bounded_le_inter_le a
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : SemilatticeSup α
a : α
⊢ Unbounded (fun x x_1 => x < x_1) (s ∩ {b | ¬b < a}) ↔ Unbounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : SemilatticeSup α
a : α
⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | ¬b < a}) ↔ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
exact bounded_lt_inter_not_lt a
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | a ≤ b}) ↔ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
convert @bounded_lt_inter_not_lt _ s _ a
[GOAL]
case h.e'_1.h.e'_3.h.e'_4.h.e'_2.h.a
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a x✝ : α
⊢ a ≤ x✝ ↔ ¬x✝ < a
[PROOFSTEP]
exact not_lt.symm
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a : α
⊢ Unbounded (fun x x_1 => x < x_1) (s ∩ {b | a ≤ b}) ↔ Unbounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
convert @unbounded_lt_inter_not_lt _ s _ a
[GOAL]
case h.e'_1.h.e'_3.h.e'_4.h.e'_2.h.a
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝ : LinearOrder α
a x✝ : α
⊢ a ≤ x✝ ↔ ¬x✝ < a
[PROOFSTEP]
exact not_lt.symm
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : LinearOrder α
inst✝ : NoMaxOrder α
a : α
⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
rw [← bounded_le_iff_bounded_lt, ← bounded_le_iff_bounded_lt]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : LinearOrder α
inst✝ : NoMaxOrder α
a : α
⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s
[PROOFSTEP]
exact bounded_le_inter_lt a
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : LinearOrder α
inst✝ : NoMaxOrder α
a : α
⊢ Unbounded (fun x x_1 => x < x_1) (s ∩ {b | a < b}) ↔ Unbounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
[GOAL]
α : Type u_1
r : α → α → Prop
s t : Set α
inst✝¹ : LinearOrder α
inst✝ : NoMaxOrder α
a : α
⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x < x_1) s
[PROOFSTEP]
exact bounded_lt_inter_lt a
| {"mathlib_filename": "Mathlib.Order.Bounded", "llama_tokens": 3948} |
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b✝ b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set α
b : β
⊢ b ∈ upperBounds (l '' s) ↔ b ∈ u ⁻¹' upperBounds s
[PROOFSTEP]
simp [upperBounds, gc _ _]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set α
x✝ : BddAbove (l '' s)
x : β
hx : x ∈ upperBounds (l '' s)
⊢ u x ∈ upperBounds s
[PROOFSTEP]
rwa [gc.upperBounds_l_image] at hx
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set α
a : α
h : IsLUB s a
b : β
hb : b ∈ upperBounds (l '' s)
⊢ u b ∈ upperBounds s
[PROOFSTEP]
rwa [gc.upperBounds_l_image] at hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : PartialOrder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
z : α
y : β
⊢ u y = z ↔ ∀ (x : α), x ≤ z ↔ l x ≤ y
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : PartialOrder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
z : α
y : β
⊢ u y = z → ∀ (x : α), x ≤ z ↔ l x ≤ y
[PROOFSTEP]
rintro rfl x
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : PartialOrder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
y : β
x : α
⊢ x ≤ u y ↔ l x ≤ y
[PROOFSTEP]
exact (gc x y).symm
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : PartialOrder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
z : α
y : β
⊢ (∀ (x : α), x ≤ z ↔ l x ≤ y) → u y = z
[PROOFSTEP]
intro H
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : PartialOrder α
inst✝ : Preorder β
l : α → β
u : β → α
gc : GaloisConnection l u
z : α
y : β
H : ∀ (x : α), x ≤ z ↔ l x ≤ y
⊢ u y = z
[PROOFSTEP]
exact ((H <| u y).mpr (gc.l_u_le y)).antisymm ((gc _ _).mp <| (H z).mp le_rfl)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : PartialOrder β
l : α → β
u : β → α
gc : GaloisConnection l u
x : α
z : β
⊢ l x = z ↔ ∀ (y : β), z ≤ y ↔ x ≤ u y
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : PartialOrder β
l : α → β
u : β → α
gc : GaloisConnection l u
x : α
z : β
⊢ l x = z → ∀ (y : β), z ≤ y ↔ x ≤ u y
[PROOFSTEP]
rintro rfl y
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : PartialOrder β
l : α → β
u : β → α
gc : GaloisConnection l u
x : α
y : β
⊢ l x ≤ y ↔ x ≤ u y
[PROOFSTEP]
exact gc x y
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : PartialOrder β
l : α → β
u : β → α
gc : GaloisConnection l u
x : α
z : β
⊢ (∀ (y : β), z ≤ y ↔ x ≤ u y) → l x = z
[PROOFSTEP]
intro H
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : PartialOrder β
l : α → β
u : β → α
gc : GaloisConnection l u
x : α
z : β
H : ∀ (y : β), z ≤ y ↔ x ≤ u y
⊢ l x = z
[PROOFSTEP]
exact ((gc _ _).mpr <| (H z).mp le_rfl).antisymm ((H <| l x).mpr (gc.le_u_l x))
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
l : α → β
u : β → α
gc : GaloisConnection l u
⊢ IsLUB (l '' {a₁, a₂}) (l a₁ ⊔ l a₂)
[PROOFSTEP]
simp only [image_pair, isLUB_pair]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
l : α → β
u : β → α
gc : GaloisConnection l u
f : ι → α
⊢ IsLUB (range (l ∘ f)) (l (iSup f))
[PROOFSTEP]
rw [range_comp, ← sSup_range]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
l : α → β
u : β → α
gc : GaloisConnection l u
f : ι → α
⊢ IsLUB (l '' range f) (l (sSup (range f)))
[PROOFSTEP]
exact gc.isLUB_l_image (isLUB_sSup _)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
l : α → β
u : β → α
gc : GaloisConnection l u
f : (i : ι) → κ i → α
⊢ l (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), l (f i j)
[PROOFSTEP]
simp_rw [gc.l_iSup]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set α
⊢ l (sSup s) = ⨆ (a : α) (_ : a ∈ s), l a
[PROOFSTEP]
simp only [sSup_eq_iSup, gc.l_iSup]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
l1 : α → β
u1 : β → α
l2 : β → γ
u2 : γ → β
gc1 : GaloisConnection l1 u1
gc2 : GaloisConnection l2 u2
⊢ GaloisConnection (l2 ∘ l1) (u1 ∘ u2)
[PROOFSTEP]
intro a b
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
l1 : α → β
u1 : β → α
l2 : β → γ
u2 : γ → β
gc1 : GaloisConnection l1 u1
gc2 : GaloisConnection l2 u2
a : α
b : γ
⊢ (l2 ∘ l1) a ≤ b ↔ a ≤ (u1 ∘ u2) b
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
l1 : α → β
u1 : β → α
l2 : β → γ
u2 : γ → β
gc1 : GaloisConnection l1 u1
gc2 : GaloisConnection l2 u2
a : α
b : γ
⊢ l2 (l1 a) ≤ b ↔ a ≤ u1 (u2 b)
[PROOFSTEP]
rw [gc2, gc1]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
l : α → β
u : β → α
gc : GaloisConnection l u
⊢ GaloisConnection (compl ∘ u ∘ compl) (compl ∘ l ∘ compl)
[PROOFSTEP]
intro a b
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
l : α → β
u : β → α
gc : GaloisConnection l u
a : β
b : α
⊢ (compl ∘ u ∘ compl) a ≤ b ↔ a ≤ (compl ∘ l ∘ compl) b
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
l : α → β
u : β → α
gc : GaloisConnection l u
a : β
b : α
⊢ (u aᶜ)ᶜ ≤ b ↔ a ≤ (l bᶜ)ᶜ
[PROOFSTEP]
rw [le_compl_iff_le_compl, gc, compl_le_iff_compl_le]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : CompleteLattice γ
f : α → β → γ
s : Set α
t : Set β
l u : α → β → γ
l₁ u₁ : β → γ → α
l₂ u₂ : α → γ → β
h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b)
h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a)
⊢ sSup (image2 l s t) = l (sSup s) (sSup t)
[PROOFSTEP]
simp_rw [sSup_image2, ← (h₂ _).l_sSup, ← (h₁ _).l_sSup]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : CompleteLattice γ
f : α → β → γ
s : Set α
t : Set β
l u : α → β → γ
l₁ u₁ : β → γ → α
l₂ u₂ : α → γ → β
h₁ : ∀ (b : β), GaloisConnection (l₁ b) (swap u b)
h₂ : ∀ (a : α), GaloisConnection (l₂ a) (u a)
⊢ sInf (image2 u s t) = u (sInf s) (sInf t)
[PROOFSTEP]
simp_rw [sInf_image2, ← (h₂ _).u_sInf, ← (h₁ _).u_sInf]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : Preorder β
e : α ≃o β
s : Set β
⊢ BddAbove (↑e ⁻¹' s) ↔ BddAbove s
[PROOFSTEP]
rw [← e.bddAbove_image, e.image_preimage]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
inst✝¹ : Preorder α
inst✝ : Preorder β
e : α ≃o β
s : Set β
⊢ BddBelow (↑e ⁻¹' s) ↔ BddBelow s
[PROOFSTEP]
rw [← e.bddBelow_image, e.image_preimage]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
gi : GaloisInsertion l u
a b : β
⊢ l (u a) ⊔ l (u b) = a ⊔ b
[PROOFSTEP]
simp only [gi.l_u_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι✝ : Sort x
κ : ι✝ → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
ι : Sort x
p : ι → Prop
f : (i : ι) → p i → β
⊢ l (⨆ (i : ι) (hi : p i), u (f i hi)) = ⨆ (i : ι) (hi : p i), f i hi
[PROOFSTEP]
simp only [iSup_subtype', gi.l_iSup_u]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
s : Set β
⊢ l (sSup (u '' s)) = sSup s
[PROOFSTEP]
rw [sSup_image, gi.l_biSup_u, sSup_eq_iSup]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf β
gi : GaloisInsertion l u
a b : β
⊢ l (u (a ⊓ b)) = a ⊓ b
[PROOFSTEP]
simp only [gi.l_u_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι✝ : Sort x
κ : ι✝ → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
ι : Sort x
p : ι → Prop
f : (i : ι) → p i → β
⊢ l (⨅ (i : ι) (hi : p i), u (f i hi)) = ⨅ (i : ι) (hi : p i), f i hi
[PROOFSTEP]
simp only [iInf_subtype', gi.l_iInf_u]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
s : Set β
⊢ l (sInf (u '' s)) = sInf s
[PROOFSTEP]
rw [sInf_image, gi.l_biInf_u, sInf_eq_iInf]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι✝ : Sort x
κ : ι✝ → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
ι : Sort x
f : ι → α
hf : ∀ (i : ι), u (l (f i)) = f i
⊢ l (⨅ (i : ι), f i) = l (⨅ (i : ι), u (l (f i)))
[PROOFSTEP]
simp [hf]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι✝ : Sort x
κ : ι✝ → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
ι : Sort x
p : ι → Prop
f : (i : ι) → p i → α
hf : ∀ (i : ι) (hi : p i), u (l (f i hi)) = f i hi
⊢ l (⨅ (i : ι) (hi : p i), f i hi) = ⨅ (i : ι) (hi : p i), l (f i hi)
[PROOFSTEP]
rw [iInf_subtype', iInf_subtype']
[GOAL]
α : Type u
β : Type v
γ : Type w
ι✝ : Sort x
κ : ι✝ → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
gi : GaloisInsertion l u
ι : Sort x
p : ι → Prop
f : (i : ι) → p i → α
hf : ∀ (i : ι) (hi : p i), u (l (f i hi)) = f i hi
⊢ l (⨅ (x : { i // p i }), f ↑x (_ : p ↑x)) = ⨅ (x : { i // p i }), l (f ↑x (_ : p ↑x))
[PROOFSTEP]
exact gi.l_iInf_of_ul_eq_self _ fun _ => hf _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : SemilatticeInf α
gi : GaloisInsertion l u
src✝ : PartialOrder β := inst✝¹
⊢ ∀ (a b : β), a ⊓ b ≤ a
[PROOFSTEP]
simp only [gi.choice_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : SemilatticeInf α
gi : GaloisInsertion l u
src✝ : PartialOrder β := inst✝¹
⊢ ∀ (a b : β), l (u a ⊓ u b) ≤ a
[PROOFSTEP]
exact fun a b => gi.gc.l_le inf_le_left
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : SemilatticeInf α
gi : GaloisInsertion l u
src✝ : PartialOrder β := inst✝¹
⊢ ∀ (a b : β), a ⊓ b ≤ b
[PROOFSTEP]
simp only [gi.choice_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : SemilatticeInf α
gi : GaloisInsertion l u
src✝ : PartialOrder β := inst✝¹
⊢ ∀ (a b : β), l (u a ⊓ u b) ≤ b
[PROOFSTEP]
exact fun a b => gi.gc.l_le inf_le_right
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : SemilatticeInf α
gi : GaloisInsertion l u
src✝ : PartialOrder β := inst✝¹
⊢ ∀ (a b c : β), a ≤ b → a ≤ c → a ≤ b ⊓ c
[PROOFSTEP]
simp only [gi.choice_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : SemilatticeInf α
gi : GaloisInsertion l u
src✝ : PartialOrder β := inst✝¹
⊢ ∀ (a b c : β), a ≤ b → a ≤ c → a ≤ l (u b ⊓ u c)
[PROOFSTEP]
exact fun a b c hac hbc =>
(gi.le_l_u a).trans <| gi.gc.monotone_l <| le_inf (gi.gc.monotone_u hac) (gi.gc.monotone_u hbc)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝² : PartialOrder β
inst✝¹ : Preorder α
inst✝ : OrderTop α
gi : GaloisInsertion l u
⊢ ∀ (a : β), a ≤ ⊤
[PROOFSTEP]
simp only [gi.choice_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝² : PartialOrder β
inst✝¹ : Preorder α
inst✝ : OrderTop α
gi : GaloisInsertion l u
⊢ ∀ (a : β), a ≤ l ⊤
[PROOFSTEP]
exact fun b => (gi.le_l_u b).trans (gi.gc.monotone_l le_top)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : CompleteLattice α
gi : GaloisInsertion l u
src✝¹ : BoundedOrder β := liftBoundedOrder gi
src✝ : Lattice β := liftLattice gi
s : Set β
⊢ ∀ (a : β), a ∈ s → sInf s ≤ a
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : CompleteLattice α
gi : GaloisInsertion l u
src✝¹ : BoundedOrder β := liftBoundedOrder gi
src✝ : Lattice β := liftLattice gi
s : Set β
⊢ ∀ (a : β), a ∈ s → choice gi (sInf (u '' s)) (_ : u (l (sInf (u '' s))) ≤ sInf (u '' s)) ≤ a
[PROOFSTEP]
rw [gi.choice_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : CompleteLattice α
gi : GaloisInsertion l u
src✝¹ : BoundedOrder β := liftBoundedOrder gi
src✝ : Lattice β := liftLattice gi
s : Set β
⊢ ∀ (a : β), a ∈ s → l (sInf (u '' s)) ≤ a
[PROOFSTEP]
exact (gi.isGLB_of_u_image (isGLB_sInf _)).1
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : CompleteLattice α
gi : GaloisInsertion l u
src✝¹ : BoundedOrder β := liftBoundedOrder gi
src✝ : Lattice β := liftLattice gi
s : Set β
⊢ ∀ (a : β), (∀ (b : β), b ∈ s → a ≤ b) → a ≤ sInf s
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : CompleteLattice α
gi : GaloisInsertion l u
src✝¹ : BoundedOrder β := liftBoundedOrder gi
src✝ : Lattice β := liftLattice gi
s : Set β
⊢ ∀ (a : β), (∀ (b : β), b ∈ s → a ≤ b) → a ≤ choice gi (sInf (u '' s)) (_ : u (l (sInf (u '' s))) ≤ sInf (u '' s))
[PROOFSTEP]
rw [gi.choice_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a a₁ a₂ : α
b b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder β
inst✝ : CompleteLattice α
gi : GaloisInsertion l u
src✝¹ : BoundedOrder β := liftBoundedOrder gi
src✝ : Lattice β := liftLattice gi
s : Set β
⊢ ∀ (a : β), (∀ (b : β), b ∈ s → a ≤ b) → a ≤ l (sInf (u '' s))
[PROOFSTEP]
exact (gi.isGLB_of_u_image (isGLB_sInf _)).2
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder α
inst✝ : SemilatticeInf β
gi : GaloisCoinsertion l u
src✝ : PartialOrder α := inst✝¹
a b : α
⊢ a ⊓ b ≤ a
[PROOFSTEP]
exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_left a b
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder α
inst✝ : SemilatticeInf β
gi : GaloisCoinsertion l u
src✝ : PartialOrder α := inst✝¹
a b : α
⊢ a ⊓ b ≤ b
[PROOFSTEP]
exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_right a b
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder α
inst✝ : SemilatticeInf β
gi : GaloisCoinsertion l u
src✝ : PartialOrder α := inst✝¹
a b c : α
⊢ a ≤ b → a ≤ c → a ≤ b ⊓ c
[PROOFSTEP]
exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).le_inf a b c
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder α
inst✝ : SemilatticeSup β
gi : GaloisCoinsertion l u
src✝ : PartialOrder α := inst✝¹
a b : α
⊢ a ≤ a ⊔ b
[PROOFSTEP]
exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_left a b
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder α
inst✝ : SemilatticeSup β
gi : GaloisCoinsertion l u
src✝ : PartialOrder α := inst✝¹
a b : α
⊢ b ≤ a ⊔ b
[PROOFSTEP]
exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_right a b
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
κ : ι → Sort u_1
a✝ a₁ a₂ : α
b✝ b₁ b₂ : β
l : α → β
u : β → α
inst✝¹ : PartialOrder α
inst✝ : SemilatticeSup β
gi : GaloisCoinsertion l u
src✝ : PartialOrder α := inst✝¹
a b c : α
⊢ a ≤ c → b ≤ c → a ⊔ b ≤ c
[PROOFSTEP]
exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).sup_le a b c
| {"mathlib_filename": "Mathlib.Order.GaloisConnection", "llama_tokens": 9875} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
⊢ Injective fun f => f.toFun
[PROOFSTEP]
rintro ⟨f, hf⟩ ⟨g, hg⟩ h
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ↪r s
hf : ∀ (a : α) (b : β), s b (↑f a) → ∃ a', ↑f a' = b
g : r ↪r s
hg : ∀ (a : α) (b : β), s b (↑g a) → ∃ a', ↑g a' = b
h : (fun f => f.toFun) { toRelEmbedding := f, init' := hf } = (fun f => f.toFun) { toRelEmbedding := g, init' := hg }
⊢ { toRelEmbedding := f, init' := hf } = { toRelEmbedding := g, init' := hg }
[PROOFSTEP]
congr with x
[GOAL]
case mk.mk.e_toRelEmbedding.h
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ↪r s
hf : ∀ (a : α) (b : β), s b (↑f a) → ∃ a', ↑f a' = b
g : r ↪r s
hg : ∀ (a : α) (b : β), s b (↑g a) → ∃ a', ↑g a' = b
h : (fun f => f.toFun) { toRelEmbedding := f, init' := hf } = (fun f => f.toFun) { toRelEmbedding := g, init' := hg }
x : α
⊢ ↑f x = ↑g x
[PROOFSTEP]
exact congr_fun h x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
a : α
b : β
h : s b (↑f a)
⊢ ∃ a', ↑f a' = b ∧ r a' a
[PROOFSTEP]
rcases f.init h with ⟨a', rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
a a' : α
h : s (↑f a') (↑f a)
⊢ ∃ a'_1, ↑f a'_1 = ↑f a' ∧ r a'_1 a
[PROOFSTEP]
exact ⟨a', rfl, f.map_rel_iff.1 h⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
g : s ≼i t
a : α
c : γ
h : t c (↑(RelEmbedding.trans f.toRelEmbedding g.toRelEmbedding) a)
⊢ ∃ a', ↑(RelEmbedding.trans f.toRelEmbedding g.toRelEmbedding) a' = c
[PROOFSTEP]
simp at h ⊢
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
g : s ≼i t
a : α
c : γ
h : t c (↑g (↑f a))
⊢ ∃ a', ↑g (↑f a') = c
[PROOFSTEP]
rcases g.2 _ _ h with ⟨b, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
g : s ≼i t
a : α
b : β
h : t (↑g.toRelEmbedding b) (↑g (↑f a))
⊢ ∃ a', ↑g (↑f a') = ↑g.toRelEmbedding b
[PROOFSTEP]
have h := g.map_rel_iff.1 h
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
g : s ≼i t
a : α
b : β
h✝ : t (↑g.toRelEmbedding b) (↑g (↑f a))
h : s b (↑f a)
⊢ ∃ a', ↑g (↑f a') = ↑g.toRelEmbedding b
[PROOFSTEP]
rcases f.2 _ _ h with ⟨a', rfl⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
g : s ≼i t
a a' : α
h✝ : t (↑g.toRelEmbedding (↑f.toRelEmbedding a')) (↑g (↑f a))
h : s (↑f.toRelEmbedding a') (↑f a)
⊢ ∃ a'_1, ↑g (↑f a'_1) = ↑g.toRelEmbedding (↑f.toRelEmbedding a')
[PROOFSTEP]
exact ⟨a', rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝² : IsTrichotomous β s
inst✝¹ : IsIrrefl β s
inst✝ : IsWellFounded α r
f g : r ≼i s
⊢ f = g
[PROOFSTEP]
ext a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝² : IsTrichotomous β s
inst✝¹ : IsIrrefl β s
inst✝ : IsWellFounded α r
f g : r ≼i s
a : α
⊢ ↑f a = ↑g a
[PROOFSTEP]
refine' IsWellFounded.induction r a fun b IH => extensional_of_trichotomous_of_irrefl s fun x => _
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝² : IsTrichotomous β s
inst✝¹ : IsIrrefl β s
inst✝ : IsWellFounded α r
f g : r ≼i s
a b : α
IH : ∀ (y : α), r y b → ↑f y = ↑g y
x : β
⊢ s x (↑f b) ↔ s x (↑g b)
[PROOFSTEP]
rw [f.init_iff, g.init_iff]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝² : IsTrichotomous β s
inst✝¹ : IsIrrefl β s
inst✝ : IsWellFounded α r
f g : r ≼i s
a b : α
IH : ∀ (y : α), r y b → ↑f y = ↑g y
x : β
⊢ (∃ a', ↑f a' = x ∧ r a' b) ↔ ∃ a', ↑g a' = x ∧ r a' b
[PROOFSTEP]
exact exists_congr fun x => and_congr_left fun hx => IH _ hx ▸ Iff.rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
a : r ≼i s
⊢ ∀ (b : r ≼i s), a = b
[PROOFSTEP]
let _ := a.isWellFounded
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
a : r ≼i s
x✝ : IsWellFounded α r := RelEmbedding.isWellFounded a.toRelEmbedding
⊢ ∀ (b : r ≼i s), a = b
[PROOFSTEP]
exact Subsingleton.elim a
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≼i s
a : α
⊢ ↑f a = ↑g a
[PROOFSTEP]
rw [Subsingleton.elim f g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ≼i s
h : ¬∃ b, ∀ (x : β), s x b ↔ ∃ y, ↑f y = x
b x : β
x✝¹ : ∀ (y : β), s y x → Acc s y
IH : ∀ (y : β), s y x → ∃ a, ↑f a = y
hn : ∀ (x_1 : α), ¬↑f x_1 = x
y : β
x✝ : ∃ y_1, ↑f y_1 = y
a : α
e : ↑f a = y
⊢ s y x
[PROOFSTEP]
rw [← e]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ≼i s
h : ¬∃ b, ∀ (x : β), s x b ↔ ∃ y, ↑f y = x
b x : β
x✝¹ : ∀ (y : β), s y x → Acc s y
IH : ∀ (y : β), s y x → ∃ a, ↑f a = y
hn : ∀ (x_1 : α), ¬↑f x_1 = x
y : β
x✝ : ∃ y_1, ↑f y_1 = y
a : α
e : ↑f a = y
⊢ s (↑f a) x
[PROOFSTEP]
exact (trichotomous _ _).resolve_right (not_or_of_not (hn a) fun hl => not_exists.2 hn (f.init hl))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
p : Set β
f : r ≼i s
H : ∀ (a : α), ↑f a ∈ p
a : α
x✝ : ↑p
b : β
m : b ∈ p
h : Subrel s p { val := b, property := m } (↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a)
a' : α
e : ↑f a' = ↑{ val := b, property := m }
⊢ ↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a' = { val := b, property := m }
[PROOFSTEP]
subst e
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
p : Set β
f : r ≼i s
H : ∀ (a : α), ↑f a ∈ p
a : α
x✝ : ↑p
a' : α
m : ↑f a' ∈ p
h : Subrel s p { val := ↑f a', property := m } (↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a)
⊢ ↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a' = { val := ↑f a', property := m }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
a : α
b : α ⊕ β
⊢ Sum.Lex r s b
(↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a) →
∃ a',
↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a' =
b
[PROOFSTEP]
cases b <;> [exact fun _ => ⟨_, rfl⟩; exact False.elim ∘ Sum.lex_inr_inl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
a : α
b : α ⊕ β
⊢ Sum.Lex r s b
(↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a) →
∃ a',
↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a' =
b
[PROOFSTEP]
cases b
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
a val✝ : α
⊢ Sum.Lex r s (Sum.inl val✝)
(↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a) →
∃ a',
↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a' =
Sum.inl val✝
[PROOFSTEP]
exact fun _ => ⟨_, rfl⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
a : α
val✝ : β
⊢ Sum.Lex r s (Sum.inr val✝)
(↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a) →
∃ a',
↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) },
map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) }
a' =
Sum.inr val✝
[PROOFSTEP]
exact False.elim ∘ Sum.lex_inr_inl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
a : α
⊢ Acc r a → Acc s (↑f a)
[PROOFSTEP]
refine' fun h => Acc.recOn h fun a _ ha => Acc.intro _ fun b hb => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
a✝ : α
h : Acc r a✝
a : α
x✝ : ∀ (y : α), r y a → Acc r y
ha : ∀ (y : α), r y a → Acc s (↑f y)
b : β
hb : s b (↑f a)
⊢ Acc s b
[PROOFSTEP]
obtain ⟨a', rfl⟩ := f.init hb
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≼i s
a✝ : α
h : Acc r a✝
a : α
x✝ : ∀ (y : α), r y a → Acc r y
ha : ∀ (y : α), r y a → Acc s (↑f y)
a' : α
hb : s (↑f a') (↑f a)
⊢ Acc s (↑f a')
[PROOFSTEP]
exact ha _ (f.map_rel_iff.mp hb)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
inst✝ : IsWellOrder α r
f : r ≺i r
⊢ False
[PROOFSTEP]
have h := f.lt_top f.top
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
inst✝ : IsWellOrder α r
f : r ≺i r
h : r (↑f.toRelEmbedding f.top) f.top
⊢ False
[PROOFSTEP]
rw [show f f.top = f.top from InitialSeg.eq (↑f) (InitialSeg.refl r) f.top] at h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
inst✝ : IsWellOrder α r
f : r ≺i r
h : r f.top f.top
⊢ False
[PROOFSTEP]
exact _root_.irrefl _ h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≺i s
g : s ≼i t
a : γ
⊢ t a (↑g f.top) ↔ ∃ a_1, ↑(RelEmbedding.trans f.toRelEmbedding g.toRelEmbedding) a_1 = a
[PROOFSTEP]
simp only [g.init_iff, PrincipalSeg.down, exists_and_left.symm, exists_swap, RelEmbedding.trans_apply, exists_eq_right',
InitialSeg.coe_coe_fn]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≃r s
g : s ≺i t
c : γ
x✝ : ∃ a, ↑g.toRelEmbedding a = c
b : β
h : ↑g.toRelEmbedding b = c
⊢ ↑g.toRelEmbedding (↑f (↑(RelIso.symm f) b)) = c
[PROOFSTEP]
simp only [h, RelIso.apply_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≃r s
g : s ≺i t
c : γ
this : (∃ a, ↑g.toRelEmbedding a = c) ↔ ∃ a, ↑g.toRelEmbedding (↑f a) = c
⊢ t c g.top ↔ ∃ a, ↑(RelEmbedding.trans (RelIso.toRelEmbedding f) g.toRelEmbedding) a = c
[PROOFSTEP]
simpa [PrincipalSeg.down]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t✝ : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≺i s
g : s ≃r t
⊢ ∀ (b : γ), t b (↑g f.top) ↔ ∃ a, ↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) a = b
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t✝ : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≺i s
g : s ≃r t
x : γ
⊢ t x (↑g f.top) ↔ ∃ a, ↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) a = x
[PROOFSTEP]
rw [← g.apply_symm_apply x, g.map_rel_iff, f.down', exists_congr]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t✝ : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≺i s
g : s ≃r t
x : γ
⊢ ∀ (a : α),
↑f.toRelEmbedding a = ↑(RelIso.symm g) x ↔
↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) a = ↑g (↑(RelIso.symm g) x)
[PROOFSTEP]
intro y
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t✝ : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
f : r ≺i s
g : s ≃r t
x : γ
y : α
⊢ ↑f.toRelEmbedding y = ↑(RelIso.symm g) x ↔
↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) y = ↑g (↑(RelIso.symm g) x)
[PROOFSTEP]
exact ⟨congr_arg g, fun h => g.toEquiv.bijective.1 h⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
⊢ f = g
[PROOFSTEP]
have ef : (f : α → β) = g := by
show ((f : r ≼i s) : α → β) = (g : r ≼i s)
rw [@Subsingleton.elim _ _ (f : r ≼i s) g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
⊢ ↑f.toRelEmbedding = ↑g.toRelEmbedding
[PROOFSTEP]
show ((f : r ≼i s) : α → β) = (g : r ≼i s)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
⊢ ↑{ toRelEmbedding := f.toRelEmbedding,
init' := (_ : ∀ (x : α) (x_1 : β), s x_1 (↑f.toRelEmbedding x) → ∃ a', ↑f.toRelEmbedding a' = x_1) } =
↑{ toRelEmbedding := g.toRelEmbedding,
init' := (_ : ∀ (x : α) (x_1 : β), s x_1 (↑g.toRelEmbedding x) → ∃ a', ↑g.toRelEmbedding a' = x_1) }
[PROOFSTEP]
rw [@Subsingleton.elim _ _ (f : r ≼i s) g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding
⊢ f = g
[PROOFSTEP]
have et : f.top = g.top := by
refine' extensional_of_trichotomous_of_irrefl s fun x => _
simp only [PrincipalSeg.down, ef]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding
⊢ f.top = g.top
[PROOFSTEP]
refine' extensional_of_trichotomous_of_irrefl s fun x => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding
x : β
⊢ s x f.top ↔ s x g.top
[PROOFSTEP]
simp only [PrincipalSeg.down, ef]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f g : r ≺i s
ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding
et : f.top = g.top
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
g : r ≺i s
toRelEmbedding✝ : r ↪r s
top✝ : β
down'✝ : ∀ (b : β), s b top✝ ↔ ∃ a, ↑toRelEmbedding✝ a = b
ef : ↑{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding = ↑g.toRelEmbedding
et : { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.top = g.top
⊢ { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
toRelEmbedding✝¹ : r ↪r s
top✝¹ : β
down'✝¹ : ∀ (b : β), s b top✝¹ ↔ ∃ a, ↑toRelEmbedding✝¹ a = b
toRelEmbedding✝ : r ↪r s
top✝ : β
down'✝ : ∀ (b : β), s b top✝ ↔ ∃ a, ↑toRelEmbedding✝ a = b
ef :
↑{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.toRelEmbedding =
↑{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding
et :
{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.top =
{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.top
⊢ { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ } =
{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }
[PROOFSTEP]
have := RelEmbedding.coe_fn_injective ef
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
toRelEmbedding✝¹ : r ↪r s
top✝¹ : β
down'✝¹ : ∀ (b : β), s b top✝¹ ↔ ∃ a, ↑toRelEmbedding✝¹ a = b
toRelEmbedding✝ : r ↪r s
top✝ : β
down'✝ : ∀ (b : β), s b top✝ ↔ ∃ a, ↑toRelEmbedding✝ a = b
ef :
↑{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.toRelEmbedding =
↑{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding
et :
{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.top =
{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.top
this :
{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.toRelEmbedding =
{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding
⊢ { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ } =
{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder γ t
e : r ≃r s
f : r ≺i t
g : s ≺i t
⊢ f.top = g.top
[PROOFSTEP]
rw [Subsingleton.elim f (PrincipalSeg.equivLT e g)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder γ t
e : r ≃r s
f : r ≺i t
g : s ≺i t
⊢ (equivLT e g).top = g.top
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t✝ : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder γ t
f : r ≺i s
g : s ≺i t
h : r ≺i t
⊢ t h.top g.top
[PROOFSTEP]
rw [Subsingleton.elim h (f.trans g)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s✝ : β → β → Prop
t✝ : γ → γ → Prop
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder γ t
f : r ≺i s
g : s ≺i t
h : r ≺i t
⊢ t (PrincipalSeg.trans f g).top g.top
[PROOFSTEP]
apply PrincipalSeg.lt_top
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
r : α → α → Prop
inst✝ : IsEmpty α
b : β
H : ∀ (b' : β), ¬s b' b
src✝ : r ↪r s := RelEmbedding.ofIsEmpty r s
⊢ ∀ (b_1 : β),
s b_1 b ↔
∃ a,
↑{ toEmbedding := src✝.toEmbedding,
map_rel_iff' := (_ : ∀ {a b : α}, s (↑src✝.toEmbedding a) (↑src✝.toEmbedding b) ↔ r a b) }
a =
b_1
[PROOFSTEP]
simp [H]
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
r : α → α → Prop
s✝ : β✝ → β✝ → Prop
t : γ → γ → Prop
β : Type u_4
s : β → β → Prop
inst✝ : IsTrans β s
⊢ WellFounded s ↔ ∀ (b : β), WellFounded (Subrel s {b' | s b' b})
[PROOFSTEP]
refine'
⟨fun wf b => ⟨fun b' => ((PrincipalSeg.ofElement _ b).acc b').mpr (wf.apply b')⟩, fun wf =>
⟨fun b => Acc.intro _ fun b' hb' => _⟩⟩
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
r : α → α → Prop
s✝ : β✝ → β✝ → Prop
t : γ → γ → Prop
β : Type u_4
s : β → β → Prop
inst✝ : IsTrans β s
wf : ∀ (b : β), WellFounded (Subrel s {b' | s b' b})
b b' : β
hb' : s b' b
⊢ Acc s b'
[PROOFSTEP]
let f := PrincipalSeg.ofElement s b
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
r : α → α → Prop
s✝ : β✝ → β✝ → Prop
t : γ → γ → Prop
β : Type u_4
s : β → β → Prop
inst✝ : IsTrans β s
wf : ∀ (b : β), WellFounded (Subrel s {b' | s b' b})
b b' : β
hb' : s b' b
f : Subrel s {b_1 | s b_1 b} ≺i s := PrincipalSeg.ofElement s b
⊢ Acc s b'
[PROOFSTEP]
obtain ⟨b', rfl⟩ := f.down.mp ((PrincipalSeg.ofElement_top s b).symm ▸ hb' : s b' f.top)
[GOAL]
case intro
α : Type u_1
β✝ : Type u_2
γ : Type u_3
r : α → α → Prop
s✝ : β✝ → β✝ → Prop
t : γ → γ → Prop
β : Type u_4
s : β → β → Prop
inst✝ : IsTrans β s
wf : ∀ (b : β), WellFounded (Subrel s {b' | s b' b})
b : β
f : Subrel s {b_1 | s b_1 b} ≺i s := PrincipalSeg.ofElement s b
b' : ↑{b_1 | s b_1 b}
hb' : s (↑f.toRelEmbedding b') b
⊢ Acc s (↑f.toRelEmbedding b')
[PROOFSTEP]
exact (f.acc b').mp ((wf b).apply b')
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ≼i s
⊢ (r ≺i s) ⊕ (r ≃r s)
[PROOFSTEP]
by_cases h : Surjective f
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ≼i s
h : Surjective ↑f
⊢ (r ≺i s) ⊕ (r ≃r s)
[PROOFSTEP]
exact Sum.inr (RelIso.ofSurjective f h)
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ≼i s
h : ¬Surjective ↑f
⊢ (r ≺i s) ⊕ (r ≃r s)
[PROOFSTEP]
have h' : _ := (InitialSeg.eq_or_principal f).resolve_left h
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ≼i s
h : ¬Surjective ↑f
h' : ∃ b, ∀ (x : β), s x b ↔ ∃ y, ↑f y = x
⊢ (r ≺i s) ⊕ (r ≃r s)
[PROOFSTEP]
exact Sum.inl ⟨f, Classical.choose h', Classical.choose_spec h'⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝¹ : IsWellOrder β s
inst✝ : IsTrans γ t
f : r ≼i s
g : s ≺i t
a : α
⊢ ↑(leLT f g).toRelEmbedding a = ↑g.toRelEmbedding (↑f a)
[PROOFSTEP]
delta InitialSeg.leLT
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝¹ : IsWellOrder β s
inst✝ : IsTrans γ t
f : r ≼i s
g : s ≺i t
a : α
⊢ ↑(match ltOrEq f with
| Sum.inl f' => PrincipalSeg.trans f' g
| Sum.inr f' => PrincipalSeg.equivLT f' g).toRelEmbedding
a =
↑g.toRelEmbedding (↑f a)
[PROOFSTEP]
cases' h : f.ltOrEq with f' f'
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝¹ : IsWellOrder β s
inst✝ : IsTrans γ t
f : r ≼i s
g : s ≺i t
a : α
f' : r ≺i s
h : ltOrEq f = Sum.inl f'
⊢ ↑(match Sum.inl f' with
| Sum.inl f' => PrincipalSeg.trans f' g
| Sum.inr f' => PrincipalSeg.equivLT f' g).toRelEmbedding
a =
↑g.toRelEmbedding (↑f a)
[PROOFSTEP]
simp only [PrincipalSeg.trans_apply, f.ltOrEq_apply_left]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝¹ : IsWellOrder β s
inst✝ : IsTrans γ t
f : r ≼i s
g : s ≺i t
a : α
f' : r ≃r s
h : ltOrEq f = Sum.inr f'
⊢ ↑(match Sum.inr f' with
| Sum.inl f' => PrincipalSeg.trans f' g
| Sum.inr f' => PrincipalSeg.equivLT f' g).toRelEmbedding
a =
↑g.toRelEmbedding (↑f a)
[PROOFSTEP]
simp only [PrincipalSeg.equivLT_apply, f.ltOrEq_apply_right]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
IH : (y : α) → r y a → { b // ¬s (↑f y) b }
⊢ { b // ¬s (↑f a) b }
[PROOFSTEP]
let S := {b | ∀ a h, s (IH a h).1 b}
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
IH : (y : α) → r y a → { b // ¬s (↑f y) b }
S : Set β := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}
⊢ { b // ¬s (↑f a) b }
[PROOFSTEP]
have : f a ∈ S := fun a' h =>
((trichotomous _ _).resolve_left fun h' => (IH a' h).2 <| _root_.trans (f.map_rel_iff.2 h) h').resolve_left fun h' =>
(IH a' h).2 <| h' ▸ f.map_rel_iff.2 h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
IH : (y : α) → r y a → { b // ¬s (↑f y) b }
S : Set β := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}
this : ↑f a ∈ S
⊢ { b // ¬s (↑f a) b }
[PROOFSTEP]
exact ⟨_, IsWellFounded.wf.not_lt_min _ ⟨_, this⟩ this⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a✝ a : α
⊢ r a a✝ → s ↑(collapseF f a) ↑(collapseF f a✝)
[PROOFSTEP]
revert a
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
⊢ ∀ (a_1 : α), r a_1 a → s ↑(collapseF f a_1) ↑(collapseF f a)
[PROOFSTEP]
show (collapseF f a).1 ∈ {b | ∀ (a') (_ : r a' a), s (collapseF f a').1 b}
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
⊢ ↑(collapseF f a) ∈ {b | ∀ (a' : α), r a' a → s (↑(collapseF f a')) b}
[PROOFSTEP]
unfold collapseF
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
⊢ ↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
a) ∈
{b |
∀ (a' : α),
r a' a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
a'))
b}
[PROOFSTEP]
rw [WellFounded.fix_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
⊢ ↑(let S :=
{b |
∀ (a_1 : α) (h : r a_1 a),
s
(↑((fun y x =>
WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
y)
a_1 h))
b};
let_fun this :=
(_ :
∀ (a' : α),
r a' a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
a'))
(↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) ∈
{b |
∀ (a' : α),
r a' a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
a'))
b}
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
⊢ WellFounded.min (_ : WellFounded s)
{b |
∀ (a_1 : α),
r a_1 a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
{
val :=
WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}),
property :=
(_ :
¬s (↑f a)
(WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) })
a_1))
b}
(_ :
∃ x,
x ∈
{b |
∀ (a_1 : α),
r a_1 a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
{
val :=
WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}),
property :=
(_ :
¬s (↑f a)
(WellFounded.min (_ : WellFounded s)
{b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) })
a_1))
b}) ∈
{b |
∀ (a' : α),
r a' a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
{
val :=
WellFounded.min (_ : WellFounded s) {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}),
property :=
(_ :
¬s (↑f a)
(WellFounded.min (_ : WellFounded s) {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}))) })
a'))
b}
[PROOFSTEP]
apply WellFounded.min_mem _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
b : β
h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b
⊢ ¬s b ↑(collapseF f a)
[PROOFSTEP]
unfold collapseF
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
b : β
h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b
⊢ ¬s b
↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
a)
[PROOFSTEP]
rw [WellFounded.fix_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
b : β
h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b
⊢ ¬s b
↑(let S :=
{b |
∀ (a_1 : α) (h : r a_1 a),
s
(↑((fun y x =>
WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
y)
a_1 h))
b};
let_fun this :=
(_ :
∀ (a' : α),
r a' a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b};
let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
a'))
(↑f a));
{ val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S),
property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) })
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
a : α
b : β
h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b
⊢ ¬s b
(WellFounded.min (_ : WellFounded s)
{b |
∀ (a_1 : α),
r a_1 a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
{
val :=
WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}),
property :=
(_ :
¬s (↑f a)
(WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) })
a_1))
b}
(_ :
∃ x,
x ∈
{b |
∀ (a_1 : α),
r a_1 a →
s
(↑(WellFounded.fix (_ : WellFounded r)
(fun a IH =>
{
val :=
WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}),
property :=
(_ :
¬s (↑f a)
(WellFounded.min (_ : WellFounded s)
{b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}
(_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) })
a_1))
b}))
[PROOFSTEP]
exact WellFounded.not_lt_min _ _ _ h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
this : IsWellOrder α r
a✝ : α
b✝ b : β
x✝¹ : ∀ (y : β), s y b → Acc s y
x✝ :
∀ (y : β),
s y b →
∀ (x : α),
s y
(↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
x) →
∃ a',
↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
a' =
y
a : α
h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a)
⊢ ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = b
[PROOFSTEP]
rcases(@IsWellFounded.wf _ r).has_min {a | ¬s (collapseF f a).1 b} ⟨_, asymm h⟩ with ⟨m, hm, hm'⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
this : IsWellOrder α r
a✝ : α
b✝ b : β
x✝¹ : ∀ (y : β), s y b → Acc s y
x✝ :
∀ (y : β),
s y b →
∀ (x : α),
s y
(↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
x) →
∃ a',
↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
a' =
y
a : α
h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a)
m : α
hm : m ∈ {a | ¬s (↑(collapseF f a)) b}
hm' : ∀ (x : α), x ∈ {a | ¬s (↑(collapseF f a)) b} → ¬r x m
⊢ ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = b
[PROOFSTEP]
refine' ⟨m, ((@trichotomous _ s _ _ _).resolve_left hm).resolve_right (collapseF.not_lt f _ fun a' h' => _)⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
this : IsWellOrder α r
a✝ : α
b✝ b : β
x✝¹ : ∀ (y : β), s y b → Acc s y
x✝ :
∀ (y : β),
s y b →
∀ (x : α),
s y
(↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
x) →
∃ a',
↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
a' =
y
a : α
h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a)
m : α
hm : m ∈ {a | ¬s (↑(collapseF f a)) b}
hm' : ∀ (x : α), x ∈ {a | ¬s (↑(collapseF f a)) b} → ¬r x m
a' : α
h' : r a' m
⊢ s (↑(collapseF f a')) b
[PROOFSTEP]
by_contra hn
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
inst✝ : IsWellOrder β s
f : r ↪r s
this : IsWellOrder α r
a✝ : α
b✝ b : β
x✝¹ : ∀ (y : β), s y b → Acc s y
x✝ :
∀ (y : β),
s y b →
∀ (x : α),
s y
(↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
x) →
∃ a',
↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b)))
a' =
y
a : α
h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a)
m : α
hm : m ∈ {a | ¬s (↑(collapseF f a)) b}
hm' : ∀ (x : α), x ∈ {a | ¬s (↑(collapseF f a)) b} → ¬r x m
a' : α
h' : r a' m
hn : ¬s (↑(collapseF f a')) b
⊢ False
[PROOFSTEP]
exact hm' _ hn h'
| {"mathlib_filename": "Mathlib.Order.InitialSeg", "llama_tokens": 19777} |
{"mathlib_filename": "Mathlib.Order.ULift", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : SupSet α
inst✝ : Inhabited ↑s
t : Set ↑s
h : sSup (Subtype.val '' t) ∈ s
⊢ sSup (Subtype.val '' t) = ↑(sSup t)
[PROOFSTEP]
simp [dif_pos h]
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : InfSet α
inst✝ : Inhabited ↑s
t : Set ↑s
h : sInf (Subtype.val '' t) ∈ s
⊢ sInf (Subtype.val '' t) = ↑(sInf t)
[PROOFSTEP]
simp [dif_pos h]
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
⊢ sSup t = sSup univ
[PROOFSTEP]
have A : ∀ (u : Set s), ¬BddAbove u → BddAbove (Subtype.val '' u) → sSup ((↑) '' u : Set α) ∉ s :=
by
intro u hu Hu
contrapose! hu
refine ⟨⟨_, hu⟩, ?_⟩
rintro ⟨x, xs⟩ hx
simp only [Subtype.mk_le_mk]
apply le_csSup Hu
exact ⟨⟨x, xs⟩, hx, rfl⟩
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
⊢ ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
[PROOFSTEP]
intro u hu Hu
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
u : Set ↑s
hu : ¬BddAbove u
Hu : BddAbove (Subtype.val '' u)
⊢ ¬sSup (Subtype.val '' u) ∈ s
[PROOFSTEP]
contrapose! hu
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
u : Set ↑s
Hu : BddAbove (Subtype.val '' u)
hu : sSup (Subtype.val '' u) ∈ s
⊢ BddAbove u
[PROOFSTEP]
refine ⟨⟨_, hu⟩, ?_⟩
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
u : Set ↑s
Hu : BddAbove (Subtype.val '' u)
hu : sSup (Subtype.val '' u) ∈ s
⊢ { val := sSup (Subtype.val '' u), property := hu } ∈ upperBounds u
[PROOFSTEP]
rintro ⟨x, xs⟩ hx
[GOAL]
case mk
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
u : Set ↑s
Hu : BddAbove (Subtype.val '' u)
hu : sSup (Subtype.val '' u) ∈ s
x : α
xs : x ∈ s
hx : { val := x, property := xs } ∈ u
⊢ { val := x, property := xs } ≤ { val := sSup (Subtype.val '' u), property := hu }
[PROOFSTEP]
simp only [Subtype.mk_le_mk]
[GOAL]
case mk
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
u : Set ↑s
Hu : BddAbove (Subtype.val '' u)
hu : sSup (Subtype.val '' u) ∈ s
x : α
xs : x ∈ s
hx : { val := x, property := xs } ∈ u
⊢ x ≤ sSup (Subtype.val '' u)
[PROOFSTEP]
apply le_csSup Hu
[GOAL]
case mk
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
u : Set ↑s
Hu : BddAbove (Subtype.val '' u)
hu : sSup (Subtype.val '' u) ∈ s
x : α
xs : x ∈ s
hx : { val := x, property := xs } ∈ u
⊢ x ∈ Subtype.val '' u
[PROOFSTEP]
exact ⟨⟨x, xs⟩, hx, rfl⟩
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
⊢ sSup t = sSup univ
[PROOFSTEP]
by_cases Ht : BddAbove ((↑) '' t : Set α)
[GOAL]
case pos
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
⊢ sSup t = sSup univ
[PROOFSTEP]
have I1 : sSup ((↑) '' t : Set α) ∉ s := A t ht Ht
[GOAL]
case pos
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
⊢ sSup t = sSup univ
[PROOFSTEP]
have I2 : sSup ((↑) '' (univ : Set s) : Set α) ∉ s := by
apply A
· contrapose! ht; exact ht.mono (subset_univ _)
· refine ⟨sSup ((↑) '' t : Set α), ?_⟩
rintro - ⟨⟨x, hx⟩, -, rfl⟩
simp [BddAbove, not_nonempty_iff_eq_empty] at ht
have : ⟨x, hx⟩ ∉ upperBounds t := by simp [ht]
obtain ⟨⟨y, ys⟩, yt, hy⟩ : ∃ y, y ∈ t ∧ { val := x, property := hx } < y := by
simpa only [Subtype.mk_le_mk, not_forall, not_le, exists_prop, exists_and_right, mem_upperBounds]
refine le_trans (le_of_lt hy) ?_
exact le_csSup Ht ⟨⟨y, ys⟩, yt, rfl⟩
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
⊢ ¬sSup (Subtype.val '' univ) ∈ s
[PROOFSTEP]
apply A
[GOAL]
case a
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
⊢ ¬BddAbove univ
[PROOFSTEP]
contrapose! ht
[GOAL]
case a
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
ht : BddAbove univ
⊢ BddAbove t
[PROOFSTEP]
exact ht.mono (subset_univ _)
[GOAL]
case a
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
⊢ BddAbove (Subtype.val '' univ)
[PROOFSTEP]
refine ⟨sSup ((↑) '' t : Set α), ?_⟩
[GOAL]
case a
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
⊢ sSup (Subtype.val '' t) ∈ upperBounds (Subtype.val '' univ)
[PROOFSTEP]
rintro - ⟨⟨x, hx⟩, -, rfl⟩
[GOAL]
case a.intro.mk.intro
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
simp [BddAbove, not_nonempty_iff_eq_empty] at ht
[GOAL]
case a.intro.mk.intro
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
ht : upperBounds t = ∅
⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
have : ⟨x, hx⟩ ∉ upperBounds t := by simp [ht]
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
ht : upperBounds t = ∅
⊢ ¬{ val := x, property := hx } ∈ upperBounds t
[PROOFSTEP]
simp [ht]
[GOAL]
case a.intro.mk.intro
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
ht : upperBounds t = ∅
this : ¬{ val := x, property := hx } ∈ upperBounds t
⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
obtain ⟨⟨y, ys⟩, yt, hy⟩ : ∃ y, y ∈ t ∧ { val := x, property := hx } < y := by
simpa only [Subtype.mk_le_mk, not_forall, not_le, exists_prop, exists_and_right, mem_upperBounds]
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
ht : upperBounds t = ∅
this : ¬{ val := x, property := hx } ∈ upperBounds t
⊢ ∃ y, y ∈ t ∧ { val := x, property := hx } < y
[PROOFSTEP]
simpa only [Subtype.mk_le_mk, not_forall, not_le, exists_prop, exists_and_right, mem_upperBounds]
[GOAL]
case a.intro.mk.intro.intro.mk.intro
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
ht : upperBounds t = ∅
this : ¬{ val := x, property := hx } ∈ upperBounds t
y : α
ys : y ∈ s
yt : { val := y, property := ys } ∈ t
hy : { val := x, property := hx } < { val := y, property := ys }
⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
refine le_trans (le_of_lt hy) ?_
[GOAL]
case a.intro.mk.intro.intro.mk.intro
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
x : α
hx : x ∈ s
ht : upperBounds t = ∅
this : ¬{ val := x, property := hx } ∈ upperBounds t
y : α
ys : y ∈ s
yt : { val := y, property := ys } ∈ t
hy : { val := x, property := hx } < { val := y, property := ys }
⊢ ↑{ val := y, property := ys } ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
exact le_csSup Ht ⟨⟨y, ys⟩, yt, rfl⟩
[GOAL]
case pos
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' t)
I1 : ¬sSup (Subtype.val '' t) ∈ s
I2 : ¬sSup (Subtype.val '' univ) ∈ s
⊢ sSup t = sSup univ
[PROOFSTEP]
simp only [sSup, I1, I2, dite_false]
[GOAL]
case neg
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : ¬BddAbove (Subtype.val '' t)
⊢ sSup t = sSup univ
[PROOFSTEP]
have I : ¬BddAbove ((↑) '' (univ : Set s) : Set α) := by contrapose! Ht;
exact Ht.mono (image_subset Subtype.val (subset_univ _))
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : ¬BddAbove (Subtype.val '' t)
⊢ ¬BddAbove (Subtype.val '' univ)
[PROOFSTEP]
contrapose! Ht
[GOAL]
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : BddAbove (Subtype.val '' univ)
⊢ BddAbove (Subtype.val '' t)
[PROOFSTEP]
exact Ht.mono (image_subset Subtype.val (subset_univ _))
[GOAL]
case neg
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : ¬BddAbove (Subtype.val '' t)
I : ¬BddAbove (Subtype.val '' univ)
⊢ sSup t = sSup univ
[PROOFSTEP]
have X : sSup ((↑) '' t : Set α) = sSup (univ : Set α) := ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove _ Ht
[GOAL]
case neg
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : ¬BddAbove (Subtype.val '' t)
I : ¬BddAbove (Subtype.val '' univ)
X : sSup (Subtype.val '' t) = sSup univ
⊢ sSup t = sSup univ
[PROOFSTEP]
have Y : sSup ((↑) '' (univ : Set s) : Set α) = sSup (univ : Set α) :=
ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove _ I
[GOAL]
case neg
α : Type u_1
s✝ : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
s : Set α
inst✝ : Inhabited ↑s
t : Set ↑s
ht : ¬BddAbove t
A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s
Ht : ¬BddAbove (Subtype.val '' t)
I : ¬BddAbove (Subtype.val '' univ)
X : sSup (Subtype.val '' t) = sSup univ
Y : sSup (Subtype.val '' univ) = sSup univ
⊢ sSup t = sSup univ
[PROOFSTEP]
simp only [sSup, X, Y]
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
⊢ ∀ (s_1 : Set ↑s) (a : ↑s), BddAbove s_1 → a ∈ s_1 → a ≤ sSup s_1
[PROOFSTEP]
rintro t c h_bdd hct
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
c : ↑s
h_bdd : BddAbove t
hct : c ∈ t
⊢ c ≤ sSup t
[PROOFSTEP]
rw [← Subtype.coe_le_coe, ← subset_sSup_of_within s (h_Sup ⟨c, hct⟩ h_bdd)]
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
c : ↑s
h_bdd : BddAbove t
hct : c ∈ t
⊢ ↑c ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
exact (Subtype.mono_coe _).le_csSup_image hct h_bdd
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
⊢ ∀ (s_1 : Set ↑s) (a : ↑s), Set.Nonempty s_1 → a ∈ upperBounds s_1 → sSup s_1 ≤ a
[PROOFSTEP]
rintro t B ht hB
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
B : ↑s
ht : Set.Nonempty t
hB : B ∈ upperBounds t
⊢ sSup t ≤ B
[PROOFSTEP]
rw [← Subtype.coe_le_coe, ← subset_sSup_of_within s (h_Sup ht ⟨B, hB⟩)]
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
B : ↑s
ht : Set.Nonempty t
hB : B ∈ upperBounds t
⊢ sSup (Subtype.val '' t) ≤ ↑B
[PROOFSTEP]
exact (Subtype.mono_coe s).csSup_image_le ht hB
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
⊢ ∀ (s_1 : Set ↑s) (a : ↑s), BddBelow s_1 → a ∈ s_1 → sInf s_1 ≤ a
[PROOFSTEP]
rintro t c h_bdd hct
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
c : ↑s
h_bdd : BddBelow t
hct : c ∈ t
⊢ sInf t ≤ c
[PROOFSTEP]
rw [← Subtype.coe_le_coe, ← subset_sInf_of_within s (h_Inf ⟨c, hct⟩ h_bdd)]
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
c : ↑s
h_bdd : BddBelow t
hct : c ∈ t
⊢ sInf (Subtype.val '' t) ≤ ↑c
[PROOFSTEP]
exact (Subtype.mono_coe s).csInf_image_le hct h_bdd
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
⊢ ∀ (s_1 : Set ↑s) (a : ↑s), Set.Nonempty s_1 → a ∈ lowerBounds s_1 → a ≤ sInf s_1
[PROOFSTEP]
intro t B ht hB
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
B : ↑s
ht : Set.Nonempty t
hB : B ∈ lowerBounds t
⊢ B ≤ sInf t
[PROOFSTEP]
rw [← Subtype.coe_le_coe, ← subset_sInf_of_within s (h_Inf ht ⟨B, hB⟩)]
[GOAL]
α : Type u_1
s : Set α
inst✝¹ : ConditionallyCompleteLinearOrder α
inst✝ : Inhabited ↑s
h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s
h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s
src✝³ : SupSet ↑s := subsetSupSet s
src✝² : InfSet ↑s := subsetInfSet s
src✝¹ : Lattice ↑s := DistribLattice.toLattice
src✝ : LinearOrder ↑s := inferInstance
t : Set ↑s
B : ↑s
ht : Set.Nonempty t
hB : B ∈ lowerBounds t
⊢ ↑B ≤ sInf (Subtype.val '' t)
[PROOFSTEP]
exact (Subtype.mono_coe s).le_csInf_image ht hB
[GOAL]
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
ht : Set.Nonempty t
h_bdd : BddAbove t
⊢ sSup (Subtype.val '' t) ∈ s
[PROOFSTEP]
obtain ⟨c, hct⟩ : ∃ c, c ∈ t := ht
[GOAL]
case intro
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
h_bdd : BddAbove t
c : ↑s
hct : c ∈ t
⊢ sSup (Subtype.val '' t) ∈ s
[PROOFSTEP]
obtain ⟨B, hB⟩ : ∃ B, B ∈ upperBounds t := h_bdd
[GOAL]
case intro.intro
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
c : ↑s
hct : c ∈ t
B : ↑s
hB : B ∈ upperBounds t
⊢ sSup (Subtype.val '' t) ∈ s
[PROOFSTEP]
refine' hs.out c.2 B.2 ⟨_, _⟩
[GOAL]
case intro.intro.refine'_1
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
c : ↑s
hct : c ∈ t
B : ↑s
hB : B ∈ upperBounds t
⊢ ↑c ≤ sSup (Subtype.val '' t)
[PROOFSTEP]
exact (Subtype.mono_coe s).le_csSup_image hct ⟨B, hB⟩
[GOAL]
case intro.intro.refine'_2
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
c : ↑s
hct : c ∈ t
B : ↑s
hB : B ∈ upperBounds t
⊢ sSup (Subtype.val '' t) ≤ ↑B
[PROOFSTEP]
exact (Subtype.mono_coe s).csSup_image_le ⟨c, hct⟩ hB
[GOAL]
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
ht : Set.Nonempty t
h_bdd : BddBelow t
⊢ sInf (Subtype.val '' t) ∈ s
[PROOFSTEP]
obtain ⟨c, hct⟩ : ∃ c, c ∈ t := ht
[GOAL]
case intro
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
h_bdd : BddBelow t
c : ↑s
hct : c ∈ t
⊢ sInf (Subtype.val '' t) ∈ s
[PROOFSTEP]
obtain ⟨B, hB⟩ : ∃ B, B ∈ lowerBounds t := h_bdd
[GOAL]
case intro.intro
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
c : ↑s
hct : c ∈ t
B : ↑s
hB : B ∈ lowerBounds t
⊢ sInf (Subtype.val '' t) ∈ s
[PROOFSTEP]
refine' hs.out B.2 c.2 ⟨_, _⟩
[GOAL]
case intro.intro.refine'_1
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
c : ↑s
hct : c ∈ t
B : ↑s
hB : B ∈ lowerBounds t
⊢ ↑B ≤ sInf (Subtype.val '' t)
[PROOFSTEP]
exact (Subtype.mono_coe s).le_csInf_image ⟨c, hct⟩ hB
[GOAL]
case intro.intro.refine'_2
α : Type u_1
s✝ : Set α
inst✝ : ConditionallyCompleteLinearOrder α
s : Set α
hs : OrdConnected s
t : Set ↑s
c : ↑s
hct : c ∈ t
B : ↑s
hB : B ∈ lowerBounds t
⊢ sInf (Subtype.val '' t) ≤ ↑c
[PROOFSTEP]
exact (Subtype.mono_coe s).csInf_image_le hct ⟨B, hB⟩
| {"mathlib_filename": "Mathlib.Order.CompleteLatticeIntervals", "llama_tokens": 11093} |
[GOAL]
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j : J
U : Opens ↑↑(F.obj j)
⊢ 𝟙 ↑(F.obj j) = (F.map (𝟙 j)).base
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j : J
U : Opens ↑↑(F.obj j)
⊢ NatTrans.app (F.map (𝟙 j)).c (op U) =
NatTrans.app (Pushforward.id (F.obj j).presheaf).inv (op U) ≫
NatTrans.app (pushforwardEq (_ : 𝟙 ↑(F.obj j) = (F.map (𝟙 j)).base) (F.obj j).presheaf).hom (op U)
[PROOFSTEP]
cases U
[GOAL]
case mk
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j : J
carrier✝ : Set ↑↑(F.obj j)
is_open'✝ : IsOpen carrier✝
⊢ NatTrans.app (F.map (𝟙 j)).c (op { carrier := carrier✝, is_open' := is_open'✝ }) =
NatTrans.app (Pushforward.id (F.obj j).presheaf).inv (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫
NatTrans.app (pushforwardEq (_ : 𝟙 ↑(F.obj j) = (F.map (𝟙 j)).base) (F.obj j).presheaf).hom
(op { carrier := carrier✝, is_open' := is_open'✝ })
[PROOFSTEP]
simp [PresheafedSpace.congr_app (F.map_id j)]
[GOAL]
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : Opens ↑↑(F.obj j₃)
⊢ (F.map f).base ≫ (F.map g).base = (F.map (f ≫ g)).base
[PROOFSTEP]
rw [F.map_comp]
[GOAL]
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : Opens ↑↑(F.obj j₃)
⊢ (F.map f).base ≫ (F.map g).base = (F.map f ≫ F.map g).base
[PROOFSTEP]
rfl
[GOAL]
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : Opens ↑↑(F.obj j₃)
⊢ NatTrans.app (F.map (f ≫ g)).c (op U) =
NatTrans.app (F.map g).c (op U) ≫
NatTrans.app (pushforwardMap (F.map g).base (F.map f).c) (op U) ≫
NatTrans.app (Pushforward.comp (F.obj j₁).presheaf (F.map f).base (F.map g).base).inv (op U) ≫
NatTrans.app
(pushforwardEq (_ : (F.map f).base ≫ (F.map g).base = (F.map (f ≫ g)).base) (F.obj j₁).presheaf).hom (op U)
[PROOFSTEP]
cases U
[GOAL]
case mk
J : Type u'
inst✝¹ : Category.{v', u'} J
C : Type u
inst✝ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
carrier✝ : Set ↑↑(F.obj j₃)
is_open'✝ : IsOpen carrier✝
⊢ NatTrans.app (F.map (f ≫ g)).c (op { carrier := carrier✝, is_open' := is_open'✝ }) =
NatTrans.app (F.map g).c (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫
NatTrans.app (pushforwardMap (F.map g).base (F.map f).c) (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫
NatTrans.app (Pushforward.comp (F.obj j₁).presheaf (F.map f).base (F.map g).base).inv
(op { carrier := carrier✝, is_open' := is_open'✝ }) ≫
NatTrans.app
(pushforwardEq (_ : (F.map f).base ≫ (F.map g).base = (F.map (f ≫ g)).base) (F.obj j₁).presheaf).hom
(op { carrier := carrier✝, is_open' := is_open'✝ })
[PROOFSTEP]
simp [PresheafedSpace.congr_app (F.map_comp f g)]
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
j k : Jᵒᵖ
f : j ⟶ k
⊢ (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)
[PROOFSTEP]
rw [← colimit.w F f.unop, comp_base]
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
j k : Jᵒᵖ
f : j ⟶ k
⊢ (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map ((F.map f.unop).base ≫ (colimit.ι F j.unop).base)).obj U)
[PROOFSTEP]
rfl
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
x : Jᵒᵖ
⊢ { obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)),
map := fun {j k} f =>
NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map
(𝟙 x) =
𝟙
({ obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)),
map := fun {j k} f =>
NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.obj
x)
[PROOFSTEP]
dsimp
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
x : Jᵒᵖ
⊢ NatTrans.app (F.map (𝟙 x.unop)).c (op ((Opens.map (colimit.ι F x.unop).base).obj U)) ≫
(F.obj x.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (𝟙 x.unop)).base).obj ((Opens.map (colimit.ι F x.unop).base).obj U)) =
op ((Opens.map (colimit.ι F x.unop).base).obj U))) =
𝟙 ((F.obj x.unop).presheaf.obj (op ((Opens.map (colimit.ι F x.unop).base).obj U)))
[PROOFSTEP]
simp [map_id_c_app, pushforwardObj_obj, op_obj, unop_op, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, assoc,
eqToHom_trans, eqToHom_refl, comp_id, TopCat.Presheaf.Pushforward.id_inv_app']
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
x : Jᵒᵖ
⊢ NatTrans.app (Pushforward.id (F.obj x.unop).presheaf).inv (op ((Opens.map (colimit.ι F x.unop).base).obj U)) =
𝟙 ((F.obj x.unop).presheaf.obj (op ((Opens.map (colimit.ι F x.unop).base).obj U)))
[PROOFSTEP]
rw [TopCat.Presheaf.Pushforward.id_inv_app']
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
x : Jᵒᵖ
⊢ (F.obj x.unop).presheaf.map
(𝟙
(op
{ carrier := ((Opens.map (colimit.ι F x.unop).base).toPrefunctor.1 U).carrier,
is_open' := (_ : IsOpen ((Opens.map (colimit.ι F x.unop).base).toPrefunctor.1 U).carrier) })) =
𝟙 ((F.obj x.unop).presheaf.obj (op ((Opens.map (colimit.ι F x.unop).base).obj U)))
[PROOFSTEP]
simp only [Opens.carrier_eq_coe, Opens.mk_coe, map_id]
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ { obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)),
map := fun {j k} f =>
NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map
(f ≫ g) =
{ obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)),
map := fun {j k} f =>
NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map
f ≫
{ obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)),
map := fun {j k} f =>
NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map
g
[PROOFSTEP]
dsimp
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ NatTrans.app (F.map (g.unop ≫ f.unop)).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) =
(NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F j.unop).base).obj U)))) ≫
NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)))
[PROOFSTEP]
simp_rw [map_comp_c_app]
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ (NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app (pushforwardMap (F.map f.unop).base (F.map g.unop).c)
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app (Pushforward.comp (F.obj k.unop).presheaf (F.map g.unop).base (F.map f.unop).base).inv
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app
(pushforwardEq (_ : (F.map g.unop).base ≫ (F.map f.unop).base = (F.map (g.unop ≫ f.unop)).base)
(F.obj k.unop).presheaf).hom
(op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) =
(NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F j.unop).base).obj U)))) ≫
NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)))
[PROOFSTEP]
simp only [op_obj, unop_op, eqToHom_op, id_eq, id_comp, assoc, eqToHom_trans]
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app (pushforwardMap (F.map f.unop).base (F.map g.unop).c)
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app (Pushforward.comp (F.obj k.unop).presheaf (F.map g.unop).base (F.map f.unop).base).inv
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app
(pushforwardEq (_ : (F.map g.unop).base ≫ (F.map f.unop).base = (F.map (g.unop ≫ f.unop)).base)
(F.obj k.unop).presheaf).hom
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) =
NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫
NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ NatTrans.app (pushforwardMap (F.map f.unop).base (F.map g.unop).c)
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app (Pushforward.comp (F.obj k.unop).presheaf (F.map g.unop).base (F.map f.unop).base).inv
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
NatTrans.app
(pushforwardEq (_ : (F.map g.unop).base ≫ (F.map f.unop).base = (F.map (g.unop ≫ f.unop)).base)
(F.obj k.unop).presheaf).hom
(op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) =
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫
NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)))
[PROOFSTEP]
rw [TopCat.Presheaf.Pushforward.comp_inv_app, TopCat.Presheaf.pushforwardEq_hom_app,
CategoryTheory.NatTrans.naturality_assoc, TopCat.Presheaf.pushforwardMap_app]
[GOAL]
case e_a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ NatTrans.app (F.map g.unop).c
((Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫
𝟙
(((F.map f.unop).base _* ((F.map g.unop).base _* (F.obj k.unop).presheaf)).obj
(op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫
(F.obj k.unop).presheaf.map
(_root_.id
(eqToHom
(_ :
(Opens.map (F.map (g.unop ≫ f.unop)).base).obj
(op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop =
(Opens.map ((F.map g.unop).base ≫ (F.map f.unop).base)).obj
(op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop)).op) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) =
NatTrans.app (F.map g.unop).c
(op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫
((F.map g.unop).base _* (F.obj k.unop).presheaf).map
(eqToHom
(_ :
op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)))
[PROOFSTEP]
congr 1
[GOAL]
case e_a.e_a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(colimit F)
i j k : Jᵒᵖ
f : i ⟶ j
g : j ⟶ k
⊢ 𝟙
(((F.map f.unop).base _* ((F.map g.unop).base _* (F.obj k.unop).presheaf)).obj
(op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫
(F.obj k.unop).presheaf.map
(_root_.id
(eqToHom
(_ :
(Opens.map (F.map (g.unop ≫ f.unop)).base).obj
(op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop =
(Opens.map ((F.map g.unop).base ≫ (F.map f.unop).base)).obj
(op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop)).op) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U))) =
((F.map g.unop).base _* (F.obj k.unop).presheaf).map
(eqToHom
(_ :
op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) =
op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫
(F.obj k.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) =
op ((Opens.map (colimit.ι F k.unop).base).obj U)))
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
⊢ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j) =
𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
[PROOFSTEP]
apply (opEquiv _ _).injective
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
⊢ ↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j)) =
↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
(𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
[PROOFSTEP]
refine NatTrans.ext _ _ (funext fun U => ?_)
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j)))
U =
NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
(𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)))
U
[PROOFSTEP]
induction U with
| h U =>
rcases U with ⟨U, hU⟩
dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj,
Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id]
-- Porting note : some `simp` lemmas are not picked up
rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app]
simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op,
id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app']
rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp]
dsimp
simp
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j)))
U =
NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
(𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)))
U
[PROOFSTEP]
induction U with
| h U =>
rcases U with ⟨U, hU⟩
dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj,
Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id]
-- Porting note : some `simp` lemmas are not picked up
rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app]
simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op,
id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app']
rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp]
dsimp
simp
[GOAL]
case a.h
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Opens ↑(colimit (F ⋙ forget C))
⊢ NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j)))
(op U) =
NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
(𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)))
(op U)
[PROOFSTEP]
| h U =>
rcases U with ⟨U, hU⟩
dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj,
Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id]
-- Porting note : some `simp` lemmas are not picked up
rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app]
simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op,
id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app']
rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp]
dsimp
simp
[GOAL]
case a.h
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Opens ↑(colimit (F ⋙ forget C))
⊢ NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j)))
(op U) =
NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
(𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)))
(op U)
[PROOFSTEP]
rcases U with ⟨U, hU⟩
[GOAL]
case a.h.mk
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Set ↑(colimit (F ⋙ forget C))
hU : IsOpen U
⊢ NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(𝟙 j)))
(op { carrier := U, is_open' := hU }) =
NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j))
(𝟙
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j)))
(op { carrier := U, is_open' := hU })
[PROOFSTEP]
dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, Opens.map_obj,
opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id]
-- Porting note : some `simp` lemmas are not picked up
[GOAL]
case a.h.mk
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Set ↑(colimit (F ⋙ forget C))
hU : IsOpen U
⊢ NatTrans.app
(pushforwardMap (colimit.ι (F ⋙ forget C) j) (F.map (𝟙 j)).c ≫
(Pushforward.comp (F.obj j).presheaf (F.map (𝟙 j)).base (colimit.ι (F ⋙ forget C) j)).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom)
(op { carrier := U, is_open' := hU }) =
NatTrans.app (𝟙 (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf)) (op { carrier := U, is_open' := hU })
[PROOFSTEP]
rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app]
[GOAL]
case a.h.mk
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Set ↑(colimit (F ⋙ forget C))
hU : IsOpen U
⊢ NatTrans.app (F.map (𝟙 j)).c ((Opens.map (colimit.ι (F ⋙ forget C) j)).op.obj (op { carrier := U, is_open' := hU })) ≫
NatTrans.app
((Pushforward.comp (F.obj j).presheaf (F.map (𝟙 j)).base (colimit.ι (F ⋙ forget C) j)).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom)
(op { carrier := U, is_open' := hU }) =
𝟙 ((colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf).obj (op { carrier := U, is_open' := hU }))
[PROOFSTEP]
simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op,
id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app']
[GOAL]
case a.h.mk
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Set ↑(colimit (F ⋙ forget C))
hU : IsOpen U
⊢ eqToHom
(_ :
(F.obj j).presheaf.obj
(op
{ carrier := ↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U),
is_open' := (_ : IsOpen (↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) }) =
(F.obj j).presheaf.obj
(op
{ carrier := ↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U),
is_open' := (_ : IsOpen (↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) })) ≫
NatTrans.app
((Pushforward.comp (F.obj j).presheaf (F.map (𝟙 j)).base (colimit.ι (F ⋙ forget C) j)).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom)
(op { carrier := U, is_open' := hU }) =
𝟙 ((colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf).obj (op { carrier := U, is_open' := hU }))
[PROOFSTEP]
rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp]
[GOAL]
case a.h.mk
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Set ↑(colimit (F ⋙ forget C))
hU : IsOpen U
⊢ eqToHom
(_ :
(F.obj j).presheaf.obj
(op
{ carrier := ↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U),
is_open' := (_ : IsOpen (↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) }) =
(F.obj j).presheaf.obj
(op
{ carrier := ↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U),
is_open' := (_ : IsOpen (↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) })) ≫
NatTrans.app
(pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom
(op { carrier := U, is_open' := hU }) =
𝟙 ((colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf).obj (op { carrier := U, is_open' := hU }))
[PROOFSTEP]
dsimp
[GOAL]
case a.h.mk
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j : J
U : Set ↑(colimit (F ⋙ forget C))
hU : IsOpen U
⊢ eqToHom
(_ :
(F.obj j).presheaf.obj
(op
{ carrier := ↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U),
is_open' := (_ : IsOpen (↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) }) =
(F.obj j).presheaf.obj
(op
{ carrier := ↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U),
is_open' := (_ : IsOpen (↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) })) ≫
NatTrans.app
(pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom
(op { carrier := U, is_open' := hU }) =
𝟙
((F.obj j).presheaf.obj
(op
{ carrier := ↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U,
is_open' := (_ : IsOpen (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U)) }))
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
⊢ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(f ≫ g) =
{ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
f ≫
{ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
g
[PROOFSTEP]
apply (opEquiv _ _).injective
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
⊢ ↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₁)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₃))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(f ≫ g)) =
↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₁)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₃))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
f ≫
{ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
g)
[PROOFSTEP]
refine NatTrans.ext _ _ (funext fun U => ?_)
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₁)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₃))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
(f ≫ g)))
U =
NatTrans.app
(↑(opEquiv
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₁)
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.obj
j₃))
({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
f ≫
{ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf),
map := fun {j j'} f =>
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq
(_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom).op }.map
g))
U
[PROOFSTEP]
dsimp only [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, opEquiv,
Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op]
-- Porting note : some `simp` lemmas are not picked up
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app
(pushforwardMap (colimit.ι (F ⋙ forget C) j₃) (F.map (f ≫ g)).c ≫
(Pushforward.comp (F.obj j₁).presheaf (F.map (f ≫ g)).base (colimit.ι (F ⋙ forget C) j₃)).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map (f ≫ g) ≫ colimit.ι (F ⋙ forget C) j₃ = colimit.ι (F ⋙ forget C) j₁)
(F.obj j₁).presheaf).hom)
U =
NatTrans.app
((pushforwardMap (colimit.ι (F ⋙ forget C) j₃) (F.map g).c ≫
(Pushforward.comp (F.obj j₂).presheaf (F.map g).base (colimit.ι (F ⋙ forget C) j₃)).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map g ≫ colimit.ι (F ⋙ forget C) j₃ = colimit.ι (F ⋙ forget C) j₂)
(F.obj j₂).presheaf).hom) ≫
pushforwardMap (colimit.ι (F ⋙ forget C) j₂) (F.map f).c ≫
(Pushforward.comp (F.obj j₁).presheaf (F.map f).base (colimit.ι (F ⋙ forget C) j₂)).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j₂ = colimit.ι (F ⋙ forget C) j₁)
(F.obj j₁).presheaf).hom)
U
[PROOFSTEP]
rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.comp_app, Pushforward.comp_inv_app, id_comp, pushforwardEq_hom_app,
NatTrans.comp_app, NatTrans.comp_app, NatTrans.comp_app, pushforwardMap_app, Pushforward.comp_inv_app, id_comp,
pushforwardEq_hom_app, NatTrans.comp_app, NatTrans.comp_app, pushforwardEq_hom_app, Pushforward.comp_inv_app, id_comp,
pushforwardMap_app]
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app (F.map (f ≫ g)).c ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).op.obj U) ≫
(F.obj j₁).presheaf.map
(_root_.id
(eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop =
(Opens.map ((F.map (f ≫ g)).base ≫ colimit.ι (F ⋙ forget C) j₃)).obj U.unop)).op) =
(NatTrans.app (F.map g).c ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).op.obj U) ≫
(F.obj j₂).presheaf.map
(_root_.id
(eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop =
(Opens.map ((F.map g).base ≫ colimit.ι (F ⋙ forget C) j₃)).obj U.unop)).op)) ≫
NatTrans.app (F.map f).c ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).op.obj U) ≫
(F.obj j₁).presheaf.map
(_root_.id
(eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop =
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j₂)).obj U.unop)).op)
[PROOFSTEP]
simp only [pushforwardObj_obj, op_obj, unop_op, map_comp_c_app, pushforwardMap_app, Opens.map_comp_obj,
Pushforward.comp_inv_app, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, id_comp, assoc, eqToHom_trans]
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫
NatTrans.app (F.map f).c
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op
((Opens.map (F.map f).base).obj
((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) =
NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₂).presheaf.obj
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) =
(F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop)))
[PROOFSTEP]
dsimp
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫
NatTrans.app (F.map f).c
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op
((Opens.map (F.map f).base).obj
((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) =
NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₂).presheaf.obj
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) =
(F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop)))
[PROOFSTEP]
congr 1
-- The key fact is `(F.map f).c.congr`,
-- which allows us in rewrite in the argument of `(F.map f).c.app`.
[GOAL]
case a.e_a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ NatTrans.app (F.map f).c
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op
((Opens.map (F.map f).base).obj
((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) =
eqToHom
(_ :
(F.obj j₂).presheaf.obj
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) =
(F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop)))
[PROOFSTEP]
rw [@NatTrans.congr (α := (F.map f).c)
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))
(op ((Opens.map (colimit.ι (F ⋙ PresheafedSpace.forget C) j₂)).obj (unop U))) _]
[GOAL]
case a.e_a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ ((F.obj j₂).presheaf.map (eqToHom ?m.93087) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
((F.map f).base _* (F.obj j₁).presheaf).map
(eqToHom
(_ :
op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop) =
op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))))) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op
((Opens.map (F.map f).base).obj
((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) =
eqToHom
(_ :
(F.obj j₂).presheaf.obj
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) =
(F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop)))
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) =
op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)
[PROOFSTEP]
swap
-- Now we show the open sets are equal.
[GOAL]
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) =
op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)
[PROOFSTEP]
apply unop_injective
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))).unop =
(op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)).unop
[PROOFSTEP]
rw [← Opens.map_comp_obj]
[GOAL]
case a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ (op ((Opens.map ((F.map g).base ≫ colimit.ι (F ⋙ forget C) j₃)).obj U.unop)).unop =
(op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)).unop
[PROOFSTEP]
congr
[GOAL]
case a.e_self.e_x.e_self.e_self.e_f
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ (F.map g).base ≫ colimit.ι (F ⋙ forget C) j₃ = colimit.ι (F ⋙ forget C) j₂
[PROOFSTEP]
exact colimit.w (F ⋙ PresheafedSpace.forget C) g
[GOAL]
case a.e_a
J : Type u'
inst✝² : Category.{v', u'} J
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimitsOfShape J TopCat
F : J ⥤ PresheafedSpace C
j₁ j₂ j₃ : J
f : j₁ ⟶ j₂
g : j₂ ⟶ j₃
U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ
⊢ ((F.obj j₂).presheaf.map
(eqToHom
(_ :
op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) =
op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
((F.map f).base _* (F.obj j₁).presheaf).map
(eqToHom
(_ :
op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop) =
op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))))) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op
((Opens.map (F.map f).base).obj
((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) =
eqToHom
(_ :
(F.obj j₂).presheaf.obj
(op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) =
(F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫
NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫
eqToHom
(_ :
(F.obj j₁).presheaf.obj
(op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) =
(F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop)))
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
⊢ F.map f ≫
(fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j' =
(fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫
((Functor.const J).obj (colimit F)).map f
[PROOFSTEP]
ext1
[GOAL]
case w
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
⊢ (F.map f ≫
(fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j').base =
((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫
((Functor.const J).obj (colimit F)).map f).base
[PROOFSTEP]
ext x
[GOAL]
case w.w
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
x : (CategoryTheory.forget TopCat).obj ↑(F.obj j)
⊢ ↑(F.map f ≫
(fun j =>
{ base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j').base
x =
↑((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫
((Functor.const J).obj (colimit F)).map f).base
x
[PROOFSTEP]
exact colimit.w_apply (F ⋙ PresheafedSpace.forget C) f x
[GOAL]
case h
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
⊢ (F.map f ≫
(fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j').c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
(F.map f ≫
(fun j =>
{ base := colimit.ι (F ⋙ forget C) j,
c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j').base).op =
(Opens.map
((fun j =>
{ base := colimit.ι (F ⋙ forget C) j,
c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j ≫
((Functor.const J).obj (colimit F)).map f).base).op))
(F.obj j).presheaf =
((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫
((Functor.const J).obj (colimit F)).map f).c
[PROOFSTEP]
ext ⟨U, hU⟩
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ NatTrans.app
((F.map f ≫
(fun j =>
{ base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j').c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
(F.map f ≫
(fun j =>
{ base := colimit.ι (F ⋙ forget C) j,
c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j').base).op =
(Opens.map
((fun j =>
{ base := colimit.ι (F ⋙ forget C) j,
c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) })
j ≫
((Functor.const J).obj (colimit F)).map f).base).op))
(F.obj j).presheaf)
(op { carrier := U, is_open' := hU }) =
NatTrans.app
((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫
((Functor.const J).obj (colimit F)).map f).c
(op { carrier := U, is_open' := hU })
[PROOFSTEP]
dsimp
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ NatTrans.app
((F.map f ≫
{ base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op =
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op))
(F.obj j).presheaf)
(op { carrier := U, is_open' := hU }) =
NatTrans.app (𝟙 (colimit F)).c (op { carrier := U, is_open' := hU }) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op { carrier := U, is_open' := hU })
[PROOFSTEP]
rw [PresheafedSpace.id_c_app, map_id]
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ NatTrans.app
((F.map f ≫
{ base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op =
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op))
(F.obj j).presheaf)
(op { carrier := U, is_open' := hU }) =
𝟙 ((colimit F).presheaf.obj (op { carrier := U, is_open' := hU })) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op { carrier := U, is_open' := hU })
[PROOFSTEP]
erw [id_comp]
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ NatTrans.app
((F.map f ≫
{ base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op =
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op))
(F.obj j).presheaf)
(op { carrier := U, is_open' := hU }) =
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op { carrier := U, is_open' := hU })
[PROOFSTEP]
rw [NatTrans.comp_app, PresheafedSpace.comp_c_app, whiskerRight_app, eqToHom_app, ←
congr_arg NatTrans.app (limit.w (pushforwardDiagramToColimit F).leftOp f.op), NatTrans.comp_app, Functor.leftOp_map,
pushforwardDiagramToColimit_map]
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ (NatTrans.app { base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }.c
(op { carrier := U, is_open' := hU }) ≫
NatTrans.app (F.map f).c
(op
((Opens.map
{ base := colimit.ι (F ⋙ forget C) j',
c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }.base).obj
(op { carrier := U, is_open' := hU }).unop))) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }) =
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op.obj
(op { carrier := U, is_open' := hU }))) =
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫
NatTrans.app
(pushforwardMap (colimit.ι (F ⋙ forget C) (op j').unop) (F.map f.op.unop).c ≫
(Pushforward.comp (F.obj (op j).unop).presheaf ((F ⋙ forget C).map f.op.unop)
(colimit.ι (F ⋙ forget C) (op j').unop)).inv ≫
(pushforwardEq
(_ :
(F ⋙ forget C).map f.op.unop ≫ colimit.ι (F ⋙ forget C) (op j').unop =
colimit.ι (F ⋙ forget C) (op j).unop)
(F.obj (op j).unop).presheaf).hom).op.unop
(op { carrier := U, is_open' := hU })
[PROOFSTEP]
dsimp
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ (NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫
NatTrans.app (F.map f).c
(op
{ carrier := ↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U,
is_open' := (_ : IsOpen (↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U)) })) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }) =
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op.obj
(op { carrier := U, is_open' := hU }))) =
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫
NatTrans.app
(pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫
(Pushforward.comp (F.obj j).presheaf (F.map f).base (colimit.ι (F ⋙ forget C) j')).inv ≫
(pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j)
(F.obj j).presheaf).hom)
(op { carrier := U, is_open' := hU })
[PROOFSTEP]
rw [NatTrans.comp_app, NatTrans.comp_app, pushforwardEq_hom_app, id.def, eqToHom_op, Pushforward.comp_inv_app, id_comp,
pushforwardMap_app, ← assoc]
[GOAL]
case h.w.mk
J : Type u'
inst✝³ : Category.{v', u'} J
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimitsOfShape J TopCat
inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
F : J ⥤ PresheafedSpace C
j j' : J
f : j ⟶ j'
U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j')
hU : IsOpen U
⊢ (NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫
NatTrans.app (F.map f).c
(op
{ carrier := ↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U,
is_open' := (_ : IsOpen (↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U)) })) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }) =
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op.obj
(op { carrier := U, is_open' := hU }))) =
(NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫
NatTrans.app (F.map f).c
((Opens.map (colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }))) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
op
((Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).obj
(op { carrier := U, is_open' := hU }).unop) =
op ((Opens.map (colimit.ι (F ⋙ forget C) j)).obj (op { carrier := U, is_open' := hU }).unop)))
[PROOFSTEP]
congr 1
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
⊢ s.pt.presheaf.obj U ⟶
(colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) _* limit (pushforwardDiagramToColimit F).leftOp).obj U
[PROOFSTEP]
refine'
limit.lift _
{ pt := s.pt.presheaf.obj U
π :=
{ app := fun j => _
naturality := fun j j' f => _ } } ≫
(limitObjIsoLimitCompEvaluation _ _).inv
[GOAL]
case refine'_1
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ ((Functor.const Jᵒᵖ).obj (s.pt.presheaf.obj U)).obj j ⟶
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)).obj
j
[PROOFSTEP]
refine' (s.ι.app (unop j)).c.app U ≫ (F.obj (unop j)).presheaf.map (eqToHom _)
[GOAL]
case refine'_1
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)
[PROOFSTEP]
dsimp
[GOAL]
case refine'_1
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
rw [← Opens.map_comp_obj]
[GOAL]
case refine'_1
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)
[PROOFSTEP]
simp
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
⊢ ((Functor.const Jᵒᵖ).obj (s.pt.presheaf.obj U)).map f ≫
(fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))))
j' =
(fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))))
j ≫
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)).map
f
[PROOFSTEP]
dsimp
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
NatTrans.app (NatTrans.app s.ι j'.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
rw [PresheafedSpace.congr_app (s.w f.unop).symm U]
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
(NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
have w :=
Functor.congr_obj (congr_arg Opens.map (colimit.ι_desc ((PresheafedSpace.forget C).mapCocone s) (unop j))) (unop U)
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
w :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
(NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
simp only [Opens.map_comp_obj_unop] at w
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
w :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
(NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
replace w := congr_arg op w
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
w :
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
(NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
have w' := NatTrans.congr (F.map f.unop).c w
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
w :
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)
w' :
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) =
(F.obj j.unop).presheaf.map (eqToHom w) ≫
NatTrans.app (F.map f.unop).c (op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)) ≫
((F.map f.unop).base _* (F.obj j'.unop).presheaf).map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
(NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
rw [w']
[GOAL]
case refine'_2
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U : (Opens ↑↑s.pt)ᵒᵖ
j j' : Jᵒᵖ
f : j ⟶ j'
w :
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)
w' :
NatTrans.app (F.map f.unop).c
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) =
(F.obj j.unop).presheaf.map (eqToHom w) ≫
NatTrans.app (F.map f.unop).c (op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)) ≫
((F.map f.unop).base _* (F.obj j'.unop).presheaf).map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
⊢ 𝟙 (s.pt.presheaf.obj U) ≫
(NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫
(F.obj j'.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) =
(NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
((F.obj j.unop).presheaf.map (eqToHom w) ≫
NatTrans.app (F.map f.unop).c (op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)) ≫
((F.map f.unop).base _* (F.obj j'.unop).presheaf).map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) =
op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫
NatTrans.app
(Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop)
(F.obj j'.unop).presheaf).hom
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
⊢ s.pt.presheaf.map i ≫ descCApp F s V =
descCApp F s U ≫ (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) _* (colimitCocone F).pt.presheaf).map i
[PROOFSTEP]
dsimp [descCApp]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
⊢ s.pt.presheaf.map i ≫
limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))
{ pt := s.pt.presheaf.obj V,
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c V ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj V =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj V))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))).inv =
(limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))
{ pt := s.pt.presheaf.obj U,
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫
(limit (pushforwardDiagramToColimit F).leftOp).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop).op
[PROOFSTEP]
refine limit_obj_ext (fun j => ?_)
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
⊢ (s.pt.presheaf.map i ≫
limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))
{ pt := s.pt.presheaf.obj V,
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c V ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj V =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj V))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))).inv) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)) =
((limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))
{ pt := s.pt.presheaf.obj U,
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫
(limit (pushforwardDiagramToColimit F).leftOp).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop).op) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))
[PROOFSTEP]
simp only [limit.lift_π, NatTrans.naturality, limit.lift_π_assoc, eqToHom_map, assoc, pushforwardObj_map,
NatTrans.naturality_assoc, op_map, limitObjIsoLimitCompEvaluation_inv_π_app_assoc,
limitObjIsoLimitCompEvaluation_inv_π_app]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫
((pushforwardDiagramToColimit F).leftOp.obj j).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop).op
[PROOFSTEP]
dsimp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫
(F.obj j.unop).presheaf.map
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op
[PROOFSTEP]
have w :=
Functor.congr_hom (congr_arg Opens.map (colimit.ι_desc ((PresheafedSpace.forget C).mapCocone s) (unop j))) i.unop
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
w :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop =
eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
V.unop =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫
eqToHom
(_ :
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
U.unop)
⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫
(F.obj j.unop).presheaf.map
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op
[PROOFSTEP]
simp only [Opens.map_comp_map] at w
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
w :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop) =
eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
V.unop =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫
eqToHom
(_ :
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
U.unop)
⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫
(F.obj j.unop).presheaf.map
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op
[PROOFSTEP]
replace w := congr_arg Quiver.Hom.op w
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
w :
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op =
(eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
V.unop =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫
eqToHom
(_ :
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
U.unop)).op
⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫
(F.obj j.unop).presheaf.map
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op
[PROOFSTEP]
rw [w]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
U V : (Opens ↑↑s.pt)ᵒᵖ
i : U ⟶ V
j : Jᵒᵖ
w :
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op =
(eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
V.unop =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫
eqToHom
(_ :
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
U.unop)).op
⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map
(colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
V.unop =
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫
eqToHom
(_ :
(Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop =
(Opens.map
(colimit.ι (F ⋙ forget C) j.unop ≫
colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj
U.unop)).op
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
⊢ NatTrans.app (colimitCocone F).ι j ≫ desc F s = NatTrans.app s.ι j
[PROOFSTEP]
ext U
[GOAL]
case w.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
U : (CategoryTheory.forget TopCat).obj ↑(F.obj j)
⊢ ↑(NatTrans.app (colimitCocone F).ι j ≫ desc F s).base U = ↑(NatTrans.app s.ι j).base U
[PROOFSTEP]
simp [desc]
[GOAL]
case h.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
U : Opens ↑↑s.pt
⊢ NatTrans.app
((NatTrans.app (colimitCocone F).ι j ≫ desc F s).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (NatTrans.app (colimitCocone F).ι j ≫ desc F s).base).op =
(Opens.map (NatTrans.app s.ι j).base).op))
(F.obj j).presheaf)
(op U) =
NatTrans.app (NatTrans.app s.ι j).c (op U)
[PROOFSTEP]
rw [NatTrans.comp_app, PresheafedSpace.comp_c_app, whiskerRight_app]
[GOAL]
case h.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
U : Opens ↑↑s.pt
⊢ (NatTrans.app (desc F s).c (op U) ≫
NatTrans.app (NatTrans.app (colimitCocone F).ι j).c (op ((Opens.map (desc F s).base).obj (op U).unop))) ≫
(F.obj j).presheaf.map
(NatTrans.app
(eqToHom
(_ :
(Opens.map (NatTrans.app (colimitCocone F).ι j ≫ desc F s).base).op =
(Opens.map (NatTrans.app s.ι j).base).op))
(op U)) =
NatTrans.app (NatTrans.app s.ι j).c (op U)
[PROOFSTEP]
dsimp [desc, descCApp]
[GOAL]
case h.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
U : Opens ↑↑s.pt
⊢ ((limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U)))
{ pt := s.pt.presheaf.obj (op U),
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c (op U) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj (op U) =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj (op U)))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))).inv) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j))
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) ≫
(F.obj j).presheaf.map
(NatTrans.app
(eqToHom
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) j ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op =
(Opens.map (NatTrans.app s.ι j).base).op))
(op U)) =
NatTrans.app (NatTrans.app s.ι j).c (op U)
[PROOFSTEP]
simp only [eqToHom_app, op_obj, Opens.map_comp_obj, eqToHom_map, Functor.leftOp, assoc]
[GOAL]
case h.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
U : Opens ↑↑s.pt
⊢ limit.lift
(CategoryTheory.Functor.mk
{ obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop,
map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop } ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U)))
{ pt := s.pt.presheaf.obj (op U),
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c (op U) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj (op U) =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj (op U)))) } ≫
(limitObjIsoLimitCompEvaluation
(CategoryTheory.Functor.mk
{ obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop,
map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop })
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))).inv ≫
NatTrans.app
(limit.π
(CategoryTheory.Functor.mk
{ obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop,
map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop })
(op j))
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U)) ≫
eqToHom
(_ :
(F.obj j).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) =
(F.obj j).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j).base).obj U))) =
NatTrans.app (NatTrans.app s.ι j).c (op U)
[PROOFSTEP]
rw [limitObjIsoLimitCompEvaluation_inv_π_app_assoc]
[GOAL]
case h.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
j : J
U : Opens ↑↑s.pt
⊢ limit.lift
(CategoryTheory.Functor.mk
{ obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop,
map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop } ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U)))
{ pt := s.pt.presheaf.obj (op U),
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c (op U) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj (op U) =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj (op U)))) } ≫
limit.π
(CategoryTheory.Functor.mk
{ obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop,
map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop } ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U)))
(op j) ≫
eqToHom
(_ :
(F.obj j).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) =
(F.obj j).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j).base).obj U))) =
NatTrans.app (NatTrans.app s.ι j).c (op U)
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ m = (fun s => desc F s) s
[PROOFSTEP]
have t : m.base = colimit.desc (F ⋙ PresheafedSpace.forget C) ((PresheafedSpace.forget C).mapCocone s) :=
by
dsimp
ext j
rw [colimit.ι_desc, mapCocone_ι_app, ← w j]
simp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
[PROOFSTEP]
dsimp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
[PROOFSTEP]
ext j
[GOAL]
case w.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x✝ : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj j)
⊢ ↑(colimit.ι (F ⋙ forget C) j ≫ m.base) x✝ =
↑(colimit.ι (F ⋙ forget C) j ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)) x✝
[PROOFSTEP]
rw [colimit.ι_desc, mapCocone_ι_app, ← w j]
[GOAL]
case w.w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x✝ : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj j)
⊢ ↑(colimit.ι (F ⋙ forget C) j ≫ m.base) x✝ = ↑((forget C).map (NatTrans.app (colimitCocone F).ι j ≫ m)) x✝
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
⊢ m = (fun s => desc F s) s
[PROOFSTEP]
ext : 1
[GOAL]
case w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
⊢ m.base = ((fun s => desc F s) s).base
[PROOFSTEP]
exact t
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
⊢ m.c ≫
whiskerRight (eqToHom (_ : (Opens.map m.base).op = (Opens.map ((fun s => desc F s) s).base).op))
(colimitCocone F).pt.presheaf =
((fun s => desc F s) s).c
[PROOFSTEP]
refine NatTrans.ext _ _ (funext fun U => limit_obj_ext fun j => ?_)
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ NatTrans.app
(m.c ≫
whiskerRight (eqToHom (_ : (Opens.map m.base).op = (Opens.map ((fun s => desc F s) s).base).op))
(colimitCocone F).pt.presheaf)
U ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
((Opens.map ((fun s => desc F s) s).base).op.obj U) =
NatTrans.app ((fun s => desc F s) s).c U ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
((Opens.map ((fun s => desc F s) s).base).op.obj U)
[PROOFSTEP]
dsimp only [colimitCocone_pt, colimit_carrier, leftOp_obj, pushforwardDiagramToColimit_obj, comp_obj, forget_obj,
unop_op, op_obj, desc, colimit_presheaf, descCApp, mapCocone_pt, pushforwardObj_obj, const_obj_obj, id_eq,
evaluation_obj_obj, Eq.ndrec, eq_mpr_eq_cast]
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ NatTrans.app
(m.c ≫
whiskerRight
(eqToHom
(_ : (Opens.map m.base).op = (Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op))
(limit (pushforwardDiagramToColimit F).leftOp))
U ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
(limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))
{ pt := s.pt.presheaf.obj U,
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
rw [NatTrans.comp_app, whiskerRight_app]
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ (NatTrans.app m.c U ≫
(limit (pushforwardDiagramToColimit F).leftOp).map
(NatTrans.app
(eqToHom
(_ : (Opens.map m.base).op = (Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op))
U)) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
(limit.lift
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))
{ pt := s.pt.presheaf.obj U,
π :=
NatTrans.mk fun j =>
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U =
(Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))
[PROOFSTEP]
simp only [pushforwardObj_obj, op_obj, comp_obj, eqToHom_app, eqToHom_map, assoc,
limitObjIsoLimitCompEvaluation_inv_π_app, limit.lift_π]
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ NatTrans.app m.c U ≫
eqToHom
(_ :
(limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) =
(limit (pushforwardDiagramToColimit F).leftOp).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
NatTrans.app (NatTrans.app s.ι j.unop).c U ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
[PROOFSTEP]
rw [PresheafedSpace.congr_app (w (unop j)).symm U]
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ NatTrans.app m.c U ≫
eqToHom
(_ :
(limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) =
(limit (pushforwardDiagramToColimit F).leftOp).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
(NatTrans.app (NatTrans.app (colimitCocone F).ι j.unop ≫ m).c U ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
(Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).op.obj U =
(Opens.map (NatTrans.app s.ι j.unop).base).op.obj U))) ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
[PROOFSTEP]
dsimp
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
⊢ NatTrans.app m.c U ≫
eqToHom
(_ :
(limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) =
(limit (pushforwardDiagramToColimit F).leftOp).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
((NatTrans.app m.c U ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map m.base).obj U.unop))) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).obj U.unop) =
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)))) ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
[PROOFSTEP]
have w := congr_arg op (Functor.congr_obj (congr_arg Opens.map t) (unop U))
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w✝ : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
w :
op ((Opens.map m.base).obj U.unop) =
op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)
⊢ NatTrans.app m.c U ≫
eqToHom
(_ :
(limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) =
(limit (pushforwardDiagramToColimit F).leftOp).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
((NatTrans.app m.c U ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map m.base).obj U.unop))) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).obj U.unop) =
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)))) ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
[PROOFSTEP]
rw [NatTrans.congr (limit.π (pushforwardDiagramToColimit F).leftOp j) w]
[GOAL]
case h
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w✝ : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)
U : (Opens ↑↑s.pt)ᵒᵖ
j : Jᵒᵖ
w :
op ((Opens.map m.base).obj U.unop) =
op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)
⊢ NatTrans.app m.c U ≫
eqToHom
(_ :
(limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) =
(limit (pushforwardDiagramToColimit F).leftOp).obj
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) =
((NatTrans.app m.c U ≫
(limit (pushforwardDiagramToColimit F).leftOp).map (eqToHom w) ≫
NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j)
(op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫
((pushforwardDiagramToColimit F).leftOp.obj j).map
(eqToHom
(_ :
op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) =
op ((Opens.map m.base).obj U.unop)))) ≫
(F.obj j.unop).presheaf.map
(eqToHom
(_ :
op ((Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).obj U.unop) =
op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)))) ≫
eqToHom
(_ :
(F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) =
(F.obj j.unop).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj
((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
⊢ IsColimit ((forget C).mapCocone (colimitCocone F))
[PROOFSTEP]
apply IsColimit.ofIsoColimit (colimit.isColimit _)
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
⊢ colimit.cocone (F ⋙ forget C) ≅ (forget C).mapCocone (colimitCocone F)
[PROOFSTEP]
fapply Cocones.ext
[GOAL]
case φ
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
⊢ (colimit.cocone (F ⋙ forget C)).pt ≅ ((forget C).mapCocone (colimitCocone F)).pt
[PROOFSTEP]
rfl
[GOAL]
case w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
⊢ autoParam
(∀ (j : J),
NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom =
NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j)
_auto✝
[PROOFSTEP]
intro j
[GOAL]
case w
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
j : J
⊢ NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom =
NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j
[PROOFSTEP]
simp
[GOAL]
J✝ : Type u'
inst✝⁵ : Category.{v', u'} J✝
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J✝ TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C
inst✝ : HasLimits C
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ PresheafedSpace C
⊢ IsColimit ((forget C).mapCocone (colimitCocone F))
[PROOFSTEP]
apply IsColimit.ofIsoColimit (colimit.isColimit _)
[GOAL]
J✝ : Type u'
inst✝⁵ : Category.{v', u'} J✝
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J✝ TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C
inst✝ : HasLimits C
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ PresheafedSpace C
⊢ colimit.cocone (F ⋙ forget C) ≅ (forget C).mapCocone (colimitCocone F)
[PROOFSTEP]
fapply Cocones.ext
[GOAL]
case φ
J✝ : Type u'
inst✝⁵ : Category.{v', u'} J✝
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J✝ TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C
inst✝ : HasLimits C
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ PresheafedSpace C
⊢ (colimit.cocone (F ⋙ forget C)).pt ≅ ((forget C).mapCocone (colimitCocone F)).pt
[PROOFSTEP]
rfl
[GOAL]
case w
J✝ : Type u'
inst✝⁵ : Category.{v', u'} J✝
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J✝ TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C
inst✝ : HasLimits C
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ PresheafedSpace C
⊢ autoParam
(∀ (j : J),
NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom =
NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j)
_auto✝
[PROOFSTEP]
intro j
[GOAL]
case w
J✝ : Type u'
inst✝⁵ : Category.{v', u'} J✝
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J✝ TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C
inst✝ : HasLimits C
J : Type v
𝒥 : Category.{v, v} J
F : J ⥤ PresheafedSpace C
j : J
⊢ NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom =
NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j
[PROOFSTEP]
simp
[GOAL]
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
⊢ (Limits.colimit F).presheaf.obj (op U) ≅ limit (componentwiseDiagram F U)
[PROOFSTEP]
refine' ((sheafIsoOfIso (colimit.isoColimitCocone ⟨_, colimitCoconeIsColimit F⟩).symm).app (op U)).trans _
[GOAL]
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
⊢ ((colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base _*
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt.presheaf).obj
(op U) ≅
limit (componentwiseDiagram F U)
[PROOFSTEP]
refine' (limitObjIsoLimitCompEvaluation _ _).trans (Limits.lim.mapIso _)
[GOAL]
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
⊢ (pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) ≅
componentwiseDiagram F U
[PROOFSTEP]
fapply NatIso.ofComponents
[GOAL]
case app
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
⊢ (X : Jᵒᵖ) →
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ
C).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))).obj
X ≅
(componentwiseDiagram F U).obj X
[PROOFSTEP]
intro X
[GOAL]
case app
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X : Jᵒᵖ
⊢ ((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))).obj
X ≅
(componentwiseDiagram F U).obj X
[PROOFSTEP]
refine' (F.obj (unop X)).presheaf.mapIso (eqToIso _)
[GOAL]
case app
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X : Jᵒᵖ
⊢ (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)
[PROOFSTEP]
simp only [Functor.op_obj, unop_op, op_inj_iff, Opens.map_coe, SetLike.ext'_iff, Set.preimage_preimage]
[GOAL]
case app
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X : Jᵒᵖ
⊢ (fun x =>
↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base
(↑(colimit.ι (F ⋙ forget C) X.unop) x)) ⁻¹'
↑U =
↑(colimit.ι F X.unop).base ⁻¹' ↑U
[PROOFSTEP]
refine congr_arg (Set.preimage . U.1) (funext fun x => ?_)
[GOAL]
case app
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X : Jᵒᵖ
x : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj X.unop)
⊢ ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base
(↑(colimit.ι (F ⋙ forget C) X.unop) x) =
↑(colimit.ι F X.unop).base x
[PROOFSTEP]
erw [← comp_app]
[GOAL]
case app
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X : Jᵒᵖ
x : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj X.unop)
⊢ ↑(colimit.ι (F ⋙ forget C) X.unop ≫
(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base)
x =
↑(colimit.ι F X.unop).base x
[PROOFSTEP]
congr
[GOAL]
case app.e_a
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X : Jᵒᵖ
x : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj X.unop)
⊢ colimit.ι (F ⋙ forget C) X.unop ≫
(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base =
(colimit.ι F X.unop).base
[PROOFSTEP]
exact ι_preservesColimitsIso_inv (forget C) F (unop X)
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
⊢ autoParam
(∀ {X Y : Jᵒᵖ} (f : X ⟶ Y),
((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ
C).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))).map
f ≫
((F.obj Y.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U)))).hom =
((F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫
(componentwiseDiagram F U).map f)
_auto✝
[PROOFSTEP]
intro X Y f
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X Y : Jᵒᵖ
f : X ⟶ Y
⊢ ((pushforwardDiagramToColimit F).leftOp ⋙
(evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ
C).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))).map
f ≫
((F.obj Y.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U)))).hom =
((F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫
(componentwiseDiagram F U).map f
[PROOFSTEP]
change ((F.map f.unop).c.app _ ≫ _ ≫ _) ≫ (F.obj (unop Y)).presheaf.map _ = _ ≫ _
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X Y : Jᵒᵖ
f : X ⟶ Y
⊢ (NatTrans.app (F.map f.unop).c
((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
NatTrans.app
(Pushforward.comp (F.obj Y.unop).presheaf ((F ⋙ forget C).map f.unop) (colimit.ι (F ⋙ forget C) X.unop)).inv
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop)
(F.obj Y.unop).presheaf).hom
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
(F.obj Y.unop).presheaf.map
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom =
((F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫
(componentwiseDiagram F U).map f
[PROOFSTEP]
rw [TopCat.Presheaf.Pushforward.comp_inv_app]
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X Y : Jᵒᵖ
f : X ⟶ Y
⊢ (NatTrans.app (F.map f.unop).c
((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
𝟙
((colimit.ι (F ⋙ forget C) X.unop _* ((F ⋙ forget C).map f.unop _* (F.obj Y.unop).presheaf)).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop)
(F.obj Y.unop).presheaf).hom
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
(F.obj Y.unop).presheaf.map
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom =
((F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫
(componentwiseDiagram F U).map f
[PROOFSTEP]
erw [Category.id_comp]
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X Y : Jᵒᵖ
f : X ⟶ Y
⊢ (NatTrans.app (F.map f.unop).c
((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop)
(F.obj Y.unop).presheaf).hom
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
(F.obj Y.unop).presheaf.map
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom =
((F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫
(componentwiseDiagram F U).map f
[PROOFSTEP]
rw [Category.assoc]
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X Y : Jᵒᵖ
f : X ⟶ Y
⊢ NatTrans.app (F.map f.unop).c
((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
NatTrans.app
(pushforwardEq
(_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop)
(F.obj Y.unop).presheaf).hom
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) ≫
(F.obj Y.unop).presheaf.map
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom =
((F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫
(componentwiseDiagram F U).map f
[PROOFSTEP]
erw [← (F.obj (unop Y)).presheaf.map_comp, (F.map f.unop).c.naturality_assoc, ← (F.obj (unop Y)).presheaf.map_comp]
[GOAL]
case naturality
J : Type u'
inst✝⁵ : Category.{v', u'} J
C : Type u
inst✝⁴ : Category.{v, u} C
inst✝³ : HasColimitsOfShape J TopCat
inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝¹ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
inst✝ : HasColimit F
U : Opens ↑↑(Limits.colimit F)
X Y : Jᵒᵖ
f : X ⟶ Y
⊢ NatTrans.app (F.map f.unop).c
((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
(F.obj Y.unop).presheaf.map
(NatTrans.app
(NatIso.op
(Opens.mapIso ((F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop)
(colimit.ι (F ⋙ forget C) Y.unop)
(_ :
(F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop =
colimit.ι (F ⋙ forget C) Y.unop)).symm).hom
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) ≫
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom) =
NatTrans.app (F.map f.unop).c
((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))) ≫
(F.obj Y.unop).presheaf.map
((Opens.map (F.map f.unop).base).op.map
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U))).hom ≫
eqToHom
(_ :
(Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F X.unop).base).obj U)) =
op ((Opens.map (colimit.ι F Y.unop).base).obj U)))
[PROOFSTEP]
rfl
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ (colimitPresheafObjIsoComponentwiseLimit F U).inv ≫ NatTrans.app (colimit.ι F j).c (op U) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
delta colimitPresheafObjIsoComponentwiseLimit
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ ((sheafIsoOfIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).app
(op U) ≪≫
limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) ≪≫
Limits.lim.mapIso
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U))))).inv ≫
NatTrans.app (colimit.ι F j).c (op U) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
rw [Iso.trans_inv, Iso.trans_inv, Iso.app_inv, sheafIsoOfIso_inv, pushforwardToOfIso_app, congr_app (Iso.symm_inv _)]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ (((Limits.lim.mapIso
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U))))).inv ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U))).inv) ≫
(NatTrans.app
(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.c
(op
((Opens.map
((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv).obj
(op U).unop)) ≫
(Limits.colimit F).presheaf.map
(eqToHom
(_ :
(Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base).op.obj
(op
((Opens.map
((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv).obj
(op U).unop)) =
(Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.inv.base).op.obj
(op
((Opens.map
((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv).obj
(op U).unop))))) ≫
(Limits.colimit F).presheaf.map
(eqToHom
(_ :
op
{
carrier :=
↑((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.hom ⁻¹'
↑(op
{
carrier :=
↑((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹'
↑(op U).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.hom ⁻¹'
↑(op
{
carrier :=
↑((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹'
↑(op U).unop,
is_open' :=
(_ :
IsOpen
(↑((forget C).mapIso
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹'
↑(op U).unop)) }).unop)) } =
op U))) ≫
NatTrans.app (colimit.ι F j).c (op U) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
dsimp
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ ((limMap
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))).inv) ≫
(NatTrans.app
(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.c
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) ≫
(Limits.colimit F).presheaf.map
(𝟙
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))))) ≫
(Limits.colimit F).presheaf.map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))) ≫
NatTrans.app (colimit.ι F j).c (op U) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
rw [map_id, comp_id, assoc, assoc, assoc, NatTrans.naturality]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ limMap
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))).inv ≫
NatTrans.app
(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.c
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) ≫
NatTrans.app (colimit.ι F j).c
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base).obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U)) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
erw [← comp_c_app_assoc]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ limMap
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))).inv ≫
NatTrans.app
(colimit.ι F j ≫
(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).c
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U)) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
rw [congr_app (colimit.isoColimitCocone_ι_hom _ _), assoc]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ limMap
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫
(limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))).inv ≫
NatTrans.app (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).c
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U)) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
erw [limitObjIsoLimitCompEvaluation_inv_π_app_assoc, limMap_π_assoc]
-- Porting note : `convert` doesn't work due to meta variable, so change to a `suffices` block
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ limit.π (componentwiseDiagram F U) (op j) ≫
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U)) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
set f := _
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : ?m.311389 := ?m.311390
⊢ limit.π (componentwiseDiagram F U) (op j) ≫
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U)) =
limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
change _ ≫ f = _
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) :=
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))
⊢ limit.π (componentwiseDiagram F U) (op j) ≫ f = limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
suffices f_eq : f = 𝟙 _ by rw [f_eq, comp_id]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) :=
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))
f_eq : f = 𝟙 ((componentwiseDiagram F U).obj (op j))
⊢ limit.π (componentwiseDiagram F U) (op j) ≫ f = limit.π (componentwiseDiagram F U) (op j)
[PROOFSTEP]
rw [f_eq, comp_id]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) :=
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))
⊢ f = 𝟙 ((componentwiseDiagram F U).obj (op j))
[PROOFSTEP]
erw [← (F.obj j).presheaf.map_id]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) :=
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))
⊢ f = (F.obj j).presheaf.map (𝟙 (op ((Opens.map (colimit.ι F (op j).unop).base).obj U)))
[PROOFSTEP]
change (F.obj j).presheaf.map _ ≫ _ = _
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) :=
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))
⊢ (F.obj j).presheaf.map
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) (op j).unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F (op j).unop).base).obj U))).inv ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U)) =
(F.obj j).presheaf.map (𝟙 (op ((Opens.map (colimit.ι F (op j).unop).base).obj U)))
[PROOFSTEP]
erw [← (F.obj j).presheaf.map_comp, ← (F.obj j).presheaf.map_comp]
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) :=
NatTrans.app
(NatIso.ofComponents fun X =>
(F.obj X.unop).presheaf.mapIso
(eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv
(op j) ≫
(F.obj j).presheaf.map
(eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)))) ≫
((colimit.ι F j).base _* (F.obj j).presheaf).map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))
⊢ (F.obj j).presheaf.map
((eqToIso
(_ :
(Opens.map (colimit.ι (F ⋙ forget C) (op j).unop)).op.obj
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj
(op U)) =
op ((Opens.map (colimit.ι F (op j).unop).base).obj U))).inv ≫
eqToHom
(_ :
(Opens.map
(NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι
j).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U)) =
(Opens.map
(colimit.ι F j ≫
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj
(op
((Opens.map
(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj
U))) ≫
(Opens.map (colimit.ι F j).base).op.map
(eqToHom
(_ :
op
{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U),
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹'
↑{
carrier :=
↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U,
is_open' :=
(_ :
IsOpen
(↑(colimit.isoColimitCocone
{ cocone := colimitCocone F,
isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹'
↑U)) })) } =
op U))) =
(F.obj j).presheaf.map (𝟙 (op ((Opens.map (colimit.ι F (op j).unop).base).obj U)))
[PROOFSTEP]
congr 1
[GOAL]
J : Type u'
inst✝⁴ : Category.{v', u'} J
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasColimitsOfShape J TopCat
inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X)
inst✝ : HasLimitsOfShape Jᵒᵖ C
F : J ⥤ PresheafedSpace C
U : Opens ↑↑(Limits.colimit F)
j : J
⊢ (colimitPresheafObjIsoComponentwiseLimit F U).hom ≫ limit.π (componentwiseDiagram F U) (op j) =
NatTrans.app (colimit.ι F j).c (op U)
[PROOFSTEP]
rw [← Iso.eq_inv_comp, colimitPresheafObjIsoComponentwiseLimit_inv_ι_app]
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PresheafedSpace.HasColimits", "llama_tokens": 95293} |
[GOAL]
R : CommRingCatᵒᵖ
⊢ { obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map (𝟙 R) =
𝟙 ({ obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.obj R)
[PROOFSTEP]
dsimp
[GOAL]
R : CommRingCatᵒᵖ
⊢ topMap (𝟙 R.unop) = 𝟙 (topObj R.unop)
[PROOFSTEP]
rw [Spec.topMap_id]
[GOAL]
R S T : CommRingCatᵒᵖ
f : R ⟶ S
g : S ⟶ T
⊢ { obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map (f ≫ g) =
{ obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map f ≫
{ obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map g
[PROOFSTEP]
dsimp
[GOAL]
R S T : CommRingCatᵒᵖ
f : R ⟶ S
g : S ⟶ T
⊢ topMap (g.unop ≫ f.unop) = topMap f.unop ≫ topMap g.unop
[PROOFSTEP]
rw [Spec.topMap_comp]
[GOAL]
R : CommRingCat
⊢ (sheafedSpaceMap (𝟙 R)).c ≫
whiskerRight
(eqToHom
(_ :
(TopologicalSpace.Opens.map (sheafedSpaceMap (𝟙 R)).base).op =
(TopologicalSpace.Opens.map (𝟙 (sheafedSpaceObj R)).base).op))
(sheafedSpaceObj R).toPresheafedSpace.presheaf =
(𝟙 (sheafedSpaceObj R)).c
[PROOFSTEP]
ext U
[GOAL]
case w.w
R : CommRingCat
U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑(NatTrans.app
((sheafedSpaceMap (𝟙 R)).c ≫
whiskerRight
(eqToHom
(_ :
(TopologicalSpace.Opens.map (sheafedSpaceMap (𝟙 R)).base).op =
(TopologicalSpace.Opens.map (𝟙 (sheafedSpaceObj R)).base).op))
(sheafedSpaceObj R).toPresheafedSpace.presheaf)
(op U))
x✝ =
↑(NatTrans.app (𝟙 (sheafedSpaceObj R)).c (op U)) x✝
[PROOFSTEP]
dsimp
[GOAL]
case w.w
R : CommRingCat
U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑(NatTrans.app
((sheafedSpaceMap (𝟙 R)).c ≫
whiskerRight (𝟙 (TopologicalSpace.Opens.map (topMap (𝟙 R))).op) (structureSheaf ↑R).val)
(op U))
x✝ =
↑(NatTrans.app (𝟙 (sheafedSpaceObj R)).c (op U)) x✝
[PROOFSTEP]
erw [NatTrans.comp_app, sheafedSpaceMap_c_app, PresheafedSpace.id_c_app, comap_id]
[GOAL]
case w.w
R : CommRingCat
U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑(eqToHom
(_ :
(structureSheaf ↑R).val.obj (op (op U).unop) =
(structureSheaf ↑R).val.obj (op ((TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop))) ≫
NatTrans.app (whiskerRight (𝟙 (TopologicalSpace.Opens.map (topMap (𝟙 R))).op) (structureSheaf ↑R).val) (op U))
x✝ =
↑((sheafedSpaceObj R).toPresheafedSpace.presheaf.map (𝟙 (op U))) x✝
case w.w.hUV
R : CommRingCat
U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U))
⊢ (op U).unop = (TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop
[PROOFSTEP]
swap
[GOAL]
case w.w.hUV
R : CommRingCat
U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U))
⊢ (op U).unop = (TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop
[PROOFSTEP]
rw [Spec.topMap_id, TopologicalSpace.Opens.map_id_obj_unop]
[GOAL]
case w.w
R : CommRingCat
U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑(eqToHom
(_ :
(structureSheaf ↑R).val.obj (op (op U).unop) =
(structureSheaf ↑R).val.obj (op ((TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop))) ≫
NatTrans.app (whiskerRight (𝟙 (TopologicalSpace.Opens.map (topMap (𝟙 R))).op) (structureSheaf ↑R).val) (op U))
x✝ =
↑((sheafedSpaceObj R).toPresheafedSpace.presheaf.map (𝟙 (op U))) x✝
[PROOFSTEP]
simp [eqToHom_map]
[GOAL]
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
⊢ (sheafedSpaceMap (f ≫ g)).c ≫
whiskerRight
(eqToHom
(_ :
(TopologicalSpace.Opens.map (sheafedSpaceMap (f ≫ g)).base).op =
(TopologicalSpace.Opens.map (sheafedSpaceMap g ≫ sheafedSpaceMap f).base).op))
(sheafedSpaceObj T).toPresheafedSpace.presheaf =
(sheafedSpaceMap g ≫ sheafedSpaceMap f).c
[PROOFSTEP]
ext
-- Porting note : was one liner
-- `dsimp, rw category_theory.functor.map_id, rw category.comp_id, erw comap_comp f g, refl`
[GOAL]
case w.w
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝))
⊢ ↑(NatTrans.app
((sheafedSpaceMap (f ≫ g)).c ≫
whiskerRight
(eqToHom
(_ :
(TopologicalSpace.Opens.map (sheafedSpaceMap (f ≫ g)).base).op =
(TopologicalSpace.Opens.map (sheafedSpaceMap g ≫ sheafedSpaceMap f).base).op))
(sheafedSpaceObj T).toPresheafedSpace.presheaf)
(op U✝))
x✝ =
↑(NatTrans.app (sheafedSpaceMap g ≫ sheafedSpaceMap f).c (op U✝)) x✝
[PROOFSTEP]
rw [NatTrans.comp_app, sheafedSpaceMap_c_app, whiskerRight_app, eqToHom_refl]
[GOAL]
case w.w
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝))
⊢ ↑(comap (f ≫ g) (op U✝).unop ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop)
(_ :
∀ (x : ↑(PrimeSpectrum.Top ↑T)),
x ∈ ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop).carrier →
x ∈ ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop).carrier) ≫
(sheafedSpaceObj T).toPresheafedSpace.presheaf.map
(NatTrans.app (𝟙 (TopologicalSpace.Opens.map (sheafedSpaceMap (f ≫ g)).base).op) (op U✝)))
x✝ =
↑(NatTrans.app (sheafedSpaceMap g ≫ sheafedSpaceMap f).c (op U✝)) x✝
[PROOFSTEP]
erw [(sheafedSpaceObj T).presheaf.map_id, Category.comp_id, comap_comp]
[GOAL]
case w.w
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝))
⊢ ↑(RingHom.comp (comap g ?w.w.V ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop) ?w.w.hVW)
(comap f (op U✝).unop ?w.w.V ?w.w.hUV))
x✝ =
↑(NatTrans.app (sheafedSpaceMap g ≫ sheafedSpaceMap f).c (op U✝)) x✝
case w.w.V
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝))
⊢ TopologicalSpace.Opens ↑(PrimeSpectrum.Top ↑S)
case w.w.hUV
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝))
⊢ ∀ (p : ↑(PrimeSpectrum.Top ↑S)), p ∈ ?w.w.V → ↑(PrimeSpectrum.comap f) p ∈ (op U✝).unop
case w.w.hVW
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace
x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝))
⊢ ∀ (p : ↑(PrimeSpectrum.Top ↑T)),
p ∈ (TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop → ↑(PrimeSpectrum.comap g) p ∈ ?w.w.V
[PROOFSTEP]
rfl
[GOAL]
R : CommRingCatᵒᵖ
⊢ { obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map (𝟙 R) =
𝟙 ({ obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.obj R)
[PROOFSTEP]
dsimp
[GOAL]
R : CommRingCatᵒᵖ
⊢ sheafedSpaceMap (𝟙 R.unop) = 𝟙 (sheafedSpaceObj R.unop)
[PROOFSTEP]
rw [Spec.sheafedSpaceMap_id]
[GOAL]
X✝ Y✝ Z✝ : CommRingCatᵒᵖ
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map (f ≫ g) =
{ obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map f ≫
{ obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map g
[PROOFSTEP]
dsimp
[GOAL]
X✝ Y✝ Z✝ : CommRingCatᵒᵖ
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ sheafedSpaceMap (g.unop ≫ f.unop) = sheafedSpaceMap f.unop ≫ sheafedSpaceMap g.unop
[PROOFSTEP]
rw [Spec.sheafedSpaceMap_comp]
[GOAL]
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
r : ↑R
U : TopologicalSpace.Opens (PrimeSpectrum ↑R) := PrimeSpectrum.basicOpen r
⊢ (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U)
[PROOFSTEP]
rw [w]
[GOAL]
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
h :
∀ (r : ↑R),
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
⊢ α = β
[PROOFSTEP]
ext : 1
[GOAL]
case w
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
h :
∀ (r : ↑R),
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
⊢ α.base = β.base
[PROOFSTEP]
exact w
[GOAL]
case h
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
h :
∀ (r : ↑R),
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
⊢ α.c ≫
whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf =
β.c
[PROOFSTEP]
apply ((TopCat.Sheaf.pushforward β.base).obj X.sheaf).hom_ext _ PrimeSpectrum.isBasis_basic_opens
[GOAL]
case h
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
h :
∀ (r : ↑R),
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
⊢ ∀ (i : ↑R),
NatTrans.app
(α.c ≫
whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen i)) =
NatTrans.app β.c (op (PrimeSpectrum.basicOpen i))
[PROOFSTEP]
intro r
[GOAL]
case h
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
h :
∀ (r : ↑R),
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
r : ↑R
⊢ NatTrans.app
(α.c ≫
whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen r)) =
NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
[PROOFSTEP]
apply
(StructureSheaf.to_basicOpen_epi R r).1
-- Porting note : was a one-liner `simpa using h r`
[GOAL]
case h.a
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
h :
∀ (r : ↑R),
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
r : ↑R
⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app
(α.c ≫
whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen r)) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
[PROOFSTEP]
specialize h r
[GOAL]
case h.a
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
r : ↑R
h :
let U := PrimeSpectrum.basicOpen r;
(toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫
X.presheaf.map
(eqToHom
(_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) =
toOpen (↑R) U ≫ NatTrans.app β.c (op U)
⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app
(α.c ≫
whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen r)) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
[PROOFSTEP]
simp only [sheafedSpaceObj_carrier, Functor.op_obj, unop_op, TopCat.Presheaf.pushforwardObj_obj,
sheafedSpaceObj_presheaf, Category.assoc] at h
[GOAL]
case h.a
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
r : ↑R
h :
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) =
(TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app
(α.c ≫
whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen r)) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
[PROOFSTEP]
rw [NatTrans.comp_app, ← h]
[GOAL]
case h.a
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
r : ↑R
h :
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) =
(TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫
NatTrans.app
(whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen r)) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) =
(TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r))))
[PROOFSTEP]
congr
[GOAL]
case h.a.e_a.e_a
X : RingedSpace
R : CommRingCat
α β : X ⟶ sheafedSpaceObj R
w : α.base = β.base
r : ↑R
h :
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫
NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) =
(TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) =
toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r))
⊢ NatTrans.app
(whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op))
X.presheaf)
(op (PrimeSpectrum.basicOpen r)) =
X.presheaf.map
(eqToHom
(_ :
(TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) =
(TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r))))
[PROOFSTEP]
simp
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑S
⊢ toStalk (↑R) (↑(PrimeSpectrum.comap f) p) ≫ PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p = f ≫ toStalk (↑S) p
[PROOFSTEP]
erw [← toOpen_germ S ⊤ ⟨p, trivial⟩, ← toOpen_germ R ⊤ ⟨PrimeSpectrum.comap f p, trivial⟩, Category.assoc,
PresheafedSpace.stalkMap_germ (Spec.sheafedSpaceMap f) ⊤ ⟨p, trivial⟩, Spec.sheafedSpaceMap_c_app,
toOpen_comp_comap_assoc]
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑S
⊢ CommRingCat.ofHom f ≫
toOpen (↑S) (↑(TopologicalSpace.Opens.comap (PrimeSpectrum.comap f)) ⊤) ≫
TopCat.Presheaf.germ (Spec.sheafedSpaceObj S).toPresheafedSpace.presheaf { val := p, property := trivial } =
f ≫ toOpen ↑S ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑S)) { val := p, property := trivial }
[PROOFSTEP]
rfl
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑S
x : ↑R
⊢ ↑(((stalkIso (↑R) (↑(PrimeSpectrum.comap f) p)).inv ≫ PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p) ≫
(stalkIso (↑S) p).hom)
(↑(algebraMap (↑R) (Localization.AtPrime (↑(PrimeSpectrum.comap f) p).asIdeal)) x) =
↑(algebraMap ((fun x => ↑S) x) (Localization.AtPrime p.asIdeal)) (↑f x)
[PROOFSTEP]
rw [stalkIso_hom, stalkIso_inv, comp_apply, comp_apply, localizationToStalk_of]
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑S
x : ↑R
⊢ ↑(stalkToFiberRingHom (↑S) p)
(↑(PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p) (↑(toStalk (↑R) (↑(PrimeSpectrum.comap f) p)) x)) =
↑(algebraMap ((fun x => ↑S) x) (Localization.AtPrime p.asIdeal)) (↑f x)
[PROOFSTEP]
erw [stalkMap_toStalk_apply f p x, stalkToFiberRingHom_toStalk]
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace
a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p))
ha : IsUnit (↑(PresheafedSpace.stalkMap (sheafedSpaceMap f) p) a)
⊢ IsUnit a
[PROOFSTEP]
erw [← localRingHom_comp_stalkIso_apply] at ha
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace
a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p))
ha :
IsUnit
(↑(localizationToStalk (↑S) p)
(↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) p).asIdeal p.asIdeal f
(_ : (↑(PrimeSpectrum.comap f) p).asIdeal = (↑(PrimeSpectrum.comap f) p).asIdeal))
(↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)))
⊢ IsUnit a
[PROOFSTEP]
replace ha := (stalkIso S p).hom.isUnit_map ha
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace
a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p))
ha :
IsUnit
(↑(stalkIso (↑S) p).hom
(↑(localizationToStalk (↑S) p)
(↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) p).asIdeal p.asIdeal f
(_ : (↑(PrimeSpectrum.comap f) p).asIdeal = (↑(PrimeSpectrum.comap f) p).asIdeal))
(↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a))))
⊢ IsUnit a
[PROOFSTEP]
rw [← comp_apply, show localizationToStalk S p = (stalkIso S p).inv from rfl, Iso.inv_hom_id, id_apply] at ha
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace
a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p))
ha :
IsUnit
(↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) p).asIdeal p.asIdeal f
(_ : (↑(PrimeSpectrum.comap f) p).asIdeal = (↑(PrimeSpectrum.comap f) p).asIdeal))
(↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a))
⊢ IsUnit a
[PROOFSTEP]
replace ha := IsLocalRingHom.map_nonunit (R := Localization.AtPrime (PrimeSpectrum.comap f p).asIdeal) _ ha
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace
a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p))
ha : IsUnit (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)
⊢ IsUnit a
[PROOFSTEP]
convert RingHom.isUnit_map (stalkIso R (PrimeSpectrum.comap f p)).inv ha
[GOAL]
case h.e'_3.h
R S : CommRingCat
f : R ⟶ S
p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace
a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p))
ha : IsUnit (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)
e_1✝ :
↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) =
(fun x => ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑R)) (↑(PrimeSpectrum.comap f) p)))
(↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)
⊢ a = ↑(stalkIso (↑R) (↑(PrimeSpectrum.comap f) p)).inv (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)
[PROOFSTEP]
erw [← comp_apply, show stalkToFiberRingHom R _ = (stalkIso _ _).hom from rfl, Iso.hom_inv_id, id_apply]
[GOAL]
R : CommRingCat
⊢ (locallyRingedSpaceMap (𝟙 R)).val = (𝟙 (locallyRingedSpaceObj R)).val
[PROOFSTEP]
rw [Spec.locallyRingedSpaceMap_val, Spec.sheafedSpaceMap_id]
[GOAL]
R : CommRingCat
⊢ 𝟙 (sheafedSpaceObj R) = (𝟙 (locallyRingedSpaceObj R)).val
[PROOFSTEP]
rfl
[GOAL]
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
⊢ (locallyRingedSpaceMap (f ≫ g)).val = (locallyRingedSpaceMap g ≫ locallyRingedSpaceMap f).val
[PROOFSTEP]
rw [Spec.locallyRingedSpaceMap_val, Spec.sheafedSpaceMap_comp]
[GOAL]
R S T : CommRingCat
f : R ⟶ S
g : S ⟶ T
⊢ sheafedSpaceMap g ≫ sheafedSpaceMap f = (locallyRingedSpaceMap g ≫ locallyRingedSpaceMap f).val
[PROOFSTEP]
rfl
[GOAL]
R : CommRingCatᵒᵖ
⊢ { obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map (𝟙 R) =
𝟙 ({ obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.obj R)
[PROOFSTEP]
dsimp
[GOAL]
R : CommRingCatᵒᵖ
⊢ locallyRingedSpaceMap (𝟙 R.unop) = 𝟙 (locallyRingedSpaceObj R.unop)
[PROOFSTEP]
rw [Spec.locallyRingedSpaceMap_id]
[GOAL]
X✝ Y✝ Z✝ : CommRingCatᵒᵖ
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map (f ≫ g) =
{ obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map f ≫
{ obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map g
[PROOFSTEP]
dsimp
[GOAL]
X✝ Y✝ Z✝ : CommRingCatᵒᵖ
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ locallyRingedSpaceMap (g.unop ≫ f.unop) = locallyRingedSpaceMap f.unop ≫ locallyRingedSpaceMap g.unop
[PROOFSTEP]
rw [Spec.locallyRingedSpaceMap_comp]
[GOAL]
R : CommRingCat
⊢ IsIso (toSpecΓ R)
[PROOFSTEP]
cases R
[GOAL]
case mk
α✝ : Type ?u.412830
str✝ : CommRing α✝
⊢ IsIso (toSpecΓ (Bundled.mk α✝))
[PROOFSTEP]
apply StructureSheaf.isIso_to_global
[GOAL]
R S : CommRingCat
f : R ⟶ S
⊢ f ≫ toSpecΓ S = toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op
[PROOFSTEP]
refine RingHom.ext fun x => Subtype.ext <| funext fun x' => ?_
[GOAL]
R S : CommRingCat
f : R ⟶ S
x : ↑R
x' : { x // x ∈ (op ⊤).unop }
⊢ ↑(↑(f ≫ toSpecΓ S) x) x' = ↑(↑(toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op) x) x'
[PROOFSTEP]
symm
[GOAL]
R S : CommRingCat
f : R ⟶ S
x : ↑R
x' : { x // x ∈ (op ⊤).unop }
⊢ ↑(↑(toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op) x) x' = ↑(↑(f ≫ toSpecΓ S) x) x'
[PROOFSTEP]
apply Localization.localRingHom_to_map
[GOAL]
X Y : CommRingCat
f : X ⟶ Y
⊢ (𝟭 CommRingCat).map f ≫ ((fun R => asIso (toSpecΓ R)) Y).hom =
((fun R => asIso (toSpecΓ R)) X).hom ≫ (Spec.toLocallyRingedSpace.rightOp ⋙ Γ).map f
[PROOFSTEP]
exact Spec_Γ_naturality (R := X) (S := Y) f
[GOAL]
R : CommRingCat
M : Submonoid ↑R
x : PrimeSpectrum (Localization M)
⊢ IsIso
(PresheafedSpace.stalkMap (Spec.toPresheafedSpace.map (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op) x)
[PROOFSTEP]
erw [← localRingHom_comp_stalkIso]
-- Porting note: replaced `apply (config := { instances := false })`.
-- See https://github.com/leanprover/lean4/issues/2273
[GOAL]
R : CommRingCat
M : Submonoid ↑R
x : PrimeSpectrum (Localization M)
⊢ IsIso
((stalkIso (↑(op (CommRingCat.of ↑R)).unop)
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x)).hom ≫
Localization.localRingHom
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal x.asIdeal
(CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop
(_ :
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal =
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal) ≫
(stalkIso (↑(op (CommRingCat.of (Localization M))).unop) x).inv)
[PROOFSTEP]
refine @IsIso.comp_isIso _ _ _ _ _ _ _ _ (?_)
[GOAL]
R : CommRingCat
M : Submonoid ↑R
x : PrimeSpectrum (Localization M)
⊢ IsIso
(Localization.localRingHom
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal x.asIdeal
(CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop
(_ :
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal =
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal) ≫
(stalkIso (↑(op (CommRingCat.of (Localization M))).unop) x).inv)
[PROOFSTEP]
refine
@IsIso.comp_isIso _ _ _ _ _ _ _ (?_)
_
/- I do not know why this is defeq to the goal, but I'm happy to accept that it is. -/
[GOAL]
R : CommRingCat
M : Submonoid ↑R
x : PrimeSpectrum (Localization M)
⊢ IsIso
(Localization.localRingHom
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal x.asIdeal
(CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop
(_ :
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal =
(↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal))
[PROOFSTEP]
show IsIso (IsLocalization.localizationLocalizationAtPrimeIsoLocalization M x.asIdeal).toRingEquiv.toCommRingCatIso.hom
[GOAL]
R : CommRingCat
M : Submonoid ↑R
x : PrimeSpectrum (Localization M)
⊢ IsIso
(RingEquiv.toCommRingCatIso
(AlgEquiv.toRingEquiv (IsLocalization.localizationLocalizationAtPrimeIsoLocalization M x.asIdeal))).hom
[PROOFSTEP]
infer_instance
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
⊢ f ≫ toPushforwardStalk f p =
toStalk (↑R) p ≫ (TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap f).c
[PROOFSTEP]
rw [StructureSheaf.toStalk]
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
⊢ f ≫ toPushforwardStalk f p =
(toOpen ↑R ⊤ ≫
TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑R)) { val := p, property := True.intro }) ≫
(TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap f).c
[PROOFSTEP]
erw [Category.assoc]
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
⊢ f ≫ toPushforwardStalk f p =
toOpen ↑R ⊤ ≫
TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑R)) { val := p, property := True.intro } ≫
(TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap f).c
[PROOFSTEP]
rw [TopCat.Presheaf.stalkFunctor_map_germ]
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
⊢ f ≫ toPushforwardStalk f p =
toOpen ↑R ⊤ ≫
NatTrans.app (Spec.sheafedSpaceMap f).c (op ⊤) ≫
TopCat.Presheaf.germ ((Spec.sheafedSpaceMap f).base _* (Spec.sheafedSpaceObj S).toPresheafedSpace.presheaf)
{ val := p, property := True.intro }
[PROOFSTEP]
exact Spec_Γ_naturality_assoc f _
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
obtain ⟨U, hp, s, e⟩ := TopCat.Presheaf.germ_exist (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf S).val) _ y
[GOAL]
case intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hp }) s = y
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
obtain ⟨_, ⟨r, rfl⟩, hpr : p ∈ PrimeSpectrum.basicOpen r, hrU : PrimeSpectrum.basicOpen r ≤ U⟩ :=
PrimeSpectrum.isTopologicalBasis_basic_opens.exists_subset_of_mem_open (show p ∈ U from hp) U.2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hp }) s = y
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
change PrimeSpectrum.basicOpen r ≤ U at hrU
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hp }) s = y
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
replace e := ((Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE hrU) ⟨p, hpr⟩ _).trans e
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s) =
y
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
set s' := (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).map (homOfLE hrU).op s with h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
s' : (forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) :=
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
replace e : ((Spec.topMap (algebraMap R S) _* (structureSheaf S).val).germ ⟨p, hpr⟩) s' = y
[GOAL]
case e
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
s' : (forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) :=
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
[PROOFSTEP]
rw [h]
[GOAL]
case e
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
s' : (forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) :=
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s) =
y
[PROOFSTEP]
exact e
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
s' : (forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) :=
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
clear_value s'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hp : p ∈ U
s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U))
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
hrU : PrimeSpectrum.basicOpen r ≤ U
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
clear! U
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
obtain ⟨⟨s, ⟨_, n, rfl⟩⟩, hsn⟩ :=
@IsLocalization.surj _ _ _ _ _ _ (StructureSheaf.IsLocalization.to_basicOpen S <| algebraMap R S r) s'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
refine' ⟨⟨s, ⟨r, hpr⟩ ^ n⟩, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ (s, { val := r, property := hpr } ^ n).snd • y =
↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst
[PROOFSTEP]
rw [Submonoid.smul_def, Algebra.smul_def, algebraMap_pushforward_stalk, toPushforwardStalk, comp_apply, comp_apply]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial })
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd)) *
y =
↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst
[PROOFSTEP]
iterate 2 erw [← (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE le_top) ⟨p, hpr⟩]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial })
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd)) *
y =
↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst
[PROOFSTEP]
erw [← (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE le_top) ⟨p, hpr⟩]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) *
y =
↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst
[PROOFSTEP]
erw [← (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE le_top) ⟨p, hpr⟩]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) *
y =
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
rw [← e]
-- Porting note : without this `change`, Lean doesn't know how to rewrite `map_mul`
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) *
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
s' =
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
let f := TopCat.Presheaf.germ (Spec.topMap (algebraMap R S) _* (structureSheaf S).val) ⟨p, hpr⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f✝ : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶
TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } :=
TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }
⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) *
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
s' =
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr })
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
change f _ * f _ = f _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f✝ : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶
TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } :=
TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }
⊢ ↑f
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) *
↑f s' =
↑f
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
rw [← map_mul, mul_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f✝ : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
↑(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(s,
{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y =
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst
f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶
TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } :=
TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }
⊢ ↑f
(s' *
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) =
↑f
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
dsimp only [Subtype.coe_mk] at hsn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f✝ : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(↑(algebraMap ↑R ↑S) r ^ n) =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) s
f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶
TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } :=
TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }
⊢ ↑f
(s' *
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) =
↑f
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
rw [← map_pow (algebraMap R S)] at hsn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro
R S : CommRingCat
f✝ : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)
r : ↑R
hpr : p ∈ PrimeSpectrum.basicOpen r
s' :
(forget CommRingCat).obj
((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)))
e :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' =
y
s : ↑S
n : ℕ
hsn :
s' *
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r)))))
(↑(algebraMap ↑R ↑S) (r ^ n)) =
↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) s
f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶
TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } :=
TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }
⊢ ↑f
(s' *
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) =
↑f
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map
(homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op)
(↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst))
[PROOFSTEP]
congr 1
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
⊢ IsLocalizedModule (Ideal.primeCompl p.asIdeal) (AlgHom.toLinearMap (toPushforwardStalkAlgHom R S p))
[PROOFSTEP]
apply IsLocalizedModule.mkOfAlgebra
[GOAL]
case h₁
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
⊢ ∀ (x : ↑R),
x ∈ Ideal.primeCompl p.asIdeal →
IsUnit (↑(algebraMap ↑R ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)) x)
[PROOFSTEP]
intro x hx
[GOAL]
case h₁
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑R
hx : x ∈ Ideal.primeCompl p.asIdeal
⊢ IsUnit (↑(algebraMap ↑R ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)) x)
[PROOFSTEP]
rw [algebraMap_pushforward_stalk, toPushforwardStalk_comp]
[GOAL]
case h₁
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑R
hx : x ∈ Ideal.primeCompl p.asIdeal
⊢ IsUnit
(↑(toStalk (↑R) p ≫ (TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap (algebraMap ↑R ↑S)).c) x)
[PROOFSTEP]
change IsUnit ((TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap (algebraMap ↑R ↑S)).c _)
[GOAL]
case h₁
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑R
hx : x ∈ Ideal.primeCompl p.asIdeal
⊢ IsUnit
(↑((TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap (algebraMap ↑R ↑S)).c)
(↑(toStalk (↑R) p) x))
[PROOFSTEP]
exact (IsLocalization.map_units ((structureSheaf R).presheaf.stalk p) ⟨x, hx⟩).map _
[GOAL]
case h₂
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
⊢ ∀ (y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)),
∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst
[PROOFSTEP]
apply isLocalizedModule_toPushforwardStalkAlgHom_aux
[GOAL]
case h₃
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
⊢ ∀ (x : ↑S), ↑(toPushforwardStalkAlgHom R S p) x = 0 → ∃ m, m • x = 0
[PROOFSTEP]
intro x hx
[GOAL]
case h₃
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx : ↑(toPushforwardStalkAlgHom R S p) x = 0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
rw [toPushforwardStalkAlgHom_apply, ← (toPushforwardStalk (algebraMap R S) p).map_zero, toPushforwardStalk] at hx
[GOAL]
case h₃
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
↑(toOpen ↑S ⊤ ≫
TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
change
_ =
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
(⟨p, trivial⟩ : (⊤ : TopologicalSpace.Opens (PrimeSpectrum R))) (toOpen S ⊤ 0)) at
hx
[GOAL]
case h₃
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) 0)
⊢ ∃ m, m • x = 0
[PROOFSTEP]
rw [map_zero] at hx
[GOAL]
case h₃
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
change (forget CommRingCat).map _ _ = (forget _).map _ _ at hx
[GOAL]
case h₃
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
obtain ⟨U, hpU, i₁, i₂, e⟩ := TopCat.Presheaf.germ_eq _ _ _ _ _ _ hx
[GOAL]
case h₃.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
e :
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x) =
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
obtain ⟨_, ⟨r, rfl⟩, hpr, hrU⟩ :=
PrimeSpectrum.isTopologicalBasis_basic_opens.exists_subset_of_mem_open (show p ∈ U.1 from hpU) U.2
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
e :
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x) =
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : (fun r => ↑(PrimeSpectrum.basicOpen r)) r ⊆ U.carrier
⊢ ∃ m, m • x = 0
[PROOFSTEP]
change PrimeSpectrum.basicOpen r ≤ U at hrU
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
e :
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x) =
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
⊢ ∃ m, m • x = 0
[PROOFSTEP]
apply_fun (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).map (homOfLE hrU).op at e
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op)
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x)) =
↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op)
(↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0)
⊢ ∃ m, m • x = 0
[PROOFSTEP]
simp only [TopCat.Presheaf.pushforwardObj_map, Functor.op_map, map_zero, ← comp_apply, toOpen_res] at e
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
⊢ ∃ m, m • x = 0
[PROOFSTEP]
have : toOpen S (PrimeSpectrum.basicOpen <| algebraMap R S r) x = 0 := by refine' Eq.trans _ e; rfl
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
⊢ ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
[PROOFSTEP]
refine' Eq.trans _ e
[GOAL]
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
⊢ ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x))
[PROOFSTEP]
rfl
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
have :=
(@IsLocalization.mk'_one _ _ _ _ _ _ (StructureSheaf.IsLocalization.to_basicOpen S <| algebraMap R S r) x).trans this
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
this :
IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
obtain ⟨⟨_, n, rfl⟩, e⟩ := (IsLocalization.mk'_eq_zero_iff _ _).mp this
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e✝ :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
this :
IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } *
x =
0
⊢ ∃ m, m • x = 0
[PROOFSTEP]
refine' ⟨⟨r, hpr⟩ ^ n, _⟩
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e✝ :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
this :
IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } *
x =
0
⊢ { val := r, property := hpr } ^ n • x = 0
[PROOFSTEP]
rw [Submonoid.smul_def, Algebra.smul_def]
-- Porting note : manually rewrite `Submonoid.coe_pow`
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e✝ :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
this :
IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } *
x =
0
⊢ ↑(algebraMap ↑R ↑S) ↑({ val := r, property := hpr } ^ n) * x = 0
[PROOFSTEP]
change (algebraMap R S) (r ^ n) * x = 0
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e✝ :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
this :
IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } *
x =
0
⊢ ↑(algebraMap ↑R ↑S) (r ^ n) * x = 0
[PROOFSTEP]
rw [map_pow]
[GOAL]
case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro
R S : CommRingCat
f : R ⟶ S
p : PrimeSpectrum ↑R
inst✝ : Algebra ↑R ↑S
x : ↑S
hx :
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
(↑(toOpen ↑S ⊤) x) =
(forget CommRingCat).map
(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val)
{ val := p, property := trivial })
0
U : TopologicalSpace.Opens ↑(Spec.topObj R)
hpU : p ∈ U
i₁ : U ⟶ ⊤
i₂ : U ⟶ ⊤
r : ↑R
hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r
hrU : PrimeSpectrum.basicOpen r ≤ U
e✝ :
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op)
(↑(toOpen ↑S ⊤) x)) =
↑((structureSheaf ↑S).val.map
((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op)
(↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op)
0)
this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0
this :
IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n,
property :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } *
x =
0
⊢ ↑(algebraMap ↑R ↑S) r ^ n * x = 0
[PROOFSTEP]
exact e
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Spec", "llama_tokens": 38961} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ≃o β
s : Set α
x : β
h : IsLUB (↑f '' s) x
⊢ ∀ {x y : α}, ↑f x ≤ ↑f y ↔ x ≤ y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ≃o β
s : Set α
x : β
h : IsLUB s (↑(symm f) x)
⊢ ∀ {x y : β}, ↑(symm f) x ≤ ↑(symm f) y ↔ x ≤ y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ≃o β
s : Set α
x : α
⊢ IsLUB (↑f '' s) (↑f x) ↔ IsLUB s x
[PROOFSTEP]
rw [isLUB_image, f.symm_apply_apply]
[GOAL]
α : Type u_2
β : Type u_1
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ≃o β
s : Set β
x : α
⊢ IsLUB (↑f ⁻¹' s) x ↔ IsLUB s (↑f x)
[PROOFSTEP]
rw [← f.symm_symm, ← image_eq_preimage, isLUB_image]
[GOAL]
α : Type u_2
β : Type u_1
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ≃o β
s : Set β
x : β
⊢ IsLUB (↑f ⁻¹' s) (↑(symm f) x) ↔ IsLUB s x
[PROOFSTEP]
rw [isLUB_preimage, f.apply_symm_apply]
| {"mathlib_filename": "Mathlib.Order.Bounds.OrderIso", "llama_tokens": 562} |
[GOAL]
P : Type u_1
inst✝ : Preorder P
IF : PrimePair P
⊢ IsProper IF.I
[PROOFSTEP]
cases' IF.F.nonempty with w h
[GOAL]
case intro
P : Type u_1
inst✝ : Preorder P
IF : PrimePair P
w : P
h : w ∈ ↑IF.F
⊢ IsProper IF.I
[PROOFSTEP]
apply isProper_of_not_mem (_ : w ∉ IF.I)
[GOAL]
P : Type u_1
inst✝ : Preorder P
IF : PrimePair P
w : P
h : w ∈ ↑IF.F
⊢ ¬w ∈ IF.I
[PROOFSTEP]
rwa [← IF.compl_I_eq_F] at h
[GOAL]
P : Type u_1
inst✝ : Preorder P
IF : PrimePair P
src✝ : IsProper IF.I := I_isProper IF
⊢ IsPFilter (↑IF.I)ᶜ
[PROOFSTEP]
rw [IF.compl_I_eq_F]
[GOAL]
P : Type u_1
inst✝ : Preorder P
IF : PrimePair P
src✝ : IsProper IF.I := I_isProper IF
⊢ IsPFilter ↑IF.F
[PROOFSTEP]
exact IF.F.isPFilter
[GOAL]
P : Type u_1
inst✝ : SemilatticeInf P
x✝ y✝ : P
I : Ideal P
hI : IsPrime I
x y : P
⊢ x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
contrapose!
[GOAL]
P : Type u_1
inst✝ : SemilatticeInf P
x✝ y✝ : P
I : Ideal P
hI : IsPrime I
x y : P
⊢ ¬x ∈ I ∧ ¬y ∈ I → ¬x ⊓ y ∈ I
[PROOFSTEP]
let F := hI.compl_filter.toPFilter
[GOAL]
P : Type u_1
inst✝ : SemilatticeInf P
x✝ y✝ : P
I : Ideal P
hI : IsPrime I
x y : P
F : PFilter P := IsPFilter.toPFilter (_ : IsPFilter (↑I)ᶜ)
⊢ ¬x ∈ I ∧ ¬y ∈ I → ¬x ⊓ y ∈ I
[PROOFSTEP]
show x ∈ F ∧ y ∈ F → x ⊓ y ∈ F
[GOAL]
P : Type u_1
inst✝ : SemilatticeInf P
x✝ y✝ : P
I : Ideal P
hI : IsPrime I
x y : P
F : PFilter P := IsPFilter.toPFilter (_ : IsPFilter (↑I)ᶜ)
⊢ x ∈ F ∧ y ∈ F → x ⊓ y ∈ F
[PROOFSTEP]
exact fun h => inf_mem h.1 h.2
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeInf P
x y : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
⊢ IsPrime I
[PROOFSTEP]
rw [IsPrime_iff]
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeInf P
x y : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
⊢ IsProper I ∧ IsPFilter (↑I)ᶜ
[PROOFSTEP]
use‹_›
[GOAL]
case right
P : Type u_1
inst✝¹ : SemilatticeInf P
x y : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
⊢ IsPFilter (↑I)ᶜ
[PROOFSTEP]
refine .of_def ?_ ?_ ?_
[GOAL]
case right.refine_1
P : Type u_1
inst✝¹ : SemilatticeInf P
x y : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
⊢ Set.Nonempty (↑I)ᶜ
[PROOFSTEP]
exact Set.nonempty_compl.2 (I.IsProper_iff.1 ‹_›)
[GOAL]
case right.refine_2
P : Type u_1
inst✝¹ : SemilatticeInf P
x y : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
⊢ DirectedOn (fun x x_1 => x ≥ x_1) (↑I)ᶜ
[PROOFSTEP]
intro x hx y hy
[GOAL]
case right.refine_2
P : Type u_1
inst✝¹ : SemilatticeInf P
x✝ y✝ : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
x : P
hx : x ∈ (↑I)ᶜ
y : P
hy : y ∈ (↑I)ᶜ
⊢ ∃ z, z ∈ (↑I)ᶜ ∧ (fun x x_1 => x ≥ x_1) x z ∧ (fun x x_1 => x ≥ x_1) y z
[PROOFSTEP]
exact ⟨x ⊓ y, fun h => (hI h).elim hx hy, inf_le_left, inf_le_right⟩
[GOAL]
case right.refine_3
P : Type u_1
inst✝¹ : SemilatticeInf P
x y : P
I : Ideal P
inst✝ : IsProper I
hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
⊢ ∀ {x y : P}, x ≤ y → x ∈ (↑I)ᶜ → y ∈ (↑I)ᶜ
[PROOFSTEP]
exact @mem_compl_of_ge _ _ _
[GOAL]
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
⊢ IsPrime I
[PROOFSTEP]
rw [isPrime_iff_mem_or_mem]
[GOAL]
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
⊢ ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
intro x y
[GOAL]
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
⊢ x ⊓ y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
contrapose!
[GOAL]
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
⊢ ¬x ∈ I ∧ ¬y ∈ I → ¬x ⊓ y ∈ I
[PROOFSTEP]
rintro ⟨hx, hynI⟩ hxy
[GOAL]
case intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
⊢ False
[PROOFSTEP]
apply hynI
[GOAL]
case intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
⊢ y ∈ I
[PROOFSTEP]
let J := I ⊔ principal x
[GOAL]
case intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
⊢ y ∈ I
[PROOFSTEP]
have hJuniv : (J : Set P) = Set.univ := IsMaximal.maximal_proper (lt_sup_principal_of_not_mem ‹_›)
[GOAL]
case intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
⊢ y ∈ I
[PROOFSTEP]
have hyJ : y ∈ ↑J := Set.eq_univ_iff_forall.mp hJuniv y
[GOAL]
case intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
hyJ : y ∈ ↑J
⊢ y ∈ I
[PROOFSTEP]
rw [coe_sup_eq] at hyJ
[GOAL]
case intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
hyJ : y ∈ {x_1 | ∃ i, i ∈ I ∧ ∃ j, j ∈ principal x ∧ x_1 = i ⊔ j}
⊢ y ∈ I
[PROOFSTEP]
rcases hyJ with ⟨a, ha, b, hb, hy⟩
[GOAL]
case intro.intro.intro.intro.intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
a : P
ha : a ∈ I
b : P
hb : b ∈ principal x
hy : y = a ⊔ b
⊢ y ∈ I
[PROOFSTEP]
rw [hy]
[GOAL]
case intro.intro.intro.intro.intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
a : P
ha : a ∈ I
b : P
hb : b ∈ principal x
hy : y = a ⊔ b
⊢ a ⊔ b ∈ I
[PROOFSTEP]
refine' sup_mem ha (I.lower (le_inf hb _) hxy)
[GOAL]
case intro.intro.intro.intro.intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
a : P
ha : a ∈ I
b : P
hb : b ∈ principal x
hy : y = a ⊔ b
⊢ b ≤ y
[PROOFSTEP]
rw [hy]
[GOAL]
case intro.intro.intro.intro.intro
P : Type u_1
inst✝¹ : DistribLattice P
I : Ideal P
inst✝ : IsMaximal I
x y : P
hx : ¬x ∈ I
hynI : ¬y ∈ I
hxy : x ⊓ y ∈ I
J : Ideal P := I ⊔ principal x
hJuniv : ↑J = Set.univ
a : P
ha : a ∈ I
b : P
hb : b ∈ principal x
hy : y = a ⊔ b
⊢ b ≤ a ⊔ b
[PROOFSTEP]
exact le_sup_right
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsPrime I
⊢ x ∈ I ∨ xᶜ ∈ I
[PROOFSTEP]
apply hI.mem_or_mem
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsPrime I
⊢ x ⊓ xᶜ ∈ I
[PROOFSTEP]
rw [inf_compl_eq_bot]
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsPrime I
⊢ ⊥ ∈ I
[PROOFSTEP]
exact I.bot_mem
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x : P
I : Ideal P
inst✝ : IsProper I
h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I
⊢ IsPrime I
[PROOFSTEP]
simp only [isPrime_iff_mem_or_mem, or_iff_not_imp_left]
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x : P
I : Ideal P
inst✝ : IsProper I
h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I
⊢ ∀ {x y : P}, x ⊓ y ∈ I → ¬x ∈ I → y ∈ I
[PROOFSTEP]
intro x y hxy hxI
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsProper I
h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I
x y : P
hxy : x ⊓ y ∈ I
hxI : ¬x ∈ I
⊢ y ∈ I
[PROOFSTEP]
have hxcI : xᶜ ∈ I := h.resolve_left hxI
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsProper I
h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I
x y : P
hxy : x ⊓ y ∈ I
hxI : ¬x ∈ I
hxcI : xᶜ ∈ I
⊢ y ∈ I
[PROOFSTEP]
have ass : x ⊓ y ⊔ y ⊓ xᶜ ∈ I := sup_mem hxy (I.lower inf_le_right hxcI)
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsProper I
h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I
x y : P
hxy : x ⊓ y ∈ I
hxI : ¬x ∈ I
hxcI : xᶜ ∈ I
ass : x ⊓ y ⊔ y ⊓ xᶜ ∈ I
⊢ y ∈ I
[PROOFSTEP]
rwa [inf_comm, sup_inf_inf_compl] at ass
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x : P
I : Ideal P
inst✝ : IsPrime I
⊢ IsMaximal I
[PROOFSTEP]
simp only [IsMaximal_iff, Set.eq_univ_iff_forall, IsPrime.toIsProper, true_and]
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x : P
I : Ideal P
inst✝ : IsPrime I
⊢ ∀ ⦃J : Ideal P⦄, I < J → ∀ (x : P), x ∈ ↑J
[PROOFSTEP]
intro J hIJ x
[GOAL]
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsPrime I
J : Ideal P
hIJ : I < J
x : P
⊢ x ∈ ↑J
[PROOFSTEP]
rcases Set.exists_of_ssubset hIJ with ⟨y, hyJ, hyI⟩
[GOAL]
case intro.intro
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsPrime I
J : Ideal P
hIJ : I < J
x y : P
hyJ : y ∈ ↑J
hyI : ¬y ∈ ↑I
⊢ x ∈ ↑J
[PROOFSTEP]
suffices ass : x ⊓ y ⊔ x ⊓ yᶜ ∈ J
[GOAL]
case intro.intro
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsPrime I
J : Ideal P
hIJ : I < J
x y : P
hyJ : y ∈ ↑J
hyI : ¬y ∈ ↑I
ass : x ⊓ y ⊔ x ⊓ yᶜ ∈ J
⊢ x ∈ ↑J
[PROOFSTEP]
rwa [sup_inf_inf_compl] at ass
[GOAL]
case ass
P : Type u_1
inst✝¹ : BooleanAlgebra P
x✝ : P
I : Ideal P
inst✝ : IsPrime I
J : Ideal P
hIJ : I < J
x y : P
hyJ : y ∈ ↑J
hyI : ¬y ∈ ↑I
⊢ x ⊓ y ⊔ x ⊓ yᶜ ∈ J
[PROOFSTEP]
exact sup_mem (J.lower inf_le_right hyJ) (hIJ.le <| I.lower inf_le_right <| IsPrime.mem_compl_of_not_mem ‹_› hyI)
[GOAL]
P : Type u_1
inst✝ : Preorder P
IF : Ideal.PrimePair P
⊢ IsIdeal (↑IF.F)ᶜ
[PROOFSTEP]
rw [IF.compl_F_eq_I]
[GOAL]
P : Type u_1
inst✝ : Preorder P
IF : Ideal.PrimePair P
⊢ IsIdeal ↑IF.I
[PROOFSTEP]
exact IF.I.isIdeal
| {"mathlib_filename": "Mathlib.Order.PrimeIdeal", "llama_tokens": 5405} |
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
hz : z ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ ∃ c N acd,
f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
rw [← submodule_span_eq, Finsupp.span_eq_range_total, LinearMap.mem_range] at hz
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
hz : ∃ y, ↑(Finsupp.total (↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) (Away f) (Away f) Subtype.val) y = z
⊢ ∃ c N acd,
f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
rcases hz with ⟨c, eq1⟩
[GOAL]
case intro
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ↑(Finsupp.total (↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) (Away f) (Away f) Subtype.val) c = z
⊢ ∃ c N acd,
f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
rw [Finsupp.total_apply, Finsupp.sum] at eq1
[GOAL]
case intro
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
⊢ ∃ c N acd,
f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
obtain ⟨⟨_, N, rfl⟩, hN⟩ := IsLocalization.exist_integer_multiples_of_finset (Submonoid.powers f) (c.support.image c)
[GOAL]
case intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
N : ℕ
hN :
∀ (a : Away f),
a ∈ image (↑c) c.support →
IsLocalization.IsInteger A
(↑{ val := (fun x x_1 => x ^ x_1) f N,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } •
a)
⊢ ∃ c N acd,
f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
choose acd hacd using hN
[GOAL]
case intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
N : ℕ
acd : (a : Away f) → a ∈ image (↑c) c.support → A
hacd :
∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support),
↑(algebraMap A (Away f)) (acd a a_1) =
↑{ val := (fun x x_1 => x ^ x_1) f N,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } •
a
⊢ ∃ c N acd,
f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
refine' ⟨c, N, acd, _⟩
[GOAL]
case intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
N : ℕ
acd : (a : Away f) → a ∈ image (↑c) c.support → A
hacd :
∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support),
↑(algebraMap A (Away f)) (acd a a_1) =
↑{ val := (fun x x_1 => x ^ x_1) f N,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } •
a
⊢ f ^ N • z =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
rw [← eq1, smul_sum, map_sum, ← sum_attach]
[GOAL]
case intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
N : ℕ
acd : (a : Away f) → a ∈ image (↑c) c.support → A
hacd :
∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support),
↑(algebraMap A (Away f)) (acd a a_1) =
↑{ val := (fun x x_1 => x ^ x_1) f N,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } •
a
⊢ ∑ x_1 in attach c.support, f ^ N • ↑c ↑x_1 • ↑↑x_1 =
∑ x_1 in attach c.support,
↑(algebraMap A (Away f))
(acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
congr 1
[GOAL]
case intro.intro.mk.intro.e_f
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
N : ℕ
acd : (a : Away f) → a ∈ image (↑c) c.support → A
hacd :
∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support),
↑(algebraMap A (Away f)) (acd a a_1) =
↑{ val := (fun x x_1 => x ^ x_1) f N,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } •
a
⊢ (fun x_1 => f ^ N • ↑c ↑x_1 • ↑↑x_1) = fun x_1 =>
↑(algebraMap A (Away f))
(acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
ext i
[GOAL]
case intro.intro.mk.intro.e_f.h
R : Type u_1
A : Type u_2
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝¹ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
inst✝ : DecidableEq (Away f)
z : Away f
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
eq1 : ∑ a in c.support, ↑c a • ↑a = z
N : ℕ
acd : (a : Away f) → a ∈ image (↑c) c.support → A
hacd :
∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support),
↑(algebraMap A (Away f)) (acd a a_1) =
↑{ val := (fun x x_1 => x ^ x_1) f N,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } •
a
i : { x_1 // x_1 ∈ c.support }
⊢ f ^ N • ↑c ↑i • ↑↑i =
↑(algebraMap A (Away f))
(acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
[PROOFSTEP]
rw [_root_.map_mul, hacd, (Classical.choose_spec i.1.2).2, smul_eq_mul, smul_mul_assoc]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
⊢ Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
by_contra rid
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
rid : ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
⊢ False
[PROOFSTEP]
rw [Set.not_disjoint_iff] at rid
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
rid : ∃ x_1, x_1 ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ∧ x_1 ∈ ↑(Submonoid.powers f)
⊢ False
[PROOFSTEP]
choose g hg using rid
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
g : A
hg : g ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ∧ g ∈ ↑(Submonoid.powers f)
⊢ False
[PROOFSTEP]
obtain ⟨hg1, ⟨k, rfl⟩⟩ := hg
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : (fun x x_1 => x ^ x_1) f k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)
⊢ False
[PROOFSTEP]
by_cases k_ineq : 0 < k
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : (fun x x_1 => x ^ x_1) f k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)
k_ineq : 0 < k
⊢ False
[PROOFSTEP]
erw [x.1.isPrime.pow_mem_iff_mem _ k_ineq] at hg1
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : f ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
k_ineq : 0 < k
⊢ False
[PROOFSTEP]
exact x.2 hg1
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : (fun x x_1 => x ^ x_1) f k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)
k_ineq : ¬0 < k
⊢ False
[PROOFSTEP]
dsimp at hg1
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : f ^ k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)
k_ineq : ¬0 < k
⊢ False
[PROOFSTEP]
erw [show k = 0 by linarith, pow_zero, ← Ideal.eq_top_iff_one] at hg1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : f ^ k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)
k_ineq : ¬0 < k
⊢ k = 0
[PROOFSTEP]
linarith
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal = ⊤
k_ineq : ¬0 < k
⊢ False
[PROOFSTEP]
apply x.1.isPrime.1
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
k : ℕ
hg1 : HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal = ⊤
k_ineq : ¬0 < k
⊢ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal = ⊤
[PROOFSTEP]
exact hg1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
⊢ carrier x ≠ ⊤
[PROOFSTEP]
have eq_top := disjoint x
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
⊢ carrier x ≠ ⊤
[PROOFSTEP]
classical
contrapose! eq_top
obtain ⟨c, N, acd, eq1⟩ := MemCarrier.clear_denominator x ((Ideal.eq_top_iff_one _).mp eq_top)
rw [Algebra.smul_def, HomogeneousLocalization.one_val, mul_one] at eq1
change Localization.mk (f ^ N) 1 = Localization.mk _ 1 at eq1
simp only [mk_eq_mk', IsLocalization.eq] at eq1
rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩
dsimp at eq1
erw [one_mul, one_mul] at eq1
change f ^ _ * f ^ _ = f ^ _ * _ at eq1
rw [Set.not_disjoint_iff_nonempty_inter]
refine'
⟨f ^ M * f ^ N, eq1.symm ▸ mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _),
⟨M + N, by dsimp; rw [pow_add]⟩⟩
generalize_proofs h₁ h₂
exact (Classical.choose_spec h₂).1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
⊢ carrier x ≠ ⊤
[PROOFSTEP]
contrapose! eq_top
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
obtain ⟨c, N, acd, eq1⟩ := MemCarrier.clear_denominator x ((Ideal.eq_top_iff_one _).mp eq_top)
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
f ^ N • HomogeneousLocalization.val 1 =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
rw [Algebra.smul_def, HomogeneousLocalization.one_val, mul_one] at eq1
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
↑(algebraMap A (Localization (Submonoid.powers f))) (f ^ N) =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
change Localization.mk (f ^ N) 1 = Localization.mk _ 1 at eq1
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
Localization.mk (f ^ N) 1 =
Localization.mk
(↑(algebraMap A A)
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
1
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
simp only [mk_eq_mk', IsLocalization.eq] at eq1
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
∃ c_1,
↑c_1 * (↑1 * f ^ N) =
↑c_1 *
(↑1 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑1 * f ^ N) =
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑1 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
dsimp at eq1
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (1 * f ^ N) =
f ^ M *
(1 *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
erw [one_mul, one_mul] at eq1
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
change f ^ _ * f ^ _ = f ^ _ * _ at eq1
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f)
[PROOFSTEP]
rw [Set.not_disjoint_iff_nonempty_inter]
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ Set.Nonempty (↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ∩ ↑(Submonoid.powers f))
[PROOFSTEP]
refine'
⟨f ^ M * f ^ N, eq1.symm ▸ mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _),
⟨M + N, by dsimp; rw [pow_add]⟩⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ (fun x x_1 => x ^ x_1) f (M + N) = f ^ M * f ^ N
[PROOFSTEP]
dsimp
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ f ^ (M + N) = f ^ M * f ^ N
[PROOFSTEP]
rw [pow_add]
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
i : { x_1 // x_1 ∈ c.support }
x✝ : i ∈ attach c.support
⊢ Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ∈
HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
generalize_proofs h₁ h₂
[GOAL]
case intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
eq_top : carrier x = ⊤
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * f ^ N =
f ^ M *
∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
i : { x_1 // x_1 ∈ c.support }
x✝ : i ∈ attach c.support
h₁ : AddSubmonoidClass (Submodule R A) A
h₂ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal
⊢ Exists.choose h₂ ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
exact (Classical.choose_spec h₂).1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 : x1 * x2 ∈ carrier x
⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x
[PROOFSTEP]
classical
rw [mem_carrier_iff] at hx12
let J := span ((algebraMap A (Away f) : A → (Away f)) '' x.val.asHomogeneousIdeal)
suffices h : ∀ x y : Localization.Away f, x * y ∈ J → x ∈ J ∨ y ∈ J
· rw [HomogeneousLocalization.mul_val] at hx12 ; exact h x1.val x2.val hx12
clear x1 x2 hx12
intro x1 x2 hx12
induction' x1 using Localization.induction_on with data_x1
induction' x2 using Localization.induction_on with data_x2
rcases data_x1, data_x2 with ⟨⟨a1, _, ⟨n1, rfl⟩⟩, ⟨a2, _, ⟨n2, rfl⟩⟩⟩
rcases MemCarrier.clear_denominator' x hx12 with ⟨c, N, acd, eq1⟩
simp only [Algebra.smul_def] at eq1
change Localization.mk (f ^ N) 1 * (Localization.mk _ _ * Localization.mk _ _) = Localization.mk _ _ at eq1
simp only [Localization.mk_mul, one_mul] at eq1
simp only [mk_eq_mk', IsLocalization.eq] at eq1
rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩
rw [Submonoid.coe_one, one_mul] at eq1
change f ^ _ * (_ * _) = f ^ _ * (f ^ _ * f ^ _ * _) at eq1
have that : a1 * a2 * f ^ N * f ^ M ∈ x.val.asHomogeneousIdeal.toIdeal := ?_
rcases x.1.isPrime.mem_or_mem (show a1 * a2 * f ^ N * f ^ M ∈ _ from that) with (h1 | rid2)
rcases x.1.isPrime.mem_or_mem h1 with (h1 | rid1)
rcases x.1.isPrime.mem_or_mem h1 with (h1 | h2)
· left;
simp only [show
(Localization.mk a1 ⟨f ^ n1, _⟩ : Away f) =
Localization.mk a1 1 * Localization.mk 1 (⟨f ^ n1, ⟨n1, rfl⟩⟩ : Submonoid.powers f)
by rw [Localization.mk_mul, mul_one, one_mul]]
exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h1, rfl⟩)
· right;
simp only [show (mk a2 ⟨f ^ n2, _⟩ : Away f) = mk a2 1 * Localization.mk 1 (⟨f ^ n2, ⟨n2, rfl⟩⟩ : Submonoid.powers f)
by rw [Localization.mk_mul, mul_one, one_mul]]
exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h2, rfl⟩)
· exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem N rid1))
· exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem M rid2))
· rw [← mul_comm (f ^ M), ← mul_comm (f ^ N), eq1]
refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _))
generalize_proofs h₁ h₂; exact (Classical.choose_spec h₂).1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 : x1 * x2 ∈ carrier x
⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x
[PROOFSTEP]
rw [mem_carrier_iff] at hx12
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x
[PROOFSTEP]
let J := span ((algebraMap A (Away f) : A → (Away f)) '' x.val.asHomogeneousIdeal)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x
[PROOFSTEP]
suffices h : ∀ x y : Localization.Away f, x * y ∈ J → x ∈ J ∨ y ∈ J
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
h : ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J
⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x
[PROOFSTEP]
rw [HomogeneousLocalization.mul_val] at hx12
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 :
HomogeneousLocalization.val x1 * HomogeneousLocalization.val x2 ∈
span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
h : ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J
⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x
[PROOFSTEP]
exact h x1.val x2.val hx12
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
x1 x2 : ↑(CommRingCat.of (A⁰_ f))
hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J
[PROOFSTEP]
clear x1 x2 hx12
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
⊢ ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J
[PROOFSTEP]
intro x1 x2 hx12
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12 : x1 * x2 ∈ J
⊢ x1 ∈ J ∨ x2 ∈ J
[PROOFSTEP]
induction' x1 using Localization.induction_on with data_x1
[GOAL]
case h.H
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝ : x1 * x2 ∈ J
data_x1 : A × { x // x ∈ Submonoid.powers f }
hx12 : Localization.mk data_x1.fst data_x1.snd * x2 ∈ J
⊢ Localization.mk data_x1.fst data_x1.snd ∈ J ∨ x2 ∈ J
[PROOFSTEP]
induction' x2 using Localization.induction_on with data_x2
[GOAL]
case h.H.H
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
data_x1 : A × { x // x ∈ Submonoid.powers f }
hx12✝¹ : Localization.mk data_x1.fst data_x1.snd * x2 ∈ J
data_x2 : A × { x // x ∈ Submonoid.powers f }
hx12✝ : x1 * Localization.mk data_x2.fst data_x2.snd ∈ J
hx12 : Localization.mk data_x1.fst data_x1.snd * Localization.mk data_x2.fst data_x2.snd ∈ J
⊢ Localization.mk data_x1.fst data_x1.snd ∈ J ∨ Localization.mk data_x2.fst data_x2.snd ∈ J
[PROOFSTEP]
rcases data_x1, data_x2 with ⟨⟨a1, _, ⟨n1, rfl⟩⟩, ⟨a2, _, ⟨n2, rfl⟩⟩⟩
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
rcases MemCarrier.clear_denominator' x hx12 with ⟨c, N, acd, eq1⟩
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
f ^ N •
(Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd) =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
simp only [Algebra.smul_def] at eq1
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
↑(algebraMap A (Away f)) (f ^ N) *
(Localization.mk a1
{ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } *
Localization.mk a2
{ val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) =
↑(algebraMap A (Away f))
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
change Localization.mk (f ^ N) 1 * (Localization.mk _ _ * Localization.mk _ _) = Localization.mk _ _ at eq1
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
Localization.mk (f ^ N) 1 *
(Localization.mk a1
{ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } *
Localization.mk a2
{ val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) =
Localization.mk
(↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
1
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
simp only [Localization.mk_mul, one_mul] at eq1
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
Localization.mk (f ^ N * (a1 * a2))
({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } *
{ val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) =
Localization.mk
(↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
1
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
simp only [mk_eq_mk', IsLocalization.eq] at eq1
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
eq1 :
∃ c_1,
↑c_1 * (↑1 * (f ^ N * (a1 * a2))) =
↑c_1 *
(↑({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } *
{ val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑1 * (f ^ N * (a1 * a2))) =
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } *
{ val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
rw [Submonoid.coe_one, one_mul] at eq1
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(f ^ N * (a1 * a2)) =
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } *
{ val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
change f ^ _ * (_ * _) = f ^ _ * (f ^ _ * f ^ _ * _) at eq1
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
have that : a1 * a2 * f ^ N * f ^ M ∈ x.val.asHomogeneousIdeal.toIdeal := ?_
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
rcases x.1.isPrime.mem_or_mem (show a1 * a2 * f ^ N * f ^ M ∈ _ from that) with (h1 | rid2)
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
rid2 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
rcases x.1.isPrime.mem_or_mem h1 with (h1 | rid1)
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
rid1 : f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
rid2 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
rcases x.1.isPrime.mem_or_mem h1 with (h1 | h2)
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
left
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inl.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J
[PROOFSTEP]
simp only [show
(Localization.mk a1 ⟨f ^ n1, _⟩ : Away f) =
Localization.mk a1 1 * Localization.mk 1 (⟨f ^ n1, ⟨n1, rfl⟩⟩ : Submonoid.powers f)
by rw [Localization.mk_mul, mul_one, one_mul]]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk a1 { val := f ^ n1, property := ?m.499245 } =
Localization.mk a1 1 *
Localization.mk 1 { val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n1) }
[PROOFSTEP]
rw [Localization.mk_mul, mul_one, one_mul]
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inl.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk a1 1 *
Localization.mk 1 { val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n1) } ∈
span ((fun a => ↑(algebraMap A (Away f)) a) '' ↑(↑x).asHomogeneousIdeal)
[PROOFSTEP]
exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h1, rfl⟩)
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
right
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inr.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
simp only [show (mk a2 ⟨f ^ n2, _⟩ : Away f) = mk a2 1 * Localization.mk 1 (⟨f ^ n2, ⟨n2, rfl⟩⟩ : Submonoid.powers f) by
rw [Localization.mk_mul, mul_one, one_mul]]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk a2 { val := f ^ n2, property := ?m.654160 } =
Localization.mk a2 1 *
Localization.mk 1 { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n2) }
[PROOFSTEP]
rw [Localization.mk_mul, mul_one, one_mul]
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inr.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk a2 1 *
Localization.mk 1 { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n2) } ∈
span ((fun a => ↑(algebraMap A (Away f)) a) '' ↑(↑x).asHomogeneousIdeal)
[PROOFSTEP]
exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h2, rfl⟩)
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
h1 : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
rid1 : f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem N rid1))
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
rid2 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
⊢ Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈
J ∨
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
[PROOFSTEP]
exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem M rid2))
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
rw [← mul_comm (f ^ M), ← mul_comm (f ^ N), eq1]
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
⊢ f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ∈
HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _))
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝¹ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
i : { x_1 // x_1 ∈ c.support }
x✝ : i ∈ attach c.support
⊢ Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ∈
HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
generalize_proofs h₁ h₂
[GOAL]
case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x✝¹ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)
x1 x2 : Away f
hx12✝² : x1 * x2 ∈ J
a1 : A
n1 : ℕ
hx12✝¹ :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
x2 ∈
J
a2 : A
n2 : ℕ
hx12✝ :
x1 *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
hx12 :
Localization.mk
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst
(a1,
{ val := (fun x x_1 => x ^ x_1) f n1,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd *
Localization.mk
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst
(a2,
{ val := (fun x x_1 => x ^ x_1) f n2,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈
J
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y : Away f) → y ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * (a1 * a2)) =
f ^ M *
(f ^ n1 * f ^ n2 *
↑(algebraMap A A)
(∑ x_1 in attach c.support,
acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)))
i : { x_1 // x_1 ∈ c.support }
x✝ : i ∈ attach c.support
h₁ : AddSubmonoidClass (Submodule R A) A
h₂ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal
⊢ Exists.choose h₂ ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal
[PROOFSTEP]
exact (Classical.choose_spec h₂).1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
⊢ toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }) =
{x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
classical
ext1 y
constructor <;> intro hy
· refine' ⟨y.2, _⟩
rw [Set.mem_preimage, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen] at hy
rw [ProjectiveSpectrum.mem_coe_basicOpen]
intro a_mem_y
apply hy
rw [toFun, mem_carrier_iff, HomogeneousLocalization.val_mk'', Subtype.coe_mk]
dsimp; rcases b_mem2 with ⟨k, hk⟩
dsimp at hk
simp only [show (mk a ⟨b, ⟨k, hk⟩⟩ : Away f) = Localization.mk 1 (⟨f ^ k, ⟨_, rfl⟩⟩ : Submonoid.powers f) * mk a 1 by
rw [mk_mul, one_mul, mul_one]; congr; rw [hk]]
exact Ideal.mul_mem_left _ _ (Ideal.subset_span ⟨_, a_mem_y, rfl⟩)
· change y.1 ∈ ProjectiveSpectrum.basicOpen 𝒜 f ⊓ ProjectiveSpectrum.basicOpen 𝒜 a at hy
rcases hy with ⟨hy1, hy2⟩
rw [ProjectiveSpectrum.mem_coe_basicOpen] at hy1 hy2
rw [Set.mem_preimage, toFun, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen]
intro rid; dsimp at rid
rcases MemCarrier.clear_denominator _ rid with ⟨c, N, acd, eq1⟩
rw [Algebra.smul_def] at eq1
change Localization.mk (f ^ N) 1 * Localization.mk _ _ = Localization.mk _ _ at eq1
rw [mk_mul, one_mul, mk_eq_mk', IsLocalization.eq] at eq1
rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩
rw [Submonoid.coe_one, one_mul] at eq1
simp only [Subtype.coe_mk] at eq1
have : a * f ^ N * f ^ M ∈ y.val.asHomogeneousIdeal.toIdeal :=
by
rw [mul_comm _ (f ^ N), mul_comm _ (f ^ M), eq1]
refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _))
generalize_proofs h₁ h₂; exact (Classical.choose_spec h₂).1
rcases y.1.isPrime.mem_or_mem this with (H1 | H3)
rcases y.1.isPrime.mem_or_mem H1 with (H1 | H2)
· exact hy2 H1
· exact y.2 (y.1.isPrime.mem_of_pow_mem N H2)
· exact y.2 (y.1.isPrime.mem_of_pow_mem M H3)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
⊢ toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }) =
{x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
ext1 y
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
⊢ y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }) ↔
y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
⊢ y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }) →
y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
intro hy
[GOAL]
case h.mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
⊢ y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} →
y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
[PROOFSTEP]
intro hy
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
⊢ y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
refine' ⟨y.2, _⟩
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
⊢ ↑y ∈ ↑(pbo a)
[PROOFSTEP]
rw [Set.mem_preimage, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen] at hy
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
(toFun f y).asIdeal
⊢ ↑y ∈ ↑(pbo a)
[PROOFSTEP]
rw [ProjectiveSpectrum.mem_coe_basicOpen]
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
(toFun f y).asIdeal
⊢ ¬a ∈ (↑y).asHomogeneousIdeal
[PROOFSTEP]
intro a_mem_y
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
(toFun f y).asIdeal
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
apply hy
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
(toFun f y).asIdeal
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
⊢ Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
(toFun f y).asIdeal
[PROOFSTEP]
rw [toFun, mem_carrier_iff, HomogeneousLocalization.val_mk'', Subtype.coe_mk]
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
(toFun f y).asIdeal
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
⊢ Localization.mk a
{
val :=
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den,
property :=
(_ :
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den ∈
Submonoid.powers f) } ∈
span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)
[PROOFSTEP]
dsimp
[GOAL]
case h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy :
¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
(toFun f y).asIdeal
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
⊢ Localization.mk a { val := b, property := b_mem2 } ∈ span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)
[PROOFSTEP]
rcases b_mem2 with ⟨k, hk⟩
[GOAL]
case h.mp.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k✝ : ℕ
a_mem : a ∈ 𝒜 k✝
b_mem1 : b ∈ 𝒜 k✝
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
k : ℕ
hk : (fun x x_1 => x ^ x_1) f k = b
hy :
¬Quotient.mk''
{ deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
(toFun f y).asIdeal
⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)
[PROOFSTEP]
dsimp at hk
[GOAL]
case h.mp.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k✝ : ℕ
a_mem : a ∈ 𝒜 k✝
b_mem1 : b ∈ 𝒜 k✝
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
k : ℕ
hk : f ^ k = b
hy :
¬Quotient.mk''
{ deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
(toFun f y).asIdeal
⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)
[PROOFSTEP]
simp only [show (mk a ⟨b, ⟨k, hk⟩⟩ : Away f) = Localization.mk 1 (⟨f ^ k, ⟨_, rfl⟩⟩ : Submonoid.powers f) * mk a 1 by
rw [mk_mul, one_mul, mul_one]; congr; rw [hk]]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k✝ : ℕ
a_mem : a ∈ 𝒜 k✝
b_mem1 : b ∈ 𝒜 k✝
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
k : ℕ
hk : f ^ k = b
hy :
¬Quotient.mk''
{ deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
(toFun f y).asIdeal
⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } =
Localization.mk 1 { val := f ^ k, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ k) } * Localization.mk a 1
[PROOFSTEP]
rw [mk_mul, one_mul, mul_one]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k✝ : ℕ
a_mem : a ∈ 𝒜 k✝
b_mem1 : b ∈ 𝒜 k✝
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
k : ℕ
hk : f ^ k = b
hy :
¬Quotient.mk''
{ deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
(toFun f y).asIdeal
⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } =
Localization.mk a { val := f ^ k, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ k) }
[PROOFSTEP]
congr
[GOAL]
case e_y.e_val
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k✝ : ℕ
a_mem : a ∈ 𝒜 k✝
b_mem1 : b ∈ 𝒜 k✝
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
k : ℕ
hk : f ^ k = b
hy :
¬Quotient.mk''
{ deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
(toFun f y).asIdeal
⊢ b = f ^ k
[PROOFSTEP]
rw [hk]
[GOAL]
case h.mp.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k✝ : ℕ
a_mem : a ∈ 𝒜 k✝
b_mem1 : b ∈ 𝒜 k✝
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
a_mem_y : a ∈ (↑y).asHomogeneousIdeal
k : ℕ
hk : f ^ k = b
hy :
¬Quotient.mk''
{ deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈
(toFun f y).asIdeal
⊢ Localization.mk 1 { val := f ^ k, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ k) } * Localization.mk a 1 ∈
span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)
[PROOFSTEP]
exact Ideal.mul_mem_left _ _ (Ideal.subset_span ⟨_, a_mem_y, rfl⟩)
[GOAL]
case h.mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy : y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
⊢ y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
[PROOFSTEP]
change y.1 ∈ ProjectiveSpectrum.basicOpen 𝒜 f ⊓ ProjectiveSpectrum.basicOpen 𝒜 a at hy
[GOAL]
case h.mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy : ↑y ∈ (pbo f) ⊓ pbo a
⊢ y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
[PROOFSTEP]
rcases hy with ⟨hy1, hy2⟩
[GOAL]
case h.mpr.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ↑y ∈ ↑(pbo f)
hy2 : ↑y ∈ ↑(pbo a)
⊢ y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
[PROOFSTEP]
rw [ProjectiveSpectrum.mem_coe_basicOpen] at hy1 hy2
[GOAL]
case h.mpr.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
⊢ y ∈
toFun f ⁻¹'
↑(sbo
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 })
[PROOFSTEP]
rw [Set.mem_preimage, toFun, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen]
[GOAL]
case h.mpr.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
⊢ ¬Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 } ∈
{ asIdeal := carrier y, IsPrime := (_ : IsPrime (carrier y)) }.asIdeal
[PROOFSTEP]
intro rid
[GOAL]
case h.mpr.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
{ asIdeal := carrier y, IsPrime := (_ : IsPrime (carrier y)) }.asIdeal
⊢ False
[PROOFSTEP]
dsimp at rid
[GOAL]
case h.mpr.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
⊢ False
[PROOFSTEP]
rcases MemCarrier.clear_denominator _ rid with ⟨c, N, acd, eq1⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
eq1 :
f ^ N •
HomogeneousLocalization.val
(Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }) =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))
⊢ False
[PROOFSTEP]
rw [Algebra.smul_def] at eq1
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
eq1 :
↑(algebraMap A (Localization (Submonoid.powers f))) (f ^ N) *
HomogeneousLocalization.val
(Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }) =
↑(algebraMap A (Away f))
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))
⊢ False
[PROOFSTEP]
change Localization.mk (f ^ N) 1 * Localization.mk _ _ = Localization.mk _ _ at eq1
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
eq1 :
Localization.mk (f ^ N) 1 *
Localization.mk
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.num
{
val :=
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den,
property :=
(_ :
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den ∈
Submonoid.powers f) } =
Localization.mk
(↑(algebraMap A A)
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
1
⊢ False
[PROOFSTEP]
rw [mk_mul, one_mul, mk_eq_mk', IsLocalization.eq] at eq1
[GOAL]
case h.mpr.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
eq1 :
∃ c_1,
↑c_1 *
(↑1 *
(f ^ N *
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.num)) =
↑c_1 *
(↑{
val :=
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den,
property :=
(_ :
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den ∈
Submonoid.powers f) } *
↑(algebraMap A A)
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
⊢ False
[PROOFSTEP]
rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑1 *
(f ^ N *
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.num)) =
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑{
val :=
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den,
property :=
(_ :
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den ∈
Submonoid.powers f) } *
↑(algebraMap A A)
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
⊢ False
[PROOFSTEP]
rw [Submonoid.coe_one, one_mul] at eq1
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(f ^ N *
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.num) =
↑{ val := (fun x x_1 => x ^ x_1) f M,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } *
(↑{
val :=
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den,
property :=
(_ :
↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 },
den_mem := b_mem2 }.den ∈
Submonoid.powers f) } *
↑(algebraMap A A)
(∑ i in attach c.support,
acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
⊢ False
[PROOFSTEP]
simp only [Subtype.coe_mk] at eq1
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
⊢ False
[PROOFSTEP]
have : a * f ^ N * f ^ M ∈ y.val.asHomogeneousIdeal.toIdeal :=
by
rw [mul_comm _ (f ^ N), mul_comm _ (f ^ M), eq1]
refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _))
generalize_proofs h₁ h₂; exact (Classical.choose_spec h₂).1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
⊢ a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
[PROOFSTEP]
rw [mul_comm _ (f ^ N), mul_comm _ (f ^ M), eq1]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
⊢ f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ∈
HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
[PROOFSTEP]
refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _))
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
i : { x // x ∈ c.support }
x✝ : i ∈ attach c.support
⊢ Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) ∈
HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
[PROOFSTEP]
generalize_proofs h₁ h₂
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
i : { x // x ∈ c.support }
x✝ : i ∈ attach c.support
h₁ : AddSubmonoidClass (Submodule R A) A
h₂ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal
⊢ Exists.choose h₂ ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
[PROOFSTEP]
exact (Classical.choose_spec h₂).1
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
rcases y.1.isPrime.mem_or_mem this with (H1 | H3)
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H1 : a * f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
case h.mpr.intro.intro.intro.intro.intro.mk.intro.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H3 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
rcases y.1.isPrime.mem_or_mem H1 with (H1 | H2)
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro.inl.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H1✝ : a * f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H1 : a ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
exact hy2 H1
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro.inl.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H1 : a * f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H2 : f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
exact y.2 (y.1.isPrime.mem_of_pow_mem N H2)
[GOAL]
case h.mpr.intro.intro.intro.intro.intro.mk.intro.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))))
a b : A
k : ℕ
a_mem : a ∈ 𝒜 k
b_mem1 : b ∈ 𝒜 k
b_mem2 : b ∈ Submonoid.powers f
y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace
hy1 : ¬f ∈ (↑y).asHomogeneousIdeal
hy2 : ¬a ∈ (↑y).asHomogeneousIdeal
rid :
Quotient.mk''
{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈
carrier y
c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f
N : ℕ
acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A
M : ℕ
eq1 :
f ^ M * (f ^ N * a) =
f ^ M *
(b *
↑(algebraMap A A)
(∑ x in attach c.support,
acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) *
Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)))
this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
H3 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
exact y.2 (y.1.isPrime.mem_of_pow_mem M H3)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
⊢ Continuous (ToSpec.toFun f)
[PROOFSTEP]
apply IsTopologicalBasis.continuous PrimeSpectrum.isTopologicalBasis_basic_opens
[GOAL]
case hf
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
⊢ ∀ (s : Set (PrimeSpectrum ↑(CommRingCat.of (A⁰_ f)))),
(s ∈ Set.range fun r => ↑(sbo r)) → IsOpen (ToSpec.toFun f ⁻¹' s)
[PROOFSTEP]
rintro _ ⟨⟨k, ⟨a, ha⟩, ⟨b, hb1⟩, ⟨k', hb2⟩⟩, rfl⟩
[GOAL]
case hf.intro.mk.mk.mk.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
⊢ IsOpen
(ToSpec.toFun f ⁻¹'
(fun r => ↑(sbo r))
(Quot.mk Setoid.r
{ deg := k, num := { val := a, property := ha }, den := { val := b, property := hb1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := b, property := hb1 }) }))
[PROOFSTEP]
dsimp
[GOAL]
case hf.intro.mk.mk.mk.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
⊢ IsOpen
(ToSpec.toFun f ⁻¹'
↑(sbo
Quot.mk Setoid.r
{ deg := k, num := { val := a, property := ha }, den := { val := b, property := hb1 },
den_mem := (_ : ∃ y, f ^ y = b) }))
[PROOFSTEP]
erw [ToSpec.preimage_eq f a b k ha hb1 ⟨k', hb2⟩]
[GOAL]
case hf.intro.mk.mk.mk.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
⊢ IsOpen {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
refine' isOpen_induced_iff.mpr ⟨(pbo f).1 ⊓ (pbo a).1, IsOpen.inter (pbo f).2 (pbo a).2, _⟩
[GOAL]
case hf.intro.mk.mk.mk.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
⊢ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) = {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
ext z
[GOAL]
case hf.intro.mk.mk.mk.mk.intro.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
z : ↑((Opens.toTopCat Proj.T).obj (pbo f))
⊢ z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) ↔ z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
constructor
[GOAL]
case hf.intro.mk.mk.mk.mk.intro.h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
z : ↑((Opens.toTopCat Proj.T).obj (pbo f))
⊢ z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) → z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
intro hz
[GOAL]
case hf.intro.mk.mk.mk.mk.intro.h.mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
z : ↑((Opens.toTopCat Proj.T).obj (pbo f))
hz : z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier)
⊢ z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
[PROOFSTEP]
simpa [Set.mem_preimage]
[GOAL]
case hf.intro.mk.mk.mk.mk.intro.h.mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
z : ↑((Opens.toTopCat Proj.T).obj (pbo f))
⊢ z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} → z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier)
[PROOFSTEP]
intro hz
[GOAL]
case hf.intro.mk.mk.mk.mk.intro.h.mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
w✝ : ↑(CommRingCat.of (A⁰_ f))
k : ℕ
a : A
ha : a ∈ 𝒜 k
b : A
hb1 : b ∈ 𝒜 k
k' : ℕ
hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 }
z : ↑((Opens.toTopCat Proj.T).obj (pbo f))
hz : z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a}
⊢ z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier)
[PROOFSTEP]
simpa only [Set.inf_eq_inter, Set.mem_inter_iff, Set.mem_preimage]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
⊢ ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
⊢ f ^ i ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
⊢ f ^ i ∈ 𝒜 (i * m)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
⊢ ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
⊢ f ^ i ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
⊢ f ^ i ∈ 𝒜 (i * m)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
⊢ (∀ (i : ℕ),
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal) ↔
∀ (i : ℕ),
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
⊢ (∀ (i : ℕ),
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal) →
∀ (i : ℕ),
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}
[PROOFSTEP]
intro h i
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
⊢ (∀ (i : ℕ),
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}) →
∀ (i : ℕ),
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
intro h i
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
h :
∀ (i : ℕ),
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
i : ℕ
⊢ Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}
[PROOFSTEP]
specialize h i
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
h :
∀ (i : ℕ),
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}
i : ℕ
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
specialize h i
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
h :
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
⊢ Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}
[PROOFSTEP]
rw [Set.mem_image]
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
h :
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
⊢ ∃ x,
x ∈ {s | s ∈ q.asIdeal} ∧
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
[PROOFSTEP]
refine' ⟨_, h, rfl⟩
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
h :
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈
↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
rw [Set.mem_image] at h
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
h :
∃ x,
x ∈ {s | s ∈ q.asIdeal} ∧
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
rcases h with ⟨x, h, hx⟩
[GOAL]
case mpr.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
x : A⁰_ f
h : x ∈ {s | s ∈ q.asIdeal}
hx :
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
change x ∈ q.asIdeal at h
[GOAL]
case mpr.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
x : A⁰_ f
hx :
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
h : x ∈ q.asIdeal
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert h
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
x : A⁰_ f
hx :
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
h : x ∈ q.asIdeal
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } =
x
[PROOFSTEP]
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'']
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
x : A⁰_ f
hx :
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
h : x ∈ q.asIdeal
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num
{
val :=
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } =
HomogeneousLocalization.val x
[PROOFSTEP]
dsimp only [Subtype.coe_mk]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
x : A⁰_ f
hx :
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
h : x ∈ q.asIdeal
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, f ^ y = f ^ i) } =
HomogeneousLocalization.val x
[PROOFSTEP]
rw [← hx]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a : A
i : ℕ
x : A⁰_ f
hx :
↑(algebraMap (A⁰_ f) (Away f)) x =
Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) }
h : x ∈ q.asIdeal
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ ↑(algebraMap (A⁰_ f) (Away f)) x = HomogeneousLocalization.val x
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
⊢ a + b ∈ carrier f_deg q
[PROOFSTEP]
refine' fun i => (q.2.mem_or_mem _).elim id id
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
change (Quotient.mk'' ⟨_, _, _, _⟩ : A⁰_ f) ∈ q.1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
⊢ Quotient.mk''
{
deg :=
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg +
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg,
num :=
{
val :=
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num ∈
𝒜
({ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg +
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) },
den :=
{
val :=
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
𝒜
({ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg +
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) },
den_mem :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } ∈
q.asIdeal
[PROOFSTEP]
dsimp only [Subtype.coe_mk]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
⊢ Quotient.mk''
{ deg := m * i + m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m * ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num ∈
𝒜
({ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg +
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) },
den :=
{ val := f ^ i * f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
𝒜
({ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg +
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) },
den_mem :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den *
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (a + b) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(a + b)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } ∈
q.asIdeal
[PROOFSTEP]
simp_rw [← pow_add, map_add, add_pow, mul_comm, ← nsmul_eq_mul]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
⊢ Quotient.mk''
{ deg := m * i + m * i,
num :=
{ val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) } ∈
q.asIdeal
[PROOFSTEP]
let g : ℕ → A⁰_ f := fun j =>
(m + m).choose j •
if h2 : m + m < j then (0 : A⁰_ f)
else
-- Porting note: inlining `l`, `r` causes a "can't synth HMul A⁰_ f A⁰_ f ?" errorif h1 : j ≤ m then
letI l : A⁰_ f :=
Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i a ^ j * proj 𝒜 i b ^ (m - j), ?_⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩
letI r : A⁰_ f := Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i b ^ m, by mem_tac⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩
l * r
else
letI l : A⁰_ f := Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i a ^ m, by mem_tac⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩
letI r : A⁰_ f :=
Quotient.mk''
⟨m * i, ⟨proj 𝒜 i a ^ (j - m) * proj 𝒜 i b ^ (m + m - j), ?_⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩
l * r
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ f ^ i ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ f ^ i ∈ 𝒜 (i * m)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := ?m.1574888 },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑(proj 𝒜 i) b ^ m ∈ 𝒜 (m * i)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := ?m.1574888 },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ f ^ i ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := ?m.1574888 },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ f ^ i ∈ 𝒜 (i * m)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ f ^ i ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ f ^ i ∈ 𝒜 (i * m)
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ f ^ i ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [mul_comm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ f ^ i ∈ 𝒜 (i * m)
[PROOFSTEP]
mem_tac
[GOAL]
case refine_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property :=
(_ :
let l :=
Quotient.mk''
{ deg := m * i,
num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) };
↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ Quotient.mk''
{ deg := m * i + m * i,
num :=
{ val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) } ∈
q.asIdeal
case refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)
case refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)
[PROOFSTEP]
rotate_left
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [(_ : m * i = _)]
-- Porting note: it seems unification with mul_mem is more fiddly reducing value of mem_tac
[GOAL]
case refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 ?m.1610121
[PROOFSTEP]
apply GradedMonoid.toGradedMul.mul_mem (i := j • i) (j := (m - j) • i)
[GOAL]
case refine_1.a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(proj 𝒜 i) a ^ j ∈ 𝒜 (j • i)
[PROOFSTEP]
mem_tac_aux
[GOAL]
case refine_1.a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 ((m - j) • i)
[PROOFSTEP]
mem_tac_aux
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ m * i = j • i + (m - j) • i
[PROOFSTEP]
rw [← add_smul, Nat.add_sub_of_le h1]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : j ≤ m
⊢ m * i = m • i
[PROOFSTEP]
rfl
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)
[PROOFSTEP]
rw [(_ : m * i = _)]
[GOAL]
case refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 ?m.1612661
[PROOFSTEP]
apply GradedMonoid.toGradedMul.mul_mem (i := (j - m) • i) (j := (m + m - j) • i)
[GOAL]
case refine_2.a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑(proj 𝒜 i) a ^ (j - m) ∈ 𝒜 ((j - m) • i)
[PROOFSTEP]
mem_tac_aux
[GOAL]
case refine_2.a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 ((m + m - j) • i)
[PROOFSTEP]
mem_tac_aux
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ m * i = (j - m) • i + (m + m - j) • i
[PROOFSTEP]
rw [← add_smul]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ m * i = (j - m + (m + m - j)) • i
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ m = j - m + (m + m - j)
[PROOFSTEP]
zify [le_of_not_lt h2, le_of_not_le h1]
[GOAL]
case e_a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑m = ↑j - ↑m + (↑m + ↑m - ↑j)
[PROOFSTEP]
abel
[GOAL]
case e_a
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i j : ℕ
h2 : ¬m + m < j
h1 : ¬j ≤ m
l : A⁰_ f :=
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ↑m = ↑j - ↑m + (↑m + ↑m - ↑j)
[PROOFSTEP]
abel
[GOAL]
case refine_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ Quotient.mk''
{ deg := m * i + m * i,
num :=
{ val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) } ∈
q.asIdeal
[PROOFSTEP]
convert_to ∑ i in range (m + m + 1), g i ∈ q.1
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Quotient.mk''
{ deg := m * i + m * i,
num :=
{ val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) } =
∑ i in range (m + m + 1), g i
case refine_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ∑ i in range (m + m + 1), g i ∈ q.asIdeal
[PROOFSTEP]
swap
[GOAL]
case refine_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
⊢ ∑ i in range (m + m + 1), g i ∈ q.asIdeal
[PROOFSTEP]
refine' q.1.sum_mem fun j _ => nsmul_mem _ _
[GOAL]
case refine_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
j : ℕ
x✝ : j ∈ range (m + m + 1)
⊢ (if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }) ∈
q.asIdeal
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
j : ℕ
x✝ : j ∈ range (m + m + 1)
h✝ : m + m < j
⊢ 0 ∈ q.asIdeal
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
j : ℕ
x✝ : j ∈ range (m + m + 1)
h✝¹ : ¬m + m < j
h✝ : j ≤ m
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
j : ℕ
x✝ : j ∈ range (m + m + 1)
h✝¹ : ¬m + m < j
h✝ : ¬j ≤ m
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
exacts [q.1.zero_mem, q.1.mul_mem_left _ (hb i), q.1.mul_mem_right _ (ha i)]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Quotient.mk''
{ deg := m * i + m * i,
num :=
{ val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) } =
∑ i in range (m + m + 1), g i
[PROOFSTEP]
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'']
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk
↑{ deg := m * i + m * i,
num :=
{
val :=
∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) }.num
{
val :=
↑{ deg := m * i + m * i,
num :=
{
val :=
∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) }.den,
property :=
(_ :
↑{ deg := m * i + m * i,
num :=
{
val :=
∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) }.den ∈
Submonoid.powers f) } =
HomogeneousLocalization.val (∑ i in range (m + m + 1), g i)
[PROOFSTEP]
change _ = (algebraMap (HomogeneousLocalization.Away 𝒜 f) (Localization.Away f)) _
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk
↑{ deg := m * i + m * i,
num :=
{
val :=
∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) }.num
{
val :=
↑{ deg := m * i + m * i,
num :=
{
val :=
∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) }.den,
property :=
(_ :
↑{ deg := m * i + m * i,
num :=
{
val :=
∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)),
property :=
(_ :
(fun x => x ∈ 𝒜 (m * i + m * i))
(∑ x in range (m + m + 1),
Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) },
den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) },
den_mem :=
(_ :
↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈
Submonoid.powers f) }.den ∈
Submonoid.powers f) } =
↑(algebraMap (A⁰_ f) (Away f)) (∑ i in range (m + m + 1), g i)
[PROOFSTEP]
dsimp only [Subtype.coe_mk]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
↑(algebraMap (A⁰_ f) (Away f))
(∑ i_1 in range (m + m + 1),
Nat.choose (m + m) i_1 •
if h2 : m + m < i_1 then 0
else
if h1 : i_1 ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ i_1 * ↑(proj 𝒜 i) b ^ (m - i_1),
property := (_ : ↑(proj 𝒜 i) a ^ i_1 * ↑(proj 𝒜 i) b ^ (m - i_1) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (i_1 - m) * ↑(proj 𝒜 i) b ^ (m + m - i_1),
property := (_ : ↑(proj 𝒜 i) a ^ (i_1 - m) * ↑(proj 𝒜 i) b ^ (m + m - i_1) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
rw [map_sum, mk_sum]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ ∑ i_1 in range (m + m + 1),
Localization.mk (Nat.choose (m + m) i_1 • (↑(proj 𝒜 i) a ^ i_1 * ↑(proj 𝒜 i) b ^ (m + m - i_1)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
∑ x in range (m + m + 1),
↑(algebraMap (A⁰_ f) (Away f))
(Nat.choose (m + m) x •
if h2 : m + m < x then 0
else
if h1 : x ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m - x),
property := (_ : ↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m - x) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (x - m) * ↑(proj 𝒜 i) b ^ (m + m - x),
property := (_ : ↑(proj 𝒜 i) a ^ (x - m) * ↑(proj 𝒜 i) b ^ (m + m - x) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
apply Finset.sum_congr rfl fun j hj => _
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ ∀ (j : ℕ),
j ∈ range (m + m + 1) →
Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
↑(algebraMap (A⁰_ f) (Away f))
(Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
intro j hj
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
↑(algebraMap (A⁰_ f) (Away f))
(Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
change _ = HomogeneousLocalization.val _
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
HomogeneousLocalization.val
(Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
rw [HomogeneousLocalization.smul_val]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
HomogeneousLocalization.val
(if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
split_ifs with h2 h1
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : m + m < j
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j • HomogeneousLocalization.val 0
[PROOFSTEP]
exact ((Finset.mem_range.1 hj).not_le h2).elim
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
HomogeneousLocalization.val
(Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
HomogeneousLocalization.val
(Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
all_goals
simp only [HomogeneousLocalization.mul_val, HomogeneousLocalization.zero_val, HomogeneousLocalization.val_mk'',
Subtype.coe_mk, mk_mul, ← smul_mk];
congr 2
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
HomogeneousLocalization.val
(Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
simp only [HomogeneousLocalization.mul_val, HomogeneousLocalization.zero_val, HomogeneousLocalization.val_mk'',
Subtype.coe_mk, mk_mul, ← smul_mk]
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ Nat.choose (m + m) j •
Localization.mk (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
Localization.mk (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) * ↑(proj 𝒜 i) b ^ m)
({ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) } *
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) })
[PROOFSTEP]
congr 2
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
HomogeneousLocalization.val
(Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) })
[PROOFSTEP]
simp only [HomogeneousLocalization.mul_val, HomogeneousLocalization.zero_val, HomogeneousLocalization.val_mk'',
Subtype.coe_mk, mk_mul, ← smul_mk]
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ Nat.choose (m + m) j •
Localization.mk (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))
{ val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
Nat.choose (m + m) j •
Localization.mk (↑(proj 𝒜 i) a ^ m * (↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j)))
({ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) } *
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) })
[PROOFSTEP]
congr 2
[GOAL]
case pos.e_a.e_x
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j) = ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) * ↑(proj 𝒜 i) b ^ m
[PROOFSTEP]
dsimp
[GOAL]
case pos.e_a.e_x
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ ↑(↑(↑(decompose 𝒜) a) i) ^ j * ↑(↑(↑(decompose 𝒜) b) i) ^ (m + m - j) =
↑(↑(↑(decompose 𝒜) a) i) ^ j * ↑(↑(↑(decompose 𝒜) b) i) ^ (m - j) * ↑(↑(↑(decompose 𝒜) b) i) ^ m
[PROOFSTEP]
rw [mul_assoc, ← pow_add, add_comm (m - j), Nat.add_sub_assoc h1]
[GOAL]
case pos.e_a.e_y
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ { val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) } *
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) }
[PROOFSTEP]
simp_rw [pow_add]
[GOAL]
case pos.e_a.e_y
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : j ≤ m
⊢ { val := f ^ i * f ^ i, property := (_ : (fun x => x ∈ Submonoid.powers f) (f ^ i * f ^ i)) } =
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) } *
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) }
[PROOFSTEP]
rfl
[GOAL]
case neg.e_a.e_x
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j) =
↑(proj 𝒜 i) a ^ m * (↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j))
[PROOFSTEP]
dsimp
[GOAL]
case neg.e_a.e_x
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ ↑(↑(↑(decompose 𝒜) a) i) ^ j * ↑(↑(↑(decompose 𝒜) b) i) ^ (m + m - j) =
↑(↑(↑(decompose 𝒜) a) i) ^ m * (↑(↑(↑(decompose 𝒜) a) i) ^ (j - m) * ↑(↑(↑(decompose 𝒜) b) i) ^ (m + m - j))
[PROOFSTEP]
rw [← mul_assoc, ← pow_add, Nat.add_sub_of_le (le_of_not_le h1)]
[GOAL]
case neg.e_a.e_y
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ { val := f ^ (i + i),
property :=
(_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } =
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) } *
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) }
[PROOFSTEP]
simp_rw [pow_add]
[GOAL]
case neg.e_a.e_y
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
a b : A
ha : a ∈ carrier f_deg q
hb : b ∈ carrier f_deg q
i : ℕ
g : ℕ → A⁰_ f :=
fun j =>
Nat.choose (m + m) j •
if h2 : m + m < j then 0
else
if h1 : j ≤ m then
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j),
property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) b ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
else
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } *
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
j : ℕ
hj : j ∈ range (m + m + 1)
h2 : ¬m + m < j
h1 : ¬j ≤ m
⊢ { val := f ^ i * f ^ i, property := (_ : (fun x => x ∈ Submonoid.powers f) (f ^ i * f ^ i)) } =
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) } *
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j),
property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈
Submonoid.powers f) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) 0 ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert Submodule.zero_mem q.1 using 1
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) 0 ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } =
0
[PROOFSTEP]
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Localization.mk
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) 0 ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num
{
val :=
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) 0 ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) 0 ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } =
0
[PROOFSTEP]
simp_rw [map_zero, zero_pow hm]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Localization.mk 0
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) 0 ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } =
0
[PROOFSTEP]
convert Localization.mk_zero (S := Submonoid.powers f) _ using 1
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
c x : A
hx : x ∈ carrier f_deg q
⊢ c • x ∈ carrier f_deg q
[PROOFSTEP]
revert c
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
⊢ ∀ (c : A), c • x ∈ carrier f_deg q
[PROOFSTEP]
refine' DirectSum.Decomposition.inductionOn 𝒜 _ _ _
[GOAL]
case refine'_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
⊢ 0 • x ∈ carrier f_deg q
[PROOFSTEP]
rw [zero_smul]
[GOAL]
case refine'_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
⊢ 0 ∈ carrier f_deg q
[PROOFSTEP]
exact carrier.zero_mem f_deg hm _
[GOAL]
case refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
⊢ ∀ {i : ℕ} (m_1 : { x // x ∈ 𝒜 i }), ↑m_1 • x ∈ carrier f_deg q
[PROOFSTEP]
rintro n ⟨a, ha⟩ i
[GOAL]
case refine'_2.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) (↑{ val := a, property := ha } • x) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
(↑{ val := a, property := ha } • x)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
simp_rw [proj_apply, smul_eq_mul, coe_decompose_mul_of_left_mem 𝒜 i ha]
-- Porting note: having trouble with Mul instance
[GOAL]
case refine'_2.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := (if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m,
property :=
(_ : (fun x => x ∈ 𝒜 (m * i)) ((if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
let product : A⁰_ f :=
Mul.mul (Quotient.mk'' ⟨_, ⟨a ^ m, pow_mem_graded m ha⟩, ⟨_, ?_⟩, ⟨n, rfl⟩⟩ : A⁰_ f)
(Quotient.mk'' ⟨_, ⟨proj 𝒜 (i - n) x ^ m, by mem_tac⟩, ⟨_, ?_⟩, ⟨i - n, rfl⟩⟩ : A⁰_ f)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 ?m.1735966
[PROOFSTEP]
mem_tac
[GOAL]
case refine'_2.mk.refine_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := (if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m,
property :=
(_ : (fun x => x ∈ 𝒜 (m * i)) ((if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (fun x => x ∈ 𝒜 (m * i)) ((a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert_to product ∈ q.1
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (fun x => x ∈ 𝒜 (m * i)) ((a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } =
product
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } =
Mul.mul
(Quotient.mk''
{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) })
(Quotient.mk''
{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) })
[PROOFSTEP]
erw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.mul_val,
HomogeneousLocalization.val_mk'', HomogeneousLocalization.val_mk'']
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk
↑{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num
{
val :=
↑{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } =
Localization.mk
↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.num
{
val :=
↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den,
property :=
(_ :
↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈
Submonoid.powers f) } *
Localization.mk
↑{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.num
{
val :=
↑{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den,
property :=
(_ :
↑{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈
Submonoid.powers f) }
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
[PROOFSTEP]
simp_rw [mul_pow]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk (a ^ m * ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m)
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } =
Localization.mk (a ^ m)
{ val := f ^ n,
property :=
(_ :
↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈
Submonoid.powers f) } *
Localization.mk (↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m)
{ val := f ^ (i - n),
property :=
(_ :
↑{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈
Submonoid.powers f) }
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
[PROOFSTEP]
rw [Localization.mk_mul]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ Localization.mk (a ^ m * ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m)
{ val := f ^ i,
property :=
(_ :
↑{ deg := m * i,
num :=
{ val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m,
property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈
Submonoid.powers f) } =
Localization.mk (a ^ m * ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m)
({ val := f ^ n,
property :=
(_ :
↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈
Submonoid.powers f) } *
{ val := f ^ (i - n),
property :=
(_ :
↑{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈
Submonoid.powers f) })
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
[PROOFSTEP]
congr
[GOAL]
case h.e'_4.h.e_y.e_val
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) })
h : n ≤ i
e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f
⊢ f ^ i =
↑{ val := f ^ n,
property :=
(_ :
↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := ?refine'_2.mk.refine_1 },
den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈
Submonoid.powers f) } *
↑{ val := f ^ (i - n),
property :=
(_ :
↑{ deg := m * (i - n),
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m,
property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 },
den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈
Submonoid.powers f) }
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
[PROOFSTEP]
erw [← pow_add, Nat.add_sub_of_le h]
[GOAL]
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 (m • n)
[PROOFSTEP]
rw [(_ : m • n = _)]
[GOAL]
case refine'_2.mk.refine_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ n ∈ 𝒜 ?m.1761702
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ ℕ
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ m • n = ?m.1761702
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ m • n = n • m
[PROOFSTEP]
simp only [smul_eq_mul, mul_comm]
[GOAL]
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n))
[PROOFSTEP]
rw [(_ : m • (i - n) = _)]
[GOAL]
case refine'_2.mk.refine_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ f ^ (i - n) ∈ 𝒜 ?m.1764150
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ ℕ
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ m • (i - n) = ?m.1764150
[PROOFSTEP]
mem_tac
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
⊢ m • (i - n) = (i - n) • m
[PROOFSTEP]
simp only [smul_eq_mul, mul_comm]
[GOAL]
case pos
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) })
h : n ≤ i
⊢ product ∈ q.asIdeal
[PROOFSTEP]
apply Ideal.mul_mem_left (α := A⁰_ f) _ _ (hx _)
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) })
h : ¬n ≤ i
⊢ Quotient.mk''
{ deg := m * i, num := { val := 0 ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * i)) (0 ^ m)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
simp_rw [zero_pow hm]
[GOAL]
case neg
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) })
h : ¬n ≤ i
⊢ Quotient.mk''
{ deg := m * i, num := { val := 0, property := (_ : (fun x => x ∈ 𝒜 (m * i)) 0) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert carrier.zero_mem f_deg hm q i
[GOAL]
case h.e'_4.h.e'_3.h.e'_10.h.e'_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
n : ℕ
a : A
ha : a ∈ 𝒜 n
i : ℕ
product : A⁰_ f :=
Mul.mul
(Quotient.mk''
{ deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) })
(Quotient.mk''
{ deg := m • (i - n),
num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) },
den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) })
h : ¬n ≤ i
⊢ 0 = ↑(proj 𝒜 i) 0 ^ m
[PROOFSTEP]
rw [map_zero, zero_pow hm]
[GOAL]
case refine'_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
⊢ ∀ (m_1 m' : A), m_1 • x ∈ carrier f_deg q → m' • x ∈ carrier f_deg q → (m_1 + m') • x ∈ carrier f_deg q
[PROOFSTEP]
simp_rw [add_smul]
[GOAL]
case refine'_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x : A
hx : x ∈ carrier f_deg q
⊢ ∀ (m_1 m' : A), m_1 • x ∈ carrier f_deg q → m' • x ∈ carrier f_deg q → m_1 • x + m' • x ∈ carrier f_deg q
[PROOFSTEP]
exact fun _ _ => carrier.add_mem f_deg q
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
a : A
ha : a ∈ asIdeal f_deg hm q
j : ℕ
h : i = j
⊢ Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) ↑(↑(↑(decompose 𝒜) a) i) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
↑(↑(↑(decompose 𝒜) a) i)) ^
m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
simpa only [proj_apply, decompose_coe, of_eq_same] using ha _
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
a : A
ha : a ∈ asIdeal f_deg hm q
j : ℕ
h : ¬i = j
⊢ Quotient.mk''
{ deg := m * j,
num :=
{ val := ↑(proj 𝒜 j) ↑(↑(↑(decompose 𝒜) a) i) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply j) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜)))
↑(↑(↑(decompose 𝒜) a) i)) ^
m ∈
𝒜 (m • j)) },
den := { val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) }) } ∈
q.asIdeal
[PROOFSTEP]
simp only [proj_apply, decompose_of_mem_ne 𝒜 (Submodule.coe_mem (decompose 𝒜 a i)) h, zero_pow hm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
a : A
ha : a ∈ asIdeal f_deg hm q
j : ℕ
h : ¬i = j
⊢ Quotient.mk''
{ deg := m * j, num := { val := 0, property := (_ : (fun x => x ∈ 𝒜 (m * j)) 0) },
den := { val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert carrier.zero_mem f_deg hm q j
[GOAL]
case h.e'_4.h.e'_3.h.e'_10.h.e'_3
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
i : ℕ
a : A
ha : a ∈ asIdeal f_deg hm q
j : ℕ
h : ¬i = j
⊢ 0 = ↑(proj 𝒜 j) 0 ^ m
[PROOFSTEP]
rw [map_zero, zero_pow hm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
rid : f ∈ asIdeal f_deg hm q
⊢ 1 ∈ q.asIdeal
[PROOFSTEP]
convert rid m
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
rid : f ∈ asIdeal f_deg hm q
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ 1 =
Quotient.mk''
{ deg := m * m,
num :=
{ val := ↑(proj 𝒜 m) f ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈
𝒜 (m • m)) },
den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }
[PROOFSTEP]
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.one_val, HomogeneousLocalization.val_mk'']
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
rid : f ∈ asIdeal f_deg hm q
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ 1 =
Localization.mk
↑{ deg := m * m,
num :=
{ val := ↑(proj 𝒜 m) f ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈
𝒜 (m • m)) },
den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }.num
{
val :=
↑{ deg := m * m,
num :=
{ val := ↑(proj 𝒜 m) f ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈
𝒜 (m • m)) },
den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }.den,
property :=
(_ :
↑{ deg := m * m,
num :=
{ val := ↑(proj 𝒜 m) f ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈
𝒜 (m • m)) },
den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }.den ∈
Submonoid.powers f) }
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
rid : f ∈ asIdeal f_deg hm q
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ 1 =
Localization.mk (↑(↑(↑(decompose 𝒜) f) m) ^ m)
{ val := f ^ m,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }
[PROOFSTEP]
simp_rw [decompose_of_mem_same _ f_deg]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
rid : f ∈ asIdeal f_deg hm q
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ 1 =
Localization.mk (f ^ m)
{ val := f ^ m,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }
[PROOFSTEP]
simp only [mk_eq_monoidOf_mk', Submonoid.LocalizationMap.mk'_self]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ (∀ (i : ℕ),
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal) ∨
∀ (i : ℕ),
Quotient.mk''
{ deg := m * i,
num :=
{ val := ↑(proj 𝒜 i) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • i)) },
den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈
q.asIdeal
[PROOFSTEP]
rw [← and_forall_ne nx, and_iff_left, ← and_forall_ne ny, and_iff_left]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ Quotient.mk''
{ deg := m * nx,
num :=
{ val := ↑(proj 𝒜 nx) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • nx)) },
den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } ∈
q.asIdeal ∨
Quotient.mk''
{ deg := m * ny,
num :=
{ val := ↑(proj 𝒜 ny) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • ny)) },
den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } ∈
q.asIdeal
[PROOFSTEP]
apply q.2.mem_or_mem
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ Quotient.mk''
{ deg := m * nx,
num :=
{ val := ↑(proj 𝒜 nx) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • nx)) },
den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } *
Quotient.mk''
{ deg := m * ny,
num :=
{ val := ↑(proj 𝒜 ny) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • ny)) },
den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert hxy (nx + ny) using 1
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ Quotient.mk''
{ deg := m * nx,
num :=
{ val := ↑(proj 𝒜 nx) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • nx)) },
den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } *
Quotient.mk''
{ deg := m * ny,
num :=
{ val := ↑(proj 𝒜 ny) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • ny)) },
den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } =
Quotient.mk''
{ deg := m * (nx + ny),
num :=
{ val := ↑(proj 𝒜 (nx + ny)) (x * y) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply (nx + ny)) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (x * y)) ^
m ∈
𝒜 (m • (nx + ny))) },
den := { val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) }) }
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ Quotient.mk''
{ deg := m * nx,
num :=
{ val := ↑(↑(↑(decompose 𝒜) x) nx) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • nx)) },
den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } *
Quotient.mk''
{ deg := m * ny,
num :=
{ val := ↑(↑(↑(decompose 𝒜) y) ny) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • ny)) },
den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } =
Quotient.mk''
{ deg := m * (nx + ny),
num :=
{ val := ↑(↑(↑(decompose 𝒜) (x * y)) (nx + ny)) ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply (nx + ny)) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (x * y)) ^
m ∈
𝒜 (m • (nx + ny))) },
den := { val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) }) }
[PROOFSTEP]
simp_rw [decompose_of_mem_same 𝒜 hnx, decompose_of_mem_same 𝒜 hny,
decompose_of_mem_same 𝒜 (SetLike.GradedMonoid.toGradedMul.mul_mem hnx hny), mul_pow, pow_add]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ Quotient.mk''
{ deg := m * nx, num := { val := x ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * nx)) (x ^ m)) },
den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } *
Quotient.mk''
{ deg := m * ny, num := { val := y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * ny)) (y ^ m)) },
den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } =
Quotient.mk''
{ deg := m * (nx + ny),
num := { val := x ^ m * y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (x ^ m * y ^ m)) },
den := { val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) },
den_mem :=
(_ :
↑{ val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) } ∈
Submonoid.powers f) }
[PROOFSTEP]
simp only [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.mul_val,
mk_mul]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
e_1✝ :
↑(CommRingCat.of (A⁰_ f)) =
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f)))
⊢ Localization.mk (x ^ m * y ^ m)
({ val := f ^ nx,
property :=
(_ :
↑{ deg := m * nx, num := { val := x ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * nx)) (x ^ m)) },
den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) }.den ∈
Submonoid.powers f) } *
{ val := f ^ ny,
property :=
(_ :
↑{ deg := m * ny, num := { val := y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * ny)) (y ^ m)) },
den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y =
↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) }.den ∈
Submonoid.powers f) }) =
Localization.mk (x ^ m * y ^ m)
{ val := f ^ nx * f ^ ny,
property :=
(_ :
↑{ deg := m * (nx + ny),
num := { val := x ^ m * y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (x ^ m * y ^ m)) },
den :=
{ val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) },
den_mem :=
(_ :
↑{ val := f ^ nx * f ^ ny,
property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) } ∈
Submonoid.powers f) }.den ∈
Submonoid.powers f) }
[PROOFSTEP]
simp only [Submonoid.mk_mul_mk, mk_eq_monoidOf_mk']
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ ∀ (b : ℕ),
b ≠ ny →
Quotient.mk''
{ deg := m * b,
num :=
{ val := ↑(proj 𝒜 b) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • b)) },
den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈
q.asIdeal
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ ∀ (b : ℕ),
b ≠ nx →
Quotient.mk''
{ deg := m * b,
num :=
{ val := ↑(proj 𝒜 b) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • b)) },
den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈
q.asIdeal
[PROOFSTEP]
all_goals
intro n hn; convert q.1.zero_mem using 1
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val];
simp_rw [proj_apply]
convert mk_zero (S := Submonoid.powers f) _
rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm]
·
first
| exact hnx
| exact hny
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ ∀ (b : ℕ),
b ≠ ny →
Quotient.mk''
{ deg := m * b,
num :=
{ val := ↑(proj 𝒜 b) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • b)) },
den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈
q.asIdeal
[PROOFSTEP]
intro n hn
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
⊢ Quotient.mk''
{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert q.1.zero_mem using 1
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Quotient.mk''
{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } =
0
[PROOFSTEP]
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Localization.mk
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.num
{
val :=
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den,
property :=
(_ :
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈
Submonoid.powers f) } =
0
[PROOFSTEP]
simp_rw [proj_apply]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Localization.mk (↑(↑(↑(decompose 𝒜) y) n) ^ m)
{ val := f ^ n,
property :=
(_ :
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) y ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈
Submonoid.powers f) } =
0
[PROOFSTEP]
convert mk_zero (S := Submonoid.powers f) _
[GOAL]
case h.e'_2.h.e'_4
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ ↑(↑(↑(decompose 𝒜) y) n) ^ m = 0
[PROOFSTEP]
rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ y ∈ 𝒜 ny
[PROOFSTEP]
first
| exact hnx
| exact hny
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ y ∈ 𝒜 ny
[PROOFSTEP]
exact hnx
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ ny
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ y ∈ 𝒜 ny
[PROOFSTEP]
exact hny
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
⊢ ∀ (b : ℕ),
b ≠ nx →
Quotient.mk''
{ deg := m * b,
num :=
{ val := ↑(proj 𝒜 b) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • b)) },
den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈
q.asIdeal
[PROOFSTEP]
intro n hn
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
⊢ Quotient.mk''
{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } ∈
q.asIdeal
[PROOFSTEP]
convert q.1.zero_mem using 1
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Quotient.mk''
{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } =
0
[PROOFSTEP]
rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Localization.mk
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.num
{
val :=
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den,
property :=
(_ :
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈
Submonoid.powers f) } =
0
[PROOFSTEP]
simp_rw [proj_apply]
[GOAL]
case h.e'_4.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ Localization.mk (↑(↑(↑(decompose 𝒜) x) n) ^ m)
{ val := f ^ n,
property :=
(_ :
↑{ deg := m * n,
num :=
{ val := ↑(proj 𝒜 n) x ^ m,
property :=
(_ :
↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈
𝒜 (m • n)) },
den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) },
den_mem :=
(_ :
∃ y,
(fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈
Submonoid.powers f) } =
0
[PROOFSTEP]
convert mk_zero (S := Submonoid.powers f) _
[GOAL]
case h.e'_2.h.e'_4
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ ↑(↑(↑(decompose 𝒜) x) n) ^ m = 0
[PROOFSTEP]
rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ x ∈ 𝒜 nx
[PROOFSTEP]
first
| exact hnx
| exact hny
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
m : ℕ
f_deg : f ∈ 𝒜 m
hm : 0 < m
q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace
x y : A
x✝¹ : Homogeneous 𝒜 x
x✝ : Homogeneous 𝒜 y
hxy : x * y ∈ asIdeal f_deg hm q
nx : ℕ
hnx : x ∈ 𝒜 nx
ny : ℕ
hny : y ∈ 𝒜 ny
n : ℕ
hn : n ≠ nx
e_1✝ :
Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) =
↑(CommRingCat.of (A⁰_ f))
⊢ x ∈ 𝒜 nx
[PROOFSTEP]
exact hnx
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme", "llama_tokens": 221168} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝³ : Lattice α
inst✝² : OrderBot α
s t : Finset ι
f : ι → α
i : ι
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq α
⊢ Decidable (SupIndep s f)
[PROOFSTEP]
refine @Finset.decidableForallOfDecidableSubsets _ _ _ (?_)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝³ : Lattice α
inst✝² : OrderBot α
s t : Finset ι
f : ι → α
i : ι
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq α
⊢ (t : Finset ι) → t ⊆ s → Decidable (∀ ⦃i : ι⦄, i ∈ s → ¬i ∈ t → Disjoint (f i) (sup t f))
[PROOFSTEP]
rintro t -
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝³ : Lattice α
inst✝² : OrderBot α
s t✝ : Finset ι
f : ι → α
i : ι
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq α
t : Finset ι
⊢ Decidable (∀ ⦃i : ι⦄, i ∈ s → ¬i ∈ t → Disjoint (f i) (sup t f))
[PROOFSTEP]
refine @Finset.decidableDforallFinset _ _ _ (?_)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝³ : Lattice α
inst✝² : OrderBot α
s t✝ : Finset ι
f : ι → α
i : ι
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq α
t : Finset ι
⊢ (a : ι) → a ∈ s → Decidable (¬a ∈ t → Disjoint (f a) (sup t f))
[PROOFSTEP]
rintro i -
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝³ : Lattice α
inst✝² : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq α
t : Finset ι
i : ι
⊢ Decidable (¬i ∈ t → Disjoint (f i) (sup t f))
[PROOFSTEP]
have : Decidable (Disjoint (f i) (sup t f)) := decidable_of_iff' (_ = ⊥) disjoint_iff
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝³ : Lattice α
inst✝² : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝¹ : DecidableEq ι
inst✝ : DecidableEq α
t : Finset ι
i : ι
this : Decidable (Disjoint (f i) (sup t f))
⊢ Decidable (¬i ∈ t → Disjoint (f i) (sup t f))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t : Finset ι
f✝ : ι → α
i✝ i : ι
f : ι → α
s : Finset ι
hs : s ⊆ {i}
j : ι
hji : j ∈ {i}
hj : ¬j ∈ s
⊢ Disjoint (f j) (sup s f)
[PROOFSTEP]
rw [eq_empty_of_ssubset_singleton ⟨hs, fun h => hj (h hji)⟩, sup_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t : Finset ι
f✝ : ι → α
i✝ i : ι
f : ι → α
s : Finset ι
hs : s ⊆ {i}
j : ι
hji : j ∈ {i}
hj : ¬j ∈ s
⊢ Disjoint (f j) ⊥
[PROOFSTEP]
exact disjoint_bot_right
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
hs : SupIndep s f
hts : t ⊆ s
hi : i ∈ s
hf : ∀ (i : ι), f i ≠ ⊥
⊢ f i ≤ sup t f ↔ i ∈ t
[PROOFSTEP]
refine' ⟨fun h => _, le_sup⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
hs : SupIndep s f
hts : t ⊆ s
hi : i ∈ s
hf : ∀ (i : ι), f i ≠ ⊥
h : f i ≤ sup t f
⊢ i ∈ t
[PROOFSTEP]
by_contra hit
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
hs : SupIndep s f
hts : t ⊆ s
hi : i ∈ s
hf : ∀ (i : ι), f i ≠ ⊥
h : f i ≤ sup t f
hit : ¬i ∈ t
⊢ False
[PROOFSTEP]
exact hf i (disjoint_self.1 <| (hs hts hi hit).mono_right h)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t : Finset ι
f : ι → α
i : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
⊢ SupIndep (Finset.image g s) f
[PROOFSTEP]
intro t ht i hi hit
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι
hi : i ∈ Finset.image g s
hit : ¬i ∈ t
⊢ Disjoint (f i) (sup t f)
[PROOFSTEP]
rw [mem_image] at hi
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι
hi : ∃ a, a ∈ s ∧ g a = i
hit : ¬i ∈ t
⊢ Disjoint (f i) (sup t f)
[PROOFSTEP]
obtain ⟨i, hi, rfl⟩ := hi
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
⊢ Disjoint (f (g i)) (sup t f)
[PROOFSTEP]
haveI : DecidableEq ι' := Classical.decEq _
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
this : DecidableEq ι'
⊢ Disjoint (f (g i)) (sup t f)
[PROOFSTEP]
suffices hts : t ⊆ (s.erase i).image g
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
this : DecidableEq ι'
hts : t ⊆ Finset.image g (erase s i)
⊢ Disjoint (f (g i)) (sup t f)
[PROOFSTEP]
refine' (supIndep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
this : DecidableEq ι'
hts : t ⊆ Finset.image g (erase s i)
⊢ sup (Finset.image g (erase s i)) f ≤ sup (erase s i) (f ∘ g)
[PROOFSTEP]
rw [sup_image]
[GOAL]
case hts
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
this : DecidableEq ι'
⊢ t ⊆ Finset.image g (erase s i)
[PROOFSTEP]
rintro j hjt
[GOAL]
case hts
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
this : DecidableEq ι'
j : ι
hjt : j ∈ t
⊢ j ∈ Finset.image g (erase s i)
[PROOFSTEP]
obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt)
[GOAL]
case hts.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → ι
hs : SupIndep s (f ∘ g)
t : Finset ι
ht : t ⊆ Finset.image g s
i : ι'
hi : i ∈ s
hit : ¬g i ∈ t
this : DecidableEq ι'
j : ι'
hj : j ∈ s
hjt : g j ∈ t
⊢ g j ∈ Finset.image g (erase s i)
[PROOFSTEP]
exact mem_image_of_mem _ (mem_erase.2 ⟨ne_of_apply_ne g (ne_of_mem_of_not_mem hjt hit), hj⟩)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t : Finset ι
f : ι → α
i : ι
s : Finset ι'
g : ι' ↪ ι
⊢ SupIndep (map g s) f ↔ SupIndep s (f ∘ ↑g)
[PROOFSTEP]
refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
s : Finset ι'
g : ι' ↪ ι
hs : SupIndep (map g s) f
t : Finset ι'
ht : t ⊆ s
i : ι'
hi : i ∈ s
hit : ¬i ∈ t
⊢ Disjoint ((f ∘ ↑g) i) (sup t (f ∘ ↑g))
[PROOFSTEP]
rw [← sup_map]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
s : Finset ι'
g : ι' ↪ ι
hs : SupIndep (map g s) f
t : Finset ι'
ht : t ⊆ s
i : ι'
hi : i ∈ s
hit : ¬i ∈ t
⊢ Disjoint ((f ∘ ↑g) i) (sup (map g t) f)
[PROOFSTEP]
exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa [mem_map'])
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t✝ : Finset ι
f : ι → α
i✝ : ι
s : Finset ι'
g : ι' ↪ ι
hs : SupIndep (map g s) f
t : Finset ι'
ht : t ⊆ s
i : ι'
hi : i ∈ s
hit : ¬i ∈ t
⊢ ¬↑g i ∈ map g t
[PROOFSTEP]
rwa [mem_map']
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t : Finset ι
f : ι → α
i : ι
s : Finset ι'
g : ι' ↪ ι
hs : SupIndep s (f ∘ ↑g)
⊢ SupIndep (map g s) f
[PROOFSTEP]
classical
rw [map_eq_image]
exact hs.image
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t : Finset ι
f : ι → α
i : ι
s : Finset ι'
g : ι' ↪ ι
hs : SupIndep s (f ∘ ↑g)
⊢ SupIndep (map g s) f
[PROOFSTEP]
rw [map_eq_image]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s✝ t : Finset ι
f : ι → α
i : ι
s : Finset ι'
g : ι' ↪ ι
hs : SupIndep s (f ∘ ↑g)
⊢ SupIndep (image (↑g) s) f
[PROOFSTEP]
exact hs.image
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
h : SupIndep {i, j} f
⊢ i ∈ ↑{i, j}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
h : SupIndep {i, j} f
⊢ j ∈ ↑{i, j}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
h : Disjoint (f i) (f j)
⊢ SupIndep {i, j} f
[PROOFSTEP]
rw [supIndep_iff_disjoint_erase]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
h : Disjoint (f i) (f j)
⊢ ∀ (i_1 : ι), i_1 ∈ {i, j} → Disjoint (f i_1) (sup (erase {i, j} i_1) f)
[PROOFSTEP]
intro k hk
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
h : Disjoint (f i) (f j)
k : ι
hk : k ∈ {i, j}
⊢ Disjoint (f k) (sup (erase {i, j} k) f)
[PROOFSTEP]
rw [Finset.mem_insert, Finset.mem_singleton] at hk
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i j : ι
hij : i ≠ j
h : Disjoint (f i) (f j)
k : ι
hk : k = i ∨ k = j
⊢ Disjoint (f k) (sup (erase {i, j} k) f)
[PROOFSTEP]
obtain rfl | rfl := hk
[GOAL]
case inl
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
inst✝ : DecidableEq ι
j k : ι
hij : k ≠ j
h : Disjoint (f k) (f j)
⊢ Disjoint (f k) (sup (erase {k, j} k) f)
[PROOFSTEP]
convert h using 1
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
inst✝ : DecidableEq ι
j k : ι
hij : k ≠ j
h : Disjoint (f k) (f j)
⊢ sup (erase {k, j} k) f = f j
[PROOFSTEP]
rw [Finset.erase_insert, Finset.sup_singleton]
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
inst✝ : DecidableEq ι
j k : ι
hij : k ≠ j
h : Disjoint (f k) (f j)
⊢ ¬k ∈ {j}
[PROOFSTEP]
simpa using hij
[GOAL]
case inr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i k : ι
hij : i ≠ k
h : Disjoint (f i) (f k)
⊢ Disjoint (f k) (sup (erase {i, k} k) f)
[PROOFSTEP]
convert h.symm using 1
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i k : ι
hij : i ≠ k
h : Disjoint (f i) (f k)
⊢ sup (erase {i, k} k) f = f i
[PROOFSTEP]
have : ({ i, k } : Finset ι).erase k = { i } := by
ext
rw [mem_erase, mem_insert, mem_singleton, mem_singleton, and_or_left, Ne.def, not_and_self_iff, or_false_iff,
and_iff_right_of_imp]
rintro rfl
exact hij
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i k : ι
hij : i ≠ k
h : Disjoint (f i) (f k)
⊢ erase {i, k} k = {i}
[PROOFSTEP]
ext
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i k : ι
hij : i ≠ k
h : Disjoint (f i) (f k)
a✝ : ι
⊢ a✝ ∈ erase {i, k} k ↔ a✝ ∈ {i}
[PROOFSTEP]
rw [mem_erase, mem_insert, mem_singleton, mem_singleton, and_or_left, Ne.def, not_and_self_iff, or_false_iff,
and_iff_right_of_imp]
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i k : ι
hij : i ≠ k
h : Disjoint (f i) (f k)
a✝ : ι
⊢ a✝ = i → ¬a✝ = k
[PROOFSTEP]
rintro rfl
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
inst✝ : DecidableEq ι
k a✝ : ι
hij : a✝ ≠ k
h : Disjoint (f a✝) (f k)
⊢ ¬a✝ = k
[PROOFSTEP]
exact hij
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : Lattice α
inst✝¹ : OrderBot α
s t : Finset ι
f : ι → α
i✝ : ι
inst✝ : DecidableEq ι
i k : ι
hij : i ≠ k
h : Disjoint (f i) (f k)
this : erase {i, k} k = {i}
⊢ sup (erase {i, k} k) f = f i
[PROOFSTEP]
rw [this, Finset.sup_singleton]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f✝ : ι → α
i : ι
f : Bool → α
⊢ true ≠ false
[PROOFSTEP]
simp only [Ne.def, not_false_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f✝ : ι → α
i : ι
f : Fin 2 → α
⊢ 0 ≠ 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
hs : SupIndep s f
⊢ SupIndep (Finset.attach s) fun a => f ↑a
[PROOFSTEP]
intro t _ i _ hi
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
⊢ Disjoint ((fun a => f ↑a) i) (sup t fun a => f ↑a)
[PROOFSTEP]
classical
have : (fun (a : { x // x ∈ s }) => f ↑a) = f ∘ (fun a : { x // x ∈ s } => ↑a) := rfl
rw [this, ← Finset.sup_image]
refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
rw [mem_image] at hi'
obtain ⟨j, hj, hji⟩ := hi'
rwa [Subtype.ext hji] at hj
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
⊢ Disjoint ((fun a => f ↑a) i) (sup t fun a => f ↑a)
[PROOFSTEP]
have : (fun (a : { x // x ∈ s }) => f ↑a) = f ∘ (fun a : { x // x ∈ s } => ↑a) := rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
this : (fun a => f ↑a) = f ∘ fun a => ↑a
⊢ Disjoint ((fun a => f ↑a) i) (sup t fun a => f ↑a)
[PROOFSTEP]
rw [this, ← Finset.sup_image]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
this : (fun a => f ↑a) = f ∘ fun a => ↑a
⊢ Disjoint ((f ∘ fun a => ↑a) i) (sup (Finset.image (fun a => ↑a) t) f)
[PROOFSTEP]
refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
this : (fun a => f ↑a) = f ∘ fun a => ↑a
hi' : (fun a => ↑a) i ∈ Finset.image (fun j => ↑j) t
⊢ i ∈ t
[PROOFSTEP]
rw [mem_image] at hi'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
this : (fun a => f ↑a) = f ∘ fun a => ↑a
hi' : ∃ a, a ∈ t ∧ ↑a = (fun a => ↑a) i
⊢ i ∈ t
[PROOFSTEP]
obtain ⟨j, hj, hji⟩ := hi'
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
hs : SupIndep s f
t : Finset { x // x ∈ s }
a✝¹ : t ⊆ Finset.attach s
i : { x // x ∈ s }
a✝ : i ∈ Finset.attach s
hi : ¬i ∈ t
this : (fun a => f ↑a) = f ∘ fun a => ↑a
j : { x // x ∈ s }
hj : j ∈ t
hji : ↑j = (fun a => ↑a) i
⊢ i ∈ t
[PROOFSTEP]
rwa [Subtype.ext hji] at hj
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t : Finset ι
f : ι → α
i : ι
⊢ (SupIndep (attach s) fun a => f ↑a) ↔ SupIndep s f
[PROOFSTEP]
refine' ⟨fun h t ht i his hit => _, SupIndep.attach⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
h : SupIndep (attach s) fun a => f ↑a
t : Finset ι
ht : t ⊆ s
i : ι
his : i ∈ s
hit : ¬i ∈ t
⊢ Disjoint (f i) (sup t f)
[PROOFSTEP]
classical
convert
h (filter_subset (fun (i : { x // x ∈ s }) => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi =>
hit <| by simpa using hi using
1
refine' eq_of_forall_ge_iff _
simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply, Subtype.forall, Subtype.coe_mk]
exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
h : SupIndep (attach s) fun a => f ↑a
t : Finset ι
ht : t ⊆ s
i : ι
his : i ∈ s
hit : ¬i ∈ t
⊢ Disjoint (f i) (sup t f)
[PROOFSTEP]
convert
h (filter_subset (fun (i : { x // x ∈ s }) => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi =>
hit <| by simpa using hi using
1
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
h : SupIndep (attach s) fun a => f ↑a
t : Finset ι
ht : t ⊆ s
i : ι
his : i ∈ s
hit : ¬i ∈ t
hi : { val := i, property := his } ∈ filter (fun i => ↑i ∈ t) (attach s)
⊢ i ∈ t
[PROOFSTEP]
simpa using hi
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
h : SupIndep (attach s) fun a => f ↑a
t : Finset ι
ht : t ⊆ s
i : ι
his : i ∈ s
hit : ¬i ∈ t
⊢ sup t f = sup (filter (fun i => ↑i ∈ t) (attach s)) fun a => f ↑a
[PROOFSTEP]
refine' eq_of_forall_ge_iff _
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
h : SupIndep (attach s) fun a => f ↑a
t : Finset ι
ht : t ⊆ s
i : ι
his : i ∈ s
hit : ¬i ∈ t
⊢ ∀ (c : α), sup t f ≤ c ↔ (sup (filter (fun i => ↑i ∈ t) (attach s)) fun a => f ↑a) ≤ c
[PROOFSTEP]
simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply, Subtype.forall, Subtype.coe_mk]
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : Lattice α
inst✝ : OrderBot α
s t✝ : Finset ι
f : ι → α
i✝ : ι
h : SupIndep (attach s) fun a => f ↑a
t : Finset ι
ht : t ⊆ s
i : ι
his : i ∈ s
hit : ¬i ∈ t
⊢ ∀ (c : α), (∀ (b : ι), b ∈ t → f b ≤ c) ↔ ∀ (a : ι), a ∈ s → a ∈ t → f a ≤ c
[PROOFSTEP]
exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → Finset ι
f : ι → α
hs : SupIndep s fun i => Finset.sup (g i) f
hg : ∀ (i' : ι'), i' ∈ s → SupIndep (g i') f
⊢ SupIndep (Finset.sup s g) f
[PROOFSTEP]
simp_rw [supIndep_iff_pairwiseDisjoint] at hs hg ⊢
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → Finset ι
f : ι → α
hs : Set.PairwiseDisjoint ↑s fun i => Finset.sup (g i) f
hg : ∀ (i' : ι'), i' ∈ s → Set.PairwiseDisjoint (↑(g i')) f
⊢ Set.PairwiseDisjoint (↑(Finset.sup s g)) f
[PROOFSTEP]
rw [sup_eq_biUnion, coe_biUnion]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → Finset ι
f : ι → α
hs : Set.PairwiseDisjoint ↑s fun i => Finset.sup (g i) f
hg : ∀ (i' : ι'), i' ∈ s → Set.PairwiseDisjoint (↑(g i')) f
⊢ Set.PairwiseDisjoint (⋃ (x : ι') (_ : x ∈ ↑s), ↑(g x)) f
[PROOFSTEP]
exact hs.biUnion_finset hg
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → Finset ι
f : ι → α
hs : SupIndep s fun i => Finset.sup (g i) f
hg : ∀ (i' : ι'), i' ∈ s → SupIndep (g i') f
⊢ SupIndep (Finset.biUnion s g) f
[PROOFSTEP]
rw [← sup_eq_biUnion]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
inst✝ : DecidableEq ι
s : Finset ι'
g : ι' → Finset ι
f : ι → α
hs : SupIndep s fun i => Finset.sup (g i) f
hg : ∀ (i' : ι'), i' ∈ s → SupIndep (g i') f
⊢ SupIndep (Finset.sup s g) f
[PROOFSTEP]
exact hs.sup hg
[GOAL]
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
⊢ SupIndep (Finset.sigma s g) f
[PROOFSTEP]
rintro t ht ⟨i, b⟩ hi hit
[GOAL]
case mk
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b } ∈ Finset.sigma s g
hit : ¬{ fst := i, snd := b } ∈ t
⊢ Disjoint (f { fst := i, snd := b }) (Finset.sup t f)
[PROOFSTEP]
rw [Finset.disjoint_sup_right]
[GOAL]
case mk
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b } ∈ Finset.sigma s g
hit : ¬{ fst := i, snd := b } ∈ t
⊢ ∀ ⦃i_1 : (i : ι) × β i⦄, i_1 ∈ t → Disjoint (f { fst := i, snd := b }) (f i_1)
[PROOFSTEP]
rintro ⟨j, c⟩ hj
[GOAL]
case mk.mk
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b } ∈ Finset.sigma s g
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hj : { fst := j, snd := c } ∈ t
⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c })
[PROOFSTEP]
have hbc := (ne_of_mem_of_not_mem hj hit).symm
[GOAL]
case mk.mk
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b } ∈ Finset.sigma s g
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hj : { fst := j, snd := c } ∈ t
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c })
[PROOFSTEP]
replace hj := ht hj
[GOAL]
case mk.mk
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b } ∈ Finset.sigma s g
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c } ∈ Finset.sigma s g
⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c })
[PROOFSTEP]
rw [mem_sigma] at hi hj
[GOAL]
case mk.mk
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst
⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c })
[PROOFSTEP]
obtain rfl | hij := eq_or_ne i j
[GOAL]
case mk.mk.inl
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
c : β i
hbc : { fst := i, snd := b } ≠ { fst := i, snd := c }
hj : { fst := i, snd := c }.fst ∈ s ∧ { fst := i, snd := c }.snd ∈ g { fst := i, snd := c }.fst
⊢ Disjoint (f { fst := i, snd := b }) (f { fst := i, snd := c })
[PROOFSTEP]
exact (hg _ hj.1).pairwiseDisjoint hi.2 hj.2 (sigma_mk_injective.ne_iff.1 hbc)
[GOAL]
case mk.mk.inr
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst
hij : i ≠ j
⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c })
[PROOFSTEP]
refine' (hs.pairwiseDisjoint hi.1 hj.1 hij).mono _ _
[GOAL]
case mk.mk.inr.refine'_1
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst
hij : i ≠ j
⊢ f { fst := i, snd := b } ≤ (fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }) { fst := i, snd := b }.fst
[PROOFSTEP]
convert le_sup (α := α) hi.2
[GOAL]
case h.e'_3
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst
hij : i ≠ j
⊢ f { fst := i, snd := b } = f { fst := { fst := i, snd := b }.fst, snd := { fst := i, snd := b }.snd }
[PROOFSTEP]
simp
[GOAL]
case mk.mk.inr.refine'_2
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst
hij : i ≠ j
⊢ f { fst := j, snd := c } ≤ (fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }) { fst := j, snd := c }.fst
[PROOFSTEP]
convert le_sup (α := α) hj.2
[GOAL]
case h.e'_3
α : Type u_1
β✝ : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
β : ι → Type u_5
s : Finset ι
g : (i : ι) → Finset (β i)
f : Sigma β → α
hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }
hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b }
t : Finset ((i : ι) × β i)
ht : t ⊆ Finset.sigma s g
i : ι
b : β i
hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst
hit : ¬{ fst := i, snd := b } ∈ t
j : ι
c : β j
hbc : { fst := i, snd := b } ≠ { fst := j, snd := c }
hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst
hij : i ≠ j
⊢ f { fst := j, snd := c } = f { fst := { fst := j, snd := c }.fst, snd := { fst := j, snd := c }.snd }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
⊢ SupIndep (s ×ˢ t) f
[PROOFSTEP]
rintro u hu ⟨i, i'⟩ hi hiu
[GOAL]
case mk
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i') ∈ s ×ˢ t
hiu : ¬(i, i') ∈ u
⊢ Disjoint (f (i, i')) (Finset.sup u f)
[PROOFSTEP]
rw [Finset.disjoint_sup_right]
[GOAL]
case mk
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i') ∈ s ×ˢ t
hiu : ¬(i, i') ∈ u
⊢ ∀ ⦃i_1 : ι × ι'⦄, i_1 ∈ u → Disjoint (f (i, i')) (f i_1)
[PROOFSTEP]
rintro ⟨j, j'⟩ hj
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i') ∈ s ×ˢ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hj : (j, j') ∈ u
⊢ Disjoint (f (i, i')) (f (j, j'))
[PROOFSTEP]
have hij := (ne_of_mem_of_not_mem hj hiu).symm
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i') ∈ s ×ˢ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hj : (j, j') ∈ u
hij : (i, i') ≠ (j, j')
⊢ Disjoint (f (i, i')) (f (j, j'))
[PROOFSTEP]
replace hj := hu hj
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i') ∈ s ×ˢ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij : (i, i') ≠ (j, j')
hj : (j, j') ∈ s ×ˢ t
⊢ Disjoint (f (i, i')) (f (j, j'))
[PROOFSTEP]
rw [mem_product] at hi hj
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij : (i, i') ≠ (j, j')
hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t
⊢ Disjoint (f (i, i')) (f (j, j'))
[PROOFSTEP]
obtain rfl | hij := eq_or_ne i j
[GOAL]
case mk.mk.inl
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j' : ι'
hij : (i, i') ≠ (i, j')
hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t
⊢ Disjoint (f (i, i')) (f (i, j'))
[PROOFSTEP]
refine' (ht.pairwiseDisjoint hi.2 hj.2 <| (Prod.mk.inj_left _).ne_iff.1 hij).mono _ _
[GOAL]
case mk.mk.inl.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j' : ι'
hij : (i, i') ≠ (i, j')
hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t
⊢ f (i, i') ≤ (fun i' => Finset.sup s fun i => f (i, i')) (i, i').snd
[PROOFSTEP]
convert le_sup (α := α) hi.1
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j' : ι'
hij : (i, i') ≠ (i, j')
hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t
⊢ f (i, i') = f ((i, i').fst, (i, i').snd)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.inl.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j' : ι'
hij : (i, i') ≠ (i, j')
hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t
⊢ f (i, j') ≤ (fun i' => Finset.sup s fun i => f (i, i')) (i, j').snd
[PROOFSTEP]
convert le_sup (α := α) hj.1
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j' : ι'
hij : (i, i') ≠ (i, j')
hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t
⊢ f (i, j') = f ((i, j').fst, (i, j').snd)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.inr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij✝ : (i, i') ≠ (j, j')
hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t
hij : i ≠ j
⊢ Disjoint (f (i, i')) (f (j, j'))
[PROOFSTEP]
refine' (hs.pairwiseDisjoint hi.1 hj.1 hij).mono _ _
[GOAL]
case mk.mk.inr.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij✝ : (i, i') ≠ (j, j')
hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t
hij : i ≠ j
⊢ f (i, i') ≤ (fun i => Finset.sup t fun i' => f (i, i')) (i, i').fst
[PROOFSTEP]
convert le_sup (α := α) hi.2
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij✝ : (i, i') ≠ (j, j')
hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t
hij : i ≠ j
⊢ f (i, i') = f ((i, i').fst, (i, i').snd)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.inr.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij✝ : (i, i') ≠ (j, j')
hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t
hij : i ≠ j
⊢ f (j, j') ≤ (fun i => Finset.sup t fun i' => f (i, i')) (j, j').fst
[PROOFSTEP]
convert le_sup (α := α) hj.2
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i')
ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i')
u : Finset (ι × ι')
hu : u ⊆ s ×ˢ t
i : ι
i' : ι'
hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t
hiu : ¬(i, i') ∈ u
j : ι
j' : ι'
hij✝ : (i, i') ≠ (j, j')
hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t
hij : i ≠ j
⊢ f (j, j') = f ((j, j').fst, (j, j').snd)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
⊢ SupIndep (Finset.product s t) f ↔
(SupIndep s fun i => sup t fun i' => f (i, i')) ∧ SupIndep t fun i' => sup s fun i => f (i, i')
[PROOFSTEP]
refine' ⟨_, fun h => h.1.product h.2⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
⊢ SupIndep (Finset.product s t) f →
(SupIndep s fun i => sup t fun i' => f (i, i')) ∧ SupIndep t fun i' => sup s fun i => f (i, i')
[PROOFSTEP]
simp_rw [supIndep_iff_pairwiseDisjoint]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
⊢ Set.PairwiseDisjoint (↑(Finset.product s t)) f →
(Set.PairwiseDisjoint ↑s fun i => sup t fun i' => f (i, i')) ∧
Set.PairwiseDisjoint ↑t fun i' => sup s fun i => f (i, i')
[PROOFSTEP]
refine' fun h => ⟨fun i hi j hj hij => _, fun i hi j hj hij => _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
h : Set.PairwiseDisjoint (↑(Finset.product s t)) f
i : ι
hi : i ∈ ↑s
j : ι
hj : j ∈ ↑s
hij : i ≠ j
⊢ (Disjoint on fun i => sup t fun i' => f (i, i')) i j
[PROOFSTEP]
simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
h : Set.PairwiseDisjoint (↑(Finset.product s t)) f
i : ι'
hi : i ∈ ↑t
j : ι'
hj : j ∈ ↑t
hij : i ≠ j
⊢ (Disjoint on fun i' => sup s fun i => f (i, i')) i j
[PROOFSTEP]
simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
h : Set.PairwiseDisjoint (↑(Finset.product s t)) f
i : ι
hi : i ∈ ↑s
j : ι
hj : j ∈ ↑s
hij : i ≠ j
⊢ ∀ ⦃i_1 : ι'⦄, i_1 ∈ t → ∀ ⦃i_2 : ι'⦄, i_2 ∈ t → Disjoint (f (i, i_1)) (f (j, i_2))
[PROOFSTEP]
intro i' hi' j' hj'
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
h : Set.PairwiseDisjoint (↑(Finset.product s t)) f
i : ι'
hi : i ∈ ↑t
j : ι'
hj : j ∈ ↑t
hij : i ≠ j
⊢ ∀ ⦃i_1 : ι⦄, i_1 ∈ s → ∀ ⦃i_2 : ι⦄, i_2 ∈ s → Disjoint (f (i_1, i)) (f (i_2, j))
[PROOFSTEP]
intro i' hi' j' hj'
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
h : Set.PairwiseDisjoint (↑(Finset.product s t)) f
i : ι
hi : i ∈ ↑s
j : ι
hj : j ∈ ↑s
hij : i ≠ j
i' : ι'
hi' : i' ∈ t
j' : ι'
hj' : j' ∈ t
⊢ Disjoint (f (i, i')) (f (j, j'))
[PROOFSTEP]
exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
s✝ : Finset ι
f✝ : ι → α
s : Finset ι
t : Finset ι'
f : ι × ι' → α
h : Set.PairwiseDisjoint (↑(Finset.product s t)) f
i : ι'
hi : i ∈ ↑t
j : ι'
hj : j ∈ ↑t
hij : i ≠ j
i' : ι
hi' : i' ∈ s
j' : ι
hj' : j' ∈ s
⊢ Disjoint (f (i', i)) (f (j', j))
[PROOFSTEP]
exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne Prod.snd hij)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
a b : α
hab : a ≠ b
⊢ SetIndependent {a, b} ↔ Disjoint a b
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
a b : α
hab : a ≠ b
⊢ SetIndependent {a, b} → Disjoint a b
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
a b : α
hab : a ≠ b
h : SetIndependent {a, b}
⊢ Disjoint a b
[PROOFSTEP]
exact h.pairwiseDisjoint (mem_insert _ _) (mem_insert_of_mem _ (mem_singleton _)) hab
[GOAL]
case mpr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
a b : α
hab : a ≠ b
⊢ Disjoint a b → SetIndependent {a, b}
[PROOFSTEP]
rintro h c ((rfl : c = a) | (rfl : c = b))
[GOAL]
case mpr.inl
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
b c : α
hab : c ≠ b
h : Disjoint c b
⊢ Disjoint c (sSup ({c, b} \ {c}))
[PROOFSTEP]
convert h using 1
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
b c : α
hab : c ≠ b
h : Disjoint c b
⊢ sSup ({c, b} \ {c}) = b
[PROOFSTEP]
simp [hab, sSup_singleton]
[GOAL]
case mpr.inr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
a c : α
hab : a ≠ c
h : Disjoint a c
⊢ Disjoint c (sSup ({a, c} \ {c}))
[PROOFSTEP]
convert h.symm using 1
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
a c : α
hab : a ≠ c
h : Disjoint a c
⊢ sSup ({a, c} \ {c}) = a
[PROOFSTEP]
simp [hab, sSup_singleton]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
x : α
y : Set α
hx : x ∈ s
hy : y ⊆ s
hxy : ¬x ∈ y
⊢ Disjoint x (sSup y)
[PROOFSTEP]
have := (hs.mono <| insert_subset_iff.mpr ⟨hx, hy⟩) (mem_insert x _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
x : α
y : Set α
hx : x ∈ s
hy : y ⊆ s
hxy : ¬x ∈ y
this : Disjoint x (sSup (insert x y \ {x}))
⊢ Disjoint x (sSup y)
[PROOFSTEP]
rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
x : α
y : Set α
hx : x ∈ s
hy : y ⊆ s
hxy : ¬x ∈ y
this : Disjoint x (sSup y)
⊢ Disjoint x (sSup y)
[PROOFSTEP]
exact this
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : CompleteLattice α✝
s✝ : Set α✝
hs : SetIndependent s✝
α : Type u_5
inst✝ : CompleteLattice α
s : Set α
⊢ SetIndependent s ↔ Independent Subtype.val
[PROOFSTEP]
simp_rw [Independent, SetIndependent, SetCoe.forall, sSup_eq_iSup]
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : CompleteLattice α✝
s✝ : Set α✝
hs : SetIndependent s✝
α : Type u_5
inst✝ : CompleteLattice α
s : Set α
⊢ (∀ ⦃a : α⦄, a ∈ s → Disjoint a (⨆ (a_2 : α) (_ : a_2 ∈ s \ {a}), a_2)) ↔
∀ (x : α) (h : x ∈ s), Disjoint x (⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := x, property := h }), ↑j)
[PROOFSTEP]
refine' forall₂_congr fun a ha => _
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : CompleteLattice α✝
s✝ : Set α✝
hs : SetIndependent s✝
α : Type u_5
inst✝ : CompleteLattice α
s : Set α
a : α
ha : a ∈ s
⊢ Disjoint a (⨆ (a_1 : α) (_ : a_1 ∈ s \ {a}), a_1) ↔
Disjoint a (⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := ha }), ↑j)
[PROOFSTEP]
simp [iSup_subtype, iSup_and]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
⊢ Independent t ↔ ∀ (i : ι), Disjoint (t i) (sSup (t '' {j | j ≠ i}))
[PROOFSTEP]
simp_rw [sSup_image]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
⊢ Independent t ↔ ∀ (i : ι), Disjoint (t i) (⨆ (a : ι) (_ : a ∈ {j | j ≠ i}), t a)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
⊢ Independent t ↔ ∀ (i : ι), Disjoint (t i) (sSup {a | ∃ j x, t j = a})
[PROOFSTEP]
rw [independent_def']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
⊢ (∀ (i : ι), Disjoint (t i) (sSup (t '' {j | j ≠ i}))) ↔ ∀ (i : ι), Disjoint (t i) (sSup {a | ∃ j x, t j = a})
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι'✝ : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t✝ : ι✝ → α
ht✝ : Independent t✝
ι : Sort u_5
ι' : Sort u_6
t : ι → α
f : ι' → ι
ht : Independent t
hf : Injective f
i : ι'
⊢ ⨆ (j : ι') (_ : j ≠ i), (t ∘ f) j ≤ ⨆ (j : ι) (_ : j ≠ f i), t j
[PROOFSTEP]
refine' (iSup_mono fun i => _).trans (iSup_comp_le _ f)
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι'✝ : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t✝ : ι✝ → α
ht✝ : Independent t✝
ι : Sort u_5
ι' : Sort u_6
t : ι → α
f : ι' → ι
ht : Independent t
hf : Injective f
i✝ i : ι'
⊢ ⨆ (_ : i ≠ i✝), (t ∘ f) i ≤ ⨆ (_ : f i ≠ f i✝), t (f i)
[PROOFSTEP]
exact iSup_const_mono hf.ne
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι'✝ : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t✝ : ι✝ → α
ht✝ : Independent t✝
ι : Sort u_5
ι' : Sort u_6
t : ι → α
f : ι' → ι
ht : Independent (t ∘ f)
hf : Surjective f
⊢ Independent t
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι'✝ : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t✝ : ι✝ → α
ht✝ : Independent t✝
ι : Sort u_5
ι' : Sort u_6
t : ι → α
f : ι' → ι
ht : Independent (t ∘ f)
hf : Surjective f
i : ι
⊢ Disjoint (t i) (⨆ (j : ι) (_ : j ≠ i), t j)
[PROOFSTEP]
obtain ⟨i', rfl⟩ := hf i
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι'✝ : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t✝ : ι✝ → α
ht✝ : Independent t✝
ι : Sort u_5
ι' : Sort u_6
t : ι → α
f : ι' → ι
ht : Independent (t ∘ f)
hf : Surjective f
i' : ι'
⊢ Disjoint (t (f i')) (⨆ (j : ι) (_ : j ≠ f i'), t j)
[PROOFSTEP]
rw [← hf.iSup_comp]
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι✝ : Type u_3
ι'✝ : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t✝ : ι✝ → α
ht✝ : Independent t✝
ι : Sort u_5
ι' : Sort u_6
t : ι → α
f : ι' → ι
ht : Independent (t ∘ f)
hf : Surjective f
i' : ι'
⊢ Disjoint (t (f i')) (⨆ (x : ι') (_ : f x ≠ f i'), t (f x))
[PROOFSTEP]
exact (ht i').mono_right (biSup_mono fun j' hij => mt (congr_arg f) hij)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
⊢ SetIndependent (range t)
[PROOFSTEP]
rw [setIndependent_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
⊢ Independent Subtype.val
[PROOFSTEP]
rw [← coe_comp_rangeFactorization t] at ht
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ : Independent t
ht : Independent (Subtype.val ∘ rangeFactorization t)
⊢ Independent Subtype.val
[PROOFSTEP]
exact ht.comp' surjective_onto_range
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
⊢ Injective t
[PROOFSTEP]
intro i j h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
⊢ i = j
[PROOFSTEP]
by_contra' contra
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : i ≠ j
⊢ False
[PROOFSTEP]
apply h_ne_bot j
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : i ≠ j
⊢ t j = ⊥
[PROOFSTEP]
suffices t j ≤ ⨆ (k) (_ : k ≠ i), t k by
replace ht := (ht i).mono_right this
rwa [h, disjoint_self] at ht
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : i ≠ j
this : t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k
⊢ t j = ⊥
[PROOFSTEP]
replace ht := (ht i).mono_right this
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : i ≠ j
this : t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k
ht : Disjoint (t i) (t j)
⊢ t j = ⊥
[PROOFSTEP]
rwa [h, disjoint_self] at ht
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : i ≠ j
⊢ t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k
[PROOFSTEP]
replace contra : j ≠ i
[GOAL]
case contra
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : i ≠ j
⊢ j ≠ i
[PROOFSTEP]
exact Ne.symm contra
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht✝ ht : Independent t
h_ne_bot : ∀ (i : ι), t i ≠ ⊥
i j : ι
h : t i = t j
contra : j ≠ i
⊢ t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k
[PROOFSTEP]
exact @le_iSup₂ _ _ _ _ (fun x _ => t x) j contra
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
i j : ι
hij : i ≠ j
huniv : ∀ (k : ι), k = i ∨ k = j
⊢ Independent t ↔ Disjoint (t i) (t j)
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
i j : ι
hij : i ≠ j
huniv : ∀ (k : ι), k = i ∨ k = j
⊢ Independent t → Disjoint (t i) (t j)
[PROOFSTEP]
exact fun h => h.pairwiseDisjoint hij
[GOAL]
case mpr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
i j : ι
hij : i ≠ j
huniv : ∀ (k : ι), k = i ∨ k = j
⊢ Disjoint (t i) (t j) → Independent t
[PROOFSTEP]
rintro h k
[GOAL]
case mpr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
i j : ι
hij : i ≠ j
huniv : ∀ (k : ι), k = i ∨ k = j
h : Disjoint (t i) (t j)
k : ι
⊢ Disjoint (t k) (⨆ (j : ι) (_ : j ≠ k), t j)
[PROOFSTEP]
obtain rfl | rfl := huniv k
[GOAL]
case mpr.inl
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
j k : ι
hij : k ≠ j
huniv : ∀ (k_1 : ι), k_1 = k ∨ k_1 = j
h : Disjoint (t k) (t j)
⊢ Disjoint (t k) (⨆ (j : ι) (_ : j ≠ k), t j)
[PROOFSTEP]
refine' h.mono_right (iSup_le fun i => iSup_le fun hi => Eq.le _)
[GOAL]
case mpr.inl
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
j k : ι
hij : k ≠ j
huniv : ∀ (k_1 : ι), k_1 = k ∨ k_1 = j
h : Disjoint (t k) (t j)
i : ι
hi : i ≠ k
⊢ t i = t j
[PROOFSTEP]
rw [(huniv i).resolve_left hi]
[GOAL]
case mpr.inr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
i k : ι
hij : i ≠ k
huniv : ∀ (k_1 : ι), k_1 = i ∨ k_1 = k
h : Disjoint (t i) (t k)
⊢ Disjoint (t k) (⨆ (j : ι) (_ : j ≠ k), t j)
[PROOFSTEP]
refine' h.symm.mono_right (iSup_le fun j => iSup_le fun hj => Eq.le _)
[GOAL]
case mpr.inr
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Set α
hs : SetIndependent s
t : ι → α
ht : Independent t
i k : ι
hij : i ≠ k
huniv : ∀ (k_1 : ι), k_1 = i ∨ k_1 = k
h : Disjoint (t i) (t k)
j : ι
hj : j ≠ k
⊢ t j = t i
[PROOFSTEP]
rw [(huniv j).resolve_right hj]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
⊢ Independent (f ∘ Subtype.val) ↔ Finset.SupIndep s f
[PROOFSTEP]
classical
rw [Finset.supIndep_iff_disjoint_erase]
refine' Subtype.forall.trans (forall₂_congr fun a b => _)
rw [Finset.sup_eq_iSup]
congr! 1
refine' iSup_subtype.trans _
congr! 1
simp [iSup_and, @iSup_comm _ (_ ∈ s)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
⊢ Independent (f ∘ Subtype.val) ↔ Finset.SupIndep s f
[PROOFSTEP]
rw [Finset.supIndep_iff_disjoint_erase]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
⊢ Independent (f ∘ Subtype.val) ↔ ∀ (i : ι), i ∈ s → Disjoint (f i) (Finset.sup (Finset.erase s i) f)
[PROOFSTEP]
refine' Subtype.forall.trans (forall₂_congr fun a b => _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
a : ι
b : a ∈ s
⊢ Disjoint ((f ∘ Subtype.val) { val := a, property := b })
(⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := b }), (f ∘ Subtype.val) j) ↔
Disjoint (f a) (Finset.sup (Finset.erase s a) f)
[PROOFSTEP]
rw [Finset.sup_eq_iSup]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
a : ι
b : a ∈ s
⊢ Disjoint ((f ∘ Subtype.val) { val := a, property := b })
(⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := b }), (f ∘ Subtype.val) j) ↔
Disjoint (f a) (⨆ (a_1 : ι) (_ : a_1 ∈ Finset.erase s a), f a_1)
[PROOFSTEP]
congr! 1
[GOAL]
case a.h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
a : ι
b : a ∈ s
⊢ ⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := b }), (f ∘ Subtype.val) j =
⨆ (a_1 : ι) (_ : a_1 ∈ Finset.erase s a), f a_1
[PROOFSTEP]
refine' iSup_subtype.trans _
[GOAL]
case a.h.e'_5
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
a : ι
b : a ∈ s
⊢ ⨆ (i : ι) (h : i ∈ s) (_ : { val := i, property := h } ≠ { val := a, property := b }),
(f ∘ Subtype.val) { val := i, property := h } =
⨆ (a_1 : ι) (_ : a_1 ∈ Finset.erase s a), f a_1
[PROOFSTEP]
congr! 1
[GOAL]
case a.h.e'_5.h.e'_4
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝ : CompleteLattice α
s : Finset ι
f : ι → α
a : ι
b : a ∈ s
⊢ (fun i =>
⨆ (h : i ∈ s) (_ : { val := i, property := h } ≠ { val := a, property := b }),
(f ∘ Subtype.val) { val := i, property := h }) =
fun a_1 => ⨆ (_ : a_1 ∈ Finset.erase s a), f a_1
[PROOFSTEP]
simp [iSup_and, @iSup_comm _ (_ ∈ s)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : CompleteLattice α
inst✝ : Fintype ι
f : ι → α
⊢ Independent f ↔ Finset.SupIndep Finset.univ f
[PROOFSTEP]
classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_iSup]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
ι' : Type u_4
inst✝¹ : CompleteLattice α
inst✝ : Fintype ι
f : ι → α
⊢ Independent f ↔ Finset.SupIndep Finset.univ f
[PROOFSTEP]
simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_iSup]
| {"mathlib_filename": "Mathlib.Order.SupIndep", "llama_tokens": 33509} |
{"mathlib_filename": "Mathlib.Order.UpperLower.Hom", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice α
s✝ t : Set α
a✝ b : α
s : Finset β
hs : Finset.Nonempty s
f : β → α
a : α
⊢ sup' s hs f ≤ a ↔ sSup (f '' ↑s) ≤ a
[PROOFSTEP]
simp [csSup_le_iff (s.finite_toSet.image f).bddAbove (hs.to_set.image f)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice α
s✝ t : Set α
a b : α
s : Finset α
hs : Finset.Nonempty s
⊢ sup' s hs id = sSup ↑s
[PROOFSTEP]
rw [hs.sup'_eq_cSup_image, Set.image_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t : Set α
a b : α
s : Finset α
h : Finset.Nonempty s
⊢ sSup ↑s ∈ s
[PROOFSTEP]
rw [h.cSup_eq_max']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t : Set α
a b : α
s : Finset α
h : Finset.Nonempty s
⊢ max' s h ∈ s
[PROOFSTEP]
exact s.max'_mem _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLinearOrder α
s t : Set α
a b : α
h : Set.Nonempty s
hs : Set.Finite s
⊢ sSup s ∈ s
[PROOFSTEP]
lift s to Finset α using hs
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLinearOrder α
t : Set α
a b : α
s : Finset α
h : Set.Nonempty ↑s
⊢ sSup ↑s ∈ ↑s
[PROOFSTEP]
exact Finset.Nonempty.cSup_mem h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
⊢ sup' s H f = sSup (f '' ↑s)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
⊢ sup' s H f ≤ sSup (f '' ↑s)
[PROOFSTEP]
refine' Finset.sup'_le _ _ fun a ha => _
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
a : α
ha : a ∈ s
⊢ f a ≤ sSup (f '' ↑s)
[PROOFSTEP]
refine' le_csSup ⟨s.sup' H f, _⟩ ⟨a, ha, rfl⟩
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
a : α
ha : a ∈ s
⊢ sup' s H f ∈ upperBounds (f '' ↑s)
[PROOFSTEP]
rintro i ⟨j, hj, rfl⟩
[GOAL]
case a.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
a : α
ha : a ∈ s
j : α
hj : j ∈ ↑s
⊢ f j ≤ sup' s H f
[PROOFSTEP]
exact Finset.le_sup' _ hj
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
⊢ sSup (f '' ↑s) ≤ sup' s H f
[PROOFSTEP]
apply csSup_le ((coe_nonempty.mpr H).image _)
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
⊢ ∀ (b : β), b ∈ f '' ↑s → b ≤ sup' s H f
[PROOFSTEP]
rintro _ ⟨a, ha, rfl⟩
[GOAL]
case a.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice β
s : Finset α
H : Finset.Nonempty s
f : α → β
a : α
ha : a ∈ ↑s
⊢ f a ≤ sup' s H f
[PROOFSTEP]
exact Finset.le_sup' _ ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : ConditionallyCompleteLattice α
s : Finset α
H : Finset.Nonempty s
⊢ sup' s H id = sSup ↑s
[PROOFSTEP]
rw [sup'_eq_csSup_image s H, Set.image_id]
| {"mathlib_filename": "Mathlib.Order.ConditionallyCompleteLattice.Finset", "llama_tokens": 1637} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : LE α
s✝ t✝ s t : NonemptyInterval α
h : s.toProd = t.toProd
⊢ s = t
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : LE α
s t✝ t : NonemptyInterval α
toProd✝ : α × α
fst_le_snd✝ : toProd✝.fst ≤ toProd✝.snd
h : { toProd := toProd✝, fst_le_snd := fst_le_snd✝ }.toProd = t.toProd
⊢ { toProd := toProd✝, fst_le_snd := fst_le_snd✝ } = t
[PROOFSTEP]
cases t
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : LE α
s t : NonemptyInterval α
toProd✝¹ : α × α
fst_le_snd✝¹ : toProd✝¹.fst ≤ toProd✝¹.snd
toProd✝ : α × α
fst_le_snd✝ : toProd✝.fst ≤ toProd✝.snd
h : { toProd := toProd✝¹, fst_le_snd := fst_le_snd✝¹ }.toProd = { toProd := toProd✝, fst_le_snd := fst_le_snd✝ }.toProd
⊢ { toProd := toProd✝¹, fst_le_snd := fst_le_snd✝¹ } = { toProd := toProd✝, fst_le_snd := fst_le_snd✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Preorder γ
inst✝¹ : Preorder δ
s : NonemptyInterval α
x : α × α
a : α
inst✝ : Nonempty α
⊢ Nonempty α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : NonemptyInterval α
x : α × α
a b : α
⊢ b ∈ pure a ↔ b = a
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_pure, mem_singleton_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α →o β
s : Interval α
⊢ ↑dual (map f s) = map (↑OrderHom.dual f) (↑dual s)
[PROOFSTEP]
cases s
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α →o β
⊢ ↑dual (map f none) = map (↑OrderHom.dual f) (↑dual none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α →o β
val✝ : NonemptyInterval α
⊢ ↑dual (map f (some val✝)) = map (↑OrderHom.dual f) (↑dual (some val✝))
[PROOFSTEP]
exact WithBot.map_comm rfl _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s✝ t : Interval α
a b : α
s : Interval α
⊢ ↑(↑dual s) = ↑ofDual ⁻¹' ↑s
[PROOFSTEP]
cases s with
| none => rfl
| some s₀ => exact NonemptyInterval.coe_dual s₀
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s✝ t : Interval α
a b : α
s : Interval α
⊢ ↑(↑dual s) = ↑ofDual ⁻¹' ↑s
[PROOFSTEP]
cases s with
| none => rfl
| some s₀ => exact NonemptyInterval.coe_dual s₀
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : Interval α
a b : α
⊢ ↑(↑dual none) = ↑ofDual ⁻¹' ↑none
[PROOFSTEP]
| none => rfl
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : Interval α
a b : α
⊢ ↑(↑dual none) = ↑ofDual ⁻¹' ↑none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : Interval α
a b : α
s₀ : NonemptyInterval α
⊢ ↑(↑dual (some s₀)) = ↑ofDual ⁻¹' ↑(some s₀)
[PROOFSTEP]
| some s₀ => exact NonemptyInterval.coe_dual s₀
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : Interval α
a b : α
s₀ : NonemptyInterval α
⊢ ↑(↑dual (some s₀)) = ↑ofDual ⁻¹' ↑(some s₀)
[PROOFSTEP]
exact NonemptyInterval.coe_dual s₀
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : Interval α
a b : α
f : α →o β
⊢ ↑f '' ↑⊥ ⊆ ↑(map f ⊥)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
s t : Interval α
a b : α
⊢ b ∈ pure a ↔ b = a
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_pure, mem_singleton_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
⊢ some s ⊓ some t ≤ some s
[PROOFSTEP]
change dite _ _ _ ≤ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
⊢ (if h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd then
some
{ toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd),
fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) }
else ⊥) ≤
some s
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
h✝ : s.fst ≤ t.snd ∧ t.fst ≤ s.snd
⊢ some
{ toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd),
fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } ≤
some s
[PROOFSTEP]
exact WithBot.some_le_some.2 ⟨le_sup_left, inf_le_left⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
h✝ : ¬(s.fst ≤ t.snd ∧ t.fst ≤ s.snd)
⊢ ⊥ ≤ some s
[PROOFSTEP]
exact bot_le
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
⊢ some s ⊓ some t ≤ some t
[PROOFSTEP]
change dite _ _ _ ≤ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
⊢ (if h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd then
some
{ toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd),
fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) }
else ⊥) ≤
some t
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
h✝ : s.fst ≤ t.snd ∧ t.fst ≤ s.snd
⊢ some
{ toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd),
fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } ≤
some t
[PROOFSTEP]
exact WithBot.some_le_some.2 ⟨le_sup_right, inf_le_right⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ : Interval α
s t : NonemptyInterval α
h✝ : ¬(s.fst ≤ t.snd ∧ t.fst ≤ s.snd)
⊢ ⊥ ≤ some t
[PROOFSTEP]
exact bot_le
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s : NonemptyInterval α
t c : Interval α
hb : some s ≤ t
hc : some s ≤ c
⊢ some s ≤ t ⊓ c
[PROOFSTEP]
lift t to NonemptyInterval α using ne_bot_of_le_ne_bot WithBot.coe_ne_bot hb
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s : NonemptyInterval α
c : Interval α
hc : some s ≤ c
t : NonemptyInterval α
hb : some s ≤ ↑t
⊢ some s ≤ ↑t ⊓ c
[PROOFSTEP]
lift c to NonemptyInterval α using ne_bot_of_le_ne_bot WithBot.coe_ne_bot hc
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : some s ≤ ↑t
c : NonemptyInterval α
hc : some s ≤ ↑c
⊢ some s ≤ ↑t ⊓ ↑c
[PROOFSTEP]
change
_ ≤
dite _ _
_
-- Porting note: was `simp only` but that fails to use the second lemma.
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : some s ≤ ↑t
c : NonemptyInterval α
hc : some s ≤ ↑c
⊢ some s ≤
if h : t.fst ≤ c.snd ∧ c.fst ≤ t.snd then
some
{ toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd),
fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) }
else ⊥
[PROOFSTEP]
rw [WithBot.some_eq_coe, WithBot.coe_le_coe] at hb hc
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ some s ≤
if h : t.fst ≤ c.snd ∧ c.fst ≤ t.snd then
some
{ toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd),
fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) }
else ⊥
[PROOFSTEP]
simp only [WithBot.some_eq_coe, WithBot.coe_le_coe]
-- at hb hc ⊢
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ ↑s ≤
if h : t.fst ≤ c.snd ∧ c.fst ≤ t.snd then
↑{ toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd),
fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) }
else ⊥
[PROOFSTEP]
rw [dif_pos, WithBot.coe_le_coe]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ s ≤
{ toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd), fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) }
case intro.intro.hc
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
case intro.intro.hc
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
exact
⟨sup_le hb.1 hc.1, le_inf hb.2 hc.2⟩
-- Porting note: had to add the next 6 lines including the changes because
-- it seems that lean cannot automatically turn `NonemptyInterval.toDualProd s`
-- into `s.toProd` anymore.
[GOAL]
case intro.intro.hc
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
case intro.intro.hc
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t : NonemptyInterval α
hb : s ≤ t
c : NonemptyInterval α
hc : s ≤ c
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
rcases hb with ⟨hb₁, hb₂⟩
[GOAL]
case intro.intro.hc.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t c : NonemptyInterval α
hc : s ≤ c
hb₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd t).fst
hb₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd t).snd
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
rcases hc with ⟨hc₁, hc₂⟩
[GOAL]
case intro.intro.hc.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t c : NonemptyInterval α
hb₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd t).fst
hb₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd t).snd
hc₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd c).fst
hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
change t.toProd.fst ≤ s.toProd.fst at hb₁
[GOAL]
case intro.intro.hc.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t c : NonemptyInterval α
hb₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd t).snd
hc₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd c).fst
hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd
hb₁ : t.fst ≤ s.fst
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
change s.toProd.snd ≤ t.toProd.snd at hb₂
[GOAL]
case intro.intro.hc.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t c : NonemptyInterval α
hc₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd c).fst
hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd
hb₁ : t.fst ≤ s.fst
hb₂ : s.snd ≤ t.snd
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
change c.toProd.fst ≤ s.toProd.fst at hc₁
[GOAL]
case intro.intro.hc.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t c : NonemptyInterval α
hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd
hb₁ : t.fst ≤ s.fst
hb₂ : s.snd ≤ t.snd
hc₁ : c.fst ≤ s.fst
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
change s.toProd.snd ≤ c.toProd.snd at hc₂
[GOAL]
case intro.intro.hc.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : SemilatticeSup (Interval α) := semilatticeSup
s✝ t✝ c✝ : Interval α
s t c : NonemptyInterval α
hb₁ : t.fst ≤ s.fst
hb₂ : s.snd ≤ t.snd
hc₁ : c.fst ≤ s.fst
hc₂ : s.snd ≤ c.snd
⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd
[PROOFSTEP]
exact ⟨hb₁.trans <| s.fst_le_snd.trans hc₂, hc₁.trans <| s.fst_le_snd.trans hb₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : Interval α
⊢ ↑(s ⊓ t) = ↑s ∩ ↑t
[PROOFSTEP]
cases s with
| none =>
rw [WithBot.none_eq_bot, bot_inf_eq]
exact (empty_inter _).symm
| some s =>
cases t with
| none =>
rw [WithBot.none_eq_bot, inf_bot_eq]
exact (inter_empty _).symm
|
some t =>
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans
Icc_inter_Icc.symm
split_ifs with h
· rfl
·
exact
(Icc_eq_empty fun H =>
h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : Interval α
⊢ ↑(s ⊓ t) = ↑s ∩ ↑t
[PROOFSTEP]
cases s with
| none =>
rw [WithBot.none_eq_bot, bot_inf_eq]
exact (empty_inter _).symm
| some s =>
cases t with
| none =>
rw [WithBot.none_eq_bot, inf_bot_eq]
exact (inter_empty _).symm
|
some t =>
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans
Icc_inter_Icc.symm
split_ifs with h
· rfl
·
exact
(Icc_eq_empty fun H =>
h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
t : Interval α
⊢ ↑(none ⊓ t) = ↑none ∩ ↑t
[PROOFSTEP]
| none =>
rw [WithBot.none_eq_bot, bot_inf_eq]
exact (empty_inter _).symm
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
t : Interval α
⊢ ↑(none ⊓ t) = ↑none ∩ ↑t
[PROOFSTEP]
rw [WithBot.none_eq_bot, bot_inf_eq]
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
t : Interval α
⊢ ↑⊥ = ↑⊥ ∩ ↑t
[PROOFSTEP]
exact (empty_inter _).symm
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
t : Interval α
s : NonemptyInterval α
⊢ ↑(some s ⊓ t) = ↑(some s) ∩ ↑t
[PROOFSTEP]
| some s =>
cases t with
| none =>
rw [WithBot.none_eq_bot, inf_bot_eq]
exact (inter_empty _).symm
|
some t =>
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans
Icc_inter_Icc.symm
split_ifs with h
· rfl
·
exact
(Icc_eq_empty fun H =>
h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
t : Interval α
s : NonemptyInterval α
⊢ ↑(some s ⊓ t) = ↑(some s) ∩ ↑t
[PROOFSTEP]
cases t with
| none =>
rw [WithBot.none_eq_bot, inf_bot_eq]
exact (inter_empty _).symm
|
some t =>
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans
Icc_inter_Icc.symm
split_ifs with h
· rfl
·
exact
(Icc_eq_empty fun H =>
h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
t : Interval α
s : NonemptyInterval α
⊢ ↑(some s ⊓ t) = ↑(some s) ∩ ↑t
[PROOFSTEP]
cases t with
| none =>
rw [WithBot.none_eq_bot, inf_bot_eq]
exact (inter_empty _).symm
|
some t =>
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans
Icc_inter_Icc.symm
split_ifs with h
· rfl
·
exact
(Icc_eq_empty fun H =>
h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s : NonemptyInterval α
⊢ ↑(some s ⊓ none) = ↑(some s) ∩ ↑none
[PROOFSTEP]
| none =>
rw [WithBot.none_eq_bot, inf_bot_eq]
exact (inter_empty _).symm
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s : NonemptyInterval α
⊢ ↑(some s ⊓ none) = ↑(some s) ∩ ↑none
[PROOFSTEP]
rw [WithBot.none_eq_bot, inf_bot_eq]
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s : NonemptyInterval α
⊢ ↑⊥ = ↑(some s) ∩ ↑⊥
[PROOFSTEP]
exact (inter_empty _).symm
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : NonemptyInterval α
⊢ ↑(some s ⊓ some t) = ↑(some s) ∩ ↑(some t)
[PROOFSTEP]
|
some t =>
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans
Icc_inter_Icc.symm
split_ifs with h
· rfl
·
exact
(Icc_eq_empty fun H =>
h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : NonemptyInterval α
⊢ ↑(some s ⊓ some t) = ↑(some s) ∩ ↑(some t)
[PROOFSTEP]
refine'
(_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : NonemptyInterval α
⊢ ↑(if h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd then
some
{ toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd),
fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) }
else ⊥) =
Icc (s.fst ⊔ t.fst) (s.snd ⊓ t.snd)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : NonemptyInterval α
h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd
⊢ ↑(some
{ toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd),
fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) }) =
Icc (s.fst ⊔ t.fst) (s.snd ⊓ t.snd)
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : Lattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
s t : NonemptyInterval α
h : ¬(s.fst ≤ t.snd ∧ t.fst ≤ s.snd)
⊢ ↑⊥ = Icc (s.fst ⊔ t.fst) (s.snd ⊓ t.snd)
[PROOFSTEP]
exact
(Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : Lattice α
s t : Interval α
⊢ Disjoint ↑s ↑t ↔ Disjoint s t
[PROOFSTEP]
classical
rw [disjoint_iff_inf_le, disjoint_iff_inf_le, ← coe_subset_coe, coe_inf]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : Lattice α
s t : Interval α
⊢ Disjoint ↑s ↑t ↔ Disjoint s t
[PROOFSTEP]
rw [disjoint_iff_inf_le, disjoint_iff_inf_le, ← coe_subset_coe, coe_inf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : Lattice α
s t : Interval α
⊢ ↑s ⊓ ↑t ≤ ⊥ ↔ ↑s ∩ ↑t ⊆ ↑⊥
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝ : Preorder α
s : NonemptyInterval α
a : α
⊢ ↑s = Interval.pure a ↔ s = pure a
[PROOFSTEP]
rw [← Interval.coe_inj, coe_pure_interval]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
⊢ CompleteLattice (Interval α)
[PROOFSTEP]
classical exact
{ Interval.lattice,
Interval.boundedOrder with
sSup := fun S =>
if h : S ⊆ {⊥} then ⊥
else
some
⟨⟨⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩,
by
obtain ⟨s, hs, ha⟩ := not_subset.1 h
lift s to NonemptyInterval α using ha
exact iInf₂_le_of_le s hs (le_iSup₂_of_le s hs s.fst_le_snd)⟩
le_sSup := fun s s ha =>
by
dsimp only
-- Porting note: added
split_ifs with h
· exact (h ha).le
cases s
· exact bot_le
·
-- Porting note: This case was
-- `exact WithBot.some_le_some.2 ⟨iInf₂_le _ ha, le_iSup₂_of_le _ ha le_rfl⟩`
-- but there seems to be a defEq-problem at `iInf₂_le` that lean cannot resolve yet.
apply WithBot.some_le_some.2
constructor
· apply iInf₂_le
exact ha
· exact le_iSup₂_of_le _ ha le_rfl
sSup_le := fun s s ha =>
by
dsimp only
-- Porting note: added
split_ifs with h
· exact bot_le
obtain ⟨b, hs, hb⟩ := not_subset.1 h
lift s to NonemptyInterval α using ne_bot_of_le_ne_bot hb (ha _ hs)
exact
WithBot.coe_le_coe.2
⟨le_iInf₂ fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).1,
iSup₂_le fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).2⟩
sInf := fun S =>
if h : ⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then
some
⟨⟨⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩,
iSup₂_le fun s hs => le_iInf₂ <| h.2 hs⟩
else ⊥
sInf_le := fun s₁ s ha =>
by
dsimp only
-- Porting note: added
split_ifs with h
· lift s to NonemptyInterval α using
ne_of_mem_of_not_mem ha
h.1
-- Porting note: Lean failed to figure out the function `f` by itself,
-- so I added it through manually
let f := fun (s : NonemptyInterval α) (_ : ↑s ∈ s₁) => s.toProd.fst
exact WithBot.coe_le_coe.2 ⟨le_iSup₂ (f := f) s ha, iInf₂_le s ha⟩
· exact bot_le
le_sInf := by
intro S s ha
cases s with
| none => exact bot_le
|
some s =>
dsimp
-- Porting note: added
split_ifs with h
·
exact
WithBot.some_le_some.2
⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1,
le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩
· rw [not_and_or, not_not] at h
rcases h with h | h
· exact ha _ h
·
-- Porting note: ungolfed, due to identification problems
-- between `toProd` and `toDualProd`. Original mathport output:
-- cases h fun t hb c hc =>
-- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <|
-- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 }
exfalso
apply h
intro b hb c hc
have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1
repeat rw [NonemptyInterval.toDualProd_apply] at h₁
rw [OrderDual.toDual_le_toDual] at h₁
exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) }
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
⊢ CompleteLattice (Interval α)
[PROOFSTEP]
exact
{ Interval.lattice,
Interval.boundedOrder with
sSup := fun S =>
if h : S ⊆ {⊥} then ⊥
else
some
⟨⟨⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩,
by
obtain ⟨s, hs, ha⟩ := not_subset.1 h
lift s to NonemptyInterval α using ha
exact iInf₂_le_of_le s hs (le_iSup₂_of_le s hs s.fst_le_snd)⟩
le_sSup := fun s s ha =>
by
dsimp only
-- Porting note: added
split_ifs with h
· exact (h ha).le
cases s
· exact bot_le
·
-- Porting note: This case was
-- `exact WithBot.some_le_some.2 ⟨iInf₂_le _ ha, le_iSup₂_of_le _ ha le_rfl⟩`
-- but there seems to be a defEq-problem at `iInf₂_le` that lean cannot resolve yet.
apply WithBot.some_le_some.2
constructor
· apply iInf₂_le
exact ha
· exact le_iSup₂_of_le _ ha le_rfl
sSup_le := fun s s ha =>
by
dsimp only
-- Porting note: added
split_ifs with h
· exact bot_le
obtain ⟨b, hs, hb⟩ := not_subset.1 h
lift s to NonemptyInterval α using ne_bot_of_le_ne_bot hb (ha _ hs)
exact
WithBot.coe_le_coe.2
⟨le_iInf₂ fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).1,
iSup₂_le fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).2⟩
sInf := fun S =>
if h : ⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then
some
⟨⟨⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩,
iSup₂_le fun s hs => le_iInf₂ <| h.2 hs⟩
else ⊥
sInf_le := fun s₁ s ha =>
by
dsimp only
-- Porting note: added
split_ifs with h
· lift s to NonemptyInterval α using
ne_of_mem_of_not_mem ha
h.1
-- Porting note: Lean failed to figure out the function `f` by itself,
-- so I added it through manually
let f := fun (s : NonemptyInterval α) (_ : ↑s ∈ s₁) => s.toProd.fst
exact WithBot.coe_le_coe.2 ⟨le_iSup₂ (f := f) s ha, iInf₂_le s ha⟩
· exact bot_le
le_sInf := by
intro S s ha
cases s with
| none => exact bot_le
|
some s =>
dsimp
-- Porting note: added
split_ifs with h
·
exact
WithBot.some_le_some.2
⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1,
le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩
· rw [not_and_or, not_not] at h
rcases h with h | h
· exact ha _ h
·
-- Porting note: ungolfed, due to identification problems
-- between `toProd` and `toDualProd`. Original mathport output:
-- cases h fun t hb c hc =>
-- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <|
-- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 }
exfalso
apply h
intro b hb c hc
have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1
repeat rw [NonemptyInterval.toDualProd_apply] at h₁
rw [OrderDual.toDual_le_toDual] at h₁
exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) }
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
h : ¬S ⊆ {⊥}
⊢ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).fst ≤
(⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd
[PROOFSTEP]
obtain ⟨s, hs, ha⟩ := not_subset.1 h
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
h : ¬S ⊆ {⊥}
s : Interval α
hs : s ∈ S
ha : ¬s ∈ {⊥}
⊢ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).fst ≤
(⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd
[PROOFSTEP]
lift s to NonemptyInterval α using ha
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
h : ¬S ⊆ {⊥}
s : NonemptyInterval α
hs : ↑s ∈ S
⊢ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).fst ≤
(⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd
[PROOFSTEP]
exact iInf₂_le_of_le s hs (le_iSup₂_of_le s hs s.fst_le_snd)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : s ∈ s✝
⊢ s ≤ sSup s✝
[PROOFSTEP]
dsimp only
-- Porting note: added
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : s ∈ s✝
⊢ s ≤
if h : s✝ ⊆ {⊥} then ⊥
else
some
{ toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd),
fst_le_snd :=
(_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) }
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : s ∈ s✝
h : s✝ ⊆ {⊥}
⊢ s ≤ ⊥
[PROOFSTEP]
exact (h ha).le
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : s ∈ s✝
h : ¬s✝ ⊆ {⊥}
⊢ s ≤
some
{ toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd),
fst_le_snd :=
(_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) }
[PROOFSTEP]
cases s
[GOAL]
case neg.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s : Set (Interval α)
h : ¬s ⊆ {⊥}
ha : none ∈ s
⊢ none ≤
some
{
toProd :=
(⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd),
fst_le_snd :=
(_ :
⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤
⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }
[PROOFSTEP]
exact bot_le
[GOAL]
case neg.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s : Set (Interval α)
h : ¬s ⊆ {⊥}
val✝ : NonemptyInterval α
ha : some val✝ ∈ s
⊢ some val✝ ≤
some
{
toProd :=
(⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd),
fst_le_snd :=
(_ :
⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤
⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }
[PROOFSTEP]
apply WithBot.some_le_some.2
[GOAL]
case neg.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s : Set (Interval α)
h : ¬s ⊆ {⊥}
val✝ : NonemptyInterval α
ha : some val✝ ∈ s
⊢ val✝ ≤
{
toProd :=
(⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd),
fst_le_snd :=
(_ :
⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤ ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }
[PROOFSTEP]
constructor
[GOAL]
case neg.some.left
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s : Set (Interval α)
h : ¬s ⊆ {⊥}
val✝ : NonemptyInterval α
ha : some val✝ ∈ s
⊢ (NonemptyInterval.toDualProd val✝).fst ≤
(NonemptyInterval.toDualProd
{
toProd :=
(⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst,
⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd),
fst_le_snd :=
(_ :
⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤
⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }).fst
[PROOFSTEP]
apply iInf₂_le
[GOAL]
case neg.some.left.j
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s : Set (Interval α)
h : ¬s ⊆ {⊥}
val✝ : NonemptyInterval α
ha : some val✝ ∈ s
⊢ ↑val✝ ∈ s
[PROOFSTEP]
exact ha
[GOAL]
case neg.some.right
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s : Set (Interval α)
h : ¬s ⊆ {⊥}
val✝ : NonemptyInterval α
ha : some val✝ ∈ s
⊢ (NonemptyInterval.toDualProd val✝).snd ≤
(NonemptyInterval.toDualProd
{
toProd :=
(⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst,
⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd),
fst_le_snd :=
(_ :
⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤
⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }).snd
[PROOFSTEP]
exact le_iSup₂_of_le _ ha le_rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s
⊢ sSup s✝ ≤ s
[PROOFSTEP]
dsimp only
-- Porting note: added
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s
⊢ (if h : s✝ ⊆ {⊥} then ⊥
else
some
{ toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd),
fst_le_snd :=
(_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) }) ≤
s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s
h : s✝ ⊆ {⊥}
⊢ ⊥ ≤ s
[PROOFSTEP]
exact bot_le
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s
h : ¬s✝ ⊆ {⊥}
⊢ some
{ toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd),
fst_le_snd :=
(_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } ≤
s
[PROOFSTEP]
obtain ⟨b, hs, hb⟩ := not_subset.1 h
[GOAL]
case neg.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s
h : ¬s✝ ⊆ {⊥}
b : Interval α
hs : b ∈ s✝
hb : ¬b ∈ {⊥}
⊢ some
{ toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd),
fst_le_snd :=
(_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } ≤
s
[PROOFSTEP]
lift s to NonemptyInterval α using ne_bot_of_le_ne_bot hb (ha _ hs)
[GOAL]
case neg.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s✝ : Set (Interval α)
h : ¬s✝ ⊆ {⊥}
b : Interval α
hs : b ∈ s✝
hb : ¬b ∈ {⊥}
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ ↑s
⊢ some
{ toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd),
fst_le_snd :=
(_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } ≤
↑s
[PROOFSTEP]
exact
WithBot.coe_le_coe.2
⟨le_iInf₂ fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).1, iSup₂_le fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).2⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s₁ : Set (Interval α)
s : Interval α
ha : s ∈ s₁
⊢ sInf s₁ ≤ s
[PROOFSTEP]
dsimp only
-- Porting note: added
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s₁ : Set (Interval α)
s : Interval α
ha : s ∈ s₁
⊢ (if h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd then
some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd),
fst_le_snd :=
(_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) }
else ⊥) ≤
s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s₁ : Set (Interval α)
s : Interval α
ha : s ∈ s₁
h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd
⊢ some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd),
fst_le_snd :=
(_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } ≤
s
[PROOFSTEP]
lift s to NonemptyInterval α using
ne_of_mem_of_not_mem ha
h.1
-- Porting note: Lean failed to figure out the function `f` by itself,
-- so I added it through manually
[GOAL]
case pos.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s₁ : Set (Interval α)
h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd
s : NonemptyInterval α
ha : ↑s ∈ s₁
⊢ some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd),
fst_le_snd :=
(_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } ≤
↑s
[PROOFSTEP]
let f := fun (s : NonemptyInterval α) (_ : ↑s ∈ s₁) => s.toProd.fst
[GOAL]
case pos.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s₁ : Set (Interval α)
h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd
s : NonemptyInterval α
ha : ↑s ∈ s₁
f : (s : NonemptyInterval α) → ↑s ∈ s₁ → α := fun s x => s.fst
⊢ some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd),
fst_le_snd :=
(_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } ≤
↑s
[PROOFSTEP]
exact WithBot.coe_le_coe.2 ⟨le_iSup₂ (f := f) s ha, iInf₂_le s ha⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
s₁ : Set (Interval α)
s : Interval α
ha : s ∈ s₁
h : ¬(¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd)
⊢ ⊥ ≤ s
[PROOFSTEP]
exact bot_le
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
⊢ ∀ (s : Set (Interval α)) (a : Interval α), (∀ (b : Interval α), b ∈ s → a ≤ b) → a ≤ sInf s
[PROOFSTEP]
intro S s ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ S → s ≤ b
⊢ s ≤ sInf S
[PROOFSTEP]
cases s with
| none => exact bot_le
|
some s =>
dsimp
-- Porting note: added
split_ifs with h
·
exact
WithBot.some_le_some.2
⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1,
le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩
· rw [not_and_or, not_not] at h
rcases h with h | h
· exact ha _ h
·
-- Porting note: ungolfed, due to identification problems
-- between `toProd` and `toDualProd`. Original mathport output:
-- cases h fun t hb c hc =>
-- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <|
-- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 }
exfalso
apply h
intro b hb c hc
have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1
repeat rw [NonemptyInterval.toDualProd_apply] at h₁
rw [OrderDual.toDual_le_toDual] at h₁
exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : Interval α
ha : ∀ (b : Interval α), b ∈ S → s ≤ b
⊢ s ≤ sInf S
[PROOFSTEP]
cases s with
| none => exact bot_le
|
some s =>
dsimp
-- Porting note: added
split_ifs with h
·
exact
WithBot.some_le_some.2
⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1,
le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩
· rw [not_and_or, not_not] at h
rcases h with h | h
· exact ha _ h
·
-- Porting note: ungolfed, due to identification problems
-- between `toProd` and `toDualProd`. Original mathport output:
-- cases h fun t hb c hc =>
-- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <|
-- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 }
exfalso
apply h
intro b hb c hc
have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1
repeat rw [NonemptyInterval.toDualProd_apply] at h₁
rw [OrderDual.toDual_le_toDual] at h₁
exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2)
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
ha : ∀ (b : Interval α), b ∈ S → none ≤ b
⊢ none ≤ sInf S
[PROOFSTEP]
| none => exact bot_le
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
ha : ∀ (b : Interval α), b ∈ S → none ≤ b
⊢ none ≤ sInf S
[PROOFSTEP]
exact bot_le
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
⊢ some s ≤ sInf S
[PROOFSTEP]
|
some s =>
dsimp
-- Porting note: added
split_ifs with h
·
exact
WithBot.some_le_some.2
⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1,
le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩
· rw [not_and_or, not_not] at h
rcases h with h | h
· exact ha _ h
·
-- Porting note: ungolfed, due to identification problems
-- between `toProd` and `toDualProd`. Original mathport output:
-- cases h fun t hb c hc =>
-- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <|
-- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 }
exfalso
apply h
intro b hb c hc
have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1
repeat rw [NonemptyInterval.toDualProd_apply] at h₁
rw [OrderDual.toDual_le_toDual] at h₁
exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2)
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
⊢ some s ≤ sInf S
[PROOFSTEP]
dsimp
-- Porting note: added
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
⊢ some s ≤
if h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then
some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd),
fst_le_snd :=
(_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd) }
else ⊥
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ some s ≤
some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd),
fst_le_snd :=
(_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd) }
[PROOFSTEP]
exact
WithBot.some_le_some.2
⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬(¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd)
⊢ some s ≤ ⊥
[PROOFSTEP]
rw [not_and_or, not_not] at h
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ⊥ ∈ S ∨ ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ some s ≤ ⊥
[PROOFSTEP]
rcases h with h | h
[GOAL]
case neg.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ⊥ ∈ S
⊢ some s ≤ ⊥
[PROOFSTEP]
exact ha _ h
[GOAL]
case neg.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ some s ≤ ⊥
[PROOFSTEP]
exfalso
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ False
[PROOFSTEP]
apply h
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
[PROOFSTEP]
intro b hb c hc
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
⊢ b.fst ≤ c.snd
[PROOFSTEP]
have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
h₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd b).fst
⊢ b.fst ≤ c.snd
[PROOFSTEP]
repeat rw [NonemptyInterval.toDualProd_apply] at h₁
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
h₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd b).fst
⊢ b.fst ≤ c.snd
[PROOFSTEP]
rw [NonemptyInterval.toDualProd_apply] at h₁
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
h₁ : (↑toDual s.fst, s.snd).fst ≤ (NonemptyInterval.toDualProd b).fst
⊢ b.fst ≤ c.snd
[PROOFSTEP]
rw [NonemptyInterval.toDualProd_apply] at h₁
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
h₁ : (↑toDual s.fst, s.snd).fst ≤ (↑toDual b.fst, b.snd).fst
⊢ b.fst ≤ c.snd
[PROOFSTEP]
rw [NonemptyInterval.toDualProd_apply] at h₁
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
h₁ : (↑toDual s.fst, s.snd).fst ≤ (↑toDual b.fst, b.snd).fst
⊢ b.fst ≤ c.snd
[PROOFSTEP]
rw [OrderDual.toDual_le_toDual] at h₁
[GOAL]
case neg.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : Lattice (Interval α) := lattice
src✝ : BoundedOrder (Interval α) := boundedOrder
S : Set (Interval α)
s : NonemptyInterval α
ha : ∀ (b : Interval α), b ∈ S → some s ≤ b
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
b : NonemptyInterval α
hb : ↑b ∈ S
c : NonemptyInterval α
hc : ↑c ∈ S
h₁ : b.fst ≤ s.fst
⊢ b.fst ≤ c.snd
[PROOFSTEP]
exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
⊢ ↑(sInf S) = ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
classical
-- Porting note: added
-- Porting note: this `change` was
-- change ↑ (dite _ _ _) = _
change ((dite _ _ _ : Interval α) : Set α) = ⋂ (s : Interval α) (_ : s ∈ S), (s : Set α)
split_ifs with h
· ext
simp [WithBot.some_eq_coe, Interval.forall, h.1, ← forall_and, ← NonemptyInterval.mem_def]
simp_rw [not_and_or, Classical.not_not] at h
rcases h with h | h
· refine' (eq_empty_of_subset_empty _).symm
exact iInter₂_subset_of_subset _ h Subset.rfl
· refine' (not_nonempty_iff_eq_empty.1 _).symm
rintro ⟨x, hx⟩
rw [mem_iInter₂] at hx
exact h fun s ha t hb => (hx _ ha).1.trans (hx _ hb).2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
⊢ ↑(sInf S) = ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
change ((dite _ _ _ : Interval α) : Set α) = ⋂ (s : Interval α) (_ : s ∈ S), (s : Set α)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
⊢ ↑(if h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then
some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd),
fst_le_snd :=
(_ :
⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤
(⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst,
⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd) }
else ⊥) =
⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ ↑(some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd),
fst_le_snd :=
(_ :
⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤
(⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst,
⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd) }) =
⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
ext
[GOAL]
case pos.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
x✝ : α
⊢ x✝ ∈
↑(some
{ toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd),
fst_le_snd :=
(_ :
⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤
(⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst,
⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd) }) ↔
x✝ ∈ ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp [WithBot.some_eq_coe, Interval.forall, h.1, ← forall_and, ← NonemptyInterval.mem_def]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬(¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd)
⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp_rw [not_and_or, Classical.not_not] at h
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ⊥ ∈ S ∨ ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
rcases h with h | h
[GOAL]
case neg.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ⊥ ∈ S
⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
refine' (eq_empty_of_subset_empty _).symm
[GOAL]
case neg.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ⊥ ∈ S
⊢ ⋂ (s : Interval α) (_ : s ∈ S), ↑s ⊆ ∅
[PROOFSTEP]
exact iInter₂_subset_of_subset _ h Subset.rfl
[GOAL]
case neg.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s
[PROOFSTEP]
refine' (not_nonempty_iff_eq_empty.1 _).symm
[GOAL]
case neg.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
⊢ ¬Set.Nonempty (⋂ (s : Interval α) (_ : s ∈ S), ↑s)
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case neg.inr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
x : α
hx : x ∈ ⋂ (s : Interval α) (_ : s ∈ S), ↑s
⊢ False
[PROOFSTEP]
rw [mem_iInter₂] at hx
[GOAL]
case neg.inr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
S : Set (Interval α)
h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd
x : α
hx : ∀ (i : Interval α), i ∈ S → x ∈ ↑i
⊢ False
[PROOFSTEP]
exact h fun s ha t hb => (hx _ ha).1.trans (hx _ hb).2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
f : ι → Interval α
⊢ ↑(⨅ (i : ι), f i) = ⋂ (i : ι), ↑(f i)
[PROOFSTEP]
simp [iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
κ : ι → Sort u_6
inst✝¹ : CompleteLattice α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
f : (i : ι) → κ i → Interval α
⊢ ↑(⨅ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j)
[PROOFSTEP]
simp_rw [coe_iInf]
| {"mathlib_filename": "Mathlib.Order.Interval", "llama_tokens": 34154} |
[GOAL]
α : Type u
h h' : LE α
c : BoundedOrder α
top : α
⊢ Top α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
h h' : LE α
c : BoundedOrder α
top : α
eq_top : top = ⊤
bot : α
⊢ Bot α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
h h' : LE α
c : BoundedOrder α
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
le_eq : ∀ (x y : α), x ≤ y ↔ x ≤ y
x✝ : α
⊢ x✝ ≤ ⊤
[PROOFSTEP]
simp [eq_top, le_eq]
[GOAL]
α : Type u
h h' : LE α
c : BoundedOrder α
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
le_eq : ∀ (x y : α), x ≤ y ↔ x ≤ y
x✝ : α
⊢ ⊥ ≤ x✝
[PROOFSTEP]
simp [eq_bot, le_eq]
[GOAL]
α : Type u
c : Lattice α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ Lattice α
[PROOFSTEP]
refine' { le := le, sup := sup, inf := inf, lt := fun a b ↦ le a b ∧ ¬le b a .. }
[GOAL]
case refine'_1
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a : α), a ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ : α
⊢ a✝ ≤ a✝
[PROOFSTEP]
simp [eq_le]
[GOAL]
case refine'_2
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
intro _ _ _ hab hbc
[GOAL]
case refine'_2
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hab : a✝ ≤ b✝
hbc : b✝ ≤ c✝
⊢ a✝ ≤ c✝
[PROOFSTEP]
rw [eq_le] at hab hbc ⊢
[GOAL]
case refine'_2
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hab : a✝ ≤ b✝
hbc : b✝ ≤ c✝
⊢ a✝ ≤ c✝
[PROOFSTEP]
exact le_trans hab hbc
[GOAL]
case refine'_3
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ < b✝ ↔ a✝ ≤ b✝ ∧ ¬b✝ ≤ a✝
[PROOFSTEP]
simp [eq_le]
[GOAL]
case refine'_4
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
intro _ _ hab hba
[GOAL]
case refine'_4
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
hab : a✝ ≤ b✝
hba : b✝ ≤ a✝
⊢ a✝ = b✝
[PROOFSTEP]
simp_rw [eq_le] at hab hba
[GOAL]
case refine'_4
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
hab : a✝ ≤ b✝
hba : b✝ ≤ a✝
⊢ a✝ = b✝
[PROOFSTEP]
exact le_antisymm hab hba
[GOAL]
case refine'_5
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ≤ a ⊔ b
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ ≤ a✝ ⊔ b✝
[PROOFSTEP]
simp [eq_le, eq_sup]
[GOAL]
case refine'_6
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), b ≤ a ⊔ b
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ b✝ ≤ a✝ ⊔ b✝
[PROOFSTEP]
simp [eq_le, eq_sup]
[GOAL]
case refine'_7
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1
[PROOFSTEP]
intro _ _ _ hac hbc
[GOAL]
case refine'_7
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ c✝
hbc : b✝ ≤ c✝
⊢ a✝ ⊔ b✝ ≤ c✝
[PROOFSTEP]
simp_rw [eq_le] at hac hbc ⊢
[GOAL]
case refine'_7
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ c✝
hbc : b✝ ≤ c✝
⊢ sup a✝ b✝ ≤ c✝
[PROOFSTEP]
simp [eq_sup, hac, hbc]
[GOAL]
case refine'_8
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ⊓ b ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_8
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ ⊓ b✝ ≤ a✝
[PROOFSTEP]
simp [eq_le, eq_inf]
[GOAL]
case refine'_9
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ⊓ b ≤ b
[PROOFSTEP]
intros
[GOAL]
case refine'_9
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ ⊓ b✝ ≤ b✝
[PROOFSTEP]
simp [eq_le, eq_inf]
[GOAL]
case refine'_10
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1
[PROOFSTEP]
intro _ _ _ hac hbc
[GOAL]
case refine'_10
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ b✝
hbc : a✝ ≤ c✝
⊢ a✝ ≤ b✝ ⊓ c✝
[PROOFSTEP]
simp_rw [eq_le] at hac hbc ⊢
[GOAL]
case refine'_10
α : Type u
c : Lattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ b✝
hbc : a✝ ≤ c✝
⊢ a✝ ≤ inf b✝ c✝
[PROOFSTEP]
simp [eq_inf, hac, hbc]
[GOAL]
α : Type u
c : DistribLattice α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ DistribLattice α
[PROOFSTEP]
refine' { le := le, sup := sup, inf := inf, lt := fun a b ↦ le a b ∧ ¬le b a .. }
[GOAL]
case refine'_1
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a : α), a ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ : α
⊢ a✝ ≤ a✝
[PROOFSTEP]
simp [eq_le]
[GOAL]
case refine'_2
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
intro _ _ _ hab hbc
[GOAL]
case refine'_2
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hab : a✝ ≤ b✝
hbc : b✝ ≤ c✝
⊢ a✝ ≤ c✝
[PROOFSTEP]
rw [eq_le] at hab hbc ⊢
[GOAL]
case refine'_2
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hab : a✝ ≤ b✝
hbc : b✝ ≤ c✝
⊢ a✝ ≤ c✝
[PROOFSTEP]
exact le_trans hab hbc
[GOAL]
case refine'_3
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ < b✝ ↔ a✝ ≤ b✝ ∧ ¬b✝ ≤ a✝
[PROOFSTEP]
simp [eq_le]
[GOAL]
case refine'_4
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
intro _ _ hab hba
[GOAL]
case refine'_4
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
hab : a✝ ≤ b✝
hba : b✝ ≤ a✝
⊢ a✝ = b✝
[PROOFSTEP]
simp_rw [eq_le] at hab hba
[GOAL]
case refine'_4
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
hab : a✝ ≤ b✝
hba : b✝ ≤ a✝
⊢ a✝ = b✝
[PROOFSTEP]
exact le_antisymm hab hba
[GOAL]
case refine'_5
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ≤ a ⊔ b
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ ≤ a✝ ⊔ b✝
[PROOFSTEP]
simp [eq_le, eq_sup]
[GOAL]
case refine'_6
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), b ≤ a ⊔ b
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ b✝ ≤ a✝ ⊔ b✝
[PROOFSTEP]
simp [eq_le, eq_sup]
[GOAL]
case refine'_7
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1
[PROOFSTEP]
intro _ _ _ hac hbc
[GOAL]
case refine'_7
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ c✝
hbc : b✝ ≤ c✝
⊢ a✝ ⊔ b✝ ≤ c✝
[PROOFSTEP]
simp_rw [eq_le] at hac hbc ⊢
[GOAL]
case refine'_7
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ c✝
hbc : b✝ ≤ c✝
⊢ sup a✝ b✝ ≤ c✝
[PROOFSTEP]
simp [eq_sup, hac, hbc]
[GOAL]
case refine'_8
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ⊓ b ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_8
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ ⊓ b✝ ≤ a✝
[PROOFSTEP]
simp [eq_le, eq_inf]
[GOAL]
case refine'_9
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b : α), a ⊓ b ≤ b
[PROOFSTEP]
intros
[GOAL]
case refine'_9
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ : α
⊢ a✝ ⊓ b✝ ≤ b✝
[PROOFSTEP]
simp [eq_le, eq_inf]
[GOAL]
case refine'_10
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1
[PROOFSTEP]
intro _ _ _ hac hbc
[GOAL]
case refine'_10
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ b✝
hbc : a✝ ≤ c✝
⊢ a✝ ≤ b✝ ⊓ c✝
[PROOFSTEP]
simp_rw [eq_le] at hac hbc ⊢
[GOAL]
case refine'_10
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
a✝ b✝ c✝ : α
hac : a✝ ≤ b✝
hbc : a✝ ≤ c✝
⊢ a✝ ≤ inf b✝ c✝
[PROOFSTEP]
simp [eq_inf, hac, hbc]
[GOAL]
case refine'_11
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
⊢ ∀ (x y z : α), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
[PROOFSTEP]
intros
[GOAL]
case refine'_11
α : Type u
c : DistribLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
x✝ y✝ z✝ : α
⊢ (x✝ ⊔ y✝) ⊓ (x✝ ⊔ z✝) ≤ x✝ ⊔ y✝ ⊓ z✝
[PROOFSTEP]
simp [eq_le, eq_inf, eq_sup, le_sup_inf]
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
⊢ Top α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
⊢ Bot α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
⊢ SupSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
⊢ InfSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ CompleteLattice α
[PROOFSTEP]
refine'
{ Lattice.copy (@CompleteLattice.toLattice α c) le eq_le sup eq_sup inf eq_inf with le := le, top := top, bot := bot,
sup := sup, inf := inf, sSup := sSup, sInf := sInf .. }
[GOAL]
case refine'_1
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
⊢ ∀ (s : Set α) (a : α), a ∈ s → a ≤ SupSet.sSup s
[PROOFSTEP]
intro _ _ h
[GOAL]
case refine'_1
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
s✝ : Set α
a✝ : α
h : a✝ ∈ s✝
⊢ a✝ ≤ SupSet.sSup s✝
[PROOFSTEP]
simp [eq_le, eq_sSup, le_sSup _ _ h]
[GOAL]
case refine'_2
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
⊢ ∀ (s : Set α) (a : α), (∀ (b : α), b ∈ s → b ≤ a) → SupSet.sSup s ≤ a
[PROOFSTEP]
intro _ _ h
[GOAL]
case refine'_2
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
s✝ : Set α
a✝ : α
h : ∀ (b : α), b ∈ s✝ → b ≤ a✝
⊢ SupSet.sSup s✝ ≤ a✝
[PROOFSTEP]
simpa [eq_le, eq_sSup] using h
[GOAL]
case refine'_3
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
⊢ ∀ (s : Set α) (a : α), a ∈ s → InfSet.sInf s ≤ a
[PROOFSTEP]
intro _ _ h
[GOAL]
case refine'_3
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
s✝ : Set α
a✝ : α
h : a✝ ∈ s✝
⊢ InfSet.sInf s✝ ≤ a✝
[PROOFSTEP]
simp [eq_le, eq_sInf, sInf_le _ _ h]
[GOAL]
case refine'_4
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
⊢ ∀ (s : Set α) (a : α), (∀ (b : α), b ∈ s → a ≤ b) → a ≤ InfSet.sInf s
[PROOFSTEP]
intro _ _ h
[GOAL]
case refine'_4
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
s✝ : Set α
a✝ : α
h : ∀ (b : α), b ∈ s✝ → a✝ ≤ b
⊢ a✝ ≤ InfSet.sInf s✝
[PROOFSTEP]
simpa [eq_le, eq_sInf] using h
[GOAL]
case refine'_5
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
⊢ ∀ (x : α), x ≤ ⊤
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
x✝ : α
⊢ x✝ ≤ ⊤
[PROOFSTEP]
simp [eq_le, eq_top]
[GOAL]
case refine'_6
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
⊢ ∀ (x : α), ⊥ ≤ x
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type u
c : CompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf
x✝ : α
⊢ ⊥ ≤ x✝
[PROOFSTEP]
simp [eq_le, eq_bot]
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
⊢ Top α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
⊢ Bot α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
⊢ SupSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
⊢ InfSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Frame α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : CompleteLattice α :=
CompleteLattice.copy Frame.toCompleteLattice le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sSup eq_sSup sInf
eq_sInf
a : α
s : Set α
⊢ a ⊓ SupSet.sSup s ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
simp [eq_le, eq_sup, eq_inf, eq_sSup, @Order.Frame.inf_sSup_le_iSup_inf α _ a s]
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
⊢ Top α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
⊢ Bot α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
⊢ SupSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
⊢ InfSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : Coframe α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
src✝ : CompleteLattice α :=
CompleteLattice.copy Coframe.toCompleteLattice le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sSup eq_sSup sInf
eq_sInf
a : α
s : Set α
⊢ ⨅ (b : α) (_ : b ∈ s), a ⊔ b ≤ a ⊔ InfSet.sInf s
[PROOFSTEP]
simp [eq_le, eq_sup, eq_inf, eq_sInf, @Order.Coframe.iInf_sup_le_sup_sInf α _ a s]
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
⊢ Top α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
⊢ Bot α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
⊢ SupSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : CompleteDistribLattice α
le : α → α → Prop
eq_le : le = LE.le
top : α
eq_top : top = ⊤
bot : α
eq_bot : bot = ⊥
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
⊢ InfSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
⊢ LE α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
⊢ Sup α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
⊢ Inf α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
⊢ SupSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
⊢ InfSet α
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ConditionallyCompleteLattice α
[PROOFSTEP]
refine' { le := le, sup := sup, inf := inf, sSup := sSup, sInf := sInf .. }
[GOAL]
case refine'_1
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ α → α → Prop
[PROOFSTEP]
intro a b
[GOAL]
case refine'_1
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a b : α
⊢ Prop
[PROOFSTEP]
exact le a b ∧ ¬le b a
[GOAL]
case refine'_2
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a : α), a ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ : α
⊢ a✝ ≤ a✝
[PROOFSTEP]
simp [eq_le]
[GOAL]
case refine'_3
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
intro _ _ _ hab hbc
[GOAL]
case refine'_3
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ c✝ : α
hab : a✝ ≤ b✝
hbc : b✝ ≤ c✝
⊢ a✝ ≤ c✝
[PROOFSTEP]
rw [eq_le] at hab hbc ⊢
[GOAL]
case refine'_3
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ c✝ : α
hab : a✝ ≤ b✝
hbc : b✝ ≤ c✝
⊢ a✝ ≤ c✝
[PROOFSTEP]
exact le_trans hab hbc
[GOAL]
case refine'_4
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_4
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
⊢ a✝ < b✝ ↔ a✝ ≤ b✝ ∧ ¬b✝ ≤ a✝
[PROOFSTEP]
simp [eq_le]
[GOAL]
case refine'_5
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b : α), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
intro _ _ hab hba
[GOAL]
case refine'_5
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
hab : a✝ ≤ b✝
hba : b✝ ≤ a✝
⊢ a✝ = b✝
[PROOFSTEP]
simp_rw [eq_le] at hab hba
[GOAL]
case refine'_5
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
hab : a✝ ≤ b✝
hba : b✝ ≤ a✝
⊢ a✝ = b✝
[PROOFSTEP]
exact le_antisymm hab hba
[GOAL]
case refine'_6
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b : α), a ≤ a ⊔ b
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
⊢ a✝ ≤ a✝ ⊔ b✝
[PROOFSTEP]
simp [eq_le, eq_sup]
[GOAL]
case refine'_7
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b : α), b ≤ a ⊔ b
[PROOFSTEP]
intros
[GOAL]
case refine'_7
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
⊢ b✝ ≤ a✝ ⊔ b✝
[PROOFSTEP]
simp [eq_le, eq_sup]
[GOAL]
case refine'_8
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1
[PROOFSTEP]
intro _ _ _ hac hbc
[GOAL]
case refine'_8
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ c✝ : α
hac : a✝ ≤ c✝
hbc : b✝ ≤ c✝
⊢ a✝ ⊔ b✝ ≤ c✝
[PROOFSTEP]
simp_rw [eq_le] at hac hbc ⊢
[GOAL]
case refine'_8
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ c✝ : α
hac : a✝ ≤ c✝
hbc : b✝ ≤ c✝
⊢ sup a✝ b✝ ≤ c✝
[PROOFSTEP]
simp [eq_sup, hac, hbc]
[GOAL]
case refine'_9
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b : α), a ⊓ b ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_9
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
⊢ a✝ ⊓ b✝ ≤ a✝
[PROOFSTEP]
simp [eq_le, eq_inf]
[GOAL]
case refine'_10
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b : α), a ⊓ b ≤ b
[PROOFSTEP]
intros
[GOAL]
case refine'_10
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ : α
⊢ a✝ ⊓ b✝ ≤ b✝
[PROOFSTEP]
simp [eq_le, eq_inf]
[GOAL]
case refine'_11
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1
[PROOFSTEP]
intro _ _ _ hac hbc
[GOAL]
case refine'_11
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ c✝ : α
hac : a✝ ≤ b✝
hbc : a✝ ≤ c✝
⊢ a✝ ≤ b✝ ⊓ c✝
[PROOFSTEP]
simp_rw [eq_le] at hac hbc ⊢
[GOAL]
case refine'_11
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
a✝ b✝ c✝ : α
hac : a✝ ≤ b✝
hbc : a✝ ≤ c✝
⊢ a✝ ≤ inf b✝ c✝
[PROOFSTEP]
simp [eq_inf, hac, hbc]
[GOAL]
case refine'_12
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (s : Set α) (a : α), BddAbove s → a ∈ s → a ≤ SupSet.sSup s
[PROOFSTEP]
intro _ _ hb h
[GOAL]
case refine'_12
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
s✝ : Set α
a✝ : α
hb : BddAbove s✝
h : a✝ ∈ s✝
⊢ a✝ ≤ SupSet.sSup s✝
[PROOFSTEP]
subst_vars
[GOAL]
case refine'_12
α : Type u
c : ConditionallyCompleteLattice α
s✝ : Set α
a✝ : α
h : a✝ ∈ s✝
hb : BddAbove s✝
⊢ a✝ ≤ sSup s✝
[PROOFSTEP]
exact le_csSup _ _ hb h
[GOAL]
case refine'_13
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ upperBounds s → SupSet.sSup s ≤ a
[PROOFSTEP]
intro _ _ hb h
[GOAL]
case refine'_13
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
s✝ : Set α
a✝ : α
hb : Set.Nonempty s✝
h : a✝ ∈ upperBounds s✝
⊢ SupSet.sSup s✝ ≤ a✝
[PROOFSTEP]
subst_vars
[GOAL]
case refine'_13
α : Type u
c : ConditionallyCompleteLattice α
s✝ : Set α
a✝ : α
hb : Set.Nonempty s✝
h : a✝ ∈ upperBounds s✝
⊢ sSup s✝ ≤ a✝
[PROOFSTEP]
exact csSup_le _ _ hb h
[GOAL]
case refine'_14
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (s : Set α) (a : α), BddBelow s → a ∈ s → InfSet.sInf s ≤ a
[PROOFSTEP]
intro _ _ hb h
[GOAL]
case refine'_14
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
s✝ : Set α
a✝ : α
hb : BddBelow s✝
h : a✝ ∈ s✝
⊢ InfSet.sInf s✝ ≤ a✝
[PROOFSTEP]
subst_vars
[GOAL]
case refine'_14
α : Type u
c : ConditionallyCompleteLattice α
s✝ : Set α
a✝ : α
h : a✝ ∈ s✝
hb : BddBelow s✝
⊢ sInf s✝ ≤ a✝
[PROOFSTEP]
exact csInf_le _ _ hb h
[GOAL]
case refine'_15
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ lowerBounds s → a ≤ InfSet.sInf s
[PROOFSTEP]
intro _ _ hb h
[GOAL]
case refine'_15
α : Type u
c : ConditionallyCompleteLattice α
le : α → α → Prop
eq_le : le = LE.le
sup : α → α → α
eq_sup : sup = Sup.sup
inf : α → α → α
eq_inf : inf = Inf.inf
sSup : Set α → α
eq_sSup : sSup = SupSet.sSup
sInf : Set α → α
eq_sInf : sInf = InfSet.sInf
s✝ : Set α
a✝ : α
hb : Set.Nonempty s✝
h : a✝ ∈ lowerBounds s✝
⊢ a✝ ≤ InfSet.sInf s✝
[PROOFSTEP]
subst_vars
[GOAL]
case refine'_15
α : Type u
c : ConditionallyCompleteLattice α
s✝ : Set α
a✝ : α
hb : Set.Nonempty s✝
h : a✝ ∈ lowerBounds s✝
⊢ a✝ ≤ sInf s✝
[PROOFSTEP]
exact le_csInf _ _ hb h
| {"mathlib_filename": "Mathlib.Order.Copy", "llama_tokens": 20660} |
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
s : Set α
inst✝ : LocallyFiniteOrderTop α
hs : Set.Finite s
⊢ Set.Finite ↑(upperClosure s)
[PROOFSTEP]
rw [coe_upperClosure]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
s : Set α
inst✝ : LocallyFiniteOrderTop α
hs : Set.Finite s
⊢ Set.Finite (⋃ (a : α) (_ : a ∈ s), Ici a)
[PROOFSTEP]
exact hs.biUnion fun _ _ => finite_Ici _
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
s : Set α
inst✝ : LocallyFiniteOrderBot α
hs : Set.Finite s
⊢ Set.Finite ↑(lowerClosure s)
[PROOFSTEP]
rw [coe_lowerClosure]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
s : Set α
inst✝ : LocallyFiniteOrderBot α
hs : Set.Finite s
⊢ Set.Finite (⋃ (a : α) (_ : a ∈ s), Iic a)
[PROOFSTEP]
exact hs.biUnion fun _ _ => finite_Iic _
| {"mathlib_filename": "Mathlib.Order.UpperLower.LocallyFinite", "llama_tokens": 360} |
{"mathlib_filename": "Mathlib.Order.ConditionallyCompleteLattice.Group", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
by_cases ha_zero : a = 0
[GOAL]
case pos
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : a = 0
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero]
[GOAL]
case pos
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : a = 0
⊢ limsup (fun x => ⊥) f = ⊥
[PROOFSTEP]
exact limsup_const_bot
[GOAL]
case neg
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
let g := fun x : ℝ≥0∞ => a * x
[GOAL]
case neg
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
have hg_bij : Function.Bijective g :=
Function.bijective_iff_has_inverse.mpr
⟨fun x => a⁻¹ * x,
⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by
simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩
[GOAL]
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
x : ℝ≥0∞
⊢ (fun x => a⁻¹ * x) (g x) = x
[PROOFSTEP]
simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top]
[GOAL]
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
x : ℝ≥0∞
⊢ g ((fun x => a⁻¹ * x) x) = x
[PROOFSTEP]
simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]
[GOAL]
case neg
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
hg_bij : Function.Bijective g
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
have hg_mono : StrictMono g :=
Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1
[GOAL]
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
hg_bij : Function.Bijective g
x✝² x✝¹ : ℝ≥0∞
x✝ : x✝² ≤ x✝¹
⊢ g x✝² ≤ g x✝¹
[PROOFSTEP]
rwa [mul_le_mul_left ha_zero ha_top]
[GOAL]
case neg
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
hg_bij : Function.Bijective g
hg_mono : StrictMono g
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2
[GOAL]
case neg
α : Type u_1
f : Filter α
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
ha_zero : ¬a = 0
g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x
hg_bij : Function.Bijective g
hg_mono : StrictMono g
g_iso : ℝ≥0∞ ≃o ℝ≥0∞ := StrictMono.orderIsoOfSurjective g hg_mono (_ : Function.Surjective g)
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
exact (OrderIso.limsup_apply g_iso).symm
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
by_cases ha_top : a ≠ ⊤
[GOAL]
case pos
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a ≠ ⊤
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
exact limsup_const_mul_of_ne_top ha_top
[GOAL]
case neg
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : ¬a ≠ ⊤
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
push_neg at ha_top
[GOAL]
case neg
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
by_cases hu : u =ᶠ[f] 0
[GOAL]
case pos
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : u =ᶠ[f] 0
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
have hau : (a * u ·) =ᶠ[f] 0 := hu.mono fun x hx => by simp [hx]
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : u =ᶠ[f] 0
x : α
hx : u x = OfNat.ofNat 0 x
⊢ (fun x => a * u x) x = OfNat.ofNat 0 x
[PROOFSTEP]
simp [hx]
[GOAL]
case pos
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : u =ᶠ[f] 0
hau : (fun x => a * u x) =ᶠ[f] 0
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot]
[GOAL]
case pos
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : u =ᶠ[f] 0
hau : (fun x => a * u x) =ᶠ[f] 0
⊢ ⊥ = a * ⊥
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ¬u =ᶠ[f] 0
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
have hu_mul : ∃ᶠ x : α in f, ⊤ ≤ ite (u x = 0) (0 : ℝ≥0∞) ⊤ :=
by
rw [EventuallyEq, not_eventually] at hu
refine' hu.mono fun x hx => _
rw [Pi.zero_apply] at hx
simp [hx]
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ¬u =ᶠ[f] 0
⊢ ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤
[PROOFSTEP]
rw [EventuallyEq, not_eventually] at hu
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ∃ᶠ (x : α) in f, ¬u x = OfNat.ofNat 0 x
⊢ ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤
[PROOFSTEP]
refine' hu.mono fun x hx => _
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ∃ᶠ (x : α) in f, ¬u x = OfNat.ofNat 0 x
x : α
hx : ¬u x = OfNat.ofNat 0 x
⊢ ⊤ ≤ if u x = 0 then 0 else ⊤
[PROOFSTEP]
rw [Pi.zero_apply] at hx
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ∃ᶠ (x : α) in f, ¬u x = OfNat.ofNat 0 x
x : α
hx : ¬u x = 0
⊢ ⊤ ≤ if u x = 0 then 0 else ⊤
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ¬u =ᶠ[f] 0
hu_mul : ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
have h_top_le : (f.limsup fun x : α => ite (u x = 0) (0 : ℝ≥0∞) ⊤) = ⊤ :=
eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul)
[GOAL]
case neg
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ¬u =ᶠ[f] 0
hu_mul : ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤
h_top_le : limsup (fun x => if u x = 0 then 0 else ⊤) f = ⊤
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
have hfu : f.limsup u ≠ 0 := mt limsup_eq_zero_iff.1 hu
[GOAL]
case neg
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u : α → ℝ≥0∞
a : ℝ≥0∞
ha_top : a = ⊤
hu : ¬u =ᶠ[f] 0
hu_mul : ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤
h_top_le : limsup (fun x => if u x = 0 then 0 else ⊤) f = ⊤
hfu : limsup u f ≠ 0
⊢ limsup (fun x => a * u x) f = a * limsup u f
[PROOFSTEP]
simp only [ha_top, top_mul', hfu, h_top_le]
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u v : α → ℝ≥0∞
⊢ limsup (u * v) f ≤ limsup (fun x => limsup u f * v x) f
[PROOFSTEP]
refine limsup_le_limsup ?_
[GOAL]
α : Type u_1
f : Filter α
inst✝ : CountableInterFilter f
u v : α → ℝ≥0∞
⊢ u * v ≤ᶠ[f] fun x => limsup u f * v x
[PROOFSTEP]
filter_upwards [@eventually_le_limsup _ f _ u] with x hx using mul_le_mul' hx le_rfl
[GOAL]
α : Type u_1
f✝ : Filter α
β : Type u_2
inst✝¹ : Countable β
f : Filter α
inst✝ : CountableInterFilter f
g : Filter β
u : α → β → ℝ≥0∞
⊢ ∀ᶠ (a : α) in f, ∀ (b : β), u a b ≤ limsup (fun a' => u a' b) f
[PROOFSTEP]
rw [eventually_countable_forall]
[GOAL]
α : Type u_1
f✝ : Filter α
β : Type u_2
inst✝¹ : Countable β
f : Filter α
inst✝ : CountableInterFilter f
g : Filter β
u : α → β → ℝ≥0∞
⊢ ∀ (i : β), ∀ᶠ (x : α) in f, u x i ≤ limsup (fun a' => u a' i) f
[PROOFSTEP]
exact fun b => ENNReal.eventually_le_limsup fun a => u a b
| {"mathlib_filename": "Mathlib.Order.Filter.ENNReal", "llama_tokens": 4288} |
[GOAL]
n : ℕ
h : n ≠ 0
d m : ℕ
⊢ ((fun a => a + d) ∘ fun x => n • id x) m ≡ d [MOD n]
[PROOFSTEP]
simp [Nat.modEq_iff_dvd, ← sub_sub]
[GOAL]
d n : ℕ
h : d < n
⊢ ∃ᶠ (m : ℕ) in atTop, m % n = d
[PROOFSTEP]
simpa only [Nat.ModEq, mod_eq_of_lt h] using frequently_modEq h.ne_bot d
[GOAL]
⊢ ∃ᶠ (m : ℕ) in atTop, Even m
[PROOFSTEP]
simpa only [even_iff] using frequently_mod_eq zero_lt_two
[GOAL]
⊢ ∃ᶠ (m : ℕ) in atTop, Odd m
[PROOFSTEP]
simpa only [odd_iff] using frequently_mod_eq one_lt_two
| {"mathlib_filename": "Mathlib.Order.Filter.ModEq", "llama_tokens": 260} |
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
⊢ ¬BddAbove s ↔ ∀ (x : α), ∃ y, y ∈ s ∧ ¬y ≤ x
[PROOFSTEP]
simp [BddAbove, upperBounds, Set.Nonempty]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α✝
inst✝¹ : Preorder β
s✝ t : Set α✝
a b : α✝
α : Type u_1
inst✝ : LinearOrder α
s : Set α
⊢ ¬BddAbove s ↔ ∀ (x : α), ∃ y, y ∈ s ∧ x < y
[PROOFSTEP]
simp only [not_bddAbove_iff', not_le]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
h : IsLUB s a
⊢ a ≤ b ↔ b ∈ upperBounds s
[PROOFSTEP]
rw [h.upperBounds_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
h : IsLUB s a
⊢ a ≤ b ↔ b ∈ Ici a
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
h : IsGLB s a
⊢ b ≤ a ↔ b ∈ lowerBounds s
[PROOFSTEP]
rw [h.lowerBounds_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
h : IsGLB s a
⊢ b ≤ a ↔ b ∈ Iic a
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t✝ : Set α
a✝ b a : α
s t : Set α
⊢ IsLeast (s ∪ t) a ↔ IsLeast s a ∧ a ∈ lowerBounds t ∨ a ∈ lowerBounds s ∧ IsLeast t a
[PROOFSTEP]
simp [IsLeast, lowerBounds_union, or_and_right, and_comm (a := a ∈ t), and_assoc]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a b : α
inst✝ : SemilatticeSup γ
s t : Set γ
⊢ BddAbove s → BddAbove t → BddAbove (s ∪ t)
[PROOFSTEP]
rintro ⟨bs, hs⟩ ⟨bt, ht⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a b : α
inst✝ : SemilatticeSup γ
s t : Set γ
bs : γ
hs : bs ∈ upperBounds s
bt : γ
ht : bt ∈ upperBounds t
⊢ BddAbove (s ∪ t)
[PROOFSTEP]
use bs ⊔ bt
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a b : α
inst✝ : SemilatticeSup γ
s t : Set γ
bs : γ
hs : bs ∈ upperBounds s
bt : γ
ht : bt ∈ upperBounds t
⊢ bs ⊔ bt ∈ upperBounds (s ∪ t)
[PROOFSTEP]
rw [upperBounds_union]
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a b : α
inst✝ : SemilatticeSup γ
s t : Set γ
bs : γ
hs : bs ∈ upperBounds s
bt : γ
ht : bt ∈ upperBounds t
⊢ bs ⊔ bt ∈ upperBounds s ∩ upperBounds t
[PROOFSTEP]
exact ⟨upperBounds_mono_mem le_sup_left hs, upperBounds_mono_mem le_sup_right ht⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s t : Set γ
ha : IsLeast s a
hb : IsLeast t b
⊢ min a b ∈ s ∪ t
[PROOFSTEP]
cases' le_total a b with h h
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s t : Set γ
ha : IsLeast s a
hb : IsLeast t b
h : a ≤ b
⊢ min a b ∈ s ∪ t
[PROOFSTEP]
simp [h, ha.1, hb.1]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s t : Set γ
ha : IsLeast s a
hb : IsLeast t b
h : b ≤ a
⊢ min a b ∈ s ∪ t
[PROOFSTEP]
simp [h, ha.1, hb.1]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s t : Set γ
ha : IsGreatest s a
hb : IsGreatest t b
⊢ max a b ∈ s ∪ t
[PROOFSTEP]
cases' le_total a b with h h
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s t : Set γ
ha : IsGreatest s a
hb : IsGreatest t b
h : a ≤ b
⊢ max a b ∈ s ∪ t
[PROOFSTEP]
simp [h, ha.1, hb.1]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t✝ : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s t : Set γ
ha : IsGreatest s a
hb : IsGreatest t b
h : b ≤ a
⊢ max a b ∈ s ∪ t
[PROOFSTEP]
simp [h, ha.1, hb.1]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a b : α
inst✝ : SemilatticeSup γ
s : Set γ
x₀ : γ
⊢ BddAbove s ↔ ∃ x, x₀ ≤ x ∧ ∀ (y : γ), y ∈ s → y ≤ x
[PROOFSTEP]
rw [bddAbove_def, exists_ge_and_iff_exists]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a b : α
inst✝ : SemilatticeSup γ
s : Set γ
x₀ : γ
⊢ Monotone fun x => ∀ (y : γ), y ∈ s → y ≤ x
[PROOFSTEP]
exact Monotone.ball fun x _ => monotone_le
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : PartialOrder γ
j i : γ
hj : IsLUB (Iio i) j
⊢ j = i ∨ Iio i = Iic j
[PROOFSTEP]
cases' eq_or_lt_of_le (lub_Iio_le i hj) with hj_eq_i hj_lt_i
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : PartialOrder γ
j i : γ
hj : IsLUB (Iio i) j
hj_eq_i : j = i
⊢ j = i ∨ Iio i = Iic j
[PROOFSTEP]
exact Or.inl hj_eq_i
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : PartialOrder γ
j i : γ
hj : IsLUB (Iio i) j
hj_lt_i : j < i
⊢ j = i ∨ Iio i = Iic j
[PROOFSTEP]
right
[GOAL]
case inr.h
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : PartialOrder γ
j i : γ
hj : IsLUB (Iio i) j
hj_lt_i : j < i
⊢ Iio i = Iic j
[PROOFSTEP]
exact Set.ext fun k => ⟨fun hk_lt => hj.1 hk_lt, fun hk_le_j => lt_of_le_of_lt hk_le_j hj_lt_i⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
⊢ ∃ j, IsLUB (Iio i) j
[PROOFSTEP]
by_cases h_exists_lt : ∃ j, j ∈ upperBounds (Iio i) ∧ j < i
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ∃ j, j ∈ upperBounds (Iio i) ∧ j < i
⊢ ∃ j, IsLUB (Iio i) j
[PROOFSTEP]
obtain ⟨j, hj_ub, hj_lt_i⟩ := h_exists_lt
[GOAL]
case pos.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i j : γ
hj_ub : j ∈ upperBounds (Iio i)
hj_lt_i : j < i
⊢ ∃ j, IsLUB (Iio i) j
[PROOFSTEP]
exact ⟨j, hj_ub, fun k hk_ub => hk_ub hj_lt_i⟩
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i
⊢ ∃ j, IsLUB (Iio i) j
[PROOFSTEP]
refine' ⟨i, fun j hj => le_of_lt hj, _⟩
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i
⊢ i ∈ lowerBounds (upperBounds (Iio i))
[PROOFSTEP]
rw [mem_lowerBounds]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i
⊢ ∀ (x : γ), x ∈ upperBounds (Iio i) → i ≤ x
[PROOFSTEP]
by_contra h
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i
h : ¬∀ (x : γ), x ∈ upperBounds (Iio i) → i ≤ x
⊢ False
[PROOFSTEP]
refine' h_exists_lt _
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i
h : ¬∀ (x : γ), x ∈ upperBounds (Iio i) → i ≤ x
⊢ ∃ j, j ∈ upperBounds (Iio i) ∧ j < i
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : LinearOrder γ
i : γ
h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i
h : ∃ x, x ∈ upperBounds (Iio i) ∧ x < i
⊢ ∃ j, j ∈ upperBounds (Iio i) ∧ j < i
[PROOFSTEP]
exact h
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeSup γ
inst✝ : DenselyOrdered γ
a b : γ
h : a < b
x : γ
hx : x ∈ lowerBounds (Ioo a b)
⊢ x ≤ a
[PROOFSTEP]
cases' eq_or_lt_of_le (le_sup_right : a ≤ x ⊔ a) with h₁ h₂
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeSup γ
inst✝ : DenselyOrdered γ
a b : γ
h : a < b
x : γ
hx : x ∈ lowerBounds (Ioo a b)
h₁ : a = x ⊔ a
⊢ x ≤ a
[PROOFSTEP]
exact h₁.symm ▸ le_sup_left
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeSup γ
inst✝ : DenselyOrdered γ
a b : γ
h : a < b
x : γ
hx : x ∈ lowerBounds (Ioo a b)
h₂ : a < x ⊔ a
⊢ x ≤ a
[PROOFSTEP]
obtain ⟨y, lty, ylt⟩ := exists_between h₂
[GOAL]
case inr.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeSup γ
inst✝ : DenselyOrdered γ
a b : γ
h : a < b
x : γ
hx : x ∈ lowerBounds (Ioo a b)
h₂ : a < x ⊔ a
y : γ
lty : a < y
ylt : y < x ⊔ a
⊢ x ≤ a
[PROOFSTEP]
apply (not_lt_of_le (sup_le (hx ⟨lty, ylt.trans_le (sup_le _ h.le)⟩) lty.le) ylt).elim
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeSup γ
inst✝ : DenselyOrdered γ
a b : γ
h : a < b
x : γ
hx : x ∈ lowerBounds (Ioo a b)
h₂ : a < x ⊔ a
y : γ
lty : a < y
ylt : y < x ⊔ a
⊢ x ≤ b
[PROOFSTEP]
obtain ⟨u, au, ub⟩ := exists_between h
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeSup γ
inst✝ : DenselyOrdered γ
a b : γ
h : a < b
x : γ
hx : x ∈ lowerBounds (Ioo a b)
h₂ : a < x ⊔ a
y : γ
lty : a < y
ylt : y < x ⊔ a
u : γ
au : a < u
ub : u < b
⊢ x ≤ b
[PROOFSTEP]
apply (hx ⟨au, ub⟩).trans ub.le
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeInf γ
inst✝ : DenselyOrdered γ
a b : γ
hab : a < b
⊢ IsLUB (Ioo a b) b
[PROOFSTEP]
simpa only [dual_Ioo] using isGLB_Ioo hab.dual
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a✝ b✝ : α
inst✝¹ : SemilatticeInf γ
inst✝ : DenselyOrdered γ
a b : γ
hab : a < b
⊢ IsLUB (Ico a b) b
[PROOFSTEP]
simpa only [dual_Ioc] using isGLB_Ioc hab.dual
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
⊢ BddBelow s ∧ BddAbove s ↔ ∃ a b, s ⊆ Icc a b
[PROOFSTEP]
simp [Ici_inter_Iic.symm, subset_inter_iff, bddBelow_iff_subset_Ici, bddAbove_iff_subset_Iic, exists_and_left,
exists_and_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
⊢ IsGreatest univ a ↔ IsTop a
[PROOFSTEP]
simp [IsGreatest, mem_upperBounds, IsTop]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝³ : Preorder α
inst✝² : Preorder β
s t : Set α
a b : α
inst✝¹ : PartialOrder γ
inst✝ : OrderTop γ
⊢ upperBounds univ = {⊤}
[PROOFSTEP]
rw [isGreatest_univ.upperBounds_eq, Ici_top]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : NoMaxOrder α
⊢ ¬BddAbove univ
[PROOFSTEP]
simp [BddAbove]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
⊢ upperBounds ∅ = univ
[PROOFSTEP]
simp only [upperBounds, eq_univ_iff_forall, mem_setOf_eq, ball_empty_iff, forall_true_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : Nonempty α
⊢ BddAbove ∅
[PROOFSTEP]
simp only [BddAbove, upperBounds_empty, univ_nonempty]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : Nonempty α
⊢ BddBelow ∅
[PROOFSTEP]
simp only [BddBelow, lowerBounds_empty, univ_nonempty]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a b : α
⊢ IsGLB ∅ a ↔ IsTop a
[PROOFSTEP]
simp [IsGLB]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : NoMinOrder α
hs : IsLUB s a
a' : α
ha' : a' < a
h : s = ∅
⊢ a' ∈ upperBounds s
[PROOFSTEP]
rw [h, upperBounds_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s t : Set α
a b : α
inst✝ : NoMinOrder α
hs : IsLUB s a
a' : α
ha' : a' < a
h : s = ∅
⊢ a' ∈ univ
[PROOFSTEP]
exact mem_univ _
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b : α
inst✝ : SemilatticeSup γ
a : γ
s : Set γ
⊢ BddAbove (insert a s) ↔ BddAbove s
[PROOFSTEP]
simp only [insert_eq, bddAbove_union, bddAbove_singleton, true_and_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b : α
inst✝ : SemilatticeInf γ
a : γ
s : Set γ
⊢ BddBelow (insert a s) ↔ BddBelow s
[PROOFSTEP]
simp only [insert_eq, bddBelow_union, bddBelow_singleton, true_and_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : SemilatticeSup γ
a b : γ
s : Set γ
hs : IsLUB s b
⊢ IsLUB (insert a s) (a ⊔ b)
[PROOFSTEP]
rw [insert_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : SemilatticeSup γ
a b : γ
s : Set γ
hs : IsLUB s b
⊢ IsLUB ({a} ∪ s) (a ⊔ b)
[PROOFSTEP]
exact isLUB_singleton.union hs
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : SemilatticeInf γ
a b : γ
s : Set γ
hs : IsGLB s b
⊢ IsGLB (insert a s) (a ⊓ b)
[PROOFSTEP]
rw [insert_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : SemilatticeInf γ
a b : γ
s : Set γ
hs : IsGLB s b
⊢ IsGLB ({a} ∪ s) (a ⊓ b)
[PROOFSTEP]
exact isGLB_singleton.union hs
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s : Set γ
hs : IsGreatest s b
⊢ IsGreatest (insert a s) (max a b)
[PROOFSTEP]
rw [insert_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s : Set γ
hs : IsGreatest s b
⊢ IsGreatest ({a} ∪ s) (max a b)
[PROOFSTEP]
exact isGreatest_singleton.union hs
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s : Set γ
hs : IsLeast s b
⊢ IsLeast (insert a s) (min a b)
[PROOFSTEP]
rw [insert_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
s✝ t : Set α
a✝ b✝ : α
inst✝ : LinearOrder γ
a b : γ
s : Set γ
hs : IsLeast s b
⊢ IsLeast ({a} ∪ s) (min a b)
[PROOFSTEP]
exact isLeast_singleton.union hs
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
a✝ b a : α
s : Set α
⊢ upperBounds (insert a s) = Ici a ∩ upperBounds s
[PROOFSTEP]
rw [insert_eq, upperBounds_union, upperBounds_singleton]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
a✝ b a : α
s : Set α
⊢ lowerBounds (insert a s) = Iic a ∩ lowerBounds s
[PROOFSTEP]
rw [insert_eq, lowerBounds_union, lowerBounds_singleton]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝ : LinearOrder α
s : Set α
a b : α
h : IsLUB s a
⊢ b < a ↔ ∃ c, c ∈ s ∧ b < c
[PROOFSTEP]
simp_rw [← not_le, isLUB_le_iff h, mem_upperBounds, not_forall, not_le, exists_prop]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s t : Set α
Hf : MonotoneOn f t
a : α
Hst✝ Hst : s ⊆ t
⊢ f '' (upperBounds s ∩ t) ⊆ upperBounds (f '' s)
[PROOFSTEP]
rintro _ ⟨a, ha, rfl⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s t : Set α
Hf : MonotoneOn f t
a✝ : α
Hst✝ Hst : s ⊆ t
a : α
ha : a ∈ upperBounds s ∩ t
⊢ f a ∈ upperBounds (f '' s)
[PROOFSTEP]
exact Hf.mem_upperBounds_image Hst ha.1 ha.2
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
Hf : Monotone f
a : α
s : Set α
⊢ f '' upperBounds s ⊆ upperBounds (f '' s)
[PROOFSTEP]
rintro _ ⟨a, ha, rfl⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
Hf : Monotone f
a✝ : α
s : Set α
a : α
ha : a ∈ upperBounds s
⊢ f a ∈ upperBounds (f '' s)
[PROOFSTEP]
exact Hf.mem_upperBounds_image ha
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ image2 f (upperBounds s) (upperBounds t) ⊆ upperBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
b : β
ha : a ∈ upperBounds s
hb : b ∈ upperBounds t
⊢ f a b ∈ upperBounds (image2 f s t)
[PROOFSTEP]
exact mem_upperBounds_image2 h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ image2 f (lowerBounds s) (lowerBounds t) ⊆ lowerBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
b : β
ha : a ∈ lowerBounds s
hb : b ∈ lowerBounds t
⊢ f a b ∈ lowerBounds (image2 f s t)
[PROOFSTEP]
exact mem_lowerBounds_image2 h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ BddAbove s → BddAbove t → BddAbove (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
ha : a ∈ upperBounds s
b : β
hb : b ∈ upperBounds t
⊢ BddAbove (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_upperBounds_image2 h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ BddBelow s → BddBelow t → BddBelow (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
ha : a ∈ lowerBounds s
b : β
hb : b ∈ lowerBounds t
⊢ BddBelow (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_lowerBounds_image2 h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ image2 f (upperBounds s) (lowerBounds t) ⊆ upperBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
b : β
ha : a ∈ upperBounds s
hb : b ∈ lowerBounds t
⊢ f a b ∈ upperBounds (image2 f s t)
[PROOFSTEP]
exact mem_upperBounds_image2_of_mem_upperBounds_of_mem_lowerBounds h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ image2 f (lowerBounds s) (upperBounds t) ⊆ lowerBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
b : β
ha : a ∈ lowerBounds s
hb : b ∈ upperBounds t
⊢ f a b ∈ lowerBounds (image2 f s t)
[PROOFSTEP]
exact mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_upperBounds h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ BddAbove s → BddBelow t → BddAbove (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
ha : a ∈ upperBounds s
b : β
hb : b ∈ lowerBounds t
⊢ BddAbove (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_upperBounds_image2_of_mem_upperBounds_of_mem_lowerBounds h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ BddBelow s → BddAbove t → BddBelow (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Monotone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
ha : a ∈ lowerBounds s
b : β
hb : b ∈ upperBounds t
⊢ BddBelow (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_upperBounds h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ image2 f (lowerBounds s) (lowerBounds t) ⊆ upperBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
b : β
ha : a ∈ lowerBounds s
hb : b ∈ lowerBounds t
⊢ f a b ∈ upperBounds (image2 f s t)
[PROOFSTEP]
exact mem_upperBounds_image2_of_mem_lowerBounds h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ image2 f (upperBounds s) (upperBounds t) ⊆ lowerBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
b : β
ha : a ∈ upperBounds s
hb : b ∈ upperBounds t
⊢ f a b ∈ lowerBounds (image2 f s t)
[PROOFSTEP]
exact mem_lowerBounds_image2_of_mem_upperBounds h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ BddBelow s → BddBelow t → BddAbove (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
ha : a ∈ lowerBounds s
b : β
hb : b ∈ lowerBounds t
⊢ BddAbove (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_upperBounds_image2_of_mem_lowerBounds h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
⊢ BddAbove s → BddAbove t → BddBelow (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Antitone (f a)
a : α
ha : a ∈ upperBounds s
b : β
hb : b ∈ upperBounds t
⊢ BddBelow (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_lowerBounds_image2_of_mem_upperBounds h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ image2 f (lowerBounds s) (upperBounds t) ⊆ upperBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
b : β
ha : a ∈ lowerBounds s
hb : b ∈ upperBounds t
⊢ f a b ∈ upperBounds (image2 f s t)
[PROOFSTEP]
exact mem_upperBounds_image2_of_mem_upperBounds_of_mem_upperBounds h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ image2 f (upperBounds s) (lowerBounds t) ⊆ lowerBounds (image2 f s t)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
b : β
ha : a ∈ upperBounds s
hb : b ∈ lowerBounds t
⊢ f a b ∈ lowerBounds (image2 f s t)
[PROOFSTEP]
exact mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_lowerBounds h₀ h₁ ha hb
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ BddBelow s → BddAbove t → BddAbove (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
ha : a ∈ lowerBounds s
b : β
hb : b ∈ upperBounds t
⊢ BddAbove (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_upperBounds_image2_of_mem_upperBounds_of_mem_upperBounds h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a : α
b : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
⊢ BddAbove s → BddBelow t → BddBelow (Set.image2 f s t)
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β → γ
s : Set α
t : Set β
a✝ : α
b✝ : β
h₀ : ∀ (b : β), Antitone (swap f b)
h₁ : ∀ (a : α), Monotone (f a)
a : α
ha : a ∈ upperBounds s
b : β
hb : b ∈ lowerBounds t
⊢ BddBelow (Set.image2 f s t)
[PROOFSTEP]
exact ⟨f a b, mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_lowerBounds h₀ h₁ ha hb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
F : ι → (a : α) → π a
⊢ BddAbove (range F) ↔ ∀ (a : α), BddAbove (range fun i => F i a)
[PROOFSTEP]
simp only [bddAbove_pi, ← range_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
F : ι → (a : α) → π a
⊢ (∀ (a : α), BddAbove (range (eval a ∘ F))) ↔ ∀ (a : α), BddAbove (range fun i => F i a)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
s : Set ((a : α) → π a)
f : (a : α) → π a
⊢ IsLUB s f ↔ ∀ (a : α), IsLUB (eval a '' s) (f a)
[PROOFSTEP]
classical
refine' ⟨fun H a => ⟨(Function.monotone_eval a).mem_upperBounds_image H.1, fun b hb => _⟩, fun H => ⟨_, _⟩⟩
· suffices h : Function.update f a b ∈ upperBounds s from Function.update_same a b f ▸ H.2 h a
refine' fun g hg => le_update_iff.2 ⟨hb <| mem_image_of_mem _ hg, fun i _ => H.1 hg i⟩
· exact fun g hg a => (H a).1 (mem_image_of_mem _ hg)
· exact fun g hg a => (H a).2 ((Function.monotone_eval a).mem_upperBounds_image hg)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
s : Set ((a : α) → π a)
f : (a : α) → π a
⊢ IsLUB s f ↔ ∀ (a : α), IsLUB (eval a '' s) (f a)
[PROOFSTEP]
refine' ⟨fun H a => ⟨(Function.monotone_eval a).mem_upperBounds_image H.1, fun b hb => _⟩, fun H => ⟨_, _⟩⟩
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
s : Set ((a : α) → π a)
f : (a : α) → π a
H : IsLUB s f
a : α
b : π a
hb : b ∈ upperBounds (eval a '' s)
⊢ f a ≤ b
[PROOFSTEP]
suffices h : Function.update f a b ∈ upperBounds s from Function.update_same a b f ▸ H.2 h a
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
s : Set ((a : α) → π a)
f : (a : α) → π a
H : IsLUB s f
a : α
b : π a
hb : b ∈ upperBounds (eval a '' s)
⊢ update f a b ∈ upperBounds s
[PROOFSTEP]
refine' fun g hg => le_update_iff.2 ⟨hb <| mem_image_of_mem _ hg, fun i _ => H.1 hg i⟩
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
s : Set ((a : α) → π a)
f : (a : α) → π a
H : ∀ (a : α), IsLUB (eval a '' s) (f a)
⊢ f ∈ upperBounds s
[PROOFSTEP]
exact fun g hg a => (H a).1 (mem_image_of_mem _ hg)
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
ι : Sort x
π : α → Type u_1
inst✝ : (a : α) → Preorder (π a)
s : Set ((a : α) → π a)
f : (a : α) → π a
H : ∀ (a : α), IsLUB (eval a '' s) (f a)
⊢ f ∈ lowerBounds (upperBounds s)
[PROOFSTEP]
exact fun g hg a => (H a).2 ((Function.monotone_eval a).mem_upperBounds_image hg)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
⊢ IsLUB s p ↔ IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd
[PROOFSTEP]
refine'
⟨fun H =>
⟨⟨monotone_fst.mem_upperBounds_image H.1, fun a ha => _⟩, ⟨monotone_snd.mem_upperBounds_image H.1, fun a ha => _⟩⟩,
fun H => ⟨_, _⟩⟩
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
H : IsLUB s p
a : α
ha : a ∈ upperBounds (Prod.fst '' s)
⊢ p.fst ≤ a
[PROOFSTEP]
suffices h : (a, p.2) ∈ upperBounds s from (H.2 h).1
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
H : IsLUB s p
a : α
ha : a ∈ upperBounds (Prod.fst '' s)
⊢ (a, p.snd) ∈ upperBounds s
[PROOFSTEP]
exact fun q hq => ⟨ha <| mem_image_of_mem _ hq, (H.1 hq).2⟩
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
H : IsLUB s p
a : β
ha : a ∈ upperBounds (Prod.snd '' s)
⊢ p.snd ≤ a
[PROOFSTEP]
suffices h : (p.1, a) ∈ upperBounds s from (H.2 h).2
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
H : IsLUB s p
a : β
ha : a ∈ upperBounds (Prod.snd '' s)
⊢ (p.fst, a) ∈ upperBounds s
[PROOFSTEP]
exact fun q hq => ⟨(H.1 hq).1, ha <| mem_image_of_mem _ hq⟩
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
H : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd
⊢ p ∈ upperBounds s
[PROOFSTEP]
exact fun q hq => ⟨H.1.1 <| mem_image_of_mem _ hq, H.2.1 <| mem_image_of_mem _ hq⟩
[GOAL]
case refine'_4
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set (α × β)
p : α × β
H : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd
⊢ p ∈ lowerBounds (upperBounds s)
[PROOFSTEP]
exact fun q hq => ⟨H.1.2 <| monotone_fst.mem_upperBounds_image hq, H.2.2 <| monotone_snd.mem_upperBounds_image hq⟩
| {"mathlib_filename": "Mathlib.Order.Bounds.Basic", "llama_tokens": 17864} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ univ ∈ {s | Set.Finite sᶜ}
[PROOFSTEP]
simp only [compl_univ, finite_empty, mem_setOf_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
x✝ y✝ : Set α
hs : x✝ ∈ {s | Set.Finite sᶜ}
ht : y✝ ∈ {s | Set.Finite sᶜ}
⊢ x✝ ∩ y✝ ∈ {s | Set.Finite sᶜ}
[PROOFSTEP]
simpa only [compl_inter, mem_setOf_eq] using hs.union ht
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ cofinite = ⊥ ↔ Finite α
[PROOFSTEP]
simp [← empty_mem_iff_bot, finite_univ_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
p : α → Prop
⊢ (∃ᶠ (x : α) in cofinite, p x) ↔ Set.Infinite {x | p x}
[PROOFSTEP]
simp only [Filter.Frequently, Filter.Eventually, mem_cofinite, compl_setOf, not_not, Set.Infinite]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ l ≤ cofinite ↔ ∀ (x : α), {x}ᶜ ∈ l
[PROOFSTEP]
refine' ⟨fun h x => h (finite_singleton x).compl_mem_cofinite, fun h s (hs : sᶜ.Finite) => _⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
h : ∀ (x : α), {x}ᶜ ∈ l
s : Set α
hs : Set.Finite sᶜ
⊢ s ∈ l
[PROOFSTEP]
rw [← compl_compl s, ← biUnion_of_singleton sᶜ, compl_iUnion₂, Filter.biInter_mem hs]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
h : ∀ (x : α), {x}ᶜ ∈ l
s : Set α
hs : Set.Finite sᶜ
⊢ ∀ (i : α), i ∈ sᶜ → {i}ᶜ ∈ l
[PROOFSTEP]
exact fun x _ => h x
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
s : Set (α × β)
⊢ sᶜ ∈ Filter.coprod cofinite cofinite ↔ sᶜ ∈ cofinite
[PROOFSTEP]
simp only [compl_mem_coprod, mem_cofinite, compl_compl, finite_image_fst_and_snd_iff]
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
l : Filter α✝
α : ι → Type u_4
inst✝ : Finite ι
s : Set ((i : ι) → α i)
⊢ (sᶜ ∈ Filter.coprodᵢ fun i => cofinite) ↔ sᶜ ∈ cofinite
[PROOFSTEP]
simp only [compl_mem_coprodᵢ, mem_cofinite, compl_compl, forall_finite_image_eval_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ Disjoint cofinite l ↔ ∃ s, s ∈ l ∧ Set.Finite s
[PROOFSTEP]
simp only [hasBasis_cofinite.disjoint_iff l.basis_sets, id, disjoint_compl_left_iff_subset]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ (∃ i, Set.Finite i ∧ ∃ i', i' ∈ l ∧ i' ⊆ i) ↔ ∃ s, s ∈ l ∧ Set.Finite s
[PROOFSTEP]
exact ⟨fun ⟨s, hs, t, ht, hts⟩ => ⟨t, ht, hs.subset hts⟩, fun ⟨s, hs, hsf⟩ => ⟨s, hsf, s, hs, Subset.rfl⟩⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : IsCountablyGenerated l
h : cofinite ≤ l
⊢ Set.Countable (⋂₀ l.sets)ᶜ
[PROOFSTEP]
rcases exists_antitone_basis l with ⟨s, hs⟩
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : IsCountablyGenerated l
h : cofinite ≤ l
s : ℕ → Set α
hs : HasAntitoneBasis l s
⊢ Set.Countable (⋂₀ l.sets)ᶜ
[PROOFSTEP]
simp only [hs.sInter_sets, iInter_true, compl_iInter]
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : IsCountablyGenerated l
h : cofinite ≤ l
s : ℕ → Set α
hs : HasAntitoneBasis l s
⊢ Set.Countable (⋃ (i : ℕ), (s i)ᶜ)
[PROOFSTEP]
exact countable_iUnion fun n ↦ Set.Finite.countable <| h <| hs.mem _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
f : α → β
l : Filter β
inst✝ : IsCountablyGenerated l
h : Tendsto f cofinite l
⊢ Set.Countable (f ⁻¹' ⋂₀ l.sets)ᶜ
[PROOFSTEP]
erw [preimage_sInter, ← sInter_comap_sets]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
f : α → β
l : Filter β
inst✝ : IsCountablyGenerated l
h : Tendsto f cofinite l
⊢ Set.Countable (⋂₀ (comap f l).sets)ᶜ
[PROOFSTEP]
exact countable_compl_sInter_sets h.le_comap
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ cofinite = atTop
[PROOFSTEP]
refine' le_antisymm _ atTop_le_cofinite
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
⊢ cofinite ≤ atTop
[PROOFSTEP]
refine' atTop_basis.ge_iff.2 fun N _ => _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
N : ℕ
x✝ : True
⊢ Ici N ∈ cofinite
[PROOFSTEP]
simpa only [mem_cofinite, compl_Ici] using finite_lt_nat N
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
l : Filter α
p : ℕ → Prop
⊢ (∃ᶠ (n : ℕ) in atTop, p n) ↔ Set.Infinite {n | p n}
[PROOFSTEP]
rw [← Nat.cofinite_eq_atTop, frequently_cofinite_iff_infinite]
[GOAL]
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
rcases em (∃ y ∈ s, ∃ x, f y < x) with (⟨y, hys, x, hx⟩ | not_all_top)
[GOAL]
case inl.intro.intro.intro
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
y : α
hys : y ∈ s
x : β
hx : f y < x
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
have : {y | ¬x ≤ f y}.Finite := Filter.eventually_cofinite.mp (tendsto_atTop.1 hf x)
[GOAL]
case inl.intro.intro.intro
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
y : α
hys : y ∈ s
x : β
hx : f y < x
this : Set.Finite {y | ¬x ≤ f y}
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
simp only [not_le] at this
[GOAL]
case inl.intro.intro.intro
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
y : α
hys : y ∈ s
x : β
hx : f y < x
this : Set.Finite {y | f y < x}
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
obtain ⟨a₀, ⟨ha₀ : f a₀ < x, ha₀s⟩, others_bigger⟩ := exists_min_image _ f (this.inter_of_left s) ⟨y, hx, hys⟩
[GOAL]
case inl.intro.intro.intro.intro.intro.intro
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
y : α
hys : y ∈ s
x : β
hx : f y < x
this : Set.Finite {y | f y < x}
a₀ : α
others_bigger : ∀ (b : α), b ∈ {y | f y < x} ∩ s → f a₀ ≤ f b
ha₀ : f a₀ < x
ha₀s : a₀ ∈ s
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
refine' ⟨a₀, ha₀s, fun a has => (lt_or_le (f a) x).elim _ (le_trans ha₀.le)⟩
[GOAL]
case inl.intro.intro.intro.intro.intro.intro
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
y : α
hys : y ∈ s
x : β
hx : f y < x
this : Set.Finite {y | f y < x}
a₀ : α
others_bigger : ∀ (b : α), b ∈ {y | f y < x} ∩ s → f a₀ ≤ f b
ha₀ : f a₀ < x
ha₀s : a₀ ∈ s
a : α
has : a ∈ s
⊢ f a < x → f a₀ ≤ f a
[PROOFSTEP]
exact fun h => others_bigger a ⟨h, has⟩
[GOAL]
case inr
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
not_all_top : ¬∃ y, y ∈ s ∧ ∃ x, f y < x
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
push_neg at not_all_top
[GOAL]
case inr
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
hs : Set.Nonempty s
f : α → β
hf : Tendsto f cofinite atTop
not_all_top : ∀ (y : α), y ∈ s → ∀ (x : β), x ≤ f y
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
obtain ⟨a₀, ha₀s⟩ := hs
[GOAL]
case inr.intro
ι : Type u_1
α✝ : Type u_2
β✝ : Type u_3
l : Filter α✝
α : Type u_4
β : Type u_5
inst✝ : LinearOrder β
s : Set α
f : α → β
hf : Tendsto f cofinite atTop
not_all_top : ∀ (y : α), y ∈ s → ∀ (x : β), x ≤ f y
a₀ : α
ha₀s : a₀ ∈ s
⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a
[PROOFSTEP]
exact ⟨a₀, ha₀s, fun a ha => not_all_top a ha (f a₀)⟩
| {"mathlib_filename": "Mathlib.Order.Filter.Cofinite", "llama_tokens": 4158} |
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One M
s t : Set α
f g : α → M
a : α
l : Filter α
hf : f =ᶠ[l ⊓ 𝓟 s] g
hs : s =ᶠ[l] t
x : α
hst : x ∈ s ↔ x ∈ t
hfg : x ∈ s → f x = g x
hxs : x ∈ s
⊢ mulIndicator s f x = mulIndicator t g x
[PROOFSTEP]
simp only [*, hst.1 hxs, mulIndicator_of_mem]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One M
s t : Set α
f g : α → M
a : α
l : Filter α
hf : f =ᶠ[l ⊓ 𝓟 s] g
hs : s =ᶠ[l] t
x : α
hst : x ∈ s ↔ x ∈ t
hfg : x ∈ s → f x = g x
hxs : ¬x ∈ s
⊢ mulIndicator s f x = mulIndicator t g x
[PROOFSTEP]
simp only [mulIndicator_of_not_mem, hxs, mt hst.2 hxs]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝¹ : Preorder ι
inst✝ : One β
s : ι → Set α
hs : Monotone s
f : α → β
a : α
⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋃ (i : ι), s i) f a
[PROOFSTEP]
classical exact hs.piecewise_eventually_eq_iUnion f 1 a
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝¹ : Preorder ι
inst✝ : One β
s : ι → Set α
hs : Monotone s
f : α → β
a : α
⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋃ (i : ι), s i) f a
[PROOFSTEP]
exact hs.piecewise_eventually_eq_iUnion f 1 a
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝¹ : Preorder ι
inst✝ : One β
s : ι → Set α
hs : Antitone s
f : α → β
a : α
⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋂ (i : ι), s i) f a
[PROOFSTEP]
classical exact hs.piecewise_eventually_eq_iInter f 1 a
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝¹ : Preorder ι
inst✝ : One β
s : ι → Set α
hs : Antitone s
f : α → β
a : α
⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋂ (i : ι), s i) f a
[PROOFSTEP]
exact hs.piecewise_eventually_eq_iInter f 1 a
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝ : One β
s : ι → Set α
f : α → β
a : α
⊢ (fun n => mulIndicator (⋃ (i : ι) (_ : i ∈ n), s i) f a) =ᶠ[atTop] fun x => mulIndicator (iUnion s) f a
[PROOFSTEP]
rw [iUnion_eq_iUnion_finset s]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝ : One β
s : ι → Set α
f : α → β
a : α
⊢ (fun n => mulIndicator (⋃ (i : ι) (_ : i ∈ n), s i) f a) =ᶠ[atTop] fun x =>
mulIndicator (⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), s i) f a
[PROOFSTEP]
apply Monotone.mulIndicator_eventuallyEq_iUnion
[GOAL]
case hs
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
ι : Type u_5
inst✝ : One β
s : ι → Set α
f : α → β
a : α
⊢ Monotone fun i => ⋃ (i_1 : ι) (_ : i_1 ∈ i), s i_1
[PROOFSTEP]
exact fun _ _ ↦ biUnion_subset_biUnion_left
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One β
l : Filter α
f : α → β
s : Set α
hf : f =ᶠ[l] 1
⊢ mulIndicator s 1 =ᶠ[l] 1
[PROOFSTEP]
rw [mulIndicator_one']
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One β
l : Filter α
f : α → β
hf : ∀ᶠ (x : α) in l, f x ≠ 1
s t : Set α
h : mulIndicator s f =ᶠ[l] mulIndicator t f
⊢ s =ᶠ[l] t
[PROOFSTEP]
have : ∀ {s : Set α}, Function.mulSupport (s.mulIndicator f) =ᶠ[l] s := fun {s} ↦
by
rw [mulSupport_mulIndicator]
exact (hf.mono fun x hx ↦ and_iff_left hx).set_eq
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One β
l : Filter α
f : α → β
hf : ∀ᶠ (x : α) in l, f x ≠ 1
s✝ t : Set α
h : mulIndicator s✝ f =ᶠ[l] mulIndicator t f
s : Set α
⊢ Function.mulSupport (mulIndicator s f) =ᶠ[l] s
[PROOFSTEP]
rw [mulSupport_mulIndicator]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One β
l : Filter α
f : α → β
hf : ∀ᶠ (x : α) in l, f x ≠ 1
s✝ t : Set α
h : mulIndicator s✝ f =ᶠ[l] mulIndicator t f
s : Set α
⊢ s ∩ Function.mulSupport f =ᶠ[l] s
[PROOFSTEP]
exact (hf.mono fun x hx ↦ and_iff_left hx).set_eq
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
E : Type u_4
inst✝ : One β
l : Filter α
f : α → β
hf : ∀ᶠ (x : α) in l, f x ≠ 1
s t : Set α
h : mulIndicator s f =ᶠ[l] mulIndicator t f
this : ∀ {s : Set α}, Function.mulSupport (mulIndicator s f) =ᶠ[l] s
⊢ s =ᶠ[l] t
[PROOFSTEP]
exact this.symm.trans <| h.mulSupport.trans this
| {"mathlib_filename": "Mathlib.Order.Filter.IndicatorFunction", "llama_tokens": 2213} |
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l : Filter α
⊢ Set.univ ∈ {s | Rel.core r s ∈ l}
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l : Filter α
x✝ y✝ : Set β
hs : x✝ ∈ {s | Rel.core r s ∈ l}
ht : y✝ ∈ {s | Rel.core r s ∈ l}
⊢ x✝ ∩ y✝ ∈ {s | Rel.core r s ∈ l}
[PROOFSTEP]
simp only [Set.mem_setOf_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l : Filter α
x✝ y✝ : Set β
hs : x✝ ∈ {s | Rel.core r s ∈ l}
ht : y✝ ∈ {s | Rel.core r s ∈ l}
⊢ Rel.core r (x✝ ∩ y✝) ∈ l
[PROOFSTEP]
convert inter_mem hs ht
[GOAL]
case h.e'_4
α : Type u
β : Type v
γ : Type w
r : Rel α β
l : Filter α
x✝ y✝ : Set β
hs : x✝ ∈ {s | Rel.core r s ∈ l}
ht : y✝ ∈ {s | Rel.core r s ∈ l}
⊢ Rel.core r (x✝ ∩ y✝) = Rel.core r x✝ ∩ Rel.core r y✝
[PROOFSTEP]
rw [← Rel.core_inter]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter α
⊢ (rmap s (rmap r l)).sets = (rmap (Rel.comp r s) l).sets
[PROOFSTEP]
simp [rmap_sets, Set.preimage, Rel.core_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
⊢ (rcomap r (rcomap s l)).sets = (rcomap (Rel.comp r s) l).sets
[PROOFSTEP]
ext t
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ t ∈ (rcomap r (rcomap s l)).sets ↔ t ∈ (rcomap (Rel.comp r s) l).sets
[PROOFSTEP]
simp [rcomap_sets, Rel.image, Rel.core_comp]
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ (∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t) ↔ ∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ (∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t) → ∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t
[PROOFSTEP]
rintro ⟨u, ⟨v, vsets, hv⟩, h⟩
[GOAL]
case h.mp.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
u : Set β
h : Rel.core r u ⊆ t
v : Set γ
vsets : v ∈ l
hv : Rel.core s v ⊆ u
⊢ ∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t
[PROOFSTEP]
exact ⟨v, vsets, Set.Subset.trans (Rel.core_mono _ hv) h⟩
[GOAL]
case h.mpr
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ (∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t) → ∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t
[PROOFSTEP]
rintro ⟨t, tsets, ht⟩
[GOAL]
case h.mpr.intro.intro
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t✝ : Set α
t : Set γ
tsets : t ∈ l
ht : Rel.core r (Rel.core s t) ⊆ t✝
⊢ ∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t✝
[PROOFSTEP]
exact ⟨Rel.core s t, ⟨t, tsets, Set.Subset.rfl⟩, ht⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ RTendsto r l₁ l₂ ↔ l₁ ≤ rcomap r l₂
[PROOFSTEP]
rw [rtendsto_def]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁) ↔ l₁ ≤ rcomap r l₂
[PROOFSTEP]
simp_rw [← l₂.mem_sets]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (s : Set β), s ∈ l₂.sets → Rel.core r s ∈ l₁) ↔ l₁ ≤ rcomap r l₂
[PROOFSTEP]
simp [Filter.le_def, rcomap, Rel.mem_image]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁) ↔ ∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.core r x_1 ⊆ x → x ∈ l₁
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁) → ∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.core r x_1 ⊆ x → x ∈ l₁
[PROOFSTEP]
exact fun h s t tl₂ => mem_of_superset (h t tl₂)
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.core r x_1 ⊆ x → x ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁
[PROOFSTEP]
exact fun h t tl₂ => h _ t tl₂ Set.Subset.rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ t ∈ rcomap' r (rcomap' s l) ↔ t ∈ rcomap' (Rel.comp r s) l
[PROOFSTEP]
simp only [mem_rcomap', Rel.preimage_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ (∃ t_1, (∃ t, t ∈ l ∧ Rel.preimage s t ⊆ t_1) ∧ Rel.preimage r t_1 ⊆ t) ↔
∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ (∃ t_1, (∃ t, t ∈ l ∧ Rel.preimage s t ⊆ t_1) ∧ Rel.preimage r t_1 ⊆ t) →
∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t
[PROOFSTEP]
rintro ⟨u, ⟨v, vsets, hv⟩, h⟩
[GOAL]
case mp.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
u : Set β
h : Rel.preimage r u ⊆ t
v : Set γ
vsets : v ∈ l
hv : Rel.preimage s v ⊆ u
⊢ ∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t
[PROOFSTEP]
exact ⟨v, vsets, (Rel.preimage_mono _ hv).trans h⟩
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t : Set α
⊢ (∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t) →
∃ t_1, (∃ t, t ∈ l ∧ Rel.preimage s t ⊆ t_1) ∧ Rel.preimage r t_1 ⊆ t
[PROOFSTEP]
rintro ⟨t, tsets, ht⟩
[GOAL]
case mpr.intro.intro
α : Type u
β : Type v
γ : Type w
r : Rel α β
s : Rel β γ
l : Filter γ
t✝ : Set α
t : Set γ
tsets : t ∈ l
ht : Rel.preimage r (Rel.preimage s t) ⊆ t✝
⊢ ∃ t, (∃ t_1, t_1 ∈ l ∧ Rel.preimage s t_1 ⊆ t) ∧ Rel.preimage r t ⊆ t✝
[PROOFSTEP]
exact ⟨s.preimage t, ⟨t, tsets, Set.Subset.rfl⟩, ht⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ RTendsto' r l₁ l₂ ↔ ∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁
[PROOFSTEP]
unfold RTendsto' rcomap'
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ l₁ ≤
{ sets := Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets,
univ_sets := (_ : ∃ x, x ∈ l₂.sets ∧ (fun s t => Rel.preimage r s ⊆ t) x Set.univ),
sets_of_superset :=
(_ :
∀ {x y : Set α},
x ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets →
x ⊆ y → y ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets),
inter_sets :=
(_ :
∀ {x y : Set α},
x ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets →
y ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets →
x ∩ y ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets) } ↔
∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁
[PROOFSTEP]
simp [le_def, Rel.mem_image]
[GOAL]
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.preimage r x_1 ⊆ x → x ∈ l₁) ↔
∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.preimage r x_1 ⊆ x → x ∈ l₁) →
∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁
[PROOFSTEP]
exact fun h s hs => h _ _ hs Set.Subset.rfl
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
r : Rel α β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁) →
∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.preimage r x_1 ⊆ x → x ∈ l₁
[PROOFSTEP]
exact fun h s t ht => mem_of_superset (h t ht)
[GOAL]
α : Type u
β : Type v
γ : Type w
l₁ : Filter α
l₂ : Filter β
f : α → β
⊢ Tendsto f l₁ l₂ ↔ RTendsto (Function.graph f) l₁ l₂
[PROOFSTEP]
simp [tendsto_def, Function.graph, rtendsto_def, Rel.core, Set.preimage]
[GOAL]
α : Type u
β : Type v
γ : Type w
l₁ : Filter α
l₂ : Filter β
f : α → β
⊢ Tendsto f l₁ l₂ ↔ RTendsto' (Function.graph f) l₁ l₂
[PROOFSTEP]
simp [tendsto_def, Function.graph, rtendsto'_def, Rel.preimage_def, Set.preimage]
[GOAL]
α : Type u
β : Type v
γ : Type w
l : Filter α
s : Set α
f : α → β
⊢ pmap (PFun.res f s) l = map f (l ⊓ 𝓟 s)
[PROOFSTEP]
ext t
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
l : Filter α
s : Set α
f : α → β
t : Set β
⊢ t ∈ pmap (PFun.res f s) l ↔ t ∈ map f (l ⊓ 𝓟 s)
[PROOFSTEP]
simp only [PFun.core_res, mem_pmap, mem_map, mem_inf_principal, imp_iff_not_or]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
l : Filter α
s : Set α
f : α → β
t : Set β
⊢ sᶜ ∪ f ⁻¹' t ∈ l ↔ {x | ¬x ∈ s ∨ x ∈ f ⁻¹' t} ∈ l
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
l₁ : Filter α
l₂ : Filter β
s : Set α
f : α → β
⊢ Tendsto f (l₁ ⊓ 𝓟 s) l₂ ↔ PTendsto (PFun.res f s) l₁ l₂
[PROOFSTEP]
simp only [Tendsto, PTendsto, pmap_res]
[GOAL]
α : Type u
β : Type v
γ : Type w
l₁ : Filter α
l₂ : Filter β
f : α → β
⊢ Tendsto f l₁ l₂ ↔ PTendsto (PFun.res f Set.univ) l₁ l₂
[PROOFSTEP]
rw [← tendsto_iff_ptendsto]
[GOAL]
α : Type u
β : Type v
γ : Type w
l₁ : Filter α
l₂ : Filter β
f : α → β
⊢ Tendsto f l₁ l₂ ↔ Tendsto f (l₁ ⊓ 𝓟 Set.univ) l₂
[PROOFSTEP]
simp [principal_univ]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α →. β
l₁ : Filter α
l₂ : Filter β
⊢ PTendsto' f l₁ l₂ → PTendsto f l₁ l₂
[PROOFSTEP]
rw [ptendsto_def, ptendsto'_def]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α →. β
l₁ : Filter α
l₂ : Filter β
⊢ (∀ (s : Set β), s ∈ l₂ → PFun.preimage f s ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁
[PROOFSTEP]
exact fun h s sl₂ => mem_of_superset (h s sl₂) (PFun.preimage_subset_core _ _)
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α →. β
l₁ : Filter α
l₂ : Filter β
h : PFun.Dom f ∈ l₁
⊢ PTendsto f l₁ l₂ → PTendsto' f l₁ l₂
[PROOFSTEP]
rw [ptendsto_def, ptendsto'_def]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α →. β
l₁ : Filter α
l₂ : Filter β
h : PFun.Dom f ∈ l₁
⊢ (∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → PFun.preimage f s ∈ l₁
[PROOFSTEP]
intro h' s sl₂
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α →. β
l₁ : Filter α
l₂ : Filter β
h : PFun.Dom f ∈ l₁
h' : ∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁
s : Set β
sl₂ : s ∈ l₂
⊢ PFun.preimage f s ∈ l₁
[PROOFSTEP]
rw [PFun.preimage_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α →. β
l₁ : Filter α
l₂ : Filter β
h : PFun.Dom f ∈ l₁
h' : ∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁
s : Set β
sl₂ : s ∈ l₂
⊢ PFun.core f s ∩ PFun.Dom f ∈ l₁
[PROOFSTEP]
exact inter_mem (h' s sl₂) h
| {"mathlib_filename": "Mathlib.Order.Filter.Partial", "llama_tokens": 5445} |
[GOAL]
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
⊢ (Iso.refl ↑X).hom _* X.presheaf ≅ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf
[PROOFSTEP]
symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf ≅ (Iso.refl ↑X).hom _* X.presheaf
[PROOFSTEP]
fapply NatIso.ofComponents
[GOAL]
case app
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
⊢ (X_1 : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ) →
(restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.obj X_1 ≅ ((Iso.refl ↑X).hom _* X.presheaf).obj X_1
[PROOFSTEP]
intro U
[GOAL]
case app
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ
⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.obj U ≅ ((Iso.refl ↑X).hom _* X.presheaf).obj U
[PROOFSTEP]
refine' asIso (f.c.app (op (H.openFunctor.obj (unop U)))) ≪≫ X.presheaf.mapIso (eqToIso _)
[GOAL]
case app
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ
⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U
[PROOFSTEP]
induction U using Opposite.rec' with
| h U => ?_
[GOAL]
case app
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ
⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U
[PROOFSTEP]
induction U using Opposite.rec' with
| h U => ?_
[GOAL]
case app.h
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base))
⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj (op U).unop)) = op U
[PROOFSTEP]
cases U
[GOAL]
case app.h.mk
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base))
is_open'✝ : IsOpen carrier✝
⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) =
op { carrier := carrier✝, is_open' := is_open'✝ }
[PROOFSTEP]
dsimp only [IsOpenMap.functor, Functor.op, Opens.map]
[GOAL]
case app.h.mk
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base))
is_open'✝ : IsOpen carrier✝
⊢ op
{
carrier :=
↑f.base ⁻¹' ↑(op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)).unop,
is_open' :=
(_ :
IsOpen
(↑f.base ⁻¹'
↑(op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)).unop)) } =
op { carrier := carrier✝, is_open' := is_open'✝ }
[PROOFSTEP]
congr 2
[GOAL]
case app.h.mk.e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base))
is_open'✝ : IsOpen carrier✝
⊢ ↑f.base ⁻¹' ↑(op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)).unop = carrier✝
[PROOFSTEP]
erw [Set.preimage_image_eq _ H.base_open.inj]
[GOAL]
case app.h.mk.e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base))
is_open'✝ : IsOpen carrier✝
⊢ ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop = carrier✝
[PROOFSTEP]
rfl
[GOAL]
case naturality
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
⊢ autoParam
(∀ {X_1 Y_1 : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ} (f_1 : X_1 ⟶ Y_1),
(restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.map f_1 ≫
(asIso (NatTrans.app f.c (op ((openFunctor H).obj Y_1.unop))) ≪≫
X.presheaf.mapIso
(eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj Y_1.unop)) = Y_1))).hom =
(asIso (NatTrans.app f.c (op ((openFunctor H).obj X_1.unop))) ≪≫
X.presheaf.mapIso
(eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj X_1.unop)) = X_1))).hom ≫
((Iso.refl ↑X).hom _* X.presheaf).map f_1)
_auto✝
[PROOFSTEP]
intro U V i
[GOAL]
case naturality
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ
i : U ⟶ V
⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.map i ≫
(asIso (NatTrans.app f.c (op ((openFunctor H).obj V.unop))) ≪≫
X.presheaf.mapIso (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj V.unop)) = V))).hom =
(asIso (NatTrans.app f.c (op ((openFunctor H).obj U.unop))) ≪≫
X.presheaf.mapIso (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U))).hom ≫
((Iso.refl ↑X).hom _* X.presheaf).map i
[PROOFSTEP]
simp only [CategoryTheory.eqToIso.hom, TopCat.Presheaf.pushforwardObj_map, Category.assoc, Functor.op_map,
Iso.trans_hom, asIso_hom, Functor.mapIso_hom, ← X.presheaf.map_comp]
[GOAL]
case naturality
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ
i : U ⟶ V
⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.map i ≫
NatTrans.app f.c (op ((openFunctor H).obj V.unop)) ≫
X.presheaf.map (eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj V.unop)) = V)) =
NatTrans.app f.c (op ((openFunctor H).obj U.unop)) ≫
X.presheaf.map
(eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U) ≫
((Opens.map (Iso.refl ↑X).hom).map i.unop).op)
[PROOFSTEP]
erw [f.c.naturality_assoc, ← X.presheaf.map_comp]
[GOAL]
case naturality
C : Type u_1
inst✝ : Category.{?u.9177, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ
i : U ⟶ V
⊢ NatTrans.app f.c ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).op.obj U) ≫
X.presheaf.map
((Opens.map f.base).op.map ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).op.map i) ≫
eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj V.unop)) = V)) =
NatTrans.app f.c (op ((openFunctor H).obj U.unop)) ≫
X.presheaf.map
(eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U) ≫
((Opens.map (Iso.refl ↑X).hom).map i.unop).op)
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
⊢ (isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base) = f
[PROOFSTEP]
refine PresheafedSpace.Hom.ext _ _ rfl <| NatTrans.ext _ _ <| funext fun x => ?_
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app
(((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map ((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).op =
(Opens.map f.base).op))
X.presheaf)
x =
NatTrans.app f.c x
[PROOFSTEP]
simp only [isoRestrict_hom_c_app, NatTrans.comp_app, eqToHom_refl, ofRestrict_c_app, Category.assoc, whiskerRight_id']
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app
(((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).c ≫
𝟙 ((Opens.map ((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).op ⋙ X.presheaf))
x =
NatTrans.app f.c x
[PROOFSTEP]
erw [Category.comp_id, comp_c_app, f.c.naturality_assoc, ← X.presheaf.map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app f.c x ≫
X.presheaf.map
((Opens.map f.base).op.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f.base)).counit x.unop).op ≫
(eqToIso
(_ :
(Opens.map f.base).op.obj
(op
((openFunctor H).obj
(op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop)).unop)) =
op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop))).hom) =
NatTrans.app f.c x
[PROOFSTEP]
trans f.c.app x ≫ X.presheaf.map (𝟙 _)
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app f.c x ≫
X.presheaf.map
((Opens.map f.base).op.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f.base)).counit x.unop).op ≫
(eqToIso
(_ :
(Opens.map f.base).op.obj
(op
((openFunctor H).obj
(op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop)).unop)) =
op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop))).hom) =
NatTrans.app f.c x ≫ X.presheaf.map (𝟙 ((Opens.map f.base).op.obj x))
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app f.c x ≫ X.presheaf.map (𝟙 ((Opens.map f.base).op.obj x)) = NatTrans.app f.c x
[PROOFSTEP]
erw [X.presheaf.map_id, Category.comp_id]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
⊢ (isoRestrict H).inv ≫ f = ofRestrict Y (_ : OpenEmbedding ↑f.base)
[PROOFSTEP]
rw [Iso.inv_comp_eq, isoRestrict_hom_ofRestrict]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.19958, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H✝ H : IsOpenImmersion f
⊢ Mono f
[PROOFSTEP]
rw [← H.isoRestrict_hom_ofRestrict]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.19958, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H✝ H : IsOpenImmersion f
⊢ Mono ((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base))
[PROOFSTEP]
apply mono_comp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
⊢ IsIso (NatTrans.app (f ≫ g).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(f ≫ g).base)).obj U)))
[PROOFSTEP]
generalize_proofs h
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
⊢ IsIso (NatTrans.app (f ≫ g).c (op ((IsOpenMap.functor h).obj U)))
[PROOFSTEP]
dsimp only [AlgebraicGeometry.PresheafedSpace.comp_c_app, unop_op, Functor.op, comp_base,
TopCat.Presheaf.pushforwardObj_obj, Opens.map_comp_obj]
-- Porting note : was `apply (config := { instances := False }) ...`
-- See https://github.com/leanprover/lean4/issues/2273
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
⊢ IsIso
(NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)) ≫
NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U))))
[PROOFSTEP]
have : IsIso (g.c.app (op <| (h.functor).obj U))
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
[PROOFSTEP]
have : h.functor.obj U = hg.openFunctor.obj (hf.openFunctor.obj U) :=
by
ext1
dsimp only [IsOpenMap.functor_obj_coe]
-- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)`
rw [comp_base, coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
⊢ (IsOpenMap.functor h).obj U = (openFunctor hg).obj ((openFunctor hf).obj U)
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
⊢ ↑((IsOpenMap.functor h).obj U) = ↑((openFunctor hg).obj ((openFunctor hf).obj U))
[PROOFSTEP]
dsimp only [IsOpenMap.functor_obj_coe]
-- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)`
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
⊢ ↑(f ≫ g).base '' ↑U = ↑g.base '' (↑f.base '' ↑U)
[PROOFSTEP]
rw [comp_base, coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image]
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : (IsOpenMap.functor h).obj U = (openFunctor hg).obj ((openFunctor hf).obj U)
⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
[PROOFSTEP]
rw [this]
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : (IsOpenMap.functor h).obj U = (openFunctor hg).obj ((openFunctor hf).obj U)
⊢ IsIso (NatTrans.app g.c (op ((openFunctor hg).obj ((openFunctor hf).obj U))))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
⊢ IsIso
(NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)) ≫
NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U))))
[PROOFSTEP]
have : IsIso (f.c.app (op <| (Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
⊢ IsIso (NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U))))
[PROOFSTEP]
have : (Opens.map g.base).obj (h.functor.obj U) = hf.openFunctor.obj U :=
by
ext1
dsimp only [Opens.map_coe, IsOpenMap.functor_obj_coe, comp_base]
-- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)`
rw [coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image g.base f.base,
Set.preimage_image_eq _ hg.base_open.inj]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
⊢ (Opens.map g.base).obj ((IsOpenMap.functor h).obj U) = (openFunctor hf).obj U
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
⊢ ↑((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)) = ↑((openFunctor hf).obj U)
[PROOFSTEP]
dsimp only [Opens.map_coe, IsOpenMap.functor_obj_coe, comp_base]
-- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)`
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
⊢ ↑g.base ⁻¹' (↑(f.base ≫ g.base) '' ↑U) = ↑f.base '' ↑U
[PROOFSTEP]
rw [coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image g.base f.base,
Set.preimage_image_eq _ hg.base_open.inj]
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this✝ : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
this : (Opens.map g.base).obj ((IsOpenMap.functor h).obj U) = (openFunctor hf).obj U
⊢ IsIso (NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U))))
[PROOFSTEP]
rw [this]
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this✝ : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
this : (Opens.map g.base).obj ((IsOpenMap.functor h).obj U) = (openFunctor hf).obj U
⊢ IsIso (NatTrans.app f.c (op ((openFunctor hf).obj U)))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.20909, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
Z : PresheafedSpace C
f : X ⟶ Y
hf : IsOpenImmersion f
g : Y ⟶ Z
hg : IsOpenImmersion g
U : Opens ↑↑X
h : IsOpenMap ↑(f ≫ g).base
this✝ : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)))
this : IsIso (NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U))))
⊢ IsIso
(NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)) ≫
NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U))))
[PROOFSTEP]
apply IsIso.comp_isIso
[GOAL]
C : Type u_1
inst✝ : Category.{?u.27120, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ op U = (Opens.map f.base).op.obj (op ((openFunctor H).obj U))
[PROOFSTEP]
congr
[GOAL]
case e_x
C : Type u_1
inst✝ : Category.{?u.27120, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ U = (Opens.map f.base).obj (op ((openFunctor H).obj U)).unop
[PROOFSTEP]
ext
[GOAL]
case e_x.h.h
C : Type u_1
inst✝ : Category.{?u.27120, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
x✝ : ↑↑X
⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop)
[PROOFSTEP]
dsimp [openFunctor, IsOpenMap.functor]
[GOAL]
case e_x.h.h
C : Type u_1
inst✝ : Category.{?u.27120, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
x✝ : ↑↑X
⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑f.base ⁻¹' (↑f.base '' ↑U)
[PROOFSTEP]
rw [Set.preimage_image_eq _ H.base_open.inj]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map i ≫ invApp H V.unop = invApp H U.unop ≫ Y.presheaf.map ((openFunctor H).op.map i)
[PROOFSTEP]
simp only [invApp, ← Category.assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ (X.presheaf.map i ≫
X.presheaf.map (eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop)))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj V.unop))) =
(X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop)))) ≫
Y.presheaf.map ((openFunctor H).op.map i)
[PROOFSTEP]
rw [IsIso.comp_inv_eq]
-- Porting note : `simp` can't pick up `f.c.naturality`
-- See https://github.com/leanprover-community/mathlib4/issues/5026
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map i ≫
X.presheaf.map (eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) =
((X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop)))) ≫
Y.presheaf.map ((openFunctor H).op.map i)) ≫
NatTrans.app f.c (op ((openFunctor H).obj V.unop))
[PROOFSTEP]
simp only [Category.assoc, ← X.presheaf.map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) =
X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop))) ≫
Y.presheaf.map ((openFunctor H).op.map i) ≫ NatTrans.app f.c (op ((openFunctor H).obj V.unop))
[PROOFSTEP]
erw [f.c.naturality]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) =
X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop))) ≫
NatTrans.app f.c (op ((openFunctor H).obj U.unop)) ≫ (f.base _* X.presheaf).map ((openFunctor H).op.map i)
[PROOFSTEP]
simp only [IsIso.inv_hom_id_assoc, ← X.presheaf.map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) =
X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫
(f.base _* X.presheaf).map ((openFunctor H).op.map i)
[PROOFSTEP]
erw [← X.presheaf.map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) =
X.presheaf.map
(eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop)) ≫
(Opens.map f.base).op.map ((openFunctor H).op.map i))
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{?u.34429, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ IsIso (invApp H U)
[PROOFSTEP]
delta invApp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.34429, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ IsIso
(X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj U))))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.35411, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj U)) = op U
[PROOFSTEP]
apply congr_arg (op ·)
[GOAL]
C : Type u_1
inst✝ : Category.{?u.35411, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ (Opens.map f.base).obj (op ((openFunctor H).obj U)).unop = U
[PROOFSTEP]
ext
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.35411, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
x✝ : ↑↑X
⊢ x✝ ∈ ↑((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) ↔ x✝ ∈ ↑U
[PROOFSTEP]
dsimp [openFunctor, IsOpenMap.functor]
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.35411, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
x✝ : ↑↑X
⊢ x✝ ∈ ↑f.base ⁻¹' (↑f.base '' ↑U) ↔ x✝ ∈ ↑U
[PROOFSTEP]
rw [Set.preimage_image_eq _ H.base_open.inj]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ inv (invApp H U) =
NatTrans.app f.c (op ((openFunctor H).obj U)) ≫
X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) = op U))
[PROOFSTEP]
rw [← cancel_epi (H.invApp U), IsIso.hom_inv_id]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ 𝟙 (X.presheaf.obj (op U)) =
invApp H U ≫
NatTrans.app f.c (op ((openFunctor H).obj U)) ≫
X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) = op U))
[PROOFSTEP]
delta invApp
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ 𝟙 (X.presheaf.obj (op U)) =
(X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj U)))) ≫
NatTrans.app f.c (op ((openFunctor H).obj U)) ≫
X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) = op U))
[PROOFSTEP]
simp [← Functor.map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.41014, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ op U = (Opens.map f.base).op.obj (op ((openFunctor H).obj U))
[PROOFSTEP]
apply congr_arg (op ·)
[GOAL]
C : Type u_1
inst✝ : Category.{?u.41014, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ U = (Opens.map f.base).obj (op ((openFunctor H).obj U)).unop
[PROOFSTEP]
ext
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.41014, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
x✝ : ↑↑X
⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop)
[PROOFSTEP]
dsimp [openFunctor, IsOpenMap.functor]
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.41014, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
x✝ : ↑↑X
⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑f.base ⁻¹' (↑f.base '' ↑U)
[PROOFSTEP]
rw [Set.preimage_image_eq _ H.base_open.inj]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑X
⊢ invApp H U ≫ NatTrans.app f.c (op ((openFunctor H).obj U)) =
X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop)))
[PROOFSTEP]
rw [invApp, Category.assoc, IsIso.inv_hom_id, Category.comp_id]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
⊢ NatTrans.app f.c (op U) ≫ invApp H ((Opens.map f.base).obj U) =
Y.presheaf.map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' U.carrier) ⊆ U.carrier)).op
[PROOFSTEP]
erw [← Category.assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
⊢ (NatTrans.app f.c (op U) ≫
X.presheaf.map
(eqToHom
(_ :
op ((Opens.map f.base).obj U) =
op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop)))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj ((Opens.map f.base).obj U)))) =
Y.presheaf.map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' U.carrier) ⊆ U.carrier)).op
[PROOFSTEP]
rw [IsIso.comp_inv_eq, f.c.naturality]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
⊢ NatTrans.app f.c (op U) ≫
X.presheaf.map
(eqToHom
(_ :
op ((Opens.map f.base).obj U) =
op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop))) =
NatTrans.app f.c (op U) ≫
(f.base _* X.presheaf).map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' U.carrier) ⊆ U.carrier)).op
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝ : Category.{?u.51099, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ (openFunctor H).obj ((Opens.map f.base).obj U) = U
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
C : Type u_1
inst✝ : Category.{?u.51099, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ (openFunctor H).obj ((Opens.map f.base).obj U) ≤ U
[PROOFSTEP]
exact Set.image_preimage_subset f.base U.1
[GOAL]
case a
C : Type u_1
inst✝ : Category.{?u.51099, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ U ≤ (openFunctor H).obj ((Opens.map f.base).obj U)
[PROOFSTEP]
rw [← SetLike.coe_subset_coe]
[GOAL]
case a
C : Type u_1
inst✝ : Category.{?u.51099, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ ↑U ⊆ ↑((openFunctor H).obj ((Opens.map f.base).obj U))
[PROOFSTEP]
refine' LE.le.trans_eq _ (@Set.image_preimage_eq_inter_range _ _ f.base U.1).symm
[GOAL]
case a
C : Type u_1
inst✝ : Category.{?u.51099, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ ↑U ≤ U.carrier ∩ Set.range ↑f.base
[PROOFSTEP]
exact Set.subset_inter_iff.mpr ⟨fun _ h => h, hU⟩
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ NatTrans.app f.c (op U) ≫ invApp H ((Opens.map f.base).obj U) =
Y.presheaf.map (eqToHom (_ : (openFunctor H).obj ((Opens.map f.base).obj U) = U)).op
[PROOFSTEP]
erw [← Category.assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ (NatTrans.app f.c (op U) ≫
X.presheaf.map
(eqToHom
(_ :
op ((Opens.map f.base).obj U) =
op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop)))) ≫
inv (NatTrans.app f.c (op ((openFunctor H).obj ((Opens.map f.base).obj U)))) =
Y.presheaf.map (eqToHom (_ : (openFunctor H).obj ((Opens.map f.base).obj U) = U)).op
[PROOFSTEP]
rw [IsIso.comp_inv_eq, f.c.naturality]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ NatTrans.app f.c (op U) ≫
X.presheaf.map
(eqToHom
(_ :
op ((Opens.map f.base).obj U) =
op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop))) =
NatTrans.app f.c (op U) ≫
(f.base _* X.presheaf).map (eqToHom (_ : (openFunctor H).obj ((Opens.map f.base).obj U) = U)).op
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
⊢ IsIso
(NatTrans.app (PresheafedSpace.ofRestrict Y hf).c
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(PresheafedSpace.ofRestrict Y hf).base)).obj U)))
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
⊢ IsIso
(Y.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).op)
[PROOFSTEP]
have : (Opens.map f).obj (hf.isOpenMap.functor.obj U) = U :=
by
ext1
exact Set.preimage_image_eq _ hf.inj
[GOAL]
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
⊢ (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
⊢ ↑((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) = ↑U
[PROOFSTEP]
exact Set.preimage_image_eq _ hf.inj
[GOAL]
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
⊢ IsIso
(Y.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).op)
[PROOFSTEP]
convert_to IsIso (Y.presheaf.map (𝟙 _))
[GOAL]
case h.e'_4
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
⊢ Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
[PROOFSTEP]
congr
[GOAL]
case h.e'_5
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ HEq
(Y.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).op)
(Y.presheaf.map (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))))
[PROOFSTEP]
congr
[GOAL]
case h.e'_5.e_8.e_3.h
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) =
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop
case h.e'_5.e_8.e_5
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ HEq (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
(𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop)
[PROOFSTEP]
simp only [unop_op]
[GOAL]
case h.e'_5.e_8.e_3.h
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) =
(IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U
case h.e'_5.e_8.e_5
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ HEq (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
(𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop)
[PROOFSTEP]
congr
[GOAL]
case h.e'_5.e_8.e_5
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ HEq (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
(𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop)
[PROOFSTEP]
apply Subsingleton.helim
[GOAL]
case h.e'_5.e_8.e_5.h₂
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⟶
(IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) =
((op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop ⟶
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop)
[PROOFSTEP]
rw [this]
[GOAL]
case h.e'_5.e_8.e_5.h₂
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
e_4✝ :
Y.presheaf.obj
(op
((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj
((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))
⊢ ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) =
((op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop ⟶
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop)
[PROOFSTEP]
rfl
[GOAL]
case convert_2
C : Type u_1
inst✝ : Category.{?u.57948, u_1} C
X✝ Y✝ : PresheafedSpace C
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
X : TopCat
Y : PresheafedSpace C
f : X ⟶ ↑Y
hf : OpenEmbedding ↑f
U : Opens ↑↑(restrict Y hf)
this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U
⊢ IsIso (Y.presheaf.map (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U))))
[PROOFSTEP]
infer_instance
[GOAL]
C✝ : Type u_1
inst✝¹ : Category.{?u.65491, u_1} C✝
X✝ Y✝ : PresheafedSpace C✝
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
C : Type u_2
inst✝ : Category.{u_3, u_2} C
X : PresheafedSpace C
Y : TopCat
f : Y ⟶ TopCat.of ↑↑X
h : OpenEmbedding ↑f
U : Opens ↑↑(restrict X h)
⊢ invApp (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h)) U = 𝟙 ((restrict X h).presheaf.obj (op U))
[PROOFSTEP]
delta invApp
[GOAL]
C✝ : Type u_1
inst✝¹ : Category.{?u.65491, u_1} C✝
X✝ Y✝ : PresheafedSpace C✝
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
C : Type u_2
inst✝ : Category.{u_3, u_2} C
X : PresheafedSpace C
Y : TopCat
f : Y ⟶ TopCat.of ↑↑X
h : OpenEmbedding ↑f
U : Opens ↑↑(restrict X h)
⊢ (restrict X h).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map (PresheafedSpace.ofRestrict X h).base).obj
(op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop))) ≫
inv
(NatTrans.app (PresheafedSpace.ofRestrict X h).c
(op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U))) =
𝟙 ((restrict X h).presheaf.obj (op U))
[PROOFSTEP]
rw [IsIso.comp_inv_eq, Category.id_comp]
[GOAL]
C✝ : Type u_1
inst✝¹ : Category.{?u.65491, u_1} C✝
X✝ Y✝ : PresheafedSpace C✝
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
C : Type u_2
inst✝ : Category.{u_3, u_2} C
X : PresheafedSpace C
Y : TopCat
f : Y ⟶ TopCat.of ↑↑X
h : OpenEmbedding ↑f
U : Opens ↑↑(restrict X h)
⊢ (restrict X h).presheaf.map
(eqToHom
(_ :
op U =
op
((Opens.map (PresheafedSpace.ofRestrict X h).base).obj
(op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop))) =
NatTrans.app (PresheafedSpace.ofRestrict X h).c
(op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U))
[PROOFSTEP]
change X.presheaf.map _ = X.presheaf.map _
[GOAL]
C✝ : Type u_1
inst✝¹ : Category.{?u.65491, u_1} C✝
X✝ Y✝ : PresheafedSpace C✝
f✝ : X✝ ⟶ Y✝
H : IsOpenImmersion f✝
C : Type u_2
inst✝ : Category.{u_3, u_2} C
X : PresheafedSpace C
Y : TopCat
f : Y ⟶ TopCat.of ↑↑X
h : OpenEmbedding ↑f
U : Opens ↑↑(restrict X h)
⊢ X.presheaf.map
((IsOpenMap.functor (_ : IsOpenMap ↑f)).op.map
(eqToHom
(_ :
op U =
op
((Opens.map (PresheafedSpace.ofRestrict X h).base).obj
(op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop)))) =
X.presheaf.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop).op
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
⊢ IsIso f
[PROOFSTEP]
have : ∀ (U : (Opens Y)ᵒᵖ), IsIso (f.c.app U)
[GOAL]
case this
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
⊢ ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
[PROOFSTEP]
intro U
[GOAL]
case this
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
U : (Opens ↑↑Y)ᵒᵖ
⊢ IsIso (NatTrans.app f.c U)
[PROOFSTEP]
have : U = op (h.openFunctor.obj ((Opens.map f.base).obj (unop U))) :=
by
induction U using Opposite.rec' with
| h U => ?_
cases U
dsimp only [Functor.op, Opens.map]
congr
exact (Set.image_preimage_eq _ ((TopCat.epi_iff_surjective _).mp h')).symm
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
U : (Opens ↑↑Y)ᵒᵖ
⊢ U = op ((openFunctor h).obj ((Opens.map f.base).obj U.unop))
[PROOFSTEP]
induction U using Opposite.rec' with
| h U => ?_
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
U : (Opens ↑↑Y)ᵒᵖ
⊢ U = op ((openFunctor h).obj ((Opens.map f.base).obj U.unop))
[PROOFSTEP]
induction U using Opposite.rec' with
| h U => ?_
[GOAL]
case h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
U : Opens ↑↑Y
⊢ op U = op ((openFunctor h).obj ((Opens.map f.base).obj (op U).unop))
[PROOFSTEP]
cases U
[GOAL]
case h.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
carrier✝ : Set ↑↑Y
is_open'✝ : IsOpen carrier✝
⊢ op { carrier := carrier✝, is_open' := is_open'✝ } =
op ((openFunctor h).obj ((Opens.map f.base).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop))
[PROOFSTEP]
dsimp only [Functor.op, Opens.map]
[GOAL]
case h.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
carrier✝ : Set ↑↑Y
is_open'✝ : IsOpen carrier✝
⊢ op { carrier := carrier✝, is_open' := is_open'✝ } =
op
((openFunctor h).obj
{ carrier := ↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop,
is_open' := (_ : IsOpen (↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) })
[PROOFSTEP]
congr
[GOAL]
case h.mk.e_x.e_carrier
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
carrier✝ : Set ↑↑Y
is_open'✝ : IsOpen carrier✝
⊢ carrier✝ =
↑f.base ''
↑{ carrier := ↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop,
is_open' := (_ : IsOpen (↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) }
[PROOFSTEP]
exact (Set.image_preimage_eq _ ((TopCat.epi_iff_surjective _).mp h')).symm
[GOAL]
case this
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
U : (Opens ↑↑Y)ᵒᵖ
this : U = op ((openFunctor h).obj ((Opens.map f.base).obj U.unop))
⊢ IsIso (NatTrans.app f.c U)
[PROOFSTEP]
convert @IsOpenImmersion.c_iso _ _ _ _ _ h ((Opens.map f.base).obj (unop U))
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
⊢ IsIso f
[PROOFSTEP]
have : IsIso f.base
[GOAL]
case this
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
⊢ IsIso f.base
[PROOFSTEP]
let t : X ≃ₜ Y :=
(Homeomorph.ofEmbedding _ h.base_open.toEmbedding).trans
{ toFun := Subtype.val
invFun := fun x => ⟨x, by rw [Set.range_iff_surjective.mpr ((TopCat.epi_iff_surjective _).mp h')]; trivial⟩
left_inv := fun ⟨_, _⟩ => rfl
right_inv := fun _ => rfl }
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
x : ↑↑Y
⊢ x ∈ Set.range ↑f.base
[PROOFSTEP]
rw [Set.range_iff_surjective.mpr ((TopCat.epi_iff_surjective _).mp h')]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
x : ↑↑Y
⊢ x ∈ Set.univ
[PROOFSTEP]
trivial
[GOAL]
case this
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
t : ↑↑X ≃ₜ ↑↑Y :=
Homeomorph.trans (Homeomorph.ofEmbedding ↑f.base (_ : Embedding ↑f.base))
(Homeomorph.mk
{ toFun := Subtype.val, invFun := fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) },
left_inv :=
(_ : ∀ (x : ↑(Set.range ↑f.base)), (fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }) ↑x = x),
right_inv :=
(_ :
∀ (x : ↑↑Y),
↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }) x) =
↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }) x)) })
⊢ IsIso f.base
[PROOFSTEP]
convert IsIso.of_iso (TopCat.isoOfHomeo t)
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this✝ : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
this : IsIso f.base
⊢ IsIso f
[PROOFSTEP]
have : IsIso f.c := by apply NatIso.isIso_of_isIso_app
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this✝ : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
this : IsIso f.base
⊢ IsIso f.c
[PROOFSTEP]
apply NatIso.isIso_of_isIso_app
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f✝ : X ⟶ Y
H : IsOpenImmersion f✝
f : X ⟶ Y
h : IsOpenImmersion f
h' : Epi f.base
this✝¹ : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U)
this✝ : IsIso f.base
this : IsIso f.c
⊢ IsIso f
[PROOFSTEP]
apply isIso_of_components
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.92046, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H✝ : IsOpenImmersion f
inst✝ : HasColimits C
H : IsOpenImmersion f
x : ↑↑X
⊢ IsIso (stalkMap f x)
[PROOFSTEP]
rw [← H.isoRestrict_hom_ofRestrict]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.92046, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H✝ : IsOpenImmersion f
inst✝ : HasColimits C
H : IsOpenImmersion f
x : ↑↑X
⊢ IsIso (stalkMap ((isoRestrict H).hom ≫ PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑f.base)) x)
[PROOFSTEP]
rw [PresheafedSpace.stalkMap.comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.92046, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H✝ : IsOpenImmersion f
inst✝ : HasColimits C
H : IsOpenImmersion f
x : ↑↑X
⊢ IsIso
(stalkMap (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑f.base)) (↑(isoRestrict H).hom.base x) ≫
stalkMap (isoRestrict H).hom x)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
⊢ (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)
[PROOFSTEP]
simp only [IsOpenMap.functor, Subtype.mk_eq_mk, unop_op, op_inj_iff, Opens.map, Subtype.coe_mk, Functor.op_obj]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
⊢ { carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) },
is_open' :=
(_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) } =
{
carrier :=
↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) }
[PROOFSTEP]
apply LE.le.antisymm
[GOAL]
case a
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
⊢ { carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) },
is_open' :=
(_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) } ≤
{
carrier :=
↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) }
[PROOFSTEP]
rintro _ ⟨_, h₁, h₂⟩
[GOAL]
case a.intro.intro
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
a✝ : ↑↑Y
w✝ : (CategoryTheory.forget TopCat).obj ↑X
h₁ : w✝ ∈ ↑U.unop
h₂ : ↑f.base w✝ = ↑g.base a✝
⊢ a✝ ∈
↑{
carrier :=
↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) }
[PROOFSTEP]
use(TopCat.pullbackIsoProdSubtype _ _).inv
⟨⟨_, _⟩, h₂⟩
-- Porting note : need a slight hand holding
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
a✝ : ↑↑Y
w✝ : (CategoryTheory.forget TopCat).obj ↑X
h₁ : w✝ ∈ ↑U.unop
h₂ : ↑f.base w✝ = ↑g.base a✝
⊢ ↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ } ∈
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) } ∧
↑pullback.snd (↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ }) = a✝
[PROOFSTEP]
change _ ∈ _ ⁻¹' _ ∧ _
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
a✝ : ↑↑Y
w✝ : (CategoryTheory.forget TopCat).obj ↑X
h₁ : w✝ ∈ ↑U.unop
h₂ : ↑f.base w✝ = ↑g.base a✝
⊢ ↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ } ∈
(fun x => x) ⁻¹'
{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }.carrier ∧
↑pullback.snd (↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ }) = a✝
[PROOFSTEP]
simpa using h₁
[GOAL]
case a
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
⊢ {
carrier :=
↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) },
is_open' :=
(_ :
IsOpen
(↑pullback.snd ''
↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) } ≤
{ carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) },
is_open' :=
(_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) }
[PROOFSTEP]
rintro _ ⟨x, h₁, rfl⟩
[GOAL]
case a.intro.intro
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑X)ᵒᵖ
x : (CategoryTheory.forget TopCat).obj (pullback f.base g.base)
h₁ : x ∈ ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }
⊢ ↑pullback.snd x ∈
↑{ carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) },
is_open' :=
(_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) }
[PROOFSTEP]
exact ⟨_, h₁, ConcreteCategory.congr_hom pullback.condition x⟩
[GOAL]
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
⊢ ∀ ⦃X_1 Y_1 : (Opens ↑↑X)ᵒᵖ⦄ (f_1 : X_1 ⟶ Y_1),
X.presheaf.map f_1 ≫
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
Y_1 =
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
X_1 ≫
(pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map f_1
[PROOFSTEP]
intro U V i
[GOAL]
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U V : (Opens ↑↑X)ᵒᵖ
i : U ⟶ V
⊢ X.presheaf.map i ≫
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
V =
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
U ≫
(pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i
[PROOFSTEP]
induction U using Opposite.rec'
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
V : (Opens ↑↑X)ᵒᵖ
X✝ : Opens ↑↑X
i : op X✝ ⟶ V
⊢ X.presheaf.map i ≫
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
V =
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
(op X✝) ≫
(pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i
[PROOFSTEP]
induction V using Opposite.rec'
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝¹ X✝ : Opens ↑↑X
i : op X✝¹ ⟶ op X✝
⊢ X.presheaf.map i ≫
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
(op X✝) =
(fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))))
(op X✝¹) ≫
(pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i
[PROOFSTEP]
simp only [Quiver.Hom.unop_op, Category.assoc, Functor.op_map, inv_naturality_assoc]
-- Porting note : the following lemmas are not picked up by `simp`
-- See https://github.com/leanprover-community/mathlib4/issues/5026
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝¹ X✝ : Opens ↑↑X
i : op X✝¹ ⟶ op X✝
⊢ invApp hf (op X✝¹).unop ≫
Z.presheaf.map ((openFunctor hf).map i.unop).op ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝).unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝)))) =
invApp hf (op X✝¹).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op X✝¹)))) ≫
(pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i
[PROOFSTEP]
erw [g.c.naturality_assoc, TopCat.Presheaf.pushforwardObj_map, ← Y.presheaf.map_comp, ← Y.presheaf.map_comp]
[GOAL]
case h.h
C : Type u_1
inst✝ : Category.{?u.93937, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝¹ X✝ : Opens ↑↑X
i : op X✝¹ ⟶ op X✝
⊢ invApp hf (op X✝¹).unop ≫
NatTrans.app g.c (op ((openFunctor hf).obj (op X✝¹).unop)) ≫
Y.presheaf.map
((Opens.map g.base).op.map ((openFunctor hf).map i.unop).op ≫
eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝)))) =
invApp hf (op X✝¹).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝¹))) ≫
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map ((Opens.map pullback.fst).op.map i))
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
⊢ pullbackConeOfLeftFst f g ≫ f = PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g
[PROOFSTEP]
refine PresheafedSpace.Hom.ext _ _ ?_ <| NatTrans.ext _ _ <| funext fun U => ?_
[GOAL]
case refine_1
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
⊢ (pullbackConeOfLeftFst f g ≫ f).base = (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base
[PROOFSTEP]
simpa using pullback.condition
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
U : (Opens ↑↑Z)ᵒᵖ
⊢ NatTrans.app
((pullbackConeOfLeftFst f g ≫ f).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftFst f g ≫ f).base).op =
(Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op))
(restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf)
U =
NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).c U
[PROOFSTEP]
induction U using Opposite.rec'
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝ : Opens ↑↑Z
⊢ NatTrans.app
((pullbackConeOfLeftFst f g ≫ f).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftFst f g ≫ f).base).op =
(Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op))
(restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf)
(op X✝) =
NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).c (op X✝)
[PROOFSTEP]
rw [NatTrans.comp_app]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝ : Opens ↑↑Z
⊢ NatTrans.app (pullbackConeOfLeftFst f g ≫ f).c (op X✝) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftFst f g ≫ f).base).op =
(Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op))
(restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf)
(op X✝) =
NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).c (op X✝)
[PROOFSTEP]
dsimp only [comp_c_app, unop_op, whiskerRight_app, pullbackConeOfLeftFst]
-- simp only [ofRestrict_c_app, NatTrans.comp_app]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝ : Opens ↑↑Z
⊢ (NatTrans.app f.c (op X✝) ≫
invApp hf ((Opens.map f.base).obj X✝) ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj X✝))) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op ((Opens.map f.base).obj X✝)).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op ((Opens.map f.base).obj X✝)))))) ≫
(restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf.map
(NatTrans.app
(eqToHom
(_ :
(Opens.map
({ base := pullback.fst,
c :=
NatTrans.mk fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj U))) } ≫
f).base).op =
(Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op))
(op X✝)) =
NatTrans.app g.c (op X✝) ≫
NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)).c (op ((Opens.map g.base).obj X✝))
[PROOFSTEP]
simp only [Quiver.Hom.unop_op, TopCat.Presheaf.pushforwardObj_map, app_invApp_assoc, eqToHom_app, eqToHom_unop,
Category.assoc, NatTrans.naturality_assoc, Functor.op_map]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝ : Opens ↑↑Z
⊢ NatTrans.app g.c (op X✝) ≫
Y.presheaf.map
((Opens.map g.base).map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' X✝.carrier) ⊆ X✝.carrier)).op.unop).op ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op ((Opens.map f.base).obj X✝)).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op ((Opens.map f.base).obj X✝))))) ≫
(restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf.map
(eqToHom
(_ :
(Opens.map
({ base := pullback.fst,
c :=
NatTrans.mk fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj U))) } ≫
f).base).op.obj
(op X✝) =
(Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op.obj
(op X✝))) =
NatTrans.app g.c (op X✝) ≫
NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)).c (op ((Opens.map g.base).obj X✝))
[PROOFSTEP]
erw [← Y.presheaf.map_comp, ← Y.presheaf.map_comp]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
X✝ : Opens ↑↑Z
⊢ NatTrans.app g.c (op X✝) ≫
Y.presheaf.map
(((Opens.map g.base).map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' X✝.carrier) ⊆ X✝.carrier)).op.unop).op ≫
eqToHom
(_ :
(Opens.map g.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op ((Opens.map f.base).obj X✝)).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op ((Opens.map f.base).obj X✝)))) ≫
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map
(eqToHom
(_ :
(Opens.map
({ base := pullback.fst,
c :=
NatTrans.mk fun U =>
invApp hf U.unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj U))) } ≫
f).base).op.obj
(op X✝) =
(Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op.obj
(op X✝)))) =
NatTrans.app g.c (op X✝) ≫
NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)).c (op ((Opens.map g.base).obj X✝))
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
⊢ (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
U
[PROOFSTEP]
dsimp only [Opens.map, IsOpenMap.functor, Functor.op]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
⊢ op
{
carrier :=
↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑(PullbackCone.snd s).base ⁻¹'
↑(op
{ carrier := ↑pullback.snd '' ↑U.unop,
is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop)) } =
op
{
carrier :=
↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop,
is_open' :=
(_ :
IsOpen
(↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop)) }
[PROOFSTEP]
congr 2
[GOAL]
case e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
⊢ ↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop =
↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop
[PROOFSTEP]
let s' : PullbackCone f.base g.base := PullbackCone.mk s.fst.base s.snd.base (congr_arg Hom.base s.condition)
[GOAL]
case e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
⊢ ↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop =
↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop
[PROOFSTEP]
have : _ = s.snd.base := limit.lift_π s' WalkingCospan.right
[GOAL]
case e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
⊢ ↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop =
↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop
[PROOFSTEP]
conv_lhs =>
erw [← this]
dsimp
-- Porting note : need a bit more hand holding here about function composition
rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl]
erw [← Set.preimage_preimage]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
| ↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop
[PROOFSTEP]
erw [← this]
dsimp
-- Porting note : need a bit more hand holding here about function composition
rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl]
erw [← Set.preimage_preimage]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
| ↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop
[PROOFSTEP]
erw [← this]
dsimp
-- Porting note : need a bit more hand holding here about function composition
rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl]
erw [← Set.preimage_preimage]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
| ↑(PullbackCone.snd s).base ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop
[PROOFSTEP]
erw [← this]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
| ↑(limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right) ⁻¹'
↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop
[PROOFSTEP]
dsimp
-- Porting note : need a bit more hand holding here about function composition
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
| ↑(limit.lift (cospan f.base g.base)
(PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ≫
limit.π (cospan f.base g.base) WalkingCospan.right) ⁻¹'
(↑pullback.snd '' ↑U.unop)
[PROOFSTEP]
rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
| (fun x =>
↑(limit.π (cospan f.base g.base) WalkingCospan.right)
(↑(limit.lift (cospan f.base g.base)
(PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)))
x)) ⁻¹'
(↑pullback.snd '' ↑U.unop)
[PROOFSTEP]
erw [← Set.preimage_preimage]
[GOAL]
case e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
⊢ (fun x =>
↑(limit.lift (cospan f.base g.base)
(PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)))
x) ⁻¹'
(↑(limit.π (cospan f.base g.base) WalkingCospan.right) ⁻¹' (↑pullback.snd '' ↑U.unop)) =
↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop
[PROOFSTEP]
erw [Set.preimage_image_eq _ (TopCat.snd_openEmbedding_of_left_openEmbedding hf.base_open g.base).inj]
[GOAL]
case e_x.e_carrier
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
s' : PullbackCone f.base g.base :=
PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)
this :
limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base
⊢ (fun x =>
↑(limit.lift (cospan f.base g.base)
(PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)))
x) ⁻¹'
↑U.unop =
↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹'
↑U.unop
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
i : U ⟶ V
⊢ (pullbackConeOfLeft f g).pt.presheaf.map i ≫
(fun U =>
NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
U)))
V =
(fun U =>
NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
U)))
U ≫
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) _*
s.pt.presheaf).map
i
[PROOFSTEP]
erw [s.snd.c.naturality_assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
i : U ⟶ V
⊢ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map i) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj V) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
V)) =
(fun U =>
NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
U)))
U ≫
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) _*
s.pt.presheaf).map
i
[PROOFSTEP]
rw [Category.assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
i : U ⟶ V
⊢ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map i) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj V) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
V)) =
NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
U)) ≫
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) _*
s.pt.presheaf).map
i
[PROOFSTEP]
erw [← s.pt.presheaf.map_comp, ← s.pt.presheaf.map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.123565, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ
i : U ⟶ V
⊢ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
s.pt.presheaf.map
((Opens.map (PullbackCone.snd s).base).op.map ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map i) ≫
eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj V) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
V)) =
NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
U) ≫
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.map
i)
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s
[PROOFSTEP]
refine PresheafedSpace.Hom.ext _ _ ?_ <| NatTrans.ext _ _ <| funext fun x => ?_
[GOAL]
case refine_1
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base = (PullbackCone.fst s).base
[PROOFSTEP]
change pullback.lift _ _ _ ≫ pullback.fst = _
[GOAL]
case refine_1
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) ≫
pullback.fst =
(PullbackCone.fst s).base
[PROOFSTEP]
simp
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑X)ᵒᵖ
⊢ NatTrans.app
((pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
s.pt.presheaf)
x =
NatTrans.app (PullbackCone.fst s).c x
[PROOFSTEP]
induction x using Opposite.rec' with
| h x => ?_
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑X)ᵒᵖ
⊢ NatTrans.app
((pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
s.pt.presheaf)
x =
NatTrans.app (PullbackCone.fst s).c x
[PROOFSTEP]
induction x using Opposite.rec' with
| h x => ?_
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
⊢ NatTrans.app
((pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
s.pt.presheaf)
(op x) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
change ((_ ≫ _) ≫ _ ≫ _) ≫ _ = _
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
⊢ ((invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x))))) ≫
NatTrans.app (PullbackCone.snd s).c
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))))) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
s.pt.presheaf)
(op x) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫
NatTrans.app (PullbackCone.snd s).c
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x)))) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
s.pt.presheaf)
(op x) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
erw [← s.pt.presheaf.map_comp]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫
NatTrans.app (PullbackCone.snd s).c
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
erw [s.snd.c.naturality_assoc]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
NatTrans.app (PullbackCone.snd s).c
((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
have := congr_app s.condition (op (hf.openFunctor.obj x))
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
this :
NatTrans.app (PullbackCone.fst s ≫ f).c (op ((openFunctor hf).obj x)) =
NatTrans.app (PullbackCone.snd s ≫ g).c (op ((openFunctor hf).obj x)) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) =
(Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
NatTrans.app (PullbackCone.snd s).c
((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
dsimp only [comp_c_app, unop_op] at this
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
this :
NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x))) =
(NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) =
(Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
NatTrans.app (PullbackCone.snd s).c
((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
rw [← IsIso.comp_inv_eq] at this
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
this :
(NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x)))) ≫
inv
(s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) =
(Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) =
NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x)))
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
NatTrans.app (PullbackCone.snd s).c
((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
replace this := reassoc_of% this
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
this :
∀ {Z_1 : C} (h : ((PullbackCone.snd s ≫ g).base _* s.pt.presheaf).obj (op ((openFunctor hf).obj x)) ⟶ Z_1),
NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x))) ≫
inv
(s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) =
(Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) ≫
h =
NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x))) ≫ h
⊢ invApp hf (op x).unop ≫
NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫
NatTrans.app (PullbackCone.snd s).c
((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
erw [← this, hf.invApp_app_assoc, s.fst.c.naturality_assoc]
[GOAL]
case refine_2.h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : Opens ↑↑X
this :
∀ {Z_1 : C} (h : ((PullbackCone.snd s ≫ g).base _* s.pt.presheaf).obj (op ((openFunctor hf).obj x)) ⟶ Z_1),
NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x))) ≫
inv
(s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) =
(Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) ≫
h =
NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫
NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x))) ≫ h
⊢ NatTrans.app (PullbackCone.fst s).c (op (op x).unop) ≫
((PullbackCone.fst s).base _* s.pt.presheaf).map
(eqToHom (_ : op (op x).unop = op ((Opens.map f.base).obj (op ((openFunctor hf).obj (op x).unop)).unop))) ≫
inv
(s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) =
(Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(eqToHom
(_ :
(Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) =
(IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map pullback.fst).op.obj (op x)))) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.fst s).base).op))
(op x)) =
NatTrans.app (PullbackCone.fst s).c (op x)
[PROOFSTEP]
simp [eqToHom_map]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s
[PROOFSTEP]
refine PresheafedSpace.Hom.ext _ _ ?_ <| NatTrans.ext _ _ <| funext fun x => ?_
[GOAL]
case refine_1
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base = (PullbackCone.snd s).base
[PROOFSTEP]
change pullback.lift _ _ _ ≫ pullback.snd = _
[GOAL]
case refine_1
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) ≫
pullback.snd =
(PullbackCone.snd s).base
[PROOFSTEP]
simp
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app
((pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.snd s).base).op))
s.pt.presheaf)
x =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
change (_ ≫ _ ≫ _) ≫ _ = _
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ (NatTrans.app (PullbackCone.snd (pullbackConeOfLeft f g)).c x ≫
NatTrans.app (PullbackCone.snd s).c
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)))) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.snd s).base).op))
s.pt.presheaf)
x =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app (PullbackCone.snd (pullbackConeOfLeft f g)).c x ≫
NatTrans.app (PullbackCone.snd s).c
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x))) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.snd s).base).op))
s.pt.presheaf)
x =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
erw [s.snd.c.naturality_assoc]
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app (PullbackCone.snd s).c x ≫
((PullbackCone.snd s).base _* s.pt.presheaf).map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑pullback.snd)).counit x.unop).op ≫
s.pt.presheaf.map
(eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x))) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.snd s).base).op))
s.pt.presheaf)
x =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
erw [← s.pt.presheaf.map_comp, ← s.pt.presheaf.map_comp]
[GOAL]
case refine_2
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app (PullbackCone.snd s).c x ≫
s.pt.presheaf.map
((Opens.map (PullbackCone.snd s).base).op.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑pullback.snd)).counit x.unop).op ≫
eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.snd s).base).op))
x) =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
trans s.snd.c.app x ≫ s.pt.presheaf.map (𝟙 _)
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app (PullbackCone.snd s).c x ≫
s.pt.presheaf.map
((Opens.map (PullbackCone.snd s).base).op.map
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑pullback.snd)).counit x.unop).op ≫
eqToHom
(_ :
(Opens.map (PullbackCone.snd s).base).op.obj
((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) =
(Opens.map
(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base
(_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj
((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫
NatTrans.app
(eqToHom
(_ :
(Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op =
(Opens.map (PullbackCone.snd s).base).op))
x) =
NatTrans.app (PullbackCone.snd s).c x ≫ s.pt.presheaf.map (𝟙 ((Opens.map (PullbackCone.snd s).base).op.obj x))
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app (PullbackCone.snd s).c x ≫ s.pt.presheaf.map (𝟙 ((Opens.map (PullbackCone.snd s).base).op.obj x)) =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
rw [s.pt.presheaf.map_id]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
x : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app (PullbackCone.snd s).c x ≫ 𝟙 (s.pt.presheaf.obj ((Opens.map (PullbackCone.snd s).base).op.obj x)) =
NatTrans.app (PullbackCone.snd s).c x
[PROOFSTEP]
erw [Category.comp_id]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.214204, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion (PullbackCone.snd (pullbackConeOfLeft f g))
[PROOFSTEP]
erw [CategoryTheory.Limits.PullbackCone.mk_snd]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.214204, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsLimit (pullbackConeOfLeft f g)
[PROOFSTEP]
apply PullbackCone.isLimitAux'
[GOAL]
case create
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ (s : PullbackCone f g) →
{ l //
l ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧
l ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = l }
[PROOFSTEP]
intro s
[GOAL]
case create
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s✝ s : PullbackCone f g
⊢ { l //
l ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧
l ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = l }
[PROOFSTEP]
use pullbackConeOfLeftLift f g s
[GOAL]
case property
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s✝ s : PullbackCone f g
⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧
pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = pullbackConeOfLeftLift f g s
[PROOFSTEP]
use pullbackConeOfLeftLift_fst f g s
[GOAL]
case right
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s✝ s : PullbackCone f g
⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = pullbackConeOfLeftLift f g s
[PROOFSTEP]
use pullbackConeOfLeftLift_snd f g s
[GOAL]
case right
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s✝ s : PullbackCone f g
⊢ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = pullbackConeOfLeftLift f g s
[PROOFSTEP]
intro m _ h₂
[GOAL]
case right
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s✝ s : PullbackCone f g
m : s.pt ⟶ (pullbackConeOfLeft f g).pt
a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s
h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s
⊢ m = pullbackConeOfLeftLift f g s
[PROOFSTEP]
rw [← cancel_mono (pullbackConeOfLeft f g).snd]
[GOAL]
case right
C : Type u_1
inst✝ : Category.{?u.215564, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s✝ s : PullbackCone f g
m : s.pt ⟶ (pullbackConeOfLeft f g).pt
a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s
h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s
⊢ m ≫ PullbackCone.snd (pullbackConeOfLeft f g) =
pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)
[PROOFSTEP]
exact h₂.trans (pullbackConeOfLeftLift_snd f g s).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.220941, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion pullback.snd
[PROOFSTEP]
delta pullback.snd
[GOAL]
C : Type u_1
inst✝ : Category.{?u.220941, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.right)
[PROOFSTEP]
rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.220941, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion
((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom ≫
NatTrans.app { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }.cone.π
WalkingCospan.right)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.222946, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion pullback.fst
[PROOFSTEP]
rw [← pullbackSymmetry_hom_comp_snd]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.222946, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsOpenImmersion ((pullbackSymmetry g f).hom ≫ pullback.snd)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.224733, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.one)
[PROOFSTEP]
rw [← limit.w (cospan f g) WalkingCospan.Hom.inl, cospan_map_inl]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.224733, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.left ≫ f)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsLimit ((forget C).mapCone (pullbackConeOfLeft f g))
[PROOFSTEP]
apply (IsLimit.postcomposeHomEquiv (diagramIsoCospan _) _).toFun
[GOAL]
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ IsLimit
((Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj
((forget C).mapCone (pullbackConeOfLeft f g)))
[PROOFSTEP]
refine' (IsLimit.equivIsoLimit _).toFun (limit.isLimit (cospan f.base g.base))
[GOAL]
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ limit.cone (cospan f.base g.base) ≅
(Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj ((forget C).mapCone (pullbackConeOfLeft f g))
[PROOFSTEP]
fapply Cones.ext
[GOAL]
case φ
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ (limit.cone (cospan f.base g.base)).pt ≅
((Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj
((forget C).mapCone (pullbackConeOfLeft f g))).pt
[PROOFSTEP]
exact Iso.refl _
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ autoParam
(∀ (j : WalkingCospan),
NatTrans.app (limit.cone (cospan f.base g.base)).π j =
(Iso.refl (limit.cone (cospan f.base g.base)).pt).hom ≫
NatTrans.app
((Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj
((forget C).mapCone (pullbackConeOfLeft f g))).π
j)
_auto✝
[PROOFSTEP]
change ∀ j, _ = 𝟙 _ ≫ _ ≫ _
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ ∀ (j : WalkingCospan),
NatTrans.app (limit.cone (cospan f.base g.base)).π j =
𝟙 (((Functor.const WalkingCospan).obj (limit.cone (cospan f.base g.base)).pt).obj j) ≫
NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π j ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom j
[PROOFSTEP]
simp_rw [Category.id_comp]
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ ∀ (j : WalkingCospan),
NatTrans.app (limit.cone (cospan f.base g.base)).π j =
NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π j ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom j
[PROOFSTEP]
rintro (_ | _ | _)
[GOAL]
case w.none
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app (limit.cone (cospan f.base g.base)).π none =
NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π none ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom none
[PROOFSTEP]
symm
[GOAL]
case w.some.left
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.left) =
NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.left) ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.left)
[PROOFSTEP]
symm
[GOAL]
case w.some.right
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.right) =
NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.right) ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.right)
[PROOFSTEP]
symm
[GOAL]
case w.none
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π none ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom none =
NatTrans.app (limit.cone (cospan f.base g.base)).π none
[PROOFSTEP]
erw [Category.comp_id]
[GOAL]
case w.none
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π none =
NatTrans.app (limit.cone (cospan f.base g.base)).π none
[PROOFSTEP]
exact limit.w (cospan f.base g.base) WalkingCospan.Hom.inl
[GOAL]
case w.some.left
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.left) ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.left) =
NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.left)
[PROOFSTEP]
exact Category.comp_id _
[GOAL]
case w.some.right
C : Type u_1
inst✝ : Category.{?u.226706, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.right) ≫
NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.right) =
NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.right)
[PROOFSTEP]
exact Category.comp_id _
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
⊢ IsIso pullback.snd
[PROOFSTEP]
haveI := TopCat.snd_iso_of_left_embedding_range_subset hf.base_open.toEmbedding g.base H
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd
⊢ IsIso pullback.snd
[PROOFSTEP]
have : IsIso (pullback.snd : pullback f g ⟶ _).base :=
by
delta pullback.snd
rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right]
change IsIso (_ ≫ pullback.snd)
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd
⊢ IsIso pullback.snd.base
[PROOFSTEP]
delta pullback.snd
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd
⊢ IsIso (limit.π (cospan f g) WalkingCospan.right).base
[PROOFSTEP]
rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd
⊢ IsIso
((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom ≫
NatTrans.app { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }.cone.π
WalkingCospan.right).base
[PROOFSTEP]
change IsIso (_ ≫ pullback.snd)
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd
⊢ IsIso
((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom.base ≫
pullback.snd)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this✝ : IsIso pullback.snd
this : IsIso pullback.snd.base
⊢ IsIso pullback.snd
[PROOFSTEP]
apply to_iso
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
⊢ lift f g H ≫ f = g
[PROOFSTEP]
letI := pullback_snd_isIso_of_range_subset _ _ H
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd := pullback_snd_isIso_of_range_subset f g H
⊢ lift f g H ≫ f = g
[PROOFSTEP]
erw [Category.assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd := pullback_snd_isIso_of_range_subset f g H
⊢ inv pullback.snd ≫ pullback.fst ≫ f = g
[PROOFSTEP]
rw [IsIso.inv_comp_eq]
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
this : IsIso pullback.snd := pullback_snd_isIso_of_range_subset f g H
⊢ pullback.fst ≫ f = pullback.snd ≫ g
[PROOFSTEP]
exact pullback.condition
[GOAL]
C : Type u_1
inst✝ : Category.{u_3, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
H : Set.range ↑g.base ⊆ Set.range ↑f.base
l : Y ⟶ X
hl : l ≫ f = g
⊢ l = lift f g H
[PROOFSTEP]
rw [← cancel_mono f, hl, lift_fac]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.257204, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
inst✝ : IsOpenImmersion g
e : Set.range ↑f.base = Set.range ↑g.base
⊢ lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base) ≫ lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base) = 𝟙 X
[PROOFSTEP]
rw [← cancel_mono f]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.257204, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
inst✝ : IsOpenImmersion g
e : Set.range ↑f.base = Set.range ↑g.base
⊢ (lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base) ≫ lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base)) ≫ f =
𝟙 X ≫ f
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.257204, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
inst✝ : IsOpenImmersion g
e : Set.range ↑f.base = Set.range ↑g.base
⊢ lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base) ≫ lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base) = 𝟙 Y
[PROOFSTEP]
rw [← cancel_mono g]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.257204, u_1} C
X Y Z : PresheafedSpace C
f : X ⟶ Z
hf : IsOpenImmersion f
g : Y ⟶ Z
s : PullbackCone f g
inst✝ : IsOpenImmersion g
e : Set.range ↑f.base = Set.range ↑g.base
⊢ (lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base) ≫ lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base)) ≫ g =
𝟙 Y ≫ g
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.259965, u_1} C
X : PresheafedSpace C
Y : SheafedSpace C
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
⊢ TopCat.Presheaf.IsSheaf X.presheaf
[PROOFSTEP]
apply TopCat.Presheaf.isSheaf_of_iso (sheafIsoOfIso H.isoRestrict.symm).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.259965, u_1} C
X : PresheafedSpace C
Y : SheafedSpace C
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
⊢ TopCat.Presheaf.IsSheaf
((isoRestrict H).symm.hom.base _* (restrict Y.toPresheafedSpace (_ : OpenEmbedding ↑f.base)).presheaf)
[PROOFSTEP]
apply TopCat.Sheaf.pushforward_sheaf_of_sheaf
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.259965, u_1} C
X : PresheafedSpace C
Y : SheafedSpace C
f : X ⟶ Y.toPresheafedSpace
H : IsOpenImmersion f
⊢ TopCat.Presheaf.IsSheaf (restrict Y.toPresheafedSpace (_ : OpenEmbedding ↑f.base)).presheaf
[PROOFSTEP]
exact (Y.restrict H.base_open).IsSheaf
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
X✝ : PresheafedSpace C
Y✝ : SheafedSpace C
f✝ : X✝ ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
X Y : SheafedSpace C
f : X ⟶ Y
inst✝ : IsOpenImmersion f
⊢ toSheafedSpace Y f = X
[PROOFSTEP]
cases X
[GOAL]
case mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
X : PresheafedSpace C
Y✝ : SheafedSpace C
f✝ : X ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
Y : SheafedSpace C
toPresheafedSpace✝ : PresheafedSpace C
IsSheaf✝ : TopCat.Presheaf.IsSheaf toPresheafedSpace✝.presheaf
f : { toPresheafedSpace := toPresheafedSpace✝, IsSheaf := IsSheaf✝ } ⟶ Y
inst✝ : IsOpenImmersion f
⊢ toSheafedSpace Y f = { toPresheafedSpace := toPresheafedSpace✝, IsSheaf := IsSheaf✝ }
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.266836, u_1} C
X✝ : PresheafedSpace CommRingCat
Y✝ : LocallyRingedSpace
f✝ : X✝ ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
X Y : LocallyRingedSpace
f : X ⟶ Y
inst✝ : LocallyRingedSpace.IsOpenImmersion f
⊢ toLocallyRingedSpace Y f.val = X
[PROOFSTEP]
cases X
[GOAL]
case mk
C : Type u_1
inst✝¹ : Category.{?u.266836, u_1} C
X : PresheafedSpace CommRingCat
Y✝ : LocallyRingedSpace
f✝ : X ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
Y : LocallyRingedSpace
toSheafedSpace✝ : SheafedSpace CommRingCat
localRing✝ : ∀ (x : ↑↑toSheafedSpace✝.toPresheafedSpace), LocalRing ↑(TopCat.Presheaf.stalk toSheafedSpace✝.presheaf x)
f : { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ } ⟶ Y
inst✝ : LocallyRingedSpace.IsOpenImmersion f
⊢ toLocallyRingedSpace Y f.val = { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ }
[PROOFSTEP]
delta toLocallyRingedSpace
[GOAL]
case mk
C : Type u_1
inst✝¹ : Category.{?u.266836, u_1} C
X : PresheafedSpace CommRingCat
Y✝ : LocallyRingedSpace
f✝ : X ⟶ Y✝.toPresheafedSpace
H : IsOpenImmersion f✝
Y : LocallyRingedSpace
toSheafedSpace✝ : SheafedSpace CommRingCat
localRing✝ : ∀ (x : ↑↑toSheafedSpace✝.toPresheafedSpace), LocalRing ↑(TopCat.Presheaf.stalk toSheafedSpace✝.presheaf x)
f : { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ } ⟶ Y
inst✝ : LocallyRingedSpace.IsOpenImmersion f
⊢ { toSheafedSpace := toSheafedSpace Y.toSheafedSpace f.val,
localRing :=
(_ :
∀ (x : ↑↑(toSheafedSpace Y.toSheafedSpace f.val).toPresheafedSpace),
LocalRing
↑(stalk { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ }.toSheafedSpace.toPresheafedSpace
x)) } =
{ toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ }
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ IsIso (NatTrans.app f.c (op U))
[PROOFSTEP]
have : U = H.base_open.isOpenMap.functor.obj ((Opens.map f.base).obj U) :=
by
ext1
exact (Set.inter_eq_left_iff_subset.mpr hU).symm.trans Set.image_preimage_eq_inter_range.symm
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ U = (IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj U)
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
⊢ ↑U = ↑((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj U))
[PROOFSTEP]
exact (Set.inter_eq_left_iff_subset.mpr hU).symm.trans Set.image_preimage_eq_inter_range.symm
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
f : X ⟶ Y
H : IsOpenImmersion f
U : Opens ↑↑Y
hU : ↑U ⊆ Set.range ↑f.base
this : U = (IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj U)
⊢ IsIso (NatTrans.app f.c (op U))
[PROOFSTEP]
convert H.c_iso ((Opens.map f.base).obj U)
[GOAL]
C : Type u_1
inst✝ : Category.{?u.284183, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Mono f
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.287677, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan f g ⋙ forget)
[PROOFSTEP]
have : HasLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.287677, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
[PROOFSTEP]
change HasLimit (cospan ((forget).map f) ((forget).map g))
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.287677, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan (forget.map f) (forget.map g))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.287677, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : HasLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
⊢ HasLimit (cospan f g ⋙ forget)
[PROOFSTEP]
apply hasLimitOfIso (diagramIsoCospan _).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.296338, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan g f ⋙ forget)
[PROOFSTEP]
have : HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr))
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.296338, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr))
[PROOFSTEP]
change HasLimit (cospan ((forget).map g) ((forget).map f))
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.296338, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ HasLimit (cospan (forget.map g) (forget.map f))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.296338, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr))
⊢ HasLimit (cospan g f ⋙ forget)
[PROOFSTEP]
apply hasLimitOfIso (diagramIsoCospan _).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.304278, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ pullback f g = pullback ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝ : Category.{?u.310614, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ pullback g f = pullback ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝ : Category.{?u.316346, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g ⋙ forget) (PresheafedSpace.forget C)
[PROOFSTEP]
have :
PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
(PresheafedSpace.forget C)
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.316346, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
(PresheafedSpace.forget C)
[PROOFSTEP]
dsimp
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.316346, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g) (PresheafedSpace.forget C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.316346, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this :
PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr))
(PresheafedSpace.forget C)
⊢ PreservesLimit (cospan f g ⋙ forget) (PresheafedSpace.forget C)
[PROOFSTEP]
apply preservesLimitOfIsoDiagram _ (diagramIsoCospan _).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion pullback.snd
[PROOFSTEP]
delta pullback.snd
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion (limit.π (cospan f g) right)
[PROOFSTEP]
have : _ = limit.π (cospan f g) right := preservesLimitsIso_hom_π forget (cospan f g) right
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right
⊢ IsOpenImmersion (limit.π (cospan f g) right)
[PROOFSTEP]
rw [← this]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right
⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right)
[PROOFSTEP]
have := HasLimit.isoOfNatIso_hom_π (diagramIsoCospan (cospan f g ⋙ forget)) right
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫
limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right =
limit.π (cospan f g ⋙ forget) right ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget)).hom right
⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right)
[PROOFSTEP]
erw [Category.comp_id] at this
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫
limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right =
limit.π (cospan f g ⋙ forget) right
⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right)
[PROOFSTEP]
rw [← this]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫
limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right =
limit.π (cospan f g ⋙ forget) right
⊢ IsOpenImmersion
((preservesLimitIso forget (cospan f g)).hom ≫
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫
limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right)
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.326095, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫
limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right =
limit.π (cospan f g ⋙ forget) right
⊢ IsOpenImmersion
((preservesLimitIso forget (cospan f g)).hom ≫
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan f g) right)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion pullback.fst
[PROOFSTEP]
delta pullback.fst
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion (limit.π (cospan g f) left)
[PROOFSTEP]
have : _ = limit.π (cospan g f) left := preservesLimitsIso_hom_π forget (cospan g f) left
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left
⊢ IsOpenImmersion (limit.π (cospan g f) left)
[PROOFSTEP]
rw [← this]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left
⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left)
[PROOFSTEP]
have := HasLimit.isoOfNatIso_hom_π (diagramIsoCospan (cospan g f ⋙ forget)) left
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫
limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left =
limit.π (cospan g f ⋙ forget) left ≫ NatTrans.app (diagramIsoCospan (cospan g f ⋙ forget)).hom left
⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left)
[PROOFSTEP]
erw [Category.comp_id] at this
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫
limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left =
limit.π (cospan g f ⋙ forget) left
⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left)
[PROOFSTEP]
rw [← this]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫
limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left =
limit.π (cospan g f ⋙ forget) left
⊢ IsOpenImmersion
((preservesLimitIso forget (cospan g f)).hom ≫
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫
limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left)
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.332635, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left
this :
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫
limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left =
limit.π (cospan g f ⋙ forget) left
⊢ IsOpenImmersion
((preservesLimitIso forget (cospan g f)).hom ≫
(HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan g f) left)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.338234, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) one)
[PROOFSTEP]
rw [← limit.w (cospan f g) Hom.inl, cospan_map_inl]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.338234, u_1} C
X Y Z : SheafedSpace C
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) left ≫ f)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x)
U : Opens ↑↑X.toPresheafedSpace
⊢ IsIso (NatTrans.app f.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U)))
[PROOFSTEP]
have h :=
TopCat.Presheaf.app_isIso_of_stalkFunctor_map_iso
(show Y.sheaf ⟶ (TopCat.Sheaf.pushforward f.base).obj X.sheaf from ⟨f.c⟩)
[GOAL]
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x)
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
⊢ IsIso (NatTrans.app f.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U)))
[PROOFSTEP]
refine @h _ ?_
[GOAL]
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x)
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
⊢ ∀ (x : { x // x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)
[PROOFSTEP]
rintro ⟨_, y, hy, rfl⟩
[GOAL]
case mk.intro.intro
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x)
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hy : y ∈ ↑U
⊢ IsIso
((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map
(let_fun this := { val := f.c };
this).val)
[PROOFSTEP]
specialize H y
[GOAL]
case mk.intro.intro
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hy : y ∈ ↑U
H : IsIso (PresheafedSpace.stalkMap f y)
⊢ IsIso
((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map
(let_fun this := { val := f.c };
this).val)
[PROOFSTEP]
delta PresheafedSpace.stalkMap at H
[GOAL]
case mk.intro.intro
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hy : y ∈ ↑U
H :
IsIso ((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y)
⊢ IsIso
((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map
(let_fun this := { val := f.c };
this).val)
[PROOFSTEP]
haveI H' := TopCat.Presheaf.stalkPushforward.stalkPushforward_iso_of_openEmbedding C hf X.presheaf y
[GOAL]
case mk.intro.intro
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hy : y ∈ ↑U
H :
IsIso ((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y)
H' : IsIso (TopCat.Presheaf.stalkPushforward C f.base X.presheaf y)
⊢ IsIso
((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map
(let_fun this := { val := f.c };
this).val)
[PROOFSTEP]
have := @IsIso.comp_isIso _ _ _ _ _ _ _ H (@IsIso.inv_isIso _ _ _ _ _ H')
[GOAL]
case mk.intro.intro
C : Type u_1
inst✝⁶ : Category.{u_2, u_1} C
inst✝⁵ : HasLimits C
inst✝⁴ : HasColimits C
inst✝³ : ConcreteCategory C
inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C)
inst✝¹ : PreservesLimits (CategoryTheory.forget C)
inst✝ : PreservesFilteredColimits (CategoryTheory.forget C)
X Y : SheafedSpace C
f : X ⟶ Y
hf : OpenEmbedding ↑f.base
U : Opens ↑↑X.toPresheafedSpace
h :
∀ (U : Opens ↑↑Y.toPresheafedSpace)
[inst :
∀ (x : { x // x ∈ U }),
IsIso
((TopCat.Presheaf.stalkFunctor C ↑x).map
(let_fun this := { val := f.c };
this).val)],
IsIso
(NatTrans.app
(let_fun this := { val := f.c };
this).val
(op U))
y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hy : y ∈ ↑U
H :
IsIso ((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y)
H' : IsIso (TopCat.Presheaf.stalkPushforward C f.base X.presheaf y)
this :
IsIso
(((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) ≫
inv (TopCat.Presheaf.stalkPushforward C f.base X.presheaf y))
⊢ IsIso
((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map
(let_fun this := { val := f.c };
this).val)
[PROOFSTEP]
rwa [Category.assoc, IsIso.hom_inv_id, Category.comp_id] at this
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
⊢ OpenEmbedding ↑(colimit.ι F i).base
[PROOFSTEP]
rw [← show _ = (colimit.ι F i).base from ι_preservesColimitsIso_inv (SheafedSpace.forget C) F i]
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
⊢ OpenEmbedding ↑(colimit.ι (F ⋙ forget C) i ≫ (preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
have : _ = _ ≫ colimit.ι (Discrete.functor ((F ⋙ SheafedSpace.forget C).obj ∘ Discrete.mk)) i :=
HasColimit.isoOfNatIso_ι_hom Discrete.natIsoFunctor i
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
this :
colimit.ι (F ⋙ forget C) i ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom =
NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i
⊢ OpenEmbedding ↑(colimit.ι (F ⋙ forget C) i ≫ (preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
rw [← Iso.eq_comp_inv] at this
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
this :
colimit.ι (F ⋙ forget C) i =
(NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
⊢ OpenEmbedding ↑(colimit.ι (F ⋙ forget C) i ≫ (preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
rw [this]
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
this :
colimit.ι (F ⋙ forget C) i =
(NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
⊢ OpenEmbedding
↑(((NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫
(preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
have : colimit.ι _ _ ≫ _ = _ := TopCat.sigmaIsoSigma_hom_ι.{v, v} ((F ⋙ SheafedSpace.forget C).obj ∘ Discrete.mk) i.as
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
this✝ :
colimit.ι (F ⋙ forget C) i =
(NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
this :
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := i.as } ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom =
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) i.as
⊢ OpenEmbedding
↑(((NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫
(preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
rw [← Iso.eq_comp_inv] at this
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i : Discrete ι
this✝ :
colimit.ι (F ⋙ forget C) i =
(NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
this :
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := i.as } =
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) i.as ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv
⊢ OpenEmbedding
↑(((NatTrans.app Discrete.natIsoFunctor.hom i ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫
(preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
cases i
[GOAL]
case mk
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
as✝ : ι
this✝ :
colimit.ι (F ⋙ forget C) { as := as✝ } =
(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
this :
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := { as := as✝ }.as } =
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv
⊢ OpenEmbedding
↑(((NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫
(preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
rw [this, ← Category.assoc]
-- Porting note : `simp_rw` can't use `TopCat.openEmbedding_iff_comp_isIso` and
-- `TopCat.openEmbedding_iff_isIso_comp`.
-- See https://github.com/leanprover-community/mathlib4/issues/5026
[GOAL]
case mk
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
as✝ : ι
this✝ :
colimit.ι (F ⋙ forget C) { as := as✝ } =
(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
this :
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := { as := as✝ }.as } =
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv
⊢ OpenEmbedding
↑((((NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as) ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫
(preservesColimitIso (forget C) F).inv)
[PROOFSTEP]
erw [TopCat.openEmbedding_iff_comp_isIso, TopCat.openEmbedding_iff_comp_isIso, TopCat.openEmbedding_iff_comp_isIso,
TopCat.openEmbedding_iff_isIso_comp]
[GOAL]
case mk
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
as✝ : ι
this✝ :
colimit.ι (F ⋙ forget C) { as := as✝ } =
(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv
this :
colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := { as := as✝ }.as } =
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv
⊢ OpenEmbedding ↑(TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as)
[PROOFSTEP]
exact openEmbedding_sigmaMk
[GOAL]
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
⊢ (Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
⊥
[PROOFSTEP]
ext x
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
⊢ x ∈
↑((Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) ↔
x ∈ ↑⊥
[PROOFSTEP]
apply iff_false_intro
[GOAL]
case h.h.h
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
⊢ ¬x ∈
↑((Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)))
[PROOFSTEP]
rintro ⟨y, hy, eq⟩
[GOAL]
case h.h.h.intro.intro
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑(colimit.ι F i).base y =
↑(preservesColimitIso forgetToPresheafedSpace F).inv.base (↑(colimit.ι (F ⋙ forgetToPresheafedSpace) j).base x)
⊢ False
[PROOFSTEP]
replace eq :=
ConcreteCategory.congr_arg
(preservesColimitIso (SheafedSpace.forget C) F ≪≫
HasColimit.isoOfNatIso Discrete.natIsoFunctor ≪≫ TopCat.sigmaIsoSigma.{v, v} _).hom
eq
[GOAL]
case h.h.h.intro.intro
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑(preservesColimitIso (forget C) F ≪≫
HasColimit.isoOfNatIso Discrete.natIsoFunctor ≪≫
TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom
(↑(colimit.ι F i).base y) =
↑(preservesColimitIso (forget C) F ≪≫
HasColimit.isoOfNatIso Discrete.natIsoFunctor ≪≫
TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom
(↑(preservesColimitIso forgetToPresheafedSpace F).inv.base (↑(colimit.ι (F ⋙ forgetToPresheafedSpace) j).base x))
⊢ False
[PROOFSTEP]
simp_rw [CategoryTheory.Iso.trans_hom, ← TopCat.comp_app, ← PresheafedSpace.comp_base] at eq
[GOAL]
case h.h.h.intro.intro
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑((preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
(↑(colimit.ι F i).base y) =
↑((preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
(↑(colimit.ι (F ⋙ forgetToPresheafedSpace) j ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base x)
⊢ False
[PROOFSTEP]
rw [ι_preservesColimitsIso_inv] at eq
[GOAL]
case h.h.h.intro.intro
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑((preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
(↑(colimit.ι F i).base y) =
↑((preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
(↑(forgetToPresheafedSpace.map (colimit.ι F j)).base x)
⊢ False
[PROOFSTEP]
erw [← comp_apply, ← comp_apply] at eq
[GOAL]
case h.h.h.intro.intro
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑((colimit.ι F i).base ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
y =
↑((forgetToPresheafedSpace.map (colimit.ι F j)).base ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
x
⊢ False
[PROOFSTEP]
change ((SheafedSpace.forget C).map (colimit.ι F i) ≫ _) y = ((SheafedSpace.forget C).map (colimit.ι F j) ≫ _) x at eq
[GOAL]
case h.h.h.intro.intro
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
i j : Discrete ι
h : i ≠ j
U : Opens ↑↑(F.obj i).toPresheafedSpace
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑((forget C).map (colimit.ι F i) ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
y =
↑((forget C).map (colimit.ι F j) ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
x
⊢ False
[PROOFSTEP]
cases i
[GOAL]
case h.h.h.intro.intro.mk
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
j : Discrete ι
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
as✝ : ι
h : { as := as✝ } ≠ j
U : Opens ↑↑(F.obj { as := as✝ }).toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(F.obj { as := as✝ }).toPresheafedSpace
hy : y ∈ ↑U
eq :
↑((forget C).map (colimit.ι F { as := as✝ }) ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
y =
↑((forget C).map (colimit.ι F j) ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
x
⊢ False
[PROOFSTEP]
cases j
[GOAL]
case h.h.h.intro.intro.mk.mk
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
as✝¹ : ι
U : Opens ↑↑(F.obj { as := as✝¹ }).toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(F.obj { as := as✝¹ }).toPresheafedSpace
hy : y ∈ ↑U
as✝ : ι
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj { as := as✝ })
h : { as := as✝¹ } ≠ { as := as✝ }
eq :
↑((forget C).map (colimit.ι F { as := as✝¹ }) ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
y =
↑((forget C).map (colimit.ι F { as := as✝ }) ≫
(preservesColimitIso (forget C) F).hom ≫
(HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫
(TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom)
x
⊢ False
[PROOFSTEP]
rw [ι_preservesColimitsIso_hom_assoc, ι_preservesColimitsIso_hom_assoc, HasColimit.isoOfNatIso_ι_hom_assoc,
HasColimit.isoOfNatIso_ι_hom_assoc, TopCat.sigmaIsoSigma_hom_ι, TopCat.sigmaIsoSigma_hom_ι] at eq
[GOAL]
case h.h.h.intro.intro.mk.mk
C : Type u_1
inst✝² : Category.{v, u_1} C
inst✝¹ : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝ : HasColimit F
as✝¹ : ι
U : Opens ↑↑(F.obj { as := as✝¹ }).toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(F.obj { as := as✝¹ }).toPresheafedSpace
hy : y ∈ ↑U
as✝ : ι
x : ↑↑((F ⋙ forgetToPresheafedSpace).obj { as := as✝ })
h : { as := as✝¹ } ≠ { as := as✝ }
eq :
↑(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝¹ } ≫
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) as✝¹)
y =
↑(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫
TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) as✝)
x
⊢ False
[PROOFSTEP]
exact h (congr_arg Discrete.mk (congr_arg Sigma.fst eq))
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)))
[PROOFSTEP]
have e : colimit.ι F i = _ := (ι_preservesColimitsIso_inv SheafedSpace.forgetToPresheafedSpace F i).symm
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)))
[PROOFSTEP]
have H :
OpenEmbedding
(colimit.ι (F ⋙ SheafedSpace.forgetToPresheafedSpace) i ≫
(preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv).base :=
e ▸ sigma_ι_openEmbedding F i
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)))
[PROOFSTEP]
suffices
IsIso <|
(colimit.ι (F ⋙ SheafedSpace.forgetToPresheafedSpace) i ≫
(preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv).c.app <|
op (H.isOpenMap.functor.obj U)
by
-- Porting note : just `convert` is very slow, so helps it a bitconvert this using 2 <;> congr
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)))
[PROOFSTEP]
convert this using 2
[GOAL]
case h.e'_3.h.e'_6.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ
⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U) =
op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)
[PROOFSTEP]
congr
[GOAL]
case h.e'_4.h.e'_5.h.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ
he✝ : CategoryStruct.toQuiver = CategoryStruct.toQuiver
⊢ ((colimit.ι F i).base _* (F.obj i).presheaf).toPrefunctor =
((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _*
((F ⋙ forgetToPresheafedSpace).obj i).presheaf).toPrefunctor
[PROOFSTEP]
congr
[GOAL]
case h.e'_4.h.e'_6.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ
⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U) =
op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)
[PROOFSTEP]
congr
[GOAL]
case h.e'_5.e'_6.h.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
e_3✝ :
(colimit F).toPresheafedSpace.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
(forgetToPresheafedSpace.obj (colimit F)).presheaf.obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U))
e_4✝ :
((colimit.ι F i).base _* (F.obj i).presheaf).obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _*
((F ⋙ forgetToPresheafedSpace).obj i).presheaf).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U))
e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ
he✝ : Category.opposite = Category.opposite
⊢ (colimit.ι F i).base _* (F.obj i).presheaf =
(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _*
((F ⋙ forgetToPresheafedSpace).obj i).presheaf
[PROOFSTEP]
congr
[GOAL]
case h.e'_5.e'_7.h.h.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
e_3✝ :
(colimit F).toPresheafedSpace.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
(forgetToPresheafedSpace.obj (colimit F)).presheaf.obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U))
e_4✝ :
((colimit.ι F i).base _* (F.obj i).presheaf).obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _*
((F ⋙ forgetToPresheafedSpace).obj i).presheaf).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U))
e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ
he✝² : Category.opposite = Category.opposite
he✝¹ : (colimit F).toPresheafedSpace.presheaf = (forgetToPresheafedSpace.obj (colimit F)).presheaf
he✝ :
(colimit.ι F i).base _* (F.obj i).presheaf =
(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _*
((F ⋙ forgetToPresheafedSpace).obj i).presheaf
⊢ HEq (colimit.ι F i).c
(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
[PROOFSTEP]
congr
[GOAL]
case h.e'_5.e'_8.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
this :
IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
e_3✝ :
(colimit F).toPresheafedSpace.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
(forgetToPresheafedSpace.obj (colimit F)).presheaf.obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U))
e_4✝ :
((colimit.ι F i).base _* (F.obj i).presheaf).obj
(op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) =
((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _*
((F ⋙ forgetToPresheafedSpace).obj i).presheaf).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U))
e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ
⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U) =
op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
⊢ IsIso
(NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)))
[PROOFSTEP]
rw [PresheafedSpace.comp_c_app, ← PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π]
-- Porting note : this instance created manually to make the `inferInstance` below work
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
⊢ IsIso
(NatTrans.app (preservesColimitIso forgetToPresheafedSpace F).inv.c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)) ≫
(PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).hom ≫
limit.π
(PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop))
(op i))
[PROOFSTEP]
have inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c := PresheafedSpace.c_isIso_of_iso _
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
⊢ IsIso
(NatTrans.app (preservesColimitIso forgetToPresheafedSpace F).inv.c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)) ≫
(PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).hom ≫
limit.π
(PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop))
(op i))
[PROOFSTEP]
rsuffices :
IsIso
(limit.π
(PresheafedSpace.componentwiseDiagram (F ⋙ SheafedSpace.forgetToPresheafedSpace)
((Opens.map (preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv.base).obj
(unop <| op <| H.isOpenMap.functor.obj U)))
(op i))
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
this✝ :
IsIso
(limit.π
(PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop))
(op i))
⊢ IsIso
(NatTrans.app (preservesColimitIso forgetToPresheafedSpace F).inv.c
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)) ≫
(PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).hom ≫
limit.π
(PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop))
(op i))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
⊢ IsIso
(limit.π
(PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop))
(op i))
[PROOFSTEP]
apply limit_π_isIso_of_is_strict_terminal
[GOAL]
case H
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
⊢ (j : (Discrete ι)ᵒᵖ) →
j ≠ op i →
IsTerminal
((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).obj
j)
[PROOFSTEP]
intro j hj
[GOAL]
case H
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
j : (Discrete ι)ᵒᵖ
hj : j ≠ op i
⊢ IsTerminal
((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).obj
j)
[PROOFSTEP]
induction j using Opposite.rec' with
| h j => ?_
[GOAL]
case H
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
j : (Discrete ι)ᵒᵖ
hj : j ≠ op i
⊢ IsTerminal
((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).obj
j)
[PROOFSTEP]
induction j using Opposite.rec' with
| h j => ?_
[GOAL]
case H.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
j : Discrete ι
hj : op j ≠ op i
⊢ IsTerminal
((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace)
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
(op
((IsOpenMap.functor
(_ :
IsOpenMap
↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫
(preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj
U)).unop)).obj
(op j))
[PROOFSTEP]
dsimp
[GOAL]
case H.h
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
j : Discrete ι
hj : op j ≠ op i
⊢ IsTerminal
((F.obj j).presheaf.obj
(op
((Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
((IsOpenMap.functor
(_ :
IsOpenMap
↑((colimit.ι (F ⋙ forgetToPresheafedSpace) i).base ≫
(preservesColimitIso forgetToPresheafedSpace F).inv.base))).obj
U)))))
[PROOFSTEP]
convert (F.obj j).sheaf.isTerminalOfEmpty using 3
[GOAL]
case h.e'_3.h.e'_6.h.e'_2
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
j : Discrete ι
hj : op j ≠ op i
⊢ (Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj
((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj
((IsOpenMap.functor
(_ :
IsOpenMap
↑((colimit.ι (F ⋙ forgetToPresheafedSpace) i).base ≫
(preservesColimitIso forgetToPresheafedSpace F).inv.base))).obj
U)) =
⊥
[PROOFSTEP]
convert image_preimage_is_empty F i j (fun h => hj (congr_arg op h.symm)) U using 6
[GOAL]
case h.e'_2.h.h.e'_6.h.e'_6.h.h.e'_5.h.e'_5.h.e'_3
C : Type u_1
inst✝³ : Category.{v, u_1} C
inst✝² : HasLimits C
ι : Type v
F : Discrete ι ⥤ SheafedSpace C
inst✝¹ : HasColimit F
i : Discrete ι
inst✝ : HasStrictTerminalObjects C
U : Opens ↑↑(F.obj i).toPresheafedSpace
e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv
H :
OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base
inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c
j : Discrete ι
hj : op j ≠ op i
e_1✝¹ : Opens ↑↑(F.obj j).toPresheafedSpace = Opens ↑↑((F ⋙ forgetToPresheafedSpace).obj j)
e_1✝ : Opens ↑↑(colimit F).toPresheafedSpace = Opens ↑↑(forgetToPresheafedSpace.obj (colimit F))
⊢ (colimit.ι (F ⋙ forgetToPresheafedSpace) i).base ≫ (preservesColimitIso forgetToPresheafedSpace F).inv.base =
(colimit.ι F i).base
[PROOFSTEP]
exact (congr_arg PresheafedSpace.Hom.base e).symm
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ g.val ≫ (inv g).val = 𝟙 Y.toPresheafedSpace ∧ (inv g).val ≫ g.val = 𝟙 Z.toPresheafedSpace
[PROOFSTEP]
erw [← LocallyRingedSpace.comp_val]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ (g ≫ inv g).val = 𝟙 Y.toPresheafedSpace ∧ (inv g).val ≫ g.val = 𝟙 Z.toPresheafedSpace
[PROOFSTEP]
rw [IsIso.hom_inv_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace ∧ (inv g).val ≫ g.val = 𝟙 Z.toPresheafedSpace
[PROOFSTEP]
erw [← LocallyRingedSpace.comp_val]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace ∧ (inv g ≫ g).val = 𝟙 Z.toPresheafedSpace
[PROOFSTEP]
rw [IsIso.inv_hom_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace ∧ (𝟙 Z).val = 𝟙 Z.toPresheafedSpace
[PROOFSTEP]
constructor
[GOAL]
case left
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace
[PROOFSTEP]
rfl
[GOAL]
case right
C : Type u_1
inst✝¹ : Category.{?u.431494, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsIso g
⊢ (𝟙 Z).val = 𝟙 Z.toPresheafedSpace
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{?u.433254, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ Mono f.val
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PullbackCone f g
[PROOFSTEP]
refine' PullbackCone.mk _ (Y.ofRestrict (TopCat.snd_openEmbedding_of_left_openEmbedding H.base_open g.1.base)) _
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ restrict Y (_ : OpenEmbedding ↑pullback.snd) ⟶ X
[PROOFSTEP]
use PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.1 g.1
[GOAL]
case prop
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)
[PROOFSTEP]
intro x
[GOAL]
case prop
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)
[PROOFSTEP]
have :=
PresheafedSpace.stalkMap.congr_hom _ _ (PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition f.1 g.1) x
[GOAL]
case prop
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace
this :
PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val) x =
eqToHom
(_ :
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) =
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫
PresheafedSpace.stalkMap
(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val) x
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)
[PROOFSTEP]
rw [PresheafedSpace.stalkMap.comp, PresheafedSpace.stalkMap.comp] at this
[GOAL]
case prop
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace
this :
PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x) ≫
PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x =
eqToHom
(_ :
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) =
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫
PresheafedSpace.stalkMap g.val
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫
PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)
[PROOFSTEP]
rw [← IsIso.eq_inv_comp] at this
[GOAL]
case prop
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace
this :
PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x =
inv (PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x)) ≫
eqToHom
(_ :
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) =
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫
PresheafedSpace.stalkMap g.val
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫
PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)
[PROOFSTEP]
rw [this]
[GOAL]
case prop
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace
this :
PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x =
inv (PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x)) ≫
eqToHom
(_ :
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) =
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫
PresheafedSpace.stalkMap g.val
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫
PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x
⊢ IsLocalRingHom
(inv
(PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x)) ≫
eqToHom
(_ :
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) =
PresheafedSpace.stalk Z.toPresheafedSpace
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫
PresheafedSpace.stalkMap g.val
(↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫
PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x)
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_2
C : Type u_1
inst✝ : Category.{?u.434441, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) } ≫
f =
ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g
[PROOFSTEP]
exact LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition _ _)
[GOAL]
C : Type u_1
inst✝ : Category.{?u.437291, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PresheafedSpace.IsOpenImmersion (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
⊢ { l //
l ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧
l ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = l }
[PROOFSTEP]
refine'
⟨LocallyRingedSpace.Hom.mk
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.1 g.1
(PullbackCone.mk _ _ (congr_arg LocallyRingedSpace.Hom.val s.condition)))
_,
LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst f.1 g.1 _),
LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd f.1 g.1 _), _⟩
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
⊢ ∀ (x : ↑↑s.pt.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)
[PROOFSTEP]
intro x
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
x : ↑↑s.pt.toPresheafedSpace
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)
[PROOFSTEP]
have :=
PresheafedSpace.stalkMap.congr_hom _ _
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd f.1 g.1
(PullbackCone.mk s.fst.1 s.snd.1 (congr_arg LocallyRingedSpace.Hom.val s.condition)))
x
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
x : ↑↑s.pt.toPresheafedSpace
this :
PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val))
x =
eqToHom
(_ :
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base
x) =
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PullbackCone.snd
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
PresheafedSpace.stalkMap
(PullbackCone.snd
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)
[PROOFSTEP]
change _ = _ ≫ PresheafedSpace.stalkMap s.snd.1 x at this
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
x : ↑↑s.pt.toPresheafedSpace
this :
PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val))
x =
eqToHom
(_ :
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base
x) =
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PullbackCone.snd
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
PresheafedSpace.stalkMap (PullbackCone.snd s).val x
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)
[PROOFSTEP]
rw [PresheafedSpace.stalkMap.comp, ← IsIso.eq_inv_comp] at this
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
x : ↑↑s.pt.toPresheafedSpace
this :
PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x =
inv
(PresheafedSpace.stalkMap (PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val))
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
eqToHom
(_ :
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base
x) =
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PullbackCone.snd
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
PresheafedSpace.stalkMap (PullbackCone.snd s).val x
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)
[PROOFSTEP]
rw [this]
[GOAL]
case refine'_1
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
x : ↑↑s.pt.toPresheafedSpace
this :
PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x =
inv
(PresheafedSpace.stalkMap (PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val))
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
eqToHom
(_ :
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base
x) =
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PullbackCone.snd
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
PresheafedSpace.stalkMap (PullbackCone.snd s).val x
⊢ IsLocalRingHom
(inv
(PresheafedSpace.stalkMap (PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val))
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
eqToHom
(_ :
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫
PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base
x) =
PresheafedSpace.stalk Y.toPresheafedSpace
(↑(PullbackCone.snd
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base
x)) ≫
PresheafedSpace.stalkMap (PullbackCone.snd s).val x)
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_2
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
⊢ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt},
m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s →
m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s →
m =
{
val :=
PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)),
prop :=
(_ :
∀ (x : ↑↑s.pt.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)) }
[PROOFSTEP]
intro m _ h₂
[GOAL]
case refine'_2
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
m : s.pt ⟶ (pullbackConeOfLeft f g).pt
a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s
h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s
⊢ m =
{
val :=
PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)),
prop :=
(_ :
∀ (x : ↑↑s.pt.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)) }
[PROOFSTEP]
rw [← cancel_mono (pullbackConeOfLeft f g).snd]
[GOAL]
case refine'_2
C : Type u_1
inst✝ : Category.{?u.437921, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
s : PullbackCone f g
m : s.pt ⟶ (pullbackConeOfLeft f g).pt
a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s
h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s
⊢ m ≫ PullbackCone.snd (pullbackConeOfLeft f g) =
{
val :=
PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)),
prop :=
(_ :
∀ (x : ↑↑s.pt.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val
(PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val
(_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)))
x)) } ≫
PullbackCone.snd (pullbackConeOfLeft f g)
[PROOFSTEP]
exact
h₂.trans <|
LocallyRingedSpace.Hom.ext _ _
(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd f.1 g.1 <|
PullbackCone.mk s.fst.1 s.snd.1 <| congr_arg LocallyRingedSpace.Hom.val s.condition).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.444237, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion pullback.snd
[PROOFSTEP]
delta pullback.snd
[GOAL]
C : Type u_1
inst✝ : Category.{?u.444237, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.right)
[PROOFSTEP]
rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.444237, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion
((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom ≫
NatTrans.app { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }.cone.π
WalkingCospan.right)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.445666, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion pullback.fst
[PROOFSTEP]
rw [← pullbackSymmetry_hom_comp_snd]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.445666, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsOpenImmersion ((pullbackSymmetry g f).hom ≫ pullback.snd)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.446789, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.one)
[PROOFSTEP]
rw [← limit.w (cospan f g) WalkingCospan.Hom.inl, cospan_map_inl]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.446789, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
inst✝ : IsOpenImmersion g
⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.left ≫ f)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.447912, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsLimit (forgetToSheafedSpace.mapCone (pullbackConeOfLeft f g))
[PROOFSTEP]
apply (isLimitMapConePullbackConeEquiv _ _).symm.toFun
[GOAL]
C : Type u_1
inst✝ : Category.{?u.447912, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsLimit
(PullbackCone.mk
(forgetToSheafedSpace.map
{ val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) })
(forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)))
(_ :
forgetToSheafedSpace.map
{ val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val)
x)) } ≫
forgetToSheafedSpace.map f =
forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)) ≫ forgetToSheafedSpace.map g))
[PROOFSTEP]
apply isLimitOfIsLimitPullbackConeMap SheafedSpace.forgetToPresheafedSpace
[GOAL]
case l
C : Type u_1
inst✝ : Category.{?u.447912, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsLimit
(PullbackCone.mk
(SheafedSpace.forgetToPresheafedSpace.map
(forgetToSheafedSpace.map
{ val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val)
x)) }))
(SheafedSpace.forgetToPresheafedSpace.map
(forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd))))
(_ :
SheafedSpace.forgetToPresheafedSpace.map
(forgetToSheafedSpace.map
{ val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val)
x)) }) ≫
SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map f) =
SheafedSpace.forgetToPresheafedSpace.map
(forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd))) ≫
SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map g)))
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftIsLimit f.1 g.1
[GOAL]
C : Type u_1
inst✝ : Category.{?u.452018, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsLimit ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).mapCone (pullbackConeOfLeft f g))
[PROOFSTEP]
apply (isLimitMapConePullbackConeEquiv _ _).symm.toFun
[GOAL]
C : Type u_1
inst✝ : Category.{?u.452018, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ IsLimit
(PullbackCone.mk
((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map
{ val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) })
((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map
(ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)))
(_ :
(forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map
{ val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val,
prop :=
(_ :
∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val)
x)) } ≫
(forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map f =
(forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map
(ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)) ≫
(forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map g))
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftIsLimit f.1 g.1
[GOAL]
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g) (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat)
[PROOFSTEP]
change
PreservesLimit _ <|
(LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙
PresheafedSpace.forget
_
-- Porting note : was `apply (config := { instances := False }) ...`
-- See https://github.com/leanprover/lean4/issues/2273
[GOAL]
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f g)
((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget CommRingCat)
[PROOFSTEP]
have :
PreservesLimit
(cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl)
((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr))
(PresheafedSpace.forget CommRingCat)
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit
(cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl)
((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr))
(PresheafedSpace.forget CommRingCat)
[PROOFSTEP]
dsimp
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
⊢ PreservesLimit (cospan f.val g.val) (PresheafedSpace.forget CommRingCat)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this :
PreservesLimit
(cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl)
((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr))
(PresheafedSpace.forget CommRingCat)
⊢ PreservesLimit (cospan f g)
((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget CommRingCat)
[PROOFSTEP]
have :
PreservesLimit (cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat)
[GOAL]
case this
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this :
PreservesLimit
(cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl)
((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr))
(PresheafedSpace.forget CommRingCat)
⊢ PreservesLimit (cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat)
[PROOFSTEP]
apply preservesLimitOfIsoDiagram _ (diagramIsoCospan _).symm
[GOAL]
C : Type u_1
inst✝ : Category.{?u.456311, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
this✝ :
PreservesLimit
(cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl)
((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr))
(PresheafedSpace.forget CommRingCat)
this :
PreservesLimit (cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat)
⊢ PreservesLimit (cospan f g)
((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget CommRingCat)
[PROOFSTEP]
apply Limits.compPreservesLimit
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
⊢ IsIso pullback.snd
[PROOFSTEP]
have h1 := @ReflectsIsomorphisms.reflects (F := LocallyRingedSpace.forgetToSheafedSpace) _ _ _
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
h1 : ∀ {A B : LocallyRingedSpace} (f : A ⟶ B) [inst : IsIso (forgetToSheafedSpace.map f)], IsIso f
⊢ IsIso pullback.snd
[PROOFSTEP]
refine @h1 _ _ _ ?_
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
h1 : ∀ {A B : LocallyRingedSpace} (f : A ⟶ B) [inst : IsIso (forgetToSheafedSpace.map f)], IsIso f
⊢ IsIso (forgetToSheafedSpace.map pullback.snd)
[PROOFSTEP]
clear h1
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
⊢ IsIso (forgetToSheafedSpace.map pullback.snd)
[PROOFSTEP]
have h2 := @ReflectsIsomorphisms.reflects (F := SheafedSpace.forgetToPresheafedSpace (C := CommRingCat)) _ _ _
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
h2 : ∀ {A B : SheafedSpace CommRingCat} (f : A ⟶ B) [inst : IsIso (SheafedSpace.forgetToPresheafedSpace.map f)], IsIso f
⊢ IsIso (forgetToSheafedSpace.map pullback.snd)
[PROOFSTEP]
refine @h2 _ _ _ ?_
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
h2 : ∀ {A B : SheafedSpace CommRingCat} (f : A ⟶ B) [inst : IsIso (SheafedSpace.forgetToPresheafedSpace.map f)], IsIso f
⊢ IsIso (SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map pullback.snd))
[PROOFSTEP]
clear h2
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
⊢ IsIso (SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map pullback.snd))
[PROOFSTEP]
erw [←
PreservesPullback.iso_hom_snd (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) f g]
-- Porting note : was `inferInstance`
[GOAL]
C : Type u_1
inst✝ : Category.{?u.478460, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
⊢ IsIso ((PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) f g).hom ≫ pullback.snd)
[PROOFSTEP]
exact @IsIso.comp_isIso _ _ _ _ _ _ _ _ <| PresheafedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset _ _ H'
[GOAL]
C : Type u_1
inst✝ : Category.{?u.483974, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
⊢ lift f g H' ≫ f = g
[PROOFSTEP]
haveI := pullback_snd_isIso_of_range_subset f g H'
[GOAL]
C : Type u_1
inst✝ : Category.{?u.483974, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this : IsIso pullback.snd
⊢ lift f g H' ≫ f = g
[PROOFSTEP]
erw [Category.assoc]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.483974, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this : IsIso pullback.snd
⊢ inv pullback.snd ≫ pullback.fst ≫ f = g
[PROOFSTEP]
rw [IsIso.inv_comp_eq]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.483974, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this : IsIso pullback.snd
⊢ pullback.fst ≫ f = pullback.snd ≫ g
[PROOFSTEP]
exact pullback.condition
[GOAL]
C : Type u_1
inst✝ : Category.{?u.485962, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
l : Y ⟶ X
hl : l ≫ f = g
⊢ l = lift f g H'
[PROOFSTEP]
rw [← cancel_mono f, hl, lift_fac]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
⊢ Set.range ↑(lift f g H').val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
have := pullback_snd_isIso_of_range_subset f g H'
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this : IsIso pullback.snd
⊢ Set.range ↑(lift f g H').val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
dsimp only [lift]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this : IsIso pullback.snd
⊢ Set.range ↑(inv pullback.snd ≫ pullback.fst).val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
have : _ = (pullback.fst : pullback f g ⟶ _).val.base :=
PreservesPullback.iso_hom_fst (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _) f g
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Set.range ↑(inv pullback.snd ≫ pullback.fst).val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
rw [LocallyRingedSpace.comp_val, SheafedSpace.comp_base, ← this, ← Category.assoc, coe_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Set.range
(↑pullback.fst ∘
↑((inv pullback.snd).val.base ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)) =
↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ]
-- Porting note : change `rw` to `erw` on this lemma
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Set.range ↑pullback.fst = ↑f.val.base ⁻¹' Set.range ↑g.val.base
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Function.Surjective
↑((inv pullback.snd).val.base ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)
[PROOFSTEP]
erw [TopCat.pullback_fst_range]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ {x |
∃ y,
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x =
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} =
↑f.val.base ⁻¹' Set.range ↑g.val.base
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Function.Surjective
↑((inv pullback.snd).val.base ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X)
⊢ x✝ ∈
{x |
∃ y,
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x =
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} ↔
x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Function.Surjective
↑((inv pullback.snd).val.base ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X)
⊢ x✝ ∈
{x |
∃ y,
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x =
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} →
x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
rintro ⟨y, eq⟩
[GOAL]
case h.mp.intro
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X)
y : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj Y)
eq :
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x✝ =
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y
⊢ x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base
[PROOFSTEP]
exact ⟨y, eq.symm⟩
[GOAL]
case h.mpr
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X)
⊢ x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base →
x✝ ∈
{x |
∃ y,
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x =
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y}
[PROOFSTEP]
rintro ⟨y, eq⟩
[GOAL]
case h.mpr.intro
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X)
y : (forget TopCat).obj ↑Y.toPresheafedSpace
eq : ↑g.val.base y = ↑f.val.base x✝
⊢ x✝ ∈
{x |
∃ y,
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x =
↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y}
[PROOFSTEP]
exact ⟨y, eq.symm⟩
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Function.Surjective
↑((inv pullback.snd).val.base ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)
[PROOFSTEP]
rw [← TopCat.epi_iff_surjective]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Epi
((inv pullback.snd).val.base ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)
[PROOFSTEP]
rw [show (inv (pullback.snd : pullback f g ⟶ _)).val.base = _ from
(LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _).map_inv _]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.486426, u_1} C
X Y Z : LocallyRingedSpace
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion f
H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base
this✝ : IsIso pullback.snd
this :
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst =
pullback.fst.val.base
⊢ Epi
(inv ((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map pullback.snd) ≫
(PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝ : Category.{?u.495051, u_1} C
X Y : LocallyRingedSpace
f : X ⟶ Y
H : IsOpenImmersion f
⊢ X ≅ restrict Y (_ : OpenEmbedding ↑f.val.base)
[PROOFSTEP]
apply LocallyRingedSpace.isoOfSheafedSpaceIso
[GOAL]
case f
C : Type u_1
inst✝ : Category.{?u.495051, u_1} C
X Y : LocallyRingedSpace
f : X ⟶ Y
H : IsOpenImmersion f
⊢ X.toSheafedSpace ≅ (restrict Y (_ : OpenEmbedding ↑f.val.base)).toSheafedSpace
[PROOFSTEP]
refine' SheafedSpace.forgetToPresheafedSpace.preimageIso _
[GOAL]
case f
C : Type u_1
inst✝ : Category.{?u.495051, u_1} C
X Y : LocallyRingedSpace
f : X ⟶ Y
H : IsOpenImmersion f
⊢ SheafedSpace.forgetToPresheafedSpace.obj X.toSheafedSpace ≅
SheafedSpace.forgetToPresheafedSpace.obj (restrict Y (_ : OpenEmbedding ↑f.val.base)).toSheafedSpace
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.isoRestrict H
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.OpenImmersion.Basic", "llama_tokens": 118732} |
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
⊢ ∀ {x y : Set γ},
x ∈ {s | ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ s} →
y ∈ {s | ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ s} → x ∩ y ∈ {s | ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ s}
[PROOFSTEP]
simp only [exists_prop, Set.mem_setOf_eq, subset_inter_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
⊢ ∀ {x y : Set γ},
(∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ x) →
(∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ y) → ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ x ∧ image2 m u v ⊆ y
[PROOFSTEP]
rintro _ _ ⟨s₁, s₂, hs₁, hs₂, hs⟩ ⟨t₁, t₂, ht₁, ht₂, ht⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
x✝ y✝ : Set γ
s₁ : Set α
s₂ : Set β
hs₁ : s₁ ∈ f
hs₂ : s₂ ∈ g
hs : image2 m s₁ s₂ ⊆ x✝
t₁ : Set α
t₂ : Set β
ht₁ : t₁ ∈ f
ht₂ : t₂ ∈ g
ht : image2 m t₁ t₂ ⊆ y✝
⊢ ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ x✝ ∧ image2 m u v ⊆ y✝
[PROOFSTEP]
exact
⟨s₁ ∩ t₁, s₂ ∩ t₂, inter_sets f hs₁ ht₁, inter_sets g hs₂ ht₂,
(image2_subset (inter_subset_left _ _) <| inter_subset_left _ _).trans hs,
(image2_subset (inter_subset_right _ _) <| inter_subset_right _ _).trans ht⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
⊢ map (fun p => m p.fst p.snd) (f ×ˢ g) = map₂ m f g
[PROOFSTEP]
ext s
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
s : Set γ
⊢ s ∈ map (fun p => m p.fst p.snd) (f ×ˢ g) ↔ s ∈ map₂ m f g
[PROOFSTEP]
simp [mem_prod_iff, prod_subset_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
f : Filter α
g : Filter β
⊢ map₂ Prod.mk f g = f ×ˢ g
[PROOFSTEP]
simp only [← map_prod_eq_map₂, map_id']
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ map₂ m f g = ⊥ ↔ f = ⊥ ∨ g = ⊥
[PROOFSTEP]
simp only [← empty_mem_iff_bot, mem_map₂_iff, subset_empty_iff, image2_eq_empty_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) ↔ ∅ ∈ f ∨ ∅ ∈ g
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) → ∅ ∈ f ∨ ∅ ∈ g
[PROOFSTEP]
rintro ⟨s, t, hs, ht, rfl | rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.inl
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
t : Set β
ht : t ∈ g
hs : ∅ ∈ f
⊢ ∅ ∈ f ∨ ∅ ∈ g
[PROOFSTEP]
exact Or.inl hs
[GOAL]
case mp.intro.intro.intro.intro.inr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
s : Set α
hs : s ∈ f
ht : ∅ ∈ g
⊢ ∅ ∈ f ∨ ∅ ∈ g
[PROOFSTEP]
exact Or.inr ht
[GOAL]
case mpr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ ∅ ∈ f ∨ ∅ ∈ g → ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)
[PROOFSTEP]
rintro (h | h)
[GOAL]
case mpr.inl
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
h : ∅ ∈ f
⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)
[PROOFSTEP]
exact ⟨_, _, h, univ_mem, Or.inl rfl⟩
[GOAL]
case mpr.inr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
h : ∅ ∈ g
⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)
[PROOFSTEP]
exact ⟨_, _, univ_mem, h, Or.inr rfl⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ NeBot (map₂ m f g) ↔ NeBot f ∧ NeBot g
[PROOFSTEP]
simp_rw [neBot_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ map₂ m f g ≠ ⊥ ↔ f ≠ ⊥ ∧ g ≠ ⊥
[PROOFSTEP]
exact map₂_eq_bot_iff.not.trans not_or
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ map₂ m (f₁ ⊔ f₂) g = map₂ m f₁ g ⊔ map₂ m f₂ g
[PROOFSTEP]
ext u
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
⊢ u ∈ map₂ m (f₁ ⊔ f₂) g ↔ u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g
[PROOFSTEP]
constructor
[GOAL]
case a.mp
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
⊢ u ∈ map₂ m (f₁ ⊔ f₂) g → u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g
[PROOFSTEP]
rintro ⟨s, t, ⟨h₁, h₂⟩, ht, hu⟩
[GOAL]
case a.mp.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁✝ h₂✝ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s : Set α
t : Set β
h₁ : s ∈ f₁.sets
h₂ : s ∈ f₂.sets
ht : t ∈ g
hu : image2 m s t ⊆ u
⊢ u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g
[PROOFSTEP]
exact ⟨mem_of_superset (image2_mem_map₂ h₁ ht) hu, mem_of_superset (image2_mem_map₂ h₂ ht) hu⟩
[GOAL]
case a.mpr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
⊢ u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g → u ∈ map₂ m (f₁ ⊔ f₂) g
[PROOFSTEP]
rintro ⟨⟨s₁, t₁, hs₁, ht₁, hu₁⟩, s₂, t₂, hs₂, ht₂, hu₂⟩
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s₁ : Set α
t₁ : Set β
hs₁ : s₁ ∈ f₁
ht₁ : t₁ ∈ g
hu₁ : image2 m s₁ t₁ ⊆ u
s₂ : Set α
t₂ : Set β
hs₂ : s₂ ∈ f₂
ht₂ : t₂ ∈ g
hu₂ : image2 m s₂ t₂ ⊆ u
⊢ u ∈ map₂ m (f₁ ⊔ f₂) g
[PROOFSTEP]
refine' ⟨s₁ ∪ s₂, t₁ ∩ t₂, union_mem_sup hs₁ hs₂, inter_mem ht₁ ht₂, _⟩
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s₁ : Set α
t₁ : Set β
hs₁ : s₁ ∈ f₁
ht₁ : t₁ ∈ g
hu₁ : image2 m s₁ t₁ ⊆ u
s₂ : Set α
t₂ : Set β
hs₂ : s₂ ∈ f₂
ht₂ : t₂ ∈ g
hu₂ : image2 m s₂ t₂ ⊆ u
⊢ image2 m (s₁ ∪ s₂) (t₁ ∩ t₂) ⊆ u
[PROOFSTEP]
rw [image2_union_left]
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s₁ : Set α
t₁ : Set β
hs₁ : s₁ ∈ f₁
ht₁ : t₁ ∈ g
hu₁ : image2 m s₁ t₁ ⊆ u
s₂ : Set α
t₂ : Set β
hs₂ : s₂ ∈ f₂
ht₂ : t₂ ∈ g
hu₂ : image2 m s₂ t₂ ⊆ u
⊢ image2 m s₁ (t₁ ∩ t₂) ∪ image2 m s₂ (t₁ ∩ t₂) ⊆ u
[PROOFSTEP]
exact
union_subset ((image2_subset_left <| inter_subset_left _ _).trans hu₁)
((image2_subset_left <| inter_subset_right _ _).trans hu₂)
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ map₂ m f (g₁ ⊔ g₂) = map₂ m f g₁ ⊔ map₂ m f g₂
[PROOFSTEP]
ext u
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
⊢ u ∈ map₂ m f (g₁ ⊔ g₂) ↔ u ∈ map₂ m f g₁ ⊔ map₂ m f g₂
[PROOFSTEP]
constructor
[GOAL]
case a.mp
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
⊢ u ∈ map₂ m f (g₁ ⊔ g₂) → u ∈ map₂ m f g₁ ⊔ map₂ m f g₂
[PROOFSTEP]
rintro ⟨s, t, hs, ⟨h₁, h₂⟩, hu⟩
[GOAL]
case a.mp.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁✝ h₂✝ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s : Set α
t : Set β
hs : s ∈ f
hu : image2 m s t ⊆ u
h₁ : t ∈ g₁.sets
h₂ : t ∈ g₂.sets
⊢ u ∈ map₂ m f g₁ ⊔ map₂ m f g₂
[PROOFSTEP]
exact ⟨mem_of_superset (image2_mem_map₂ hs h₁) hu, mem_of_superset (image2_mem_map₂ hs h₂) hu⟩
[GOAL]
case a.mpr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
⊢ u ∈ map₂ m f g₁ ⊔ map₂ m f g₂ → u ∈ map₂ m f (g₁ ⊔ g₂)
[PROOFSTEP]
rintro ⟨⟨s₁, t₁, hs₁, ht₁, hu₁⟩, s₂, t₂, hs₂, ht₂, hu₂⟩
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s₁ : Set α
t₁ : Set β
hs₁ : s₁ ∈ f
ht₁ : t₁ ∈ g₁
hu₁ : image2 m s₁ t₁ ⊆ u
s₂ : Set α
t₂ : Set β
hs₂ : s₂ ∈ f
ht₂ : t₂ ∈ g₂
hu₂ : image2 m s₂ t₂ ⊆ u
⊢ u ∈ map₂ m f (g₁ ⊔ g₂)
[PROOFSTEP]
refine' ⟨s₁ ∩ s₂, t₁ ∪ t₂, inter_mem hs₁ hs₂, union_mem_sup ht₁ ht₂, _⟩
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s₁ : Set α
t₁ : Set β
hs₁ : s₁ ∈ f
ht₁ : t₁ ∈ g₁
hu₁ : image2 m s₁ t₁ ⊆ u
s₂ : Set α
t₂ : Set β
hs₂ : s₂ ∈ f
ht₂ : t₂ ∈ g₂
hu₂ : image2 m s₂ t₂ ⊆ u
⊢ image2 m (s₁ ∩ s₂) (t₁ ∪ t₂) ⊆ u
[PROOFSTEP]
rw [image2_union_right]
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
s₁ : Set α
t₁ : Set β
hs₁ : s₁ ∈ f
ht₁ : t₁ ∈ g₁
hu₁ : image2 m s₁ t₁ ⊆ u
s₂ : Set α
t₂ : Set β
hs₂ : s₂ ∈ f
ht₂ : t₂ ∈ g₂
hu₂ : image2 m s₂ t₂ ⊆ u
⊢ image2 m (s₁ ∩ s₂) t₁ ∪ image2 m (s₁ ∩ s₂) t₂ ⊆ u
[PROOFSTEP]
exact
union_subset ((image2_subset_right <| inter_subset_left _ _).trans hu₁)
((image2_subset_right <| inter_subset_right _ _).trans hu₂)
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
h : u ∈ map (fun b => m a b) g
⊢ image2 m {a} ((fun b => m a b) ⁻¹' u) ⊆ u
[PROOFSTEP]
rw [image2_singleton_left, image_subset_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
u : Set γ
h : u ∈ map (fun a => m a b) f
⊢ image2 m ((fun a => m a b) ⁻¹' u) {b} ⊆ u
[PROOFSTEP]
rw [image2_singleton_right, image_subset_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
⊢ map₂ m (pure a) (pure b) = pure (m a b)
[PROOFSTEP]
rw [map₂_pure_right, map_pure]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
⊢ map₂ m f g = map₂ (fun a b => m b a) g f
[PROOFSTEP]
ext u
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
⊢ u ∈ map₂ m f g ↔ u ∈ map₂ (fun a b => m b a) g f
[PROOFSTEP]
constructor
[GOAL]
case a.mp
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
⊢ u ∈ map₂ m f g → u ∈ map₂ (fun a b => m b a) g f
[PROOFSTEP]
rintro ⟨s, t, hs, ht, hu⟩
[GOAL]
case a.mpr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
⊢ u ∈ map₂ (fun a b => m b a) g f → u ∈ map₂ m f g
[PROOFSTEP]
rintro ⟨s, t, hs, ht, hu⟩
[GOAL]
case a.mp.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
s : Set α
t : Set β
hs : s ∈ f
ht : t ∈ g
hu : image2 m s t ⊆ u
⊢ u ∈ map₂ (fun a b => m b a) g f
[PROOFSTEP]
refine' ⟨t, s, ht, hs, by rwa [image2_swap]⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
s : Set α
t : Set β
hs : s ∈ f
ht : t ∈ g
hu : image2 m s t ⊆ u
⊢ image2 (fun a b => m b a) t s ⊆ u
[PROOFSTEP]
rwa [image2_swap]
[GOAL]
case a.mpr.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
s : Set β
t : Set α
hs : s ∈ g
ht : t ∈ f
hu : image2 (fun a b => m b a) s t ⊆ u
⊢ u ∈ map₂ m f g
[PROOFSTEP]
refine' ⟨t, s, ht, hs, by rwa [image2_swap]⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
f : Filter α
g : Filter β
u : Set γ
s : Set β
t : Set α
hs : s ∈ g
ht : t ∈ f
hu : image2 (fun a b => m b a) s t ⊆ u
⊢ image2 m t s ⊆ u
[PROOFSTEP]
rwa [image2_swap]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
h : NeBot g
⊢ map₂ (fun x x_1 => x) f g = f
[PROOFSTEP]
ext u
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
h : NeBot g
u : Set α
⊢ u ∈ map₂ (fun x x_1 => x) f g ↔ u ∈ f
[PROOFSTEP]
refine' ⟨_, fun hu => ⟨_, _, hu, univ_mem, (image2_left <| h.nonempty_of_mem univ_mem).subset⟩⟩
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
h : NeBot g
u : Set α
⊢ u ∈ map₂ (fun x x_1 => x) f g → u ∈ f
[PROOFSTEP]
rintro ⟨s, t, hs, ht, hu⟩
[GOAL]
case a.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
h : NeBot g
u s : Set α
t : Set β
hs : s ∈ f
ht : t ∈ g
hu : image2 (fun x x_1 => x) s t ⊆ u
⊢ u ∈ f
[PROOFSTEP]
rw [image2_left (h.nonempty_of_mem ht)] at hu
[GOAL]
case a.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
h : NeBot g
u s : Set α
t : Set β
hs : s ∈ f
ht : t ∈ g
hu : s ⊆ u
⊢ u ∈ f
[PROOFSTEP]
exact mem_of_superset hs hu
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
h : NeBot f
⊢ map₂ (fun x y => y) f g = g
[PROOFSTEP]
rw [map₂_swap, map₂_left h]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ → δ
f : Filter α
g : Filter β
h : Filter γ
⊢ ∀ {x y : Set δ},
x ∈ {s | ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ s} →
y ∈ {s | ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ s} →
x ∩ y ∈ {s | ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ s}
[PROOFSTEP]
simp only [exists_prop, mem_setOf_eq, subset_inter_iff]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ → δ
f : Filter α
g : Filter β
h : Filter γ
⊢ ∀ {x y : Set δ},
(∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ x) →
(∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ y) →
∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ x ∧ image3 m u v w ⊆ y
[PROOFSTEP]
rintro _ _ ⟨s₁, s₂, s₃, hs₁, hs₂, hs₃, hs⟩ ⟨t₁, t₂, t₃, ht₁, ht₂, ht₃, ht⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ → δ
f : Filter α
g : Filter β
h : Filter γ
x✝ y✝ : Set δ
s₁ : Set α
s₂ : Set β
s₃ : Set γ
hs₁ : s₁ ∈ f
hs₂ : s₂ ∈ g
hs₃ : s₃ ∈ h
hs : image3 m s₁ s₂ s₃ ⊆ x✝
t₁ : Set α
t₂ : Set β
t₃ : Set γ
ht₁ : t₁ ∈ f
ht₂ : t₂ ∈ g
ht₃ : t₃ ∈ h
ht : image3 m t₁ t₂ t₃ ⊆ y✝
⊢ ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ x✝ ∧ image3 m u v w ⊆ y✝
[PROOFSTEP]
exact
⟨s₁ ∩ t₁, s₂ ∩ t₂, s₃ ∩ t₃, inter_mem hs₁ ht₁, inter_mem hs₂ ht₂, inter_mem hs₃ ht₃,
(image3_mono (inter_subset_left _ _) (inter_subset_left _ _) <| inter_subset_left _ _).trans hs,
(image3_mono (inter_subset_right _ _) (inter_subset_right _ _) <| inter_subset_right _ _).trans ht⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
⊢ map₂ m (map₂ n f g) h = map₃ (fun a b c => m (n a b) c) f g h
[PROOFSTEP]
ext w
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
⊢ w ∈ map₂ m (map₂ n f g) h ↔ w ∈ map₃ (fun a b c => m (n a b) c) f g h
[PROOFSTEP]
constructor
[GOAL]
case a.mp
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
⊢ w ∈ map₂ m (map₂ n f g) h → w ∈ map₃ (fun a b c => m (n a b) c) f g h
[PROOFSTEP]
rintro ⟨s, t, ⟨u, v, hu, hv, hs⟩, ht, hw⟩
[GOAL]
case a.mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
s : Set δ
t : Set γ
u : Set α
v : Set β
hu : u ∈ f
hv : v ∈ g
hs : image2 n u v ⊆ s
ht : t ∈ h
hw : image2 m s t ⊆ w
⊢ w ∈ map₃ (fun a b c => m (n a b) c) f g h
[PROOFSTEP]
refine' ⟨u, v, t, hu, hv, ht, _⟩
[GOAL]
case a.mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
s : Set δ
t : Set γ
u : Set α
v : Set β
hu : u ∈ f
hv : v ∈ g
hs : image2 n u v ⊆ s
ht : t ∈ h
hw : image2 m s t ⊆ w
⊢ image3 (fun a b c => m (n a b) c) u v t ⊆ w
[PROOFSTEP]
rw [← image2_image2_left]
[GOAL]
case a.mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
s : Set δ
t : Set γ
u : Set α
v : Set β
hu : u ∈ f
hv : v ∈ g
hs : image2 n u v ⊆ s
ht : t ∈ h
hw : image2 m s t ⊆ w
⊢ image2 m (image2 (fun a b => n a b) u v) t ⊆ w
[PROOFSTEP]
exact (image2_subset_right hs).trans hw
[GOAL]
case a.mpr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
⊢ w ∈ map₃ (fun a b c => m (n a b) c) f g h → w ∈ map₂ m (map₂ n f g) h
[PROOFSTEP]
rintro ⟨s, t, u, hs, ht, hu, hw⟩
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
s : Set α
t : Set β
u : Set γ
hs : s ∈ f
ht : t ∈ g
hu : u ∈ h
hw : image3 (fun a b c => m (n a b) c) s t u ⊆ w
⊢ w ∈ map₂ m (map₂ n f g) h
[PROOFSTEP]
exact ⟨_, u, image2_mem_map₂ hs ht, hu, by rwa [image2_image2_left]⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
w : Set ε
s : Set α
t : Set β
u : Set γ
hs : s ∈ f
ht : t ∈ g
hu : u ∈ h
hw : image3 (fun a b c => m (n a b) c) s t u ⊆ w
⊢ image2 m (image2 n s t) u ⊆ w
[PROOFSTEP]
rwa [image2_image2_left]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
⊢ map₂ m f (map₂ n g h) = map₃ (fun a b c => m a (n b c)) f g h
[PROOFSTEP]
ext w
[GOAL]
case a
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
⊢ w ∈ map₂ m f (map₂ n g h) ↔ w ∈ map₃ (fun a b c => m a (n b c)) f g h
[PROOFSTEP]
constructor
[GOAL]
case a.mp
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
⊢ w ∈ map₂ m f (map₂ n g h) → w ∈ map₃ (fun a b c => m a (n b c)) f g h
[PROOFSTEP]
rintro ⟨s, t, hs, ⟨u, v, hu, hv, ht⟩, hw⟩
[GOAL]
case a.mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
s : Set α
t : Set δ
hs : s ∈ f
hw : image2 m s t ⊆ w
u : Set β
v : Set γ
hu : u ∈ g
hv : v ∈ h
ht : image2 n u v ⊆ t
⊢ w ∈ map₃ (fun a b c => m a (n b c)) f g h
[PROOFSTEP]
refine' ⟨s, u, v, hs, hu, hv, _⟩
[GOAL]
case a.mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
s : Set α
t : Set δ
hs : s ∈ f
hw : image2 m s t ⊆ w
u : Set β
v : Set γ
hu : u ∈ g
hv : v ∈ h
ht : image2 n u v ⊆ t
⊢ image3 (fun a b c => m a (n b c)) s u v ⊆ w
[PROOFSTEP]
rw [← image2_image2_right]
[GOAL]
case a.mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
s : Set α
t : Set δ
hs : s ∈ f
hw : image2 m s t ⊆ w
u : Set β
v : Set γ
hu : u ∈ g
hv : v ∈ h
ht : image2 n u v ⊆ t
⊢ image2 (fun a => m a) s (image2 (fun b c => n b c) u v) ⊆ w
[PROOFSTEP]
exact (image2_subset_left ht).trans hw
[GOAL]
case a.mpr
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
⊢ w ∈ map₃ (fun a b c => m a (n b c)) f g h → w ∈ map₂ m f (map₂ n g h)
[PROOFSTEP]
rintro ⟨s, t, u, hs, ht, hu, hw⟩
[GOAL]
case a.mpr.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
s : Set α
t : Set β
u : Set γ
hs : s ∈ f
ht : t ∈ g
hu : u ∈ h
hw : image3 (fun a b c => m a (n b c)) s t u ⊆ w
⊢ w ∈ map₂ m f (map₂ n g h)
[PROOFSTEP]
exact ⟨s, _, hs, image2_mem_map₂ ht hu, by rwa [image2_image2_right]⟩
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t✝ t₁ t₂ : Set β
u✝ : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
w : Set ε
s : Set α
t : Set β
u : Set γ
hs : s ∈ f
ht : t ∈ g
hu : u ∈ h
hw : image3 (fun a b c => m a (n b c)) s t u ⊆ w
⊢ image2 m s (image2 n t u) ⊆ w
[PROOFSTEP]
rwa [image2_image2_right]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
n : γ → δ
⊢ map n (map₂ m f g) = map₂ (fun a b => n (m a b)) f g
[PROOFSTEP]
rw [← map_prod_eq_map₂, ← map_prod_eq_map₂, map_map]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → β → γ
n : γ → δ
⊢ map (n ∘ fun p => m p.fst p.snd) (f ×ˢ g) = map (fun p => n (m p.fst p.snd)) (f ×ˢ g)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : γ → β → δ
n : α → γ
⊢ map₂ m (map n f) g = map₂ (fun a b => m (n a) b) f g
[PROOFSTEP]
rw [← map_prod_eq_map₂, ← map_prod_eq_map₂, ← @map_id _ g, prod_map_map_eq, map_map, map_id]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : γ → β → δ
n : α → γ
⊢ map ((fun p => m p.fst p.snd) ∘ fun p => (n p.fst, id p.snd)) (f ×ˢ g) = map (fun p => m (n p.fst) p.snd) (f ×ˢ g)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → γ → δ
n : β → γ
⊢ map₂ m f (map n g) = map₂ (fun a b => m a (n b)) f g
[PROOFSTEP]
rw [map₂_swap, map₂_map_left, map₂_swap]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m' : α → ε' → ε
n' : β → γ → ε'
h : Filter γ
h_assoc : ∀ (a : α) (b : β) (c : γ), m (n a b) c = m' a (n' b c)
⊢ map₂ m (map₂ n f g) h = map₂ m' f (map₂ n' g h)
[PROOFSTEP]
simp only [map₂_map₂_left, map₂_map₂_right, h_assoc]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
n : β → α → γ
h_comm : ∀ (a : α) (b : β), m a b = n b a
⊢ map₂ (fun a b => m b a) g f = map₂ n g f
[PROOFSTEP]
simp_rw [h_comm]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m' : α → γ → δ'
n' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c)
⊢ map₂ m f (map₂ n g h) = map₂ n' g (map₂ m' f h)
[PROOFSTEP]
rw [map₂_swap m', map₂_swap m]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m' : α → γ → δ'
n' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c)
⊢ map₂ (fun a b => m b a) (map₂ n g h) f = map₂ n' g (map₂ (fun a b => m' b a) h f)
[PROOFSTEP]
exact map₂_assoc fun _ _ _ => h_left_comm _ _ _
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m' : α → γ → δ'
n' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m' a c) b
⊢ map₂ m (map₂ n f g) h = map₂ n' (map₂ m' f h) g
[PROOFSTEP]
rw [map₂_swap n, map₂_swap n']
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m' : α → γ → δ'
n' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m' a c) b
⊢ map₂ m (map₂ (fun a b => n b a) g f) h = map₂ (fun a b => n' b a) g (map₂ m' f h)
[PROOFSTEP]
exact map₂_assoc fun _ _ _ => h_right_comm _ _ _
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
n : γ → δ
m' : α' → β' → δ
n₁ : α → α'
n₂ : β → β'
h_distrib : ∀ (a : α) (b : β), n (m a b) = m' (n₁ a) (n₂ b)
⊢ map n (map₂ m f g) = map₂ m' (map n₁ f) (map n₂ g)
[PROOFSTEP]
simp_rw [map_map₂, map₂_map_left, map₂_map_right, h_distrib]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m₁ : α → β → β'
m₂ : α → γ → γ'
n' : β' → γ' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c)
⊢ map₂ m f (map₂ n g h) ≤ map₂ n' (map₂ m₁ f g) (map₂ m₂ f h)
[PROOFSTEP]
rintro s ⟨t₁, t₂, ⟨u₁, v, hu₁, hv, ht₁⟩, ⟨u₂, w, hu₂, hw, ht₂⟩, hs⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m₁ : α → β → β'
m₂ : α → γ → γ'
n' : β' → γ' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c)
s : Set ε
t₁ : Set β'
t₂ : Set γ'
u₁ : Set α
v : Set β
hu₁ : u₁ ∈ f
hv : v ∈ g
ht₁ : image2 m₁ u₁ v ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
u₂ : Set α
w : Set γ
hu₂ : u₂ ∈ f
hw : w ∈ h
ht₂ : image2 m₂ u₂ w ⊆ t₂
⊢ s ∈ map₂ m f (map₂ n g h)
[PROOFSTEP]
refine' ⟨u₁ ∩ u₂, _, inter_mem hu₁ hu₂, image2_mem_map₂ hv hw, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m₁ : α → β → β'
m₂ : α → γ → γ'
n' : β' → γ' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c)
s : Set ε
t₁ : Set β'
t₂ : Set γ'
u₁ : Set α
v : Set β
hu₁ : u₁ ∈ f
hv : v ∈ g
ht₁ : image2 m₁ u₁ v ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
u₂ : Set α
w : Set γ
hu₂ : u₂ ∈ f
hw : w ∈ h
ht₂ : image2 m₂ u₂ w ⊆ t₂
⊢ image2 m (u₁ ∩ u₂) (image2 n v w) ⊆ s
[PROOFSTEP]
refine' (image2_distrib_subset_left h_distrib).trans ((image2_subset _ _).trans hs)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m₁ : α → β → β'
m₂ : α → γ → γ'
n' : β' → γ' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c)
s : Set ε
t₁ : Set β'
t₂ : Set γ'
u₁ : Set α
v : Set β
hu₁ : u₁ ∈ f
hv : v ∈ g
ht₁ : image2 m₁ u₁ v ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
u₂ : Set α
w : Set γ
hu₂ : u₂ ∈ f
hw : w ∈ h
ht₂ : image2 m₂ u₂ w ⊆ t₂
⊢ image2 (fun a b => m₁ a b) (u₁ ∩ u₂) v ⊆ t₁
[PROOFSTEP]
exact (image2_subset_right <| inter_subset_left _ _).trans ht₁
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : α → δ → ε
n : β → γ → δ
m₁ : α → β → β'
m₂ : α → γ → γ'
n' : β' → γ' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c)
s : Set ε
t₁ : Set β'
t₂ : Set γ'
u₁ : Set α
v : Set β
hu₁ : u₁ ∈ f
hv : v ∈ g
ht₁ : image2 m₁ u₁ v ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
u₂ : Set α
w : Set γ
hu₂ : u₂ ∈ f
hw : w ∈ h
ht₂ : image2 m₂ u₂ w ⊆ t₂
⊢ image2 (fun a c => m₂ a c) (u₁ ∩ u₂) w ⊆ t₂
[PROOFSTEP]
exact (image2_subset_right <| inter_subset_right _ _).trans ht₂
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m₁ : α → γ → α'
m₂ : β → γ → β'
n' : α' → β' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c)
⊢ map₂ m (map₂ n f g) h ≤ map₂ n' (map₂ m₁ f h) (map₂ m₂ g h)
[PROOFSTEP]
rintro s ⟨t₁, t₂, ⟨u, w₁, hu, hw₁, ht₁⟩, ⟨v, w₂, hv, hw₂, ht₂⟩, hs⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m₁ : α → γ → α'
m₂ : β → γ → β'
n' : α' → β' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c)
s : Set ε
t₁ : Set α'
t₂ : Set β'
u : Set α
w₁ : Set γ
hu : u ∈ f
hw₁ : w₁ ∈ h
ht₁ : image2 m₁ u w₁ ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
v : Set β
w₂ : Set γ
hv : v ∈ g
hw₂ : w₂ ∈ h
ht₂ : image2 m₂ v w₂ ⊆ t₂
⊢ s ∈ map₂ m (map₂ n f g) h
[PROOFSTEP]
refine' ⟨_, w₁ ∩ w₂, image2_mem_map₂ hu hv, inter_mem hw₁ hw₂, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m₁ : α → γ → α'
m₂ : β → γ → β'
n' : α' → β' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c)
s : Set ε
t₁ : Set α'
t₂ : Set β'
u : Set α
w₁ : Set γ
hu : u ∈ f
hw₁ : w₁ ∈ h
ht₁ : image2 m₁ u w₁ ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
v : Set β
w₂ : Set γ
hv : v ∈ g
hw₂ : w₂ ∈ h
ht₂ : image2 m₂ v w₂ ⊆ t₂
⊢ image2 m (image2 n u v) (w₁ ∩ w₂) ⊆ s
[PROOFSTEP]
refine' (image2_distrib_subset_right h_distrib).trans ((image2_subset _ _).trans hs)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m₁ : α → γ → α'
m₂ : β → γ → β'
n' : α' → β' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c)
s : Set ε
t₁ : Set α'
t₂ : Set β'
u : Set α
w₁ : Set γ
hu : u ∈ f
hw₁ : w₁ ∈ h
ht₁ : image2 m₁ u w₁ ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
v : Set β
w₂ : Set γ
hv : v ∈ g
hw₂ : w₂ ∈ h
ht₂ : image2 m₂ v w₂ ⊆ t₂
⊢ image2 (fun a c => m₁ a c) u (w₁ ∩ w₂) ⊆ t₁
[PROOFSTEP]
exact (image2_subset_left <| inter_subset_left _ _).trans ht₁
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m✝ : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s✝ s₁ s₂ : Set α
t t₁✝ t₂✝ : Set β
u✝ : Set γ
v✝ : Set δ
a : α
b : β
c : γ
m : δ → γ → ε
n : α → β → δ
m₁ : α → γ → α'
m₂ : β → γ → β'
n' : α' → β' → ε
h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c)
s : Set ε
t₁ : Set α'
t₂ : Set β'
u : Set α
w₁ : Set γ
hu : u ∈ f
hw₁ : w₁ ∈ h
ht₁ : image2 m₁ u w₁ ⊆ t₁
hs : image2 n' t₁ t₂ ⊆ s
v : Set β
w₂ : Set γ
hv : v ∈ g
hw₂ : w₂ ∈ h
ht₂ : image2 m₂ v w₂ ⊆ t₂
⊢ image2 (fun b c => m₂ b c) v (w₁ ∩ w₂) ⊆ t₂
[PROOFSTEP]
exact (image2_subset_left <| inter_subset_right _ _).trans ht₂
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
n : γ → δ
m' : β' → α' → δ
n₁ : β → β'
n₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), n (m a b) = m' (n₁ b) (n₂ a)
⊢ map n (map₂ m f g) = map₂ m' (map n₁ g) (map n₂ f)
[PROOFSTEP]
rw [map₂_swap m]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b : β
c : γ
n : γ → δ
m' : β' → α' → δ
n₁ : β → β'
n₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), n (m a b) = m' (n₁ b) (n₂ a)
⊢ map n (map₂ (fun a b => m b a) g f) = map₂ m' (map n₁ g) (map n₂ f)
[PROOFSTEP]
exact map_map₂_distrib fun _ _ => h_antidistrib _ _
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a✝ : α
b : β
c : γ
f : α → β → β
a : α
h : ∀ (b : β), f a b = b
l : Filter β
⊢ map₂ f (pure a) l = l
[PROOFSTEP]
rw [map₂_pure_left, show f a = id from funext h, map_id]
[GOAL]
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
m : α → β → γ
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
h✝ h₁ h₂ : Filter γ
s s₁ s₂ : Set α
t t₁ t₂ : Set β
u : Set γ
v : Set δ
a : α
b✝ : β
c : γ
f : α → β → α
b : β
h : ∀ (a : α), f a b = a
l : Filter α
⊢ map₂ f l (pure b) = l
[PROOFSTEP]
rw [map₂_pure_right, funext h, map_id']
| {"mathlib_filename": "Mathlib.Order.Filter.NAry", "llama_tokens": 29215} |
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedSemiring R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atTop, p x
⊢ ∀ᶠ (n : ℕ) in atTop, p ↑n
[PROOFSTEP]
rw [← Nat.comap_cast_atTop (R := R)]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedSemiring R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atTop, p x
⊢ ∀ᶠ (n : ℕ) in Filter.comap Nat.cast atTop, p ↑n
[PROOFSTEP]
exact h.comap _
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
r : R
n : ℕ
hn : r ≤ ↑n
⊢ r ≤ ↑↑n
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
r : R
n : ℕ
hn : -r ≤ ↑n
⊢ ↑(-↑n) ≤ r
[PROOFSTEP]
simpa [neg_le] using hn
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
f : α → ℤ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto f l atTop
[PROOFSTEP]
rw [← @Int.comap_cast_atTop R, tendsto_comap_iff]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
f : α → ℤ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto (Int.cast ∘ f) l atTop
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
f : α → ℤ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto f l atBot
[PROOFSTEP]
rw [← @Int.comap_cast_atBot R, tendsto_comap_iff]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
f : α → ℤ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto (Int.cast ∘ f) l atBot
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atTop, p x
⊢ ∀ᶠ (n : ℤ) in atTop, p ↑n
[PROOFSTEP]
rw [← Int.comap_cast_atTop (R := R)]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atTop, p x
⊢ ∀ᶠ (n : ℤ) in Filter.comap Int.cast atTop, p ↑n
[PROOFSTEP]
exact h.comap _
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atBot, p x
⊢ ∀ᶠ (n : ℤ) in atBot, p ↑n
[PROOFSTEP]
rw [← Int.comap_cast_atBot (R := R)]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : StrictOrderedRing R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atBot, p x
⊢ ∀ᶠ (n : ℤ) in Filter.comap Int.cast atBot, p ↑n
[PROOFSTEP]
exact h.comap _
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
r : R
n : ℕ
hn : r ≤ ↑n
⊢ r ≤ ↑↑n
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
r : R
n : ℕ
hn : -r ≤ ↑n
⊢ ↑(-↑n) ≤ r
[PROOFSTEP]
simpa [neg_le]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
f : α → ℚ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto f l atTop
[PROOFSTEP]
rw [← @Rat.comap_cast_atTop R, tendsto_comap_iff]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
f : α → ℚ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto (Rat.cast ∘ f) l atTop
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
f : α → ℚ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto f l atBot
[PROOFSTEP]
rw [← @Rat.comap_cast_atBot R, tendsto_comap_iff]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
f : α → ℚ
l : Filter α
⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto (Rat.cast ∘ f) l atBot
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atTop, p x
⊢ ∀ᶠ (n : ℚ) in atTop, p ↑n
[PROOFSTEP]
rw [← Rat.comap_cast_atTop (R := R)]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atTop, p x
⊢ ∀ᶠ (n : ℚ) in Filter.comap Rat.cast atTop, p ↑n
[PROOFSTEP]
exact h.comap _
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atBot, p x
⊢ ∀ᶠ (n : ℚ) in atBot, p ↑n
[PROOFSTEP]
rw [← Rat.comap_cast_atBot (R := R)]
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : LinearOrderedField R
inst✝ : Archimedean R
p : R → Prop
h : ∀ᶠ (x : R) in atBot, p x
⊢ ∀ᶠ (n : ℚ) in Filter.comap Rat.cast atBot, p ↑n
[PROOFSTEP]
exact
h.comap
_
-- porting note: new lemma
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
⊢ Tendsto (fun x => r * f x) l atTop
[PROOFSTEP]
refine' tendsto_atTop.2 fun b => _
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
⊢ ∀ᶠ (a : α) in l, b ≤ r * f a
[PROOFSTEP]
obtain ⟨n : ℕ, hn : 1 ≤ n • r⟩ := Archimedean.arch 1 hr
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
⊢ ∀ᶠ (a : α) in l, b ≤ r * f a
[PROOFSTEP]
rw [nsmul_eq_mul'] at hn
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
⊢ ∀ᶠ (a : α) in l, b ≤ r * f a
[PROOFSTEP]
filter_upwards [tendsto_atTop.1 hf (n * max b 0)] with x hx
[GOAL]
case h
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ b ≤ r * f x
[PROOFSTEP]
calc
b ≤ 1 * max b 0 := by {
rw [one_mul]
exact le_max_left _ _
}
_ ≤ r * n * max b 0 := by gcongr
_ = r * (n * max b 0) := by rw [mul_assoc]
_ ≤ r * f x := by gcongr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ b ≤ 1 * max b 0
[PROOFSTEP]
{ rw [one_mul]
exact le_max_left _ _
}
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ b ≤ 1 * max b 0
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ b ≤ max b 0
[PROOFSTEP]
exact le_max_left _ _
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ 1 * max b 0 ≤ r * ↑n * max b 0
[PROOFSTEP]
gcongr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ r * ↑n * max b 0 = r * (↑n * max b 0)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ r * ↑n
x : α
hx : ↑n * max b 0 ≤ f x
⊢ r * (↑n * max b 0) ≤ r * f x
[PROOFSTEP]
gcongr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x * r) l atTop
[PROOFSTEP]
refine' tendsto_atTop.2 fun b => _
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
⊢ ∀ᶠ (a : α) in l, b ≤ f a * r
[PROOFSTEP]
obtain ⟨n : ℕ, hn : 1 ≤ n • r⟩ := Archimedean.arch 1 hr
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
⊢ ∀ᶠ (a : α) in l, b ≤ f a * r
[PROOFSTEP]
have hn' : 1 ≤ (n : R) * r := by rwa [nsmul_eq_mul] at hn
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
⊢ 1 ≤ ↑n * r
[PROOFSTEP]
rwa [nsmul_eq_mul] at hn
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
⊢ ∀ᶠ (a : α) in l, b ≤ f a * r
[PROOFSTEP]
filter_upwards [tendsto_atTop.1 hf (max b 0 * n)] with x hx
[GOAL]
case h
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ b ≤ f x * r
[PROOFSTEP]
calc
b ≤ max b 0 * 1 := by {
rw [mul_one]
exact le_max_left _ _
}
_ ≤ max b 0 * (n * r) := by gcongr
_ = max b 0 * n * r := by rw [mul_assoc]
_ ≤ f x * r := by gcongr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ b ≤ max b 0 * 1
[PROOFSTEP]
{ rw [mul_one]
exact le_max_left _ _
}
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ b ≤ max b 0 * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ b ≤ max b 0
[PROOFSTEP]
exact le_max_left _ _
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ max b 0 * 1 ≤ max b 0 * (↑n * r)
[PROOFSTEP]
gcongr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ max b 0 * (↑n * r) = max b 0 * ↑n * r
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedSemiring R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atTop
b : R
n : ℕ
hn : 1 ≤ n • r
hn' : 1 ≤ ↑n * r
x : α
hx : max b 0 * ↑n ≤ f x
⊢ max b 0 * ↑n * r ≤ f x * r
[PROOFSTEP]
gcongr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedRing R
inst✝ : Archimedean R
hr : r < 0
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x * r) l atBot
[PROOFSTEP]
simpa only [tendsto_neg_atTop_iff, mul_neg] using hf.atTop_mul_const' (neg_pos.mpr hr)
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedRing R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto f l atBot
⊢ Tendsto (fun x => f x * r) l atBot
[PROOFSTEP]
simp only [← tendsto_neg_atTop_iff, ← neg_mul] at hf ⊢
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedRing R
inst✝ : Archimedean R
hr : 0 < r
hf : Tendsto (fun x => -f x) l atTop
⊢ Tendsto (fun x => -f x * r) l atTop
[PROOFSTEP]
exact hf.atTop_mul_const' hr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f : α → R
r : R
inst✝¹ : LinearOrderedRing R
inst✝ : Archimedean R
hr : r < 0
hf : Tendsto f l atBot
⊢ Tendsto (fun x => f x * r) l atTop
[PROOFSTEP]
simpa only [mul_neg, tendsto_neg_atBot_iff] using hf.atBot_mul_const' (neg_pos.2 hr)
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedCancelAddCommMonoid R
inst✝ : Archimedean R
f : α → ℕ
hr : 0 < r
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x • r) l atTop
[PROOFSTEP]
refine' tendsto_atTop.mpr fun s => _
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedCancelAddCommMonoid R
inst✝ : Archimedean R
f : α → ℕ
hr : 0 < r
hf : Tendsto f l atTop
s : R
⊢ ∀ᶠ (a : α) in l, s ≤ f a • r
[PROOFSTEP]
obtain ⟨n : ℕ, hn : s ≤ n • r⟩ := Archimedean.arch s hr
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedCancelAddCommMonoid R
inst✝ : Archimedean R
f : α → ℕ
hr : 0 < r
hf : Tendsto f l atTop
s : R
n : ℕ
hn : s ≤ n • r
⊢ ∀ᶠ (a : α) in l, s ≤ f a • r
[PROOFSTEP]
exact (tendsto_atTop.mp hf n).mono fun a ha => hn.trans (nsmul_le_nsmul hr.le ha)
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℕ
hr : r < 0
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x • r) l atBot
[PROOFSTEP]
simpa using hf.atTop_nsmul_const (neg_pos.2 hr)
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x • r) l atTop
[PROOFSTEP]
refine' tendsto_atTop.mpr fun s => _
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto f l atTop
s : R
⊢ ∀ᶠ (a : α) in l, s ≤ f a • r
[PROOFSTEP]
obtain ⟨n : ℕ, hn : s ≤ n • r⟩ := Archimedean.arch s hr
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto f l atTop
s : R
n : ℕ
hn : s ≤ n • r
⊢ ∀ᶠ (a : α) in l, s ≤ f a • r
[PROOFSTEP]
replace hn : s ≤ (n : ℤ) • r
[GOAL]
case hn
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto f l atTop
s : R
n : ℕ
hn : s ≤ n • r
⊢ s ≤ ↑n • r
[PROOFSTEP]
simpa
[GOAL]
case intro
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto f l atTop
s : R
n : ℕ
hn : s ≤ ↑n • r
⊢ ∀ᶠ (a : α) in l, s ≤ f a • r
[PROOFSTEP]
exact (tendsto_atTop.mp hf n).mono fun a ha => hn.trans (zsmul_le_zsmul hr.le ha)
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : r < 0
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x • r) l atBot
[PROOFSTEP]
simpa using hf.atTop_zsmul_const (neg_pos.2 hr)
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto f l atBot
⊢ Tendsto (fun x => f x • r) l atBot
[PROOFSTEP]
simp only [← tendsto_neg_atTop_iff, ← neg_zsmul] at hf ⊢
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : 0 < r
hf : Tendsto (fun x => -f x) l atTop
⊢ Tendsto (fun x => -f x • r) l atTop
[PROOFSTEP]
exact hf.atTop_zsmul_const hr
[GOAL]
α : Type u_1
R : Type u_2
l : Filter α
f✝ : α → R
r : R
inst✝¹ : LinearOrderedAddCommGroup R
inst✝ : Archimedean R
f : α → ℤ
hr : r < 0
hf : Tendsto f l atBot
⊢ Tendsto (fun x => f x • r) l atTop
[PROOFSTEP]
simpa using hf.atBot_zsmul_const (neg_pos.2 hr)
| {"mathlib_filename": "Mathlib.Order.Filter.Archimedean", "llama_tokens": 8357} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : TopologicalSpace β
inst✝¹ : AddZeroClass β
inst✝ : ContinuousAdd β
l : Filter α
f g : α → β
hf : ZeroAtFilter l f
hg : ZeroAtFilter l g
⊢ ZeroAtFilter l (f + g)
[PROOFSTEP]
simpa using hf.add hg
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : TopologicalSpace β
inst✝¹ : AddGroup β
inst✝ : ContinuousNeg β
l : Filter α
f : α → β
hf : ZeroAtFilter l f
⊢ ZeroAtFilter l (-f)
[PROOFSTEP]
simpa using hf.neg
[GOAL]
α : Type u_1
β : Type u_2
𝕜 : Type u_3
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalSpace β
inst✝³ : Zero 𝕜
inst✝² : Zero β
inst✝¹ : SMulWithZero 𝕜 β
inst✝ : ContinuousSMul 𝕜 β
l : Filter α
f : α → β
c : 𝕜
hf : ZeroAtFilter l f
⊢ ZeroAtFilter l (c • f)
[PROOFSTEP]
simpa using hf.const_smul c
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : NormedAddCommGroup β
l : Filter α
f : α → β
hf : ZeroAtFilter l f
⊢ BoundedAtFilter l f
[PROOFSTEP]
rw [ZeroAtFilter, ← Asymptotics.isLittleO_const_iff (one_ne_zero' ℝ)] at hf
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : NormedAddCommGroup β
l : Filter α
f : α → β
hf : f =o[l] fun _x => 1
⊢ BoundedAtFilter l f
[PROOFSTEP]
exact hf.isBigO
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : NormedAddCommGroup β
l : Filter α
f g : α → β
hf : BoundedAtFilter l f
hg : BoundedAtFilter l g
⊢ BoundedAtFilter l (f + g)
[PROOFSTEP]
simpa using hf.add hg
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : NormedField β
l : Filter α
f g : α → β
hf : BoundedAtFilter l f
hg : BoundedAtFilter l g
⊢ BoundedAtFilter l (f * g)
[PROOFSTEP]
refine' (hf.mul hg).trans _
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : NormedField β
l : Filter α
f g : α → β
hf : BoundedAtFilter l f
hg : BoundedAtFilter l g
⊢ (fun x => OfNat.ofNat 1 x * OfNat.ofNat 1 x) =O[l] 1
[PROOFSTEP]
convert Asymptotics.isBigO_refl (E := ℝ) _ l
[GOAL]
case h.e'_8.h
α : Type u_1
β : Type u_2
inst✝ : NormedField β
l : Filter α
f g : α → β
hf : BoundedAtFilter l f
hg : BoundedAtFilter l g
x✝ : α
⊢ OfNat.ofNat 1 x✝ = OfNat.ofNat 1 x✝ * OfNat.ofNat 1 x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : NormedField β
l : Filter α
⊢ Subalgebra β (α → β)
[PROOFSTEP]
refine' Submodule.toSubalgebra (boundedFilterSubmodule l) _ fun f g hf hg ↦ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
inst✝ : NormedField β
l : Filter α
⊢ 1 ∈ boundedFilterSubmodule l
[PROOFSTEP]
exact const_boundedAtFilter l (1 : β)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
inst✝ : NormedField β
l : Filter α
f g : α → β
hf : f ∈ boundedFilterSubmodule l
hg : g ∈ boundedFilterSubmodule l
⊢ f * g ∈ boundedFilterSubmodule l
[PROOFSTEP]
simpa only [Pi.one_apply, mul_one, norm_mul] using hf.mul hg
| {"mathlib_filename": "Mathlib.Order.Filter.ZeroAndBoundedAtFilter", "llama_tokens": 1283} |
[GOAL]
α : Type u_1
p : Set α → Prop
s₀ : Set α
hp : p s₀
t : Set α
inst✝ : HasCountableSeparatingOn α p t
⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y
[PROOFSTEP]
rcases exists_nonempty_countable_separating α hp t with ⟨S, hSne, hSc, hS⟩
[GOAL]
case intro.intro.intro
α : Type u_1
p : Set α → Prop
s₀ : Set α
hp : p s₀
t : Set α
inst✝ : HasCountableSeparatingOn α p t
S : Set (Set α)
hSne : Set.Nonempty S
hSc : Set.Countable S
hS :
(∀ (s : Set α), s ∈ S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y
[PROOFSTEP]
rcases hSc.exists_eq_range hSne with ⟨S, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
p : Set α → Prop
s₀ : Set α
hp : p s₀
t : Set α
inst✝ : HasCountableSeparatingOn α p t
S : ℕ → Set α
hSne : Set.Nonempty (range S)
hSc : Set.Countable (range S)
hS :
(∀ (s : Set α), s ∈ range S → p s) ∧
∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ range S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y
[PROOFSTEP]
use S
[GOAL]
case h
α : Type u_1
p : Set α → Prop
s₀ : Set α
hp : p s₀
t : Set α
inst✝ : HasCountableSeparatingOn α p t
S : ℕ → Set α
hSne : Set.Nonempty (range S)
hSc : Set.Countable (range S)
hS :
(∀ (s : Set α), s ∈ range S → p s) ∧
∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ range S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y
[PROOFSTEP]
simpa only [forall_range_iff] using hS
[GOAL]
α : Type u_1
p : Set α → Prop
t : Set α
q : Set ↑t → Prop
h : HasCountableSeparatingOn (↑t) q univ
hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U
⊢ HasCountableSeparatingOn α p t
[PROOFSTEP]
rcases h.1 with ⟨S, hSc, hSq, hS⟩
[GOAL]
case intro.intro.intro
α : Type u_1
p : Set α → Prop
t : Set α
q : Set ↑t → Prop
h : HasCountableSeparatingOn (↑t) q univ
hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U
S : Set (Set ↑t)
hSc : Set.Countable S
hSq : ∀ (s : Set ↑t), s ∈ S → q s
hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ HasCountableSeparatingOn α p t
[PROOFSTEP]
choose! V hpV hV using fun s hs ↦ hpq s (hSq s hs)
[GOAL]
case intro.intro.intro
α : Type u_1
p : Set α → Prop
t : Set α
q : Set ↑t → Prop
h : HasCountableSeparatingOn (↑t) q univ
hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U
S : Set (Set ↑t)
hSc : Set.Countable S
hSq : ∀ (s : Set ↑t), s ∈ S → q s
hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
V : Set ↑t → Set α
hpV : ∀ (s : Set ↑t), s ∈ S → p (V s)
hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s
⊢ HasCountableSeparatingOn α p t
[PROOFSTEP]
refine ⟨⟨V '' S, hSc.image _, ball_image_iff.2 hpV, fun x hx y hy h ↦ ?_⟩⟩
[GOAL]
case intro.intro.intro
α : Type u_1
p : Set α → Prop
t : Set α
q : Set ↑t → Prop
h✝ : HasCountableSeparatingOn (↑t) q univ
hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U
S : Set (Set ↑t)
hSc : Set.Countable S
hSq : ∀ (s : Set ↑t), s ∈ S → q s
hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
V : Set ↑t → Set α
hpV : ∀ (s : Set ↑t), s ∈ S → p (V s)
hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s
x : α
hx : x ∈ t
y : α
hy : y ∈ t
h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s)
⊢ x = y
[PROOFSTEP]
refine congr_arg Subtype.val (hS ⟨x, hx⟩ trivial ⟨y, hy⟩ trivial fun U hU ↦ ?_)
[GOAL]
case intro.intro.intro
α : Type u_1
p : Set α → Prop
t : Set α
q : Set ↑t → Prop
h✝ : HasCountableSeparatingOn (↑t) q univ
hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U
S : Set (Set ↑t)
hSc : Set.Countable S
hSq : ∀ (s : Set ↑t), s ∈ S → q s
hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
V : Set ↑t → Set α
hpV : ∀ (s : Set ↑t), s ∈ S → p (V s)
hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s
x : α
hx : x ∈ t
y : α
hy : y ∈ t
h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s)
U : Set ↑t
hU : U ∈ S
⊢ { val := x, property := hx } ∈ U ↔ { val := y, property := hy } ∈ U
[PROOFSTEP]
rw [← hV U hU]
[GOAL]
case intro.intro.intro
α : Type u_1
p : Set α → Prop
t : Set α
q : Set ↑t → Prop
h✝ : HasCountableSeparatingOn (↑t) q univ
hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U
S : Set (Set ↑t)
hSc : Set.Countable S
hSq : ∀ (s : Set ↑t), s ∈ S → q s
hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
V : Set ↑t → Set α
hpV : ∀ (s : Set ↑t), s ∈ S → p (V s)
hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s
x : α
hx : x ∈ t
y : α
hy : y ∈ t
h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s)
U : Set ↑t
hU : U ∈ S
⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' V U ↔ { val := y, property := hy } ∈ Subtype.val ⁻¹' V U
[PROOFSTEP]
exact h _ (mem_image_of_mem _ hU)
[GOAL]
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
⊢ ∃ t, t ⊆ s ∧ Set.Subsingleton t ∧ t ∈ l
[PROOFSTEP]
rcases h.1 with ⟨S, hSc, hSp, hS⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ ∃ t, t ⊆ s ∧ Set.Subsingleton t ∧ t ∈ l
[PROOFSTEP]
refine ⟨s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U ∈ S) (_ : Uᶜ ∈ l), Uᶜ, ?_, ?_, ?_⟩
[GOAL]
case intro.intro.intro.refine_1
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ⊆ s
[PROOFSTEP]
exact fun _ h ↦ h.1.1
[GOAL]
case intro.intro.intro.refine_2
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ Set.Subsingleton (s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ)
[PROOFSTEP]
intro x hx y hy
[GOAL]
case intro.intro.intro.refine_2
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x : α
hx : x ∈ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ
y : α
hy : y ∈ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ
⊢ x = y
[PROOFSTEP]
simp only [mem_sInter, mem_inter_iff, mem_iInter, mem_compl_iff] at hx hy
[GOAL]
case intro.intro.intro.refine_2
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
⊢ x = y
[PROOFSTEP]
refine hS x hx.1.1 y hy.1.1 (fun s hsS ↦ ?_)
[GOAL]
case intro.intro.intro.refine_2
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s✝ : Set α
h : HasCountableSeparatingOn α p s✝
hs : s✝ ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
s : Set α
hsS : s ∈ S
⊢ x ∈ s ↔ y ∈ s
[PROOFSTEP]
cases hl s (hSp s hsS) with
| inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩]
| inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl]
[GOAL]
case intro.intro.intro.refine_2
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s✝ : Set α
h : HasCountableSeparatingOn α p s✝
hs : s✝ ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
s : Set α
hsS : s ∈ S
x✝ : s ∈ l ∨ sᶜ ∈ l
⊢ x ∈ s ↔ y ∈ s
[PROOFSTEP]
cases hl s (hSp s hsS) with
| inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩]
| inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl]
[GOAL]
case intro.intro.intro.refine_2.inl
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s✝ : Set α
h : HasCountableSeparatingOn α p s✝
hs : s✝ ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
s : Set α
hsS : s ∈ S
hsl : s ∈ l
⊢ x ∈ s ↔ y ∈ s
[PROOFSTEP]
| inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩]
[GOAL]
case intro.intro.intro.refine_2.inl
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s✝ : Set α
h : HasCountableSeparatingOn α p s✝
hs : s✝ ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
s : Set α
hsS : s ∈ S
hsl : s ∈ l
⊢ x ∈ s ↔ y ∈ s
[PROOFSTEP]
simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩]
[GOAL]
case intro.intro.intro.refine_2.inr
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s✝ : Set α
h : HasCountableSeparatingOn α p s✝
hs : s✝ ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
s : Set α
hsS : s ∈ S
hsl : sᶜ ∈ l
⊢ x ∈ s ↔ y ∈ s
[PROOFSTEP]
| inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl]
[GOAL]
case intro.intro.intro.refine_2.inr
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s✝ : Set α
h : HasCountableSeparatingOn α p s✝
hs : s✝ ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
x y : α
hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i
hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i
s : Set α
hsS : s ∈ S
hsl : sᶜ ∈ l
⊢ x ∈ s ↔ y ∈ s
[PROOFSTEP]
simp only [hx.2 s hsS hsl, hy.2 s hsS hsl]
[GOAL]
case intro.intro.intro.refine_3
α : Type u_1
β : Sort ?u.5043
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
h : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
S : Set (Set α)
hSc : Set.Countable S
hSp : ∀ (s : Set α), s ∈ S → p s
hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ∈ l
[PROOFSTEP]
exact
inter_mem (inter_mem hs ((countable_sInter_mem (hSc.mono (inter_subset_left _ _))).2 fun _ h ↦ h.2))
((countable_bInter_mem hSc).2 fun U hU ↦ iInter_mem.2 id)
[GOAL]
α : Type u_1
β : Sort ?u.6801
l : Filter α
inst✝¹ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
inst✝ : HasCountableSeparatingOn α p s
hs : s ∈ l
hne : Set.Nonempty s
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
⊢ ∃ a, a ∈ s ∧ {a} ∈ l
[PROOFSTEP]
rcases exists_subset_subsingleton_mem_of_forall_separating p hs hl with ⟨t, hts, ht, htl⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Sort ?u.6801
l : Filter α
inst✝¹ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
inst✝ : HasCountableSeparatingOn α p s
hs : s ∈ l
hne : Set.Nonempty s
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
t : Set α
hts : t ⊆ s
ht : Set.Subsingleton t
htl : t ∈ l
⊢ ∃ a, a ∈ s ∧ {a} ∈ l
[PROOFSTEP]
rcases ht.eq_empty_or_singleton with rfl | ⟨x, rfl⟩
[GOAL]
case intro.intro.intro.inl
α : Type u_1
β : Sort ?u.6801
l : Filter α
inst✝¹ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
inst✝ : HasCountableSeparatingOn α p s
hs : s ∈ l
hne : Set.Nonempty s
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
hts : ∅ ⊆ s
ht : Set.Subsingleton ∅
htl : ∅ ∈ l
⊢ ∃ a, a ∈ s ∧ {a} ∈ l
[PROOFSTEP]
exact hne.imp fun a ha ↦ ⟨ha, mem_of_superset htl (empty_subset _)⟩
[GOAL]
case intro.intro.intro.inr.intro
α : Type u_1
β : Sort ?u.6801
l : Filter α
inst✝¹ : CountableInterFilter l
f g : α → β
p : Set α → Prop
s : Set α
inst✝ : HasCountableSeparatingOn α p s
hs : s ∈ l
hne : Set.Nonempty s
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
x : α
hts : {x} ⊆ s
ht : Set.Subsingleton {x}
htl : {x} ∈ l
⊢ ∃ a, a ∈ s ∧ {a} ∈ l
[PROOFSTEP]
exact ⟨x, hts rfl, htl⟩
[GOAL]
α : Type u_1
β : Sort ?u.7319
l : Filter α
inst✝² : CountableInterFilter l
f g : α → β
inst✝¹ : Nonempty α
p : Set α → Prop
s : Set α
inst✝ : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
⊢ ∃ a, {a} ∈ l
[PROOFSTEP]
rcases s.eq_empty_or_nonempty with rfl | hne
[GOAL]
case inl
α : Type u_1
β : Sort ?u.7319
l : Filter α
inst✝² : CountableInterFilter l
f g : α → β
inst✝¹ : Nonempty α
p : Set α → Prop
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
inst✝ : HasCountableSeparatingOn α p ∅
hs : ∅ ∈ l
⊢ ∃ a, {a} ∈ l
[PROOFSTEP]
exact ‹Nonempty α›.elim fun a ↦ ⟨a, mem_of_superset hs (empty_subset _)⟩
[GOAL]
case inr
α : Type u_1
β : Sort ?u.7319
l : Filter α
inst✝² : CountableInterFilter l
f g : α → β
inst✝¹ : Nonempty α
p : Set α → Prop
s : Set α
inst✝ : HasCountableSeparatingOn α p s
hs : s ∈ l
hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l
hne : Set.Nonempty s
⊢ ∃ a, {a} ∈ l
[PROOFSTEP]
exact (exists_mem_singleton_mem_of_mem_of_nonempty_of_forall_separating p hs hne hl).imp fun _ ↦ And.right
[GOAL]
α : Type u_2
β : Type u_1
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set β → Prop
s : Set β
h' : HasCountableSeparatingOn β p s
hf : ∀ᶠ (x : α) in l, f x ∈ s
hg : ∀ᶠ (x : α) in l, g x ∈ s
h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U
⊢ f =ᶠ[l] g
[PROOFSTEP]
rcases h'.1 with ⟨S, hSc, hSp, hS⟩
[GOAL]
case intro.intro.intro
α : Type u_2
β : Type u_1
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set β → Prop
s : Set β
h' : HasCountableSeparatingOn β p s
hf : ∀ᶠ (x : α) in l, f x ∈ s
hg : ∀ᶠ (x : α) in l, g x ∈ s
h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U
S : Set (Set β)
hSc : Set.Countable S
hSp : ∀ (s : Set β), s ∈ S → p s
hS : ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → (∀ (s : Set β), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
⊢ f =ᶠ[l] g
[PROOFSTEP]
have H : ∀ᶠ x in l, ∀ s ∈ S, f x ∈ s ↔ g x ∈ s := (eventually_countable_ball hSc).2 fun s hs ↦ (h _ (hSp _ hs))
[GOAL]
case intro.intro.intro
α : Type u_2
β : Type u_1
l : Filter α
inst✝ : CountableInterFilter l
f g : α → β
p : Set β → Prop
s : Set β
h' : HasCountableSeparatingOn β p s
hf : ∀ᶠ (x : α) in l, f x ∈ s
hg : ∀ᶠ (x : α) in l, g x ∈ s
h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U
S : Set (Set β)
hSc : Set.Countable S
hSp : ∀ (s : Set β), s ∈ S → p s
hS : ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → (∀ (s : Set β), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y
H : ∀ᶠ (x : α) in l, ∀ (s : Set β), s ∈ S → (f x ∈ s ↔ g x ∈ s)
⊢ f =ᶠ[l] g
[PROOFSTEP]
filter_upwards [H, hf, hg] with x hx hxf hxg using hS _ hxf _ hxg hx
| {"mathlib_filename": "Mathlib.Order.Filter.CountableSeparatingOn", "llama_tokens": 9931} |
[GOAL]
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
⊢ EventuallyConst f l ↔ ∃ x, Tendsto f l (pure x)
[PROOFSTEP]
simp_rw [EventuallyConst, EventuallyEq, tendsto_pure]
[GOAL]
α : Type u_1
β : Sort ?u.805
l : Filter α
f : α → β
p : α → Prop
⊢ EventuallyConst p l ↔ (p =ᶠ[l] fun x => False) ∨ p =ᶠ[l] fun x => True
[PROOFSTEP]
simp only [EventuallyConst, Prop.exists_iff]
[GOAL]
α : Type u_1
β : Sort ?u.958
l : Filter α
f : α → β
p : α → Prop
⊢ EventuallyConst p l ↔ (∀ᶠ (x : α) in l, p x) ∨ ∀ᶠ (x : α) in l, ¬p x
[PROOFSTEP]
simp [eventuallyConst_pred', or_comm, EventuallyEq]
[GOAL]
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : Nonempty β
⊢ EventuallyConst f ⊥
[PROOFSTEP]
simp [EventuallyConst, EventuallyEq]
[GOAL]
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : Subsingleton α
inst✝ : Nonempty β
⊢ EventuallyConst f l
[PROOFSTEP]
rcases isEmpty_or_nonempty α with h | h
[GOAL]
case inl
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : Subsingleton α
inst✝ : Nonempty β
h : IsEmpty α
⊢ EventuallyConst f l
[PROOFSTEP]
simp only [l.filter_eq_bot_of_isEmpty, EventuallyConst.bot]
[GOAL]
case inr
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : Subsingleton α
inst✝ : Nonempty β
h : Nonempty α
⊢ EventuallyConst f l
[PROOFSTEP]
inhabit α
[GOAL]
case inr
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : Subsingleton α
inst✝ : Nonempty β
h : Nonempty α
inhabited_h : Inhabited α
⊢ EventuallyConst f l
[PROOFSTEP]
refine ⟨f default, eventually_of_forall fun x ↦ congr_arg f <| Subsingleton.elim _ _⟩
[GOAL]
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
h : EventuallyConst (mulIndicator s fun x => c) l
⊢ EventuallyConst s l
[PROOFSTEP]
rw [eventuallyConst_set]
[GOAL]
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
h : EventuallyConst (mulIndicator s fun x => c) l
⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s
[PROOFSTEP]
rcases h with ⟨d, hd⟩
[GOAL]
case intro
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
d : β
hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => d
⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s
[PROOFSTEP]
rcases eq_or_ne d 1 with rfl | hd₁
[GOAL]
case intro.inl
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => 1
⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s
[PROOFSTEP]
refine .inr <| hd.mono fun x hx ↦ ?_
[GOAL]
case intro.inl
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => 1
x : α
hx : mulIndicator s (fun x => c) x = (fun x => 1) x
⊢ ¬x ∈ s
[PROOFSTEP]
simpa only [mulIndicator_apply_eq_one, hc] using hx
[GOAL]
case intro.inr
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
d : β
hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => d
hd₁ : d ≠ 1
⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s
[PROOFSTEP]
refine .inl <| hd.mono fun x hx ↦ ?_
[GOAL]
case intro.inr
α : Type u_2
β : Type u_1
l : Filter α
f : α → β
inst✝ : One β
s : Set α
c : β
hc : c ≠ 1
d : β
hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => d
hd₁ : d ≠ 1
x : α
hx : mulIndicator s (fun x => c) x = (fun x => d) x
⊢ x ∈ s
[PROOFSTEP]
simpa [hc] using ne_of_eq_of_ne hx hd₁
[GOAL]
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
⊢ EventuallyConst f atTop ↔ ∃ i, ∀ (j : α), i ≤ j → f j = f i
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
⊢ EventuallyConst f atTop → ∃ i, ∀ (j : α), i ≤ j → f j = f i
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case mp.intro
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
c : β
hc : f =ᶠ[atTop] fun x => c
⊢ ∃ i, ∀ (j : α), i ≤ j → f j = f i
[PROOFSTEP]
rcases eventually_atTop.1 hc with ⟨i, hi⟩
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
c : β
hc : f =ᶠ[atTop] fun x => c
i : α
hi : ∀ (b : α), b ≥ i → f b = (fun x => c) b
⊢ ∃ i, ∀ (j : α), i ≤ j → f j = f i
[PROOFSTEP]
exact ⟨i, fun j hj ↦ (hi j hj).trans (hi i le_rfl).symm⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
⊢ (∃ i, ∀ (j : α), i ≤ j → f j = f i) → EventuallyConst f atTop
[PROOFSTEP]
rintro ⟨i, hi⟩
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
l : Filter α
f : α → β
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
i : α
hi : ∀ (j : α), i ≤ j → f j = f i
⊢ EventuallyConst f atTop
[PROOFSTEP]
exact ⟨f i, eventually_atTop.2 ⟨i, hi⟩⟩
[GOAL]
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
⊢ EventuallyConst f atTop ↔ ∃ n, ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
[PROOFSTEP]
rw [eventuallyConst_atTop]
[GOAL]
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
⊢ (∃ i, ∀ (j : ℕ), i ≤ j → f j = f i) ↔ ∃ n, ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
[PROOFSTEP]
refine exists_congr fun n ↦ ⟨fun h m hm ↦ ?_, fun h m hm ↦ ?_⟩
[GOAL]
case refine_1
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (j : ℕ), n ≤ j → f j = f n
m : ℕ
hm : n ≤ m
⊢ f (m + 1) = f m
[PROOFSTEP]
exact (h (m + 1) (hm.trans m.le_succ)).trans (h m hm).symm
[GOAL]
case refine_2
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
m : ℕ
hm : n ≤ m
⊢ f m = f n
[PROOFSTEP]
induction m, hm using Nat.le_induction with
| base => rfl
| succ m hm ihm => exact (h m hm).trans ihm
[GOAL]
case refine_2
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
m : ℕ
hm : n ≤ m
⊢ f m = f n
[PROOFSTEP]
induction m, hm using Nat.le_induction with
| base => rfl
| succ m hm ihm => exact (h m hm).trans ihm
[GOAL]
case refine_2.base
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
m : ℕ
⊢ f n = f n
[PROOFSTEP]
| base => rfl
[GOAL]
case refine_2.base
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
m : ℕ
⊢ f n = f n
[PROOFSTEP]
rfl
[GOAL]
case refine_2.succ
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
m✝ m : ℕ
hm : n ≤ m
ihm : f m = f n
⊢ f (m + 1) = f n
[PROOFSTEP]
| succ m hm ihm => exact (h m hm).trans ihm
[GOAL]
case refine_2.succ
α : Type u_1
β : Sort ?u.10621
l : Filter α
f✝ : α → β
f : ℕ → α
n : ℕ
h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m
m✝ m : ℕ
hm : n ≤ m
ihm : f m = f n
⊢ f (m + 1) = f n
[PROOFSTEP]
exact (h m hm).trans ihm
| {"mathlib_filename": "Mathlib.Order.Filter.EventuallyConst", "llama_tokens": 3678} |
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
s : Set α
l : Filter α
a : α
t✝ : Set α
l' : Filter α
t : Set δ
g : δ → α
b : δ
hf : IsMinOn f s a
hg : MapsTo g t s
ha : g b = a
y : δ
hy : y ∈ t
⊢ y ∈ {x | (fun x => (f ∘ g) b ≤ (f ∘ g) x) x}
[PROOFSTEP]
simpa only [ha, (· ∘ ·)] using hf (hg hy)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝ : OrderedAddCommGroup β
f g : α → β
a : α
s : Set α
l : Filter α
hf : IsMinFilter f l a
hg : IsMaxFilter g l a
⊢ IsMinFilter (fun x => f x - g x) l a
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝ : OrderedAddCommGroup β
f g : α → β
a : α
s : Set α
l : Filter α
hf : IsMaxFilter f l a
hg : IsMinFilter g l a
⊢ IsMaxFilter (fun x => f x - g x) l a
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝ : OrderedAddCommGroup β
f g : α → β
a : α
s : Set α
l : Filter α
hf : IsMinOn f s a
hg : IsMaxOn g s a
⊢ IsMinOn (fun x => f x - g x) s a
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝ : OrderedAddCommGroup β
f g : α → β
a : α
s : Set α
l : Filter α
hf : IsMaxOn f s a
hg : IsMinOn g s a
⊢ IsMaxOn (fun x => f x - g x) s a
[PROOFSTEP]
simpa only [sub_eq_add_neg] using hf.add hg.neg
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
δ : Type x
α : Type u_1
β : Type u_2
inst✝ : Preorder β
f g : α → β
a : α
l : Filter α
hle : g ≤ᶠ[l] f
hfga : f a = g a
h : IsMaxFilter f l a
⊢ IsMaxFilter g l a
[PROOFSTEP]
refine' hle.mp (h.mono fun x hf hgf => _)
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
δ : Type x
α : Type u_1
β : Type u_2
inst✝ : Preorder β
f g : α → β
a : α
l : Filter α
hle : g ≤ᶠ[l] f
hfga : f a = g a
h : IsMaxFilter f l a
x : α
hf : f x ≤ f a
hgf : g x ≤ f x
⊢ g x ≤ g a
[PROOFSTEP]
rw [← hfga]
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
δ : Type x
α : Type u_1
β : Type u_2
inst✝ : Preorder β
f g : α → β
a : α
l : Filter α
hle : g ≤ᶠ[l] f
hfga : f a = g a
h : IsMaxFilter f l a
x : α
hf : f x ≤ f a
hgf : g x ≤ f x
⊢ g x ≤ f a
[PROOFSTEP]
exact le_trans hgf hf
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
δ : Type x
α : Type u_1
β : Type u_2
inst✝ : Preorder β
f g : α → β
a : α
l : Filter α
h : IsExtrFilter f l a
heq : f =ᶠ[l] g
hfga : f a = g a
⊢ IsExtrFilter g l a
[PROOFSTEP]
rw [IsExtrFilter] at *
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
δ : Type x
α : Type u_1
β : Type u_2
inst✝ : Preorder β
f g : α → β
a : α
l : Filter α
h : IsMinFilter f l a ∨ IsMaxFilter f l a
heq : f =ᶠ[l] g
hfga : f a = g a
⊢ IsMinFilter g l a ∨ IsMaxFilter g l a
[PROOFSTEP]
rwa [← heq.isMaxFilter_iff hfga, ← heq.isMinFilter_iff hfga]
| {"mathlib_filename": "Mathlib.Order.Filter.Extr", "llama_tokens": 1448} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : LE α
inst✝ : LE β
s t : Set α
h : IsUpperSet sᶜ
⊢ IsLowerSet s
[PROOFSTEP]
convert h.compl
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : LE α
inst✝ : LE β
s t : Set α
h : IsUpperSet sᶜ
⊢ s = sᶜᶜ
[PROOFSTEP]
rw [compl_compl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : LE α
inst✝ : LE β
s t : Set α
h : IsLowerSet sᶜ
⊢ IsUpperSet s
[PROOFSTEP]
convert h.compl
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : LE α
inst✝ : LE β
s t : Set α
h : IsLowerSet sᶜ
⊢ s = sᶜᶜ
[PROOFSTEP]
rw [compl_compl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
⊢ IsUpperSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Ici a ⊆ s
[PROOFSTEP]
simp [IsUpperSet, subset_def, @forall_swap (_ ∈ s)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
⊢ IsLowerSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Iic a ⊆ s
[PROOFSTEP]
simp [IsLowerSet, subset_def, @forall_swap (_ ∈ s)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
hs : IsUpperSet s
f : α ≃o β
⊢ IsUpperSet (↑f '' s)
[PROOFSTEP]
change IsUpperSet ((f : α ≃ β) '' s)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
hs : IsUpperSet s
f : α ≃o β
⊢ IsUpperSet (↑↑f '' s)
[PROOFSTEP]
rw [Set.image_equiv_eq_preimage_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
hs : IsUpperSet s
f : α ≃o β
⊢ IsUpperSet (↑(↑f).symm ⁻¹' s)
[PROOFSTEP]
exact hs.preimage f.symm.monotone
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
hs : IsLowerSet s
f : α ≃o β
⊢ IsLowerSet (↑f '' s)
[PROOFSTEP]
change IsLowerSet ((f : α ≃ β) '' s)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
hs : IsLowerSet s
f : α ≃o β
⊢ IsLowerSet (↑↑f '' s)
[PROOFSTEP]
rw [Set.image_equiv_eq_preimage_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
p : α → Prop
a : α
hs : IsLowerSet s
f : α ≃o β
⊢ IsLowerSet (↑(↑f).symm ⁻¹' s)
[PROOFSTEP]
exact hs.preimage f.symm.monotone
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
s : Set α
p : α → Prop
a : α
inst✝ : NoMaxOrder α
hs : IsUpperSet s
⊢ Set.Nonempty s → ¬BddAbove s
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
s : Set α
p : α → Prop
a✝ : α
inst✝ : NoMaxOrder α
hs : IsUpperSet s
a : α
ha : a ∈ s
b : α
hb : b ∈ upperBounds s
⊢ False
[PROOFSTEP]
obtain ⟨c, hc⟩ := exists_gt b
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
s : Set α
p : α → Prop
a✝ : α
inst✝ : NoMaxOrder α
hs : IsUpperSet s
a : α
ha : a ∈ s
b : α
hb : b ∈ upperBounds s
c : α
hc : b < c
⊢ False
[PROOFSTEP]
exact hc.not_le (hb <| hs ((hb ha).trans hc.le) ha)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
s : Set α
p : α → Prop
a : α
inst✝ : NoMinOrder α
hs : IsLowerSet s
⊢ Set.Nonempty s → ¬BddBelow s
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
s : Set α
p : α → Prop
a✝ : α
inst✝ : NoMinOrder α
hs : IsLowerSet s
a : α
ha : a ∈ s
b : α
hb : b ∈ lowerBounds s
⊢ False
[PROOFSTEP]
obtain ⟨c, hc⟩ := exists_lt b
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
s : Set α
p : α → Prop
a✝ : α
inst✝ : NoMinOrder α
hs : IsLowerSet s
a : α
ha : a ∈ s
b : α
hb : b ∈ lowerBounds s
c : α
hc : c < b
⊢ False
[PROOFSTEP]
exact hc.not_le (hb <| hs (hc.le.trans <| hb ha) ha)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : PartialOrder α
s : Set α
a : α
⊢ (∀ ⦃b : α⦄, a ≤ b → a ∈ s → b ∈ s) ↔ ∀ ⦃b : α⦄, a < b → a ∈ s → b ∈ s
[PROOFSTEP]
simp [le_iff_eq_or_lt, or_imp, forall_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : PartialOrder α
s : Set α
a : α
⊢ (∀ ⦃b : α⦄, b ≤ a → a ∈ s → b ∈ s) ↔ ∀ ⦃b : α⦄, b < a → a ∈ s → b ∈ s
[PROOFSTEP]
simp [le_iff_eq_or_lt, or_imp, forall_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : PartialOrder α
s : Set α
⊢ IsUpperSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Ioi a ⊆ s
[PROOFSTEP]
simp [isUpperSet_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : PartialOrder α
s : Set α
⊢ IsLowerSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Iio a ⊆ s
[PROOFSTEP]
simp [isLowerSet_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
h : s.carrier = t.carrier
⊢ s = t
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
t : UpperSet α
carrier✝ : Set α
upper'✝ : IsUpperSet carrier✝
h : { carrier := carrier✝, upper' := upper'✝ }.carrier = t.carrier
⊢ { carrier := carrier✝, upper' := upper'✝ } = t
[PROOFSTEP]
cases t
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
carrier✝¹ : Set α
upper'✝¹ : IsUpperSet carrier✝¹
carrier✝ : Set α
upper'✝ : IsUpperSet carrier✝
h : { carrier := carrier✝¹, upper' := upper'✝¹ }.carrier = { carrier := carrier✝, upper' := upper'✝ }.carrier
⊢ { carrier := carrier✝¹, upper' := upper'✝¹ } = { carrier := carrier✝, upper' := upper'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
h : s.carrier = t.carrier
⊢ s = t
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
t : LowerSet α
carrier✝ : Set α
lower'✝ : IsLowerSet carrier✝
h : { carrier := carrier✝, lower' := lower'✝ }.carrier = t.carrier
⊢ { carrier := carrier✝, lower' := lower'✝ } = t
[PROOFSTEP]
cases t
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
carrier✝¹ : Set α
lower'✝¹ : IsLowerSet carrier✝¹
carrier✝ : Set α
lower'✝ : IsLowerSet carrier✝
h : { carrier := carrier✝¹, lower' := lower'✝¹ }.carrier = { carrier := carrier✝, lower' := lower'✝ }.carrier
⊢ { carrier := carrier✝¹, lower' := lower'✝¹ } = { carrier := carrier✝, lower' := lower'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
⊢ ↑s = univ ↔ s = ⊥
[PROOFSTEP]
simp [SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
⊢ ↑s = ∅ ↔ s = ⊤
[PROOFSTEP]
simp [SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ ↑(⨆ (i : ι), f i) = ⋂ (i : ι), ↑(f i)
[PROOFSTEP]
simp [iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ ↑(⨅ (i : ι), f i) = ⋃ (i : ι), ↑(f i)
[PROOFSTEP]
simp [iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : (i : ι) → κ i → UpperSet α
⊢ ↑(⨆ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j)
[PROOFSTEP]
simp_rw [coe_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : (i : ι) → κ i → UpperSet α
⊢ ↑(⨅ (i : ι) (j : κ i), f i j) = ⋃ (i : ι) (j : κ i), ↑(f i j)
[PROOFSTEP]
simp_rw [coe_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
⊢ (∃ i j, a ∈ ↑i) ↔ ∃ s, s ∈ S ∧ a ∈ s
[PROOFSTEP]
simp only [exists_prop, SetLike.mem_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ a ∈ ⨆ (i : ι), f i ↔ ∀ (i : ι), a ∈ f i
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ a ∈ ⋂ (i : ι), ↑(f i) ↔ ∀ (i : ι), a ∈ f i
[PROOFSTEP]
exact mem_iInter
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ a ∈ ⨅ (i : ι), f i ↔ ∃ i, a ∈ f i
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ a ∈ ⋃ (i : ι), ↑(f i) ↔ ∃ i, a ∈ f i
[PROOFSTEP]
exact mem_iUnion
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : (i : ι) → κ i → UpperSet α
⊢ a ∈ ⨆ (i : ι) (j : κ i), f i j ↔ ∀ (i : ι) (j : κ i), a ∈ f i j
[PROOFSTEP]
simp_rw [mem_iSup_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
f : (i : ι) → κ i → UpperSet α
⊢ a ∈ ⨅ (i : ι) (j : κ i), f i j ↔ ∃ i j, a ∈ f i j
[PROOFSTEP]
simp_rw [mem_iInf_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (UpperSet α)
s t : UpperSet α
a : α
⊢ Codisjoint ↑s ↑t ↔ Disjoint s t
[PROOFSTEP]
simp [disjoint_iff, codisjoint_iff, SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
⊢ ↑s = univ ↔ s = ⊤
[PROOFSTEP]
simp [SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
⊢ ↑s = ∅ ↔ s = ⊥
[PROOFSTEP]
simp [SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ ↑(⨆ (i : ι), f i) = ⋃ (i : ι), ↑(f i)
[PROOFSTEP]
simp_rw [iSup, coe_sSup, mem_range, iUnion_exists, iUnion_iUnion_eq']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ ↑(⨅ (i : ι), f i) = ⋂ (i : ι), ↑(f i)
[PROOFSTEP]
simp_rw [iInf, coe_sInf, mem_range, iInter_exists, iInter_iInter_eq']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : (i : ι) → κ i → LowerSet α
⊢ ↑(⨆ (i : ι) (j : κ i), f i j) = ⋃ (i : ι) (j : κ i), ↑(f i j)
[PROOFSTEP]
simp_rw [coe_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : (i : ι) → κ i → LowerSet α
⊢ ↑(⨅ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j)
[PROOFSTEP]
simp_rw [coe_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
⊢ (∃ i j, a ∈ ↑i) ↔ ∃ s, s ∈ S ∧ a ∈ s
[PROOFSTEP]
simp only [exists_prop, SetLike.mem_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ a ∈ ⨆ (i : ι), f i ↔ ∃ i, a ∈ f i
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ a ∈ ⋃ (i : ι), ↑(f i) ↔ ∃ i, a ∈ f i
[PROOFSTEP]
exact mem_iUnion
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ a ∈ ⨅ (i : ι), f i ↔ ∀ (i : ι), a ∈ f i
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ a ∈ ⋂ (i : ι), ↑(f i) ↔ ∀ (i : ι), a ∈ f i
[PROOFSTEP]
exact mem_iInter
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : (i : ι) → κ i → LowerSet α
⊢ a ∈ ⨆ (i : ι) (j : κ i), f i j ↔ ∃ i j, a ∈ f i j
[PROOFSTEP]
simp_rw [mem_iSup_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
f : (i : ι) → κ i → LowerSet α
⊢ a ∈ ⨅ (i : ι) (j : κ i), f i j ↔ ∀ (i : ι) (j : κ i), a ∈ f i j
[PROOFSTEP]
simp_rw [mem_iInf_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
S : Set (LowerSet α)
s t : LowerSet α
a : α
⊢ Disjoint ↑s ↑t ↔ Disjoint s t
[PROOFSTEP]
simp [disjoint_iff, SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
a : α
S : Set (UpperSet α)
⊢ ↑(compl (sSup S)) = ↑(⨆ (s : UpperSet α) (_ : s ∈ S), compl s)
[PROOFSTEP]
simp only [coe_compl, coe_sSup, compl_iInter₂, LowerSet.coe_iSup₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
a : α
S : Set (UpperSet α)
⊢ ↑(compl (sInf S)) = ↑(⨅ (s : UpperSet α) (_ : s ∈ S), compl s)
[PROOFSTEP]
simp only [coe_compl, coe_sInf, compl_iUnion₂, LowerSet.coe_iInf₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ ↑(compl (⨆ (i : ι), f i)) = ↑(⨆ (i : ι), compl (f i))
[PROOFSTEP]
simp only [coe_compl, coe_iSup, compl_iInter, LowerSet.coe_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
a : α
f : ι → UpperSet α
⊢ ↑(compl (⨅ (i : ι), f i)) = ↑(⨅ (i : ι), compl (f i))
[PROOFSTEP]
simp only [coe_compl, coe_iInf, compl_iUnion, LowerSet.coe_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
a : α
f : (i : ι) → κ i → UpperSet α
⊢ compl (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), compl (f i j)
[PROOFSTEP]
simp_rw [UpperSet.compl_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : UpperSet α
a : α
f : (i : ι) → κ i → UpperSet α
⊢ compl (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), compl (f i j)
[PROOFSTEP]
simp_rw [UpperSet.compl_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
a : α
S : Set (LowerSet α)
⊢ ↑(compl (sSup S)) = ↑(⨆ (s : LowerSet α) (_ : s ∈ S), compl s)
[PROOFSTEP]
simp only [coe_compl, coe_sSup, compl_iUnion₂, UpperSet.coe_iSup₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
a : α
S : Set (LowerSet α)
⊢ ↑(compl (sInf S)) = ↑(⨅ (s : LowerSet α) (_ : s ∈ S), compl s)
[PROOFSTEP]
simp only [coe_compl, coe_sInf, compl_iInter₂, UpperSet.coe_iInf₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ ↑(compl (⨆ (i : ι), f i)) = ↑(⨆ (i : ι), compl (f i))
[PROOFSTEP]
simp only [coe_compl, coe_iSup, compl_iUnion, UpperSet.coe_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
a : α
f : ι → LowerSet α
⊢ ↑(compl (⨅ (i : ι), f i)) = ↑(⨅ (i : ι), compl (f i))
[PROOFSTEP]
simp only [coe_compl, coe_iInf, compl_iInter, UpperSet.coe_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
a : α
f : (i : ι) → κ i → LowerSet α
⊢ compl (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), compl (f i j)
[PROOFSTEP]
simp_rw [LowerSet.compl_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : LE α
s t : LowerSet α
a : α
f : (i : ι) → κ i → LowerSet α
⊢ compl (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), compl (f i j)
[PROOFSTEP]
simp_rw [LowerSet.compl_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s✝ t : UpperSet α
a : α
b : β
f : α ≃o β
s : UpperSet β
⊢ ↑(↑(OrderIso.symm (map f)) s) = ↑(↑(map (OrderIso.symm f)) s)
[PROOFSTEP]
convert Set.preimage_equiv_eq_image_symm s f.toEquiv
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α ≃o β
s t : UpperSet α
a : α
b : β
⊢ b ∈ ↑(map f) s ↔ ↑(OrderIso.symm f) b ∈ s
[PROOFSTEP]
rw [← f.symm_symm, ← symm_map, f.symm_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α ≃o β
s t : UpperSet α
a : α
b : β
⊢ b ∈ ↑(OrderIso.symm (map (OrderIso.symm f))) s ↔ ↑(OrderIso.symm f) b ∈ s
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α ≃o β
s t : UpperSet α
a : α
b : β
⊢ map (OrderIso.refl α) = OrderIso.refl (UpperSet α)
[PROOFSTEP]
ext
[GOAL]
case h.h.a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α ≃o β
s t : UpperSet α
a : α
b : β
x✝¹ : UpperSet α
x✝ : α
⊢ x✝ ∈ ↑(↑(map (OrderIso.refl α)) x✝¹) ↔ x✝ ∈ ↑(↑(OrderIso.refl (UpperSet α)) x✝¹)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s t : UpperSet α
a : α
b : β
g : β ≃o γ
f : α ≃o β
⊢ ↑(map g) (↑(map f) s) = ↑(map (OrderIso.trans f g)) s
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s t : UpperSet α
a : α
b : β
g : β ≃o γ
f : α ≃o β
x✝ : γ
⊢ x✝ ∈ ↑(↑(map g) (↑(map f) s)) ↔ x✝ ∈ ↑(↑(map (OrderIso.trans f g)) s)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s✝ t : LowerSet α
a : α
b : β
f : α ≃o β
s : LowerSet β
⊢ ↑(↑(OrderIso.symm (map f)) s) = ↑(↑(map (OrderIso.symm f)) s)
[PROOFSTEP]
convert Set.preimage_equiv_eq_image_symm s f.toEquiv
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s t : LowerSet α
a : α
b✝ : β
f : α ≃o β
b : β
⊢ b ∈ ↑(map f) s ↔ ↑(OrderIso.symm f) b ∈ s
[PROOFSTEP]
rw [← f.symm_symm, ← symm_map, f.symm_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s t : LowerSet α
a : α
b✝ : β
f : α ≃o β
b : β
⊢ b ∈ ↑(OrderIso.symm (map (OrderIso.symm f))) s ↔ ↑(OrderIso.symm f) b ∈ s
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α ≃o β
s t : LowerSet α
a : α
b : β
⊢ map (OrderIso.refl α) = OrderIso.refl (LowerSet α)
[PROOFSTEP]
ext
[GOAL]
case h.h.a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α ≃o β
s t : LowerSet α
a : α
b : β
x✝¹ : LowerSet α
x✝ : α
⊢ x✝ ∈ ↑(↑(map (OrderIso.refl α)) x✝¹) ↔ x✝ ∈ ↑(↑(OrderIso.refl (LowerSet α)) x✝¹)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s t : LowerSet α
a : α
b : β
g : β ≃o γ
f : α ≃o β
⊢ ↑(map g) (↑(map f) s) = ↑(map (OrderIso.trans f g)) s
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
f✝ : α ≃o β
s t : LowerSet α
a : α
b : β
g : β ≃o γ
f : α ≃o β
x✝ : γ
⊢ x✝ ∈ ↑(↑(map g) (↑(map f) s)) ↔ x✝ ∈ ↑(↑(map (OrderIso.trans f g)) s)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : UpperSet α
a✝ b : α
f : α ≃o β
a : α
⊢ ↑(map f) (Ici a) = Ici (↑f a)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : UpperSet α
a✝ b : α
f : α ≃o β
a : α
x✝ : β
⊢ x✝ ∈ ↑(↑(map f) (Ici a)) ↔ x✝ ∈ ↑(Ici (↑f a))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : UpperSet α
a✝ b : α
f : α ≃o β
a : α
⊢ ↑(map f) (Ioi a) = Ioi (↑f a)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : UpperSet α
a✝ b : α
f : α ≃o β
a : α
x✝ : β
⊢ x✝ ∈ ↑(↑(map f) (Ioi a)) ↔ x✝ ∈ ↑(Ioi (↑f a))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : CompleteLattice α
S : Set α
c : α
⊢ c ∈ Ici (sSup S) ↔ c ∈ ⨆ (a : α) (_ : a ∈ S), Ici a
[PROOFSTEP]
simp only [mem_Ici_iff, mem_iSup_iff, sSup_le_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : CompleteLattice α
f : ι → α
c : α
⊢ c ∈ Ici (⨆ (i : ι), f i) ↔ c ∈ ⨆ (i : ι), Ici (f i)
[PROOFSTEP]
simp only [mem_Ici_iff, mem_iSup_iff, iSup_le_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : CompleteLattice α
f : (i : ι) → κ i → α
⊢ Ici (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), Ici (f i j)
[PROOFSTEP]
simp_rw [Ici_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : LowerSet α
a✝ b : α
f : α ≃o β
a : α
⊢ ↑(map f) (Iic a) = Iic (↑f a)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : LowerSet α
a✝ b : α
f : α ≃o β
a : α
x✝ : β
⊢ x✝ ∈ ↑(↑(map f) (Iic a)) ↔ x✝ ∈ ↑(Iic (↑f a))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : LowerSet α
a✝ b : α
f : α ≃o β
a : α
⊢ ↑(map f) (Iio a) = Iio (↑f a)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : LowerSet α
a✝ b : α
f : α ≃o β
a : α
x✝ : β
⊢ x✝ ∈ ↑(↑(map f) (Iio a)) ↔ x✝ ∈ ↑(Iio (↑f a))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : CompleteLattice α
S : Set α
c : α
⊢ c ∈ Iic (sInf S) ↔ c ∈ ⨅ (a : α) (_ : a ∈ S), Iic a
[PROOFSTEP]
simp only [mem_Iic_iff, mem_iInf₂_iff, le_sInf_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : CompleteLattice α
f : ι → α
c : α
⊢ c ∈ Iic (⨅ (i : ι), f i) ↔ c ∈ ⨅ (i : ι), Iic (f i)
[PROOFSTEP]
simp only [mem_Iic_iff, mem_iInf_iff, le_iInf_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝ : CompleteLattice α
f : (i : ι) → κ i → α
⊢ Iic (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), Iic (f i j)
[PROOFSTEP]
simp_rw [Iic_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
⊢ ↑(upperClosure s) = ⋃ (a : α) (_ : a ∈ s), Ici a
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
x✝ : α
⊢ x✝ ∈ ↑(upperClosure s) ↔ x✝ ∈ ⋃ (a : α) (_ : a ∈ s), Ici a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
⊢ ↑(lowerClosure s) = ⋃ (a : α) (_ : a ∈ s), Iic a
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
x✝ : α
⊢ x✝ ∈ ↑(lowerClosure s) ↔ x✝ ∈ ⋃ (a : α) (_ : a ∈ s), Iic a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
f : α ≃o β
⊢ upperClosure (↑f '' s) = ↑(UpperSet.map f) (upperClosure s)
[PROOFSTEP]
rw [← f.symm_symm, ← UpperSet.symm_map, f.symm_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
f : α ≃o β
⊢ upperClosure (↑f '' s) = ↑(OrderIso.symm (UpperSet.map (OrderIso.symm f))) (upperClosure s)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
f : α ≃o β
x✝ : β
⊢ x✝ ∈ ↑(upperClosure (↑f '' s)) ↔ x✝ ∈ ↑(↑(OrderIso.symm (UpperSet.map (OrderIso.symm f))) (upperClosure s))
[PROOFSTEP]
simp [-UpperSet.symm_map, UpperSet.map, OrderIso.symm, ← f.le_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
f : α ≃o β
⊢ lowerClosure (↑f '' s) = ↑(LowerSet.map f) (lowerClosure s)
[PROOFSTEP]
rw [← f.symm_symm, ← LowerSet.symm_map, f.symm_symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
f : α ≃o β
⊢ lowerClosure (↑f '' s) = ↑(OrderIso.symm (LowerSet.map (OrderIso.symm f))) (lowerClosure s)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
f : α ≃o β
x✝ : β
⊢ x✝ ∈ ↑(lowerClosure (↑f '' s)) ↔ x✝ ∈ ↑(↑(OrderIso.symm (LowerSet.map (OrderIso.symm f))) (lowerClosure s))
[PROOFSTEP]
simp [-LowerSet.symm_map, LowerSet.map, OrderIso.symm, ← f.symm_apply_le]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
⊢ ⨅ (a : α) (_ : a ∈ s), Ici a = upperClosure s
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
x✝ : α
⊢ x✝ ∈ ↑(⨅ (a : α) (_ : a ∈ s), Ici a) ↔ x✝ ∈ ↑(upperClosure s)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
⊢ ⨆ (a : α) (_ : a ∈ s), Iic a = lowerClosure s
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s✝ t : Set α
x : α
s : Set α
x✝ : α
⊢ x✝ ∈ ↑(⨆ (a : α) (_ : a ∈ s), Iic a) ↔ x✝ ∈ ↑(lowerClosure s)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x a : α
⊢ upperClosure {a} = UpperSet.Ici a
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x a x✝ : α
⊢ x✝ ∈ ↑(upperClosure {a}) ↔ x✝ ∈ ↑(UpperSet.Ici a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x a : α
⊢ lowerClosure {a} = LowerSet.Iic a
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x a x✝ : α
⊢ x✝ ∈ ↑(lowerClosure {a}) ↔ x✝ ∈ ↑(LowerSet.Iic a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
S : Set (Set α)
⊢ upperClosure (⋃₀ S) = ⨅ (s : Set α) (_ : s ∈ S), upperClosure s
[PROOFSTEP]
simp_rw [sUnion_eq_biUnion, upperClosure_iUnion]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
S : Set (Set α)
⊢ lowerClosure (⋃₀ S) = ⨆ (s : Set α) (_ : s ∈ S), lowerClosure s
[PROOFSTEP]
simp_rw [sUnion_eq_biUnion, lowerClosure_iUnion]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
⊢ OrdConnected s ↔ ↑(upperClosure s) ∩ ↑(lowerClosure s) = s
[PROOFSTEP]
refine' ⟨Set.OrdConnected.upperClosure_inter_lowerClosure, fun h => _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
h : ↑(upperClosure s) ∩ ↑(lowerClosure s) = s
⊢ OrdConnected s
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
h : ↑(upperClosure s) ∩ ↑(lowerClosure s) = s
⊢ OrdConnected (↑(upperClosure s) ∩ ↑(lowerClosure s))
[PROOFSTEP]
exact (UpperSet.upper _).ordConnected.inter (LowerSet.lower _).ordConnected
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
⊢ BddAbove ↑(lowerClosure s) ↔ BddAbove s
[PROOFSTEP]
simp_rw [BddAbove, upperBounds_lowerClosure]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
x : α
⊢ BddBelow ↑(upperClosure s) ↔ BddBelow s
[PROOFSTEP]
simp_rw [BddBelow, lowerBounds_upperClosure]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : UpperSet α
t t₁ t₂ : UpperSet β
x : α × β
⊢ ↑s₂ ⊆ ↑s₁ ∧ ↑t₂ ⊆ ↑t₁ ∨ ↑s₂ = ∅ ∨ ↑t₂ = ∅ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₂ = ⊤ ∨ t₂ = ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : UpperSet α
t t₁ t₂ : UpperSet β
x : α × β
⊢ s ×ˢ t = ⊤ ↔ s = ⊤ ∨ t = ⊤
[PROOFSTEP]
simp_rw [SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : UpperSet α
t t₁ t₂ : UpperSet β
x : α × β
⊢ ↑(s ×ˢ t) = ↑⊤ ↔ ↑s = ↑⊤ ∨ ↑t = ↑⊤
[PROOFSTEP]
exact prod_eq_empty_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : UpperSet α
t t₁ t₂ : UpperSet β
x : α × β
⊢ Codisjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) ↔ Codisjoint s₁ s₂ ∨ Codisjoint t₁ t₂
[PROOFSTEP]
simp_rw [codisjoint_iff, prod_sup_prod, prod_eq_top]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : LowerSet α
t t₁ t₂ : LowerSet β
x : α × β
⊢ ↑s₁ ⊆ ↑s₂ ∧ ↑t₁ ⊆ ↑t₂ ∨ ↑s₁ = ∅ ∨ ↑t₁ = ∅ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₁ = ⊥ ∨ t₁ = ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : LowerSet α
t t₁ t₂ : LowerSet β
x : α × β
⊢ s ×ˢ t = ⊥ ↔ s = ⊥ ∨ t = ⊥
[PROOFSTEP]
simp_rw [SetLike.ext'_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : LowerSet α
t t₁ t₂ : LowerSet β
x : α × β
⊢ ↑(s ×ˢ t) = ↑⊥ ↔ ↑s = ↑⊥ ∨ ↑t = ↑⊥
[PROOFSTEP]
exact prod_eq_empty_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s s₁ s₂ : LowerSet α
t t₁ t₂ : LowerSet β
x : α × β
⊢ Disjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) ↔ Disjoint s₁ s₂ ∨ Disjoint t₁ t₂
[PROOFSTEP]
simp_rw [disjoint_iff, prod_inf_prod, prod_eq_bot]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
t : Set β
⊢ upperClosure (s ×ˢ t) = upperClosure s ×ˢ upperClosure t
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
t : Set β
x✝ : α × β
⊢ x✝ ∈ ↑(upperClosure (s ×ˢ t)) ↔ x✝ ∈ ↑(upperClosure s ×ˢ upperClosure t)
[PROOFSTEP]
simp [Prod.le_def, @and_and_and_comm _ (_ ∈ t)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
t : Set β
⊢ lowerClosure (s ×ˢ t) = lowerClosure s ×ˢ lowerClosure t
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
κ : ι → Sort u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s : Set α
t : Set β
x✝ : α × β
⊢ x✝ ∈ ↑(lowerClosure (s ×ˢ t)) ↔ x✝ ∈ ↑(lowerClosure s ×ˢ lowerClosure t)
[PROOFSTEP]
simp [Prod.le_def, @and_and_and_comm _ (_ ∈ t)]
| {"mathlib_filename": "Mathlib.Order.UpperLower.Basic", "llama_tokens": 18816} |
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝¹ : IsEmpty ι
inst✝ : InfSet α
f : ι → WithTop α
⊢ ⨅ (i : ι), f i = ⊤
[PROOFSTEP]
rw [iInf, range_eq_empty, WithTop.sInf_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : InfSet α
s : Set α
hs : Set.Nonempty s
⊢ ↑(sInf s) = sInf ((fun a => ↑a) '' s)
[PROOFSTEP]
obtain ⟨x, hx⟩ := hs
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : InfSet α
s : Set α
x : α
hx : x ∈ s
⊢ ↑(sInf s) = sInf ((fun a => ↑a) '' s)
[PROOFSTEP]
change _ = ite _ _ _
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : InfSet α
s : Set α
x : α
hx : x ∈ s
⊢ ↑(sInf s) = if (fun a => ↑a) '' s ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s)))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : InfSet α
s : Set α
x : α
hx : x ∈ s
h : (fun a => ↑a) '' s ⊆ {⊤}
⊢ ↑(sInf s) = ⊤
[PROOFSTEP]
cases h (mem_image_of_mem _ hx)
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : InfSet α
s : Set α
x : α
hx : x ∈ s
h : ¬(fun a => ↑a) '' s ⊆ {⊤}
⊢ ↑(sInf s) = ↑(sInf ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s)))
[PROOFSTEP]
rw [preimage_image_eq]
[GOAL]
case neg.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : InfSet α
s : Set α
x : α
hx : x ∈ s
h : ¬(fun a => ↑a) '' s ⊆ {⊤}
⊢ Injective fun a => ↑a
[PROOFSTEP]
exact Option.some_injective _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Nonempty ι
inst✝ : InfSet α
f : ι → α
⊢ ↑(⨅ (i : ι), f i) = ⨅ (i : ι), ↑(f i)
[PROOFSTEP]
rw [iInf, iInf, WithTop.coe_sInf' (range_nonempty f), ← range_comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Nonempty ι
inst✝ : InfSet α
f : ι → α
⊢ sInf (range ((fun a => ↑a) ∘ f)) = sInf (range fun i => ↑(f i))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : SupSet α
s : Set α
hs : BddAbove s
⊢ ↑(sSup s) = sSup ((fun a => ↑a) '' s)
[PROOFSTEP]
change _ = ite _ _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : SupSet α
s : Set α
hs : BddAbove s
⊢ ↑(sSup s) =
if ⊤ ∈ (fun a => ↑a) '' s then ⊤
else
if BddAbove ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s)) then ↑(sSup ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s))) else ⊤
[PROOFSTEP]
rw [if_neg, preimage_image_eq, if_pos hs]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : SupSet α
s : Set α
hs : BddAbove s
⊢ Injective fun a => ↑a
[PROOFSTEP]
exact Option.some_injective _
[GOAL]
case hnc
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : SupSet α
s : Set α
hs : BddAbove s
⊢ ¬⊤ ∈ (fun a => ↑a) '' s
[PROOFSTEP]
rintro ⟨x, _, ⟨⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : SupSet α
f : ι → α
h : BddAbove (range f)
⊢ ↑(⨆ (i : ι), f i) = ⨆ (i : ι), ↑(f i)
[PROOFSTEP]
rw [iSup, iSup, WithTop.coe_sSup' h, ← range_comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : SupSet α
f : ι → α
h : BddAbove (range f)
⊢ sSup (range ((fun a => ↑a) ∘ f)) = sSup (range fun i => ↑(f i))
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
⊢ min a b = if a ≤ b then a else b
[PROOFSTEP]
by_cases hab : a = b
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : a = b
⊢ min a b = if a ≤ b then a else b
[PROOFSTEP]
simp [hab]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : ¬a = b
⊢ min a b = if a ≤ b then a else b
[PROOFSTEP]
rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂)
[GOAL]
case neg.inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : ¬a = b
h₁ : a ≤ b
⊢ min a b = if a ≤ b then a else b
[PROOFSTEP]
simp [h₁]
[GOAL]
case neg.inr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : ¬a = b
h₂ : b ≤ a
⊢ min a b = if a ≤ b then a else b
[PROOFSTEP]
simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
by_cases hab : a = b
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : a = b
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
simp [hab]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : ¬a = b
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂)
[GOAL]
case neg.inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : ¬a = b
h₁ : a ≤ b
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
simp [h₁]
[GOAL]
case neg.inr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLinearOrder α
src✝ : ConditionallyCompleteLinearOrder α := inst✝
a b : α
hab : ¬a = b
h₂ : b ≤ a
⊢ max a b = if a ≤ b then b else a
[PROOFSTEP]
simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
⊢ ∀ (s : Set α) (a : α), BddAbove s → a ∈ s → a ≤ sSup s
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : BddAbove s✝
a✝ : a✝² ∈ s✝
⊢ a✝² ≤ sSup s✝
[PROOFSTEP]
apply le_sSup
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : BddAbove s✝
a✝ : a✝² ∈ s✝
⊢ a✝² ∈ s✝
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ upperBounds s → sSup s ≤ a
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : Set.Nonempty s✝
a✝ : a✝² ∈ upperBounds s✝
⊢ sSup s✝ ≤ a✝²
[PROOFSTEP]
apply sSup_le
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : Set.Nonempty s✝
a✝ : a✝² ∈ upperBounds s✝
⊢ ∀ (b : α), b ∈ s✝ → b ≤ a✝²
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
⊢ ∀ (s : Set α) (a : α), BddBelow s → a ∈ s → sInf s ≤ a
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : BddBelow s✝
a✝ : a✝² ∈ s✝
⊢ sInf s✝ ≤ a✝²
[PROOFSTEP]
apply sInf_le
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : BddBelow s✝
a✝ : a✝² ∈ s✝
⊢ a✝² ∈ s✝
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ lowerBounds s → a ≤ sInf s
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : Set.Nonempty s✝
a✝ : a✝² ∈ lowerBounds s✝
⊢ a✝² ≤ sInf s✝
[PROOFSTEP]
apply le_sInf
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : CompleteLattice α
src✝ : CompleteLattice α := inst✝
s✝ : Set α
a✝² : α
a✝¹ : Set.Nonempty s✝
a✝ : a✝² ∈ lowerBounds s✝
⊢ ∀ (b : α), b ∈ s✝ → a✝² ≤ b
[PROOFSTEP]
assumption
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
hs : BddAbove s
has : a ∈ s
⊢ a ≤ sSup s
[PROOFSTEP]
have h's : (upperBounds s).Nonempty := hs
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
hs : BddAbove s
has : a ∈ s
h's : Set.Nonempty (upperBounds s)
⊢ a ≤ sSup s
[PROOFSTEP]
simp only [h's, dif_pos]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
hs : BddAbove s
has : a ∈ s
h's : Set.Nonempty (upperBounds s)
⊢ a ≤ WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) (upperBounds s) (_ : Set.Nonempty (upperBounds s))
[PROOFSTEP]
exact h.wf.min_mem _ h's has
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
x✝ : Set.Nonempty s
has : a ∈ upperBounds s
⊢ sSup s ≤ a
[PROOFSTEP]
have h's : (upperBounds s).Nonempty := ⟨a, has⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
x✝ : Set.Nonempty s
has : a ∈ upperBounds s
h's : Set.Nonempty (upperBounds s)
⊢ sSup s ≤ a
[PROOFSTEP]
simp only [h's, dif_pos]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
x✝ : Set.Nonempty s
has : a ∈ upperBounds s
h's : Set.Nonempty (upperBounds s)
⊢ WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) (upperBounds s) (_ : Set.Nonempty (upperBounds s)) ≤ a
[PROOFSTEP]
simpa using h.wf.not_lt_min _ h's has
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
x✝ : BddBelow s
has : a ∈ s
⊢ sInf s ≤ a
[PROOFSTEP]
have s_ne : s.Nonempty := ⟨a, has⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
x✝ : BddBelow s
has : a ∈ s
s_ne : Set.Nonempty s
⊢ sInf s ≤ a
[PROOFSTEP]
simpa [s_ne] using not_lt.1 (h.wf.not_lt_min s s_ne has)
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
hs : Set.Nonempty s
has : a ∈ lowerBounds s
⊢ a ≤ sInf s
[PROOFSTEP]
simp only [hs, dif_pos]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
a : α
hs : Set.Nonempty s
has : a ∈ lowerBounds s
⊢ a ≤ WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) s (_ : Set.Nonempty s)
[PROOFSTEP]
exact has (h.wf.min_mem s hs)
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
⊢ ∀ (s : Set α), ¬BddAbove s → sSup s = sSup univ
[PROOFSTEP]
intro s H
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
H : ¬BddAbove s
⊢ sSup s = sSup univ
[PROOFSTEP]
have A : ¬(BddAbove (univ : Set α)) := by contrapose! H; exact H.mono (subset_univ _)
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
H : ¬BddAbove s
⊢ ¬BddAbove univ
[PROOFSTEP]
contrapose! H
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
H : BddAbove univ
⊢ BddAbove s
[PROOFSTEP]
exact H.mono (subset_univ _)
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
H : ¬BddAbove s
A : ¬BddAbove univ
⊢ sSup s = sSup univ
[PROOFSTEP]
have B : ¬((upperBounds s).Nonempty) := H
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
H : ¬BddAbove s
A : ¬BddAbove univ
B : ¬Set.Nonempty (upperBounds s)
⊢ sSup s = sSup univ
[PROOFSTEP]
have C : ¬((upperBounds (univ : Set α)).Nonempty) := A
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
s : Set α
H : ¬BddAbove s
A : ¬BddAbove univ
B : ¬Set.Nonempty (upperBounds s)
C : ¬Set.Nonempty (upperBounds univ)
⊢ sSup s = sSup univ
[PROOFSTEP]
simp [sSup, B, C]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
i₁ : LinearOrder α
i₂ : OrderBot α
h : IsWellOrder α fun x x_1 => x < x_1
src✝ : Lattice α := LinearOrder.toLattice
⊢ sSup ∅ = ⊥
[PROOFSTEP]
simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLattice α
s✝ t : Set α
a b : α
f : β → α
s : Set β
H : BddAbove (f '' s)
Hne : Set.Nonempty s
⊢ IsLUB (f '' s) (⨆ (i : ↑s), f ↑i)
[PROOFSTEP]
rw [← sSup_image']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLattice α
s✝ t : Set α
a b : α
f : β → α
s : Set β
H : BddAbove (f '' s)
Hne : Set.Nonempty s
⊢ IsLUB (f '' s) (sSup (f '' s))
[PROOFSTEP]
exact isLUB_csSup (Hne.image _) H
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝¹ : NoMaxOrder α
inst✝ : DenselyOrdered α
w : α
hw : a < w
⊢ ∃ a_1, a_1 ∈ Ioi a ∧ a_1 < w
[PROOFSTEP]
simpa using exists_between hw
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝¹ : NoMinOrder α
inst✝ : DenselyOrdered α
w : α
hw : w < a
⊢ ∃ a_1, a_1 ∈ Iio a ∧ w < a_1
[PROOFSTEP]
simpa [and_comm] using exists_between hw
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝ : Nonempty ι
f : ι → α
c : α
H : ∀ (x : ι), f x ≤ c
⊢ ∀ (b : α), b ∈ range f → b ≤ c
[PROOFSTEP]
rwa [forall_range_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLattice α
s t : Set α
a b : α
f g : ι → α
B : BddAbove (range g)
H : ∀ (x : ι), f x ≤ g x
⊢ iSup f ≤ iSup g
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLattice α
s t : Set α
a b : α
f g : ι → α
B : BddAbove (range g)
H : ∀ (x : ι), f x ≤ g x
h✝ : IsEmpty ι
⊢ iSup f ≤ iSup g
[PROOFSTEP]
rw [iSup_of_empty', iSup_of_empty']
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLattice α
s t : Set α
a b : α
f g : ι → α
B : BddAbove (range g)
H : ∀ (x : ι), f x ≤ g x
h✝ : Nonempty ι
⊢ iSup f ≤ iSup g
[PROOFSTEP]
exact ciSup_le fun x => le_ciSup_of_le B x (H x)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLattice α
s t : Set α
a✝ b : α
hι : Nonempty ι
a : α
⊢ ⨆ (x : ι), a = a
[PROOFSTEP]
rw [iSup, range_const, csSup_singleton]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s✝ t : Set α
a b : α
inst✝ : Unique ι
s : ι → α
⊢ ⨆ (i : ι), s i = s default
[PROOFSTEP]
have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s✝ t : Set α
a b : α
inst✝ : Unique ι
s : ι → α
this : ∀ (i : ι), s i = s default
⊢ ⨆ (i : ι), s i = s default
[PROOFSTEP]
simp only [this, ciSup_const]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝ : Nonempty ι
f : ι → α
h₁ : ∀ (i : ι), b ≤ f i
h₂ : ∀ (w : α), b < w → ∃ i, f i < w
⊢ ⨅ (i : ι), f i = b
[PROOFSTEP]
exact @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝ : SemilatticeSup β
f g : β → α
hf : Monotone f
hg : Antitone g
h : f ≤ g
⊢ ⨆ (n : β), f n ∈ ⋂ (n : β), Icc (f n) (g n)
[PROOFSTEP]
refine' mem_iInter.2 fun n => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝ : SemilatticeSup β
f g : β → α
hf : Monotone f
hg : Antitone g
h : f ≤ g
n : β
⊢ ⨆ (n : β), f n ∈ Icc (f n) (g n)
[PROOFSTEP]
haveI : Nonempty β := ⟨n⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝ : SemilatticeSup β
f g : β → α
hf : Monotone f
hg : Antitone g
h : f ≤ g
n : β
this : Nonempty β
⊢ ⨆ (n : β), f n ∈ Icc (f n) (g n)
[PROOFSTEP]
have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
inst✝ : SemilatticeSup β
f g : β → α
hf : Monotone f
hg : Antitone g
h : f ≤ g
n : β
this✝ : Nonempty β
this : ∀ (m : β), f m ≤ g n
⊢ ⨆ (n : β), f n ∈ Icc (f n) (g n)
[PROOFSTEP]
exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Type u_5
α : ι → Type u_6
inst✝ : (i : ι) → ConditionallyCompleteLattice (α i)
src✝² : Lattice ((i : ι) → α i) := lattice
src✝¹ : SupSet ((i : ι) → α i) := supSet
src✝ : InfSet ((i : ι) → α i) := infSet
s : Set ((i : ι) → α i)
f : (i : ι) → α i
hs : Set.Nonempty s
hf : f ∈ upperBounds s
i : ι
⊢ Set.Nonempty (range fun f => ↑f i)
[PROOFSTEP]
haveI := hs.to_subtype
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Type u_5
α : ι → Type u_6
inst✝ : (i : ι) → ConditionallyCompleteLattice (α i)
src✝² : Lattice ((i : ι) → α i) := lattice
src✝¹ : SupSet ((i : ι) → α i) := supSet
src✝ : InfSet ((i : ι) → α i) := infSet
s : Set ((i : ι) → α i)
f : (i : ι) → α i
hs : Set.Nonempty s
hf : f ∈ upperBounds s
i : ι
this : Nonempty ↑s
⊢ Set.Nonempty (range fun f => ↑f i)
[PROOFSTEP]
apply range_nonempty
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Type u_5
α : ι → Type u_6
inst✝ : (i : ι) → ConditionallyCompleteLattice (α i)
src✝² : Lattice ((i : ι) → α i) := lattice
src✝¹ : SupSet ((i : ι) → α i) := supSet
src✝ : InfSet ((i : ι) → α i) := infSet
s : Set ((i : ι) → α i)
f : (i : ι) → α i
hs : Set.Nonempty s
hf : f ∈ lowerBounds s
i : ι
⊢ Set.Nonempty (range fun f => ↑f i)
[PROOFSTEP]
haveI := hs.to_subtype
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Type u_5
α : ι → Type u_6
inst✝ : (i : ι) → ConditionallyCompleteLattice (α i)
src✝² : Lattice ((i : ι) → α i) := lattice
src✝¹ : SupSet ((i : ι) → α i) := supSet
src✝ : InfSet ((i : ι) → α i) := infSet
s : Set ((i : ι) → α i)
f : (i : ι) → α i
hs : Set.Nonempty s
hf : f ∈ lowerBounds s
i : ι
this : Nonempty ↑s
⊢ Set.Nonempty (range fun f => ↑f i)
[PROOFSTEP]
apply range_nonempty
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s t : Set α
a b : α
hs : Set.Nonempty s
hb : b < sSup s
⊢ ∃ a, a ∈ s ∧ b < a
[PROOFSTEP]
contrapose! hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s t : Set α
a b : α
hs : Set.Nonempty s
hb : ∀ (a : α), a ∈ s → a ≤ b
⊢ sSup s ≤ b
[PROOFSTEP]
exact csSup_le hs hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
⊢ sSup s = sSup t
[PROOFSTEP]
rcases eq_empty_or_nonempty s with rfl | s_ne
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s t✝ : Set α
a b : α
t : Set α
hs : ∀ (x : α), x ∈ ∅ → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ ∅ ∧ y ≤ x
⊢ sSup ∅ = sSup t
[PROOFSTEP]
have : t = ∅ := eq_empty_of_forall_not_mem (fun y yt ↦ by simpa using ht y yt)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s t✝ : Set α
a b : α
t : Set α
hs : ∀ (x : α), x ∈ ∅ → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ ∅ ∧ y ≤ x
y : α
yt : y ∈ t
⊢ False
[PROOFSTEP]
simpa using ht y yt
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s t✝ : Set α
a b : α
t : Set α
hs : ∀ (x : α), x ∈ ∅ → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ ∅ ∧ y ≤ x
this : t = ∅
⊢ sSup ∅ = sSup t
[PROOFSTEP]
rw [this]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
⊢ sSup s = sSup t
[PROOFSTEP]
rcases eq_empty_or_nonempty t with rfl | t_ne
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t : Set α
a b : α
s : Set α
s_ne : Set.Nonempty s
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ ∅ ∧ x ≤ y
ht : ∀ (y : α), y ∈ ∅ → ∃ x, x ∈ s ∧ y ≤ x
⊢ sSup s = sSup ∅
[PROOFSTEP]
have : s = ∅ := eq_empty_of_forall_not_mem (fun x xs ↦ by simpa using hs x xs)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t : Set α
a b : α
s : Set α
s_ne : Set.Nonempty s
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ ∅ ∧ x ≤ y
ht : ∀ (y : α), y ∈ ∅ → ∃ x, x ∈ s ∧ y ≤ x
x : α
xs : x ∈ s
⊢ False
[PROOFSTEP]
simpa using hs x xs
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t : Set α
a b : α
s : Set α
s_ne : Set.Nonempty s
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ ∅ ∧ x ≤ y
ht : ∀ (y : α), y ∈ ∅ → ∃ x, x ∈ s ∧ y ≤ x
this : s = ∅
⊢ sSup s = sSup ∅
[PROOFSTEP]
rw [this]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
⊢ sSup s = sSup t
[PROOFSTEP]
by_cases B : BddAbove s ∨ BddAbove t
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
⊢ sSup s = sSup t
[PROOFSTEP]
have Bs : BddAbove s := by
rcases B with hB | ⟨b, hb⟩
· exact hB
· refine ⟨b, fun x hx ↦ ?_⟩
rcases hs x hx with ⟨y, hy, hxy⟩
exact hxy.trans (hb hy)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
⊢ BddAbove s
[PROOFSTEP]
rcases B with hB | ⟨b, hb⟩
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
hB : BddAbove s
⊢ BddAbove s
[PROOFSTEP]
exact hB
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b✝ : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
b : α
hb : b ∈ upperBounds t
⊢ BddAbove s
[PROOFSTEP]
refine ⟨b, fun x hx ↦ ?_⟩
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b✝ : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
b : α
hb : b ∈ upperBounds t
x : α
hx : x ∈ s
⊢ x ≤ b
[PROOFSTEP]
rcases hs x hx with ⟨y, hy, hxy⟩
[GOAL]
case inr.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b✝ : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
b : α
hb : b ∈ upperBounds t
x : α
hx : x ∈ s
y : α
hy : y ∈ t
hxy : x ≤ y
⊢ x ≤ b
[PROOFSTEP]
exact hxy.trans (hb hy)
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
⊢ sSup s = sSup t
[PROOFSTEP]
have Bt : BddAbove t := by
rcases B with ⟨b, hb⟩ | hB
· refine ⟨b, fun y hy ↦ ?_⟩
rcases ht y hy with ⟨x, hx, hyx⟩
exact hyx.trans (hb hx)
· exact hB
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
⊢ BddAbove t
[PROOFSTEP]
rcases B with ⟨b, hb⟩ | hB
[GOAL]
case inl.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b✝ : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
Bs : BddAbove s
b : α
hb : b ∈ upperBounds s
⊢ BddAbove t
[PROOFSTEP]
refine ⟨b, fun y hy ↦ ?_⟩
[GOAL]
case inl.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b✝ : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
Bs : BddAbove s
b : α
hb : b ∈ upperBounds s
y : α
hy : y ∈ t
⊢ y ≤ b
[PROOFSTEP]
rcases ht y hy with ⟨x, hx, hyx⟩
[GOAL]
case inl.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b✝ : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
Bs : BddAbove s
b : α
hb : b ∈ upperBounds s
y : α
hy : y ∈ t
x : α
hx : x ∈ s
hyx : y ≤ x
⊢ y ≤ b
[PROOFSTEP]
exact hyx.trans (hb hx)
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
Bs : BddAbove s
hB : BddAbove t
⊢ BddAbove t
[PROOFSTEP]
exact hB
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
⊢ sSup s = sSup t
[PROOFSTEP]
apply le_antisymm
[GOAL]
case pos.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
⊢ sSup s ≤ sSup t
[PROOFSTEP]
apply csSup_le s_ne (fun x hx ↦ ?_)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
x : α
hx : x ∈ s
⊢ x ≤ sSup t
[PROOFSTEP]
rcases hs x hx with ⟨y, yt, hxy⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
x : α
hx : x ∈ s
y : α
yt : y ∈ t
hxy : x ≤ y
⊢ x ≤ sSup t
[PROOFSTEP]
exact hxy.trans (le_csSup Bt yt)
[GOAL]
case pos.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
⊢ sSup t ≤ sSup s
[PROOFSTEP]
apply csSup_le t_ne (fun y hy ↦ ?_)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
y : α
hy : y ∈ t
⊢ y ≤ sSup s
[PROOFSTEP]
rcases ht y hy with ⟨x, xs, hyx⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : BddAbove s ∨ BddAbove t
Bs : BddAbove s
Bt : BddAbove t
y : α
hy : y ∈ t
x : α
xs : x ∈ s
hyx : y ≤ x
⊢ y ≤ sSup s
[PROOFSTEP]
exact hyx.trans (le_csSup Bs xs)
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrder α
s✝ t✝ : Set α
a b : α
s t : Set α
hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y
ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x
s_ne : Set.Nonempty s
t_ne : Set.Nonempty t
B : ¬(BddAbove s ∨ BddAbove t)
⊢ sSup s = sSup t
[PROOFSTEP]
simp [csSup_of_not_bddAbove, (not_or.1 B).1, (not_or.1 B).2]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrder α
s t : Set α
a b : α
inst✝ : IsWellOrder α fun x x_1 => x < x_1
hs : Set.Nonempty s
⊢ IsLeast s (sInf s)
[PROOFSTEP]
rw [sInf_eq_argmin_on hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrder α
s t : Set α
a b : α
inst✝ : IsWellOrder α fun x x_1 => x < x_1
hs : Set.Nonempty s
⊢ IsLeast s (argminOn id (_ : WellFounded fun x x_1 => x < x_1) s hs)
[PROOFSTEP]
exact ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
inst✝ : IsEmpty ι
f : ι → α
⊢ ⨆ (i : ι), f i = ⊥
[PROOFSTEP]
rw [iSup_of_empty', csSup_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set α
hs : BddAbove s
⊢ IsLUB s (sSup s)
[PROOFSTEP]
rcases eq_empty_or_nonempty s with (rfl | hne)
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
hs : BddAbove ∅
⊢ IsLUB ∅ (sSup ∅)
[PROOFSTEP]
simp only [csSup_empty, isLUB_empty]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set α
hs : BddAbove s
hne : Set.Nonempty s
⊢ IsLUB s (sSup s)
[PROOFSTEP]
exact isLUB_csSup hne hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : ι → α
a : α
h : BddAbove (range s)
⊢ a ≤ iSup s ↔ ∀ (b : α), (∀ (i : ι), s i ≤ b) → a ≤ b
[PROOFSTEP]
simp [iSup, h, le_csSup_iff', upperBounds]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set α
a : α
h : a < sSup s
⊢ ∃ b, b ∈ s ∧ a < b
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set α
a : α
h : ∀ (b : α), b ∈ s → b ≤ a
⊢ sSup s ≤ a
[PROOFSTEP]
exact csSup_le' h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
a : α
h : a < ⨆ (i : ι), f i
⊢ ∃ i, a < f i
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
a : α
h : ∀ (i : ι), f i ≤ a
⊢ ⨆ (i : ι), f i ≤ a
[PROOFSTEP]
exact ciSup_le' h
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
⊢ IsLUB s (sSup s)
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
⊢ sSup s ∈ upperBounds s
[PROOFSTEP]
show ite _ _ _ ∈ _
[GOAL]
case left
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
⊢ (if ⊤ ∈ s then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' s) then ↑(sSup ((fun a => ↑a) ⁻¹' s)) else ⊤) ∈ upperBounds s
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ⊤ ∈ s
⊢ ⊤ ∈ upperBounds s
[PROOFSTEP]
intro _ _
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ⊤ ∈ s
a✝¹ : WithTop β
a✝ : a✝¹ ∈ s
⊢ a✝¹ ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ∈ upperBounds s
[PROOFSTEP]
rintro (⟨⟩ | a) ha
[GOAL]
case pos.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
ha : none ∈ s
⊢ none ≤ ↑(sSup ((fun a => ↑a) ⁻¹' s))
[PROOFSTEP]
contradiction
[GOAL]
case pos.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
a : β
ha : Option.some a ∈ s
⊢ Option.some a ≤ ↑(sSup ((fun a => ↑a) ⁻¹' s))
[PROOFSTEP]
apply some_le_some.2
[GOAL]
case pos.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
a : β
ha : Option.some a ∈ s
⊢ a ≤ sSup ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
exact le_csSup h₂ ha
[GOAL]
case neg
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
⊢ ⊤ ∈ upperBounds s
[PROOFSTEP]
intro _ _
[GOAL]
case neg
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
a✝¹ : WithTop β
a✝ : a✝¹ ∈ s
⊢ a✝¹ ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case right
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
⊢ sSup s ∈ lowerBounds (upperBounds s)
[PROOFSTEP]
show ite _ _ _ ∈ _
[GOAL]
case right
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
⊢ (if ⊤ ∈ s then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' s) then ↑(sSup ((fun a => ↑a) ⁻¹' s)) else ⊤) ∈
lowerBounds (upperBounds s)
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ⊤ ∈ s
⊢ ⊤ ∈ lowerBounds (upperBounds s)
[PROOFSTEP]
rintro (⟨⟩ | a) ha
[GOAL]
case pos.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ⊤ ∈ s
ha : none ∈ upperBounds s
⊢ ⊤ ≤ none
[PROOFSTEP]
exact le_rfl
[GOAL]
case pos.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ⊤ ∈ s
a : β
ha : Option.some a ∈ upperBounds s
⊢ ⊤ ≤ Option.some a
[PROOFSTEP]
exact False.elim (not_top_le_coe a (ha h₁))
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ∈ lowerBounds (upperBounds s)
[PROOFSTEP]
rintro (⟨⟩ | b) hb
[GOAL]
case pos.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
hb : none ∈ upperBounds s
⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case pos.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ≤ Option.some b
[PROOFSTEP]
refine' some_le_some.2 (csSup_le _ _)
[GOAL]
case pos.some.refine'_1
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
rcases hs with ⟨⟨⟩ | b, hb⟩
[GOAL]
case pos.some.refine'_1.intro.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb✝ : Option.some b ∈ upperBounds s
hb : none ∈ s
⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
exact absurd hb h₁
[GOAL]
case pos.some.refine'_1.intro.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
b✝ : β
hb✝ : Option.some b✝ ∈ upperBounds s
b : β
hb : Option.some b ∈ s
⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
exact ⟨b, hb⟩
[GOAL]
case pos.some.refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ ∀ (b_1 : β), b_1 ∈ (fun a => ↑a) ⁻¹' s → b_1 ≤ b
[PROOFSTEP]
intro a ha
[GOAL]
case pos.some.refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
a : β
ha : a ∈ (fun a => ↑a) ⁻¹' s
⊢ a ≤ b
[PROOFSTEP]
exact some_le_some.1 (hb ha)
[GOAL]
case neg
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
⊢ ⊤ ∈ lowerBounds (upperBounds s)
[PROOFSTEP]
rintro (⟨⟩ | b) hb
[GOAL]
case neg.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
hb : none ∈ upperBounds s
⊢ ⊤ ≤ none
[PROOFSTEP]
exact le_rfl
[GOAL]
case neg.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ ⊤ ≤ Option.some b
[PROOFSTEP]
exfalso
[GOAL]
case neg.some.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ False
[PROOFSTEP]
apply h₂
[GOAL]
case neg.some.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ BddAbove ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
use b
[GOAL]
case h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
⊢ b ∈ upperBounds ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
intro a ha
[GOAL]
case h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : Set.Nonempty s
h₁ : ¬⊤ ∈ s
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s)
b : β
hb : Option.some b ∈ upperBounds s
a : β
ha : a ∈ (fun a => ↑a) ⁻¹' s
⊢ a ≤ b
[PROOFSTEP]
exact some_le_some.1 (hb ha)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
⊢ IsLUB s (sSup s)
[PROOFSTEP]
cases' s.eq_empty_or_nonempty with hs hs
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
⊢ IsLUB s (sSup s)
[PROOFSTEP]
rw [hs]
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
⊢ IsLUB ∅ (sSup ∅)
[PROOFSTEP]
dsimp only [sSup]
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
⊢ IsLUB ∅ (if ⊤ ∈ ∅ then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' ∅) then ↑(sSup ((fun a => ↑a) ⁻¹' ∅)) else ⊤)
[PROOFSTEP]
show IsLUB ∅ _
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
⊢ IsLUB ∅ (if ⊤ ∈ ∅ then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' ∅) then ↑(sSup ((fun a => ↑a) ⁻¹' ∅)) else ⊤)
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ⊤ ∈ ∅
⊢ IsLUB ∅ ⊤
[PROOFSTEP]
cases h₁
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ¬⊤ ∈ ∅
h₂ : BddAbove ((fun a => ↑a) ⁻¹' ∅)
⊢ IsLUB ∅ ↑(sSup ((fun a => ↑a) ⁻¹' ∅))
[PROOFSTEP]
rw [preimage_empty, csSup_empty]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ¬⊤ ∈ ∅
h₂ : BddAbove ((fun a => ↑a) ⁻¹' ∅)
⊢ IsLUB ∅ ↑⊥
[PROOFSTEP]
exact isLUB_empty
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ¬⊤ ∈ ∅
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅)
⊢ IsLUB ∅ ⊤
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ¬⊤ ∈ ∅
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅)
⊢ False
[PROOFSTEP]
apply h₂
[GOAL]
case neg.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ¬⊤ ∈ ∅
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅)
⊢ BddAbove ((fun a => ↑a) ⁻¹' ∅)
[PROOFSTEP]
use⊥
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : s = ∅
h₁ : ¬⊤ ∈ ∅
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅)
⊢ ⊥ ∈ upperBounds ((fun a => ↑a) ⁻¹' ∅)
[PROOFSTEP]
rintro a ⟨⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : Set.Nonempty s
⊢ IsLUB s (sSup s)
[PROOFSTEP]
exact isLUB_sSup' hs
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
⊢ IsGLB s (sInf s)
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
⊢ sInf s ∈ lowerBounds s
[PROOFSTEP]
show ite _ _ _ ∈ _
[GOAL]
case left
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
⊢ (if s ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' s))) ∈ lowerBounds s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : s ⊆ {⊤}
⊢ ⊤ ∈ lowerBounds s
[PROOFSTEP]
intro a ha
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : s ⊆ {⊤}
a : WithTop β
ha : a ∈ s
⊢ ⊤ ≤ a
[PROOFSTEP]
exact top_le_iff.2 (Set.mem_singleton_iff.1 (h ha))
[GOAL]
case neg
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ∈ lowerBounds s
[PROOFSTEP]
rintro (⟨⟩ | a) ha
[GOAL]
case neg.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
ha : none ∈ s
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case neg.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ≤ Option.some a
[PROOFSTEP]
refine' some_le_some.2 (csInf_le _ ha)
[GOAL]
case neg.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
⊢ BddBelow ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
rcases hs with ⟨⟨⟩ | b, hb⟩
[GOAL]
case neg.some.intro.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
hb : none ∈ lowerBounds s
⊢ BddBelow ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
exfalso
[GOAL]
case neg.some.intro.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
hb : none ∈ lowerBounds s
⊢ False
[PROOFSTEP]
apply h
[GOAL]
case neg.some.intro.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
hb : none ∈ lowerBounds s
⊢ s ⊆ {⊤}
[PROOFSTEP]
intro c hc
[GOAL]
case neg.some.intro.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
hb : none ∈ lowerBounds s
c : WithTop β
hc : c ∈ s
⊢ c ∈ {⊤}
[PROOFSTEP]
rw [mem_singleton_iff, ← top_le_iff]
[GOAL]
case neg.some.intro.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
hb : none ∈ lowerBounds s
c : WithTop β
hc : c ∈ s
⊢ ⊤ ≤ c
[PROOFSTEP]
exact hb hc
[GOAL]
case neg.some.intro.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
b : β
hb : Option.some b ∈ lowerBounds s
⊢ BddBelow ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
use b
[GOAL]
case h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
b : β
hb : Option.some b ∈ lowerBounds s
⊢ b ∈ lowerBounds ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
intro c hc
[GOAL]
case h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ s
b : β
hb : Option.some b ∈ lowerBounds s
c : β
hc : c ∈ (fun a => ↑a) ⁻¹' s
⊢ b ≤ c
[PROOFSTEP]
exact some_le_some.1 (hb hc)
[GOAL]
case right
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
⊢ sInf s ∈ upperBounds (lowerBounds s)
[PROOFSTEP]
show ite _ _ _ ∈ _
[GOAL]
case right
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
⊢ (if s ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' s))) ∈ upperBounds (lowerBounds s)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : s ⊆ {⊤}
⊢ ⊤ ∈ upperBounds (lowerBounds s)
[PROOFSTEP]
intro _ _
[GOAL]
case pos
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : s ⊆ {⊤}
a✝¹ : WithTop β
a✝ : a✝¹ ∈ lowerBounds s
⊢ a✝¹ ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case neg
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ∈ upperBounds (lowerBounds s)
[PROOFSTEP]
rintro (⟨⟩ | a) ha
[GOAL]
case neg.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
ha : none ∈ lowerBounds s
⊢ none ≤ ↑(sInf ((fun a => ↑a) ⁻¹' s))
[PROOFSTEP]
exfalso
[GOAL]
case neg.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
ha : none ∈ lowerBounds s
⊢ False
[PROOFSTEP]
apply h
[GOAL]
case neg.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
ha : none ∈ lowerBounds s
⊢ s ⊆ {⊤}
[PROOFSTEP]
intro b hb
[GOAL]
case neg.none.h
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
ha : none ∈ lowerBounds s
b : WithTop β
hb : b ∈ s
⊢ b ∈ {⊤}
[PROOFSTEP]
exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
[GOAL]
case neg.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ lowerBounds s
⊢ Option.some a ≤ ↑(sInf ((fun a => ↑a) ⁻¹' s))
[PROOFSTEP]
refine' some_le_some.2 (le_csInf _ _)
[GOAL]
case neg.some.refine'_1
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ lowerBounds s
⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
classical
contrapose! h
rintro (⟨⟩ | a) ha
· exact mem_singleton ⊤
· exact (h ⟨a, ha⟩).elim
[GOAL]
case neg.some.refine'_1
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ lowerBounds s
⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s)
[PROOFSTEP]
contrapose! h
[GOAL]
case neg.some.refine'_1
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
a : β
ha : Option.some a ∈ lowerBounds s
h : ¬Set.Nonempty ((fun a => ↑a) ⁻¹' s)
⊢ s ⊆ {⊤}
[PROOFSTEP]
rintro (⟨⟩ | a) ha
[GOAL]
case neg.some.refine'_1.none
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
a : β
ha✝ : Option.some a ∈ lowerBounds s
h : ¬Set.Nonempty ((fun a => ↑a) ⁻¹' s)
ha : none ∈ s
⊢ none ∈ {⊤}
[PROOFSTEP]
exact mem_singleton ⊤
[GOAL]
case neg.some.refine'_1.some
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
a✝ : β
ha✝ : Option.some a✝ ∈ lowerBounds s
h : ¬Set.Nonempty ((fun a => ↑a) ⁻¹' s)
a : β
ha : Option.some a ∈ s
⊢ Option.some a ∈ {⊤}
[PROOFSTEP]
exact (h ⟨a, ha⟩).elim
[GOAL]
case neg.some.refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ lowerBounds s
⊢ ∀ (b : β), b ∈ (fun a => ↑a) ⁻¹' s → a ≤ b
[PROOFSTEP]
intro b hb
[GOAL]
case neg.some.refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ lowerBounds s
b : β
hb : b ∈ (fun a => ↑a) ⁻¹' s
⊢ a ≤ b
[PROOFSTEP]
rw [← some_le_some]
[GOAL]
case neg.some.refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLinearOrderBot α
β : Type u_5
inst✝ : ConditionallyCompleteLattice β
s : Set (WithTop β)
hs : BddBelow s
h : ¬s ⊆ {⊤}
a : β
ha : Option.some a ∈ lowerBounds s
b : β
hb : b ∈ (fun a => ↑a) ⁻¹' s
⊢ Option.some a ≤ Option.some b
[PROOFSTEP]
exact ha hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
⊢ IsGLB s (sInf s)
[PROOFSTEP]
by_cases hs : BddBelow s
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : BddBelow s
⊢ IsGLB s (sInf s)
[PROOFSTEP]
exact isGLB_sInf' hs
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : ¬BddBelow s
⊢ IsGLB s (sInf s)
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : ¬BddBelow s
⊢ False
[PROOFSTEP]
apply hs
[GOAL]
case neg.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : ¬BddBelow s
⊢ BddBelow s
[PROOFSTEP]
use⊥
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : ¬BddBelow s
⊢ ⊥ ∈ lowerBounds s
[PROOFSTEP]
intro _ _
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set (WithTop α)
hs : ¬BddBelow s
a✝¹ : WithTop α
a✝ : a✝¹ ∈ s
⊢ ⊥ ≤ a✝¹
[PROOFSTEP]
exact bot_le
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set α
hb : BddAbove s
⊢ ↑(sSup s) = ⨆ (a : α) (_ : a ∈ s), ↑a
[PROOFSTEP]
rw [coe_sSup' hb, sSup_image]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝ : ConditionallyCompleteLinearOrderBot α
s : Set α
hs : Set.Nonempty s
⊢ ↑(sInf s) = ⨅ (a : α) (_ : a ∈ s), ↑a
[PROOFSTEP]
rw [coe_sInf' hs, sInf_image]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : ConditionallyCompleteLattice β
f : α → β
h_mono : Monotone f
s : Set α
c : α
hcs : c ∈ s
h_bdd : BddBelow s
⊢ sInf (f '' s) ≤ f c
[PROOFSTEP]
let f' : αᵒᵈ → βᵒᵈ := f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : ConditionallyCompleteLattice β
f : α → β
h_mono : Monotone f
s : Set α
c : α
hcs : c ∈ s
h_bdd : BddBelow s
f' : αᵒᵈ → βᵒᵈ := f
⊢ sInf (f '' s) ≤ f c
[PROOFSTEP]
exact @le_csSup_image αᵒᵈ βᵒᵈ _ _ _ (show Monotone f' from fun x y hxy => h_mono hxy) _ _ hcs h_bdd
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : ConditionallyCompleteLattice β
f : α → β
h_mono : Monotone f
s : Set α
hs : Set.Nonempty s
B : α
hB : B ∈ lowerBounds s
⊢ f B ≤ sInf (f '' s)
[PROOFSTEP]
let f' : αᵒᵈ → βᵒᵈ := f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : Preorder α
inst✝ : ConditionallyCompleteLattice β
f : α → β
h_mono : Monotone f
s : Set α
hs : Set.Nonempty s
B : α
hB : B ∈ lowerBounds s
f' : αᵒᵈ → βᵒᵈ := f
⊢ f B ≤ sInf (f '' s)
[PROOFSTEP]
exact @csSup_image_le αᵒᵈ βᵒᵈ _ _ _ (show Monotone f' from fun x y hxy => h_mono hxy) _ hs _ hB
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set α
hne : Set.Nonempty s
hbdd : BddAbove s
⊢ l (sSup s) = sSup (l '' s)
[PROOFSTEP]
rw [gc.l_csSup hne hbdd, sSup_image']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
l : α → β
u : β → α
gc : GaloisConnection l u
f : ι → α
hf : BddAbove (range f)
⊢ l (⨆ (i : ι), f i) = ⨆ (i : ι), l (f i)
[PROOFSTEP]
rw [iSup, gc.l_csSup (range_nonempty _) hf, iSup_range']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set γ
f : γ → α
hf : BddAbove (f '' s)
hne : Set.Nonempty s
⊢ l (⨆ (i : ↑s), f ↑i) = ⨆ (i : ↑s), l (f ↑i)
[PROOFSTEP]
haveI := hne.to_subtype
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set γ
f : γ → α
hf : BddAbove (f '' s)
hne : Set.Nonempty s
this : Nonempty ↑s
⊢ l (⨆ (i : ↑s), f ↑i) = ⨆ (i : ↑s), l (f ↑i)
[PROOFSTEP]
rw [image_eq_range] at hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
l : α → β
u : β → α
gc : GaloisConnection l u
s : Set γ
f : γ → α
hf : BddAbove (range fun x => f ↑x)
hne : Set.Nonempty s
this : Nonempty ↑s
⊢ l (⨆ (i : ↑s), f ↑i) = ⨆ (i : ↑s), l (f ↑i)
[PROOFSTEP]
exact gc.l_ciSup hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : α → β → γ
s : Set α
t : Set β
l u : α → β → γ
l₁ u₁ : β → γ → α
l₂ u₂ : α → γ → β
h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b)
h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a)
hs₀ : Set.Nonempty s
hs₁ : BddAbove s
ht₀ : Set.Nonempty t
ht₁ : BddAbove t
⊢ sSup (image2 l s t) = l (sSup s) (sSup t)
[PROOFSTEP]
refine' eq_of_forall_ge_iff fun c => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : α → β → γ
s : Set α
t : Set β
l u : α → β → γ
l₁ u₁ : β → γ → α
l₂ u₂ : α → γ → β
h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b)
h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a)
hs₀ : Set.Nonempty s
hs₁ : BddAbove s
ht₀ : Set.Nonempty t
ht₁ : BddAbove t
c : γ
⊢ sSup (image2 l s t) ≤ c ↔ l (sSup s) (sSup t) ≤ c
[PROOFSTEP]
rw [csSup_le_iff (hs₁.image2 (fun _ => (h₁ _).monotone_l) (fun _ => (h₂ _).monotone_l) ht₁) (hs₀.image2 ht₀),
forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csSup_le_iff ht₁ ht₀]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : ConditionallyCompleteLattice γ
f : α → β → γ
s : Set α
t : Set β
l u : α → β → γ
l₁ u₁ : β → γ → α
l₂ u₂ : α → γ → β
h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b)
h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a)
hs₀ : Set.Nonempty s
hs₁ : BddAbove s
ht₀ : Set.Nonempty t
ht₁ : BddAbove t
c : γ
⊢ (∀ (i₂ : β), i₂ ∈ t → ∀ (i₁ : α), i₁ ∈ s → l i₁ i₂ ≤ c) ↔ ∀ (b : β), b ∈ t → b ≤ u₂ (sSup s) c
[PROOFSTEP]
simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csSup_le_iff hs₁ hs₀]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
⊢ sSup S ≤ a
[PROOFSTEP]
cases' S.eq_empty_or_nonempty with h h
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
⊢ sSup S ≤ a
[PROOFSTEP]
show ite _ _ _ ≤ a
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
⊢ (if ⊤ ∈ S then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' S) then ↑(sSup ((fun a => ↑a) ⁻¹' S)) else ⊤) ≤ a
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ⊤ ∈ S
⊢ ⊤ ≤ a
[PROOFSTEP]
rw [h] at h₁
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ⊤ ∈ ∅
⊢ ⊤ ≤ a
[PROOFSTEP]
cases h₁
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ ↑(sSup ((fun a => ↑a) ⁻¹' S)) ≤ a
[PROOFSTEP]
convert @bot_le _ _ _ a
[GOAL]
case h.e'_3
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ ↑(sSup ((fun a => ↑a) ⁻¹' S)) = ⊥
[PROOFSTEP]
apply congr_arg
[GOAL]
case h.e'_3.h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ sSup ((fun a => ↑a) ⁻¹' S) = ⊥
[PROOFSTEP]
simp only [h, preimage_empty, WithBot.csSup_empty]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ ⊤ ≤ a
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ False
[PROOFSTEP]
apply h₂
[GOAL]
case neg.h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ BddAbove ((fun a => ↑a) ⁻¹' S)
[PROOFSTEP]
use⊥
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ ⊥ ∈ upperBounds ((fun a => ↑a) ⁻¹' S)
[PROOFSTEP]
rw [h]
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : S = ∅
h₁ : ¬⊤ ∈ S
h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S)
⊢ ⊥ ∈ upperBounds ((fun a => ↑a) ⁻¹' ∅)
[PROOFSTEP]
rintro b ⟨⟩
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a
h : Set.Nonempty S
⊢ sSup S ≤ a
[PROOFSTEP]
refine' (WithTop.isLUB_sSup' h).2 ha
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
haS : a ∈ S
⊢ (if S ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' S))) ≤ a
[PROOFSTEP]
split_ifs with h₁
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
haS : a ∈ S
h₁ : S ⊆ {⊤}
⊢ ⊤ ≤ a
[PROOFSTEP]
cases' a with a
[GOAL]
case pos.none
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : S ⊆ {⊤}
haS : none ∈ S
⊢ ⊤ ≤ none
case pos.some
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : S ⊆ {⊤}
a : WithBot α
haS : Option.some a ∈ S
⊢ ⊤ ≤ Option.some a
[PROOFSTEP]
exact le_rfl
[GOAL]
case pos.some
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : S ⊆ {⊤}
a : WithBot α
haS : Option.some a ∈ S
⊢ ⊤ ≤ Option.some a
[PROOFSTEP]
cases h₁ haS
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
a : WithTop (WithBot α)
haS : a ∈ S
h₁ : ¬S ⊆ {⊤}
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' S)) ≤ a
[PROOFSTEP]
cases a
[GOAL]
case neg.none
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : ¬S ⊆ {⊤}
haS : none ∈ S
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' S)) ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case neg.some
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : ¬S ⊆ {⊤}
val✝ : WithBot α
haS : Option.some val✝ ∈ S
⊢ ↑(sInf ((fun a => ↑a) ⁻¹' S)) ≤ Option.some val✝
[PROOFSTEP]
apply WithTop.some_le_some.2
[GOAL]
case neg.some
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : ¬S ⊆ {⊤}
val✝ : WithBot α
haS : Option.some val✝ ∈ S
⊢ sInf ((fun a => ↑a) ⁻¹' S) ≤ val✝
[PROOFSTEP]
refine' csInf_le _ haS
[GOAL]
case neg.some
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : ¬S ⊆ {⊤}
val✝ : WithBot α
haS : Option.some val✝ ∈ S
⊢ BddBelow ((fun a => ↑a) ⁻¹' S)
[PROOFSTEP]
use⊥
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : ¬S ⊆ {⊤}
val✝ : WithBot α
haS : Option.some val✝ ∈ S
⊢ ⊥ ∈ lowerBounds ((fun a => ↑a) ⁻¹' S)
[PROOFSTEP]
intro b _
[GOAL]
case h
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
α : Type u_5
inst✝ : ConditionallyCompleteLattice α
src✝³ : InfSet (WithTop (WithBot α)) := instInfSet
src✝² : SupSet (WithTop (WithBot α)) := instSupSet
src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder
src✝ : Lattice (WithTop (WithBot α)) := lattice
S : Set (WithTop (WithBot α))
h₁ : ¬S ⊆ {⊤}
val✝ : WithBot α
haS : Option.some val✝ ∈ S
b : WithBot α
a✝ : b ∈ (fun a => ↑a) ⁻¹' S
⊢ ⊥ ≤ b
[PROOFSTEP]
exact bot_le
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
⊢ ⨆ (x : ι), ↑(f x) = ⊤ ↔ ¬BddAbove (range f)
[PROOFSTEP]
rw [iSup_eq_top, not_bddAbove_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
⊢ (∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)) ↔ ∀ (x : α), ∃ y, y ∈ range f ∧ x < y
[PROOFSTEP]
refine' ⟨fun hf r => _, fun hf a ha => _⟩
[GOAL]
case refine'_1
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
hf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)
r : α
⊢ ∃ y, y ∈ range f ∧ r < y
[PROOFSTEP]
rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩
[GOAL]
case refine'_1.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
hf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)
r : α
i : ι
hi : ↑r < ↑(f i)
⊢ ∃ y, y ∈ range f ∧ r < y
[PROOFSTEP]
exact ⟨f i, ⟨i, rfl⟩, WithTop.coe_lt_coe.mp hi⟩
[GOAL]
case refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
hf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y
a : WithTop α
ha : a < ⊤
⊢ ∃ i, a < ↑(f i)
[PROOFSTEP]
rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩
[GOAL]
case refine'_2.intro.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
hf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y
a : WithTop α
ha : a < ⊤
i : ι
hi : untop a (_ : a ≠ ⊤) < f i
⊢ ∃ i, a < ↑(f i)
[PROOFSTEP]
exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι : Sort u_5
α : Type u_6
inst✝ : ConditionallyCompleteLinearOrderBot α
f : ι → α
hf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y
a : WithTop α
ha : a < ⊤
i : ι
hi : untop a (_ : a ≠ ⊤) < f i
⊢ a < ↑(f i)
[PROOFSTEP]
simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi
| {"mathlib_filename": "Mathlib.Order.ConditionallyCompleteLattice.Basic", "llama_tokens": 41089} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : Filter α
g : Filter β
⊢ Set.univ ∈ {s | ∀ᶠ (a : α) in f, ∀ᶠ (b : β) in g, (a, b) ∈ s}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_univ, eventually_true]
| {"mathlib_filename": "Mathlib.Order.Filter.Curry", "llama_tokens": 115} |
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s : (i : ι) → i ∈ S → Set α
⊢ ⋂ (i : ι) (hi : i ∈ S), s i hi ∈ l ↔ ∀ (i : ι) (hi : i ∈ S), s i hi ∈ l
[PROOFSTEP]
rw [biInter_eq_iInter]
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s : (i : ι) → i ∈ S → Set α
⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ∈ l ↔ ∀ (i : ι) (hi : i ∈ S), s i hi ∈ l
[PROOFSTEP]
haveI := hS.toEncodable
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s : (i : ι) → i ∈ S → Set α
this : Encodable ↑S
⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ∈ l ↔ ∀ (i : ι) (hi : i ∈ S), s i hi ∈ l
[PROOFSTEP]
exact countable_iInter_mem.trans Subtype.forall
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
inst✝ : Countable ι
p : α → ι → Prop
⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), p x i) ↔ ∀ (i : ι), ∀ᶠ (x : α) in l, p x i
[PROOFSTEP]
simpa only [Filter.Eventually, setOf_forall] using @countable_iInter_mem _ _ l _ _ fun i => {x | p x i}
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
p : α → (i : ι) → i ∈ S → Prop
⊢ (∀ᶠ (x : α) in l, ∀ (i : ι) (hi : i ∈ S), p x i hi) ↔ ∀ (i : ι) (hi : i ∈ S), ∀ᶠ (x : α) in l, p x i hi
[PROOFSTEP]
simpa only [Filter.Eventually, setOf_forall] using @countable_bInter_mem _ l _ _ _ hS fun i hi => {x | p x i hi}
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s t : (i : ι) → i ∈ S → Set α
h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi
⊢ ⋃ (i : ι) (h : i ∈ S), s i h ≤ᶠ[l] ⋃ (i : ι) (h : i ∈ S), t i h
[PROOFSTEP]
simp only [biUnion_eq_iUnion]
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s t : (i : ι) → i ∈ S → Set α
h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi
⊢ ⋃ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋃ (x : ↑S), t ↑x (_ : ↑x ∈ S)
[PROOFSTEP]
haveI := hS.toEncodable
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s t : (i : ι) → i ∈ S → Set α
h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi
this : Encodable ↑S
⊢ ⋃ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋃ (x : ↑S), t ↑x (_ : ↑x ∈ S)
[PROOFSTEP]
exact EventuallyLE.countable_iUnion fun i => h i i.2
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s t : (i : ι) → i ∈ S → Set α
h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi
⊢ ⋂ (i : ι) (h : i ∈ S), s i h ≤ᶠ[l] ⋂ (i : ι) (h : i ∈ S), t i h
[PROOFSTEP]
simp only [biInter_eq_iInter]
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s t : (i : ι) → i ∈ S → Set α
h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi
⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋂ (x : ↑S), t ↑x (_ : ↑x ∈ S)
[PROOFSTEP]
haveI := hS.toEncodable
[GOAL]
ι✝ : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
ι : Type u_4
S : Set ι
hS : Set.Countable S
s t : (i : ι) → i ∈ S → Set α
h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi
this : Encodable ↑S
⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋂ (x : ↑S), t ↑x (_ : ↑x ∈ S)
[PROOFSTEP]
exact EventuallyLE.countable_iInter fun i => h i i.2
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
⊢ CountableInterFilter ⊥
[PROOFSTEP]
rw [← principal_empty]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
⊢ CountableInterFilter (𝓟 ∅)
[PROOFSTEP]
apply countableInterFilter_principal
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
⊢ CountableInterFilter ⊤
[PROOFSTEP]
rw [← principal_univ]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
⊢ CountableInterFilter (𝓟 univ)
[PROOFSTEP]
apply countableInterFilter_principal
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter β
inst✝ : CountableInterFilter l
f : α → β
⊢ CountableInterFilter (comap f l)
[PROOFSTEP]
refine' ⟨fun S hSc hS => _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter β
inst✝ : CountableInterFilter l
f : α → β
S : Set (Set α)
hSc : Set.Countable S
hS : ∀ (s : Set α), s ∈ S → s ∈ comap f l
⊢ ⋂₀ S ∈ comap f l
[PROOFSTEP]
choose! t htl ht using hS
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter β
inst✝ : CountableInterFilter l
f : α → β
S : Set (Set α)
hSc : Set.Countable S
t : Set α → Set β
htl : ∀ (s : Set α), s ∈ S → t s ∈ l
ht : ∀ (s : Set α), s ∈ S → f ⁻¹' t s ⊆ s
⊢ ⋂₀ S ∈ comap f l
[PROOFSTEP]
have : (⋂ s ∈ S, t s) ∈ l := (countable_bInter_mem hSc).2 htl
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter β
inst✝ : CountableInterFilter l
f : α → β
S : Set (Set α)
hSc : Set.Countable S
t : Set α → Set β
htl : ∀ (s : Set α), s ∈ S → t s ∈ l
ht : ∀ (s : Set α), s ∈ S → f ⁻¹' t s ⊆ s
this : ⋂ (s : Set α) (_ : s ∈ S), t s ∈ l
⊢ ⋂₀ S ∈ comap f l
[PROOFSTEP]
refine' ⟨_, this, _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter β
inst✝ : CountableInterFilter l
f : α → β
S : Set (Set α)
hSc : Set.Countable S
t : Set α → Set β
htl : ∀ (s : Set α), s ∈ S → t s ∈ l
ht : ∀ (s : Set α), s ∈ S → f ⁻¹' t s ⊆ s
this : ⋂ (s : Set α) (_ : s ∈ S), t s ∈ l
⊢ f ⁻¹' ⋂ (s : Set α) (_ : s ∈ S), t s ⊆ ⋂₀ S
[PROOFSTEP]
simpa [preimage_iInter] using iInter₂_mono ht
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter α
inst✝ : CountableInterFilter l
f : α → β
⊢ CountableInterFilter (map f l)
[PROOFSTEP]
refine' ⟨fun S hSc hS => _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter α
inst✝ : CountableInterFilter l
f : α → β
S : Set (Set β)
hSc : Set.Countable S
hS : ∀ (s : Set β), s ∈ S → s ∈ map f l
⊢ ⋂₀ S ∈ map f l
[PROOFSTEP]
simp only [mem_map, sInter_eq_biInter, preimage_iInter₂] at hS ⊢
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l✝ : Filter α
inst✝¹ : CountableInterFilter l✝
l : Filter α
inst✝ : CountableInterFilter l
f : α → β
S : Set (Set β)
hSc : Set.Countable S
hS : ∀ (s : Set β), s ∈ S → f ⁻¹' s ∈ l
⊢ ⋂ (i : Set β) (_ : i ∈ S), f ⁻¹' i ∈ l
[PROOFSTEP]
exact (countable_bInter_mem hSc).2 hS
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
⊢ CountableInterFilter (l₁ ⊓ l₂)
[PROOFSTEP]
refine' ⟨fun S hSc hS => _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊓ l₂
⊢ ⋂₀ S ∈ l₁ ⊓ l₂
[PROOFSTEP]
choose s hs t ht hst using hS
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s : (s : Set α) → s ∈ S → Set α
hs : ∀ (s_1 : Set α) (a : s_1 ∈ S), s s_1 a ∈ l₁
t : (s : Set α) → s ∈ S → Set α
ht : ∀ (s : Set α) (a : s ∈ S), t s a ∈ l₂
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
⊢ ⋂₀ S ∈ l₁ ⊓ l₂
[PROOFSTEP]
replace hs : (⋂ i ∈ S, s i ‹_›) ∈ l₁ := (countable_bInter_mem hSc).2 hs
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s t : (s : Set α) → s ∈ S → Set α
ht : ∀ (s : Set α) (a : s ∈ S), t s a ∈ l₂
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁
⊢ ⋂₀ S ∈ l₁ ⊓ l₂
[PROOFSTEP]
replace ht : (⋂ i ∈ S, t i ‹_›) ∈ l₂ := (countable_bInter_mem hSc).2 ht
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s t : (s : Set α) → s ∈ S → Set α
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁
ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂
⊢ ⋂₀ S ∈ l₁ ⊓ l₂
[PROOFSTEP]
refine' mem_of_superset (inter_mem_inf hs ht) (subset_sInter fun i hi => _)
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s t : (s : Set α) → s ∈ S → Set α
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁
ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂
i : Set α
hi : i ∈ S
⊢ (⋂ (i : Set α) (h : i ∈ S), s i h) ∩ ⋂ (i : Set α) (h : i ∈ S), t i h ⊆ i
[PROOFSTEP]
rw [hst i hi]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s t : (s : Set α) → s ∈ S → Set α
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁
ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂
i : Set α
hi : i ∈ S
⊢ (⋂ (i : Set α) (h : i ∈ S), s i h) ∩ ⋂ (i : Set α) (h : i ∈ S), t i h ⊆ s i hi ∩ t i hi
[PROOFSTEP]
apply inter_subset_inter
[GOAL]
case h₁
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s t : (s : Set α) → s ∈ S → Set α
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁
ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂
i : Set α
hi : i ∈ S
⊢ ⋂ (i : Set α) (h : i ∈ S), s i h ⊆ s i hi
[PROOFSTEP]
exact iInter_subset_of_subset i (iInter_subset _ _)
[GOAL]
case h₂
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
s t : (s : Set α) → s ∈ S → Set α
hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a
hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁
ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂
i : Set α
hi : i ∈ S
⊢ ⋂ (i : Set α) (h : i ∈ S), t i h ⊆ t i hi
[PROOFSTEP]
exact iInter_subset_of_subset i (iInter_subset _ _)
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
⊢ CountableInterFilter (l₁ ⊔ l₂)
[PROOFSTEP]
refine' ⟨fun S hSc hS => ⟨_, _⟩⟩
[GOAL]
case refine'_1
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂
⊢ ⋂₀ S ∈ l₁.sets
[PROOFSTEP]
refine' (countable_sInter_mem hSc).2 fun s hs => _
[GOAL]
case refine'_2
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂
⊢ ⋂₀ S ∈ l₂.sets
[PROOFSTEP]
refine' (countable_sInter_mem hSc).2 fun s hs => _
[GOAL]
case refine'_1
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂
s : Set α
hs : s ∈ S
⊢ s ∈ l₁
case refine'_2
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝² : CountableInterFilter l
l₁ l₂ : Filter α
inst✝¹ : CountableInterFilter l₁
inst✝ : CountableInterFilter l₂
S : Set (Set α)
hSc : Set.Countable S
hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂
s : Set α
hs : s ∈ S
⊢ s ∈ l₂
[PROOFSTEP]
exacts [(hS s hs).1, (hS s hs).2]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
⊢ CountableInterFilter (countableGenerate g)
[PROOFSTEP]
delta countableGenerate
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
⊢ CountableInterFilter
(ofCountableInter (CountableGenerateSets g)
(_ :
∀ (x : Set (Set α)),
Set.Countable x → (∀ (s : Set α), s ∈ x → CountableGenerateSets g s) → CountableGenerateSets g (⋂₀ x))
(_ : ∀ (x x_1 : Set α), CountableGenerateSets g x → x ⊆ x_1 → CountableGenerateSets g x_1))
[PROOFSTEP]
infer_instance
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
⊢ s ∈ countableGenerate g ↔ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
⊢ s ∈ countableGenerate g → ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
[PROOFSTEP]
intro h
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
⊢ (∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s) → s ∈ countableGenerate g
[PROOFSTEP]
intro h
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
h : s ∈ countableGenerate g
⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
[PROOFSTEP]
induction' h with s hs s t _ st ih S Sct _ ih
[GOAL]
case mp.basic
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s✝ s : Set α
hs : s ∈ g
⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
[PROOFSTEP]
exact ⟨{ s }, by simp [hs, subset_refl]⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s✝ s : Set α
hs : s ∈ g
⊢ {s} ⊆ g ∧ Set.Countable {s} ∧ ⋂₀ {s} ⊆ s
[PROOFSTEP]
simp [hs, subset_refl]
[GOAL]
case mp.univ
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ univ
[PROOFSTEP]
exact ⟨∅, by simp⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
⊢ ∅ ⊆ g ∧ Set.Countable ∅ ∧ ⋂₀ ∅ ⊆ univ
[PROOFSTEP]
simp
[GOAL]
case mp.superset
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s✝ s t : Set α
a✝ : CountableGenerateSets g s
st : s ⊆ t
ih : ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ t
[PROOFSTEP]
refine' Exists.imp (fun S => _) ih
[GOAL]
case mp.superset
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s✝ s t : Set α
a✝ : CountableGenerateSets g s
st : s ⊆ t
ih : ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
S : Set (Set α)
⊢ S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s → S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ t
[PROOFSTEP]
tauto
[GOAL]
case mp.sInter
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
ih : ∀ (s : Set α), s ∈ S → ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
⊢ ∃ S_1, S_1 ⊆ g ∧ Set.Countable S_1 ∧ ⋂₀ S_1 ⊆ ⋂₀ S
[PROOFSTEP]
choose T Tg Tct hT using ih
[GOAL]
case mp.sInter
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
T : (s : Set α) → s ∈ S → Set (Set α)
Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g
Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a)
hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s
⊢ ∃ S_1, S_1 ⊆ g ∧ Set.Countable S_1 ∧ ⋂₀ S_1 ⊆ ⋂₀ S
[PROOFSTEP]
refine' ⟨⋃ (s) (H : s ∈ S), T s H, by simpa, Sct.biUnion Tct, _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
T : (s : Set α) → s ∈ S → Set (Set α)
Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g
Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a)
hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s
⊢ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ g
[PROOFSTEP]
simpa
[GOAL]
case mp.sInter
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
T : (s : Set α) → s ∈ S → Set (Set α)
Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g
Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a)
hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s
⊢ ⋂₀ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ ⋂₀ S
[PROOFSTEP]
apply subset_sInter
[GOAL]
case mp.sInter.h
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
T : (s : Set α) → s ∈ S → Set (Set α)
Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g
Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a)
hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s
⊢ ∀ (t' : Set α), t' ∈ S → ⋂₀ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ t'
[PROOFSTEP]
intro s H
[GOAL]
case mp.sInter.h
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s✝ : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
T : (s : Set α) → s ∈ S → Set (Set α)
Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g
Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a)
hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s
s : Set α
H : s ∈ S
⊢ ⋂₀ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ s
[PROOFSTEP]
refine' subset_trans (sInter_subset_sInter (subset_iUnion₂ s H)) (hT s H)
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
h : ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s
⊢ s ∈ countableGenerate g
[PROOFSTEP]
rcases h with ⟨S, Sg, Sct, hS⟩
[GOAL]
case mpr.intro.intro.intro
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sg : S ⊆ g
Sct : Set.Countable S
hS : ⋂₀ S ⊆ s
⊢ s ∈ countableGenerate g
[PROOFSTEP]
refine' mem_of_superset ((countable_sInter_mem Sct).mpr _) hS
[GOAL]
case mpr.intro.intro.intro
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s : Set α
S : Set (Set α)
Sg : S ⊆ g
Sct : Set.Countable S
hS : ⋂₀ S ⊆ s
⊢ ∀ (s : Set α), s ∈ S → s ∈ countableGenerate g
[PROOFSTEP]
intro s H
[GOAL]
case mpr.intro.intro.intro
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
s✝ : Set α
S : Set (Set α)
Sg : S ⊆ g
Sct : Set.Countable S
hS : ⋂₀ S ⊆ s✝
s : Set α
H : s ∈ S
⊢ s ∈ countableGenerate g
[PROOFSTEP]
exact CountableGenerateSets.basic (Sg H)
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
⊢ f ≤ countableGenerate g ↔ g ⊆ f.sets
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
⊢ f ≤ countableGenerate g → g ⊆ f.sets
[PROOFSTEP]
intro h
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
⊢ g ⊆ f.sets → f ≤ countableGenerate g
[PROOFSTEP]
intro h
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : f ≤ countableGenerate g
⊢ g ⊆ f.sets
[PROOFSTEP]
exact subset_trans (fun s => CountableGenerateSets.basic) h
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : g ⊆ f.sets
⊢ f ≤ countableGenerate g
[PROOFSTEP]
intro s hs
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : g ⊆ f.sets
s : Set α
hs : s ∈ countableGenerate g
⊢ s ∈ f
[PROOFSTEP]
induction' hs with s hs s t _ st ih S Sct _ ih
[GOAL]
case mpr.basic
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : g ⊆ f.sets
s✝ s : Set α
hs : s ∈ g
⊢ s ∈ f
[PROOFSTEP]
exact h hs
[GOAL]
case mpr.univ
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : g ⊆ f.sets
s : Set α
⊢ univ ∈ f
[PROOFSTEP]
exact univ_mem
[GOAL]
case mpr.superset
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : g ⊆ f.sets
s✝ s t : Set α
a✝ : CountableGenerateSets g s
st : s ⊆ t
ih : s ∈ f
⊢ t ∈ f
[PROOFSTEP]
exact mem_of_superset ih st
[GOAL]
case mpr.sInter
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝¹ : CountableInterFilter l
g : Set (Set α)
f : Filter α
inst✝ : CountableInterFilter f
h : g ⊆ f.sets
s : Set α
S : Set (Set α)
Sct : Set.Countable S
a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s
ih : ∀ (s : Set α), s ∈ S → s ∈ f
⊢ ⋂₀ S ∈ f
[PROOFSTEP]
exact (countable_sInter_mem Sct).mpr ih
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
⊢ IsGreatest {f | CountableInterFilter f ∧ g ⊆ f.sets} (countableGenerate g)
[PROOFSTEP]
refine' ⟨⟨inferInstance, fun s => CountableGenerateSets.basic⟩, _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
⊢ countableGenerate g ∈ upperBounds {f | CountableInterFilter f ∧ g ⊆ f.sets}
[PROOFSTEP]
rintro f ⟨fct, hf⟩
[GOAL]
case intro
ι : Sort u_1
α : Type u_2
β : Type u_3
l : Filter α
inst✝ : CountableInterFilter l
g : Set (Set α)
f : Filter α
fct : CountableInterFilter f
hf : g ⊆ f.sets
⊢ f ≤ countableGenerate g
[PROOFSTEP]
rwa [@le_countableGenerate_iff_of_countableInterFilter _ _ _ fct]
| {"mathlib_filename": "Mathlib.Order.Filter.CountableInter", "llama_tokens": 11770} |
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g✝ : Ultrafilter α
s t : Set α
p q : α → Prop
f : Filter α
h₁ : NeBot f
h₂ : ∀ (g : Filter α), NeBot g → g ≤ f → f ≤ g
g : Filter α
neBot'✝ : NeBot g
le_of_le✝ : ∀ (g_1 : Filter α), NeBot g_1 → g_1 ≤ g → g ≤ g_1
x✝ : ↑{ toFilter := f, neBot' := h₁, le_of_le := h₂ } = ↑{ toFilter := g, neBot' := neBot'✝, le_of_le := le_of_le✝ }
⊢ { toFilter := f, neBot' := h₁, le_of_le := h₂ } = { toFilter := g, neBot' := neBot'✝, le_of_le := le_of_le✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g✝ : Ultrafilter α
s t : Set α
p q : α → Prop
f : Ultrafilter α
g : Filter α
hg : NeBot (g ⊓ ↑f)
⊢ NeBot (↑f ⊓ g)
[PROOFSTEP]
rwa [inf_comm]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g✝ : Ultrafilter α
s t : Set α
p q : α → Prop
f : Ultrafilter α
g : Filter α
⊢ Disjoint (↑f) g ↔ ¬↑f ≤ g
[PROOFSTEP]
rw [← inf_neBot_iff, neBot_iff, Ne.def, not_not, disjoint_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
hsc : ¬sᶜ ∈ f
h : ↑f ⊓ 𝓟 s = ⊥
⊢ ↑f ⊓ 𝓟 sᶜᶜ = ⊥
[PROOFSTEP]
rwa [compl_compl]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
⊢ sᶜ ∈ f ↔ ¬s ∈ f
[PROOFSTEP]
rw [← compl_not_mem_iff, compl_compl]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g : Ultrafilter α
s t : Set α
p q : α → Prop
f : Filter α
h : ∀ (s : Set α), ¬sᶜ ∈ f ↔ s ∈ f
hf : f = ⊥
⊢ False
[PROOFSTEP]
simp [hf] at h
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g✝ : Ultrafilter α
s t : Set α
p q : α → Prop
u : Ultrafilter α
f g : Filter α
⊢ ¬↑u ≤ f ⊔ g ↔ ¬(↑u ≤ f ∨ ↑u ≤ g)
[PROOFSTEP]
simp only [← disjoint_iff_not_le, not_or, disjoint_sup_right]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
⊢ s ∪ t ∈ f ↔ s ∈ f ∨ t ∈ f
[PROOFSTEP]
simp only [← mem_coe, ← le_principal_iff, ← sup_principal, le_sup_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
⊢ (∀ᶠ (x : α) in ↑f, p x → q x) ↔ (∀ᶠ (x : α) in ↑f, p x) → ∀ᶠ (x : α) in ↑f, q x
[PROOFSTEP]
simp only [imp_iff_not_or, eventually_or, eventually_not]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s✝ t : Set α
p q : α → Prop
s : Set (Set α)
hs : Set.Finite s
⊢ ⋃₀ ∅ ∈ f ↔ ∃ t, t ∈ ∅ ∧ t ∈ f
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s✝¹ t : Set α
p q : α → Prop
s : Set (Set α)
hs : Set.Finite s
a✝ : Set α
s✝ : Set (Set α)
x✝¹ : ¬a✝ ∈ s✝
x✝ : Set.Finite s✝
his : ⋃₀ s✝ ∈ f ↔ ∃ t, t ∈ s✝ ∧ t ∈ f
⊢ ⋃₀ insert a✝ s✝ ∈ f ↔ ∃ t, t ∈ insert a✝ s✝ ∧ t ∈ f
[PROOFSTEP]
simp [union_mem_iff, his, or_and_right, exists_or]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s✝ t : Set α
p q : α → Prop
is : Set β
s : β → Set α
his : Set.Finite is
⊢ ⋃ (i : β) (_ : i ∈ is), s i ∈ f ↔ ∃ i, i ∈ is ∧ s i ∈ f
[PROOFSTEP]
simp only [← sUnion_image, finite_sUnion_mem_iff (his.image s), bex_image_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g✝ : Ultrafilter α
s t : Set α
p q : α → Prop
m : α → β
u : Ultrafilter β
inj : Injective m
large : range m ∈ u
g : Filter α
hg : NeBot g
hgu : g ≤ Filter.comap m ↑u
⊢ Filter.comap m ↑u ≤ g
[PROOFSTEP]
simp only [← u.unique (map_le_iff_le_comap.2 hgu), comap_map inj, le_rfl]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g : Ultrafilter α
s t : Set α
p q : α → Prop
f : Ultrafilter α
h₀ : optParam (Injective id) (_ : Injective id)
⊢ range id ∈ f
[PROOFSTEP]
rw [range_id]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g : Ultrafilter α
s t : Set α
p q : α → Prop
f : Ultrafilter α
h₀ : optParam (Injective id) (_ : Injective id)
⊢ univ ∈ f
[PROOFSTEP]
exact univ_mem
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g : Ultrafilter α
s t : Set α
p q : α → Prop
f : Ultrafilter γ
m : α → β
n : β → γ
inj₀ : Injective n
large₀ : range n ∈ f
inj₁ : Injective m
large₁ : range m ∈ comap f inj₀ large₀
inj₂ : optParam (Injective (n ∘ m)) (_ : Injective (n ∘ m))
⊢ range (n ∘ m) ∈ f
[PROOFSTEP]
rw [range_comp]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g : Ultrafilter α
s t : Set α
p q : α → Prop
f : Ultrafilter γ
m : α → β
n : β → γ
inj₀ : Injective n
large₀ : range n ∈ f
inj₁ : Injective m
large₁ : range m ∈ comap f inj₀ large₀
inj₂ : optParam (Injective (n ∘ m)) (_ : Injective (n ∘ m))
⊢ n '' range m ∈ f
[PROOFSTEP]
exact image_mem_of_mem_comap large₀ large₁
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s✝ t : Set α
p q : α → Prop
α✝ : Type ?u.19487
a : α✝
s : Set α✝
⊢ ¬sᶜ ∈ pure a ↔ s ∈ pure a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
m : α → β
a : α
inj : Injective m
large : range m ∈ pure (m a)
⊢ 𝓟 (m ⁻¹' {m a}) = ↑(pure a)
[PROOFSTEP]
rw [coe_pure, ← principal_singleton, ← image_singleton, preimage_image_eq _ inj]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
h : Set.Finite s
h' : s ∈ f
⊢ ∃ x, x ∈ s ∧ f = pure x
[PROOFSTEP]
rw [← biUnion_of_singleton s] at h'
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
h : Set.Finite s
h' : ⋃ (x : α) (_ : x ∈ s), {x} ∈ f
⊢ ∃ x, x ∈ s ∧ f = pure x
[PROOFSTEP]
rcases(Ultrafilter.finite_biUnion_mem_iff h).mp h' with ⟨a, has, haf⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type u_1
f g : Ultrafilter α
s t : Set α
p q : α → Prop
h : Set.Finite s
h' : ⋃ (x : α) (_ : x ∈ s), {x} ∈ f
a : α
has : a ∈ s
haf : {a} ∈ f
⊢ ∃ x, x ∈ s ∧ f = pure x
[PROOFSTEP]
exact ⟨a, has, eq_of_le (Filter.le_pure_iff.2 haf)⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ g : Ultrafilter α
s✝ t : Set α
p q : α → Prop
f : Ultrafilter α
m : α → Ultrafilter β
s : Set β
⊢ (¬sᶜ ∈ Filter.bind ↑f fun x => ↑(m x)) ↔ s ∈ Filter.bind ↑f fun x => ↑(m x)
[PROOFSTEP]
simp only [mem_bind', mem_coe, ← compl_mem_iff_not_mem, compl_setOf, compl_compl]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
⊢ s ∈ f ↔ ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g
[PROOFSTEP]
refine' ⟨fun hf g hg => hg hf, fun H => by_contra fun hf => _⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g
hf : ¬s ∈ f
⊢ False
[PROOFSTEP]
set g : Filter (sᶜ : Set α) := comap (↑) f
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g
hf : ¬s ∈ f
g : Filter ↑sᶜ := comap Subtype.val f
⊢ False
[PROOFSTEP]
haveI : NeBot g := comap_neBot_iff_compl_range.2 (by simpa [compl_setOf])
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g
hf : ¬s ∈ f
g : Filter ↑sᶜ := comap Subtype.val f
⊢ ¬(range Subtype.val)ᶜ ∈ f
[PROOFSTEP]
simpa [compl_setOf]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g
hf : ¬s ∈ f
g : Filter ↑sᶜ := comap Subtype.val f
this : NeBot g
⊢ False
[PROOFSTEP]
simpa using H ((of g).map (↑)) (map_le_iff_le_comap.mpr (of_le g))
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ : Filter α
s : Set α
a : α
f f' : Filter α
⊢ ⨆ (g : Ultrafilter α) (_ : ↑g ≤ f), ↑g ≤ f' ↔ f ≤ f'
[PROOFSTEP]
simp only [iSup_le_iff, ← le_iff_ultrafilter]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ : Filter α
s : Set α
a : α
f : α → β
l₁ : Filter α
l₂ : Filter β
⊢ Tendsto f l₁ l₂ ↔ ∀ (g : Ultrafilter α), ↑g ≤ l₁ → Tendsto f (↑g) l₂
[PROOFSTEP]
simpa only [tendsto_iff_comap] using le_iff_ultrafilter
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
g : Filter α
p : Filter α → Prop
hp : Monotone p
⊢ (∀ (f : Filter α), NeBot f → f ≤ g → p f) ↔ ∀ (f : Ultrafilter α), ↑f ≤ g → p ↑f
[PROOFSTEP]
refine' ⟨fun H f hf => H f f.neBot hf, _⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f : Filter α
s : Set α
a : α
g : Filter α
p : Filter α → Prop
hp : Monotone p
⊢ (∀ (f : Ultrafilter α), ↑f ≤ g → p ↑f) → ∀ (f : Filter α), NeBot f → f ≤ g → p f
[PROOFSTEP]
intro H f hf hfg
[GOAL]
α : Type u
β : Type v
γ : Type u_1
f✝ : Filter α
s : Set α
a : α
g : Filter α
p : Filter α → Prop
hp : Monotone p
H : ∀ (f : Ultrafilter α), ↑f ≤ g → p ↑f
f : Filter α
hf : NeBot f
hfg : f ≤ g
⊢ p f
[PROOFSTEP]
exact hp (of_le f) (H _ ((of_le f).trans hfg))
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
⊢ s ∈ ofComapInfPrincipal h
[PROOFSTEP]
let f := Filter.comap m g ⊓ 𝓟 s
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
⊢ s ∈ ofComapInfPrincipal h
[PROOFSTEP]
haveI : f.NeBot := comap_inf_principal_neBot_of_image_mem h
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
this : NeBot f
⊢ s ∈ ofComapInfPrincipal h
[PROOFSTEP]
have : s ∈ f := mem_inf_of_right (mem_principal_self s)
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
this✝ : NeBot f
this : s ∈ f
⊢ s ∈ ofComapInfPrincipal h
[PROOFSTEP]
exact le_def.mp (of_le _) s this
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
⊢ map m (ofComapInfPrincipal h) = g
[PROOFSTEP]
let f := Filter.comap m g ⊓ 𝓟 s
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
⊢ map m (ofComapInfPrincipal h) = g
[PROOFSTEP]
haveI : f.NeBot := comap_inf_principal_neBot_of_image_mem h
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
this : NeBot f
⊢ map m (ofComapInfPrincipal h) = g
[PROOFSTEP]
apply eq_of_le
[GOAL]
case h
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
this : NeBot f
⊢ ↑(map m (ofComapInfPrincipal h)) ≤ ↑g
[PROOFSTEP]
calc
Filter.map m (of f) ≤ Filter.map m f := map_mono (of_le _)
_ ≤ (Filter.map m <| Filter.comap m g) ⊓ Filter.map m (𝓟 s) := map_inf_le
_ = (Filter.map m <| Filter.comap m g) ⊓ (𝓟 <| m '' s) := by rw [map_principal]
_ ≤ ↑g ⊓ (𝓟 <| m '' s) := (inf_le_inf_right _ map_comap_le)
_ = ↑g := inf_of_le_left (le_principal_iff.mpr h)
[GOAL]
α : Type u
β : Type v
γ : Type u_1
m : α → β
s : Set α
g : Ultrafilter β
h : m '' s ∈ g
f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s
this : NeBot f
⊢ Filter.map m (Filter.comap m ↑g) ⊓ Filter.map m (𝓟 s) = Filter.map m (Filter.comap m ↑g) ⊓ 𝓟 (m '' s)
[PROOFSTEP]
rw [map_principal]
| {"mathlib_filename": "Mathlib.Order.Filter.Ultrafilter", "llama_tokens": 5558} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
⊢ StrictMonoOn f (s ∪ t)
[PROOFSTEP]
have A : ∀ x, x ∈ s ∪ t → x ≤ c → x ∈ s := by
intro x hx hxc
cases hx
· assumption
rcases eq_or_lt_of_le hxc with (rfl | h'x)
· exact hs.1
exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
⊢ ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
[PROOFSTEP]
intro x hx hxc
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hx : x ∈ s ∪ t
hxc : x ≤ c
⊢ x ∈ s
[PROOFSTEP]
cases hx
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ s
⊢ x ∈ s
[PROOFSTEP]
assumption
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ t
⊢ x ∈ s
[PROOFSTEP]
rcases eq_or_lt_of_le hxc with (rfl | h'x)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
x : α
h✝ : x ∈ t
hs : IsGreatest s x
ht : IsLeast t x
hxc : x ≤ x
⊢ x ∈ s
[PROOFSTEP]
exact hs.1
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ t
h'x : x < c
⊢ x ∈ s
[PROOFSTEP]
exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ t
h'x : x < c
⊢ x ∈ t
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
⊢ StrictMonoOn f (s ∪ t)
[PROOFSTEP]
have B : ∀ x, x ∈ s ∪ t → c ≤ x → x ∈ t := by
intro x hx hxc
match hx with
| Or.inr hx => exact hx
| Or.inl hx =>
rcases eq_or_lt_of_le hxc with (rfl | h'x)
· exact ht.1
exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
⊢ ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
[PROOFSTEP]
intro x hx hxc
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx : x ∈ s ∪ t
hxc : c ≤ x
⊢ x ∈ t
[PROOFSTEP]
match hx with
| Or.inr hx => exact hx
| Or.inl hx =>
rcases eq_or_lt_of_le hxc with (rfl | h'x)
· exact ht.1
exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx✝ : x ∈ s ∪ t
hxc : c ≤ x
hx : x ∈ t
⊢ x ∈ t
[PROOFSTEP]
exact hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx✝ : x ∈ s ∪ t
hxc : c ≤ x
hx : x ∈ s
⊢ x ∈ t
[PROOFSTEP]
rcases eq_or_lt_of_le hxc with (rfl | h'x)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
hx✝ : c ∈ s ∪ t
hxc : c ≤ c
hx : c ∈ s
⊢ c ∈ t
[PROOFSTEP]
exact ht.1
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx✝ : x ∈ s ∪ t
hxc : c ≤ x
hx : x ∈ s
h'x : c < x
⊢ x ∈ t
[PROOFSTEP]
exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
⊢ StrictMonoOn f (s ∪ t)
[PROOFSTEP]
intro x hx y hy hxy
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
⊢ f x < f y
[PROOFSTEP]
rcases lt_or_le x c with (hxc | hcx)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hxc : x < c
⊢ f x < f y
[PROOFSTEP]
have xs : x ∈ s := A _ hx hxc.le
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hxc : x < c
xs : x ∈ s
⊢ f x < f y
[PROOFSTEP]
rcases lt_or_le y c with (hyc | hcy)
[GOAL]
case inl.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hxc : x < c
xs : x ∈ s
hyc : y < c
⊢ f x < f y
[PROOFSTEP]
exact h₁ xs (A _ hy hyc.le) hxy
[GOAL]
case inl.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hxc : x < c
xs : x ∈ s
hcy : c ≤ y
⊢ f x < f y
[PROOFSTEP]
exact (h₁ xs hs.1 hxc).trans_le (h₂.monotoneOn ht.1 (B _ hy hcy) hcy)
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hcx : c ≤ x
⊢ f x < f y
[PROOFSTEP]
have xt : x ∈ t := B _ hx hcx
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hcx : c ≤ x
xt : x ∈ t
⊢ f x < f y
[PROOFSTEP]
have yt : y ∈ t := B _ hy (hcx.trans hxy.le)
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : StrictMonoOn f s
h₂ : StrictMonoOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x < y
hcx : c ≤ x
xt : x ∈ t
yt : y ∈ t
⊢ f x < f y
[PROOFSTEP]
exact h₂ xt yt hxy
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
h₁ : StrictMonoOn f (Iic a)
h₂ : StrictMonoOn f (Ici a)
⊢ StrictMono f
[PROOFSTEP]
rw [← strictMonoOn_univ, ← @Iic_union_Ici _ _ a]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
h₁ : StrictMonoOn f (Iic a)
h₂ : StrictMonoOn f (Ici a)
⊢ StrictMonoOn f (Iic a ∪ Ici a)
[PROOFSTEP]
exact StrictMonoOn.union h₁ h₂ isGreatest_Iic isLeast_Ici
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
⊢ MonotoneOn f (s ∪ t)
[PROOFSTEP]
have A : ∀ x, x ∈ s ∪ t → x ≤ c → x ∈ s := by
intro x hx hxc
cases hx
· assumption
rcases eq_or_lt_of_le hxc with (rfl | h'x)
· exact hs.1
exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
⊢ ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
[PROOFSTEP]
intro x hx hxc
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hx : x ∈ s ∪ t
hxc : x ≤ c
⊢ x ∈ s
[PROOFSTEP]
cases hx
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ s
⊢ x ∈ s
[PROOFSTEP]
assumption
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ t
⊢ x ∈ s
[PROOFSTEP]
rcases eq_or_lt_of_le hxc with (rfl | h'x)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
x : α
h✝ : x ∈ t
hs : IsGreatest s x
ht : IsLeast t x
hxc : x ≤ x
⊢ x ∈ s
[PROOFSTEP]
exact hs.1
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ t
h'x : x < c
⊢ x ∈ s
[PROOFSTEP]
exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
x : α
hxc : x ≤ c
h✝ : x ∈ t
h'x : x < c
⊢ x ∈ t
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
⊢ MonotoneOn f (s ∪ t)
[PROOFSTEP]
have B : ∀ x, x ∈ s ∪ t → c ≤ x → x ∈ t := by
intro x hx hxc
match hx with
| Or.inr hx => exact hx
| Or.inl hx =>
rcases eq_or_lt_of_le hxc with (rfl | h'x)
· exact ht.1
exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
⊢ ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
[PROOFSTEP]
intro x hx hxc
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx : x ∈ s ∪ t
hxc : c ≤ x
⊢ x ∈ t
[PROOFSTEP]
match hx with
| Or.inr hx => exact hx
| Or.inl hx =>
rcases eq_or_lt_of_le hxc with (rfl | h'x)
· exact ht.1
exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx✝ : x ∈ s ∪ t
hxc : c ≤ x
hx : x ∈ t
⊢ x ∈ t
[PROOFSTEP]
exact hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx✝ : x ∈ s ∪ t
hxc : c ≤ x
hx : x ∈ s
⊢ x ∈ t
[PROOFSTEP]
rcases eq_or_lt_of_le hxc with (rfl | h'x)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
hx✝ : c ∈ s ∪ t
hxc : c ≤ c
hx : c ∈ s
⊢ c ∈ t
[PROOFSTEP]
exact ht.1
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
x : α
hx✝ : x ∈ s ∪ t
hxc : c ≤ x
hx : x ∈ s
h'x : c < x
⊢ x ∈ t
[PROOFSTEP]
exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
⊢ MonotoneOn f (s ∪ t)
[PROOFSTEP]
intro x hx y hy hxy
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
⊢ f x ≤ f y
[PROOFSTEP]
rcases lt_or_le x c with (hxc | hcx)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hxc : x < c
⊢ f x ≤ f y
[PROOFSTEP]
have xs : x ∈ s := A _ hx hxc.le
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hxc : x < c
xs : x ∈ s
⊢ f x ≤ f y
[PROOFSTEP]
rcases lt_or_le y c with (hyc | hcy)
[GOAL]
case inl.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hxc : x < c
xs : x ∈ s
hyc : y < c
⊢ f x ≤ f y
[PROOFSTEP]
exact h₁ xs (A _ hy hyc.le) hxy
[GOAL]
case inl.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hxc : x < c
xs : x ∈ s
hcy : c ≤ y
⊢ f x ≤ f y
[PROOFSTEP]
exact (h₁ xs hs.1 hxc.le).trans (h₂ ht.1 (B _ hy hcy) hcy)
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hcx : c ≤ x
⊢ f x ≤ f y
[PROOFSTEP]
have xt : x ∈ t := B _ hx hcx
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hcx : c ≤ x
xt : x ∈ t
⊢ f x ≤ f y
[PROOFSTEP]
have yt : y ∈ t := B _ hy (hcx.trans hxy)
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
s t : Set α
c : α
h₁ : MonotoneOn f s
h₂ : MonotoneOn f t
hs : IsGreatest s c
ht : IsLeast t c
A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s
B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t
x : α
hx : x ∈ s ∪ t
y : α
hy : y ∈ s ∪ t
hxy : x ≤ y
hcx : c ≤ x
xt : x ∈ t
yt : y ∈ t
⊢ f x ≤ f y
[PROOFSTEP]
exact h₂ xt yt hxy
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
h₁ : MonotoneOn f (Iic a)
h₂ : MonotoneOn f (Ici a)
⊢ Monotone f
[PROOFSTEP]
rw [← monotoneOn_univ, ← @Iic_union_Ici _ _ a]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : Preorder β
a : α
f : α → β
h₁ : MonotoneOn f (Iic a)
h₂ : MonotoneOn f (Ici a)
⊢ MonotoneOn f (Iic a ∪ Ici a)
[PROOFSTEP]
exact MonotoneOn.union_right h₁ h₂ isGreatest_Iic isLeast_Ici
| {"mathlib_filename": "Mathlib.Order.Monotone.Union", "llama_tokens": 10126} |
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : OrderedAddCommGroup H
f : G → H
h₁ : ∀ (x : G), f (-x) = -f x
h₂ : StrictMonoOn f (Ici 0)
⊢ StrictMono f
[PROOFSTEP]
refine' StrictMonoOn.Iic_union_Ici (fun x hx y hy hxy => neg_lt_neg_iff.1 _) h₂
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : OrderedAddCommGroup H
f : G → H
h₁ : ∀ (x : G), f (-x) = -f x
h₂ : StrictMonoOn f (Ici 0)
x : G
hx : x ∈ Iic 0
y : G
hy : y ∈ Iic 0
hxy : x < y
⊢ -f y < -f x
[PROOFSTEP]
rw [← h₁, ← h₁]
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : OrderedAddCommGroup H
f : G → H
h₁ : ∀ (x : G), f (-x) = -f x
h₂ : StrictMonoOn f (Ici 0)
x : G
hx : x ∈ Iic 0
y : G
hy : y ∈ Iic 0
hxy : x < y
⊢ f (-y) < f (-x)
[PROOFSTEP]
exact h₂ (neg_nonneg.2 hy) (neg_nonneg.2 hx) (neg_lt_neg hxy)
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : OrderedAddCommGroup H
f : G → H
h₁ : ∀ (x : G), f (-x) = -f x
h₂ : MonotoneOn f (Ici 0)
⊢ Monotone f
[PROOFSTEP]
refine' MonotoneOn.Iic_union_Ici (fun x hx y hy hxy => neg_le_neg_iff.1 _) h₂
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : OrderedAddCommGroup H
f : G → H
h₁ : ∀ (x : G), f (-x) = -f x
h₂ : MonotoneOn f (Ici 0)
x : G
hx : x ∈ Iic 0
y : G
hy : y ∈ Iic 0
hxy : x ≤ y
⊢ -f y ≤ -f x
[PROOFSTEP]
rw [← h₁, ← h₁]
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : OrderedAddCommGroup H
f : G → H
h₁ : ∀ (x : G), f (-x) = -f x
h₂ : MonotoneOn f (Ici 0)
x : G
hx : x ∈ Iic 0
y : G
hy : y ∈ Iic 0
hxy : x ≤ y
⊢ f (-y) ≤ f (-x)
[PROOFSTEP]
exact h₂ (neg_nonneg.2 hy) (neg_nonneg.2 hx) (neg_le_neg hxy)
| {"mathlib_filename": "Mathlib.Order.Monotone.Odd", "llama_tokens": 927} |
{"mathlib_filename": "Mathlib.Order.Monotone.Monovary", "llama_tokens": 0} |
|
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : GroupWithZero β
src✝¹ : DivInvMonoid (Germ (↑φ) β) := divInvMonoid
src✝ : MonoidWithZero (Germ (↑φ) β) := monoidWithZero
⊢ ((fun x x_1 => x ∘ x_1) Inv.inv fun x => 0) =ᶠ[↑φ] fun x => 0
[PROOFSTEP]
simp only [Function.comp, inv_zero]
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : GroupWithZero β
src✝¹ : DivInvMonoid (Germ (↑φ) β) := divInvMonoid
src✝ : MonoidWithZero (Germ (↑φ) β) := monoidWithZero
⊢ (fun x => 0) =ᶠ[↑φ] fun x => 0
[PROOFSTEP]
exact EventuallyEq.refl _ fun _ => 0
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : Preorder β
f g : α → β
⊢ ↑f < ↑g ↔ ∀* (x : α), f x < g x
[PROOFSTEP]
simp only [lt_iff_le_not_le, eventually_and, coe_le, eventually_not, EventuallyLE]
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : Preorder β
⊢ (fun x x_1 => x < x_1) = LiftRel fun x x_1 => x < x_1
[PROOFSTEP]
ext ⟨f⟩ ⟨g⟩
[GOAL]
case h.mk.h.mk.a
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : Preorder β
x✝¹ : Germ (↑φ) β
f : α → β
x✝ : Germ (↑φ) β
g : α → β
⊢ Quot.mk Setoid.r f < Quot.mk Setoid.r g ↔ LiftRel (fun x x_1 => x < x_1) (Quot.mk Setoid.r f) (Quot.mk Setoid.r g)
[PROOFSTEP]
exact coe_lt
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
⊢ max ↑a ↑b = map₂ max ↑a ↑b
[PROOFSTEP]
cases' le_total (a : β*) b with h h
[GOAL]
case inl
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑a ≤ ↑b
⊢ max ↑a ↑b = map₂ max ↑a ↑b
[PROOFSTEP]
rw [max_eq_right h, map₂_coe, coe_eq]
[GOAL]
case inl
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑a ≤ ↑b
⊢ b =ᶠ[↑φ] fun x => max (a x) (b x)
[PROOFSTEP]
exact h.mono fun i hi => (max_eq_right hi).symm
[GOAL]
case inr
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑b ≤ ↑a
⊢ max ↑a ↑b = map₂ max ↑a ↑b
[PROOFSTEP]
rw [max_eq_left h, map₂_coe, coe_eq]
[GOAL]
case inr
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑b ≤ ↑a
⊢ a =ᶠ[↑φ] fun x => max (a x) (b x)
[PROOFSTEP]
exact h.mono fun i hi => (max_eq_left hi).symm
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
K : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
⊢ min ↑a ↑b = map₂ min ↑a ↑b
[PROOFSTEP]
cases' le_total (a : β*) b with h h
[GOAL]
case inl
α : Type u
β : Type v
φ : Ultrafilter α
K : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑a ≤ ↑b
⊢ min ↑a ↑b = map₂ min ↑a ↑b
[PROOFSTEP]
rw [min_eq_left h, map₂_coe, coe_eq]
[GOAL]
case inl
α : Type u
β : Type v
φ : Ultrafilter α
K : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑a ≤ ↑b
⊢ a =ᶠ[↑φ] fun x => min (a x) (b x)
[PROOFSTEP]
exact h.mono fun i hi => (min_eq_left hi).symm
[GOAL]
case inr
α : Type u
β : Type v
φ : Ultrafilter α
K : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑b ≤ ↑a
⊢ min ↑a ↑b = map₂ min ↑a ↑b
[PROOFSTEP]
rw [min_eq_right h, map₂_coe, coe_eq]
[GOAL]
case inr
α : Type u
β : Type v
φ : Ultrafilter α
K : LinearOrder β
x y : Germ (↑φ) β
a b : α → β
h : ↑b ≤ ↑a
⊢ b =ᶠ[↑φ] fun x => min (a x) (b x)
[PROOFSTEP]
exact h.mono fun i hi => (min_eq_right hi).symm
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : β
⊢ ↑(max x y) = max ↑x ↑y
[PROOFSTEP]
rw [max_def, map₂_const]
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrder β
x y : β
⊢ ↑(min x y) = min ↑x ↑y
[PROOFSTEP]
rw [min_def, map₂_const]
[GOAL]
α : Type u
β : Type v
φ : Ultrafilter α
inst✝ : LinearOrderedAddCommGroup β
x : β
⊢ ↑|x| = |↑x|
[PROOFSTEP]
rw [abs_def, map_const]
| {"mathlib_filename": "Mathlib.Order.Filter.FilterProduct", "llama_tokens": 1923} |
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
h : ∀ (i : α), i ∈ Ico n m → r i (succ i)
hnm : n ≤ m
⊢ ReflTransGen r n m
[PROOFSTEP]
revert h
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
hnm : n ≤ m
⊢ (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m
[PROOFSTEP]
refine' Succ.rec _ _ hnm
[GOAL]
case refine'_1
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
hnm : n ≤ m
⊢ (∀ (i : α), i ∈ Ico n n → r i (succ i)) → ReflTransGen r n n
[PROOFSTEP]
intro _
[GOAL]
case refine'_1
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
hnm : n ≤ m
h✝ : ∀ (i : α), i ∈ Ico n n → r i (succ i)
⊢ ReflTransGen r n n
[PROOFSTEP]
exact ReflTransGen.refl
[GOAL]
case refine'_2
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
hnm : n ≤ m
⊢ ∀ (n_1 : α),
n ≤ n_1 →
((∀ (i : α), i ∈ Ico n n_1 → r i (succ i)) → ReflTransGen r n n_1) →
(∀ (i : α), i ∈ Ico n (succ n_1) → r i (succ i)) → ReflTransGen r n (succ n_1)
[PROOFSTEP]
intro m hnm ih h
[GOAL]
case refine'_2
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m✝ : α
hnm✝ : n ≤ m✝
m : α
hnm : n ≤ m
ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m
h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i)
⊢ ReflTransGen r n (succ m)
[PROOFSTEP]
have : ReflTransGen r n m := ih fun i hi => h i ⟨hi.1, hi.2.trans_le <| le_succ m⟩
[GOAL]
case refine'_2
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m✝ : α
hnm✝ : n ≤ m✝
m : α
hnm : n ≤ m
ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m
h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i)
this : ReflTransGen r n m
⊢ ReflTransGen r n (succ m)
[PROOFSTEP]
cases' (le_succ m).eq_or_lt with hm hm
[GOAL]
case refine'_2.inl
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m✝ : α
hnm✝ : n ≤ m✝
m : α
hnm : n ≤ m
ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m
h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i)
this : ReflTransGen r n m
hm : m = succ m
⊢ ReflTransGen r n (succ m)
[PROOFSTEP]
rwa [← hm]
[GOAL]
case refine'_2.inr
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m✝ : α
hnm✝ : n ≤ m✝
m : α
hnm : n ≤ m
ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m
h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i)
this : ReflTransGen r n m
hm : m < succ m
⊢ ReflTransGen r n (succ m)
[PROOFSTEP]
exact this.tail (h m ⟨hnm, hm⟩)
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
h : ∀ (i : α), i ∈ Ico m n → r (succ i) i
hmn : m ≤ n
⊢ ReflTransGen r n m
[PROOFSTEP]
rw [← reflTransGen_swap]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
h : ∀ (i : α), i ∈ Ico m n → r (succ i) i
hmn : m ≤ n
⊢ ReflTransGen (swap r) m n
[PROOFSTEP]
exact reflTransGen_of_succ_of_le (swap r) h hmn
[GOAL]
α : Type u_1
inst✝² : LinearOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
hr : Reflexive r
h1 : ∀ (i : α), i ∈ Ico n m → r i (succ i)
h2 : ∀ (i : α), i ∈ Ico m n → r (succ i) i
⊢ TransGen r n m
[PROOFSTEP]
rcases eq_or_ne m n with (rfl | hmn)
[GOAL]
case inl
α : Type u_1
inst✝² : LinearOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
m : α
hr : Reflexive r
h1 : ∀ (i : α), i ∈ Ico m m → r i (succ i)
h2 : ∀ (i : α), i ∈ Ico m m → r (succ i) i
⊢ TransGen r m m
[PROOFSTEP]
exact TransGen.single (hr m)
[GOAL]
case inr
α : Type u_1
inst✝² : LinearOrder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
r : α → α → Prop
n m : α
hr : Reflexive r
h1 : ∀ (i : α), i ∈ Ico n m → r i (succ i)
h2 : ∀ (i : α), i ∈ Ico m n → r (succ i) i
hmn : m ≠ n
⊢ TransGen r n m
[PROOFSTEP]
exact transGen_of_succ_of_ne r h1 h2 hmn.symm
| {"mathlib_filename": "Mathlib.Order.SuccPred.Relation", "llama_tokens": 2242} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
s t : Set α
Ixx : α → α → Set α
⊢ Tendsto (fun p => Ixx p.fst p.snd) (𝓟 s ×ˢ 𝓟 s) (smallSets (𝓟 t)) ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → Ixx x y ⊆ t
[PROOFSTEP]
simp only [smallSets_principal, prod_principal_principal, tendsto_principal_principal, forall_prod_set,
mem_powerset_iff, mem_principal]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
l₁ l₁' l₂ l₂' : Filter α
Ixx : α → α → Set α
h : TendstoIxxClass Ixx l₁ l₂
h' : TendstoIxxClass Ixx l₁' l₂'
⊢ Tendsto (fun p => Ixx p.fst p.snd) ((l₁ ⊓ l₁') ×ˢ (l₁ ⊓ l₁')) (smallSets (l₂ ⊓ l₂'))
[PROOFSTEP]
simpa only [prod_inf_prod, smallSets_inf] using h.1.inf h'.1
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a : α
⊢ TendstoIxxClass Icc (pure a) (pure a)
[PROOFSTEP]
rw [← principal_singleton]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a : α
⊢ TendstoIxxClass Icc (𝓟 {a}) (𝓟 {a})
[PROOFSTEP]
exact tendstoIxxClass_principal.2 ordConnected_singleton.out
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a : α
⊢ Tendsto (fun p => Ico p.fst p.snd) (pure a ×ˢ pure a) (smallSets ⊥)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a : α
⊢ Tendsto (fun p => Ioc p.fst p.snd) (pure a ×ˢ pure a) (smallSets ⊥)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a : α
⊢ Tendsto (fun p => Ioo p.fst p.snd) (pure a ×ˢ pure a) (smallSets ⊥)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
⊢ TendstoIxxClass uIcc l l
[PROOFSTEP]
refine' ⟨fun s hs => mem_map.2 <| mem_prod_self_iff.2 _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
⊢ ∃ t, t ∈ l ∧ t ×ˢ t ⊆ (fun p => [[p.fst, p.snd]]) ⁻¹' s
[PROOFSTEP]
obtain ⟨t, htl, hts⟩ : ∃ t ∈ l, ∀ p ∈ (t : Set α) ×ˢ t, Icc (p : α × α).1 p.2 ∈ s
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
⊢ ∃ t, t ∈ l ∧ ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
⊢ ∃ t, t ∈ l ∧ t ×ˢ t ⊆ (fun p => [[p.fst, p.snd]]) ⁻¹' s
[PROOFSTEP]
exact mem_prod_self_iff.1 (mem_map.1 (tendsto_fst.Icc tendsto_snd hs))
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
⊢ ∃ t, t ∈ l ∧ t ×ˢ t ⊆ (fun p => [[p.fst, p.snd]]) ⁻¹' s
[PROOFSTEP]
refine' ⟨t, htl, fun p hp => _⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
p : α × α
hp : p ∈ t ×ˢ t
⊢ p ∈ (fun p => [[p.fst, p.snd]]) ⁻¹' s
[PROOFSTEP]
cases' le_total p.1 p.2 with h h
[GOAL]
case intro.intro.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
p : α × α
hp : p ∈ t ×ˢ t
h : p.fst ≤ p.snd
⊢ p ∈ (fun p => [[p.fst, p.snd]]) ⁻¹' s
[PROOFSTEP]
rw [mem_preimage, uIcc_of_le h]
[GOAL]
case intro.intro.inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
p : α × α
hp : p ∈ t ×ˢ t
h : p.fst ≤ p.snd
⊢ Icc p.fst p.snd ∈ s
[PROOFSTEP]
exact hts p hp
[GOAL]
case intro.intro.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
p : α × α
hp : p ∈ t ×ˢ t
h : p.snd ≤ p.fst
⊢ p ∈ (fun p => [[p.fst, p.snd]]) ⁻¹' s
[PROOFSTEP]
rw [mem_preimage, uIcc_of_ge h]
[GOAL]
case intro.intro.inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
l : Filter α
inst✝ : TendstoIxxClass Icc l l
s : Set (Set α)
hs : s ∈ smallSets l
t : Set α
htl : t ∈ l
hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s
p : α × α
hp : p ∈ t ×ˢ t
h : p.snd ≤ p.fst
⊢ Icc p.snd p.fst ∈ s
[PROOFSTEP]
exact hts ⟨p.2, p.1⟩ ⟨hp.2, hp.1⟩
| {"mathlib_filename": "Mathlib.Order.Filter.Interval", "llama_tokens": 2484} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ s ∈ f ×ˢ g ↔ ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ s
[PROOFSTEP]
simp only [SProd.sprod, Filter.prod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ s ∈ comap Prod.fst f ⊓ comap Prod.snd g ↔ ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ prod t₁ t₂ ⊆ s
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ s ∈ comap Prod.fst f ⊓ comap Prod.snd g → ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ prod t₁ t₂ ⊆ s
[PROOFSTEP]
rintro ⟨t₁, ⟨s₁, hs₁, hts₁⟩, t₂, ⟨s₂, hs₂, hts₂⟩, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
t₁ : Set (α × β)
s₁ : Set α
hs₁ : s₁ ∈ f
hts₁ : Prod.fst ⁻¹' s₁ ⊆ t₁
t₂ : Set (α × β)
s₂ : Set β
hs₂ : s₂ ∈ g
hts₂ : Prod.snd ⁻¹' s₂ ⊆ t₂
⊢ ∃ t₁_1, t₁_1 ∈ f ∧ ∃ t₂_1, t₂_1 ∈ g ∧ prod t₁_1 t₂_1 ⊆ t₁ ∩ t₂
[PROOFSTEP]
exact ⟨s₁, hs₁, s₂, hs₂, fun p ⟨h, h'⟩ => ⟨hts₁ h, hts₂ h'⟩⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ prod t₁ t₂ ⊆ s) → s ∈ comap Prod.fst f ⊓ comap Prod.snd g
[PROOFSTEP]
rintro ⟨t₁, ht₁, t₂, ht₂, h⟩
[GOAL]
case mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
t₁ : Set α
ht₁ : t₁ ∈ f
t₂ : Set β
ht₂ : t₂ ∈ g
h : prod t₁ t₂ ⊆ s
⊢ s ∈ comap Prod.fst f ⊓ comap Prod.snd g
[PROOFSTEP]
exact mem_inf_of_inter (preimage_mem_comap ht₁) (preimage_mem_comap ht₂) h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
t : Set β
⊢ s ∈ f ×ˢ 𝓟 t ↔ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s} ∈ f
[PROOFSTEP]
rw [← @exists_mem_subset_iff _ f, mem_prod_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
t : Set β
⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ 𝓟 t ∧ t₁ ×ˢ t₂ ⊆ s) ↔ ∃ t_1, t_1 ∈ f ∧ t_1 ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s}
[PROOFSTEP]
refine' exists_congr fun u => Iff.rfl.and ⟨_, fun h => ⟨t, mem_principal_self t, _⟩⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
t : Set β
u : Set α
⊢ (∃ t₂, t₂ ∈ 𝓟 t ∧ u ×ˢ t₂ ⊆ s) → u ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s}
[PROOFSTEP]
rintro ⟨v, v_in, hv⟩ a a_in b b_in
[GOAL]
case refine'_1.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
t : Set β
u : Set α
v : Set β
v_in : v ∈ 𝓟 t
hv : u ×ˢ v ⊆ s
a : α
a_in : a ∈ u
b : β
b_in : b ∈ t
⊢ (a, b) ∈ s
[PROOFSTEP]
exact hv (mk_mem_prod a_in <| v_in b_in)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
t : Set β
u : Set α
h : u ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s}
⊢ u ×ˢ t ⊆ s
[PROOFSTEP]
rintro ⟨x, y⟩ ⟨hx, hy⟩
[GOAL]
case refine'_2.mk.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
t : Set β
u : Set α
h : u ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s}
x : α
y : β
hx : (x, y).fst ∈ u
hy : (x, y).snd ∈ t
⊢ (x, y) ∈ s
[PROOFSTEP]
exact h hx y hy
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
⊢ s ∈ f ×ˢ ⊤ ↔ {a | ∀ (b : β), (a, b) ∈ s} ∈ f
[PROOFSTEP]
rw [← principal_univ, mem_prod_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
s : Set (α × β)
⊢ {a | ∀ (b : β), b ∈ univ → (a, b) ∈ s} ∈ f ↔ {a | ∀ (b : β), (a, b) ∈ s} ∈ f
[PROOFSTEP]
simp only [mem_univ, forall_true_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f : Filter α
g : Filter β
p : α × β → Prop
s : Set β
⊢ (∀ᶠ (x : α × β) in f ×ˢ 𝓟 s, p x) ↔ ∀ᶠ (x : α) in f, ∀ (y : β), y ∈ s → p (x, y)
[PROOFSTEP]
rw [eventually_iff, eventually_iff, mem_prod_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f : Filter α
g : Filter β
p : α × β → Prop
s : Set β
⊢ {a | ∀ (b : β), b ∈ s → (a, b) ∈ {x | p x}} ∈ f ↔ {x | ∀ (y : β), y ∈ s → p (x, y)} ∈ f
[PROOFSTEP]
simp only [mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : α → β × γ
b : Filter β
c : Filter γ
⊢ comap f (b ×ˢ c) = comap (Prod.fst ∘ f) b ⊓ comap (Prod.snd ∘ f) c
[PROOFSTEP]
erw [comap_inf, Filter.comap_comap, Filter.comap_comap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
⊢ f ×ˢ ⊤ = comap Prod.fst f
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
⊢ Filter.prod f ⊤ = comap Prod.fst f
[PROOFSTEP]
rw [Filter.prod, comap_top, inf_top_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g✝ : Filter β
f₁ f₂ : Filter α
g : Filter β
⊢ (f₁ ⊔ f₂) ×ˢ g = f₁ ×ˢ g ⊔ f₂ ×ˢ g
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g✝ : Filter β
f₁ f₂ : Filter α
g : Filter β
⊢ Filter.prod (f₁ ⊔ f₂) g = Filter.prod f₁ g ⊔ Filter.prod f₂ g
[PROOFSTEP]
rw [Filter.prod, comap_sup, inf_sup_right, ← Filter.prod, ← Filter.prod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
g₁ g₂ : Filter β
⊢ f ×ˢ (g₁ ⊔ g₂) = f ×ˢ g₁ ⊔ f ×ˢ g₂
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
g₁ g₂ : Filter β
⊢ Filter.prod f (g₁ ⊔ g₂) = Filter.prod f g₁ ⊔ Filter.prod f g₂
[PROOFSTEP]
rw [Filter.prod, comap_sup, inf_sup_left, ← Filter.prod, ← Filter.prod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
p : α × β → Prop
f : Filter α
g : Filter β
⊢ (∀ᶠ (x : α × β) in f ×ˢ g, p x) ↔
∃ pa, (∀ᶠ (x : α) in f, pa x) ∧ ∃ pb, (∀ᶠ (y : β) in g, pb y) ∧ ∀ {x : α}, pa x → ∀ {y : β}, pb y → p (x, y)
[PROOFSTEP]
simpa only [Set.prod_subset_iff] using @mem_prod_iff α β p f g
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
la : Filter α
lb : Filter β
p : α × β → Prop
h : ∀ᶠ (x : α × β) in la ×ˢ lb, p x
⊢ ∀ᶠ (x : α) in la, ∀ᶠ (y : β) in lb, p (x, y)
[PROOFSTEP]
rcases eventually_prod_iff.1 h with ⟨pa, ha, pb, hb, h⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
la : Filter α
lb : Filter β
p : α × β → Prop
h✝ : ∀ᶠ (x : α × β) in la ×ˢ lb, p x
pa : α → Prop
ha : ∀ᶠ (x : α) in la, pa x
pb : β → Prop
hb : ∀ᶠ (y : β) in lb, pb y
h : ∀ {x : α}, pa x → ∀ {y : β}, pb y → p (x, y)
⊢ ∀ᶠ (x : α) in la, ∀ᶠ (y : β) in lb, p (x, y)
[PROOFSTEP]
exact ha.mono fun a ha => hb.mono fun b hb => h ha hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
p : α × α → Prop
h : ∀ᶠ (i : α × α) in f ×ˢ f, p i
⊢ ∀ᶠ (i : α) in f, p (i, i)
[PROOFSTEP]
obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g : Filter β
f : Filter α
p : α × α → Prop
h : ∀ᶠ (i : α × α) in f ×ˢ f, p i
t : α → Prop
ht : ∀ᶠ (x : α) in f, t x
s : α → Prop
hs : ∀ᶠ (y : α) in f, s y
hst : ∀ {x : α}, t x → ∀ {y : α}, s y → p (x, y)
⊢ ∀ᶠ (i : α) in f, p (i, i)
[PROOFSTEP]
apply (ht.and hs).mono fun x hx => hst hx.1 hx.2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : (α × α) × γ → Prop
⊢ (∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x) → ∀ᶠ (x : α × γ) in f ×ˢ g, p ((x.fst, x.fst), x.snd)
[PROOFSTEP]
intro h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : (α × α) × γ → Prop
h : ∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x
⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p ((x.fst, x.fst), x.snd)
[PROOFSTEP]
obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : (α × α) × γ → Prop
h : ∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x
t : α × α → Prop
ht : ∀ᶠ (x : α × α) in f ×ˢ f, t x
s : γ → Prop
hs : ∀ᶠ (y : γ) in g, s y
hst : ∀ {x : α × α}, t x → ∀ {y : γ}, s y → p (x, y)
⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p ((x.fst, x.fst), x.snd)
[PROOFSTEP]
refine' (ht.diag_of_prod.prod_mk hs).mono fun x hx => by simp only [hst hx.1 hx.2, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : (α × α) × γ → Prop
h : ∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x
t : α × α → Prop
ht : ∀ᶠ (x : α × α) in f ×ˢ f, t x
s : γ → Prop
hs : ∀ᶠ (y : γ) in g, s y
hst : ∀ {x : α × α}, t x → ∀ {y : γ}, s y → p (x, y)
x : α × γ
hx : t (x.fst, x.fst) ∧ s x.snd
⊢ p ((x.fst, x.fst), x.snd)
[PROOFSTEP]
simp only [hst hx.1 hx.2, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : α × γ × γ → Prop
⊢ (∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x) → ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.fst, x.snd, x.snd)
[PROOFSTEP]
intro h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : α × γ × γ → Prop
h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x
⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.fst, x.snd, x.snd)
[PROOFSTEP]
obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : α × γ × γ → Prop
h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x
t : α → Prop
ht : ∀ᶠ (x : α) in f, t x
s : γ × γ → Prop
hs : ∀ᶠ (y : γ × γ) in g ×ˢ g, s y
hst : ∀ {x : α}, t x → ∀ {y : γ × γ}, s y → p (x, y)
⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.fst, x.snd, x.snd)
[PROOFSTEP]
refine' (ht.prod_mk hs.diag_of_prod).mono fun x hx => by simp only [hst hx.1 hx.2, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter γ
p : α × γ × γ → Prop
h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x
t : α → Prop
ht : ∀ᶠ (x : α) in f, t x
s : γ × γ → Prop
hs : ∀ᶠ (y : γ × γ) in g ×ˢ g, s y
hst : ∀ {x : α}, t x → ∀ {y : γ × γ}, s y → p (x, y)
x : α × γ
hx : t x.fst ∧ s (x.snd, x.snd)
⊢ p (x.fst, x.snd, x.snd)
[PROOFSTEP]
simp only [hst hx.1 hx.2, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Filter β
⊢ (⨅ (i : ι), f i) ×ˢ g = ⨅ (i : ι), f i ×ˢ g
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Filter β
⊢ Filter.prod (⨅ (i : ι), f i) g = ⨅ (i : ι), Filter.prod (f i) g
[PROOFSTEP]
rw [Filter.prod, comap_iInf, iInf_inf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Filter β
⊢ ⨅ (x : ι), comap Prod.fst (f x) ⊓ comap Prod.snd g = ⨅ (i : ι), Filter.prod (f i) g
[PROOFSTEP]
simp only [Filter.prod, eq_self_iff_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
inst✝ : Nonempty ι
f : Filter α
g : ι → Filter β
⊢ f ×ˢ ⨅ (i : ι), g i = ⨅ (i : ι), f ×ˢ g i
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
inst✝ : Nonempty ι
f : Filter α
g : ι → Filter β
⊢ Filter.prod f (⨅ (i : ι), g i) = ⨅ (i : ι), Filter.prod f (g i)
[PROOFSTEP]
rw [Filter.prod, comap_iInf, inf_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
inst✝ : Nonempty ι
f : Filter α
g : ι → Filter β
⊢ ⨅ (x : ι), comap Prod.fst f ⊓ comap Prod.snd (g x) = ⨅ (i : ι), Filter.prod f (g i)
[PROOFSTEP]
simp only [Filter.prod, eq_self_iff_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : β₁ → α₁
m₂ : β₂ → α₂
⊢ comap m₁ f₁ ×ˢ comap m₂ f₂ = comap (fun p => (m₁ p.fst, m₂ p.snd)) (f₁ ×ˢ f₂)
[PROOFSTEP]
simp only [SProd.sprod, Filter.prod, comap_comap, comap_inf, (· ∘ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
⊢ f ×ˢ g = comap Prod.swap (g ×ˢ f)
[PROOFSTEP]
simp only [SProd.sprod, Filter.prod, comap_comap, (· ∘ ·), inf_comm, Prod.swap, comap_inf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
⊢ f ×ˢ g = map (fun p => (p.snd, p.fst)) (g ×ˢ f)
[PROOFSTEP]
rw [prod_comm', ← map_swap_eq_comap_swap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
⊢ Prod.swap <$> (g ×ˢ f) = map (fun p => (p.snd, p.fst)) (g ×ˢ f)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ s ∈ f ×ˢ g ↔ ∃ t, t ∈ f ∧ ∀ᶠ (y : β) in g, ∀ (x : α), x ∈ t → (x, y) ∈ s
[PROOFSTEP]
simp only [mem_prod_iff, prod_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ ∀ (x : α), x ∈ t₁ → ∀ (y : β), y ∈ t₂ → (x, y) ∈ s) ↔
∃ t, t ∈ f ∧ ∀ᶠ (y : β) in g, ∀ (x : α), x ∈ t → (x, y) ∈ s
[PROOFSTEP]
refine exists_congr fun _ => Iff.rfl.and <| Iff.trans ?_ exists_mem_subset_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
x✝ : Set α
⊢ (∃ t₂, t₂ ∈ g ∧ ∀ (x : α), x ∈ x✝ → ∀ (y : β), y ∈ t₂ → (x, y) ∈ s) ↔
∃ t, t ∈ g ∧ t ⊆ {x | (fun y => ∀ (x : α), x ∈ x✝ → (x, y) ∈ s) x}
[PROOFSTEP]
exact exists_congr fun _ => Iff.rfl.and forall₂_swap
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ s ∈ f ×ˢ g ↔ ∃ t, t ∈ g ∧ ∀ᶠ (x : α) in f, ∀ (y : β), y ∈ t → (x, y) ∈ s
[PROOFSTEP]
rw [prod_comm, mem_map, mem_prod_iff_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ (∃ t, t ∈ g ∧ ∀ᶠ (y : α) in f, ∀ (x : β), x ∈ t → (x, y) ∈ (fun p => (p.snd, p.fst)) ⁻¹' s) ↔
∃ t, t ∈ g ∧ ∀ᶠ (x : α) in f, ∀ (y : β), y ∈ t → (x, y) ∈ s
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
inst✝ : NeBot g
⊢ map Prod.fst (f ×ˢ g) = f
[PROOFSTEP]
ext s
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
inst✝ : NeBot g
s : Set α
⊢ s ∈ map Prod.fst (f ×ˢ g) ↔ s ∈ f
[PROOFSTEP]
simp only [mem_map, mem_prod_iff_left, mem_preimage, eventually_const, ← subset_def, exists_mem_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
inst✝ : NeBot f
⊢ map Prod.snd (f ×ˢ g) = g
[PROOFSTEP]
rw [prod_comm, map_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
inst✝ : NeBot f
⊢ map (Prod.snd ∘ fun p => (p.snd, p.fst)) (g ×ˢ f) = g
[PROOFSTEP]
apply map_fst_prod
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
f₁ f₂ : Filter α
g₁ g₂ : Filter β
inst✝¹ : NeBot f₁
inst✝ : NeBot g₁
⊢ f₁ ×ˢ g₁ = f₂ ×ˢ g₂ ↔ f₁ = f₂ ∧ g₁ = g₂
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.1 ▸ h.2 ▸ rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
f₁ f₂ : Filter α
g₁ g₂ : Filter β
inst✝¹ : NeBot f₁
inst✝ : NeBot g₁
h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂
⊢ f₁ = f₂ ∧ g₁ = g₂
[PROOFSTEP]
have hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂ := prod_le_prod.1 h.le
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
f₁ f₂ : Filter α
g₁ g₂ : Filter β
inst✝¹ : NeBot f₁
inst✝ : NeBot g₁
h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂
hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂
⊢ f₁ = f₂ ∧ g₁ = g₂
[PROOFSTEP]
haveI := neBot_of_le hle.1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
f₁ f₂ : Filter α
g₁ g₂ : Filter β
inst✝¹ : NeBot f₁
inst✝ : NeBot g₁
h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂
hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂
this : NeBot f₂
⊢ f₁ = f₂ ∧ g₁ = g₂
[PROOFSTEP]
haveI := neBot_of_le hle.2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
f₁ f₂ : Filter α
g₁ g₂ : Filter β
inst✝¹ : NeBot f₁
inst✝ : NeBot g₁
h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂
hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂
this✝ : NeBot f₂
this : NeBot g₂
⊢ f₁ = f₂ ∧ g₁ = g₂
[PROOFSTEP]
exact ⟨hle.1.antisymm <| (prod_le_prod.1 h.ge).1, hle.2.antisymm <| (prod_le_prod.1 h.ge).2⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
p : α × β → Prop
⊢ (∀ᶠ (x : α × β) in f ×ˢ g, p x) ↔ ∀ᶠ (y : β × α) in g ×ˢ f, p (Prod.swap y)
[PROOFSTEP]
rw [prod_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
p : α × β → Prop
⊢ (∀ᶠ (x : α × β) in map (fun p => (p.snd, p.fst)) (g ×ˢ f), p x) ↔ ∀ᶠ (y : β × α) in g ×ˢ f, p (Prod.swap y)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
h : Filter γ
⊢ map (↑(Equiv.prodAssoc α β γ)) ((f ×ˢ g) ×ˢ h) = f ×ˢ g ×ˢ h
[PROOFSTEP]
simp_rw [← comap_equiv_symm, SProd.sprod, Filter.prod, comap_inf, comap_comap, inf_assoc, (· ∘ ·),
Equiv.prodAssoc_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
h : Filter γ
⊢ map (↑(Equiv.prodAssoc α β γ).symm) (f ×ˢ g ×ˢ h) = (f ×ˢ g) ×ˢ h
[PROOFSTEP]
simp_rw [map_equiv_symm, SProd.sprod, Filter.prod, comap_inf, comap_comap, inf_assoc, Function.comp,
Equiv.prodAssoc_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
h : Filter γ
k : Filter δ
⊢ map (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ((f ×ˢ g) ×ˢ h ×ˢ k) = (f ×ˢ h) ×ˢ g ×ˢ k
[PROOFSTEP]
simp_rw [map_swap4_eq_comap, SProd.sprod, Filter.prod, comap_inf, comap_comap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
h : Filter γ
k : Filter δ
⊢ comap ((Prod.fst ∘ Prod.fst) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) f ⊓
comap ((Prod.snd ∘ Prod.fst) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) g ⊓
(comap ((Prod.fst ∘ Prod.snd) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) h ⊓
comap ((Prod.snd ∘ Prod.snd) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) k) =
comap (Prod.fst ∘ Prod.fst) f ⊓ comap (Prod.snd ∘ Prod.fst) h ⊓
(comap (Prod.fst ∘ Prod.snd) g ⊓ comap (Prod.snd ∘ Prod.snd) k)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
s : Set (β₁ × β₂)
hs : (fun p => (m₁ p.fst, m₂ p.snd)) ⁻¹' s ∈ f₁ ×ˢ f₂
s₁ : Set α₁
hs₁ : s₁ ∈ f₁
s₂ : Set α₂
hs₂ : s₂ ∈ f₂
h : s₁ ×ˢ s₂ ⊆ (fun p => (m₁ p.fst, m₂ p.snd)) ⁻¹' s
⊢ (m₁ '' s₁) ×ˢ (m₂ '' s₂) ⊆ s
[PROOFSTEP]
rwa [prod_image_image_eq, image_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : α → β
F : Filter α
G : Filter γ
⊢ map f F ×ˢ G = map (Prod.map f id) (F ×ˢ G)
[PROOFSTEP]
rw [← prod_map_map_eq', map_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : β → γ
F : Filter α
G : Filter β
⊢ F ×ˢ map f G = map (Prod.map id f) (F ×ˢ G)
[PROOFSTEP]
rw [← prod_map_map_eq', map_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ✝ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
δ : Type u_6
f : α → γ
g : β → δ
a : Filter α
b : Filter β
c : Filter γ
d : Filter δ
hf : Tendsto f a c
hg : Tendsto g b d
⊢ Tendsto (Prod.map f g) (a ×ˢ b) (c ×ˢ d)
[PROOFSTEP]
erw [Tendsto, ← prod_map_map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ✝ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
δ : Type u_6
f : α → γ
g : β → δ
a : Filter α
b : Filter β
c : Filter γ
d : Filter δ
hf : Tendsto f a c
hg : Tendsto g b d
⊢ map f a ×ˢ map g b ≤ c ×ˢ d
[PROOFSTEP]
exact Filter.prod_mono hf hg
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
m : α × β → γ
f : Filter α
g : Filter β
⊢ map m (f ×ˢ g) = seq (map (fun a b => m (a, b)) f) g
[PROOFSTEP]
simp [Filter.ext_iff, mem_prod_iff, mem_map_seq_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
m : α × β → γ
f : Filter α
g : Filter β
⊢ ∀ (s : Set γ),
(∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s) ↔
∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s
[PROOFSTEP]
intro s
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
m : α × β → γ
f : Filter α
g : Filter β
s : Set γ
⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s) ↔
∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
m : α × β → γ
f : Filter α
g : Filter β
s : Set γ
⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s) →
∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
m : α × β → γ
f : Filter α
g : Filter β
s : Set γ
⊢ (∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s) →
∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s
[PROOFSTEP]
exact fun ⟨t, ht, s, hs, h⟩ => ⟨s, hs, t, ht, fun x hx y hy => @h ⟨x, y⟩ ⟨hx, hy⟩⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
m : α × β → γ
f : Filter α
g : Filter β
s : Set γ
⊢ (∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s) →
∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s
[PROOFSTEP]
exact fun ⟨s, hs, t, ht, h⟩ => ⟨t, ht, s, hs, fun ⟨x, y⟩ ⟨hx, hy⟩ => h x hx y hy⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
⊢ f ×ˢ g = seq (map Prod.mk f) g
[PROOFSTEP]
have h := f.map_prod id g
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
h : map id (f ×ˢ g) = seq (map (fun a b => id (a, b)) f) g
⊢ f ×ˢ g = seq (map Prod.mk f) g
[PROOFSTEP]
rwa [map_id] at h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
f₁ f₂ : Filter α
g₁ g₂ : Filter β
⊢ f₁ ×ˢ g₁ ⊓ f₂ ×ˢ g₂ = (f₁ ⊓ f₂) ×ˢ (g₁ ⊓ g₂)
[PROOFSTEP]
simp only [SProd.sprod, Filter.prod, comap_inf, inf_comm, inf_assoc, inf_left_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g✝ : Filter β
f₁ f₂ : Filter α
g : Filter β
⊢ (f₁ ⊓ f₂) ×ˢ g = f₁ ×ˢ g ⊓ f₂ ×ˢ g
[PROOFSTEP]
rw [prod_inf_prod, inf_idem]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
g₁ g₂ : Filter β
⊢ f ×ˢ (g₁ ⊓ g₂) = f ×ˢ g₁ ⊓ f ×ˢ g₂
[PROOFSTEP]
rw [prod_inf_prod, inf_idem]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f : Filter α
g : Filter β
s : Set α
t : Set β
⊢ 𝓟 s ×ˢ 𝓟 t = 𝓟 (s ×ˢ t)
[PROOFSTEP]
simp only [SProd.sprod, Filter.prod, comap_principal, principal_eq_iff_eq, comap_principal, inf_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t✝ : Set β
f : Filter α
g : Filter β
s : Set α
t : Set β
⊢ Prod.fst ⁻¹' s ∩ Prod.snd ⁻¹' t = prod s t
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
a : α
f : Filter β
⊢ pure a ×ˢ f = map (Prod.mk a) f
[PROOFSTEP]
rw [prod_eq, map_pure, pure_seq_eq_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : α → β → γ
a : α
B : Filter β
⊢ map (Function.uncurry f) (pure a ×ˢ B) = map (f a) B
[PROOFSTEP]
rw [Filter.pure_prod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : α → β → γ
a : α
B : Filter β
⊢ map (Function.uncurry f) (map (Prod.mk a) B) = map (f a) B
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
b : β
⊢ f ×ˢ pure b = map (fun a => (a, b)) f
[PROOFSTEP]
rw [prod_eq, seq_pure, map_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : Filter α
b : β
⊢ map ((fun g => g b) ∘ Prod.mk) f = map (fun a => (a, b)) f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f : Filter α
g : Filter β
a : α
b : β
⊢ pure a ×ˢ pure b = pure (a, b)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
⊢ f ×ˢ g = ⊥ ↔ f = ⊥ ∨ g = ⊥
[PROOFSTEP]
simp_rw [← empty_mem_iff_bot, mem_prod_iff, subset_empty_iff, prod_eq_empty_iff, ← exists_prop, Subtype.exists',
exists_or, exists_const, Subtype.exists, exists_prop, exists_eq_right]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
⊢ NeBot (f ×ˢ g) ↔ NeBot f ∧ NeBot g
[PROOFSTEP]
simp only [neBot_iff, Ne, prod_eq_bot, not_or]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g : Filter β
f : α × β → γ
x : Filter α
y : Filter β
z : Filter γ
⊢ Tendsto f (x ×ˢ y) z ↔
∀ (W : Set γ), W ∈ z → ∃ U, U ∈ x ∧ ∃ V, V ∈ y ∧ ∀ (x : α) (y : β), x ∈ U → y ∈ V → f (x, y) ∈ W
[PROOFSTEP]
simp only [tendsto_def, mem_prod_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter (α × β)
g : Filter α
g' : Filter β
⊢ f ≤ g ×ˢ g' ↔ Tendsto Prod.fst f g ∧ Tendsto Prod.snd f g'
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter (α × β)
g : Filter α
g' : Filter β
⊢ f ≤ Filter.prod g g' ↔ Tendsto Prod.fst f g ∧ Tendsto Prod.snd f g'
[PROOFSTEP]
unfold Filter.prod
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter (α × β)
g : Filter α
g' : Filter β
⊢ f ≤ comap Prod.fst g ⊓ comap Prod.snd g' ↔ Tendsto Prod.fst f g ∧ Tendsto Prod.snd f g'
[PROOFSTEP]
simp only [le_inf_iff, ← map_le_iff_le_comap, Tendsto]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
g' : Filter γ
s : α → β × γ
⊢ Tendsto s f (g ×ˢ g') ↔ Tendsto (fun n => (s n).fst) f g ∧ Tendsto (fun n => (s n).snd) f g'
[PROOFSTEP]
dsimp only [SProd.sprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
g' : Filter γ
s : α → β × γ
⊢ Tendsto s f (Filter.prod g g') ↔ Tendsto (fun n => (s n).fst) f g ∧ Tendsto (fun n => (s n).snd) f g'
[PROOFSTEP]
unfold Filter.prod
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
s✝ : Set α
t : Set β
f✝ : Filter α
g✝ : Filter β
f : Filter α
g : Filter β
g' : Filter γ
s : α → β × γ
⊢ Tendsto s f (comap Prod.fst g ⊓ comap Prod.snd g') ↔
Tendsto (fun n => (s n).fst) f g ∧ Tendsto (fun n => (s n).snd) f g'
[PROOFSTEP]
simp only [tendsto_inf, tendsto_comap_iff, (· ∘ ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f✝ : Filter α
g✝ : Filter β
s : Set (α × β)
f : Filter α
g : Filter β
⊢ s ∈ Filter.coprod f g ↔ (∃ t₁, t₁ ∈ f ∧ Prod.fst ⁻¹' t₁ ⊆ s) ∧ ∃ t₂, t₂ ∈ g ∧ Prod.snd ⁻¹' t₂ ⊆ s
[PROOFSTEP]
simp [Filter.coprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g l : Filter β
⊢ Filter.coprod ⊥ l = comap Prod.snd l
[PROOFSTEP]
simp [Filter.coprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
l : Filter α
⊢ Filter.coprod l ⊥ = comap Prod.fst l
[PROOFSTEP]
simp [Filter.coprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
⊢ Filter.coprod ⊥ ⊥ = ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
s : Set (α × β)
la : Filter α
lb : Filter β
⊢ sᶜ ∈ Filter.coprod la lb ↔ (Prod.fst '' s)ᶜ ∈ la ∧ (Prod.snd '' s)ᶜ ∈ lb
[PROOFSTEP]
simp only [Filter.coprod, mem_sup, compl_mem_comap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
⊢ NeBot (Filter.coprod f g) ↔ NeBot f ∧ Nonempty β ∨ Nonempty α ∧ NeBot g
[PROOFSTEP]
simp [Filter.coprod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
s : Set α
t : Set β
⊢ Filter.coprod (𝓟 s) (𝓟 t) = 𝓟 (sᶜ ×ˢ tᶜ)ᶜ
[PROOFSTEP]
rw [Filter.coprod, comap_principal, comap_principal, sup_principal, Set.prod_eq, compl_inter, preimage_compl,
preimage_compl, compl_compl, compl_compl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
⊢ map (Prod.map m₁ m₂) (Filter.coprod f₁ f₂) ≤ Filter.coprod (map m₁ f₁) (map m₂ f₂)
[PROOFSTEP]
intro s
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
s : Set (β₁ × β₂)
⊢ s ∈ Filter.coprod (map m₁ f₁) (map m₂ f₂) → s ∈ map (Prod.map m₁ m₂) (Filter.coprod f₁ f₂)
[PROOFSTEP]
simp only [mem_map, mem_coprod_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
s : Set (β₁ × β₂)
⊢ ((∃ t₁, m₁ ⁻¹' t₁ ∈ f₁ ∧ Prod.fst ⁻¹' t₁ ⊆ s) ∧ ∃ t₂, m₂ ⁻¹' t₂ ∈ f₂ ∧ Prod.snd ⁻¹' t₂ ⊆ s) →
(∃ t₁, t₁ ∈ f₁ ∧ Prod.fst ⁻¹' t₁ ⊆ Prod.map m₁ m₂ ⁻¹' s) ∧ ∃ t₂, t₂ ∈ f₂ ∧ Prod.snd ⁻¹' t₂ ⊆ Prod.map m₁ m₂ ⁻¹' s
[PROOFSTEP]
rintro ⟨⟨u₁, hu₁, h₁⟩, u₂, hu₂, h₂⟩
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
s : Set (β₁ × β₂)
u₁ : Set β₁
hu₁ : m₁ ⁻¹' u₁ ∈ f₁
h₁ : Prod.fst ⁻¹' u₁ ⊆ s
u₂ : Set β₂
hu₂ : m₂ ⁻¹' u₂ ∈ f₂
h₂ : Prod.snd ⁻¹' u₂ ⊆ s
⊢ (∃ t₁, t₁ ∈ f₁ ∧ Prod.fst ⁻¹' t₁ ⊆ Prod.map m₁ m₂ ⁻¹' s) ∧ ∃ t₂, t₂ ∈ f₂ ∧ Prod.snd ⁻¹' t₂ ⊆ Prod.map m₁ m₂ ⁻¹' s
[PROOFSTEP]
refine' ⟨⟨m₁ ⁻¹' u₁, hu₁, fun _ hx => h₁ _⟩, ⟨m₂ ⁻¹' u₂, hu₂, fun _ hx => h₂ _⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
s : Set (β₁ × β₂)
u₁ : Set β₁
hu₁ : m₁ ⁻¹' u₁ ∈ f₁
h₁ : Prod.fst ⁻¹' u₁ ⊆ s
u₂ : Set β₂
hu₂ : m₂ ⁻¹' u₂ ∈ f₂
h₂ : Prod.snd ⁻¹' u₂ ⊆ s
x✝ : α₁ × α₂
hx : x✝ ∈ Prod.fst ⁻¹' (m₁ ⁻¹' u₁)
⊢ Prod.map m₁ m₂ x✝ ∈ Prod.fst ⁻¹' u₁
[PROOFSTEP]
convert hx
[GOAL]
case intro.intro.intro.intro.intro.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ι : Sort u_5
f : Filter α
g : Filter β
α₁ : Type u
α₂ : Type v
β₁ : Type w
β₂ : Type x
f₁ : Filter α₁
f₂ : Filter α₂
m₁ : α₁ → β₁
m₂ : α₂ → β₂
s : Set (β₁ × β₂)
u₁ : Set β₁
hu₁ : m₁ ⁻¹' u₁ ∈ f₁
h₁ : Prod.fst ⁻¹' u₁ ⊆ s
u₂ : Set β₂
hu₂ : m₂ ⁻¹' u₂ ∈ f₂
h₂ : Prod.snd ⁻¹' u₂ ⊆ s
x✝ : α₁ × α₂
hx : x✝ ∈ Prod.snd ⁻¹' (m₂ ⁻¹' u₂)
⊢ Prod.map m₁ m₂ x✝ ∈ Prod.snd ⁻¹' u₂
[PROOFSTEP]
convert hx
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
⊢ Filter.coprod (map (fun x => b) (𝓟 {a})) (map id (𝓟 {i})) = 𝓟 ({b} ×ˢ univ ∪ univ ×ˢ {i})
[PROOFSTEP]
simp only [map_principal, Filter.coprod, comap_principal, sup_principal, image_singleton, image_id, prod_univ,
univ_prod, id]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
⊢ map (Prod.map (fun x => b) id) (Filter.coprod (𝓟 {a}) (𝓟 {i})) = 𝓟 ({b} ×ˢ univ)
[PROOFSTEP]
rw [principal_coprod_principal, map_principal]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
⊢ 𝓟 (Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ) = 𝓟 ({b} ×ˢ univ)
[PROOFSTEP]
congr
[GOAL]
case e_s
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
⊢ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ = {b} ×ˢ univ
[PROOFSTEP]
ext ⟨b', i'⟩
[GOAL]
case e_s.h.mk
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
b' : β
i' : ι
⊢ (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ ↔ (b', i') ∈ {b} ×ˢ univ
[PROOFSTEP]
constructor
[GOAL]
case e_s.h.mk.mp
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
b' : β
i' : ι
⊢ (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ → (b', i') ∈ {b} ×ˢ univ
[PROOFSTEP]
rintro ⟨⟨a'', i''⟩, _, h₂, h₃⟩
[GOAL]
case e_s.h.mk.mp.intro.mk.intro.refl
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
a'' : α
i'' : ι
left✝ : (a'', i'') ∈ ({a}ᶜ ×ˢ {i}ᶜ)ᶜ
⊢ ((fun x => b) a'', id i'') ∈ {b} ×ˢ univ
[PROOFSTEP]
simp
[GOAL]
case e_s.h.mk.mpr
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
b' : β
i' : ι
⊢ (b', i') ∈ {b} ×ˢ univ → (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ
[PROOFSTEP]
rintro ⟨h₁, _⟩
[GOAL]
case e_s.h.mk.mpr.intro
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
b' : β
i' : ι
h₁ : (b', i').fst ∈ {b}
right✝ : (b', i').snd ∈ univ
⊢ (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ
[PROOFSTEP]
use(a, i')
[GOAL]
case h
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
ι✝ : Sort u_5
f : Filter α✝
g : Filter β✝
α : Type u_6
β : Type u_7
ι : Type u_8
a : α
b : β
i : ι
b' : β
i' : ι
h₁ : (b', i').fst ∈ {b}
right✝ : (b', i').snd ∈ univ
⊢ (a, i') ∈ ({a}ᶜ ×ˢ {i}ᶜ)ᶜ ∧ Prod.map (fun x => b) id (a, i') = (b', i')
[PROOFSTEP]
simpa using h₁.symm
| {"mathlib_filename": "Mathlib.Order.Filter.Prod", "llama_tokens": 22131} |
[GOAL]
α : Type u_1
inst✝ : LT α
a : α
⊢ ¬IsSuccLimit a ↔ ∃ b, b ⋖ a
[PROOFSTEP]
simp [IsSuccLimit]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : SuccOrder α
h : IsSuccLimit (succ a)
⊢ IsMax a
[PROOFSTEP]
by_contra H
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : SuccOrder α
h : IsSuccLimit (succ a)
H : ¬IsMax a
⊢ False
[PROOFSTEP]
exact h a (covby_succ_of_not_isMax H)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : SuccOrder α
ha : ¬IsMax a
⊢ ¬IsSuccLimit (succ a)
[PROOFSTEP]
contrapose! ha
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : SuccOrder α
ha : IsSuccLimit (succ a)
⊢ IsMax a
[PROOFSTEP]
exact ha.isMax
[GOAL]
α : Type u_1
inst✝² : Preorder α
a : α
inst✝¹ : SuccOrder α
inst✝ : NoMaxOrder α
h : IsSuccLimit a
b : α
⊢ succ b ≠ a
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : NoMaxOrder α
b : α
h : IsSuccLimit (succ b)
⊢ False
[PROOFSTEP]
exact not_isMax _ h.isMax
[GOAL]
α : Type u_1
inst✝³ : Preorder α
a : α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : NoMaxOrder α
h : IsSuccLimit a
b : α
hb : b ≤ a
⊢ a ≤ b
[PROOFSTEP]
rcases hb.exists_succ_iterate with ⟨_ | n, rfl⟩
[GOAL]
case intro.zero
α : Type u_1
inst✝³ : Preorder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : NoMaxOrder α
b : α
h : IsSuccLimit (succ^[Nat.zero] b)
hb : b ≤ succ^[Nat.zero] b
⊢ succ^[Nat.zero] b ≤ b
[PROOFSTEP]
exact le_rfl
[GOAL]
case intro.succ
α : Type u_1
inst✝³ : Preorder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : NoMaxOrder α
b : α
n : ℕ
h : IsSuccLimit (succ^[Nat.succ n] b)
hb : b ≤ succ^[Nat.succ n] b
⊢ succ^[Nat.succ n] b ≤ b
[PROOFSTEP]
rw [iterate_succ_apply'] at h
[GOAL]
case intro.succ
α : Type u_1
inst✝³ : Preorder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : NoMaxOrder α
b : α
n : ℕ
h : IsSuccLimit (succ (succ^[n] b))
hb : b ≤ succ^[Nat.succ n] b
⊢ succ^[Nat.succ n] b ≤ b
[PROOFSTEP]
exact (not_isSuccLimit_succ _ h).elim
[GOAL]
α : Type u_1
inst✝⁴ : Preorder α
a : α
inst✝³ : SuccOrder α
inst✝² : IsSuccArchimedean α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
⊢ ¬IsSuccLimit a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
⊢ ¬IsSuccLimit a ↔ ∃ b, ¬IsMax b ∧ succ b = a
[PROOFSTEP]
rw [not_isSuccLimit_iff_exists_covby]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
⊢ (∃ b, b ⋖ a) ↔ ∃ b, ¬IsMax b ∧ succ b = a
[PROOFSTEP]
refine' exists_congr fun b => ⟨fun hba => ⟨hba.lt.not_isMax, (Covby.succ_eq hba)⟩, _⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
b : α
⊢ ¬IsMax b ∧ succ b = a → b ⋖ a
[PROOFSTEP]
rintro ⟨h, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
b✝ : α
C : α → Sort u_2
b : α
h : ¬IsMax b
⊢ b ⋖ succ b
[PROOFSTEP]
exact covby_succ_of_not_isMax h
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
h : ¬IsSuccLimit a
⊢ a ∈ range succ
[PROOFSTEP]
cases' not_isSuccLimit_iff.1 h with b hb
[GOAL]
case intro
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
h : ¬IsSuccLimit a
b : α
hb : ¬IsMax b ∧ succ b = a
⊢ a ∈ range succ
[PROOFSTEP]
exact ⟨b, hb.2⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hb : IsSuccLimit b
ha : a < b
⊢ succ a < b
[PROOFSTEP]
by_cases h : IsMax a
[GOAL]
case pos
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hb : IsSuccLimit b
ha : a < b
h : IsMax a
⊢ succ a < b
[PROOFSTEP]
rwa [h.succ_eq]
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hb : IsSuccLimit b
ha : a < b
h : ¬IsMax a
⊢ succ a < b
[PROOFSTEP]
rw [lt_iff_le_and_ne, succ_le_iff_of_not_isMax h]
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hb : IsSuccLimit b
ha : a < b
h : ¬IsMax a
⊢ a < b ∧ succ a ≠ b
[PROOFSTEP]
refine' ⟨ha, fun hab => _⟩
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hb : IsSuccLimit b
ha : a < b
h : ¬IsMax a
hab : succ a = b
⊢ False
[PROOFSTEP]
subst hab
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a : α
C : α → Sort u_2
h : ¬IsMax a
hb : IsSuccLimit (succ a)
ha : a < succ a
⊢ False
[PROOFSTEP]
exact (h hb.isMax).elim
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
b : α
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
⊢ C b
[PROOFSTEP]
by_cases hb : IsSuccLimit b
[GOAL]
case pos
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
b : α
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
hb : IsSuccLimit b
⊢ C b
[PROOFSTEP]
exact hl b hb
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
b : α
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
hb : ¬IsSuccLimit b
⊢ C b
[PROOFSTEP]
have H := Classical.choose_spec (not_isSuccLimit_iff.1 hb)
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
b : α
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
hb : ¬IsSuccLimit b
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) = b
⊢ C b
[PROOFSTEP]
rw [← H.2]
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
b : α
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
hb : ¬IsSuccLimit b
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) = b
⊢ C (succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)))
[PROOFSTEP]
exact hs _ H.1
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
hb : IsSuccLimit b
⊢ isSuccLimitRecOn b hs hl = hl b hb
[PROOFSTEP]
classical exact dif_pos hb
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
hb : IsSuccLimit b
⊢ isSuccLimitRecOn b hs hl = hl b hb
[PROOFSTEP]
exact dif_pos hb
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
⊢ isSuccLimitRecOn (succ b) hs hl = hs b hb
[PROOFSTEP]
have hb' := not_isSuccLimit_succ_of_not_isMax hb
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
⊢ isSuccLimitRecOn (succ b) hs hl = hs b hb
[PROOFSTEP]
have H := Classical.choose_spec (not_isSuccLimit_iff.1 hb')
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ isSuccLimitRecOn (succ b) hs hl = hs b hb
[PROOFSTEP]
rw [isSuccLimitRecOn]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ (if hb : IsSuccLimit (succ b) then hl (succ b) hb
else
let_fun H :=
(_ :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b);
Eq.mpr (_ : C (succ b) = C (succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))))
(hs (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))
(_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))))) =
hs b hb
[PROOFSTEP]
simp only [cast_eq_iff_heq, hb', not_false_iff, eq_mpr_eq_cast, dif_neg]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ HEq
(hs (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))
(_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))))
(hs b hb)
[PROOFSTEP]
congr 1
[GOAL]
case e_1
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b) = b
[PROOFSTEP]
first
| exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right
| exact proof_irrel_heq H.left hb
[GOAL]
case e_1
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b) = b
[PROOFSTEP]
exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right
[GOAL]
case e_2
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ HEq (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))) hb
[PROOFSTEP]
first
| exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right
| exact proof_irrel_heq H.left hb
[GOAL]
case e_2
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ HEq (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))) hb
[PROOFSTEP]
exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right
[GOAL]
case e_2
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b✝ : α
C : α → Sort u_2
hs : (a : α) → ¬IsMax a → C (succ a)
hl : (a : α) → IsSuccLimit a → C a
b : α
hb : ¬IsMax b
hb' : ¬IsSuccLimit (succ b)
H :
¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧
succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b
⊢ HEq (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))) hb
[PROOFSTEP]
exact proof_irrel_heq H.left hb
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b : α
C : α → Sort u_2
inst✝ : NoMaxOrder α
⊢ ¬IsSuccLimit a ↔ a ∈ range succ
[PROOFSTEP]
simp_rw [isSuccLimit_iff_succ_ne, not_forall, not_ne_iff]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b : α
C : α → Sort u_2
inst✝ : NoMaxOrder α
⊢ (∃ x, succ x = a) ↔ a ∈ range succ
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b✝ : α
C : α → Sort u_2
inst✝ : IsSuccArchimedean α
h : IsSuccLimit a
b : α
hb : b ≤ a
⊢ a ≤ b
[PROOFSTEP]
revert h
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b✝ : α
C : α → Sort u_2
inst✝ : IsSuccArchimedean α
b : α
hb : b ≤ a
⊢ IsSuccLimit a → a ≤ b
[PROOFSTEP]
refine' Succ.rec (fun _ => le_rfl) (fun c _ H hc => _) hb
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b✝ : α
C : α → Sort u_2
inst✝ : IsSuccArchimedean α
b : α
hb : b ≤ a
c : α
x✝ : b ≤ c
H : IsSuccLimit c → c ≤ b
hc : IsSuccLimit (succ c)
⊢ succ c ≤ b
[PROOFSTEP]
have := hc.isMax.succ_eq
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b✝ : α
C : α → Sort u_2
inst✝ : IsSuccArchimedean α
b : α
hb : b ≤ a
c : α
x✝ : b ≤ c
H : IsSuccLimit c → c ≤ b
hc : IsSuccLimit (succ c)
this : succ c = c
⊢ succ c ≤ b
[PROOFSTEP]
rw [this] at hc ⊢
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b✝ : α
C : α → Sort u_2
inst✝ : IsSuccArchimedean α
b : α
hb : b ≤ a
c : α
x✝ : b ≤ c
H : IsSuccLimit c → c ≤ b
hc : IsSuccLimit c
this : succ c = c
⊢ c ≤ b
[PROOFSTEP]
exact H hc
[GOAL]
α : Type u_1
inst✝³ : PartialOrder α
inst✝² : SuccOrder α
a b : α
C : α → Sort u_2
inst✝¹ : IsSuccArchimedean α
inst✝ : NoMinOrder α
⊢ ¬IsSuccLimit a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LT α
a✝ a : α
⊢ ¬IsPredLimit a ↔ ∃ b, a ⋖ b
[PROOFSTEP]
simp [IsPredLimit]
[GOAL]
α : Type u_1
inst✝ : LT α
a : α
⊢ IsSuccLimit (↑toDual a) ↔ IsPredLimit a
[PROOFSTEP]
simp [IsSuccLimit, IsPredLimit]
[GOAL]
α : Type u_1
inst✝ : LT α
a : α
⊢ IsPredLimit (↑toDual a) ↔ IsSuccLimit a
[PROOFSTEP]
simp [IsSuccLimit, IsPredLimit]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : PredOrder α
h : IsPredLimit (pred a)
⊢ IsMin a
[PROOFSTEP]
by_contra H
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : PredOrder α
h : IsPredLimit (pred a)
H : ¬IsMin a
⊢ False
[PROOFSTEP]
exact h a (pred_covby_of_not_isMin H)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : PredOrder α
ha : ¬IsMin a
⊢ ¬IsPredLimit (pred a)
[PROOFSTEP]
contrapose! ha
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
a : α
inst✝ : PredOrder α
ha : IsPredLimit (pred a)
⊢ IsMin a
[PROOFSTEP]
exact ha.isMin
[GOAL]
α : Type u_1
inst✝² : Preorder α
a : α
inst✝¹ : PredOrder α
inst✝ : NoMinOrder α
h : IsPredLimit a
b : α
⊢ pred b ≠ a
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : PredOrder α
inst✝ : NoMinOrder α
b : α
h : IsPredLimit (pred b)
⊢ False
[PROOFSTEP]
exact not_isMin _ h.isMin
[GOAL]
α : Type u_1
inst✝⁴ : Preorder α
a : α
inst✝³ : PredOrder α
inst✝² : IsPredArchimedean α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
⊢ ¬IsPredLimit a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
C : α → Sort u_2
⊢ ¬IsPredLimit a ↔ ∃ b, ¬IsMin b ∧ pred b = a
[PROOFSTEP]
rw [← isSuccLimit_toDual_iff]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
C : α → Sort u_2
⊢ ¬IsSuccLimit (↑toDual a) ↔ ∃ b, ¬IsMin b ∧ pred b = a
[PROOFSTEP]
exact not_isSuccLimit_iff
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
C : α → Sort u_2
h : ¬IsPredLimit a
⊢ a ∈ range pred
[PROOFSTEP]
cases' not_isPredLimit_iff.1 h with b hb
[GOAL]
case intro
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b✝ : α
C : α → Sort u_2
h : ¬IsPredLimit a
b : α
hb : ¬IsMin b ∧ pred b = a
⊢ a ∈ range pred
[PROOFSTEP]
exact ⟨b, hb.2⟩
[GOAL]
α : Type u_1
inst✝³ : PartialOrder α
inst✝² : PredOrder α
a b : α
C : α → Sort u_2
inst✝¹ : IsPredArchimedean α
inst✝ : NoMaxOrder α
⊢ ¬IsPredLimit a
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Order.SuccPred.Limit", "llama_tokens": 8241} |
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ Monotone (↑toDual ∘ f ∘ ↑ofDual) ↔ Monotone f
[PROOFSTEP]
rw [monotone_toDual_comp_iff, antitone_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ Antitone (↑toDual ∘ f ∘ ↑ofDual) ↔ Antitone f
[PROOFSTEP]
rw [antitone_toDual_comp_iff, monotone_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ MonotoneOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ MonotoneOn f s
[PROOFSTEP]
rw [monotoneOn_toDual_comp_iff, antitoneOn_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ AntitoneOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ AntitoneOn f s
[PROOFSTEP]
rw [antitoneOn_toDual_comp_iff, monotoneOn_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ StrictMono (↑toDual ∘ f ∘ ↑ofDual) ↔ StrictMono f
[PROOFSTEP]
rw [strictMono_toDual_comp_iff, strictAnti_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ StrictAnti (↑toDual ∘ f ∘ ↑ofDual) ↔ StrictAnti f
[PROOFSTEP]
rw [strictAnti_toDual_comp_iff, strictMono_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ StrictMonoOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ StrictMonoOn f s
[PROOFSTEP]
rw [strictMonoOn_toDual_comp_iff, strictAntiOn_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α → β
s : Set α
⊢ StrictAntiOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ StrictAntiOn f s
[PROOFSTEP]
rw [strictAntiOn_toDual_comp_iff, strictMonoOn_comp_ofDual_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : LinearOrder α
f : α → β
h : ∀ (x y : α), x < y → f x ≠ f y
⊢ Injective f
[PROOFSTEP]
intro x y hf
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : LinearOrder α
f : α → β
h : ∀ (x y : α), x < y → f x ≠ f y
x y : α
hf : f x = f y
⊢ x = y
[PROOFSTEP]
rcases lt_trichotomy x y with (hxy | rfl | hxy)
[GOAL]
case inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : LinearOrder α
f : α → β
h : ∀ (x y : α), x < y → f x ≠ f y
x y : α
hf : f x = f y
hxy : x < y
⊢ x = y
[PROOFSTEP]
exact absurd hf <| h _ _ hxy
[GOAL]
case inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : LinearOrder α
f : α → β
h : ∀ (x y : α), x < y → f x ≠ f y
x : α
hf : f x = f x
⊢ x = x
[PROOFSTEP]
rfl
[GOAL]
case inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : LinearOrder α
f : α → β
h : ∀ (x y : α), x < y → f x ≠ f y
x y : α
hf : f x = f y
hxy : y < x
⊢ x = y
[PROOFSTEP]
exact absurd hf.symm <| h _ _ hxy
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
⊢ StrictMono fun x => if p x then f x else g x
[PROOFSTEP]
intro x y h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
x y : α
h : x < y
⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y
[PROOFSTEP]
by_cases hy : p y
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
x y : α
h : x < y
hy : p y
⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y
[PROOFSTEP]
have hx : p x := hp h hy
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
x y : α
h : x < y
hy : p y
hx : p x
⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y
[PROOFSTEP]
simpa [hx, hy] using hf h
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
x y : α
h : x < y
hy : ¬p y
⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y
[PROOFSTEP]
by_cases hx : p x
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
x y : α
h : x < y
hy : ¬p y
hx : p x
⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y
[PROOFSTEP]
simpa [hx, hy] using hfg hx hy h
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝² : Preorder α
inst✝¹ : Preorder β
f g : α → β
a : α
hf : StrictMono f
hg : StrictMono g
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ ⦃x y : α⦄, x < y → p y → p x
hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y
x y : α
h : x < y
hy : ¬p y
hx : ¬p x
⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y
[PROOFSTEP]
simpa [hx, hy] using hg h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : Preorder β
f : α → β
s : Set α
hf : StrictMonoOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
⊢ a = b → f a = f b
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : Preorder β
f : α → β
s : Set α
hf : StrictMonoOn f s
a : α
ha hb : a ∈ s
⊢ f a = f a
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : Preorder β
f : α → β
s : Set α
hf : StrictMonoOn f s
a b : α
ha : a ∈ s
hb : b ∈ s
⊢ f a < f b ↔ a < b
[PROOFSTEP]
rw [lt_iff_le_not_le, lt_iff_le_not_le, hf.le_iff_le ha hb, hf.le_iff_le hb ha]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ ¬Monotone f ∧ ¬Antitone f ↔ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
simp_rw [Monotone, Antitone, not_forall, not_le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ ((∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1) ↔
∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
refine' Iff.symm ⟨_, _⟩
[GOAL]
case refine'_1
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ (∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)) →
(∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1
case refine'_2
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ ((∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1) →
∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{ rintro ⟨a, b, c, hab, hbc, ⟨hfab, hfcb⟩ | ⟨hfba, hfbc⟩⟩
exacts [⟨⟨_, _, hbc, hfcb⟩, _, _, hab, hfab⟩, ⟨⟨_, _, hab, hfba⟩, _, _, hbc, hfbc⟩]
}
[GOAL]
case refine'_1
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ (∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)) →
(∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1
[PROOFSTEP]
rintro ⟨a, b, c, hab, hbc, ⟨hfab, hfcb⟩ | ⟨hfba, hfbc⟩⟩
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.inl.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b c : α
hab : a ≤ b
hbc : b ≤ c
hfab : f a < f b
hfcb : f c < f b
⊢ (∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1
case refine'_1.intro.intro.intro.intro.intro.inr.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b c : α
hab : a ≤ b
hbc : b ≤ c
hfba : f b < f a
hfbc : f b < f c
⊢ (∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1
[PROOFSTEP]
exacts [⟨⟨_, _, hbc, hfcb⟩, _, _, hab, hfab⟩, ⟨⟨_, _, hab, hfba⟩, _, _, hbc, hfbc⟩]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ ((∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1) →
∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
rintro ⟨⟨a, b, hab, hfba⟩, c, d, hcd, hfcd⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hda | had := le_total d a
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{ obtain hfad | hfda := le_total (f a) (f d)
{exact ⟨c, d, b, hcd, hda.trans hab, Or.inl ⟨hfcd, hfba.trans_le hfad⟩⟩
}
{exact ⟨c, a, b, hcd.trans hda, hab, Or.inl ⟨hfcd.trans_le hfda, hfba⟩⟩
}
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hfad | hfda := le_total (f a) (f d)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
hfad : f a ≤ f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
hfda : f d ≤ f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨c, d, b, hcd, hda.trans hab, Or.inl ⟨hfcd, hfba.trans_le hfad⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
hfad : f a ≤ f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨c, d, b, hcd, hda.trans hab, Or.inl ⟨hfcd, hfba.trans_le hfad⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
hfda : f d ≤ f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨c, a, b, hcd.trans hda, hab, Or.inl ⟨hfcd.trans_le hfda, hfba⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
hda : d ≤ a
hfda : f d ≤ f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨c, a, b, hcd.trans hda, hab, Or.inl ⟨hfcd.trans_le hfda, hfba⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hac | hca := le_total a c
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{ obtain hfdb | hfbd := le_or_lt (f d) (f b)
{exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfcd.trans $ hfdb.trans_lt hfba, hfcd⟩⟩
}
obtain hfca | hfac := lt_or_le (f c) (f a)
{exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfca, hfcd⟩⟩
}
obtain hbd | hdb := le_total b d
{exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩
}
{exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩
}
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hfdb | hfbd := le_or_lt (f d) (f b)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfdb : f d ≤ f b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfcd.trans $ hfdb.trans_lt hfba, hfcd⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfdb : f d ≤ f b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfcd.trans $ hfdb.trans_lt hfba, hfcd⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hfca | hfac := lt_or_le (f c) (f a)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfca : f c < f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfca, hfcd⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfca : f c < f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfca, hfcd⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hbd | hdb := le_total b d
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
hbd : b ≤ d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
hdb : d ≤ b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
hbd : b ≤ d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
hdb : d ≤ b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hac : a ≤ c
hfbd : f b < f d
hfac : f a ≤ f c
hdb : d ≤ b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{ obtain hfdb | hfbd := le_or_lt (f d) (f b)
{exact ⟨c, a, b, hca, hab, Or.inl ⟨hfcd.trans $ hfdb.trans_lt hfba, hfba⟩⟩
}
obtain hfca | hfac := lt_or_le (f c) (f a)
{exact ⟨c, a, b, hca, hab, Or.inl ⟨hfca, hfba⟩⟩
}
obtain hbd | hdb := le_total b d
{exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩
}
{exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩
}
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hfdb | hfbd := le_or_lt (f d) (f b)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfdb : f d ≤ f b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨c, a, b, hca, hab, Or.inl ⟨hfcd.trans $ hfdb.trans_lt hfba, hfba⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfdb : f d ≤ f b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨c, a, b, hca, hab, Or.inl ⟨hfcd.trans $ hfdb.trans_lt hfba, hfba⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hfca | hfac := lt_or_le (f c) (f a)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfca : f c < f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨c, a, b, hca, hab, Or.inl ⟨hfca, hfba⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfca : f c < f a
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨c, a, b, hca, hab, Or.inl ⟨hfca, hfba⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
obtain hbd | hdb := le_total b d
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
hbd : b ≤ d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
hdb : d ≤ b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
hbd : b ≤ d
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
hdb : d ≤ b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
{exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩
}
[GOAL]
case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
hab : a ≤ b
hfba : f b < f a
c d : α
hcd : c ≤ d
hfcd : f c < f d
had : a ≤ d
hca : c ≤ a
hfbd : f b < f d
hfac : f a ≤ f c
hdb : d ≤ b
⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ ¬Monotone f ∧ ¬Antitone f ↔ ∃ a b c, a < b ∧ b < c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
simp_rw [not_monotone_not_antitone_iff_exists_le_le, ← and_assoc]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y : α
⊢ (∃ a b c, (a ≤ b ∧ b ≤ c) ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)) ↔
∃ a b c, (a < b ∧ b < c) ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)
[PROOFSTEP]
refine' exists₃_congr (fun a b c ↦ and_congr_left $ fun h ↦ (Ne.le_iff_lt _).and $ Ne.le_iff_lt _)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b c : α
h : f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c
⊢ a ≠ b
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_1
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a c : α
h : f a < f a ∧ f c < f a ∨ f a < f a ∧ f a < f c
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
case refine'_2
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b c : α
h : f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c
⊢ b ≠ c
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_2
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
x y a b : α
h : f a < f b ∧ f b < f b ∨ f b < f a ∧ f b < f b
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℕ → β
a : ℕ
h : ∀ (n : ℕ), a ≤ n → r (f n) (f (n + 1))
b c : ℕ
hab : a ≤ b
hbc : b < c
⊢ r (f b) (f c)
[PROOFSTEP]
induction' hbc with k b_lt_k r_b_k
[GOAL]
case refl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℕ → β
a : ℕ
h : ∀ (n : ℕ), a ≤ n → r (f n) (f (n + 1))
b c : ℕ
hab : a ≤ b
⊢ r (f b) (f (succ b))
case step
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℕ → β
a : ℕ
h : ∀ (n : ℕ), a ≤ n → r (f n) (f (n + 1))
b c : ℕ
hab : a ≤ b
k : ℕ
b_lt_k : Nat.le (succ b) k
r_b_k : r (f b) (f k)
⊢ r (f b) (f (succ k))
[PROOFSTEP]
exacts [h _ hab, _root_.trans r_b_k (h _ (hab.trans_lt b_lt_k).le)]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
a : α
⊢ ∃ f, StrictMono f ∧ f 0 = a
[PROOFSTEP]
choose g hg using fun x : α ↦ exists_gt x
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
a : α
g : α → α
hg : ∀ (x : α), x < g x
⊢ ∃ f, StrictMono f ∧ f 0 = a
[PROOFSTEP]
exact ⟨fun n ↦ Nat.recOn n a fun _ ↦ g, strictMono_nat_of_lt_succ fun n ↦ hg _, rfl⟩
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a b : ℤ
hab : a < b
⊢ r (f a) (f b)
[PROOFSTEP]
rcases lt.dest hab with ⟨n, rfl⟩
[GOAL]
case intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a : ℤ
n : ℕ
hab : a < a + ↑(Nat.succ n)
⊢ r (f a) (f (a + ↑(Nat.succ n)))
[PROOFSTEP]
clear hab
[GOAL]
case intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a : ℤ
n : ℕ
⊢ r (f a) (f (a + ↑(Nat.succ n)))
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case intro.zero
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a : ℤ
⊢ r (f a) (f (a + ↑(Nat.succ Nat.zero)))
[PROOFSTEP]
rw [Int.ofNat_one]
[GOAL]
case intro.zero
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a : ℤ
⊢ r (f a) (f (a + 1))
[PROOFSTEP]
apply h
[GOAL]
case intro.succ
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a : ℤ
n : ℕ
ihn : r (f a) (f (a + ↑(Nat.succ n)))
⊢ r (f a) (f (a + ↑(Nat.succ (Nat.succ n))))
[PROOFSTEP]
rw [Int.ofNat_succ, ← Int.add_assoc]
[GOAL]
case intro.succ
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r✝ : α → α → Prop
inst✝¹ : Preorder α
r : β → β → Prop
inst✝ : IsTrans β r
f : ℤ → β
h : ∀ (n : ℤ), r (f n) (f (n + 1))
a : ℤ
n : ℕ
ihn : r (f a) (f (a + ↑(Nat.succ n)))
⊢ r (f a) (f (a + ↑(n + 1) + 1))
[PROOFSTEP]
exact _root_.trans ihn (h _)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
⊢ ∃ f, StrictMono f
[PROOFSTEP]
inhabit α
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
⊢ ∃ f, StrictMono f
[PROOFSTEP]
rcases Nat.exists_strictMono' (default : α) with ⟨f, hf, hf₀⟩
[GOAL]
case intro.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
⊢ ∃ f, StrictMono f
[PROOFSTEP]
rcases Nat.exists_strictAnti' (default : α) with ⟨g, hg, hg₀⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
⊢ ∃ f, StrictMono f
[PROOFSTEP]
refine' ⟨fun n ↦ Int.casesOn n f fun n ↦ g (n + 1), strictMono_int_of_lt_succ _⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
⊢ ∀ (n : ℤ), (Int.casesOn n f fun n => g (n + 1)) < Int.casesOn (n + 1) f fun n => g (n + 1)
[PROOFSTEP]
rintro (n | _ | n)
[GOAL]
case intro.intro.intro.intro.ofNat
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
n : ℕ
⊢ (Int.casesOn (ofNat n) f fun n => g (n + 1)) < Int.casesOn (ofNat n + 1) f fun n => g (n + 1)
[PROOFSTEP]
exact hf n.lt_succ_self
[GOAL]
case intro.intro.intro.intro.negSucc.zero
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
⊢ (Int.casesOn -[Nat.zero+1] f fun n => g (n + 1)) < Int.casesOn (-[Nat.zero+1] + 1) f fun n => g (n + 1)
[PROOFSTEP]
show g 1 < f 0
[GOAL]
case intro.intro.intro.intro.negSucc.zero
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
⊢ g 1 < f 0
[PROOFSTEP]
rw [hf₀, ← hg₀]
[GOAL]
case intro.intro.intro.intro.negSucc.zero
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
⊢ g 1 < g 0
[PROOFSTEP]
exact hg Nat.zero_lt_one
[GOAL]
case intro.intro.intro.intro.negSucc.succ
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝⁴ inst✝³ : Preorder α
inst✝² : Nonempty α
inst✝¹ : NoMinOrder α
inst✝ : NoMaxOrder α
inhabited_h : Inhabited α
f : ℕ → α
hf : StrictMono f
hf₀ : f 0 = default
g : ℕ → α
hg : StrictAnti g
hg₀ : g 0 = default
n : ℕ
⊢ (Int.casesOn -[Nat.succ n+1] f fun n => g (n + 1)) < Int.casesOn (-[Nat.succ n+1] + 1) f fun n => g (n + 1)
[PROOFSTEP]
exact hg (Nat.lt_succ_self _)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℕ → α
hf : Monotone f
n : ℕ
x : α
h1 : f n < x
h2 : x < f (n + 1)
a : ℕ
⊢ f a ≠ x
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℕ → α
hf : Monotone f
n a : ℕ
h1 : f n < f a
h2 : f a < f (n + 1)
⊢ False
[PROOFSTEP]
exact (hf.reflect_lt h1).not_le (Nat.le_of_lt_succ <| hf.reflect_lt h2)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℕ → α
hf : Antitone f
n : ℕ
x : α
h1 : f (n + 1) < x
h2 : x < f n
a : ℕ
⊢ f a ≠ x
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℕ → α
hf : Antitone f
n a : ℕ
h1 : f (n + 1) < f a
h2 : f a < f n
⊢ False
[PROOFSTEP]
exact (hf.reflect_lt h2).not_le (Nat.le_of_lt_succ <| hf.reflect_lt h1)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℤ → α
hf : Monotone f
n : ℤ
x : α
h1 : f n < x
h2 : x < f (n + 1)
a : ℤ
⊢ f a ≠ x
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℤ → α
hf : Monotone f
n a : ℤ
h1 : f n < f a
h2 : f a < f (n + 1)
⊢ False
[PROOFSTEP]
exact (hf.reflect_lt h1).not_le (Int.le_of_lt_add_one <| hf.reflect_lt h2)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℤ → α
hf : Antitone f
n : ℤ
x : α
h1 : f (n + 1) < x
h2 : x < f n
a : ℤ
⊢ f a ≠ x
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝ : Preorder α
f : ℤ → α
hf : Antitone f
n a : ℤ
h1 : f (n + 1) < f a
h2 : f a < f n
⊢ False
[PROOFSTEP]
exact (hf.reflect_lt h2).not_le (Int.le_of_lt_add_one <| hf.reflect_lt h1)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α → γ
g : β → δ
hf : StrictMono f
hg : StrictMono g
a b : α × β
⊢ a < b → Prod.map f g a < Prod.map f g b
[PROOFSTEP]
simp only [Prod.lt_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α → γ
g : β → δ
hf : StrictMono f
hg : StrictMono g
a b : α × β
⊢ a.fst < b.fst ∧ a.snd ≤ b.snd ∨ a.fst ≤ b.fst ∧ a.snd < b.snd →
(Prod.map f g a).fst < (Prod.map f g b).fst ∧ (Prod.map f g a).snd ≤ (Prod.map f g b).snd ∨
(Prod.map f g a).fst ≤ (Prod.map f g b).fst ∧ (Prod.map f g a).snd < (Prod.map f g b).snd
[PROOFSTEP]
exact Or.imp (And.imp hf.imp hg.monotone.imp) (And.imp hf.monotone.imp hg.imp)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α → γ
g : β → δ
hf : StrictAnti f
hg : StrictAnti g
a b : α × β
⊢ a < b → Prod.map f g b < Prod.map f g a
[PROOFSTEP]
simp only [Prod.lt_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
δ : Type u_2
π : ι → Type u_3
r : α → α → Prop
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α → γ
g : β → δ
hf : StrictAnti f
hg : StrictAnti g
a b : α × β
⊢ a.fst < b.fst ∧ a.snd ≤ b.snd ∨ a.fst ≤ b.fst ∧ a.snd < b.snd →
(Prod.map f g b).fst < (Prod.map f g a).fst ∧ (Prod.map f g b).snd ≤ (Prod.map f g a).snd ∨
(Prod.map f g b).fst ≤ (Prod.map f g a).fst ∧ (Prod.map f g b).snd < (Prod.map f g a).snd
[PROOFSTEP]
exact Or.imp (And.imp hf.imp hg.antitone.imp) (And.imp hf.antitone.imp hg.imp)
| {"mathlib_filename": "Mathlib.Order.Monotone.Basic", "llama_tokens": 24452} |
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
β : Type u_3
m : β → (i : ι) → α i
l : Filter β
⊢ Tendsto m l (pi f) ↔ ∀ (i : ι), Tendsto (fun x => m x i) l (f i)
[PROOFSTEP]
simp only [pi, tendsto_iInf, tendsto_comap_iff]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
β : Type u_3
m : β → (i : ι) → α i
l : Filter β
⊢ (∀ (i : ι), Tendsto (eval i ∘ m) l (f i)) ↔ ∀ (i : ι), Tendsto (fun x => m x i) l (f i)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
I : Set ι
hI : Set.Finite I
h : ∀ (i : ι), i ∈ I → s i ∈ f i
⊢ Set.pi I s ∈ pi f
[PROOFSTEP]
rw [pi_def, biInter_eq_iInter]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
I : Set ι
hI : Set.Finite I
h : ∀ (i : ι), i ∈ I → s i ∈ f i
⊢ ⋂ (x : ↑I), eval ↑x ⁻¹' s ↑x ∈ pi f
[PROOFSTEP]
refine' mem_iInf_of_iInter hI (fun i => _) Subset.rfl
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
I : Set ι
hI : Set.Finite I
h : ∀ (i : ι), i ∈ I → s i ∈ f i
i : ↑I
⊢ eval ↑i ⁻¹' s ↑i ∈ comap (eval ↑i) (f ↑i)
[PROOFSTEP]
exact preimage_mem_comap (h i i.2)
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
⊢ s ∈ pi f ↔ ∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ s
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
⊢ s ∈ pi f → ∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ s
[PROOFSTEP]
simp only [pi, mem_iInf', mem_comap, pi_def]
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
⊢ (∃ I,
Set.Finite I ∧
∃ V,
(∀ (i : ι), ∃ t, t ∈ f i ∧ eval i ⁻¹' t ⊆ V i) ∧
(∀ (i : ι), ¬i ∈ I → V i = univ) ∧ s = ⋂ (i : ι) (_ : i ∈ I), V i ∧ s = ⋂ (i : ι), V i) →
∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ (a : ι) (_ : a ∈ I), eval a ⁻¹' t a ⊆ s
[PROOFSTEP]
rintro ⟨I, If, V, hVf, -, rfl, -⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
I : Set ι
If : Set.Finite I
V : ι → Set ((i : ι) → α i)
hVf : ∀ (i : ι), ∃ t, t ∈ f i ∧ eval i ⁻¹' t ⊆ V i
⊢ ∃ I_1,
Set.Finite I_1 ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ (a : ι) (_ : a ∈ I_1), eval a ⁻¹' t a ⊆ ⋂ (i : ι) (_ : i ∈ I), V i
[PROOFSTEP]
choose t htf htV using hVf
[GOAL]
case mp.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
I : Set ι
If : Set.Finite I
V : ι → Set ((i : ι) → α i)
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
htV : ∀ (i : ι), eval i ⁻¹' t i ⊆ V i
⊢ ∃ I_1,
Set.Finite I_1 ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ (a : ι) (_ : a ∈ I_1), eval a ⁻¹' t a ⊆ ⋂ (i : ι) (_ : i ∈ I), V i
[PROOFSTEP]
exact ⟨I, If, t, htf, iInter₂_mono fun i _ => htV i⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
⊢ (∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ s) → s ∈ pi f
[PROOFSTEP]
rintro ⟨I, If, t, htf, hts⟩
[GOAL]
case mpr.intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
I : Set ι
If : Set.Finite I
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I t ⊆ s
⊢ s ∈ pi f
[PROOFSTEP]
exact mem_of_superset (pi_mem_pi If fun i _ => htf i) hts
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
⊢ s i ∈ f i
[PROOFSTEP]
rcases mem_pi.1 h with ⟨I', -, t, htf, hts⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
⊢ s i ∈ f i
[PROOFSTEP]
refine' mem_of_superset (htf i) fun x hx => _
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
x : α i
hx : x ∈ t i
⊢ x ∈ s i
[PROOFSTEP]
have : ∀ i, (t i).Nonempty := fun i => nonempty_of_mem (htf i)
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
x : α i
hx : x ∈ t i
this : ∀ (i : ι), Set.Nonempty (t i)
⊢ x ∈ s i
[PROOFSTEP]
choose g hg using this
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
x : α i
hx : x ∈ t i
g : (i : ι) → α i
hg : ∀ (i : ι), g i ∈ t i
⊢ x ∈ s i
[PROOFSTEP]
have : update g i x ∈ I'.pi t := fun j _ => by rcases eq_or_ne j i with (rfl | hne) <;> simp [*]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
x : α i
hx : x ∈ t i
g : (i : ι) → α i
hg : ∀ (i : ι), g i ∈ t i
j : ι
x✝ : j ∈ I'
⊢ update g i x j ∈ t j
[PROOFSTEP]
rcases eq_or_ne j i with (rfl | hne)
[GOAL]
case inl
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
g : (i : ι) → α i
hg : ∀ (i : ι), g i ∈ t i
j : ι
x✝ : j ∈ I'
hi : j ∈ I
x : α j
hx : x ∈ t j
⊢ update g j x j ∈ t j
[PROOFSTEP]
simp [*]
[GOAL]
case inr
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
x : α i
hx : x ∈ t i
g : (i : ι) → α i
hg : ∀ (i : ι), g i ∈ t i
j : ι
x✝ : j ∈ I'
hne : j ≠ i
⊢ update g i x j ∈ t j
[PROOFSTEP]
simp [*]
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
h : Set.pi I s ∈ pi f
i : ι
hi : i ∈ I
I' : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I' t ⊆ Set.pi I s
x : α i
hx : x ∈ t i
g : (i : ι) → α i
hg : ∀ (i : ι), g i ∈ t i
this : update g i x ∈ Set.pi I' t
⊢ x ∈ s i
[PROOFSTEP]
simpa using hts this i hi
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
ι' : ι → Type
s : (i : ι) → ι' i → Set (α i)
p : (i : ι) → ι' i → Prop
h : ∀ (i : ι), HasBasis (f i) (p i) (s i)
⊢ HasBasis (pi f) (fun If => Set.Finite If.fst ∧ ∀ (i : ι), i ∈ If.fst → p i (Prod.snd If i)) fun If =>
Set.pi If.fst fun i => s i (Prod.snd If i)
[PROOFSTEP]
simpa [Set.pi_def] using hasBasis_iInf' fun i => (h i).comap (eval i : (∀ j, α j) → α i)
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ pi f ⊓ 𝓟 (Set.pi univ s) = ⊥ ↔ ∃ i, f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ pi f ⊓ 𝓟 (Set.pi univ s) = ⊥ → ∃ i, f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
simp only [inf_principal_eq_bot, mem_pi]
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ (∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ (Set.pi univ s)ᶜ) → ∃ i, (s i)ᶜ ∈ f i
[PROOFSTEP]
contrapose!
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ (∀ (i : ι), ¬(s i)ᶜ ∈ f i) →
∀ (I : Set ι), Set.Finite I → ∀ (t : (i : ι) → Set (α i)), (∀ (i : ι), t i ∈ f i) → ¬Set.pi I t ⊆ (Set.pi univ s)ᶜ
[PROOFSTEP]
rintro (hsf : ∀ i, ∃ᶠ x in f i, x ∈ s i) I - t htf hts
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
hsf : ∀ (i : ι), ∃ᶠ (x : α i) in f i, x ∈ s i
I : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I t ⊆ (Set.pi univ s)ᶜ
⊢ False
[PROOFSTEP]
have : ∀ i, (s i ∩ t i).Nonempty := fun i => ((hsf i).and_eventually (htf i)).exists
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
hsf : ∀ (i : ι), ∃ᶠ (x : α i) in f i, x ∈ s i
I : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I t ⊆ (Set.pi univ s)ᶜ
this : ∀ (i : ι), Set.Nonempty (s i ∩ t i)
⊢ False
[PROOFSTEP]
choose x hxs hxt using this
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
hsf : ∀ (i : ι), ∃ᶠ (x : α i) in f i, x ∈ s i
I : Set ι
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hts : Set.pi I t ⊆ (Set.pi univ s)ᶜ
x : (i : ι) → α i
hxs : ∀ (i : ι), x i ∈ s i
hxt : ∀ (i : ι), x i ∈ t i
⊢ False
[PROOFSTEP]
exact hts (fun i _ => hxt i) (mem_univ_pi.2 hxs)
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ (∃ i, f i ⊓ 𝓟 (s i) = ⊥) → pi f ⊓ 𝓟 (Set.pi univ s) = ⊥
[PROOFSTEP]
simp only [inf_principal_eq_bot]
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ (∃ i, (s i)ᶜ ∈ f i) → (Set.pi univ s)ᶜ ∈ pi f
[PROOFSTEP]
rintro ⟨i, hi⟩
[GOAL]
case mpr.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
i : ι
hi : (s i)ᶜ ∈ f i
⊢ (Set.pi univ s)ᶜ ∈ pi f
[PROOFSTEP]
filter_upwards [mem_pi_of_mem i hi] with x using mt fun h => h i trivial
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
⊢ pi f ⊓ 𝓟 (Set.pi I s) = ⊥ ↔ ∃ i, i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
rw [← univ_pi_piecewise_univ I, pi_inf_principal_univ_pi_eq_bot]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
⊢ (∃ i, f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥) ↔ ∃ i, i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
refine' exists_congr fun i => _
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
i : ι
⊢ f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥ ↔ i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
by_cases hi : i ∈ I
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
i : ι
hi : i ∈ I
⊢ f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥ ↔ i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
simp [hi, NeBot.ne']
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
i : ι
hi : ¬i ∈ I
⊢ f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥ ↔ i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥
[PROOFSTEP]
simp [hi, NeBot.ne']
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ NeBot (pi f ⊓ 𝓟 (Set.pi univ s)) ↔ ∀ (i : ι), NeBot (f i ⊓ 𝓟 (s i))
[PROOFSTEP]
simp [neBot_iff]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
I : Set ι
⊢ NeBot (pi f ⊓ 𝓟 (Set.pi I s)) ↔ ∀ (i : ι), i ∈ I → NeBot (f i ⊓ 𝓟 (s i))
[PROOFSTEP]
simp [neBot_iff]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ pi f = ⊥ ↔ ∃ i, f i = ⊥
[PROOFSTEP]
simpa using @pi_inf_principal_univ_pi_eq_bot ι α f fun _ => univ
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ NeBot (pi f) ↔ ∀ (i : ι), NeBot (f i)
[PROOFSTEP]
simp [neBot_iff]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f✝ f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
f : (i : ι) → Filter (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
i : ι
⊢ map (eval i) (pi f) = f i
[PROOFSTEP]
refine' le_antisymm (tendsto_eval_pi f i) fun s hs => _
[GOAL]
ι : Type u_1
α : ι → Type u_2
f✝ f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
f : (i : ι) → Filter (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
i : ι
s : Set (α i)
hs : s ∈ map (eval i) (pi f)
⊢ s ∈ f i
[PROOFSTEP]
rcases mem_pi.1 (mem_map.1 hs) with ⟨I, hIf, t, htf, hI⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f✝ f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
f : (i : ι) → Filter (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
i : ι
s : Set (α i)
hs : s ∈ map (eval i) (pi f)
I : Set ι
hIf : Set.Finite I
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hI : Set.pi I t ⊆ eval i ⁻¹' s
⊢ s ∈ f i
[PROOFSTEP]
rw [← image_subset_iff] at hI
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f✝ f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
f : (i : ι) → Filter (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
i : ι
s : Set (α i)
hs : s ∈ map (eval i) (pi f)
I : Set ι
hIf : Set.Finite I
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hI : eval i '' Set.pi I t ⊆ s
⊢ s ∈ f i
[PROOFSTEP]
refine' mem_of_superset (htf i) ((subset_eval_image_pi _ _).trans hI)
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
f✝ f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
f : (i : ι) → Filter (α i)
inst✝ : ∀ (i : ι), NeBot (f i)
i : ι
s : Set (α i)
hs : s ∈ map (eval i) (pi f)
I : Set ι
hIf : Set.Finite I
t : (i : ι) → Set (α i)
htf : ∀ (i : ι), t i ∈ f i
hI : eval i '' Set.pi I t ⊆ s
⊢ Set.Nonempty (Set.pi I t)
[PROOFSTEP]
exact nonempty_of_mem (pi_mem_pi hIf fun i _ => htf i)
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f₁ i)
⊢ pi f₁ = pi f₂ ↔ f₁ = f₂
[PROOFSTEP]
refine' ⟨fun h => _, congr_arg pi⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f₁ i)
h : pi f₁ = pi f₂
⊢ f₁ = f₂
[PROOFSTEP]
have hle : f₁ ≤ f₂ := pi_le_pi.1 h.le
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f₁ i)
h : pi f₁ = pi f₂
hle : f₁ ≤ f₂
⊢ f₁ = f₂
[PROOFSTEP]
haveI : ∀ i, NeBot (f₂ i) := fun i => neBot_of_le (hle i)
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), NeBot (f₁ i)
h : pi f₁ = pi f₂
hle : f₁ ≤ f₂
this : ∀ (i : ι), NeBot (f₂ i)
⊢ f₁ = f₂
[PROOFSTEP]
exact hle.antisymm (pi_le_pi.1 h.ge)
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
⊢ s ∈ Filter.coprodᵢ f ↔ ∀ (i : ι), ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ s
[PROOFSTEP]
simp [Filter.coprodᵢ]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
s : Set ((i : ι) → α i)
⊢ sᶜ ∈ Filter.coprodᵢ f ↔ ∀ (i : ι), (eval i '' s)ᶜ ∈ f i
[PROOFSTEP]
simp only [Filter.coprodᵢ, mem_iSup, compl_mem_comap]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ NeBot (Filter.coprodᵢ f) ↔ (∀ (i : ι), Nonempty (α i)) ∧ ∃ d, NeBot (f d)
[PROOFSTEP]
simp only [Filter.coprodᵢ, iSup_neBot, ← exists_and_left, ← comap_eval_neBot_iff']
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), Nonempty (α i)
⊢ NeBot (Filter.coprodᵢ f) ↔ ∃ d, NeBot (f d)
[PROOFSTEP]
simp [coprodᵢ_neBot_iff', *]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
⊢ Filter.coprodᵢ f = ⊥ ↔ (∃ i, IsEmpty (α i)) ∨ f = ⊥
[PROOFSTEP]
simpa only [not_neBot, not_and_or, funext_iff, not_forall, not_exists, not_nonempty_iff] using coprodᵢ_neBot_iff'.not
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
inst✝ : ∀ (i : ι), Nonempty (α i)
⊢ Filter.coprodᵢ f = ⊥ ↔ f = ⊥
[PROOFSTEP]
simpa [funext_iff] using coprodᵢ_neBot_iff.not
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
β : ι → Type u_3
m : (i : ι) → α i → β i
⊢ map (fun k i => m i (k i)) (Filter.coprodᵢ f) ≤ Filter.coprodᵢ fun i => map (m i) (f i)
[PROOFSTEP]
simp only [le_def, mem_map, mem_coprodᵢ_iff]
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s : (i : ι) → Set (α i)
β : ι → Type u_3
m : (i : ι) → α i → β i
⊢ ∀ (x : Set ((i : ι) → β i)),
(∀ (i : ι), ∃ t₁, m i ⁻¹' t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ x) →
∀ (i : ι), ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ (fun k i => m i (k i)) ⁻¹' x
[PROOFSTEP]
intro s h i
[GOAL]
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
β : ι → Type u_3
m : (i : ι) → α i → β i
s : Set ((i : ι) → β i)
h : ∀ (i : ι), ∃ t₁, m i ⁻¹' t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ s
i : ι
⊢ ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ (fun k i => m i (k i)) ⁻¹' s
[PROOFSTEP]
obtain ⟨t, H, hH⟩ := h i
[GOAL]
case intro.intro
ι : Type u_1
α : ι → Type u_2
f f₁ f₂ : (i : ι) → Filter (α i)
s✝ : (i : ι) → Set (α i)
β : ι → Type u_3
m : (i : ι) → α i → β i
s : Set ((i : ι) → β i)
h : ∀ (i : ι), ∃ t₁, m i ⁻¹' t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ s
i : ι
t : Set (β i)
H : m i ⁻¹' t ∈ f i
hH : eval i ⁻¹' t ⊆ s
⊢ ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ (fun k i => m i (k i)) ⁻¹' s
[PROOFSTEP]
exact ⟨{x : α i | m i x ∈ t}, H, fun x hx => hH hx⟩
| {"mathlib_filename": "Mathlib.Order.Filter.Pi", "llama_tokens": 10667} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : One α
f : Filter α
s : Set α
inst✝¹ : One β
inst✝ : OneHomClass F α β
φ : F
⊢ map (↑φ) 1 = 1
[PROOFSTEP]
rw [Filter.map_one', map_one, pure_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : InvolutiveInv α
f g : Filter α
s : Set α
hs : s ∈ f
⊢ s⁻¹ ∈ f⁻¹
[PROOFSTEP]
rwa [mem_inv, inv_preimage, inv_inv]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : InvolutiveInv α
f✝ g : Filter α
s : Set α
src✝ : Inv (Filter α) := instInv
f : Filter α
⊢ map (Inv.inv ∘ Inv.inv) f = f
[PROOFSTEP]
rw [inv_involutive.comp_self, map_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : InvolutiveInv α
f g : Filter α
s : Set α
⊢ f⁻¹ ≤ g ↔ f ≤ g⁻¹
[PROOFSTEP]
rw [← Filter.inv_le_inv_iff, inv_inv]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n : ℕ
hs : s ∈ f
⊢ s ^ 0 ∈ f ^ 0
[PROOFSTEP]
rw [pow_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n : ℕ
hs : s ∈ f
⊢ 1 ∈ f ^ 0
[PROOFSTEP]
exact one_mem_one
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n✝ : ℕ
hs : s ∈ f
n : ℕ
⊢ s ^ (n + 1) ∈ f ^ (n + 1)
[PROOFSTEP]
rw [pow_succ]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n✝ : ℕ
hs : s ∈ f
n : ℕ
⊢ s * s ^ n ∈ f ^ (n + 1)
[PROOFSTEP]
exact mul_mem_mul hs (pow_mem_pow hs n)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n✝ n : ℕ
hn : n ≠ 0
⊢ ⊥ ^ n = ⊥
[PROOFSTEP]
rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt <| Nat.pos_of_ne_zero hn), pow_succ, bot_mul]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n : ℕ
hf : 1 ≤ f
⊢ f * ⊤ = ⊤
[PROOFSTEP]
refine' top_le_iff.1 fun s => _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s✝ : Set α
a : α
m n : ℕ
hf : 1 ≤ f
s : Set α
⊢ s ∈ f * ⊤ → s ∈ ⊤
[PROOFSTEP]
simp only [mem_mul, mem_top, exists_and_left, exists_eq_left]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s✝ : Set α
a : α
m n : ℕ
hf : 1 ≤ f
s : Set α
⊢ (∃ t₁, t₁ ∈ f ∧ t₁ * univ ⊆ s) → s = univ
[PROOFSTEP]
rintro ⟨t, ht, hs⟩
[GOAL]
case intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s✝ : Set α
a : α
m n : ℕ
hf : 1 ≤ f
s t : Set α
ht : t ∈ f
hs : t * univ ⊆ s
⊢ s = univ
[PROOFSTEP]
rwa [mul_univ_of_one_mem (mem_one.1 <| hf ht), univ_subset_iff] at hs
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n : ℕ
hf : 1 ≤ f
⊢ ⊤ * f = ⊤
[PROOFSTEP]
refine' top_le_iff.1 fun s => _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s✝ : Set α
a : α
m n : ℕ
hf : 1 ≤ f
s : Set α
⊢ s ∈ ⊤ * f → s ∈ ⊤
[PROOFSTEP]
simp only [mem_mul, mem_top, exists_and_left, exists_eq_left]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s✝ : Set α
a : α
m n : ℕ
hf : 1 ≤ f
s : Set α
⊢ (∃ x, x ∈ f ∧ univ * x ⊆ s) → s = univ
[PROOFSTEP]
rintro ⟨t, ht, hs⟩
[GOAL]
case intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s✝ : Set α
a : α
m n : ℕ
hf : 1 ≤ f
s t : Set α
ht : t ∈ f
hs : univ * t ⊆ s
⊢ s = univ
[PROOFSTEP]
rwa [univ_mul_of_one_mem (mem_one.1 <| hf ht), univ_subset_iff] at hs
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : Monoid α
f g : Filter α
s : Set α
a : α
m n✝ n : ℕ
x✝ : n + 2 ≠ 0
⊢ ⊤ ^ (n + 2) = ⊤
[PROOFSTEP]
rw [pow_succ, top_pow n.succ_ne_zero, top_mul_top]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
⊢ f * g = 1 ↔ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1
[PROOFSTEP]
refine' ⟨fun hfg => _, _⟩
[GOAL]
case refine'_1
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg : f * g = 1
⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1
[PROOFSTEP]
obtain ⟨t₁, t₂, h₁, h₂, h⟩ : (1 : Set α) ∈ f * g := hfg.symm.subst one_mem_one
[GOAL]
case refine'_1.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg : f * g = 1
t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ g
h : t₁ * t₂ ⊆ 1
⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1
[PROOFSTEP]
have hfg : (f * g).NeBot := hfg.symm.subst one_neBot
[GOAL]
case refine'_1.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg✝ : f * g = 1
t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ g
h : t₁ * t₂ ⊆ 1
hfg : NeBot (f * g)
⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1
[PROOFSTEP]
rw [(hfg.nonempty_of_mem <| mul_mem_mul h₁ h₂).subset_one_iff, Set.mul_eq_one_iff] at h
[GOAL]
case refine'_1.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg✝ : f * g = 1
t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ g
h : ∃ a b, t₁ = {a} ∧ t₂ = {b} ∧ a * b = 1
hfg : NeBot (f * g)
⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1
[PROOFSTEP]
obtain ⟨a, b, rfl, rfl, h⟩ := h
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg✝ : f * g = 1
hfg : NeBot (f * g)
a b : α
h₁ : {a} ∈ f
h : a * b = 1
h₂ : {b} ∈ g
⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1
[PROOFSTEP]
refine' ⟨a, b, _, _, h⟩
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg✝ : f * g = 1
hfg : NeBot (f * g)
a b : α
h₁ : {a} ∈ f
h : a * b = 1
h₂ : {b} ∈ g
⊢ f = pure a
[PROOFSTEP]
rwa [← hfg.of_mul_left.le_pure_iff, le_pure_iff]
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
hfg✝ : f * g = 1
hfg : NeBot (f * g)
a b : α
h₁ : {a} ∈ f
h : a * b = 1
h₂ : {b} ∈ g
⊢ g = pure b
[PROOFSTEP]
rwa [← hfg.of_mul_right.le_pure_iff, le_pure_iff]
[GOAL]
case refine'_2
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
⊢ (∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1) → f * g = 1
[PROOFSTEP]
rintro ⟨a, b, rfl, rfl, h⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
a b : α
h : a * b = 1
⊢ pure a * pure b = 1
[PROOFSTEP]
rw [pure_mul_pure, h, pure_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
src✝³ : Monoid (Filter α) := Filter.monoid
src✝² : InvolutiveInv (Filter α) := Filter.instInvolutiveInv
src✝¹ : Div (Filter α) := Filter.instDiv
src✝ : Pow (Filter α) ℤ := Filter.instZPow
s t : Filter α
h : s * t = 1
⊢ s⁻¹ = t
[PROOFSTEP]
obtain ⟨a, b, rfl, rfl, hab⟩ := Filter.mul_eq_one_iff.1 h
[GOAL]
case intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
src✝³ : Monoid (Filter α) := Filter.monoid
src✝² : InvolutiveInv (Filter α) := Filter.instInvolutiveInv
src✝¹ : Div (Filter α) := Filter.instDiv
src✝ : Pow (Filter α) ℤ := Filter.instZPow
a b : α
hab : a * b = 1
h : pure a * pure b = 1
⊢ (pure a)⁻¹ = pure b
[PROOFSTEP]
rw [inv_pure, inv_eq_of_mul_eq_one_right hab]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
⊢ IsUnit f ↔ ∃ a, f = pure a ∧ IsUnit a
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
⊢ IsUnit f → ∃ a, f = pure a ∧ IsUnit a
[PROOFSTEP]
rintro ⟨u, rfl⟩
[GOAL]
case mp.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
g : Filter α
u : (Filter α)ˣ
⊢ ∃ a, ↑u = pure a ∧ IsUnit a
[PROOFSTEP]
obtain ⟨a, b, ha, hb, h⟩ := Filter.mul_eq_one_iff.1 u.mul_inv
[GOAL]
case mp.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
g : Filter α
u : (Filter α)ˣ
a b : α
ha : ↑u = pure a
hb : ↑u⁻¹ = pure b
h : a * b = 1
⊢ ∃ a, ↑u = pure a ∧ IsUnit a
[PROOFSTEP]
refine' ⟨a, ha, ⟨a, b, h, pure_injective _⟩, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
g : Filter α
u : (Filter α)ˣ
a b : α
ha : ↑u = pure a
hb : ↑u⁻¹ = pure b
h : a * b = 1
⊢ pure (b * a) = pure 1
[PROOFSTEP]
rw [← pure_mul_pure, ← ha, ← hb]
[GOAL]
case mp.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
g : Filter α
u : (Filter α)ˣ
a b : α
ha : ↑u = pure a
hb : ↑u⁻¹ = pure b
h : a * b = 1
⊢ ↑u⁻¹ * ↑u = pure 1
[PROOFSTEP]
exact u.inv_mul
[GOAL]
case mpr
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
f g : Filter α
⊢ (∃ a, f = pure a ∧ IsUnit a) → IsUnit f
[PROOFSTEP]
rintro ⟨a, rfl, ha⟩
[GOAL]
case mpr.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝ : DivisionMonoid α
g : Filter α
a : α
ha : IsUnit a
⊢ IsUnit (pure a)
[PROOFSTEP]
exact ha.filter
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
⊢ 1 ≤ f / g ↔ ¬Disjoint f g
[PROOFSTEP]
refine' ⟨fun h hfg => _, _⟩
[GOAL]
case refine'_1
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : 1 ≤ f / g
hfg : Disjoint f g
⊢ False
[PROOFSTEP]
obtain ⟨s, hs, t, ht, hst⟩ := hfg.le_bot (mem_bot : ∅ ∈ ⊥)
[GOAL]
case refine'_1.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : 1 ≤ f / g
hfg : Disjoint f g
s : Set α
hs : s ∈ f
t : Set α
ht : t ∈ g
hst : ∅ = s ∩ t
⊢ False
[PROOFSTEP]
exact Set.one_mem_div_iff.1 (h <| div_mem_div hs ht) (disjoint_iff.2 hst.symm)
[GOAL]
case refine'_2
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
⊢ ¬Disjoint f g → 1 ≤ f / g
[PROOFSTEP]
rintro h s ⟨t₁, t₂, h₁, h₂, hs⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : ¬Disjoint f g
s t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ g
hs : t₁ / t₂ ⊆ s
⊢ s ∈ 1
[PROOFSTEP]
exact hs (Set.one_mem_div_iff.2 fun ht => h <| disjoint_of_disjoint_of_mem ht h₁ h₂)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : NeBot f
⊢ 1 ≤ f / f
[PROOFSTEP]
rintro s ⟨t₁, t₂, h₁, h₂, hs⟩
[GOAL]
case intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : NeBot f
s t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ f
hs : t₁ / t₂ ⊆ s
⊢ s ∈ 1
[PROOFSTEP]
obtain ⟨a, ha₁, ha₂⟩ := Set.not_disjoint_iff.1 (h.not_disjoint h₁ h₂)
[GOAL]
case intro.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : NeBot f
s t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ f
hs : t₁ / t₂ ⊆ s
a : α
ha₁ : a ∈ t₁
ha₂ : a ∈ t₂
⊢ s ∈ 1
[PROOFSTEP]
rw [mem_one, ← div_self' a]
[GOAL]
case intro.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
h : NeBot f
s t₁ t₂ : Set α
h₁ : t₁ ∈ f
h₂ : t₂ ∈ f
hs : t₁ / t₂ ⊆ s
a : α
ha₁ : a ∈ t₁
ha₂ : a ∈ t₂
⊢ a / a ∈ s
[PROOFSTEP]
exact hs (Set.div_mem_div ha₁ ha₂)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Group α
inst✝¹ : DivisionMonoid β
inst✝ : MonoidHomClass F α β
m : F
f g f₁ g₁ : Filter α
f₂ g₂ : Filter β
⊢ IsUnit f ↔ ∃ a, f = pure a
[PROOFSTEP]
simp only [isUnit_iff, Group.isUnit, and_true_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝³ : SMul α β
inst✝² : SMul α γ
inst✝¹ : SMul β γ
inst✝ : IsScalarTower α β γ
a : α
b : β
f : Filter γ
⊢ (a • b) • f = a • b • f
[PROOFSTEP]
simp only [← map_smul, map_map, smul_assoc]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝³ : SMul α β
inst✝² : SMul α γ
inst✝¹ : SMul β γ
inst✝ : IsScalarTower α β γ
a : α
b : β
f : Filter γ
⊢ map (fun b_1 => a • b • b_1) f = map ((fun b => a • b) ∘ fun b_1 => b • b_1) f
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝³ : SMul α β
inst✝² : SMul α γ
inst✝¹ : SMul β γ
inst✝ : IsScalarTower α β γ
a : α
f : Filter β
g : Filter γ
⊢ (a • f) • g = a • f • g
[PROOFSTEP]
refine' (map_map₂_distrib_left fun _ _ => _).symm
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝³ : SMul α β
inst✝² : SMul α γ
inst✝¹ : SMul β γ
inst✝ : IsScalarTower α β γ
a : α
f : Filter β
g : Filter γ
x✝¹ : β
x✝ : γ
⊢ (fun x x_1 => x • x_1) a (x✝¹ • x✝) = (fun x x_1 => x • x_1) a x✝¹ • x✝
[PROOFSTEP]
exact (smul_assoc a _ _).symm
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝¹ : Monoid α
inst✝ : MulAction α β
f : Filter β
⊢ map (fun b => 1 • b) f = f
[PROOFSTEP]
simp_rw [one_smul, map_id']
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝¹ : Monoid α
inst✝ : MulAction α β
f : Filter β
⊢ 1 • f = f
[PROOFSTEP]
simp only [← map_smul, one_smul, map_id']
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝¹ : Monoid α
inst✝ : MulAction α β
a b : α
f : Filter β
⊢ (a * b) • f = a • b • f
[PROOFSTEP]
simp only [← map_smul, map_map, Function.comp, ← mul_smul]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Monoid α
inst✝¹ : AddMonoid β
inst✝ : DistribMulAction α β
x✝ : α
⊢ pure ((fun x x_1 => x • x_1) x✝ 0) = 0
[PROOFSTEP]
dsimp only
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Monoid α
inst✝¹ : AddMonoid β
inst✝ : DistribMulAction α β
x✝ : α
⊢ pure (x✝ • 0) = 0
[PROOFSTEP]
rw [smul_zero, pure_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Monoid α
inst✝¹ : Monoid β
inst✝ : MulDistribMulAction α β
x✝ : α
⊢ {x✝ • 1} = 1
[PROOFSTEP]
rw [smul_one, singleton_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
⊢ 0 • g ≤ 0
[PROOFSTEP]
refine' fun s hs => mem_smul_filter.2 _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
s : Set β
hs : s ∈ 0
⊢ (fun x x_1 => x • x_1) 0 ⁻¹' s ∈ g
[PROOFSTEP]
convert @univ_mem _ g
[GOAL]
case h.e'_4
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
s : Set β
hs : s ∈ 0
⊢ (fun x x_1 => x • x_1) 0 ⁻¹' s = univ
[PROOFSTEP]
refine' eq_univ_iff_forall.2 fun a => _
[GOAL]
case h.e'_4
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
s : Set β
hs : s ∈ 0
a : β
⊢ a ∈ (fun x x_1 => x • x_1) 0 ⁻¹' s
[PROOFSTEP]
dsimp only
[GOAL]
case h.e'_4
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
s : Set β
hs : s ∈ 0
a : β
⊢ a ∈ (fun x => 0 • x) ⁻¹' s
[PROOFSTEP]
rwa [mem_preimage, zero_smul]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
hg : NeBot g
s : Set β
hs : s ∈ g
⊢ (fun x x_1 => x • x_1) 0 '' s ∈ 0
[PROOFSTEP]
simp_rw [zero_smul, (hg.nonempty_of_mem hs).image_const]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ε : Type u_6
inst✝² : Zero α
inst✝¹ : Zero β
inst✝ : SMulWithZero α β
f : Filter α
g : Filter β
hg : NeBot g
s : Set β
hs : s ∈ g
⊢ {0} ∈ 0
[PROOFSTEP]
exact zero_mem_zero
| {"mathlib_filename": "Mathlib.Order.Filter.Pointwise", "llama_tokens": 9853} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
⊢ ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n)
[PROOFSTEP]
cases' le_total n m with hnm hmn
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hnm : n ≤ m
⊢ ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n)
[PROOFSTEP]
rw [Ico_eq_empty_of_le hnm, Ioc_eq_empty_of_le (hf hnm), biUnion_empty]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
⊢ ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n)
[PROOFSTEP]
refine' Succ.rec _ _ hmn
[GOAL]
case inr.refine'_1
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
⊢ ⋃ (i : α) (_ : i ∈ Ico m m), Ioc (f i) (f (succ i)) = Ioc (f m) (f m)
[PROOFSTEP]
simp only [Ioc_self, Ico_self, biUnion_empty]
[GOAL]
case inr.refine'_2
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
⊢ ∀ (n : α),
m ≤ n →
⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n) →
⋃ (i : α) (_ : i ∈ Ico m (succ n)), Ioc (f i) (f (succ i)) = Ioc (f m) (f (succ n))
[PROOFSTEP]
intro k hmk ihk
[GOAL]
case inr.refine'_2
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
k : α
hmk : m ≤ k
ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k)
⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) = Ioc (f m) (f (succ k))
[PROOFSTEP]
rw [← Ioc_union_Ioc_eq_Ioc (hf hmk) (hf <| le_succ _), union_comm, ← ihk]
[GOAL]
case inr.refine'_2
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
k : α
hmk : m ≤ k
ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k)
⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) =
Ioc (f k) (f (succ k)) ∪ ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i))
[PROOFSTEP]
by_cases hk : IsMax k
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
k : α
hmk : m ≤ k
ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k)
hk : IsMax k
⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) =
Ioc (f k) (f (succ k)) ∪ ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i))
[PROOFSTEP]
rw [hk.succ_eq, Ioc_self, empty_union]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : SuccOrder α
inst✝¹ : IsSuccArchimedean α
inst✝ : LinearOrder β
f : α → β
hf : Monotone f
m n : α
hmn : m ≤ n
k : α
hmk : m ≤ k
ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k)
hk : ¬IsMax k
⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) =
Ioc (f k) (f (succ k)) ∪ ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i))
[PROOFSTEP]
rw [Ico_succ_right_eq_insert_of_not_isMax hmk hk, biUnion_insert]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LinearOrder α
inst✝¹ : PredOrder α
inst✝ : Preorder β
f : α → β
hf : Monotone f
⊢ Pairwise (Disjoint on fun n => Ioc (f (pred n)) (f n))
[PROOFSTEP]
simpa only [(· ∘ ·), dual_Ico] using hf.dual.pairwise_disjoint_on_Ico_succ
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LinearOrder α
inst✝¹ : PredOrder α
inst✝ : Preorder β
f : α → β
hf : Monotone f
⊢ Pairwise (Disjoint on fun n => Ico (f (pred n)) (f n))
[PROOFSTEP]
simpa only [(· ∘ ·), dual_Ioc] using hf.dual.pairwise_disjoint_on_Ioc_succ
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LinearOrder α
inst✝¹ : PredOrder α
inst✝ : Preorder β
f : α → β
hf : Monotone f
⊢ Pairwise (Disjoint on fun n => Ioo (f (pred n)) (f n))
[PROOFSTEP]
simpa only [(· ∘ ·), dual_Ioo] using hf.dual.pairwise_disjoint_on_Ioo_succ
| {"mathlib_filename": "Mathlib.Order.SuccPred.IntervalSucc", "llama_tokens": 2378} |
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ∂ ⊤ = ⊥
[PROOFSTEP]
rw [boundary, hnot_top, inf_bot_eq]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b a : α
⊢ ∂ (¬¬a) = ∂ (¬a)
[PROOFSTEP]
simp_rw [boundary, hnot_hnot_hnot, inf_comm]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b a : α
⊢ ¬∂ a = ⊤
[PROOFSTEP]
rw [boundary, hnot_inf_distrib, sup_hnot_self]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ a b : α
⊢ ∂ (a ⊓ b) = ∂ a ⊓ b ⊔ a ⊓ ∂ b
[PROOFSTEP]
unfold boundary
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ a b : α
⊢ a ⊓ b ⊓ ¬(a ⊓ b) = a ⊓ ¬a ⊓ b ⊔ a ⊓ (b ⊓ ¬b)
[PROOFSTEP]
rw [hnot_inf_distrib, inf_sup_left, inf_right_comm, ← inf_assoc]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ∂ (a ⊔ b) ≤ ∂ a ⊔ ∂ b
[PROOFSTEP]
rw [boundary, inf_sup_right]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬(a ⊔ b) ⊔ b ⊓ ¬(a ⊔ b) ≤ ∂ a ⊔ ∂ b
[PROOFSTEP]
exact sup_le_sup (inf_le_inf_left _ <| hnot_anti le_sup_left) (inf_le_inf_left _ <| hnot_anti le_sup_right)
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
⊢ (a ∧ b ∨ ¬(a ∧ b)) ∧ ((a ∨ b) ∨ ¬(a ∨ b)) → a ∨ ¬a
[PROOFSTEP]
rintro ⟨⟨ha, _⟩ | hnab, (ha | hb) | hnab⟩
[GOAL]
case intro.inl.intro.inl.inl
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
ha✝ : a
right✝ : b
ha : a
⊢ a ∨ ¬a
[PROOFSTEP]
try exact Or.inl ha
[GOAL]
case intro.inl.intro.inl.inl
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
ha✝ : a
right✝ : b
ha : a
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case intro.inl.intro.inl.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
ha : a
right✝ hb : b
⊢ a ∨ ¬a
[PROOFSTEP]
try exact Or.inl ha
[GOAL]
case intro.inl.intro.inl.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
ha : a
right✝ hb : b
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case intro.inl.intro.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
ha : a
right✝ : b
hnab : ¬(a ∨ b)
⊢ a ∨ ¬a
[PROOFSTEP]
try exact Or.inl ha
[GOAL]
case intro.inl.intro.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
ha : a
right✝ : b
hnab : ¬(a ∨ b)
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case intro.inr.inl.inl
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab : ¬(a ∧ b)
ha : a
⊢ a ∨ ¬a
[PROOFSTEP]
try exact Or.inl ha
[GOAL]
case intro.inr.inl.inl
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab : ¬(a ∧ b)
ha : a
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case intro.inr.inl.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab : ¬(a ∧ b)
hb : b
⊢ a ∨ ¬a
[PROOFSTEP]
try exact Or.inl ha
[GOAL]
case intro.inr.inl.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab : ¬(a ∧ b)
hb : b
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case intro.inr.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab✝ : ¬(a ∧ b)
hnab : ¬(a ∨ b)
⊢ a ∨ ¬a
[PROOFSTEP]
try exact Or.inl ha
[GOAL]
case intro.inr.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab✝ : ¬(a ∧ b)
hnab : ¬(a ∨ b)
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case intro.inr.inl.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab : ¬(a ∧ b)
hb : b
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inr fun ha => hnab ⟨ha, hb⟩
[GOAL]
case intro.inr.inr
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b✝ : α
a b : Prop
hnab✝ : ¬(a ∧ b)
hnab : ¬(a ∨ b)
⊢ a ∨ ¬a
[PROOFSTEP]
exact Or.inr fun ha => hnab <| Or.inl ha
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ∂ a ≤ ∂ (a ⊔ b) ⊔ ∂ (a ⊓ b)
[PROOFSTEP]
simp only [boundary, sup_inf_left, sup_inf_right, sup_right_idem, le_inf_iff, sup_assoc, @sup_comm _ _ _ a]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ((a ⊓ ¬a ≤ a ⊔ (a ⊔ b) ∧ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b)) ∧ a ⊓ ¬a ≤ a ⊔ b ∧ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b) ∧
a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b)) ∧ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b)
[PROOFSTEP]
refine ⟨⟨⟨?_, ?_⟩, ⟨?_, ?_⟩⟩, ?_, ?_⟩
[GOAL]
case refine_1
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ (a ⊔ b)
[PROOFSTEP]
try {exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_1
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ (a ⊔ b)
[PROOFSTEP]
{exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_1
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ (a ⊔ b)
[PROOFSTEP]
exact le_sup_of_le_left inf_le_left
[GOAL]
case refine_2
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b)
[PROOFSTEP]
try {exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_2
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b)
[PROOFSTEP]
{exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_2
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b)
[PROOFSTEP]
exact le_sup_of_le_left inf_le_left
[GOAL]
case refine_3
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ b
[PROOFSTEP]
try {exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_3
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ b
[PROOFSTEP]
{exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_3
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ b
[PROOFSTEP]
exact le_sup_of_le_left inf_le_left
[GOAL]
case refine_4
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b
[PROOFSTEP]
try {exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_4
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b
[PROOFSTEP]
{exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_4
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b
[PROOFSTEP]
exact le_sup_of_le_left inf_le_left
[GOAL]
case refine_5
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b))
[PROOFSTEP]
try {exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_5
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b))
[PROOFSTEP]
{exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_5
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b))
[PROOFSTEP]
exact le_sup_of_le_left inf_le_left
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b)
[PROOFSTEP]
try {exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b)
[PROOFSTEP]
{exact le_sup_of_le_left inf_le_left
}
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b)
[PROOFSTEP]
exact le_sup_of_le_left inf_le_left
[GOAL]
case refine_4
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b
[PROOFSTEP]
refine inf_le_of_right_le ?_
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b)
[PROOFSTEP]
refine inf_le_of_right_le ?_
[GOAL]
case refine_4
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ¬a ≤ ¬(a ⊔ b) ⊔ b
[PROOFSTEP]
rw [hnot_le_iff_codisjoint_right, codisjoint_left_comm]
[GOAL]
case refine_4
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ Codisjoint (¬(a ⊔ b)) (a ⊔ b)
[PROOFSTEP]
exact codisjoint_hnot_left
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b)
[PROOFSTEP]
refine le_sup_of_le_right ?_
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ¬a ≤ ¬(a ⊓ b)
[PROOFSTEP]
rw [hnot_le_iff_codisjoint_right]
[GOAL]
case refine_6
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ Codisjoint a (¬(a ⊓ b))
[PROOFSTEP]
exact codisjoint_hnot_right.mono_right (hnot_anti inf_le_left)
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ∂ b ≤ ∂ (a ⊔ b) ⊔ ∂ (a ⊓ b)
[PROOFSTEP]
rw [@sup_comm _ _ a, inf_comm]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ ∂ b ≤ ∂ (b ⊔ a) ⊔ ∂ (b ⊓ a)
[PROOFSTEP]
exact boundary_le_boundary_sup_sup_boundary_inf_left
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b a : α
⊢ ∂ ∂ a = ∂ a
[PROOFSTEP]
rw [boundary, hnot_boundary, inf_top_eq]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b a : α
⊢ ¬¬a ⊔ ∂ a = a
[PROOFSTEP]
rw [boundary, sup_inf_left, hnot_sup_self, inf_top_eq, sup_eq_right]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a✝ b a : α
⊢ ¬¬a ≤ a
[PROOFSTEP]
exact hnot_hnot_le
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
h : ¬a = ⊤
⊢ ∂ a = a
[PROOFSTEP]
rw [boundary, h, inf_top_eq]
[GOAL]
α : Type u_1
inst✝ : CoheytingAlgebra α
a b : α
⊢ (∃ b, ∂ b = a) → ¬a = ⊤
[PROOFSTEP]
rintro ⟨b, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : CoheytingAlgebra α
b✝ b : α
⊢ ¬∂ b = ⊤
[PROOFSTEP]
exact hnot_boundary _
| {"mathlib_filename": "Mathlib.Order.Heyting.Boundary", "llama_tokens": 5392} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g✝ g₁ g₂ g : Set α → Filter β
⊢ Filter.lift ⊤ g = g univ
[PROOFSTEP]
simp [Filter.lift]
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Sort u_6
p : ι → Prop
s✝ : ι → Set α
f : Filter α
hf : HasBasis f p s✝
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i)
gm : Monotone g
s : Set γ
⊢ s ∈ Filter.lift f g ↔ ∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ s
[PROOFSTEP]
refine' (mem_biInf_of_directed _ ⟨univ, univ_sets _⟩).trans _
[GOAL]
case refine'_1
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Sort u_6
p : ι → Prop
s✝ : ι → Set α
f : Filter α
hf : HasBasis f p s✝
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i)
gm : Monotone g
s : Set γ
⊢ DirectedOn ((fun s => g s) ⁻¹'o fun x x_1 => x ≥ x_1) f.sets
[PROOFSTEP]
intro t₁ ht₁ t₂ ht₂
[GOAL]
case refine'_1
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Sort u_6
p : ι → Prop
s✝ : ι → Set α
f : Filter α
hf : HasBasis f p s✝
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i)
gm : Monotone g
s : Set γ
t₁ : Set α
ht₁ : t₁ ∈ f.sets
t₂ : Set α
ht₂ : t₂ ∈ f.sets
⊢ ∃ z, z ∈ f.sets ∧ ((fun s => g s) ⁻¹'o fun x x_1 => x ≥ x_1) t₁ z ∧ ((fun s => g s) ⁻¹'o fun x x_1 => x ≥ x_1) t₂ z
[PROOFSTEP]
exact ⟨t₁ ∩ t₂, inter_mem ht₁ ht₂, gm <| inter_subset_left _ _, gm <| inter_subset_right _ _⟩
[GOAL]
case refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Sort u_6
p : ι → Prop
s✝ : ι → Set α
f : Filter α
hf : HasBasis f p s✝
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i)
gm : Monotone g
s : Set γ
⊢ (∃ i, i ∈ f.sets ∧ s ∈ g i) ↔ ∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ s
[PROOFSTEP]
simp only [← (hg _).mem_iff]
[GOAL]
case refine'_2
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Sort u_6
p : ι → Prop
s✝ : ι → Set α
f : Filter α
hf : HasBasis f p s✝
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i)
gm : Monotone g
s : Set γ
⊢ (∃ i, i ∈ f.sets ∧ s ∈ g i) ↔ ∃ i, p i ∧ s ∈ g (s✝ i)
[PROOFSTEP]
exact hf.exists_iff fun t₁ t₂ ht H => gm ht H
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Type u_6
p : ι → Prop
s : ι → Set α
f : Filter α
hf : HasBasis f p s
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s i)) (pg i) (sg i)
gm : Monotone g
⊢ HasBasis (Filter.lift f g) (fun i => p i.fst ∧ pg i.fst i.snd) fun i => sg i.fst i.snd
[PROOFSTEP]
refine' ⟨fun t => (hf.mem_lift_iff hg gm).trans _⟩
[GOAL]
α : Type u_1
β✝ : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β✝
ι : Type u_6
p : ι → Prop
s : ι → Set α
f : Filter α
hf : HasBasis f p s
β : ι → Type u_5
pg : (i : ι) → β i → Prop
sg : (i : ι) → β i → Set γ
g : Set α → Filter γ
hg : ∀ (i : ι), HasBasis (g (s i)) (pg i) (sg i)
gm : Monotone g
t : Set γ
⊢ (∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ t) ↔ ∃ i, (p i.fst ∧ pg i.fst i.snd) ∧ sg i.fst i.snd ⊆ t
[PROOFSTEP]
simp [Sigma.exists, and_assoc, exists_and_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
hg : Monotone g
s : Set β
⊢ (∃ i, i ∈ f ∧ ∃ x, x ∈ g i ∧ id x ⊆ s) ↔ ∃ t, t ∈ f ∧ s ∈ g t
[PROOFSTEP]
simp only [id, exists_mem_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
hg : Monotone g
⊢ ⋂₀ {s | s ∈ Filter.lift f g} = ⋂ (s : Set α) (_ : s ∈ f), ⋂₀ {t | t ∈ g s}
[PROOFSTEP]
simp only [sInter_eq_biInter, mem_setOf_eq, Filter.mem_sets, mem_lift_sets hg, iInter_exists, iInter_and,
@iInter_comm _ (Set β)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
m : γ → β
l : Filter γ
⊢ Tendsto m l (Filter.lift f g) ↔ ∀ (s : Set α), s ∈ f → Tendsto m l (g s)
[PROOFSTEP]
simp only [Filter.lift, tendsto_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
m : β → γ
hg : Monotone g
this : Monotone (map m ∘ g)
s : Set γ
⊢ s ∈ map m (Filter.lift f g) ↔ s ∈ Filter.lift f (map m ∘ g)
[PROOFSTEP]
simp only [mem_lift_sets hg, mem_lift_sets this, exists_prop, mem_map, Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
m : γ → β
⊢ comap m (Filter.lift f g) = Filter.lift f (comap m ∘ g)
[PROOFSTEP]
simp only [Filter.lift, comap_iInf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
m : γ → β
⊢ ⨅ (i : Set α) (_ : i ∈ f), comap m (g i) = ⨅ (s : Set α) (_ : s ∈ f), (comap m ∘ g) s
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
hm : Monotone g
⊢ NeBot (Filter.lift f g) ↔ ∀ (s : Set α), s ∈ f → NeBot (g s)
[PROOFSTEP]
simp only [neBot_iff, Ne.def, ← empty_mem_iff_bot, mem_lift_sets hm, not_exists, not_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
f : Filter α
g h : Set α → Filter β
⊢ (Filter.lift f fun x => g x ⊓ h x) = Filter.lift f g ⊓ Filter.lift f h
[PROOFSTEP]
simp only [Filter.lift, iInf_inf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Set α → Filter β
f : Filter α
s : Set α
hs : s ∈ f
⊢ f ≤ 𝓟 s
[PROOFSTEP]
simp only [hs, le_principal_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
refine' lift_iInf_le.antisymm fun s => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
⊢ s ∈ Filter.lift (iInf f) g → s ∈ ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
have H : ∀ t ∈ iInf f, ⨅ i, (f i).lift g ≤ g t := by
intro t ht
refine' iInf_sets_induct ht _ fun hs ht => _
· inhabit ι
exact iInf₂_le_of_le default univ (iInf_le _ univ_mem)
· rw [hg]
exact le_inf (iInf₂_le_of_le _ _ <| iInf_le _ hs) ht
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
⊢ ∀ (t : Set α), t ∈ iInf f → ⨅ (i : ι), Filter.lift (f i) g ≤ g t
[PROOFSTEP]
intro t ht
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
t : Set α
ht : t ∈ iInf f
⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g t
[PROOFSTEP]
refine' iInf_sets_induct ht _ fun hs ht => _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
t : Set α
ht : t ∈ iInf f
⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g univ
[PROOFSTEP]
inhabit ι
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
t : Set α
ht : t ∈ iInf f
inhabited_h : Inhabited ι
⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g univ
[PROOFSTEP]
exact iInf₂_le_of_le default univ (iInf_le _ univ_mem)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
t : Set α
ht✝ : t ∈ iInf f
i✝ : ι
s₁✝ s₂✝ : Set α
hs : s₁✝ ∈ f i✝
ht : ⨅ (i : ι), Filter.lift (f i) g ≤ g s₂✝
⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g (s₁✝ ∩ s₂✝)
[PROOFSTEP]
rw [hg]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
t : Set α
ht✝ : t ∈ iInf f
i✝ : ι
s₁✝ s₂✝ : Set α
hs : s₁✝ ∈ f i✝
ht : ⨅ (i : ι), Filter.lift (f i) g ≤ g s₂✝
⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g s₁✝ ⊓ g s₂✝
[PROOFSTEP]
exact le_inf (iInf₂_le_of_le _ _ <| iInf_le _ hs) ht
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
H : ∀ (t : Set α), t ∈ iInf f → ⨅ (i : ι), Filter.lift (f i) g ≤ g t
⊢ s ∈ Filter.lift (iInf f) g → s ∈ ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
simp only [mem_lift_sets (Monotone.of_map_inf hg), exists_imp, and_imp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
s : Set β
H : ∀ (t : Set α), t ∈ iInf f → ⨅ (i : ι), Filter.lift (f i) g ≤ g t
⊢ ∀ (x : Set α), x ∈ iInf f → s ∈ g x → s ∈ ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
exact fun t ht hs => H t ht hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hf : Directed (fun x x_1 => x ≥ x_1) f
hg : Monotone g
s : Set β
⊢ s ∈ Filter.lift (iInf f) g → s ∈ ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
simp only [mem_lift_sets hg, exists_imp, and_imp, mem_iInf_of_directed hf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Filter β
hf : Directed (fun x x_1 => x ≥ x_1) f
hg : Monotone g
s : Set β
⊢ ∀ (x : Set α) (x_1 : ι), x ∈ f x_1 → s ∈ g x → s ∈ ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
exact fun t i ht hs => mem_iInf_of_mem i <| mem_lift ht hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
hg' : g univ = ⊤
⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
hg' : g univ = ⊤
h✝ : IsEmpty ι
⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
simp [iInf_of_empty, hg']
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Set α → Filter β
f : ι → Filter α
g : Set α → Filter β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t
hg' : g univ = ⊤
h✝ : Nonempty ι
⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g
[PROOFSTEP]
exact lift_iInf hg
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
m : γ → β
l : Filter γ
⊢ Tendsto m l (Filter.lift' f h) ↔ ∀ (s : Set α), s ∈ f → ∀ᶠ (a : γ) in l, m a ∈ h s
[PROOFSTEP]
simp only [Filter.lift', tendsto_lift, tendsto_principal, comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
ι : Sort u_5
p : ι → Prop
s : ι → Set α
hf : HasBasis f p s
hh : Monotone h
t : Set β
⊢ (∃ i, p i ∧ ∃ x, True ∧ h (s i) ⊆ t) ↔ ∃ i, p i ∧ (h ∘ s) i ⊆ t
[PROOFSTEP]
simp only [exists_const, true_and, comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
m : β → γ
hh : Monotone h
⊢ Filter.lift f (map m ∘ 𝓟 ∘ h) = Filter.lift' f (image m ∘ h)
[PROOFSTEP]
simp only [comp, Filter.lift', map_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
m : γ → β
⊢ comap m (Filter.lift' f h) = Filter.lift' f (preimage m ∘ h)
[PROOFSTEP]
simp only [Filter.lift', comap_lift_eq, (· ∘ ·), comap_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
a : α
hh : Monotone h
⊢ Filter.lift' (pure a) h = 𝓟 (h {a})
[PROOFSTEP]
rw [← principal_singleton, lift'_principal hh]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
hh : Monotone h
⊢ Filter.lift' ⊥ h = 𝓟 (h ∅)
[PROOFSTEP]
rw [← principal_empty, lift'_principal hh]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h✝ h₁ h₂ g : Set α → Set β
h : Set β → Filter γ
hg : Monotone g
hh : Monotone h
⊢ (Filter.lift f fun s => Filter.lift (𝓟 (g s)) h) = Filter.lift f fun s => h (g s)
[PROOFSTEP]
simp only [lift_principal, hh, eq_self_iff_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h✝ h₁ h₂ h : Set α → Set β
s : Set β
⊢ Filter.lift' f h ⊓ 𝓟 s = Filter.lift' f fun t => h t ∩ s
[PROOFSTEP]
simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, iInf_subtype', ← iInf_inf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
hh : Monotone h
⊢ (∀ (s : Set α), s ∈ f → NeBot (𝓟 (h s))) ↔ ∀ (s : Set α), s ∈ f → Set.Nonempty (h s)
[PROOFSTEP]
simp only [principal_neBot_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
inst✝ : Nonempty ι
f : ι → Filter α
g : Set α → Set β
hg : ∀ (s t : Set α), g (s ∩ t) = g s ∩ g t
s t : Set α
⊢ (𝓟 ∘ g) (s ∩ t) = (𝓟 ∘ g) s ⊓ (𝓟 ∘ g) t
[PROOFSTEP]
simp only [inf_principal, comp, hg]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f : ι → Filter α
g : Set α → Set β
hg : ∀ {s t : Set α}, g (s ∩ t) = g s ∩ g t
hg' : g univ = univ
s t : Set α
⊢ (𝓟 ∘ g) (s ∩ t) = (𝓟 ∘ g) s ⊓ (𝓟 ∘ g) t
[PROOFSTEP]
simp only [inf_principal, comp, hg]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f : ι → Filter α
g : Set α → Set β
hg : ∀ {s t : Set α}, g (s ∩ t) = g s ∩ g t
hg' : g univ = univ
⊢ (𝓟 ∘ g) univ = ⊤
[PROOFSTEP]
rw [Function.comp_apply, hg', principal_univ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f g : Filter α
s : Set α → Set β
hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂
⊢ Filter.lift' (f ⊓ g) s = Filter.lift' f s ⊓ Filter.lift' g s
[PROOFSTEP]
rw [inf_eq_iInf, inf_eq_iInf, lift'_iInf hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f g : Filter α
s : Set α → Set β
hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂
⊢ ⨅ (i : Bool), Filter.lift' (bif i then f else g) s = ⨅ (b : Bool), bif b then Filter.lift' f s else Filter.lift' g s
[PROOFSTEP]
refine iInf_congr ?_
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f g : Filter α
s : Set α → Set β
hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂
⊢ ∀ (i : Bool), Filter.lift' (bif i then f else g) s = bif i then Filter.lift' f s else Filter.lift' g s
[PROOFSTEP]
rintro (_ | _)
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f g : Filter α
s : Set α → Set β
hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂
⊢ Filter.lift' (bif false then f else g) s = bif false then Filter.lift' f s else Filter.lift' g s
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f₁ f₂ : Filter α
h h₁ h₂ : Set α → Set β
f g : Filter α
s : Set α → Set β
hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂
⊢ Filter.lift' (bif true then f else g) s = bif true then Filter.lift' f s else Filter.lift' g s
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ f : Filter α
g : Filter β
⊢ f ×ˢ g = Filter.lift f fun s => Filter.lift' g fun t => s ×ˢ t
[PROOFSTEP]
simpa only [Filter.lift', Filter.lift, (f.basis_sets.prod g.basis_sets).eq_biInf, iInf_prod, iInf_and] using
iInf_congr fun i => iInf_comm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f✝ : Filter α
f : α × α → β
x : Filter α
y : Filter β
⊢ Tendsto f (x ×ˢ x) y ↔ ∀ (W : Set β), W ∈ y → ∃ U, U ∈ x ∧ ∀ (x x' : α), x ∈ U → x' ∈ U → f (x, x') ∈ W
[PROOFSTEP]
simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
⊢ Filter.lift f₁ g₁ ×ˢ Filter.lift f₂ g₂ = Filter.lift f₁ fun s => Filter.lift f₂ fun t => g₁ s ×ˢ g₂ t
[PROOFSTEP]
simp only [prod_def, lift_assoc hg₁]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
⊢ (Filter.lift f₁ fun s => Filter.lift (g₁ s) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) =
Filter.lift f₁ fun s => Filter.lift f₂ fun t => Filter.lift (g₁ s) fun s => Filter.lift' (g₂ t) fun t => s ×ˢ t
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
⊢ (fun s => Filter.lift (g₁ s) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = fun s =>
Filter.lift f₂ fun t => Filter.lift (g₁ s) fun s => Filter.lift' (g₂ t) fun t => s ×ˢ t
[PROOFSTEP]
funext x
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
x : Set α₁
⊢ (Filter.lift (g₁ x) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) =
Filter.lift f₂ fun t => Filter.lift (g₁ x) fun s => Filter.lift' (g₂ t) fun t => s ×ˢ t
[PROOFSTEP]
rw [lift_comm]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
x : Set α₁
⊢ (Filter.lift (g₁ x) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) =
Filter.lift (g₁ x) fun t => Filter.lift f₂ fun s => Filter.lift' (g₂ s) fun t_1 => t ×ˢ t_1
[PROOFSTEP]
apply congr_arg
[GOAL]
case h.h.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
x : Set α₁
⊢ (fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = fun t =>
Filter.lift f₂ fun s => Filter.lift' (g₂ s) fun t_1 => t ×ˢ t_1
[PROOFSTEP]
funext y
[GOAL]
case h.h.h.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Filter β₁
g₂ : Set α₂ → Filter β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
x : Set α₁
y : Set β₁
⊢ (Filter.lift' (Filter.lift f₂ g₂) fun t => y ×ˢ t) = Filter.lift f₂ fun s => Filter.lift' (g₂ s) fun t => y ×ˢ t
[PROOFSTEP]
apply lift'_lift_assoc hg₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Set β₁
g₂ : Set α₂ → Set β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
⊢ (Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s) ×ˢ 𝓟 (g₂ t)) =
Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s ×ˢ g₂ t)
[PROOFSTEP]
{simp only [prod_principal_principal]
}
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
f : Filter α
α₁ : Type u_5
α₂ : Type u_6
β₁ : Type u_7
β₂ : Type u_8
f₁ : Filter α₁
f₂ : Filter α₂
g₁ : Set α₁ → Set β₁
g₂ : Set α₂ → Set β₂
hg₁ : Monotone g₁
hg₂ : Monotone g₂
⊢ (Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s) ×ˢ 𝓟 (g₂ t)) =
Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s ×ˢ g₂ t)
[PROOFSTEP]
simp only [prod_principal_principal]
| {"mathlib_filename": "Mathlib.Order.Filter.Lift", "llama_tokens": 11513} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a b : α
h : MonotoneOn f s
hl : BddBelow (f '' s)
hu : BddAbove (f '' s)
⊢ ∃ g, Monotone g ∧ EqOn f g s
[PROOFSTEP]
classical
/- The extension is defined by `f x = f a` for `x ≤ a`, and `f x` is the supremum of the values
of `f` to the left of `x` for `x ≥ a`. -/
rcases hl with ⟨a, ha⟩
have hu' : ∀ x, BddAbove (f '' (Iic x ∩ s)) := fun x => hu.mono (image_subset _ (inter_subset_right _ _))
let g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
have hgs : EqOn f g s := by
intro x hx
simp only []
have : IsGreatest (Iic x ∩ s) x := ⟨⟨right_mem_Iic, hx⟩, fun y hy => hy.1⟩
rw [if_neg this.nonempty.not_disjoint, ((h.mono <| inter_subset_right _ _).map_isGreatest this).csSup_eq]
refine' ⟨g, fun x y hxy => _, hgs⟩
by_cases hx : Disjoint (Iic x) s <;> by_cases hy : Disjoint (Iic y) s <;>
simp only [if_pos, if_neg, not_false_iff, *, refl]
· rcases not_disjoint_iff_nonempty_inter.1 hy with ⟨z, hz⟩
exact le_csSup_of_le (hu' _) (mem_image_of_mem _ hz) (ha <| mem_image_of_mem _ hz.2)
· exact (hx <| hy.mono_left <| Iic_subset_Iic.2 hxy).elim
· rw [not_disjoint_iff_nonempty_inter] at hx hy
refine' csSup_le_csSup (hu' _) (hx.image _) (image_subset _ _)
exact inter_subset_inter_left _ (Iic_subset_Iic.2 hxy)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a b : α
h : MonotoneOn f s
hl : BddBelow (f '' s)
hu : BddAbove (f '' s)
⊢ ∃ g, Monotone g ∧ EqOn f g s
[PROOFSTEP]
rcases hl with ⟨a, ha⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
⊢ ∃ g, Monotone g ∧ EqOn f g s
[PROOFSTEP]
have hu' : ∀ x, BddAbove (f '' (Iic x ∩ s)) := fun x => hu.mono (image_subset _ (inter_subset_right _ _))
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
⊢ ∃ g, Monotone g ∧ EqOn f g s
[PROOFSTEP]
let g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
⊢ ∃ g, Monotone g ∧ EqOn f g s
[PROOFSTEP]
have hgs : EqOn f g s := by
intro x hx
simp only []
have : IsGreatest (Iic x ∩ s) x := ⟨⟨right_mem_Iic, hx⟩, fun y hy => hy.1⟩
rw [if_neg this.nonempty.not_disjoint, ((h.mono <| inter_subset_right _ _).map_isGreatest this).csSup_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
⊢ EqOn f g s
[PROOFSTEP]
intro x hx
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
x : α
hx : x ∈ s
⊢ f x = g x
[PROOFSTEP]
simp only []
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
x : α
hx : x ∈ s
⊢ f x = if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
[PROOFSTEP]
have : IsGreatest (Iic x ∩ s) x := ⟨⟨right_mem_Iic, hx⟩, fun y hy => hy.1⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
x : α
hx : x ∈ s
this : IsGreatest (Iic x ∩ s) x
⊢ f x = if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
[PROOFSTEP]
rw [if_neg this.nonempty.not_disjoint, ((h.mono <| inter_subset_right _ _).map_isGreatest this).csSup_eq]
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
⊢ ∃ g, Monotone g ∧ EqOn f g s
[PROOFSTEP]
refine' ⟨g, fun x y hxy => _, hgs⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
⊢ g x ≤ g y
[PROOFSTEP]
by_cases hx : Disjoint (Iic x) s
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Disjoint (Iic x) s
⊢ g x ≤ g y
[PROOFSTEP]
by_cases hy : Disjoint (Iic y) s
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : ¬Disjoint (Iic x) s
⊢ g x ≤ g y
[PROOFSTEP]
by_cases hy : Disjoint (Iic y) s
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Disjoint (Iic x) s
hy : Disjoint (Iic y) s
⊢ g x ≤ g y
[PROOFSTEP]
simp only [if_pos, if_neg, not_false_iff, *, refl]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Disjoint (Iic x) s
hy : ¬Disjoint (Iic y) s
⊢ g x ≤ g y
[PROOFSTEP]
simp only [if_pos, if_neg, not_false_iff, *, refl]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : ¬Disjoint (Iic x) s
hy : Disjoint (Iic y) s
⊢ g x ≤ g y
[PROOFSTEP]
simp only [if_pos, if_neg, not_false_iff, *, refl]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : ¬Disjoint (Iic x) s
hy : ¬Disjoint (Iic y) s
⊢ g x ≤ g y
[PROOFSTEP]
simp only [if_pos, if_neg, not_false_iff, *, refl]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Disjoint (Iic x) s
hy : ¬Disjoint (Iic y) s
⊢ a ≤ sSup (f '' (Iic y ∩ s))
[PROOFSTEP]
rcases not_disjoint_iff_nonempty_inter.1 hy with ⟨z, hz⟩
[GOAL]
case neg.intro
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Disjoint (Iic x) s
hy : ¬Disjoint (Iic y) s
z : α
hz : z ∈ Iic y ∩ s
⊢ a ≤ sSup (f '' (Iic y ∩ s))
[PROOFSTEP]
exact le_csSup_of_le (hu' _) (mem_image_of_mem _ hz) (ha <| mem_image_of_mem _ hz.2)
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : ¬Disjoint (Iic x) s
hy : Disjoint (Iic y) s
⊢ sSup (f '' (Iic x ∩ s)) ≤ a
[PROOFSTEP]
exact (hx <| hy.mono_left <| Iic_subset_Iic.2 hxy).elim
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : ¬Disjoint (Iic x) s
hy : ¬Disjoint (Iic y) s
⊢ sSup (f '' (Iic x ∩ s)) ≤ sSup (f '' (Iic y ∩ s))
[PROOFSTEP]
rw [not_disjoint_iff_nonempty_inter] at hx hy
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Set.Nonempty (Iic x ∩ s)
hy : Set.Nonempty (Iic y ∩ s)
⊢ sSup (f '' (Iic x ∩ s)) ≤ sSup (f '' (Iic y ∩ s))
[PROOFSTEP]
refine' csSup_le_csSup (hu' _) (hx.image _) (image_subset _ _)
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : ConditionallyCompleteLinearOrder β
f : α → β
s : Set α
a✝ b : α
h : MonotoneOn f s
hu : BddAbove (f '' s)
a : β
ha : a ∈ lowerBounds (f '' s)
hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s))
g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s))
hgs : EqOn f g s
x y : α
hxy : x ≤ y
hx : Set.Nonempty (Iic x ∩ s)
hy : Set.Nonempty (Iic y ∩ s)
⊢ Iic x ∩ s ⊆ Iic y ∩ s
[PROOFSTEP]
exact inter_subset_inter_left _ (Iic_subset_Iic.2 hxy)
| {"mathlib_filename": "Mathlib.Order.Monotone.Extension", "llama_tokens": 5912} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
⊢ ∀ {x y : Set ℕ}, x ∈ range Ici → y ∈ range Ici → ∃ z, z ∈ range Ici ∧ z ⊆ x ∩ y
[PROOFSTEP]
rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
n m : ℕ
⊢ ∃ z, z ∈ range Ici ∧ z ⊆ Ici n ∩ Ici m
[PROOFSTEP]
exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
p : ι → Prop
s : ι → Set α
h : IsBasis p s
⊢ ∀ {x y : Set α},
x ∈ {t | ∃ i, p i ∧ s i = t} → y ∈ {t | ∃ i, p i ∧ s i = t} → ∃ z, z ∈ {t | ∃ i, p i ∧ s i = t} ∧ z ⊆ x ∩ y
[PROOFSTEP]
rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
p : ι → Prop
s : ι → Set α
h : IsBasis p s
i : ι
hi : p i
j : ι
hj : p j
⊢ ∃ z, z ∈ {t | ∃ i, p i ∧ s i = t} ∧ z ⊆ s i ∩ s j
[PROOFSTEP]
rcases h.inter hi hj with ⟨k, hk, hk'⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
p : ι → Prop
s : ι → Set α
h : IsBasis p s
i : ι
hi : p i
j : ι
hj : p j
k : ι
hk : p k
hk' : s k ⊆ s i ∩ s j
⊢ ∃ z, z ∈ {t | ∃ i, p i ∧ s i = t} ∧ z ⊆ s i ∩ s j
[PROOFSTEP]
exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
⊢ FilterBasis.filter B = ⨅ (s : ↑B.sets), 𝓟 ↑s
[PROOFSTEP]
have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) :=
by
rintro ⟨U, U_in⟩ ⟨V, V_in⟩
rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩
use⟨W, W_in⟩
simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk]
exact subset_inter_iff.mp W_sub
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
⊢ Directed (fun x x_1 => x ≥ x_1) fun s => 𝓟 ↑s
[PROOFSTEP]
rintro ⟨U, U_in⟩ ⟨V, V_in⟩
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
U : Set α
U_in : U ∈ B.sets
V : Set α
V_in : V ∈ B.sets
⊢ ∃ z,
(fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := U, property := U_in }) ((fun s => 𝓟 ↑s) z) ∧
(fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := V, property := V_in }) ((fun s => 𝓟 ↑s) z)
[PROOFSTEP]
rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩
[GOAL]
case mk.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
U : Set α
U_in : U ∈ B.sets
V : Set α
V_in : V ∈ B.sets
W : Set α
W_in : W ∈ B.sets
W_sub : W ⊆ U ∩ V
⊢ ∃ z,
(fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := U, property := U_in }) ((fun s => 𝓟 ↑s) z) ∧
(fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := V, property := V_in }) ((fun s => 𝓟 ↑s) z)
[PROOFSTEP]
use⟨W, W_in⟩
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
U : Set α
U_in : U ∈ B.sets
V : Set α
V_in : V ∈ B.sets
W : Set α
W_in : W ∈ B.sets
W_sub : W ⊆ U ∩ V
⊢ (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := U, property := U_in })
((fun s => 𝓟 ↑s) { val := W, property := W_in }) ∧
(fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := V, property := V_in })
((fun s => 𝓟 ↑s) { val := W, property := W_in })
[PROOFSTEP]
simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
U : Set α
U_in : U ∈ B.sets
V : Set α
V_in : V ∈ B.sets
W : Set α
W_in : W ∈ B.sets
W_sub : W ⊆ U ∩ V
⊢ W ⊆ U ∧ W ⊆ V
[PROOFSTEP]
exact subset_inter_iff.mp W_sub
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
this : Directed (fun x x_1 => x ≥ x_1) fun s => 𝓟 ↑s
⊢ FilterBasis.filter B = ⨅ (s : ↑B.sets), 𝓟 ↑s
[PROOFSTEP]
ext U
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
this : Directed (fun x x_1 => x ≥ x_1) fun s => 𝓟 ↑s
U : Set α
⊢ U ∈ FilterBasis.filter B ↔ U ∈ ⨅ (s : ↑B.sets), 𝓟 ↑s
[PROOFSTEP]
simp [mem_filter_iff, mem_iInf_of_directed this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
⊢ generate B.sets = FilterBasis.filter B
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
⊢ generate B.sets ≤ FilterBasis.filter B
[PROOFSTEP]
intro U U_in
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
U : Set α
U_in : U ∈ FilterBasis.filter B
⊢ U ∈ generate B.sets
[PROOFSTEP]
rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩
[GOAL]
case a.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
U : Set α
U_in : U ∈ FilterBasis.filter B
V : Set α
V_in : V ∈ B
h : V ⊆ U
⊢ U ∈ generate B.sets
[PROOFSTEP]
exact GenerateSets.superset (GenerateSets.basic V_in) h
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
⊢ FilterBasis.filter B ≤ generate B.sets
[PROOFSTEP]
rw [le_generate_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
B : FilterBasis α
⊢ B.sets ⊆ (FilterBasis.filter B).sets
[PROOFSTEP]
apply mem_filter_of_mem
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
p : ι → Prop
s : ι → Set α
h : IsBasis p s
U : Set α
⊢ U ∈ IsBasis.filter h ↔ ∃ i, p i ∧ s i ⊆ U
[PROOFSTEP]
simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
p : ι → Prop
s : ι → Set α
h : IsBasis p s
⊢ IsBasis.filter h = generate {U | ∃ i, p i ∧ s i = U}
[PROOFSTEP]
erw [h.filterBasis.generate]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
p : ι → Prop
s : ι → Set α
h : IsBasis p s
⊢ IsBasis.filter h = FilterBasis.filter (IsBasis.filterBasis h)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : Set (Set α)
U : Set α
⊢ U ∈ generate s ↔ ∃ i, (Set.Finite i ∧ i ⊆ s) ∧ ⋂₀ i ⊆ U
[PROOFSTEP]
simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : Set (Set α)
⊢ ∀ {x y : Set α},
x ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} →
y ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} → ∃ z, z ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} ∧ z ⊆ x ∩ y
[PROOFSTEP]
rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s a : Set (Set α)
fina : Set.Finite a
suba : a ⊆ s
b : Set (Set α)
finb : Set.Finite b
subb : b ⊆ s
⊢ ∃ z, z ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} ∧ z ⊆ ⋂₀ a ∩ ⋂₀ b
[PROOFSTEP]
exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p s
⊢ l = l'
[PROOFSTEP]
ext t
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p s
t : Set α
⊢ t ∈ l ↔ t ∈ l'
[PROOFSTEP]
rw [hl.mem_iff, hl'.mem_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : IsBasis p s
t : Set α
⊢ t ∈ IsBasis.filter h ↔ ∃ i, p i ∧ s i ⊆ t
[PROOFSTEP]
simp only [h.mem_filter_iff, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
i✝ j✝ : ι
hi : p i✝
hj : p j✝
⊢ ∃ k, p k ∧ s k ⊆ s i✝ ∩ s j✝
[PROOFSTEP]
simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
⊢ IsBasis.filter (_ : IsBasis p s) = l
[PROOFSTEP]
ext U
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
U : Set α
⊢ U ∈ IsBasis.filter (_ : IsBasis p s) ↔ U ∈ l
[PROOFSTEP]
simp [h.mem_iff, IsBasis.mem_filter_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
⊢ l = generate {U | ∃ i, p i ∧ s i = U}
[PROOFSTEP]
rw [← h.isBasis.filter_eq_generate, h.filter_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : Set (Set α)
⊢ generate s = generate (sInter '' {t | Set.Finite t ∧ t ⊆ s})
[PROOFSTEP]
rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : Set (Set α)
⊢ IsBasis.filter (_ : IsBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t) = FilterBasis.filter (FilterBasis.ofSets s)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : Set (Set α)
⊢ FilterBasis.filter (FilterBasis.ofSets s) = generate s
[PROOFSTEP]
rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → s' i' ∈ l
⊢ HasBasis l p' s'
[PROOFSTEP]
refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → s' i' ∈ l
t : Set α
ht : t ∈ l
⊢ ∃ i, p' i ∧ s' i ⊆ t
[PROOFSTEP]
rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → s' i' ∈ l
t : Set α
ht✝ : t ∈ l
i : ι
hi : p i
ht : s i ⊆ t
⊢ ∃ i, p' i ∧ s' i ⊆ t
[PROOFSTEP]
rcases h i hi with ⟨i', hi', hs's⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i'✝ : ι'
hl : HasBasis l p s
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → s' i' ∈ l
t : Set α
ht✝ : t ∈ l
i : ι
hi : p i
ht : s i ⊆ t
i' : ι'
hi' : p' i'
hs's : s' i' ⊆ s i
⊢ ∃ i, p' i ∧ s' i ⊆ t
[PROOFSTEP]
exact ⟨i', hi', hs's.trans ht⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
q : α → Prop
⊢ (∀ᶠ (x : α) in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x : α⦄, x ∈ s i → q x
[PROOFSTEP]
simpa using hl.mem_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
q : α → Prop
⊢ (∃ᶠ (x : α) in l, q x) ↔ ∀ (i : ι), p i → ∃ x, x ∈ s i ∧ q x
[PROOFSTEP]
simp only [Filter.Frequently, hl.eventually_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
q : α → Prop
⊢ (¬∃ i, p i ∧ ∀ ⦃x : α⦄, x ∈ s i → ¬q x) ↔ ∀ (i : ι), p i → ∃ x, x ∈ s i ∧ q x
[PROOFSTEP]
push_neg
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
q : α → Prop
⊢ (∀ (i : ι), p i → Exists fun ⦃x⦄ => x ∈ s i ∧ q x) ↔ ∀ (i : ι), p i → ∃ x, x ∈ s i ∧ q x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
⊢ (∀ {i : ι}, p i → Set.Nonempty (s i)) ↔ ¬∃ i, p i ∧ s i = ∅
[PROOFSTEP]
simp only [not_exists, not_and, nonempty_iff_ne_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : Set (Set α)
⊢ (∀ {i : Set (Set α)}, Set.Finite i ∧ i ⊆ s → Set.Nonempty (⋂₀ i)) ↔
∀ (t : Set (Set α)), t ⊆ s → Set.Finite t → Set.Nonempty (⋂₀ t)
[PROOFSTEP]
simp only [← and_imp, and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
l : Filter α
P : Set α → Prop
⊢ HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ (t : Set α), t ∈ l → ∃ r, r ∈ l ∧ P r ∧ r ⊆ t
[PROOFSTEP]
simp only [hasBasis_iff, id, and_assoc]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
l : Filter α
P : Set α → Prop
⊢ (∀ (t : Set α), t ∈ l ↔ ∃ i, i ∈ l ∧ P i ∧ i ⊆ t) ↔ ∀ (t : Set α), t ∈ l → ∃ r, r ∈ l ∧ P r ∧ r ⊆ t
[PROOFSTEP]
exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
q : ι → Prop
hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i
⊢ HasBasis l (fun i => p i ∧ q i) s
[PROOFSTEP]
refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
q : ι → Prop
hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i
t : Set α
ht : t ∈ l
⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t
[PROOFSTEP]
rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
q : ι → Prop
hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i
t : Set α
ht : t ∈ l
i : ι
hpi : p i
hti : s i ⊆ t
⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t
[PROOFSTEP]
rcases hq i hpi with ⟨j, hpj, hqj, hji⟩
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
q : ι → Prop
hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i
t : Set α
ht : t ∈ l
i : ι
hpi : p i
hti : s i ⊆ t
j : ι
hpj : p j
hqj : q j
hji : s j ⊆ s i
⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t
[PROOFSTEP]
exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p✝ : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
p : Set α → Prop
h : HasBasis l (fun s => s ∈ l ∧ p s) id
V : Set α
hV : V ∈ l
⊢ HasBasis l (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id
[PROOFSTEP]
simpa only [and_assoc] using h.restrict_subset hV
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
⊢ l ≤ l' ↔ ∀ (t : Set α), t ∈ l' → ∃ i, p i ∧ s i ⊆ t
[PROOFSTEP]
simp only [le_def, hl.mem_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
⊢ l ≤ l' ↔ ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
[PROOFSTEP]
simp only [hl'.ge_iff, hl.mem_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
⊢ l = l'
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
⊢ l ≤ l'
[PROOFSTEP]
rw [hl.le_basis_iff hl']
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
⊢ ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
[PROOFSTEP]
simpa using h'
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
⊢ l' ≤ l
[PROOFSTEP]
rw [hl'.le_basis_iff hl]
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i
h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i'
⊢ ∀ (i' : ι), p i' → ∃ i, p' i ∧ s' i ⊆ s i'
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
⊢ ∀ (t : Set α), t ∈ l ⊓ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t
[PROOFSTEP]
intro t
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
⊢ t ∈ l ⊓ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
⊢ t ∈ l ⊓ l' → ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t
[PROOFSTEP]
simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff]
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
⊢ (∃ t₁, (∃ i, p i ∧ s i ⊆ t₁) ∧ ∃ t₂, (∃ i, p' i ∧ s' i ⊆ t₂) ∧ t = t₁ ∩ t₂) →
∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t
[PROOFSTEP]
rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i'✝ : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
i : ι
hi : p i
ht : s i ⊆ t
t' : Set α
i' : ι'
hi' : p' i'
ht' : s' i' ⊆ t'
⊢ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t ∩ t'
[PROOFSTEP]
exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
⊢ (∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t) → t ∈ l ⊓ l'
[PROOFSTEP]
rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩
[GOAL]
case mpr.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i'✝ : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
i : ι
i' : ι'
H : s { fst := i, snd := i' }.fst ∩ s' { fst := i, snd := i' }.snd ⊆ t
hi : p { fst := i, snd := i' }.fst
hi' : p' { fst := i, snd := i' }.snd
⊢ t ∈ l ⊓ l'
[PROOFSTEP]
exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
⊢ ∀ (t : Set α),
t ∈ ⨅ (i : ι), l i ↔
∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t
[PROOFSTEP]
intro t
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
⊢ t ∈ ⨅ (i : ι), l i ↔
∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
⊢ t ∈ ⨅ (i : ι), l i →
∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t
[PROOFSTEP]
simp only [mem_iInf', (hl _).mem_iff]
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
⊢ (∃ I,
Set.Finite I ∧
∃ V,
(∀ (i : ι), ∃ i_1, p i i_1 ∧ s i i_1 ⊆ V i) ∧
(∀ (i : ι), ¬i ∈ I → V i = univ) ∧ t = ⋂ (i : ι) (_ : i ∈ I), V i ∧ t = ⋂ (i : ι), V i) →
∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t
[PROOFSTEP]
rintro ⟨I, hI, V, hV, -, rfl, -⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
I : Set ι
hI : Set.Finite I
V : ι → Set α
hV : ∀ (i : ι), ∃ i_1, p i i_1 ∧ s i i_1 ⊆ V i
⊢ ∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ ⋂ (i : ι) (_ : i ∈ I), V i
[PROOFSTEP]
choose u hu using hV
[GOAL]
case mp.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
I : Set ι
hI : Set.Finite I
V : ι → Set α
u : (i : ι) → ι' i
hu : ∀ (i : ι), p i (u i) ∧ s i (u i) ⊆ V i
⊢ ∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ ⋂ (i : ι) (_ : i ∈ I), V i
[PROOFSTEP]
exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
⊢ (∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧
⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t) →
t ∈ ⨅ (i : ι), l i
[PROOFSTEP]
rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩
[GOAL]
case mpr.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
I : Set ι
f : (i : ι) → ι' i
hsub : ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ⊆ t
hI₁ : Set.Finite (I, f).fst
hI₂ : ∀ (i : ι), i ∈ (I, f).fst → p i (Prod.snd (I, f) i)
⊢ t ∈ ⨅ (i : ι), l i
[PROOFSTEP]
refine' mem_of_superset _ hsub
[GOAL]
case mpr.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
I : Set ι
f : (i : ι) → ι' i
hsub : ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ⊆ t
hI₁ : Set.Finite (I, f).fst
hI₂ : ∀ (i : ι), i ∈ (I, f).fst → p i (Prod.snd (I, f) i)
⊢ ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ∈ ⨅ (i : ι), l i
[PROOFSTEP]
exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
⊢ HasBasis (⨅ (i : ι), l i) (fun If => Set.Finite If.fst ∧ ∀ (i : ↑If.fst), p (↑i) (Sigma.snd If i)) fun If =>
⋂ (i : ↑If.fst), s (↑i) (Sigma.snd If i)
[PROOFSTEP]
refine' ⟨fun t => ⟨fun ht => _, _⟩⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
ht : t ∈ ⨅ (i : ι), l i
⊢ ∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ (i_1 : ↑i.fst), s (↑i_1) (Sigma.snd i i_1) ⊆ t
[PROOFSTEP]
rcases(hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
[GOAL]
case refine'_1.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
ht : t ∈ ⨅ (i : ι), l i
I : Set ι
f : (i : ι) → ι' i
hsub : ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ⊆ t
hI : Set.Finite (I, f).fst
hf : ∀ (i : ι), i ∈ (I, f).fst → p i (Prod.snd (I, f) i)
⊢ ∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ (i_1 : ↑i.fst), s (↑i_1) (Sigma.snd i i_1) ⊆ t
[PROOFSTEP]
exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
⊢ (∃ i,
(Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧
⋂ (i_1 : ↑i.fst), s (↑i_1) (Sigma.snd i i_1) ⊆ t) →
t ∈ ⨅ (i : ι), l i
[PROOFSTEP]
rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
[GOAL]
case refine'_2.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
I : Set ι
f : (i : ↑I) → ι' ↑i
hsub : ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t
hI : Set.Finite { fst := I, snd := f }.fst
hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i)
⊢ t ∈ ⨅ (i : ι), l i
[PROOFSTEP]
refine' mem_of_superset _ hsub
[GOAL]
case refine'_2.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
I : Set ι
f : (i : ↑I) → ι' ↑i
hsub : ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t
hI : Set.Finite { fst := I, snd := f }.fst
hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i)
⊢ ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ∈ ⨅ (i : ι), l i
[PROOFSTEP]
cases hI.nonempty_fintype
[GOAL]
case refine'_2.intro.mk.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
I : Set ι
f : (i : ↑I) → ι' ↑i
hsub : ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t
hI : Set.Finite { fst := I, snd := f }.fst
hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i)
val✝ : Fintype ↑{ fst := I, snd := f }.fst
⊢ ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ∈ ⨅ (i : ι), l i
[PROOFSTEP]
exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
inst✝ : Nonempty ι
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
h : Directed (fun x x_1 => x ≥ x_1) l
⊢ HasBasis (⨅ (i : ι), l i) (fun ii' => p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd
[PROOFSTEP]
refine' ⟨fun t => _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
inst✝ : Nonempty ι
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
h : Directed (fun x x_1 => x ≥ x_1) l
t : Set α
⊢ t ∈ ⨅ (i : ι), l i ↔ ∃ i, p i.fst i.snd ∧ s i.fst i.snd ⊆ t
[PROOFSTEP]
rw [mem_iInf_of_directed h, Sigma.exists]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
inst✝ : Nonempty ι
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
h : Directed (fun x x_1 => x ≥ x_1) l
t : Set α
⊢ (∃ i, t ∈ l i) ↔
∃ a b,
p { fst := a, snd := b }.fst { fst := a, snd := b }.snd ∧
s { fst := a, snd := b }.fst { fst := a, snd := b }.snd ⊆ t
[PROOFSTEP]
exact exists_congr fun i => (hl i).mem_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
inst✝ : Nonempty ι
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
h : Directed (fun x x_1 => x ≥ x_1) l
⊢ HasBasis (⨅ (i : ι), l i) (fun ii' => p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd
[PROOFSTEP]
refine' ⟨fun t => _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
inst✝ : Nonempty ι
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
h : Directed (fun x x_1 => x ≥ x_1) l
t : Set α
⊢ t ∈ ⨅ (i : ι), l i ↔ ∃ i, p i.fst i.snd ∧ s i.fst i.snd ⊆ t
[PROOFSTEP]
rw [mem_iInf_of_directed h, Prod.exists]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
inst✝ : Nonempty ι
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
h : Directed (fun x x_1 => x ≥ x_1) l
t : Set α
⊢ (∃ i, t ∈ l i) ↔ ∃ a b, p (a, b).fst (a, b).snd ∧ s (a, b).fst (a, b).snd ⊆ t
[PROOFSTEP]
exact exists_congr fun i => (hl i).mem_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
⊢ HasBasis (⨅ (i : ι) (_ : i ∈ dom), l i) (fun ii' => ii'.fst ∈ dom ∧ p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd
[PROOFSTEP]
refine' ⟨fun t => _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
⊢ t ∈ ⨅ (i : ι) (_ : i ∈ dom), l i ↔ ∃ i, (i.fst ∈ dom ∧ p i.fst i.snd) ∧ s i.fst i.snd ⊆ t
[PROOFSTEP]
rw [mem_biInf_of_directed h hdom, Sigma.exists]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
⊢ (∃ i, i ∈ dom ∧ t ∈ l i) ↔
∃ a b,
({ fst := a, snd := b }.fst ∈ dom ∧ p { fst := a, snd := b }.fst { fst := a, snd := b }.snd) ∧
s { fst := a, snd := b }.fst { fst := a, snd := b }.snd ⊆ t
[PROOFSTEP]
refine' exists_congr fun i => ⟨_, _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
⊢ i ∈ dom ∧ t ∈ l i →
∃ b,
({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧
s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
[PROOFSTEP]
rintro ⟨hi, hti⟩
[GOAL]
case refine'_1.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
hi : i ∈ dom
hti : t ∈ l i
⊢ ∃ b,
({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧
s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
[PROOFSTEP]
rcases(hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
hi : i ∈ dom
hti : t ∈ l i
b : ι' i
hb : p i b
hbt : s i b ⊆ t
⊢ ∃ b,
({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧
s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
[PROOFSTEP]
exact ⟨b, ⟨hi, hb⟩, hbt⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
⊢ (∃ b,
({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧
s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t) →
i ∈ dom ∧ t ∈ l i
[PROOFSTEP]
rintro ⟨b, ⟨hi, hb⟩, hibt⟩
[GOAL]
case refine'_2.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : ι → Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : (i : ι) → ι' i → Set α
p : (i : ι) → ι' i → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
b : ι' i
hibt : s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
hi : { fst := i, snd := b }.fst ∈ dom
hb : p { fst := i, snd := b }.fst { fst := i, snd := b }.snd
⊢ i ∈ dom ∧ t ∈ l i
[PROOFSTEP]
exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
⊢ HasBasis (⨅ (i : ι) (_ : i ∈ dom), l i) (fun ii' => ii'.fst ∈ dom ∧ p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd
[PROOFSTEP]
refine' ⟨fun t => _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
⊢ t ∈ ⨅ (i : ι) (_ : i ∈ dom), l i ↔ ∃ i, (i.fst ∈ dom ∧ p i.fst i.snd) ∧ s i.fst i.snd ⊆ t
[PROOFSTEP]
rw [mem_biInf_of_directed h hdom, Prod.exists]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
⊢ (∃ i, i ∈ dom ∧ t ∈ l i) ↔ ∃ a b, ((a, b).fst ∈ dom ∧ p (a, b).fst (a, b).snd) ∧ s (a, b).fst (a, b).snd ⊆ t
[PROOFSTEP]
refine' exists_congr fun i => ⟨_, _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
⊢ i ∈ dom ∧ t ∈ l i → ∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t
[PROOFSTEP]
rintro ⟨hi, hti⟩
[GOAL]
case refine'_1.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
hi : i ∈ dom
hti : t ∈ l i
⊢ ∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t
[PROOFSTEP]
rcases(hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
[GOAL]
case refine'_1.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
hi : i ∈ dom
hti : t ∈ l i
b : ι'
hb : p i b
hbt : s i b ⊆ t
⊢ ∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t
[PROOFSTEP]
exact ⟨b, ⟨hi, hb⟩, hbt⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
⊢ (∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t) → i ∈ dom ∧ t ∈ l i
[PROOFSTEP]
rintro ⟨b, ⟨hi, hb⟩, hibt⟩
[GOAL]
case refine'_2.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i✝ : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Type u_6
ι' : Type u_7
dom : Set ι
hdom : Set.Nonempty dom
l : ι → Filter α
s : ι → ι' → Set α
p : ι → ι' → Prop
hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i)
h : DirectedOn (l ⁻¹'o GE.ge) dom
t : Set α
i : ι
b : ι'
hibt : s (i, b).fst (i, b).snd ⊆ t
hi : (i, b).fst ∈ dom
hb : p (i, b).fst (i, b).snd
⊢ i ∈ dom ∧ t ∈ l i
[PROOFSTEP]
exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
t U : Set α
⊢ U ∈ 𝓟 t ↔ ∃ i, True ∧ t ⊆ U
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
x : α
⊢ HasBasis (pure x) (fun x => True) fun x_1 => {x}
[PROOFSTEP]
simp only [← principal_singleton, hasBasis_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
⊢ ∀ (t : Set α), t ∈ l ⊔ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∪ s' i.snd ⊆ t
[PROOFSTEP]
intro t
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
⊢ t ∈ l ⊔ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∪ s' i.snd ⊆ t
[PROOFSTEP]
simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
t : Set α
⊢ (∃ x x_1, (p x ∧ s x ⊆ t) ∧ p' x_1 ∧ s' x_1 ⊆ t) ↔ ∃ a b, (p a ∧ p' b) ∧ s a ⊆ t ∧ s' b ⊆ t
[PROOFSTEP]
simp only [and_assoc, and_left_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι'✝ : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι'✝ → Prop
s' : ι'✝ → Set α
i' : ι'✝
ι : Sort u_6
ι' : ι → Type u_7
l : ι → Filter α
p : (i : ι) → ι' i → Prop
s : (i : ι) → ι' i → Set α
hl : ∀ (i : ι), HasBasis (l i) (p i) (s i)
t : Set α
⊢ t ∈ ⨆ (i : ι), l i ↔ ∃ i, (∀ (i_1 : ι), p i_1 (i i_1)) ∧ ⋃ (i_1 : ι), s i_1 (i i_1) ⊆ t
[PROOFSTEP]
simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
t u : Set α
⊢ u ∈ l ⊔ 𝓟 t ↔ ∃ i, p i ∧ s i ∪ t ⊆ u
[PROOFSTEP]
simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
x : α
⊢ HasBasis (l ⊔ pure x) p fun i => s i ∪ {x}
[PROOFSTEP]
simp only [← principal_singleton, hl.sup_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s'✝ : ι' → Set α
i' : ι'
hl : HasBasis l p s
s' t : Set α
⊢ t ∈ l ⊓ 𝓟 s' ↔ ∃ i, p i ∧ s i ∩ s' ⊆ t
[PROOFSTEP]
simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s'✝ : ι' → Set α
i' : ι'
hl : HasBasis l p s
s' : Set α
⊢ HasBasis (𝓟 s' ⊓ l) p fun i => s' ∩ s i
[PROOFSTEP]
simpa only [inf_comm, inter_comm] using hl.inf_principal s'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
⊢ (∀ {i : PProd ι ι'}, p i.fst ∧ p' i.snd → Set.Nonempty (s i.fst ∩ s' i.snd)) ↔
∀ ⦃i : ι⦄, p i → ∀ ⦃i' : ι'⦄, p' i' → Set.Nonempty (s i ∩ s' i')
[PROOFSTEP]
simp [@forall_swap _ ι']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
hl : HasBasis l p s
hl' : HasBasis l' p' s'
⊢ ¬Disjoint l l' ↔ ¬∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i')
[PROOFSTEP]
simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and,
bot_eq_empty, ← nonempty_iff_ne_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
I : Type u_7
inst✝ : Finite I
l : I → Filter α
ι : I → Sort u_6
p : (i : I) → ι i → Prop
s : (i : I) → ι i → Set α
hd : Pairwise (Disjoint on l)
h : ∀ (i : I), HasBasis (l i) (p i) (s i)
⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
[PROOFSTEP]
rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
I : Type u_7
inst✝ : Finite I
l : I → Filter α
ι : I → Sort u_6
p : (i : I) → ι i → Prop
s : (i : I) → ι i → Set α
hd✝ : Pairwise (Disjoint on l)
h : ∀ (i : I), HasBasis (l i) (p i) (s i)
t : I → Set α
htl : ∀ (i : I), t i ∈ l i
hd : Pairwise (Disjoint on t)
⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
[PROOFSTEP]
choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
I : Type u_7
inst✝ : Finite I
l : I → Filter α
ι : I → Sort u_6
p : (i : I) → ι i → Prop
s : (i : I) → ι i → Set α
hd✝ : Pairwise (Disjoint on l)
h : ∀ (i : I), HasBasis (l i) (p i) (s i)
t : I → Set α
htl : ∀ (i : I), t i ∈ l i
hd : Pairwise (Disjoint on t)
ind : (i : I) → ι i
hp : ∀ (i : I), p i (ind i)
ht : ∀ (i : I), s i (ind i) ⊆ t i
⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
[PROOFSTEP]
exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
I : Type u_6
l : I → Filter α
ι : I → Sort u_7
p : (i : I) → ι i → Prop
s : (i : I) → ι i → Set α
S : Set I
hd : PairwiseDisjoint S l
hS : Set.Finite S
h : ∀ (i : I), HasBasis (l i) (p i) (s i)
⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i)
[PROOFSTEP]
rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
I : Type u_6
l : I → Filter α
ι : I → Sort u_7
p : (i : I) → ι i → Prop
s : (i : I) → ι i → Set α
S : Set I
hd✝ : PairwiseDisjoint S l
hS : Set.Finite S
h : ∀ (i : I), HasBasis (l i) (p i) (s i)
t : I → Set α
htl : ∀ (i : I), t i ∈ l i
hd : PairwiseDisjoint S t
⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i)
[PROOFSTEP]
choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l✝ l' : Filter α
p✝ : ι✝ → Prop
s✝ : ι✝ → Set α
t✝ : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
I : Type u_6
l : I → Filter α
ι : I → Sort u_7
p : (i : I) → ι i → Prop
s : (i : I) → ι i → Set α
S : Set I
hd✝ : PairwiseDisjoint S l
hS : Set.Finite S
h : ∀ (i : I), HasBasis (l i) (p i) (s i)
t : I → Set α
htl : ∀ (i : I), t i ∈ l i
hd : PairwiseDisjoint S t
ind : (i : I) → ι i
hp : ∀ (i : I), p i (ind i)
ht : ∀ (i : I), s i (ind i) ⊆ t i
⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i)
[PROOFSTEP]
exact ⟨ind, hp, hd.mono ht⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : Filter α
s : Set α
⊢ s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥
[PROOFSTEP]
refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : Filter α
s : Set α
⊢ (∀ (U : Set α), U ∈ f → Set.Nonempty (U ∩ sᶜ)) ↔ ¬s ∈ f
[PROOFSTEP]
exact
⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht =>
inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : Filter α
s : Set α
h : ∀ (U : Set α), U ∈ f → Set.Nonempty (U ∩ sᶜ)
hs : s ∈ f
⊢ False
[PROOFSTEP]
simpa [Set.not_nonempty_empty] using h s hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : Filter α
s : Set α
⊢ Disjoint f (𝓟 s) ↔ sᶜ ∈ f
[PROOFSTEP]
rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : Filter α
s : Set α
⊢ Disjoint (𝓟 s) f ↔ sᶜ ∈ f
[PROOFSTEP]
rw [disjoint_comm, disjoint_principal_right]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s t : Set α
⊢ Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t
[PROOFSTEP]
rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
x y : α
⊢ Disjoint (pure x) (pure y) ↔ x ≠ y
[PROOFSTEP]
simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
l₁ l₂ : Filter α
⊢ (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂
[PROOFSTEP]
simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
⊢ Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l'
[PROOFSTEP]
simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left,
(hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f g : Filter α
⊢ NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in f, p x) → ∃ᶠ (x : α) in g, p x
[PROOFSTEP]
simp only [inf_neBot_iff, frequently_iff, and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f g : Filter α
⊢ (∀ ⦃s : Set α⦄, s ∈ f → ∀ ⦃s' : Set α⦄, s' ∈ g → Set.Nonempty (s ∩ s')) ↔
∀ {p : α → Prop}, (∀ᶠ (x : α) in f, p x) → ∀ {U : Set α}, U ∈ g → ∃ x, p x ∧ x ∈ U
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f g : Filter α
⊢ NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in g, p x) → ∃ᶠ (x : α) in f, p x
[PROOFSTEP]
rw [inf_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f g : Filter α
⊢ NeBot (g ⊓ f) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in g, p x) → ∃ᶠ (x : α) in f, p x
[PROOFSTEP]
exact inf_neBot_iff_frequently_left
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
x✝ : Set α
⊢ x✝ ∈ l ↔ ∃ i, p i ∧ x✝ ∈ 𝓟 (s i)
[PROOFSTEP]
simp only [h.mem_iff, mem_principal, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l (fun x => True) s
⊢ l = ⨅ (i : ι), 𝓟 (s i)
[PROOFSTEP]
simpa only [iInf_true] using h.eq_biInf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : ι → Set α
h : Directed (fun x x_1 => x ≥ x_1) s
inst✝ : Nonempty ι
t : Set α
⊢ t ∈ ⨅ (i : ι), 𝓟 (s i) ↔ ∃ i, True ∧ s i ⊆ t
[PROOFSTEP]
simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
ι : Type u_6
s : ι → Set α
⊢ HasBasis (⨅ (i : ι), 𝓟 (s i)) (fun t => Set.Finite t) fun t => ⋂ (i : ι) (_ : i ∈ t), s i
[PROOFSTEP]
refine' ⟨fun U => (mem_iInf_finite _).trans _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι✝ → Prop
s✝ : ι✝ → Set α
t : Set α
i : ι✝
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
ι : Type u_6
s : ι → Set α
U : Set α
⊢ (∃ t, U ∈ ⨅ (i : ι) (_ : i ∈ t), 𝓟 (s i)) ↔ ∃ i, Set.Finite i ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i), s i_1 ⊆ U
[PROOFSTEP]
simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset,
Finset.set_biInter_coe]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : β → Set α
S : Set β
h : DirectedOn (s ⁻¹'o fun x x_1 => x ≥ x_1) S
ne : Set.Nonempty S
t : Set α
⊢ t ∈ ⨅ (i : β) (_ : i ∈ S), 𝓟 (s i) ↔ ∃ i, i ∈ S ∧ s i ⊆ t
[PROOFSTEP]
refine' mem_biInf_of_directed _ ne
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : β → Set α
S : Set β
h : DirectedOn (s ⁻¹'o fun x x_1 => x ≥ x_1) S
ne : Set.Nonempty S
t : Set α
⊢ DirectedOn ((fun i => 𝓟 (s i)) ⁻¹'o fun x x_1 => x ≥ x_1) S
[PROOFSTEP]
rw [directedOn_iff_directed, ← directed_comp] at h ⊢
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : β → Set α
S : Set β
h : Directed (fun x x_1 => x ≥ x_1) (s ∘ Subtype.val)
ne : Set.Nonempty S
t : Set α
⊢ Directed (fun x x_1 => x ≥ x_1) ((fun i => 𝓟 (s i)) ∘ Subtype.val)
[PROOFSTEP]
refine' h.mono_comp _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s✝ : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
s : β → Set α
S : Set β
h : Directed (fun x x_1 => x ≥ x_1) (s ∘ Subtype.val)
ne : Set.Nonempty S
t : Set α
⊢ ∀ ⦃x y : Set α⦄, x ≥ y → 𝓟 x ≥ 𝓟 y
[PROOFSTEP]
exact fun _ _ => principal_mono.2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : α → β
hl : HasBasis l p s
t : Set β
⊢ t ∈ Filter.map f l ↔ ∃ i, p i ∧ f '' s i ⊆ t
[PROOFSTEP]
simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : β → α
hl : HasBasis l p s
t : Set β
⊢ t ∈ Filter.comap f l ↔ ∃ i, p i ∧ f ⁻¹' s i ⊆ t
[PROOFSTEP]
simp only [mem_comap', hl.mem_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : β → α
hl : HasBasis l p s
t : Set β
⊢ (∃ i, p i ∧ s i ⊆ {y | ∀ ⦃x : β⦄, f x = y → x ∈ t}) ↔ ∃ i, p i ∧ f ⁻¹' s i ⊆ t
[PROOFSTEP]
refine exists_congr (fun i => Iff.rfl.and ?_)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : β → α
hl : HasBasis l p s
t : Set β
i : ι
⊢ s i ⊆ {y | ∀ ⦃x : β⦄, f x = y → x ∈ t} ↔ f ⁻¹' s i ⊆ t
[PROOFSTEP]
exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t✝ : Set α
i✝ : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
f : β → α
hl : HasBasis l p s
t : Set β
i : ι
h : f ⁻¹' s i ⊆ t
y : α
hy : y ∈ s i
x : β
hx : f x = y
⊢ x ∈ f ⁻¹' s i
[PROOFSTEP]
rwa [mem_preimage, hx]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
x : α
⊢ (∀ (t : Set α), t ∈ l → x ∈ t) ↔ ∀ (i : ι), p i → x ∈ s i
[PROOFSTEP]
simp only [h.mem_iff, exists_imp, and_imp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
x : α
⊢ (∀ (t : Set α) (x_1 : ι), p x_1 → s x_1 ⊆ t → x ∈ t) ↔ ∀ (i : ι), p i → x ∈ s i
[PROOFSTEP]
exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
⊢ ⋂₀ l.sets = ⋂ (i : ι) (_ : p i), s i
[PROOFSTEP]
rw [sInter_eq_biInter]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
l l' : Filter α
p : ι → Prop
s : ι → Set α
t : Set α
i : ι
p' : ι' → Prop
s' : ι' → Set α
i' : ι'
h : HasBasis l p s
⊢ ⋂ (i : Set α) (_ : i ∈ l.sets), i = ⋂ (i : ι) (_ : p i), s i
[PROOFSTEP]
exact h.biInter_mem monotone_id
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb : ι' → Set β
f : α → β
hla : HasBasis la pa sa
⊢ Tendsto f la lb ↔ ∀ (t : Set β), t ∈ lb → ∃ i, pa i ∧ MapsTo f (sa i) t
[PROOFSTEP]
simp only [Tendsto, (hla.map f).le_iff, image_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb : ι' → Set β
f : α → β
hla : HasBasis la pa sa
⊢ (∀ (t : Set β), t ∈ lb → ∃ i, pa i ∧ sa i ⊆ f ⁻¹' t) ↔ ∀ (t : Set β), t ∈ lb → ∃ i, pa i ∧ MapsTo f (sa i) t
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb : ι' → Set β
f : α → β
hlb : HasBasis lb pb sb
⊢ Tendsto f la lb ↔ ∀ (i : ι'), pb i → ∀ᶠ (x : α) in la, f x ∈ sb i
[PROOFSTEP]
simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb : ι' → Set β
f : α → β
hla : HasBasis la pa sa
hlb : HasBasis lb pb sb
⊢ Tendsto f la lb ↔ ∀ (ib : ι'), pb ib → ∃ ia, pa ia ∧ ∀ (x : α), x ∈ sa ia → f x ∈ sb ib
[PROOFSTEP]
simp [hlb.tendsto_right_iff, hla.eventually_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
⊢ HasBasis (la ×ˢ lb) p fun i => sa i ×ˢ sb i
[PROOFSTEP]
simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
⊢ ∀ (t : Set (α × β)), (∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t) ↔ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
[PROOFSTEP]
refine' fun t => ⟨_, _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
t : Set (α × β)
⊢ (∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t) → ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
[PROOFSTEP]
rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩
[GOAL]
case refine'_1.intro.mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
t : Set (α × β)
i j : ι
hsub : sa i ×ˢ sb j ⊆ t
hi : p { fst := i, snd := j }.fst
hj : p { fst := i, snd := j }.snd
⊢ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
[PROOFSTEP]
rcases h_dir hi hj with ⟨k, hk, ki, kj⟩
[GOAL]
case refine'_1.intro.mk.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
t : Set (α × β)
i j : ι
hsub : sa i ×ˢ sb j ⊆ t
hi : p { fst := i, snd := j }.fst
hj : p { fst := i, snd := j }.snd
k : ι
hk : p k
ki : sa k ⊆ sa { fst := i, snd := j }.fst
kj : sb k ⊆ sb { fst := i, snd := j }.snd
⊢ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
[PROOFSTEP]
exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
t : Set (α × β)
⊢ (∃ i, p i ∧ sa i ×ˢ sb i ⊆ t) → ∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t
[PROOFSTEP]
rintro ⟨i, hi, h⟩
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb✝ : ι' → Set β
f : α → β
p : ι → Prop
sb : ι → Set β
hla : HasBasis la p sa
hlb : HasBasis lb p sb
h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j
t : Set (α × β)
i : ι
hi : p i
h : sa i ×ˢ sb i ⊆ t
⊢ ∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t
[PROOFSTEP]
exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
la : Filter α
pa : ι → Prop
sa : ι → Set α
lb : Filter β
pb : ι' → Prop
sb : ι' → Set β
f : α → β
hl : HasBasis la pa sa
i j : ι
hi : pa i
hj : pa j
⊢ ∃ k, pa k ∧ sa k ⊆ sa i ∧ sa k ⊆ sa j
[PROOFSTEP]
simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
π : α → Type u_6
π' : β → Type u_7
f : α → β
hf : Function.Injective f
g : (a : α) → π a → π' (f a)
a : α
l : Filter (π' (f a))
⊢ map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l)
[PROOFSTEP]
refine' (((basis_sets _).comap _).map _).eq_of_same_basis _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
π : α → Type u_6
π' : β → Type u_7
f : α → β
hf : Function.Injective f
g : (a : α) → π a → π' (f a)
a : α
l : Filter (π' (f a))
⊢ HasBasis (comap (Sigma.map f g) (map (Sigma.mk (f a)) l)) (fun s => s ∈ l) fun i => Sigma.mk a '' (g a ⁻¹' id i)
[PROOFSTEP]
convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g)
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
ι' : Sort u_5
π : α → Type u_6
π' : β → Type u_7
f : α → β
hf : Function.Injective f
g : (a : α) → π a → π' (f a)
a : α
l : Filter (π' (f a))
x✝ : Set (π' (f a))
⊢ Sigma.mk a '' (g a ⁻¹' id x✝) = Sigma.map f g ⁻¹' (Sigma.mk (f a) '' id x✝)
[PROOFSTEP]
apply image_sigmaMk_preimage_sigmaMap hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ ∃ t, Antitone t ∧ ⨅ (i : ℕ), 𝓟 (s i) = ⨅ (i : ℕ), 𝓟 (t i)
[PROOFSTEP]
use fun n => ⋂ m ≤ n, s m
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ (Antitone fun n => ⋂ (m : ℕ) (_ : m ≤ n), s m) ∧ ⨅ (i : ℕ), 𝓟 (s i) = ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m)
[PROOFSTEP]
constructor
[GOAL]
case h.left
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ Antitone fun n => ⋂ (m : ℕ) (_ : m ≤ n), s m
[PROOFSTEP]
exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl
[GOAL]
case h.right
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ ⨅ (i : ℕ), 𝓟 (s i) = ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ ⨅ (i : ℕ), 𝓟 (s i) ≤ ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m)
[PROOFSTEP]
rw [le_iInf_iff]
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) ≤ ⨅ (i : ℕ), 𝓟 (s i)
[PROOFSTEP]
rw [le_iInf_iff]
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ ∀ (i : ℕ), ⨅ (i : ℕ), 𝓟 (s i) ≤ 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m)
[PROOFSTEP]
intro i
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
⊢ ∀ (i : ℕ), ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) ≤ 𝓟 (s i)
[PROOFSTEP]
intro i
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
i : ℕ
⊢ ⨅ (i : ℕ), 𝓟 (s i) ≤ 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m)
[PROOFSTEP]
rw [le_principal_iff]
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
i : ℕ
⊢ ⋂ (m : ℕ) (_ : m ≤ i), s m ∈ ⨅ (i : ℕ), 𝓟 (s i)
[PROOFSTEP]
refine' (biInter_mem (finite_le_nat _)).2 fun j _ => _
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
i j : ℕ
x✝ : j ∈ {i_1 | i_1 ≤ i}
⊢ s j ∈ ⨅ (i : ℕ), 𝓟 (s i)
[PROOFSTEP]
exact mem_iInf_of_mem j (mem_principal_self _)
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
i : ℕ
⊢ ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) ≤ 𝓟 (s i)
[PROOFSTEP]
refine iInf_le_of_le i (principal_mono.2 <| iInter₂_subset i ?_)
[GOAL]
case h.right.a
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
s : ℕ → Set α
i : ℕ
⊢ i ≤ i
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : CompleteLattice α
B : Set ι
Bcbl : Set.Countable B
f : ι → α
i₀ : ι
h : f i₀ = ⊤
⊢ ∃ x, ⨅ (t : ι) (_ : t ∈ B), f t = ⨅ (i : ℕ), f (x i)
[PROOFSTEP]
cases' B.eq_empty_or_nonempty with hB Bnonempty
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : CompleteLattice α
B : Set ι
Bcbl : Set.Countable B
f : ι → α
i₀ : ι
h : f i₀ = ⊤
hB : B = ∅
⊢ ∃ x, ⨅ (t : ι) (_ : t ∈ B), f t = ⨅ (i : ℕ), f (x i)
[PROOFSTEP]
rw [hB, iInf_emptyset]
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : CompleteLattice α
B : Set ι
Bcbl : Set.Countable B
f : ι → α
i₀ : ι
h : f i₀ = ⊤
hB : B = ∅
⊢ ∃ x, ⊤ = ⨅ (i : ℕ), f (x i)
[PROOFSTEP]
use fun _ => i₀
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : CompleteLattice α
B : Set ι
Bcbl : Set.Countable B
f : ι → α
i₀ : ι
h : f i₀ = ⊤
hB : B = ∅
⊢ ⊤ = ⨅ (i : ℕ), f i₀
[PROOFSTEP]
simp [h]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : CompleteLattice α
B : Set ι
Bcbl : Set.Countable B
f : ι → α
i₀ : ι
h : f i₀ = ⊤
Bnonempty : Set.Nonempty B
⊢ ∃ x, ⨅ (t : ι) (_ : t ∈ B), f t = ⨅ (i : ℕ), f (x i)
[PROOFSTEP]
exact countable_biInf_eq_iInf_seq Bcbl Bnonempty f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : Preorder ι
l : Filter α
s : ι → Set α
hs : HasAntitoneBasis l s
t : Set α
⊢ (∃ i, True ∧ s i ⊆ t) ↔ ∃ i, s i ⊆ t
[PROOFSTEP]
simp only [exists_prop, true_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i)
[PROOFSTEP]
obtain ⟨x', hx'⟩ : ∃ x : ℕ → Set α, f = ⨅ i, 𝓟 (x i) :=
by
rcases h with ⟨s, hsc, rfl⟩
rw [generate_eq_biInf]
exact countable_biInf_principal_eq_seq_iInf hsc
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
⊢ ∃ x, f = ⨅ (i : ℕ), 𝓟 (x i)
[PROOFSTEP]
rcases h with ⟨s, hsc, rfl⟩
[GOAL]
case mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
p : ι' → Prop
s✝ : ι' → Set α
s : Set (Set α)
hsc : Set.Countable s
hs : HasBasis (generate s) p s✝
⊢ ∃ x, generate s = ⨅ (i : ℕ), 𝓟 (x i)
[PROOFSTEP]
rw [generate_eq_biInf]
[GOAL]
case mk.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
p : ι' → Prop
s✝ : ι' → Set α
s : Set (Set α)
hsc : Set.Countable s
hs : HasBasis (generate s) p s✝
⊢ ∃ x, ⨅ (s_1 : Set α) (_ : s_1 ∈ s), 𝓟 s_1 = ⨅ (i : ℕ), 𝓟 (x i)
[PROOFSTEP]
exact countable_biInf_principal_eq_seq_iInf hsc
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i)
[PROOFSTEP]
have : ∀ i, x' i ∈ f := fun i => hx'.symm ▸ (iInf_le (fun i => 𝓟 (x' i)) i) (mem_principal_self _)
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i)
[PROOFSTEP]
let x : ℕ → { i : ι' // p i } := fun n =>
Nat.recOn n (hs.index _ <| this 0) fun n xn => hs.index _ <| inter_mem (this <| n + 1) (hs.mem_of_mem xn.2)
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i)
[PROOFSTEP]
have x_mono : Antitone fun i => s (x i).1 :=
antitone_nat_of_succ_le fun i => (hs.set_index_subset _).trans (inter_subset_right _ _)
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i)
[PROOFSTEP]
have x_subset : ∀ i, s (x i).1 ⊆ x' i := by
rintro (_ | i)
exacts [hs.set_index_subset _, (hs.set_index_subset _).trans (inter_subset_left _ _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
⊢ ∀ (i : ℕ), s ↑(x i) ⊆ x' i
[PROOFSTEP]
rintro (_ | i)
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
⊢ s ↑(x Nat.zero) ⊆ x' Nat.zero
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
i : ℕ
⊢ s ↑(x (Nat.succ i)) ⊆ x' (Nat.succ i)
[PROOFSTEP]
exacts [hs.set_index_subset _, (hs.set_index_subset _).trans (inter_subset_left _ _)]
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i)
[PROOFSTEP]
refine' ⟨fun i => (x i).1, fun i => (x i).2, _⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
⊢ HasAntitoneBasis f fun i => s ((fun i => ↑(x i)) i)
[PROOFSTEP]
have : (⨅ i, 𝓟 (s (x i).1)).HasAntitoneBasis fun i => s (x i).1 :=
⟨hasBasis_iInf_principal (directed_of_sup x_mono), x_mono⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this✝ : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i)
⊢ HasAntitoneBasis f fun i => s ((fun i => ↑(x i)) i)
[PROOFSTEP]
convert this
[GOAL]
case h.e'_4
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this✝ : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i)
⊢ f = ⨅ (i : ℕ), 𝓟 (s ↑(x i))
[PROOFSTEP]
exact
le_antisymm (le_iInf fun i => le_principal_iff.2 <| by cases i <;> apply hs.set_index_mem)
(hx'.symm ▸ le_iInf fun i => le_principal_iff.2 <| this.1.mem_iff.2 ⟨i, trivial, x_subset i⟩)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this✝ : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i)
i : ℕ
⊢ s ↑(x i) ∈ f
[PROOFSTEP]
cases i
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this✝ : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i)
⊢ s ↑(x Nat.zero) ∈ f
[PROOFSTEP]
apply hs.set_index_mem
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
p : ι' → Prop
s : ι' → Set α
hs : HasBasis f p s
x' : ℕ → Set α
hx' : f = ⨅ (i : ℕ), 𝓟 (x' i)
this✝ : ∀ (i : ℕ), x' i ∈ f
x : ℕ → { i // p i } :=
fun n =>
Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f)
x_mono : Antitone fun i => s ↑(x i)
x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i
this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i)
n✝ : ℕ
⊢ s ↑(x (Nat.succ n✝)) ∈ f
[PROOFSTEP]
apply hs.set_index_mem
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
inst✝ : IsCountablyGenerated f
x : ℕ → Set α
hx : HasAntitoneBasis f x
⊢ ∀ {s : Set α}, s ∈ f ↔ ∃ i, x i ⊆ s
[PROOFSTEP]
simp [hx.1.mem_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f g : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : IsCountablyGenerated g
⊢ IsCountablyGenerated (f ⊓ g)
[PROOFSTEP]
rcases f.exists_antitone_basis with ⟨s, hs⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f g : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : IsCountablyGenerated g
s : ℕ → Set α
hs : HasAntitoneBasis f s
⊢ IsCountablyGenerated (f ⊓ g)
[PROOFSTEP]
rcases g.exists_antitone_basis with ⟨t, ht⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f g : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : IsCountablyGenerated g
s : ℕ → Set α
hs : HasAntitoneBasis f s
t : ℕ → Set α
ht : HasAntitoneBasis g t
⊢ IsCountablyGenerated (f ⊓ g)
[PROOFSTEP]
exact HasCountableBasis.isCountablyGenerated ⟨hs.1.inf ht.1, Set.to_countable _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f g : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : IsCountablyGenerated g
⊢ IsCountablyGenerated (f ⊔ g)
[PROOFSTEP]
rcases f.exists_antitone_basis with ⟨s, hs⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f g : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : IsCountablyGenerated g
s : ℕ → Set α
hs : HasAntitoneBasis f s
⊢ IsCountablyGenerated (f ⊔ g)
[PROOFSTEP]
rcases g.exists_antitone_basis with ⟨t, ht⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f g : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : IsCountablyGenerated g
s : ℕ → Set α
hs : HasAntitoneBasis f s
t : ℕ → Set α
ht : HasAntitoneBasis g t
⊢ IsCountablyGenerated (f ⊔ g)
[PROOFSTEP]
exact HasCountableBasis.isCountablyGenerated ⟨hs.1.sup ht.1, Set.to_countable _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : Countable β
x : β → Set α
⊢ IsCountablyGenerated (⨅ (i : β), 𝓟 (x i))
[PROOFSTEP]
use range x, countable_range x
[GOAL]
case right
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
inst✝ : Countable β
x : β → Set α
⊢ ⨅ (i : β), 𝓟 (x i) = generate (range x)
[PROOFSTEP]
rw [generate_eq_biInf, iInf_range]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : ∃ x, f = ⨅ (i : ℕ), 𝓟 (x i)
⊢ IsCountablyGenerated f
[PROOFSTEP]
rcases h with ⟨x, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
x : ℕ → Set α
⊢ IsCountablyGenerated (⨅ (i : ℕ), 𝓟 (x i))
[PROOFSTEP]
apply isCountablyGenerated_seq
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
⊢ IsCountablyGenerated f ↔ ∃ x, HasAntitoneBasis f x
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
⊢ IsCountablyGenerated f → ∃ x, HasAntitoneBasis f x
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
h : IsCountablyGenerated f
⊢ ∃ x, HasAntitoneBasis f x
[PROOFSTEP]
exact f.exists_antitone_basis
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
⊢ (∃ x, HasAntitoneBasis f x) → IsCountablyGenerated f
[PROOFSTEP]
rintro ⟨x, h⟩
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
x : ℕ → Set α
h : HasAntitoneBasis f x
⊢ IsCountablyGenerated f
[PROOFSTEP]
rw [h.1.eq_iInf]
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
f : Filter α
x : ℕ → Set α
h : HasAntitoneBasis f x
⊢ IsCountablyGenerated (⨅ (i : ℕ), 𝓟 (x i))
[PROOFSTEP]
exact isCountablyGenerated_seq x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
a : α
⊢ IsCountablyGenerated (pure a)
[PROOFSTEP]
rw [← principal_singleton]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Type u_4
ι' : Sort u_5
a : α
⊢ IsCountablyGenerated (𝓟 {a})
[PROOFSTEP]
exact isCountablyGenerated_principal _
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f i)
⊢ IsCountablyGenerated (⨅ (i : ι), f i)
[PROOFSTEP]
choose s hs using fun i => exists_antitone_basis (f i)
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f i)
s : ι → ℕ → Set α
hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i)
⊢ IsCountablyGenerated (⨅ (i : ι), f i)
[PROOFSTEP]
rw [← PLift.down_surjective.iInf_comp]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f i)
s : ι → ℕ → Set α
hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i)
⊢ IsCountablyGenerated (⨅ (x : PLift ι), f x.down)
[PROOFSTEP]
refine' HasCountableBasis.isCountablyGenerated ⟨hasBasis_iInf fun n => (hs _).1, _⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f i)
s : ι → ℕ → Set α
hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i)
⊢ Set.Countable {If | Set.Finite If.fst ∧ (↑If.fst → True)}
[PROOFSTEP]
refine' (countable_range <| Sigma.map ((↑) : Finset (PLift ι) → Set (PLift ι)) fun _ => id).mono _
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f i)
s : ι → ℕ → Set α
hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i)
⊢ {If | Set.Finite If.fst ∧ (↑If.fst → True)} ⊆ range (Sigma.map Finset.toSet fun x => id)
[PROOFSTEP]
rintro ⟨I, f⟩ ⟨hI, -⟩
[GOAL]
case mk.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f✝ : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f✝ i)
s : ι → ℕ → Set α
hs : ∀ (i : ι), HasAntitoneBasis (f✝ i) (s i)
I : Set (PLift ι)
f : ↑I → ℕ
hI : Set.Finite { fst := I, snd := f }.fst
⊢ { fst := I, snd := f } ∈ range (Sigma.map Finset.toSet fun x => id)
[PROOFSTEP]
lift I to Finset (PLift ι) using hI
[GOAL]
case mk.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
ι✝ : Type u_4
ι' : Sort u_5
ι : Sort u
α : Type v
inst✝¹ : Countable ι
f✝ : ι → Filter α
inst✝ : ∀ (i : ι), IsCountablyGenerated (f✝ i)
s : ι → ℕ → Set α
hs : ∀ (i : ι), HasAntitoneBasis (f✝ i) (s i)
I : Finset (PLift ι)
f : ↑↑I → ℕ
⊢ { fst := ↑I, snd := f } ∈ range (Sigma.map Finset.toSet fun x => id)
[PROOFSTEP]
exact ⟨⟨I, f⟩, rfl⟩
| {"mathlib_filename": "Mathlib.Order.Filter.Bases", "llama_tokens": 52216} |
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
⊢ IsRegular ⊥
[PROOFSTEP]
rw [IsRegular, compl_bot, compl_top]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
⊢ IsRegular ⊤
[PROOFSTEP]
rw [IsRegular, compl_top, compl_bot]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
ha : IsRegular a
hb : IsRegular b
⊢ IsRegular (a ⊓ b)
[PROOFSTEP]
rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
ha : IsRegular a
hb : IsRegular b
⊢ IsRegular (a ⇨ b)
[PROOFSTEP]
rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
ha : IsRegular a
⊢ Disjoint aᶜ b ↔ b ≤ a
[PROOFSTEP]
rw [← le_compl_iff_disjoint_left, ha.eq]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
hb : IsRegular b
⊢ Disjoint a bᶜ ↔ a ≤ b
[PROOFSTEP]
rw [← le_compl_iff_disjoint_right, hb.eq]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b : α
h : ∀ (a : α), IsRegular (a ⊔ aᶜ)
a : α
⊢ a ⊔ aᶜ = ⊤
[PROOFSTEP]
erw [← (h a), compl_sup, inf_compl_eq_bot, compl_bot]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b c : Regular α
⊢ ↑((a ⊔ b) ⊓ (a ⊔ c)) ≤ ↑(a ⊔ b ⊓ c)
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b c : Regular α
⊢ (↑a ⊔ ↑b)ᶜᶜ ⊓ (↑a ⊔ ↑c)ᶜᶜ ≤ (↑a ⊔ ↑b ⊓ ↑c)ᶜᶜ
[PROOFSTEP]
rw [sup_inf_left, compl_compl_inf_distrib]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a : Regular α
⊢ ↑⊤ ≤ ↑(a ⊔ aᶜ)
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a : Regular α
⊢ ⊤ ≤ (↑a ⊔ (↑a)ᶜ)ᶜᶜ
[PROOFSTEP]
rw [compl_sup, inf_compl_eq_bot, compl_bot]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b : Regular α
⊢ ↑(a ⇨ b) = ↑(b ⊔ aᶜ)
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b : Regular α
⊢ ↑a ⇨ ↑b = (↑b ⊔ (↑a)ᶜ)ᶜᶜ
[PROOFSTEP]
rw [compl_sup, a.prop.eq]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b : Regular α
⊢ ↑a ⇨ ↑b = ((↑b)ᶜ ⊓ ↑a)ᶜ
[PROOFSTEP]
refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b : Regular α
c : α
⊢ c ⊓ ↑a ≤ ↑b ↔ c ≤ ((↑b)ᶜ ⊓ ↑a)ᶜ
[PROOFSTEP]
rw [le_compl_iff_disjoint_right, disjoint_left_comm]
[GOAL]
α : Type u_1
inst✝ : HeytingAlgebra α
a✝ b✝ : α
src✝³ : Lattice (Regular α) := lattice
src✝² : BoundedOrder (Regular α) := boundedOrder
src✝¹ : HImp (Regular α) := himp
src✝ : HasCompl (Regular α) := hasCompl
a b : Regular α
c : α
⊢ c ⊓ ↑a ≤ ↑b ↔ Disjoint (↑b)ᶜ (c ⊓ ↑a)
[PROOFSTEP]
rw [b.prop.disjoint_compl_left_iff]
| {"mathlib_filename": "Mathlib.Order.Heyting.Regular", "llama_tokens": 2056} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
ι : Sort u_3
inst✝ : CompleteLattice β
f : ι → α →o β
⊢ ↑(⨅ (i : ι), f i) = ⨅ (i : ι), ↑(f i)
[PROOFSTEP]
funext x
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
ι : Sort u_3
inst✝ : CompleteLattice β
f : ι → α →o β
x : α
⊢ ↑(⨅ (i : ι), f i) x = iInf (fun i => ↑(f i)) x
[PROOFSTEP]
simp [iInf_apply]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
ι : Sort u_3
inst✝ : CompleteLattice β
f : ι → α →o β
⊢ ↑(⨆ (i : ι), f i) = ⨆ (i : ι), ↑(f i)
[PROOFSTEP]
funext x
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
ι : Sort u_3
inst✝ : CompleteLattice β
f : ι → α →o β
x : α
⊢ ↑(⨆ (i : ι), f i) x = iSup (fun i => ↑(f i)) x
[PROOFSTEP]
simp [iSup_apply]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : CompleteLattice β
src✝² : Lattice (α →o β) := lattice
src✝¹ : OrderTop (α →o β) := orderTop
src✝ : OrderBot (α →o β) := orderBot
s : Set (α →o β)
f : α →o β
hf : f ∈ s
x : α
⊢ toFun f x ≤ ⨆ (_ : f ∈ s), ↑f x
[PROOFSTEP]
apply le_iSup _ hf
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
⊢ (∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂) ↔
∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
[PROOFSTEP]
constructor
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
⊢ (∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂) →
∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
[PROOFSTEP]
intro h
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
⊢ (∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂) →
∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂
[PROOFSTEP]
intro h
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂
⊢ ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
[PROOFSTEP]
exact h 1 0
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
⊢ ∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂
[PROOFSTEP]
intro n₁ n₂ a₁ a₂
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
⊢ (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂
[PROOFSTEP]
have h' : ∀ n a₁ a₂, f^[n] (a₁ ⊔ a₂) ≤ f^[n] a₁ ⊔ a₂ := by
intro n
induction' n with n ih <;> intro a₁ a₂
· rfl
·
calc
f^[n + 1] (a₁ ⊔ a₂) = f^[n] (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _
_ ≤ f^[n] (f a₁ ⊔ a₂) := (f.mono.iterate n (h a₁ a₂))
_ ≤ f^[n] (f a₁) ⊔ a₂ := (ih _ _)
_ = f^[n + 1] a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
⊢ ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
[PROOFSTEP]
intro n
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
n : ℕ
⊢ ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
⊢ ∀ (a₁ a₂ : α), (↑f)^[Nat.zero] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.zero] a₁ ⊔ a₂
[PROOFSTEP]
intro a₁ a₂
[GOAL]
case succ
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
n : ℕ
ih : ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
⊢ ∀ (a₁ a₂ : α), (↑f)^[Nat.succ n] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.succ n] a₁ ⊔ a₂
[PROOFSTEP]
intro a₁ a₂
[GOAL]
case zero
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁✝ a₂✝ a₁ a₂ : α
⊢ (↑f)^[Nat.zero] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.zero] a₁ ⊔ a₂
[PROOFSTEP]
rfl
[GOAL]
case succ
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁✝ a₂✝ : α
n : ℕ
ih : ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
a₁ a₂ : α
⊢ (↑f)^[Nat.succ n] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.succ n] a₁ ⊔ a₂
[PROOFSTEP]
calc
f^[n + 1] (a₁ ⊔ a₂) = f^[n] (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _
_ ≤ f^[n] (f a₁ ⊔ a₂) := (f.mono.iterate n (h a₁ a₂))
_ ≤ f^[n] (f a₁) ⊔ a₂ := (ih _ _)
_ = f^[n + 1] a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁✝ a₂✝ : α
n : ℕ
ih : ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
a₁ a₂ : α
⊢ (↑f)^[n] (↑f a₁) ⊔ a₂ = (↑f)^[n + 1] a₁ ⊔ a₂
[PROOFSTEP]
rw [← Function.iterate_succ_apply]
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
h' : ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
⊢ (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂
[PROOFSTEP]
calc
f^[n₁ + n₂] (a₁ ⊔ a₂) = f^[n₁] (f^[n₂] (a₁ ⊔ a₂)) := Function.iterate_add_apply f n₁ n₂ _
_ = f^[n₁] (f^[n₂] (a₂ ⊔ a₁)) := by rw [sup_comm]
_ ≤ f^[n₁] (f^[n₂] a₂ ⊔ a₁) := (f.mono.iterate n₁ (h' n₂ _ _))
_ = f^[n₁] (a₁ ⊔ f^[n₂] a₂) := by rw [sup_comm]
_ ≤ f^[n₁] a₁ ⊔ f^[n₂] a₂ := h' n₁ a₁ _
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
h' : ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
⊢ (↑f)^[n₁] ((↑f)^[n₂] (a₁ ⊔ a₂)) = (↑f)^[n₁] ((↑f)^[n₂] (a₂ ⊔ a₁))
[PROOFSTEP]
rw [sup_comm]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : Preorder α✝
α : Type u_3
inst✝ : SemilatticeSup α
f : α →o α
h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂
n₁ n₂ : ℕ
a₁ a₂ : α
h' : ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂
⊢ (↑f)^[n₁] ((↑f)^[n₂] a₂ ⊔ a₁) = (↑f)^[n₁] (a₁ ⊔ (↑f)^[n₂] a₂)
[PROOFSTEP]
rw [sup_comm]
| {"mathlib_filename": "Mathlib.Order.Hom.Order", "llama_tokens": 4424} |
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
⊢ ∀ (a : αᵒᵈ), (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) a ≤ a
[PROOFSTEP]
simp only [comp, OrderDual.forall, ofDual_toDual, toDual_le_toDual, SuccOrder.le_succ, implies_true]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a✝ : αᵒᵈ
h : a✝ ≤ (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) a✝
⊢ IsMin a✝
[PROOFSTEP]
apply SuccOrder.max_of_succ_le h
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
⊢ ∀ {a b : αᵒᵈ}, a < b → a ≤ (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) b
[PROOFSTEP]
intro a b h
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : αᵒᵈ
h : a < b
⊢ a ≤ (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) b
[PROOFSTEP]
exact SuccOrder.succ_le_of_lt h
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
⊢ ∀ (a : αᵒᵈ), a ≤ (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a
[PROOFSTEP]
simp only [comp, OrderDual.forall, ofDual_toDual, toDual_le_toDual, PredOrder.pred_le, implies_true]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a✝ : αᵒᵈ
h : (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a✝ ≤ a✝
⊢ IsMax a✝
[PROOFSTEP]
apply PredOrder.min_of_le_pred h
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
⊢ ∀ {a b : αᵒᵈ}, a < b → (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a ≤ b
[PROOFSTEP]
intro a b h
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : αᵒᵈ
h : a < b
⊢ (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a ≤ b
[PROOFSTEP]
exact PredOrder.le_pred_of_lt h
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
succ : α → α
hn : ∀ {a : α}, ¬IsMax a → ∀ (b : α), a < b ↔ succ a ≤ b
hm : ∀ (a : α), IsMax a → succ a = a
a : α
h : ¬IsMax a
⊢ a < succ a
[PROOFSTEP]
simpa using (hn h a).not
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
succ : α → α
hn : ∀ {a : α}, ¬IsMax a → ∀ (b : α), a < b ↔ succ a ≤ b
hm : ∀ (a : α), IsMax a → succ a = a
a : α
h : ¬IsMax a
⊢ ¬succ a ≤ a
[PROOFSTEP]
simpa using (hn h a).not
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
succ : α → α
hn : ∀ {a : α}, ¬IsMax a → ∀ (b : α), a < b ↔ succ a ≤ b
hm : ∀ (a : α), IsMax a → succ a = a
a b : α
hab : a < succ b
h : ¬IsMax b
⊢ a ≤ b
[PROOFSTEP]
simpa [hab] using (hn h a).not
[GOAL]
α✝ : Type u_1
inst✝¹ : LinearOrder α✝
α : Type ?u.4579
inst✝ : LinearOrder α
pred : α → α
hn : ∀ {a : α}, ¬IsMin a → ∀ (b : α), b ≤ pred a ↔ b < a
hm : ∀ (a : α), IsMin a → pred a = a
a : α
h : ¬IsMin a
⊢ pred a < a
[PROOFSTEP]
simpa using (hn h a).not
[GOAL]
α✝ : Type u_1
inst✝¹ : LinearOrder α✝
α : Type ?u.4579
inst✝ : LinearOrder α
pred : α → α
hn : ∀ {a : α}, ¬IsMin a → ∀ (b : α), b ≤ pred a ↔ b < a
hm : ∀ (a : α), IsMin a → pred a = a
a : α
h : ¬IsMin a
⊢ ¬a ≤ pred a
[PROOFSTEP]
simpa using (hn h a).not
[GOAL]
α✝ : Type u_1
inst✝¹ : LinearOrder α✝
α : Type ?u.4579
inst✝ : LinearOrder α
pred : α → α
hn : ∀ {a : α}, ¬IsMin a → ∀ (b : α), b ≤ pred a ↔ b < a
hm : ∀ (a : α), IsMin a → pred a = a
a b : α
hab : pred a < b
h : ¬IsMin a
⊢ a ≤ b
[PROOFSTEP]
simpa [hab] using (hn h b).not
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
ha : ¬IsMax a
hb : ¬IsMax b
⊢ succ a < succ b ↔ a < b
[PROOFSTEP]
rw [lt_succ_iff_of_not_isMax hb, succ_le_iff_of_not_isMax ha]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
ha : ¬IsMax a
hb : ¬IsMax b
⊢ succ a ≤ succ b ↔ a ≤ b
[PROOFSTEP]
rw [succ_le_iff_of_not_isMax ha, lt_succ_iff_of_not_isMax hb]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
h : a ≤ b
⊢ succ a ≤ succ b
[PROOFSTEP]
by_cases hb : IsMax b
[GOAL]
case pos
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
h : a ≤ b
hb : IsMax b
⊢ succ a ≤ succ b
[PROOFSTEP]
by_cases hba : b ≤ a
[GOAL]
case pos
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
h : a ≤ b
hb : IsMax b
hba : b ≤ a
⊢ succ a ≤ succ b
[PROOFSTEP]
exact (hb <| hba.trans <| le_succ _).trans (le_succ _)
[GOAL]
case neg
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
h : a ≤ b
hb : IsMax b
hba : ¬b ≤ a
⊢ succ a ≤ succ b
[PROOFSTEP]
exact succ_le_of_lt ((h.lt_of_not_le hba).trans_le <| le_succ b)
[GOAL]
case neg
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
h : a ≤ b
hb : ¬IsMax b
⊢ succ a ≤ succ b
[PROOFSTEP]
rwa [succ_le_iff_of_not_isMax fun ha => hb <| ha.mono h, lt_succ_iff_of_not_isMax hb]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
k : ℕ
x : α
⊢ x ≤ succ^[k] x
[PROOFSTEP]
conv_lhs => rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
k : ℕ
x : α
| x
[PROOFSTEP]
rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
k : ℕ
x : α
| x
[PROOFSTEP]
rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
k : ℕ
x : α
| x
[PROOFSTEP]
rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
k : ℕ
x : α
⊢ x = id^[k] x
[PROOFSTEP]
simp only [Function.iterate_id, id.def]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
k : ℕ
x : α
⊢ id^[k] x ≤ succ^[k] x
[PROOFSTEP]
exact Monotone.le_iterate_of_le succ_mono le_succ k x
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_lt : n < m
⊢ IsMax (succ^[n] a)
[PROOFSTEP]
refine' max_of_succ_le (le_trans _ h_eq.symm.le)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_lt : n < m
⊢ succ (succ^[n] a) ≤ succ^[m] a
[PROOFSTEP]
have : succ (succ^[n] a) = succ^[n + 1] a := by rw [Function.iterate_succ', comp]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_lt : n < m
⊢ succ (succ^[n] a) = succ^[n + 1] a
[PROOFSTEP]
rw [Function.iterate_succ', comp]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_lt : n < m
this : succ (succ^[n] a) = succ^[n + 1] a
⊢ succ (succ^[n] a) ≤ succ^[m] a
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_lt : n < m
this : succ (succ^[n] a) = succ^[n + 1] a
⊢ succ^[n + 1] a ≤ succ^[m] a
[PROOFSTEP]
have h_le : n + 1 ≤ m := Nat.succ_le_of_lt h_lt
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_lt : n < m
this : succ (succ^[n] a) = succ^[n + 1] a
h_le : n + 1 ≤ m
⊢ succ^[n + 1] a ≤ succ^[m] a
[PROOFSTEP]
exact Monotone.monotone_iterate_of_le_map succ_mono (le_succ a) h_le
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_ne : n ≠ m
⊢ IsMax (succ^[n] a)
[PROOFSTEP]
cases' le_total n m with h h
[GOAL]
case inl
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_ne : n ≠ m
h : n ≤ m
⊢ IsMax (succ^[n] a)
[PROOFSTEP]
exact isMax_iterate_succ_of_eq_of_lt h_eq (lt_of_le_of_ne h h_ne)
[GOAL]
case inr
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_ne : n ≠ m
h : m ≤ n
⊢ IsMax (succ^[n] a)
[PROOFSTEP]
rw [h_eq]
[GOAL]
case inr
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
n m : ℕ
h_eq : succ^[n] a = succ^[m] a
h_ne : n ≠ m
h : m ≤ n
⊢ IsMax (succ^[m] a)
[PROOFSTEP]
exact isMax_iterate_succ_of_eq_of_lt h_eq.symm (lt_of_le_of_ne h h_ne.symm)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
hb : ¬IsMax b
⊢ Ico a (succ b) = Icc a b
[PROOFSTEP]
rw [← Ici_inter_Iio, Iio_succ_of_not_isMax hb, Ici_inter_Iic]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
hb : ¬IsMax b
⊢ Ioo a (succ b) = Ioc a b
[PROOFSTEP]
rw [← Ioi_inter_Iio, Iio_succ_of_not_isMax hb, Ioi_inter_Iic]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
ha : ¬IsMax a
⊢ Icc (succ a) b = Ioc a b
[PROOFSTEP]
rw [← Ici_inter_Iic, Ici_succ_of_not_isMax ha, Ioi_inter_Iic]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : SuccOrder α
a b : α
ha : ¬IsMax a
⊢ Ico (succ a) b = Ioo a b
[PROOFSTEP]
rw [← Ici_inter_Iio, Ici_succ_of_not_isMax ha, Ioi_inter_Iio]
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
a b : α
inst✝ : NoMaxOrder α
⊢ succ a ≤ succ b ↔ a ≤ b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
a b : α
inst✝ : NoMaxOrder α
⊢ succ a < succ b ↔ a < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
ha : ¬IsMax a
hb : ¬IsMax b
⊢ succ a = succ b ↔ a = b
[PROOFSTEP]
rw [eq_iff_le_not_lt, eq_iff_le_not_lt, succ_le_succ_iff_of_not_isMax ha hb, succ_lt_succ_iff_of_not_isMax ha hb]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
⊢ a ≤ b ∧ b ≤ succ a ↔ b = a ∨ b = succ a
[PROOFSTEP]
refine' ⟨fun h => or_iff_not_imp_left.2 fun hba : b ≠ a => h.2.antisymm (succ_le_of_lt <| h.1.lt_of_ne <| hba.symm), _⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
⊢ b = a ∨ b = succ a → a ≤ b ∧ b ≤ succ a
[PROOFSTEP]
rintro (rfl | rfl)
[GOAL]
case inl
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
b : α
⊢ b ≤ b ∧ b ≤ succ b
[PROOFSTEP]
exact ⟨le_rfl, le_succ b⟩
[GOAL]
case inr
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a : α
⊢ a ≤ succ a ∧ succ a ≤ succ a
[PROOFSTEP]
exact ⟨le_succ a, le_rfl⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
h : a ⩿ b
⊢ b ≤ succ a
[PROOFSTEP]
obtain h | rfl := h.covby_or_eq
[GOAL]
case inl
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
h✝ : a ⩿ b
h : a ⋖ b
⊢ b ≤ succ a
[PROOFSTEP]
exact (Covby.succ_eq h).ge
[GOAL]
case inr
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a : α
h : a ⩿ a
⊢ a ≤ succ a
[PROOFSTEP]
exact le_succ _
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b
[PROOFSTEP]
by_cases hb : IsMax b
[GOAL]
case pos
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
hb : IsMax b
⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b
[PROOFSTEP]
rw [hb.succ_eq, or_iff_right_of_imp le_of_eq]
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
hb : ¬IsMax b
⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b
[PROOFSTEP]
rw [← lt_succ_iff_of_not_isMax hb, le_iff_eq_or_lt]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
h : a ≤ succ b
⊢ Icc a (succ b) = insert (succ b) (Icc a b)
[PROOFSTEP]
simp_rw [← Ici_inter_Iic, Iic_succ, inter_insert_of_mem (mem_Ici.2 h)]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
h : a < succ b
⊢ Ioc a (succ b) = insert (succ b) (Ioc a b)
[PROOFSTEP]
simp_rw [← Ioi_inter_Iic, Iic_succ, inter_insert_of_mem (mem_Ioi.2 h)]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
h₁ : a ≤ b
h₂ : ¬IsMax b
⊢ Ico a (succ b) = insert b (Ico a b)
[PROOFSTEP]
simp_rw [← Iio_inter_Ici, Iio_succ_eq_insert_of_not_isMax h₂, insert_inter_of_mem (mem_Ici.2 h₁)]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : SuccOrder α
a b : α
h₁ : a < b
h₂ : ¬IsMax b
⊢ Ioo a (succ b) = insert b (Ioo a b)
[PROOFSTEP]
simp_rw [← Iio_inter_Ioi, Iio_succ_eq_insert_of_not_isMax h₂, insert_inter_of_mem (mem_Ioi.2 h₁)]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b : α
inst✝ : NoMaxOrder α
⊢ succ a = b → a ⋖ b
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a : α
inst✝ : NoMaxOrder α
⊢ a ⋖ succ a
[PROOFSTEP]
exact covby_succ _
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b : α
inst✝ : OrderTop α
⊢ succ ⊤ = ⊤
[PROOFSTEP]
rw [succ_eq_iff_isMax, isMax_iff_eq_top]
[GOAL]
α : Type u_1
inst✝³ : PartialOrder α
inst✝² : SuccOrder α
a b : α
inst✝¹ : OrderBot α
inst✝ : NoMaxOrder α
⊢ a < succ ⊥ ↔ a = ⊥
[PROOFSTEP]
rw [lt_succ_iff, le_bot_iff]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
a b : α
inst✝ : OrderBot α
⊢ a ≤ succ ⊥ ↔ a = ⊥ ∨ a = succ ⊥
[PROOFSTEP]
rw [le_succ_iff_eq_or_le, le_bot_iff, or_comm]
[GOAL]
α : Type u_1
inst✝ : PartialOrder α
⊢ ∀ (a b : SuccOrder α), a = b
[PROOFSTEP]
intro h₀ h₁
[GOAL]
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : SuccOrder α
⊢ h₀ = h₁
[PROOFSTEP]
ext a
[GOAL]
case succ.h
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : SuccOrder α
a : α
⊢ SuccOrder.succ a = SuccOrder.succ a
[PROOFSTEP]
by_cases ha : IsMax a
[GOAL]
case pos
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : SuccOrder α
a : α
ha : IsMax a
⊢ SuccOrder.succ a = SuccOrder.succ a
[PROOFSTEP]
exact (@IsMax.succ_eq _ _ h₀ _ ha).trans ha.succ_eq.symm
[GOAL]
case neg
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : SuccOrder α
a : α
ha : ¬IsMax a
⊢ SuccOrder.succ a = SuccOrder.succ a
[PROOFSTEP]
exact @Covby.succ_eq _ _ h₀ _ _ (covby_succ_of_not_isMax ha)
[GOAL]
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : SuccOrder α
a : α
⊢ succ a = ⨅ (b : α) (_ : a < b), b
[PROOFSTEP]
refine' le_antisymm (le_iInf fun b => le_iInf succ_le_of_lt) _
[GOAL]
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : SuccOrder α
a : α
⊢ ⨅ (b : α) (_ : a < b), b ≤ succ a
[PROOFSTEP]
obtain rfl | ha := eq_or_ne a ⊤
[GOAL]
case inl
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : SuccOrder α
⊢ ⨅ (b : α) (_ : ⊤ < b), b ≤ succ ⊤
[PROOFSTEP]
rw [succ_top]
[GOAL]
case inl
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : SuccOrder α
⊢ ⨅ (b : α) (_ : ⊤ < b), b ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case inr
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : SuccOrder α
a : α
ha : a ≠ ⊤
⊢ ⨅ (b : α) (_ : a < b), b ≤ succ a
[PROOFSTEP]
exact iInf₂_le _ (lt_succ_iff_ne_top.2 ha)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
k : ℕ
x : α
⊢ pred^[k] x ≤ x
[PROOFSTEP]
conv_rhs => rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
k : ℕ
x : α
| x
[PROOFSTEP]
rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
k : ℕ
x : α
| x
[PROOFSTEP]
rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
k : ℕ
x : α
| x
[PROOFSTEP]
rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
k : ℕ
x : α
⊢ x = id^[k] x
[PROOFSTEP]
simp only [Function.iterate_id, id.def]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
k : ℕ
x : α
⊢ pred^[k] x ≤ id^[k] x
[PROOFSTEP]
exact Monotone.iterate_le_of_le pred_mono pred_le k x
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin a
⊢ Ioc (pred a) b = Icc a b
[PROOFSTEP]
rw [← Ioi_inter_Iic, Ioi_pred_of_not_isMin ha, Ici_inter_Iic]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin a
⊢ Ioo (pred a) b = Ico a b
[PROOFSTEP]
rw [← Ioi_inter_Iio, Ioi_pred_of_not_isMin ha, Ici_inter_Iio]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin b
⊢ Icc a (pred b) = Ico a b
[PROOFSTEP]
rw [← Ici_inter_Iic, Iic_pred_of_not_isMin ha, Ici_inter_Iio]
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin b
⊢ Ioc a (pred b) = Ioo a b
[PROOFSTEP]
rw [← Ioi_inter_Iic, Iic_pred_of_not_isMin ha, Ioi_inter_Iio]
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : PredOrder α
a b : α
inst✝ : NoMinOrder α
⊢ pred a ≤ pred b ↔ a ≤ b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : PredOrder α
a b : α
inst✝ : NoMinOrder α
⊢ pred a < pred b ↔ a < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a✝ b✝ a b : α
⊢ pred a ≤ b ∧ b ≤ a ↔ b = a ∨ b = pred a
[PROOFSTEP]
refine' ⟨fun h => or_iff_not_imp_left.2 fun hba : b ≠ a => (le_pred_of_lt <| h.2.lt_of_ne hba).antisymm h.1, _⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a✝ b✝ a b : α
⊢ b = a ∨ b = pred a → pred a ≤ b ∧ b ≤ a
[PROOFSTEP]
rintro (rfl | rfl)
[GOAL]
case inl
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b✝ b : α
⊢ pred b ≤ b ∧ b ≤ b
[PROOFSTEP]
exact ⟨pred_le b, le_rfl⟩
[GOAL]
case inr
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a✝ b a : α
⊢ pred a ≤ pred a ∧ pred a ≤ a
[PROOFSTEP]
exact ⟨le_rfl, pred_le a⟩
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
h : a ⩿ b
⊢ pred b ≤ a
[PROOFSTEP]
obtain h | rfl := h.covby_or_eq
[GOAL]
case inl
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
h✝ : a ⩿ b
h : a ⋖ b
⊢ pred b ≤ a
[PROOFSTEP]
exact (Covby.pred_eq h).le
[GOAL]
case inr
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a : α
h : a ⩿ a
⊢ pred a ≤ a
[PROOFSTEP]
exact pred_le _
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
⊢ pred a ≤ b ↔ b = pred a ∨ a ≤ b
[PROOFSTEP]
by_cases ha : IsMin a
[GOAL]
case pos
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
ha : IsMin a
⊢ pred a ≤ b ↔ b = pred a ∨ a ≤ b
[PROOFSTEP]
rw [ha.pred_eq, or_iff_right_of_imp ge_of_eq]
[GOAL]
case neg
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin a
⊢ pred a ≤ b ↔ b = pred a ∨ a ≤ b
[PROOFSTEP]
rw [← pred_lt_iff_of_not_isMin ha, le_iff_eq_or_lt, eq_comm]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin a
⊢ Ioi (pred a) = insert a (Ioi a)
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin a
x : α
⊢ x ∈ Ioi (pred a) ↔ x ∈ insert a (Ioi a)
[PROOFSTEP]
simp only [insert, mem_setOf, @eq_comm _ x a, mem_Ioi, Set.insert]
[GOAL]
case h
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
ha : ¬IsMin a
x : α
⊢ pred a < x ↔ a = x ∨ a < x
[PROOFSTEP]
exact pred_lt_iff_eq_or_lt_of_not_isMin ha
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
h : pred a ≤ b
⊢ Icc (pred a) b = insert (pred a) (Icc a b)
[PROOFSTEP]
simp_rw [← Ici_inter_Iic, Ici_pred, insert_inter_of_mem (mem_Iic.2 h)]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : PredOrder α
a b : α
h : pred a < b
⊢ Ico (pred a) b = insert (pred a) (Ico a b)
[PROOFSTEP]
simp_rw [← Ici_inter_Iio, Ici_pred, insert_inter_of_mem (mem_Iio.2 h)]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : PredOrder α
a b : α
inst✝ : NoMinOrder α
⊢ pred a = pred b ↔ a = b
[PROOFSTEP]
simp_rw [eq_iff_le_not_lt, pred_le_pred_iff, pred_lt_pred_iff]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : PredOrder α
a b : α
inst✝ : NoMinOrder α
⊢ pred b = a → a ⋖ b
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : PredOrder α
b : α
inst✝ : NoMinOrder α
⊢ pred b ⋖ b
[PROOFSTEP]
exact pred_covby _
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : PredOrder α
a b : α
inst✝ : NoMinOrder α
h : a ≤ b
⊢ Ioc (pred a) b = insert a (Ioc a b)
[PROOFSTEP]
simp_rw [← Ioi_inter_Iic, Ioi_pred_eq_insert, insert_inter_of_mem (mem_Iic.2 h)]
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : PredOrder α
a b : α
inst✝ : NoMinOrder α
h : a < b
⊢ Ioo (pred a) b = insert a (Ioo a b)
[PROOFSTEP]
simp_rw [← Ioi_inter_Iio, Ioi_pred_eq_insert, insert_inter_of_mem (mem_Iio.2 h)]
[GOAL]
α : Type u_1
inst✝ : PartialOrder α
⊢ ∀ (a b : PredOrder α), a = b
[PROOFSTEP]
intro h₀ h₁
[GOAL]
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : PredOrder α
⊢ h₀ = h₁
[PROOFSTEP]
ext a
[GOAL]
case pred.h
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : PredOrder α
a : α
⊢ PredOrder.pred a = PredOrder.pred a
[PROOFSTEP]
by_cases ha : IsMin a
[GOAL]
case pos
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : PredOrder α
a : α
ha : IsMin a
⊢ PredOrder.pred a = PredOrder.pred a
[PROOFSTEP]
exact (@IsMin.pred_eq _ _ h₀ _ ha).trans ha.pred_eq.symm
[GOAL]
case neg
α : Type u_1
inst✝ : PartialOrder α
h₀ h₁ : PredOrder α
a : α
ha : ¬IsMin a
⊢ PredOrder.pred a = PredOrder.pred a
[PROOFSTEP]
exact @Covby.pred_eq _ _ h₀ _ _ (pred_covby_of_not_isMin ha)
[GOAL]
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : PredOrder α
a : α
⊢ pred a = ⨆ (b : α) (_ : b < a), b
[PROOFSTEP]
refine' le_antisymm _ (iSup_le fun b => iSup_le le_pred_of_lt)
[GOAL]
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : PredOrder α
a : α
⊢ pred a ≤ ⨆ (b : α) (_ : b < a), b
[PROOFSTEP]
obtain rfl | ha := eq_or_ne a ⊥
[GOAL]
case inl
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : PredOrder α
⊢ pred ⊥ ≤ ⨆ (b : α) (_ : b < ⊥), b
[PROOFSTEP]
rw [pred_bot]
[GOAL]
case inl
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : PredOrder α
⊢ ⊥ ≤ ⨆ (b : α) (_ : b < ⊥), b
[PROOFSTEP]
exact bot_le
[GOAL]
case inr
α : Type u_1
inst✝¹ : CompleteLattice α
inst✝ : PredOrder α
a : α
ha : a ≠ ⊥
⊢ pred a ≤ ⨆ (b : α) (_ : b < a), b
[PROOFSTEP]
exact @le_iSup₂ _ _ (fun b => b < a) _ (fun a _ => a) (pred a) (pred_lt_iff_ne_bot.2 ha)
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n : ℕ
hin : ¬IsMax (succ^[n - 1] i)
⊢ pred^[n] (succ^[n] i) = i
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n : ℕ
hin✝ : ¬IsMax (succ^[n - 1] i)
hin : ¬IsMax (succ^[Nat.zero - 1] i)
⊢ pred^[Nat.zero] (succ^[Nat.zero] i) = i
[PROOFSTEP]
simp only [Nat.zero_eq, Function.iterate_zero, id.def]
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[Nat.succ n - 1] i)
⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
[PROOFSTEP]
rw [Nat.succ_sub_succ_eq_sub, Nat.sub_zero] at hin
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[n] i)
⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
[PROOFSTEP]
have h_not_max : ¬IsMax (succ^[n - 1] i) := by
cases' n with n
· simpa using hin
rw [Nat.succ_sub_succ_eq_sub, Nat.sub_zero] at hn ⊢
have h_sub_le : succ^[n] i ≤ succ^[n.succ] i :=
by
rw [Function.iterate_succ']
exact le_succ _
refine' fun h_max => hin fun j hj => _
have hj_le : j ≤ succ^[n] i := h_max (h_sub_le.trans hj)
exact hj_le.trans h_sub_le
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[n] i)
⊢ ¬IsMax (succ^[n - 1] i)
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n : ℕ
hin✝ : ¬IsMax (succ^[n - 1] i)
hn : ¬IsMax (succ^[Nat.zero - 1] i) → pred^[Nat.zero] (succ^[Nat.zero] i) = i
hin : ¬IsMax (succ^[Nat.zero] i)
⊢ ¬IsMax (succ^[Nat.zero - 1] i)
[PROOFSTEP]
simpa using hin
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[Nat.succ n - 1] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
⊢ ¬IsMax (succ^[Nat.succ n - 1] i)
[PROOFSTEP]
rw [Nat.succ_sub_succ_eq_sub, Nat.sub_zero] at hn ⊢
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
⊢ ¬IsMax (succ^[n] i)
[PROOFSTEP]
have h_sub_le : succ^[n] i ≤ succ^[n.succ] i :=
by
rw [Function.iterate_succ']
exact le_succ _
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
⊢ succ^[n] i ≤ succ^[Nat.succ n] i
[PROOFSTEP]
rw [Function.iterate_succ']
[GOAL]
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
⊢ succ^[n] i ≤ (succ ∘ succ^[n]) i
[PROOFSTEP]
exact le_succ _
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
h_sub_le : succ^[n] i ≤ succ^[Nat.succ n] i
⊢ ¬IsMax (succ^[n] i)
[PROOFSTEP]
refine' fun h_max => hin fun j hj => _
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
h_sub_le : succ^[n] i ≤ succ^[Nat.succ n] i
h_max : IsMax (succ^[n] i)
j : α
hj : succ^[Nat.succ n] i ≤ j
⊢ j ≤ succ^[Nat.succ n] i
[PROOFSTEP]
have hj_le : j ≤ succ^[n] i := h_max (h_sub_le.trans hj)
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
hin : ¬IsMax (succ^[Nat.succ n] i)
h_sub_le : succ^[n] i ≤ succ^[Nat.succ n] i
h_max : IsMax (succ^[n] i)
j : α
hj : succ^[Nat.succ n] i ≤ j
hj_le : j ≤ succ^[n] i
⊢ j ≤ succ^[Nat.succ n] i
[PROOFSTEP]
exact hj_le.trans h_sub_le
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[n] i)
h_not_max : ¬IsMax (succ^[n - 1] i)
⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
[PROOFSTEP]
rw [Function.iterate_succ, Function.iterate_succ']
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[n] i)
h_not_max : ¬IsMax (succ^[n - 1] i)
⊢ (pred^[n] ∘ pred) ((succ ∘ succ^[n]) i) = i
[PROOFSTEP]
simp only [Function.comp_apply]
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[n] i)
h_not_max : ¬IsMax (succ^[n - 1] i)
⊢ pred^[n] (pred (succ (succ^[n] i))) = i
[PROOFSTEP]
rw [pred_succ_of_not_isMax hin]
[GOAL]
case succ
α : Type u_1
inst✝² : PartialOrder α
inst✝¹ : SuccOrder α
inst✝ : PredOrder α
a b i : α
n✝ : ℕ
hin✝ : ¬IsMax (succ^[n✝ - 1] i)
n : ℕ
hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i
hin : ¬IsMax (succ^[n] i)
h_not_max : ¬IsMax (succ^[n - 1] i)
⊢ pred^[n] (succ^[n] i) = i
[PROOFSTEP]
exact hn h_not_max
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : WithTop α
⊢ a ≤
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
a
[PROOFSTEP]
cases' a with a a
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
⊢ none ≤
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
none
[PROOFSTEP]
exact le_top
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : α
⊢ Option.some a ≤
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
(Option.some a)
[PROOFSTEP]
change _ ≤ ite _ _ _
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : α
⊢ Option.some a ≤ if a = ⊤ then ⊤ else ↑(succ a)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : α
h✝ : a = ⊤
⊢ Option.some a ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : α
h✝ : ¬a = ⊤
⊢ Option.some a ≤ ↑(succ a)
[PROOFSTEP]
exact some_le_some.2 (le_succ a)
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : WithTop α
ha :
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
a ≤
a
⊢ IsMax a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
ha :
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
none ≤
none
⊢ IsMax none
[PROOFSTEP]
exact isMax_top
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
ha :
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
(Option.some val✝) ≤
Option.some val✝
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
dsimp only at ha
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
ha : (if val✝ = ⊤ then ⊤ else ↑(succ val✝)) ≤ Option.some val✝
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
split_ifs at ha with ha'
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
ha' : val✝ = ⊤
ha : ⊤ ≤ Option.some val✝
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
exact (not_top_le_coe _ ha).elim
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
ha' : ¬val✝ = ⊤
ha : ↑(succ val✝) ≤ Option.some val✝
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
rw [some_eq_coe, coe_le_coe, succ_le_iff_eq_top] at ha
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
ha' : ¬val✝ = ⊤
ha✝ : succ val✝ ≤ val✝
ha : val✝ = ⊤
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
exact (ha' ha).elim
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a b : WithTop α
h : a < b
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
a ≤
b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : WithTop α
h : a < none
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
a ≤
none
[PROOFSTEP]
exact le_top
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a : WithTop α
val✝ : α
h : a < Option.some val✝
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
a ≤
Option.some val✝
[PROOFSTEP]
cases a
[GOAL]
case some.none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
h : none < Option.some val✝
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
none ≤
Option.some val✝
[PROOFSTEP]
exact (not_top_lt h).elim
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : Option.some val✝ < Option.some val✝¹
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
(Option.some val✝) ≤
Option.some val✝¹
[PROOFSTEP]
rw [some_lt_some] at h
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : val✝ < val✝¹
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
(Option.some val✝) ≤
Option.some val✝¹
[PROOFSTEP]
change ite _ _ _ ≤ _
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : val✝ < val✝¹
⊢ (if val✝ = ⊤ then ⊤ else ↑(succ val✝)) ≤ Option.some val✝¹
[PROOFSTEP]
split_ifs with ha
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : val✝ < val✝¹
ha : val✝ = ⊤
⊢ ⊤ ≤ Option.some val✝¹
[PROOFSTEP]
rw [ha] at h
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : ⊤ < val✝¹
ha : val✝ = ⊤
⊢ ⊤ ≤ Option.some val✝¹
[PROOFSTEP]
exact (not_top_lt h).elim
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : val✝ < val✝¹
ha : ¬val✝ = ⊤
⊢ ↑(succ val✝) ≤ Option.some val✝¹
[PROOFSTEP]
exact some_le_some.2 (succ_le_of_lt h)
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
a b : WithTop α
h :
a <
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
b
⊢ a ≤ b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
b : WithTop α
h :
none <
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
b
⊢ none ≤ b
[PROOFSTEP]
exact (not_top_lt h).elim
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
b : WithTop α
val✝ : α
h :
Option.some val✝ <
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
b
⊢ Option.some val✝ ≤ b
[PROOFSTEP]
cases b
[GOAL]
case some.none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝ : α
h :
Option.some val✝ <
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
none
⊢ Option.some val✝ ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h :
Option.some val✝¹ <
(fun a =>
match a with
| none => ⊤
| Option.some a => if a = ⊤ then ⊤ else ↑(succ a))
(Option.some val✝)
⊢ Option.some val✝¹ ≤ Option.some val✝
[PROOFSTEP]
dsimp only at h
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : Option.some val✝¹ < if val✝ = ⊤ then ⊤ else ↑(succ val✝)
⊢ Option.some val✝¹ ≤ Option.some val✝
[PROOFSTEP]
rw [some_le_some]
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : Option.some val✝¹ < if val✝ = ⊤ then ⊤ else ↑(succ val✝)
⊢ val✝¹ ≤ val✝
[PROOFSTEP]
split_ifs at h with hb
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
hb : val✝ = ⊤
h : Option.some val✝¹ < ⊤
⊢ val✝¹ ≤ val✝
[PROOFSTEP]
rw [hb]
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
hb : val✝ = ⊤
h : Option.some val✝¹ < ⊤
⊢ val✝¹ ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : SuccOrder α
val✝¹ val✝ : α
hb : ¬val✝ = ⊤
h : Option.some val✝¹ < ↑(succ val✝)
⊢ val✝¹ ≤ val✝
[PROOFSTEP]
exact le_of_lt_succ (some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a : WithTop α
ha :
a ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
a
⊢ IsMin a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
ha :
none ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
none
⊢ IsMin none
[PROOFSTEP]
exact ((coe_lt_top (⊤ : α)).not_le ha).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
val✝ : α
ha :
Option.some val✝ ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
(Option.some val✝)
⊢ IsMin (Option.some val✝)
[PROOFSTEP]
exact (min_of_le_pred <| some_le_some.1 ha).withTop
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a b : WithTop α
h : a < b
⊢ a ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
b : WithTop α
h : none < b
⊢ none ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
b
[PROOFSTEP]
exact (le_top.not_lt h).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
b : WithTop α
val✝ : α
h : Option.some val✝ < b
⊢ Option.some val✝ ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
b
[PROOFSTEP]
cases b
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
val✝ : α
h : Option.some val✝ < none
⊢ Option.some val✝ ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
none
[PROOFSTEP]
exact some_le_some.2 le_top
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : Option.some val✝¹ < Option.some val✝
⊢ Option.some val✝¹ ≤
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
(Option.some val✝)
[PROOFSTEP]
exact some_le_some.2 (le_pred_of_lt <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a b : WithTop α
h :
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
a <
b
⊢ a ≤ b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a : WithTop α
h :
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
a <
none
⊢ a ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a : WithTop α
val✝ : α
h :
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
a <
Option.some val✝
⊢ a ≤ Option.some val✝
[PROOFSTEP]
cases a
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
val✝ : α
h :
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
none <
Option.some val✝
⊢ none ≤ Option.some val✝
[PROOFSTEP]
exact (not_top_lt <| some_lt_some.1 h).elim
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
val✝¹ val✝ : α
h :
(fun a =>
match a with
| none => ↑⊤
| Option.some a => ↑(pred a))
(Option.some val✝) <
Option.some val✝¹
⊢ Option.some val✝ ≤ Option.some val✝¹
[PROOFSTEP]
exact some_le_some.2 (le_of_pred_lt <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a : WithTop α
ha : a ≠ ⊤
⊢ pred a ≠ ⊤
[PROOFSTEP]
induction a using WithTop.recTopCoe
[GOAL]
case top
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
ha : ⊤ ≠ ⊤
⊢ pred ⊤ ≠ ⊤
[PROOFSTEP]
simp
[GOAL]
case coe
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderTop α
inst✝ : PredOrder α
a✝ : α
ha : ↑a✝ ≠ ⊤
⊢ pred ↑a✝ ≠ ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
a : WithTop α
⊢ a ≤
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
a
[PROOFSTEP]
cases' a with a a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
⊢ none ≤
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
none
[PROOFSTEP]
exact le_top
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
a : α
⊢ Option.some a ≤
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
(Option.some a)
[PROOFSTEP]
exact some_le_some.2 (le_succ a)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
a : WithTop α
ha :
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
a ≤
a
⊢ IsMax a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
ha :
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
none ≤
none
⊢ IsMax none
[PROOFSTEP]
exact isMax_top
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
val✝ : α
ha :
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
(Option.some val✝) ≤
Option.some val✝
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
exact (not_isMax _ <| max_of_succ_le <| some_le_some.1 ha).elim
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
a b : WithTop α
h : a < b
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
a ≤
b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
b : WithTop α
h : none < b
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
none ≤
b
[PROOFSTEP]
exact (not_top_lt h).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
b : WithTop α
val✝ : α
h : Option.some val✝ < b
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
(Option.some val✝) ≤
b
[PROOFSTEP]
cases b
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
val✝ : α
h : Option.some val✝ < none
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
(Option.some val✝) ≤
none
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : Option.some val✝¹ < Option.some val✝
⊢ (fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
(Option.some val✝¹) ≤
Option.some val✝
[PROOFSTEP]
exact some_le_some.2 (succ_le_of_lt <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
a b : WithTop α
h :
a <
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
b
⊢ a ≤ b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
b : WithTop α
h :
none <
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
b
⊢ none ≤ b
[PROOFSTEP]
exact (not_top_lt h).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
b : WithTop α
val✝ : α
h :
Option.some val✝ <
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
b
⊢ Option.some val✝ ≤ b
[PROOFSTEP]
cases b
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
val✝ : α
h :
Option.some val✝ <
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
none
⊢ Option.some val✝ ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMaxOrder α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h :
Option.some val✝¹ <
(fun a =>
match a with
| none => ⊤
| Option.some a => ↑(succ a))
(Option.some val✝)
⊢ Option.some val✝¹ ≤ Option.some val✝
[PROOFSTEP]
exact some_le_some.2 (le_of_lt_succ <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
hα : Nonempty α
⊢ PredOrder (WithTop α) → False
[PROOFSTEP]
intro
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
hα : Nonempty α
a✝ : PredOrder (WithTop α)
⊢ False
[PROOFSTEP]
cases' h : pred (⊤ : WithTop α) with a ha
[GOAL]
case none
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
hα : Nonempty α
a✝ : PredOrder (WithTop α)
h : pred ⊤ = none
⊢ False
[PROOFSTEP]
exact hα.elim fun a => (min_of_le_pred h.ge).not_lt <| coe_lt_top a
[GOAL]
case some
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
hα : Nonempty α
a✝ : PredOrder (WithTop α)
a : α
h : pred ⊤ = Option.some a
⊢ False
[PROOFSTEP]
obtain ⟨c, hc⟩ := exists_gt a
[GOAL]
case some.intro
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
hα : Nonempty α
a✝ : PredOrder (WithTop α)
a : α
h : pred ⊤ = Option.some a
c : α
hc : a < c
⊢ False
[PROOFSTEP]
rw [← some_lt_some, ← h] at hc
[GOAL]
case some.intro
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMaxOrder α
hα : Nonempty α
a✝ : PredOrder (WithTop α)
a : α
h : pred ⊤ = Option.some a
c : α
hc : pred ⊤ < Option.some c
⊢ False
[PROOFSTEP]
exact (le_of_pred_lt hc).not_lt (some_lt_none _)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a : WithBot α
ha :
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
a ≤
a
⊢ IsMax a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
ha :
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
none ≤
none
⊢ IsMax none
[PROOFSTEP]
exact ((none_lt_some (⊥ : α)).not_le ha).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
val✝ : α
ha :
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
(Option.some val✝) ≤
Option.some val✝
⊢ IsMax (Option.some val✝)
[PROOFSTEP]
exact (max_of_succ_le <| some_le_some.1 ha).withBot
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a b : WithBot α
h : a < b
⊢ (fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
a ≤
b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a : WithBot α
h : a < none
⊢ (fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
a ≤
none
[PROOFSTEP]
exact (not_lt_bot h).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a : WithBot α
val✝ : α
h : a < Option.some val✝
⊢ (fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
a ≤
Option.some val✝
[PROOFSTEP]
cases a
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
val✝ : α
h : none < Option.some val✝
⊢ (fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
none ≤
Option.some val✝
[PROOFSTEP]
exact some_le_some.2 bot_le
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h : Option.some val✝ < Option.some val✝¹
⊢ (fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
(Option.some val✝) ≤
Option.some val✝¹
[PROOFSTEP]
exact some_le_some.2 (succ_le_of_lt <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a b : WithBot α
h :
a <
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
b
⊢ a ≤ b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
b : WithBot α
h :
none <
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
b
⊢ none ≤ b
[PROOFSTEP]
exact bot_le
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
b : WithBot α
val✝ : α
h :
Option.some val✝ <
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
b
⊢ Option.some val✝ ≤ b
[PROOFSTEP]
cases b
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
val✝ : α
h :
Option.some val✝ <
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
none
⊢ Option.some val✝ ≤ none
[PROOFSTEP]
exact (not_lt_bot <| some_lt_some.1 h).elim
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
val✝¹ val✝ : α
h :
Option.some val✝¹ <
(fun a =>
match a with
| none => ↑⊥
| Option.some a => ↑(succ a))
(Option.some val✝)
⊢ Option.some val✝¹ ≤ Option.some val✝
[PROOFSTEP]
exact some_le_some.2 (le_of_lt_succ <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a : WithBot α
ha : a ≠ ⊥
⊢ succ a ≠ ⊥
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case bot
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
ha : ⊥ ≠ ⊥
⊢ succ ⊥ ≠ ⊥
[PROOFSTEP]
simp
[GOAL]
case coe
α : Type u_1
inst✝² : Preorder α
inst✝¹ : OrderBot α
inst✝ : SuccOrder α
a✝ : α
ha : ↑a✝ ≠ ⊥
⊢ succ ↑a✝ ≠ ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : WithBot α
⊢ (fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
a ≤
a
[PROOFSTEP]
cases' a with a a
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
⊢ (fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
none ≤
none
[PROOFSTEP]
exact bot_le
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
⊢ (fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
(Option.some a) ≤
Option.some a
[PROOFSTEP]
change ite _ _ _ ≤ _
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
⊢ (if a = ⊥ then ⊥ else ↑(pred a)) ≤ Option.some a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
h✝ : a = ⊥
⊢ ⊥ ≤ Option.some a
[PROOFSTEP]
exact bot_le
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
h✝ : ¬a = ⊥
⊢ ↑(pred a) ≤ Option.some a
[PROOFSTEP]
exact some_le_some.2 (pred_le a)
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : WithBot α
ha :
a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
a
⊢ IsMin a
[PROOFSTEP]
cases' a with a a
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
ha :
none ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
none
⊢ IsMin none
[PROOFSTEP]
exact isMin_bot
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
ha :
Option.some a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
(Option.some a)
⊢ IsMin (Option.some a)
[PROOFSTEP]
dsimp only at ha
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
ha : Option.some a ≤ if a = ⊥ then ⊥ else ↑(pred a)
⊢ IsMin (Option.some a)
[PROOFSTEP]
split_ifs at ha with ha'
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
ha' : a = ⊥
ha : Option.some a ≤ ⊥
⊢ IsMin (Option.some a)
[PROOFSTEP]
exact (not_coe_le_bot _ ha).elim
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
ha' : ¬a = ⊥
ha : Option.some a ≤ ↑(pred a)
⊢ IsMin (Option.some a)
[PROOFSTEP]
rw [some_eq_coe, coe_le_coe, le_pred_iff_eq_bot] at ha
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : α
ha' : ¬a = ⊥
ha✝ : a ≤ pred a
ha : a = ⊥
⊢ IsMin (Option.some a)
[PROOFSTEP]
exact (ha' ha).elim
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a b : WithBot α
h : a < b
⊢ a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
b : WithBot α
h : none < b
⊢ none ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
b
[PROOFSTEP]
exact bot_le
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
b : WithBot α
val✝ : α
h : Option.some val✝ < b
⊢ Option.some val✝ ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
b
[PROOFSTEP]
cases b
[GOAL]
case some.none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝ : α
h : Option.some val✝ < none
⊢ Option.some val✝ ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
none
[PROOFSTEP]
exact (not_lt_bot h).elim
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : Option.some val✝¹ < Option.some val✝
⊢ Option.some val✝¹ ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
(Option.some val✝)
[PROOFSTEP]
rw [some_lt_some] at h
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : val✝¹ < val✝
⊢ Option.some val✝¹ ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
(Option.some val✝)
[PROOFSTEP]
change _ ≤ ite _ _ _
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : val✝¹ < val✝
⊢ Option.some val✝¹ ≤ if val✝ = ⊥ then ⊥ else ↑(pred val✝)
[PROOFSTEP]
split_ifs with hb
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : val✝¹ < val✝
hb : val✝ = ⊥
⊢ Option.some val✝¹ ≤ ⊥
[PROOFSTEP]
rw [hb] at h
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : val✝¹ < ⊥
hb : val✝ = ⊥
⊢ Option.some val✝¹ ≤ ⊥
[PROOFSTEP]
exact (not_lt_bot h).elim
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : val✝¹ < val✝
hb : ¬val✝ = ⊥
⊢ Option.some val✝¹ ≤ ↑(pred val✝)
[PROOFSTEP]
exact some_le_some.2 (le_pred_of_lt h)
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a b : WithBot α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
a <
b
⊢ a ≤ b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : WithBot α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
a <
none
⊢ a ≤ none
[PROOFSTEP]
exact (not_lt_bot h).elim
[GOAL]
case some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
a : WithBot α
val✝ : α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
a <
Option.some val✝
⊢ a ≤ Option.some val✝
[PROOFSTEP]
cases a
[GOAL]
case some.none
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝ : α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
none <
Option.some val✝
⊢ none ≤ Option.some val✝
[PROOFSTEP]
exact bot_le
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => if a = ⊥ then ⊥ else ↑(pred a))
(Option.some val✝) <
Option.some val✝¹
⊢ Option.some val✝ ≤ Option.some val✝¹
[PROOFSTEP]
dsimp only at h
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : (if val✝ = ⊥ then ⊥ else ↑(pred val✝)) < Option.some val✝¹
⊢ Option.some val✝ ≤ Option.some val✝¹
[PROOFSTEP]
rw [some_le_some]
[GOAL]
case some.some
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : (if val✝ = ⊥ then ⊥ else ↑(pred val✝)) < Option.some val✝¹
⊢ val✝ ≤ val✝¹
[PROOFSTEP]
split_ifs at h with ha
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
ha : val✝ = ⊥
h : ⊥ < Option.some val✝¹
⊢ val✝ ≤ val✝¹
[PROOFSTEP]
rw [ha]
[GOAL]
case pos
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
ha : val✝ = ⊥
h : ⊥ < Option.some val✝¹
⊢ ⊥ ≤ val✝¹
[PROOFSTEP]
exact bot_le
[GOAL]
case neg
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : PredOrder α
val✝¹ val✝ : α
ha : ¬val✝ = ⊥
h : ↑(pred val✝) < Option.some val✝¹
⊢ val✝ ≤ val✝¹
[PROOFSTEP]
exact le_of_pred_lt (some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
hα : Nonempty α
⊢ SuccOrder (WithBot α) → False
[PROOFSTEP]
intro
[GOAL]
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
hα : Nonempty α
a✝ : SuccOrder (WithBot α)
⊢ False
[PROOFSTEP]
cases' h : succ (⊥ : WithBot α) with a ha
[GOAL]
case none
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
hα : Nonempty α
a✝ : SuccOrder (WithBot α)
h : succ ⊥ = none
⊢ False
[PROOFSTEP]
exact hα.elim fun a => (max_of_succ_le h.le).not_lt <| bot_lt_coe a
[GOAL]
case some
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
hα : Nonempty α
a✝ : SuccOrder (WithBot α)
a : α
h : succ ⊥ = Option.some a
⊢ False
[PROOFSTEP]
obtain ⟨c, hc⟩ := exists_lt a
[GOAL]
case some.intro
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
hα : Nonempty α
a✝ : SuccOrder (WithBot α)
a : α
h : succ ⊥ = Option.some a
c : α
hc : c < a
⊢ False
[PROOFSTEP]
rw [← some_lt_some, ← h] at hc
[GOAL]
case some.intro
α : Type u_1
inst✝¹ : Preorder α
inst✝ : NoMinOrder α
hα : Nonempty α
a✝ : SuccOrder (WithBot α)
a : α
h : succ ⊥ = Option.some a
c : α
hc : Option.some c < succ ⊥
⊢ False
[PROOFSTEP]
exact (le_of_lt_succ hc).not_lt (none_lt_some _)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : WithBot α
⊢ (fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
a ≤
a
[PROOFSTEP]
cases' a with a a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
⊢ (fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
none ≤
none
[PROOFSTEP]
exact bot_le
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : α
⊢ (fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
(Option.some a) ≤
Option.some a
[PROOFSTEP]
exact some_le_some.2 (pred_le a)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : WithBot α
ha :
a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
a
⊢ IsMin a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
ha :
none ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
none
⊢ IsMin none
[PROOFSTEP]
exact isMin_bot
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
val✝ : α
ha :
Option.some val✝ ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
(Option.some val✝)
⊢ IsMin (Option.some val✝)
[PROOFSTEP]
exact (not_isMin _ <| min_of_le_pred <| some_le_some.1 ha).elim
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a b : WithBot α
h : a < b
⊢ a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : WithBot α
h : a < none
⊢ a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
none
[PROOFSTEP]
exact (not_lt_bot h).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : WithBot α
val✝ : α
h : a < Option.some val✝
⊢ a ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
(Option.some val✝)
[PROOFSTEP]
cases a
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
val✝ : α
h : none < Option.some val✝
⊢ none ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
(Option.some val✝)
[PROOFSTEP]
exact bot_le
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
val✝¹ val✝ : α
h : Option.some val✝ < Option.some val✝¹
⊢ Option.some val✝ ≤
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
(Option.some val✝¹)
[PROOFSTEP]
exact some_le_some.2 (le_pred_of_lt <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a b : WithBot α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
a <
b
⊢ a ≤ b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : WithBot α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
a <
none
⊢ a ≤ none
[PROOFSTEP]
exact (not_lt_bot h).elim
[GOAL]
case some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
a : WithBot α
val✝ : α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
a <
Option.some val✝
⊢ a ≤ Option.some val✝
[PROOFSTEP]
cases a
[GOAL]
case some.none
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
val✝ : α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
none <
Option.some val✝
⊢ none ≤ Option.some val✝
[PROOFSTEP]
exact bot_le
[GOAL]
case some.some
α : Type u_1
inst✝² : Preorder α
inst✝¹ : NoMinOrder α
inst✝ : PredOrder α
val✝¹ val✝ : α
h :
(fun a =>
match a with
| none => ⊥
| Option.some a => ↑(pred a))
(Option.some val✝) <
Option.some val✝¹
⊢ Option.some val✝ ≤ Option.some val✝¹
[PROOFSTEP]
exact some_le_some.2 (le_of_pred_lt <| some_lt_some.1 h)
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a✝ b✝ : α
a b : αᵒᵈ
h : a ≤ b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
convert exists_succ_iterate_of_le h.ofDual
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
⊢ (∃ n, succ^[n] a = b) ↔ a ≤ b
[PROOFSTEP]
refine' ⟨_, exists_succ_iterate_of_le⟩
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
⊢ (∃ n, succ^[n] a = b) → a ≤ b
[PROOFSTEP]
rintro ⟨n, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a : α
n : ℕ
⊢ a ≤ succ^[n] a
[PROOFSTEP]
exact id_le_iterate_of_id_le le_succ n a
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
P : α → Prop
m : α
h0 : P m
h1 : ∀ (n : α), m ≤ n → P n → P (succ n)
n : α
hmn : m ≤ n
⊢ P n
[PROOFSTEP]
obtain ⟨n, rfl⟩ := hmn.exists_succ_iterate
[GOAL]
case intro
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
P : α → Prop
m : α
h0 : P m
h1 : ∀ (n : α), m ≤ n → P n → P (succ n)
n : ℕ
hmn : m ≤ succ^[n] m
⊢ P (succ^[n] m)
[PROOFSTEP]
clear hmn
[GOAL]
case intro
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
P : α → Prop
m : α
h0 : P m
h1 : ∀ (n : α), m ≤ n → P n → P (succ n)
n : ℕ
⊢ P (succ^[n] m)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case intro.zero
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
P : α → Prop
m : α
h0 : P m
h1 : ∀ (n : α), m ≤ n → P n → P (succ n)
⊢ P (succ^[Nat.zero] m)
[PROOFSTEP]
exact h0
[GOAL]
case intro.succ
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
P : α → Prop
m : α
h0 : P m
h1 : ∀ (n : α), m ≤ n → P n → P (succ n)
n : ℕ
ih : P (succ^[n] m)
⊢ P (succ^[Nat.succ n] m)
[PROOFSTEP]
rw [Function.iterate_succ_apply']
[GOAL]
case intro.succ
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a b : α
P : α → Prop
m : α
h0 : P m
h1 : ∀ (n : α), m ≤ n → P n → P (succ n)
n : ℕ
ih : P (succ^[n] m)
⊢ P (succ (succ^[n] m))
[PROOFSTEP]
exact h1 _ (id_le_iterate_of_id_le le_succ n m) ih
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a✝ b✝ : α
p : α → Prop
hsucc : ∀ (a : α), p a ↔ p (succ a)
a b : α
h : a ≤ b
⊢ p a ↔ p b
[PROOFSTEP]
obtain ⟨n, rfl⟩ := h.exists_succ_iterate
[GOAL]
case intro
α : Type u_1
inst✝² : Preorder α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
a✝ b : α
p : α → Prop
hsucc : ∀ (a : α), p a ↔ p (succ a)
a : α
n : ℕ
h : a ≤ succ^[n] a
⊢ p a ↔ p (succ^[n] a)
[PROOFSTEP]
exact Iterate.rec (fun b => p a ↔ p b) (fun c hc => hc.trans (hsucc _)) Iff.rfl n
[GOAL]
α : Type u_1
inst✝² : Preorder α
inst✝¹ : PredOrder α
inst✝ : IsPredArchimedean α
a✝ b✝ : α
a b : αᵒᵈ
h : a ≤ b
⊢ ∃ n, succ^[n] a = b
[PROOFSTEP]
convert exists_pred_iterate_of_le h.ofDual
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b : α
⊢ a ≤ b → ∃ n, pred^[n] b = a
[PROOFSTEP]
refine' WellFounded.fix (C := fun b => a ≤ b → ∃ n, Nat.iterate pred n b = a) h.wf _ b
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b : α
⊢ ∀ (x : α), (∀ (y : α), y < x → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y) → (fun b => a ≤ b → ∃ n, pred^[n] b = a) x
[PROOFSTEP]
intros b ih hab
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y
hab : a ≤ b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
replace hab := eq_or_lt_of_le hab
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y
hab : a = b ∨ a < b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
rcases hab with (rfl | hab)
[GOAL]
case inl
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b : α
ih : ∀ (y : α), y < a → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y
⊢ ∃ n, pred^[n] a = a
[PROOFSTEP]
exact ⟨0, rfl⟩
[GOAL]
case inr
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y
hab : a < b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
cases' le_or_lt b (pred b) with hb hb
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y
hab : a < b
hb : b ≤ pred b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
cases (min_of_le_pred hb).not_lt hab
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y
hab : a < b
hb : pred b < b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
dsimp at ih
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → a ≤ y → ∃ n, pred^[n] y = a
hab : a < b
hb : pred b < b
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
obtain ⟨k, hk⟩ := ih (pred b) hb (le_pred_of_lt hab)
[GOAL]
case inr.inr.intro
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → a ≤ y → ∃ n, pred^[n] y = a
hab : a < b
hb : pred b < b
k : ℕ
hk : pred^[k] (pred b) = a
⊢ ∃ n, pred^[n] b = a
[PROOFSTEP]
refine' ⟨k + 1, _⟩
[GOAL]
case inr.inr.intro
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x < x_1
inst✝ : PredOrder α
a b✝ b : α
ih : ∀ (y : α), y < b → a ≤ y → ∃ n, pred^[n] y = a
hab : a < b
hb : pred b < b
k : ℕ
hk : pred^[k] (pred b) = a
⊢ pred^[k + 1] b = a
[PROOFSTEP]
rw [iterate_add_apply, iterate_one, hk]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrder α
h : IsWellOrder α fun x x_1 => x > x_1
inst✝ : SuccOrder α
⊢ IsPredArchimedean αᵒᵈ
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
⊢ (∀ (i : α), i ≠ ⊥ → P i) ↔ ∀ (i : α), P (succ i)
[PROOFSTEP]
refine' ⟨fun h i ↦ h _ (Order.succ_ne_bot i), fun h i hi ↦ _⟩
[GOAL]
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
i : α
hi : i ≠ ⊥
⊢ P i
[PROOFSTEP]
obtain ⟨j, rfl⟩ := exists_succ_iterate_of_le (bot_le : ⊥ ≤ i)
[GOAL]
case intro
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : Order.succ^[j] ⊥ ≠ ⊥
⊢ P (Order.succ^[j] ⊥)
[PROOFSTEP]
have hj : 0 < j := by apply Nat.pos_of_ne_zero; contrapose! hi; simp [hi]
[GOAL]
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : Order.succ^[j] ⊥ ≠ ⊥
⊢ 0 < j
[PROOFSTEP]
apply Nat.pos_of_ne_zero
[GOAL]
case a
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : Order.succ^[j] ⊥ ≠ ⊥
⊢ j ≠ 0
[PROOFSTEP]
contrapose! hi
[GOAL]
case a
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : j = 0
⊢ Order.succ^[j] ⊥ = ⊥
[PROOFSTEP]
simp [hi]
[GOAL]
case intro
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : Order.succ^[j] ⊥ ≠ ⊥
hj : 0 < j
⊢ P (Order.succ^[j] ⊥)
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos hj]
[GOAL]
case intro
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : Order.succ^[j] ⊥ ≠ ⊥
hj : 0 < j
⊢ P (Order.succ^[Nat.succ (Nat.pred j)] ⊥)
[PROOFSTEP]
simp only [Function.iterate_succ', Function.comp_apply]
[GOAL]
case intro
α : Type u_1
inst✝⁴ : Nontrivial α
inst✝³ : PartialOrder α
inst✝² : OrderBot α
inst✝¹ : SuccOrder α
inst✝ : IsSuccArchimedean α
P : α → Prop
h : ∀ (i : α), P (succ i)
j : ℕ
hi : Order.succ^[j] ⊥ ≠ ⊥
hj : 0 < j
⊢ P (Order.succ (Order.succ^[Nat.pred j] ⊥))
[PROOFSTEP]
apply h
| {"mathlib_filename": "Mathlib.Order.SuccPred.Basic", "llama_tokens": 37436} |
{"mathlib_filename": "Mathlib.Order.Hom.Set", "llama_tokens": 0} |
|
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i : ι
⊢ i ≤ succFn i
[PROOFSTEP]
rw [le_isGLB_iff (succFn_spec i), mem_lowerBounds]
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i : ι
⊢ ∀ (x : ι), x ∈ Set.Ioi i → i ≤ x
[PROOFSTEP]
exact fun x hx ↦ le_of_lt hx
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j k : ι
hij_lt : i < j
h : IsGLB (Set.Ioi i) k
⊢ IsGLB (Set.Ioc i j) k
[PROOFSTEP]
simp_rw [IsGLB, IsGreatest, mem_upperBounds, mem_lowerBounds] at h ⊢
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j k : ι
hij_lt : i < j
h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k
⊢ (∀ (x : ι), x ∈ Set.Ioc i j → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1) → x ≤ k
[PROOFSTEP]
refine' ⟨fun x hx ↦ h.1 x hx.1, fun x hx ↦ h.2 x _⟩
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j k : ι
hij_lt : i < j
h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k
x : ι
hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1
⊢ ∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1
[PROOFSTEP]
intro y hy
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j k : ι
hij_lt : i < j
h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k
x : ι
hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1
y : ι
hy : y ∈ Set.Ioi i
⊢ x ≤ y
[PROOFSTEP]
cases' le_or_lt y j with h_le h_lt
[GOAL]
case inl
ι : Type u_1
inst✝ : LinearOrder ι
i j k : ι
hij_lt : i < j
h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k
x : ι
hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1
y : ι
hy : y ∈ Set.Ioi i
h_le : y ≤ j
⊢ x ≤ y
[PROOFSTEP]
exact hx y ⟨hy, h_le⟩
[GOAL]
case inr
ι : Type u_1
inst✝ : LinearOrder ι
i j k : ι
hij_lt : i < j
h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k
x : ι
hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1
y : ι
hy : y ∈ Set.Ioi i
h_lt : j < y
⊢ x ≤ y
[PROOFSTEP]
exact le_trans (hx j ⟨hij_lt, le_rfl⟩) h_lt.le
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
⊢ IsMax i
[PROOFSTEP]
refine' fun j _ ↦ not_lt.mp fun hij_lt ↦ _
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
⊢ False
[PROOFSTEP]
have h_succFn_eq : succFn i = i := le_antisymm hi (le_succFn i)
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
⊢ False
[PROOFSTEP]
have h_glb : IsGLB (Finset.Ioc i j : Set ι) i := by
rw [Finset.coe_Ioc]
have h := succFn_spec i
rw [h_succFn_eq] at h
exact isGLB_Ioc_of_isGLB_Ioi hij_lt h
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
⊢ IsGLB (↑(Finset.Ioc i j)) i
[PROOFSTEP]
rw [Finset.coe_Ioc]
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
⊢ IsGLB (Set.Ioc i j) i
[PROOFSTEP]
have h := succFn_spec i
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h : IsGLB (Set.Ioi i) (succFn i)
⊢ IsGLB (Set.Ioc i j) i
[PROOFSTEP]
rw [h_succFn_eq] at h
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h : IsGLB (Set.Ioi i) i
⊢ IsGLB (Set.Ioc i j) i
[PROOFSTEP]
exact isGLB_Ioc_of_isGLB_Ioi hij_lt h
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h_glb : IsGLB (↑(Finset.Ioc i j)) i
⊢ False
[PROOFSTEP]
have hi_mem : i ∈ Finset.Ioc i j := by
refine' Finset.isGLB_mem _ h_glb _
exact ⟨_, Finset.mem_Ioc.mpr ⟨hij_lt, le_rfl⟩⟩
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h_glb : IsGLB (↑(Finset.Ioc i j)) i
⊢ i ∈ Finset.Ioc i j
[PROOFSTEP]
refine' Finset.isGLB_mem _ h_glb _
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h_glb : IsGLB (↑(Finset.Ioc i j)) i
⊢ Finset.Nonempty (Finset.Ioc i j)
[PROOFSTEP]
exact ⟨_, Finset.mem_Ioc.mpr ⟨hij_lt, le_rfl⟩⟩
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h_glb : IsGLB (↑(Finset.Ioc i j)) i
hi_mem : i ∈ Finset.Ioc i j
⊢ False
[PROOFSTEP]
rw [Finset.mem_Ioc] at hi_mem
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i : ι
hi : succFn i ≤ i
j : ι
x✝ : i ≤ j
hij_lt : i < j
h_succFn_eq : succFn i = i
h_glb : IsGLB (↑(Finset.Ioc i j)) i
hi_mem : i < i ∧ i ≤ j
⊢ False
[PROOFSTEP]
exact lt_irrefl i hi_mem.1
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j : ι
hij : i < j
⊢ succFn i ≤ j
[PROOFSTEP]
have h := succFn_spec i
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j : ι
hij : i < j
h : IsGLB (Set.Ioi i) (succFn i)
⊢ succFn i ≤ j
[PROOFSTEP]
rw [IsGLB, IsGreatest, mem_lowerBounds] at h
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
i j : ι
hij : i < j
h : (∀ (x : ι), x ∈ Set.Ioi i → succFn i ≤ x) ∧ succFn i ∈ upperBounds (lowerBounds (Set.Ioi i))
⊢ succFn i ≤ j
[PROOFSTEP]
exact h.1 j hij
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
j i : ι
hij : j < succFn i
⊢ j ≤ i
[PROOFSTEP]
rw [lt_isGLB_iff (succFn_spec i)] at hij
[GOAL]
ι : Type u_1
inst✝ : LinearOrder ι
j i : ι
hij : ∃ c, c ∈ lowerBounds (Set.Ioi i) ∧ j < c
⊢ j ≤ i
[PROOFSTEP]
obtain ⟨k, hk_lb, hk⟩ := hij
[GOAL]
case intro.intro
ι : Type u_1
inst✝ : LinearOrder ι
j i k : ι
hk_lb : k ∈ lowerBounds (Set.Ioi i)
hk : j < k
⊢ j ≤ i
[PROOFSTEP]
rw [mem_lowerBounds] at hk_lb
[GOAL]
case intro.intro
ι : Type u_1
inst✝ : LinearOrder ι
j i k : ι
hk_lb : ∀ (x : ι), x ∈ Set.Ioi i → k ≤ x
hk : j < k
⊢ j ≤ i
[PROOFSTEP]
exact not_lt.mp fun hi_lt_j ↦ not_le.mpr hk (hk_lb j hi_lt_j)
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
⊢ ∀ {a b : ι}, a ≤ b → ∃ n, succ^[n] a = b
[PROOFSTEP]
intro i j hij
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i ≤ j
⊢ ∃ n, succ^[n] i = j
[PROOFSTEP]
rw [le_iff_lt_or_eq] at hij
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j ∨ i = j
⊢ ∃ n, succ^[n] i = j
[PROOFSTEP]
cases' hij with hij hij
[GOAL]
case inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
⊢ ∃ n, succ^[n] i = j
case inr ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i = j ⊢ ∃ n, succ^[n] i = j
[PROOFSTEP]
swap
[GOAL]
case inr
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i = j
⊢ ∃ n, succ^[n] i = j
[PROOFSTEP]
refine' ⟨0, _⟩
[GOAL]
case inr
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i = j
⊢ succ^[0] i = j
[PROOFSTEP]
simpa only [Function.iterate_zero, id.def] using hij
[GOAL]
case inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
⊢ ∃ n, succ^[n] i = j
[PROOFSTEP]
by_contra h
[GOAL]
case inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ¬∃ n, succ^[n] i = j
⊢ False
[PROOFSTEP]
push_neg at h
[GOAL]
case inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
⊢ False
[PROOFSTEP]
have h_lt : ∀ n, succ^[n] i < j := by
intro n
induction' n with n hn
· simpa only [Function.iterate_zero, id.def] using hij
· refine' lt_of_le_of_ne _ (h _)
rw [Function.iterate_succ', Function.comp_apply]
exact succ_le_of_lt hn
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
⊢ ∀ (n : ℕ), succ^[n] i < j
[PROOFSTEP]
intro n
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
n : ℕ
⊢ succ^[n] i < j
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
⊢ succ^[Nat.zero] i < j
[PROOFSTEP]
simpa only [Function.iterate_zero, id.def] using hij
[GOAL]
case succ
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
n : ℕ
hn : succ^[n] i < j
⊢ succ^[Nat.succ n] i < j
[PROOFSTEP]
refine' lt_of_le_of_ne _ (h _)
[GOAL]
case succ
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
n : ℕ
hn : succ^[n] i < j
⊢ succ^[Nat.succ n] i ≤ j
[PROOFSTEP]
rw [Function.iterate_succ', Function.comp_apply]
[GOAL]
case succ
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
n : ℕ
hn : succ^[n] i < j
⊢ succ (succ^[n] i) ≤ j
[PROOFSTEP]
exact succ_le_of_lt hn
[GOAL]
case inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
⊢ False
[PROOFSTEP]
have h_mem : ∀ n, succ^[n] i ∈ Finset.Icc i j := fun n ↦ Finset.mem_Icc.mpr ⟨le_succ_iterate n i, (h_lt n).le⟩
[GOAL]
case inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
⊢ False
[PROOFSTEP]
obtain ⟨n, m, hnm, h_eq⟩ : ∃ n m, n < m ∧ succ^[n] i = succ^[m] i :=
by
let f : ℕ → Finset.Icc i j := fun n ↦ ⟨succ^[n] i, h_mem n⟩
obtain ⟨n, m, hnm_ne, hfnm⟩ : ∃ n m, n ≠ m ∧ f n = f m
exact Finite.exists_ne_map_eq_of_infinite f
have hnm_eq : succ^[n] i = succ^[m] i := by simpa only [Subtype.mk_eq_mk] using hfnm
cases' le_total n m with h_le h_le
· exact ⟨n, m, lt_of_le_of_ne h_le hnm_ne, hnm_eq⟩
· exact ⟨m, n, lt_of_le_of_ne h_le hnm_ne.symm, hnm_eq.symm⟩
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
let f : ℕ → Finset.Icc i j := fun n ↦ ⟨succ^[n] i, h_mem n⟩
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
obtain ⟨n, m, hnm_ne, hfnm⟩ : ∃ n m, n ≠ m ∧ f n = f m
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
⊢ ∃ n m, n ≠ m ∧ f n = f m
case intro.intro.intro
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
n m : ℕ
hnm_ne : n ≠ m
hfnm : f n = f m
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
exact Finite.exists_ne_map_eq_of_infinite f
[GOAL]
case intro.intro.intro
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
n m : ℕ
hnm_ne : n ≠ m
hfnm : f n = f m
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
have hnm_eq : succ^[n] i = succ^[m] i := by simpa only [Subtype.mk_eq_mk] using hfnm
[GOAL]
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
n m : ℕ
hnm_ne : n ≠ m
hfnm : f n = f m
⊢ succ^[n] i = succ^[m] i
[PROOFSTEP]
simpa only [Subtype.mk_eq_mk] using hfnm
[GOAL]
case intro.intro.intro
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
n m : ℕ
hnm_ne : n ≠ m
hfnm : f n = f m
hnm_eq : succ^[n] i = succ^[m] i
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
cases' le_total n m with h_le h_le
[GOAL]
case intro.intro.intro.inl
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
n m : ℕ
hnm_ne : n ≠ m
hfnm : f n = f m
hnm_eq : succ^[n] i = succ^[m] i
h_le : n ≤ m
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
exact ⟨n, m, lt_of_le_of_ne h_le hnm_ne, hnm_eq⟩
[GOAL]
case intro.intro.intro.inr
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) }
n m : ℕ
hnm_ne : n ≠ m
hfnm : f n = f m
hnm_eq : succ^[n] i = succ^[m] i
h_le : m ≤ n
⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i
[PROOFSTEP]
exact ⟨m, n, lt_of_le_of_ne h_le hnm_ne.symm, hnm_eq.symm⟩
[GOAL]
case inl.intro.intro.intro
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
n m : ℕ
hnm : n < m
h_eq : succ^[n] i = succ^[m] i
⊢ False
[PROOFSTEP]
have h_max : IsMax (succ^[n] i) := isMax_iterate_succ_of_eq_of_ne h_eq hnm.ne
[GOAL]
case inl.intro.intro.intro
ι : Type u_1
inst✝¹ : LinearOrder ι
inst✝ : LocallyFiniteOrder ι
i j : ι
hij : i < j
h : ∀ (n : ℕ), succ^[n] i ≠ j
h_lt : ∀ (n : ℕ), succ^[n] i < j
h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j
n m : ℕ
hnm : n < m
h_eq : succ^[n] i = succ^[m] i
h_max : IsMax (succ^[n] i)
⊢ False
[PROOFSTEP]
exact not_le.mpr (h_lt n) (h_max (h_lt n).le)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
⊢ ∀ {a b : ι}, a ≤ b → ∃ n, pred^[n] b = a
[PROOFSTEP]
intro i j hij
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
⊢ ∃ n, pred^[n] j = i
[PROOFSTEP]
have h_exists := exists_succ_iterate_of_le hij
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
⊢ ∃ n, pred^[n] j = i
[PROOFSTEP]
obtain ⟨n, hn_eq, hn_lt_ne⟩ : ∃ n, succ^[n] i = j ∧ ∀ m < n, succ^[m] i ≠ j
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
⊢ ∃ n, succ^[n] i = j ∧ ∀ (m : ℕ), m < n → succ^[m] i ≠ j
case intro.intro
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n : ℕ
hn_eq : succ^[n] i = j
hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j
⊢ ∃ n, pred^[n] j = i
[PROOFSTEP]
exact ⟨Nat.find h_exists, Nat.find_spec h_exists, fun m hmn ↦ Nat.find_min h_exists hmn⟩
[GOAL]
case intro.intro
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n : ℕ
hn_eq : succ^[n] i = j
hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j
⊢ ∃ n, pred^[n] j = i
[PROOFSTEP]
refine' ⟨n, _⟩
[GOAL]
case intro.intro
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n : ℕ
hn_eq : succ^[n] i = j
hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j
⊢ pred^[n] j = i
[PROOFSTEP]
rw [← hn_eq]
[GOAL]
case intro.intro
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n : ℕ
hn_eq : succ^[n] i = j
hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j
⊢ pred^[n] (succ^[n] i) = i
[PROOFSTEP]
induction' n with n
[GOAL]
case intro.intro.zero
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n : ℕ
hn_eq✝ : succ^[n] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n → succ^[m] i ≠ j
hn_eq : succ^[Nat.zero] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.zero → succ^[m] i ≠ j
⊢ pred^[Nat.zero] (succ^[Nat.zero] i) = i
[PROOFSTEP]
simp only [Nat.zero_eq, Function.iterate_zero, id.def]
[GOAL]
case intro.intro.succ
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i
[PROOFSTEP]
rw [pred_succ_iterate_of_not_isMax]
[GOAL]
case intro.intro.succ.hin
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ ¬IsMax (succ^[Nat.succ n - 1] i)
[PROOFSTEP]
rw [Nat.succ_sub_succ_eq_sub, tsub_zero]
[GOAL]
case intro.intro.succ.hin
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ ¬IsMax (succ^[n] i)
[PROOFSTEP]
suffices : succ^[n] i < succ^[n.succ] i
[GOAL]
case intro.intro.succ.hin
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
this : succ^[n] i < succ^[Nat.succ n] i
⊢ ¬IsMax (succ^[n] i)
case this
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ succ^[n] i < succ^[Nat.succ n] i
[PROOFSTEP]
exact not_isMax_of_lt this
[GOAL]
case this
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ succ^[n] i < succ^[Nat.succ n] i
[PROOFSTEP]
refine' lt_of_le_of_ne _ _
[GOAL]
case this.refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ succ^[n] i ≤ succ^[Nat.succ n] i
[PROOFSTEP]
rw [Function.iterate_succ']
[GOAL]
case this.refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ succ^[n] i ≤ (succ ∘ succ^[n]) i
[PROOFSTEP]
exact le_succ _
[GOAL]
case this.refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ succ^[n] i ≠ succ^[Nat.succ n] i
[PROOFSTEP]
rw [hn_eq]
[GOAL]
case this.refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
i j : ι
hij : i ≤ j
h_exists : ∃ n, succ^[n] i = j
n✝ : ℕ
hn_eq✝ : succ^[n✝] i = j
hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j
n : ℕ
n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i
hn_eq : succ^[Nat.succ n] i = j
hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j
⊢ succ^[n] i ≠ j
[PROOFSTEP]
exact hn_lt_ne _ (Nat.lt_succ_self n)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
⊢ toZ i0 i0 = 0
[PROOFSTEP]
rw [toZ_of_ge le_rfl]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
⊢ ↑(Nat.find (_ : ∃ n, succ^[n] i0 = i0)) = 0
[PROOFSTEP]
norm_cast
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
⊢ Nat.find (_ : ∃ n, succ^[n] i0 = i0) = 0
[PROOFSTEP]
refine' le_antisymm (Nat.find_le _) (zero_le _)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
⊢ succ^[0] i0 = i0
[PROOFSTEP]
rw [Function.iterate_zero, id.def]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i : ι
hi : i0 ≤ i
⊢ succ^[Int.toNat (toZ i0 i)] i0 = i
[PROOFSTEP]
rw [toZ_of_ge hi, Int.toNat_coe_nat]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i : ι
hi : i0 ≤ i
⊢ succ^[Nat.find (_ : ∃ n, succ^[n] i0 = i)] i0 = i
[PROOFSTEP]
exact Nat.find_spec (exists_succ_iterate_of_le hi)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i : ι
hi : i < i0
⊢ pred^[Int.toNat (-toZ i0 i)] i0 = i
[PROOFSTEP]
rw [toZ_of_lt hi, neg_neg, Int.toNat_coe_nat]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i : ι
hi : i < i0
⊢ pred^[Nat.find (_ : ∃ n, pred^[n] i0 = i)] i0 = i
[PROOFSTEP]
exact Nat.find_spec (exists_pred_iterate_of_le hi.le)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i0 ≤ i
⊢ 0 ≤ toZ i0 i
[PROOFSTEP]
rw [toZ_of_ge hi]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i0 ≤ i
⊢ 0 ≤ ↑(Nat.find (_ : ∃ n, succ^[n] i0 = i))
[PROOFSTEP]
exact Nat.cast_nonneg _
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i < i0
⊢ toZ i0 i < 0
[PROOFSTEP]
refine' lt_of_le_of_ne _ _
[GOAL]
case refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i < i0
⊢ toZ i0 i ≤ 0
[PROOFSTEP]
rw [toZ_of_lt hi, neg_nonpos]
[GOAL]
case refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i < i0
⊢ 0 ≤ ↑(Nat.find (_ : ∃ n, pred^[n] i0 = i))
[PROOFSTEP]
exact Nat.cast_nonneg _
[GOAL]
case refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i < i0
⊢ toZ i0 i ≠ 0
[PROOFSTEP]
by_contra h
[GOAL]
case refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i < i0
h : toZ i0 i = 0
⊢ False
[PROOFSTEP]
have h_eq := iterate_pred_toZ i hi
[GOAL]
case refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : i < i0
h : toZ i0 i = 0
h_eq : pred^[Int.toNat (-toZ i0 i)] i0 = i
⊢ False
[PROOFSTEP]
rw [← h_eq, h] at hi
[GOAL]
case refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hi : pred^[Int.toNat (-0)] i0 < i0
h : toZ i0 i = 0
h_eq : pred^[Int.toNat (-toZ i0 i)] i0 = i
⊢ False
[PROOFSTEP]
simp only [neg_zero, Int.toNat_zero, Function.iterate_zero, id.def, lt_self_iff_false] at hi
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
⊢ toZ i0 (succ^[n] i0) ≤ ↑n
[PROOFSTEP]
rw [toZ_of_ge (le_succ_iterate _ _)]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
⊢ ↑(Nat.find (_ : ∃ n_1, succ^[n_1] i0 = succ^[n] i0)) ≤ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
⊢ Nat.find (_ : ∃ n_1, succ^[n_1] i0 = succ^[n] i0) ≤ n
[PROOFSTEP]
exact Nat.find_min' _ rfl
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
⊢ -↑n ≤ toZ i0 (pred^[n] i0)
[PROOFSTEP]
cases' le_or_lt i0 (pred^[n] i0) with h h
[GOAL]
case inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
h : i0 ≤ pred^[n] i0
⊢ -↑n ≤ toZ i0 (pred^[n] i0)
[PROOFSTEP]
have h_eq : pred^[n] i0 = i0 := le_antisymm (pred_iterate_le _ _) h
[GOAL]
case inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
h : i0 ≤ pred^[n] i0
h_eq : pred^[n] i0 = i0
⊢ -↑n ≤ toZ i0 (pred^[n] i0)
[PROOFSTEP]
rw [h_eq, toZ_of_eq]
[GOAL]
case inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
h : i0 ≤ pred^[n] i0
h_eq : pred^[n] i0 = i0
⊢ -↑n ≤ 0
[PROOFSTEP]
simp only [Right.neg_nonpos_iff, Nat.cast_nonneg]
[GOAL]
case inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
h : pred^[n] i0 < i0
⊢ -↑n ≤ toZ i0 (pred^[n] i0)
[PROOFSTEP]
rw [toZ_of_lt h, neg_le_neg_iff]
[GOAL]
case inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
h : pred^[n] i0 < i0
⊢ ↑(Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[n] i0)) ≤ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
h : pred^[n] i0 < i0
⊢ Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[n] i0) ≤ n
[PROOFSTEP]
exact Nat.find_min' _ rfl
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
⊢ toZ i0 (succ^[n] i0) = ↑n
[PROOFSTEP]
let m := (toZ i0 (succ^[n] i0)).toNat
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
⊢ toZ i0 (succ^[n] i0) = ↑n
[PROOFSTEP]
have h_eq : succ^[m] i0 = succ^[n] i0 := iterate_succ_toZ _ (le_succ_iterate _ _)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
⊢ toZ i0 (succ^[n] i0) = ↑n
[PROOFSTEP]
by_cases hmn : m = n
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : m = n
⊢ toZ i0 (succ^[n] i0) = ↑n
[PROOFSTEP]
nth_rw 2 [← hmn]
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : m = n
⊢ toZ i0 (succ^[n] i0) = ↑m
[PROOFSTEP]
rw [Int.toNat_eq_max, toZ_of_ge (le_succ_iterate _ _), max_eq_left]
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : m = n
⊢ 0 ≤ ↑(Nat.find (_ : ∃ n_1, succ^[n_1] i0 = succ^[n] i0))
[PROOFSTEP]
exact Nat.cast_nonneg _
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : ¬m = n
⊢ toZ i0 (succ^[n] i0) = ↑n
[PROOFSTEP]
suffices : IsMax (succ^[n] i0)
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : ¬m = n
this : IsMax (succ^[n] i0)
⊢ toZ i0 (succ^[n] i0) = ↑n
case this
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : ¬m = n
⊢ IsMax (succ^[n] i0)
[PROOFSTEP]
exact absurd this hn
[GOAL]
case this
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMax (succ^[n] i0)
m : ℕ := Int.toNat (toZ i0 (succ^[n] i0))
h_eq : succ^[m] i0 = succ^[n] i0
hmn : ¬m = n
⊢ IsMax (succ^[n] i0)
[PROOFSTEP]
exact isMax_iterate_succ_of_eq_of_ne h_eq.symm (Ne.symm hmn)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[n] i0)
⊢ toZ i0 (pred^[n] i0) = -↑n
[PROOFSTEP]
cases' n with n n
[GOAL]
case zero
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
hn : ¬IsMin (pred^[Nat.zero] i0)
⊢ toZ i0 (pred^[Nat.zero] i0) = -↑Nat.zero
[PROOFSTEP]
simp only [Nat.zero_eq, Function.iterate_zero, id.def, toZ_of_eq, Nat.cast_zero, neg_zero]
[GOAL]
case succ
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
[PROOFSTEP]
have : pred^[n.succ] i0 < i0 :=
by
refine' lt_of_le_of_ne (pred_iterate_le _ _) fun h_pred_iterate_eq ↦ hn _
have h_pred_eq_pred : pred^[n.succ] i0 = pred^[0] i0 := by rwa [Function.iterate_zero, id.def]
exact isMin_iterate_pred_of_eq_of_ne h_pred_eq_pred (Nat.succ_ne_zero n)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
⊢ pred^[Nat.succ n] i0 < i0
[PROOFSTEP]
refine' lt_of_le_of_ne (pred_iterate_le _ _) fun h_pred_iterate_eq ↦ hn _
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
h_pred_iterate_eq : pred^[Nat.succ n] i0 = i0
⊢ IsMin (pred^[Nat.succ n] i0)
[PROOFSTEP]
have h_pred_eq_pred : pred^[n.succ] i0 = pred^[0] i0 := by rwa [Function.iterate_zero, id.def]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
h_pred_iterate_eq : pred^[Nat.succ n] i0 = i0
⊢ pred^[Nat.succ n] i0 = pred^[0] i0
[PROOFSTEP]
rwa [Function.iterate_zero, id.def]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
h_pred_iterate_eq : pred^[Nat.succ n] i0 = i0
h_pred_eq_pred : pred^[Nat.succ n] i0 = pred^[0] i0
⊢ IsMin (pred^[Nat.succ n] i0)
[PROOFSTEP]
exact isMin_iterate_pred_of_eq_of_ne h_pred_eq_pred (Nat.succ_ne_zero n)
[GOAL]
case succ
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
[PROOFSTEP]
let m := (-toZ i0 (pred^[n.succ] i0)).toNat
[GOAL]
case succ
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
[PROOFSTEP]
have h_eq : pred^[m] i0 = pred^[n.succ] i0 := iterate_pred_toZ _ this
[GOAL]
case succ
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
[PROOFSTEP]
by_cases hmn : m = n.succ
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : m = Nat.succ n
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
[PROOFSTEP]
nth_rw 2 [← hmn]
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : m = Nat.succ n
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑m
[PROOFSTEP]
rw [Int.toNat_eq_max, toZ_of_lt this, max_eq_left, neg_neg]
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : m = Nat.succ n
⊢ 0 ≤ - -↑(Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[Nat.succ n] i0))
[PROOFSTEP]
rw [neg_neg]
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : m = Nat.succ n
⊢ 0 ≤ ↑(Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[Nat.succ n] i0))
[PROOFSTEP]
exact Nat.cast_nonneg _
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : ¬m = Nat.succ n
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
[PROOFSTEP]
suffices : IsMin (pred^[n.succ] i0)
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this✝ : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : ¬m = Nat.succ n
this : IsMin (pred^[Nat.succ n] i0)
⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n)
case this
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : ¬m = Nat.succ n
⊢ IsMin (pred^[Nat.succ n] i0)
[PROOFSTEP]
exact absurd this hn
[GOAL]
case this
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i : ι
n : ℕ
hn : ¬IsMin (pred^[Nat.succ n] i0)
this : pred^[Nat.succ n] i0 < i0
m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0))
h_eq : pred^[m] i0 = pred^[Nat.succ n] i0
hmn : ¬m = Nat.succ n
⊢ IsMin (pred^[Nat.succ n] i0)
[PROOFSTEP]
exact isMin_iterate_pred_of_eq_of_ne h_eq.symm (Ne.symm hmn)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
⊢ i ≤ j
[PROOFSTEP]
cases' le_or_lt i0 i with hi hi
[GOAL]
case inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i0 ≤ i
⊢ i ≤ j
[PROOFSTEP]
cases' le_or_lt i0 j with hj hj
[GOAL]
case inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i < i0
⊢ i ≤ j
[PROOFSTEP]
cases' le_or_lt i0 j with hj hj
[GOAL]
case inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i0 ≤ i
hj : i0 ≤ j
⊢ i ≤ j
[PROOFSTEP]
rw [← iterate_succ_toZ i hi, ← iterate_succ_toZ j hj]
[GOAL]
case inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i0 ≤ i
hj : i0 ≤ j
⊢ succ^[Int.toNat (toZ i0 i)] i0 ≤ succ^[Int.toNat (toZ i0 j)] i0
[PROOFSTEP]
exact Monotone.monotone_iterate_of_le_map succ_mono (le_succ _) (Int.toNat_le_toNat h_le)
[GOAL]
case inl.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i0 ≤ i
hj : j < i0
⊢ i ≤ j
[PROOFSTEP]
exact absurd ((toZ_neg hj).trans_le (toZ_nonneg hi)) (not_lt.mpr h_le)
[GOAL]
case inr.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i < i0
hj : i0 ≤ j
⊢ i ≤ j
[PROOFSTEP]
exact hi.le.trans hj
[GOAL]
case inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i < i0
hj : j < i0
⊢ i ≤ j
[PROOFSTEP]
rw [← iterate_pred_toZ i hi, ← iterate_pred_toZ j hj]
[GOAL]
case inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i < i0
hj : j < i0
⊢ pred^[Int.toNat (-toZ i0 i)] i0 ≤ pred^[Int.toNat (-toZ i0 j)] i0
[PROOFSTEP]
refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le _) (Int.toNat_le_toNat _)
[GOAL]
case inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i j : ι
h_le : toZ i0 i ≤ toZ i0 j
hi : i < i0
hj : j < i0
⊢ -toZ i0 j ≤ -toZ i0 i
[PROOFSTEP]
exact neg_le_neg h_le
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
by_cases hi_max : IsMax i
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : IsMax i
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
rw [le_antisymm h_le (hi_max h_le)]
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
by_cases hj_min : IsMin j
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : IsMin j
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
rw [le_antisymm h_le (hj_min h_le)]
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
cases' le_or_lt i0 i with hi hi
[GOAL]
case neg.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
cases' le_or_lt i0 j with hj hj
[GOAL]
case neg.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
cases' le_or_lt i0 j with hj hj
[GOAL]
case neg.inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
let m := Nat.find (exists_succ_iterate_of_le h_le)
[GOAL]
case neg.inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
have hm : succ^[m] i = j := Nat.find_spec (exists_succ_iterate_of_le h_le)
[GOAL]
case neg.inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
have hj_eq : j = succ^[(toZ i0 i).toNat + m] i0 :=
by
rw [← hm, add_comm]
nth_rw 1 [← iterate_succ_toZ i hi]
rw [Function.iterate_add]
rfl
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
⊢ j = succ^[Int.toNat (toZ i0 i) + m] i0
[PROOFSTEP]
rw [← hm, add_comm]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
⊢ succ^[m] i = succ^[m + Int.toNat (toZ i0 i)] i0
[PROOFSTEP]
nth_rw 1 [← iterate_succ_toZ i hi]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
⊢ succ^[m] (succ^[Int.toNat (toZ i0 i)] i0) = succ^[m + Int.toNat (toZ i0 i)] i0
[PROOFSTEP]
rw [Function.iterate_add]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
⊢ succ^[m] (succ^[Int.toNat (toZ i0 i)] i0) = (succ^[m] ∘ succ^[Int.toNat (toZ i0 i)]) i0
[PROOFSTEP]
rfl
[GOAL]
case neg.inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
by_contra h
[GOAL]
case neg.inl.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
⊢ False
[PROOFSTEP]
by_cases hm0 : m = 0
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : m = 0
⊢ False
[PROOFSTEP]
rw [hm0, Function.iterate_zero, id.def] at hm
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : m = 0
⊢ False
[PROOFSTEP]
rw [hm] at h
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 j ≤ toZ i0 j
hm0 : m = 0
⊢ False
[PROOFSTEP]
exact h (le_of_eq rfl)
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ False
[PROOFSTEP]
refine' hi_max (max_of_succ_le (le_trans _ (@le_of_toZ_le _ _ _ _ _ i0 j i _)))
[GOAL]
case neg.refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ succ i ≤ j
[PROOFSTEP]
have h_succ_le : succ^[(toZ i0 i).toNat + 1] i0 ≤ j :=
by
rw [hj_eq]
refine' Monotone.monotone_iterate_of_le_map succ_mono (le_succ i0) (add_le_add_left _ _)
exact Nat.one_le_iff_ne_zero.mpr hm0
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ succ^[Int.toNat (toZ i0 i) + 1] i0 ≤ j
[PROOFSTEP]
rw [hj_eq]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ succ^[Int.toNat (toZ i0 i) + 1] i0 ≤ succ^[Int.toNat (toZ i0 i) + m] i0
[PROOFSTEP]
refine' Monotone.monotone_iterate_of_le_map succ_mono (le_succ i0) (add_le_add_left _ _)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ 1 ≤ m
[PROOFSTEP]
exact Nat.one_le_iff_ne_zero.mpr hm0
[GOAL]
case neg.refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
h_succ_le : succ^[Int.toNat (toZ i0 i) + 1] i0 ≤ j
⊢ succ i ≤ j
[PROOFSTEP]
rwa [Function.iterate_succ', Function.comp_apply, iterate_succ_toZ i hi] at h_succ_le
[GOAL]
case neg.refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : i0 ≤ j
m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j)
hm : succ^[m] i = j
hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ toZ i0 j ≤ toZ i0 i
[PROOFSTEP]
exact le_of_not_le h
[GOAL]
case neg.inl.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i0 ≤ i
hj : j < i0
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
exact absurd h_le (not_le.mpr (hj.trans_le hi))
[GOAL]
case neg.inr.inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : i0 ≤ j
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
exact (toZ_neg hi).le.trans (toZ_nonneg hj)
[GOAL]
case neg.inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
let m := Nat.find (exists_pred_iterate_of_le h_le)
[GOAL]
case neg.inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
have hm : pred^[m] j = i := Nat.find_spec (exists_pred_iterate_of_le h_le)
[GOAL]
case neg.inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
have hj_eq : i = pred^[(-toZ i0 j).toNat + m] i0 :=
by
rw [← hm, add_comm]
nth_rw 1 [← iterate_pred_toZ j hj]
rw [Function.iterate_add]
rfl
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
⊢ i = pred^[Int.toNat (-toZ i0 j) + m] i0
[PROOFSTEP]
rw [← hm, add_comm]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
⊢ pred^[m] j = pred^[m + Int.toNat (-toZ i0 j)] i0
[PROOFSTEP]
nth_rw 1 [← iterate_pred_toZ j hj]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
⊢ pred^[m] (pred^[Int.toNat (-toZ i0 j)] i0) = pred^[m + Int.toNat (-toZ i0 j)] i0
[PROOFSTEP]
rw [Function.iterate_add]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
⊢ pred^[m] (pred^[Int.toNat (-toZ i0 j)] i0) = (pred^[m] ∘ pred^[Int.toNat (-toZ i0 j)]) i0
[PROOFSTEP]
rfl
[GOAL]
case neg.inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
⊢ toZ i0 i ≤ toZ i0 j
[PROOFSTEP]
by_contra h
[GOAL]
case neg.inr.inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
⊢ False
[PROOFSTEP]
by_cases hm0 : m = 0
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : m = 0
⊢ False
[PROOFSTEP]
rw [hm0, Function.iterate_zero, id.def] at hm
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : m = 0
⊢ False
[PROOFSTEP]
rw [hm] at h
[GOAL]
case pos
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 i
hm0 : m = 0
⊢ False
[PROOFSTEP]
exact h (le_of_eq rfl)
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ False
[PROOFSTEP]
refine' hj_min (min_of_le_pred _)
[GOAL]
case neg
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ j ≤ pred j
[PROOFSTEP]
refine' (@le_of_toZ_le _ _ _ _ _ i0 j i _).trans _
[GOAL]
case neg.refine'_1
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ toZ i0 j ≤ toZ i0 i
[PROOFSTEP]
exact le_of_not_le h
[GOAL]
case neg.refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ i ≤ pred j
[PROOFSTEP]
have h_le_pred : i ≤ pred^[(-toZ i0 j).toNat + 1] i0 :=
by
rw [hj_eq]
refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le i0) (add_le_add_left _ _)
exact Nat.one_le_iff_ne_zero.mpr hm0
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ i ≤ pred^[Int.toNat (-toZ i0 j) + 1] i0
[PROOFSTEP]
rw [hj_eq]
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ pred^[Int.toNat (-toZ i0 j) + m] i0 ≤ pred^[Int.toNat (-toZ i0 j) + 1] i0
[PROOFSTEP]
refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le i0) (add_le_add_left _ _)
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
⊢ 1 ≤ m
[PROOFSTEP]
exact Nat.one_le_iff_ne_zero.mpr hm0
[GOAL]
case neg.refine'_2
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : IsSuccArchimedean ι
inst✝ : PredOrder ι
i0 i✝ i j : ι
h_le : i ≤ j
hi_max : ¬IsMax i
hj_min : ¬IsMin j
hi : i < i0
hj : j < i0
m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i)
hm : pred^[m] j = i
hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0
h : ¬toZ i0 i ≤ toZ i0 j
hm0 : ¬m = 0
h_le_pred : i ≤ pred^[Int.toNat (-toZ i0 j) + 1] i0
⊢ i ≤ pred j
[PROOFSTEP]
rwa [Function.iterate_succ', Function.comp_apply, iterate_pred_toZ j hj] at h_le_pred
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
hι : Nonempty ι
⊢ ∀ {a b : ι},
↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) a ≤
↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) b ↔
a ≤ b
[PROOFSTEP]
intro i j
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
hι : Nonempty ι
i j : ι
⊢ ↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) i ≤
↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) j ↔
i ≤ j
[PROOFSTEP]
exact toZ_le_iff i j
[GOAL]
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
⊢ Countable ι
[PROOFSTEP]
cases' isEmpty_or_nonempty ι with _ hι
[GOAL]
case inl
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
h✝ : IsEmpty ι
⊢ Countable ι
[PROOFSTEP]
infer_instance
[GOAL]
case inr
ι : Type u_1
inst✝³ : LinearOrder ι
inst✝² : SuccOrder ι
inst✝¹ : PredOrder ι
inst✝ : IsSuccArchimedean ι
hι : Nonempty ι
⊢ Countable ι
[PROOFSTEP]
exact Countable.of_equiv _ orderIsoRangeToZOfLinearSuccPredArch.symm.toEquiv
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i
[PROOFSTEP]
cases' le_or_lt hι.some i with hi hi
[GOAL]
case inl
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
hi : Nonempty.some hι ≤ i
⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i
[PROOFSTEP]
have h_nonneg : 0 ≤ toZ hι.some i := toZ_nonneg hi
[GOAL]
case inl
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
hi : Nonempty.some hι ≤ i
h_nonneg : 0 ≤ toZ (Nonempty.some hι) i
⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i
[PROOFSTEP]
simp_rw [if_pos h_nonneg]
[GOAL]
case inl
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
hi : Nonempty.some hι ≤ i
h_nonneg : 0 ≤ toZ (Nonempty.some hι) i
⊢ succ^[Int.toNat (toZ (Nonempty.some hι) i)] (Nonempty.some hι) = i
[PROOFSTEP]
exact iterate_succ_toZ i hi
[GOAL]
case inr
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
hi : i < Nonempty.some hι
⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i
[PROOFSTEP]
have h_neg : toZ hι.some i < 0 := toZ_neg hi
[GOAL]
case inr
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
hi : i < Nonempty.some hι
h_neg : toZ (Nonempty.some hι) i < 0
⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i
[PROOFSTEP]
simp_rw [if_neg (not_le.mpr h_neg)]
[GOAL]
case inr
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i : ι
hi : i < Nonempty.some hι
h_neg : toZ (Nonempty.some hι) i < 0
⊢ pred^[Int.toNat (-toZ (Nonempty.some hι) i)] (Nonempty.some hι) = i
[PROOFSTEP]
exact iterate_pred_toZ i hi
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
⊢ toZ (Nonempty.some hι)
((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) =
n
[PROOFSTEP]
cases' le_or_lt 0 n with hn hn
[GOAL]
case inl
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
hn : 0 ≤ n
⊢ toZ (Nonempty.some hι)
((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) =
n
[PROOFSTEP]
simp_rw [if_pos hn]
[GOAL]
case inl
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
hn : 0 ≤ n
⊢ toZ (Nonempty.some hι) (succ^[Int.toNat n] (Nonempty.some hι)) = n
[PROOFSTEP]
rw [toZ_iterate_succ]
[GOAL]
case inl
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
hn : 0 ≤ n
⊢ ↑(Int.toNat n) = n
[PROOFSTEP]
exact Int.toNat_of_nonneg hn
[GOAL]
case inr
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
hn : n < 0
⊢ toZ (Nonempty.some hι)
((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) =
n
[PROOFSTEP]
simp_rw [if_neg (not_le.mpr hn)]
[GOAL]
case inr
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
hn : n < 0
⊢ toZ (Nonempty.some hι) (pred^[Int.toNat (-n)] (Nonempty.some hι)) = n
[PROOFSTEP]
rw [toZ_iterate_pred]
[GOAL]
case inr
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
n : ℤ
hn : n < 0
⊢ -↑(Int.toNat (-n)) = n
[PROOFSTEP]
simp only [hn.le, Int.toNat_of_nonneg, Right.nonneg_neg_iff, neg_neg]
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
⊢ ∀ {a b : ι},
↑{ toFun := toZ (Nonempty.some hι),
invFun := fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι),
left_inv :=
(_ :
∀ (i : ι),
(fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i),
right_inv :=
(_ :
∀ (n : ℤ),
toZ (Nonempty.some hι)
((fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
n) =
n) }
a ≤
↑{ toFun := toZ (Nonempty.some hι),
invFun := fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι),
left_inv :=
(_ :
∀ (i : ι),
(fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i),
right_inv :=
(_ :
∀ (n : ℤ),
toZ (Nonempty.some hι)
((fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
n) =
n) }
b ↔
a ≤ b
[PROOFSTEP]
intro i j
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : NoMinOrder ι
hι : Nonempty ι
i j : ι
⊢ ↑{ toFun := toZ (Nonempty.some hι),
invFun := fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι),
left_inv :=
(_ :
∀ (i : ι),
(fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i),
right_inv :=
(_ :
∀ (n : ℤ),
toZ (Nonempty.some hι)
((fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
n) =
n) }
i ≤
↑{ toFun := toZ (Nonempty.some hι),
invFun := fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι),
left_inv :=
(_ :
∀ (i : ι),
(fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
(toZ (Nonempty.some hι) i) =
i),
right_inv :=
(_ :
∀ (n : ℤ),
toZ (Nonempty.some hι)
((fun n =>
if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι)
else pred^[Int.toNat (-n)] (Nonempty.some hι))
n) =
n) }
j ↔
i ≤ j
[PROOFSTEP]
exact toZ_le_iff i j
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
i : ι
⊢ (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
i : ι
⊢ succ^[Int.toNat (toZ ⊥ i)] ⊥ = i
[PROOFSTEP]
exact iterate_succ_toZ i bot_le
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
n : ℕ
⊢ (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
n : ℕ
⊢ Int.toNat (toZ ⊥ (succ^[n] ⊥)) = n
[PROOFSTEP]
rw [toZ_iterate_succ]
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
n : ℕ
⊢ Int.toNat ↑n = n
[PROOFSTEP]
exact Int.toNat_coe_nat n
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
⊢ ∀ {a b : ι},
↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥,
left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i),
right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) }
a ≤
↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥,
left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i),
right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) }
b ↔
a ≤ b
[PROOFSTEP]
intro i j
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
i j : ι
⊢ ↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥,
left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i),
right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) }
i ≤
↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥,
left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i),
right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) }
j ↔
i ≤ j
[PROOFSTEP]
simp only [Equiv.coe_fn_mk, Int.toNat_le]
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : NoMaxOrder ι
inst✝ : OrderBot ι
i j : ι
⊢ toZ ⊥ i ≤ ↑(Int.toNat (toZ ⊥ j)) ↔ i ≤ j
[PROOFSTEP]
rw [← @toZ_le_iff ι _ _ _ _ ⊥, Int.toNat_of_nonneg (toZ_nonneg bot_le)]
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
⊢ (fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) })
((fun n => succ^[↑n] ⊥) n) =
n
[PROOFSTEP]
ext1
[GOAL]
case a
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
⊢ ↑((fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) })
((fun n => succ^[↑n] ⊥) n)) =
↑n
[PROOFSTEP]
simp only [Subtype.coe_mk]
[GOAL]
case a
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
⊢ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) = ↑n
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case a.refine'_1
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
⊢ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) ≤ ↑n
[PROOFSTEP]
rw [Int.toNat_le]
[GOAL]
case a.refine'_1
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
⊢ toZ ⊥ (succ^[↑n] ⊥) ≤ ↑↑n
[PROOFSTEP]
exact toZ_iterate_succ_le _
[GOAL]
case a.refine'_2
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥))
[PROOFSTEP]
by_cases hn_max : IsMax (succ^[↑n] (⊥ : ι))
[GOAL]
case pos
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
hn_max : IsMax (succ^[↑n] ⊥)
⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥))
[PROOFSTEP]
rw [← isTop_iff_isMax, isTop_iff_eq_top] at hn_max
[GOAL]
case pos
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
hn_max✝ : IsTop (succ^[↑n] ⊥)
hn_max : succ^[↑n] ⊥ = ⊤
⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥))
[PROOFSTEP]
rw [hn_max]
[GOAL]
case pos
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
hn_max✝ : IsTop (succ^[↑n] ⊥)
hn_max : succ^[↑n] ⊥ = ⊤
⊢ ↑n ≤ Int.toNat (toZ ⊥ ⊤)
[PROOFSTEP]
exact Nat.lt_succ_iff.mp (Finset.mem_range.mp n.prop)
[GOAL]
case neg
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
hn_max : ¬IsMax (succ^[↑n] ⊥)
⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥))
[PROOFSTEP]
rw [toZ_iterate_succ_of_not_isMax _ hn_max]
[GOAL]
case neg
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }
hn_max : ¬IsMax (succ^[↑n] ⊥)
⊢ ↑n ≤ Int.toNat ↑↑n
[PROOFSTEP]
simp only [Int.toNat_coe_nat, le_refl]
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
⊢ ∀ {a b : ι},
↑{
toFun := fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) },
invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i),
right_inv :=
(_ :
∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }),
(fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) })
((fun n => succ^[↑n] ⊥) n) =
n) }
a ≤
↑{
toFun := fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) },
invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i),
right_inv :=
(_ :
∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }),
(fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) })
((fun n => succ^[↑n] ⊥) n) =
n) }
b ↔
a ≤ b
[PROOFSTEP]
intro i j
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
i j : ι
⊢ ↑{
toFun := fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) },
invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i),
right_inv :=
(_ :
∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }),
(fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) })
((fun n => succ^[↑n] ⊥) n) =
n) }
i ≤
↑{
toFun := fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) },
invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i),
right_inv :=
(_ :
∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }),
(fun i =>
{ val := Int.toNat (toZ ⊥ i),
property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) })
((fun n => succ^[↑n] ⊥) n) =
n) }
j ↔
i ≤ j
[PROOFSTEP]
simp only [Equiv.coe_fn_mk, Subtype.mk_le_mk, Int.toNat_le]
[GOAL]
ι : Type u_1
inst✝⁵ : LinearOrder ι
inst✝⁴ : SuccOrder ι
inst✝³ : PredOrder ι
inst✝² : IsSuccArchimedean ι
inst✝¹ : OrderBot ι
inst✝ : OrderTop ι
i j : ι
⊢ toZ ⊥ i ≤ ↑(Int.toNat (toZ ⊥ j)) ↔ i ≤ j
[PROOFSTEP]
rw [← @toZ_le_iff ι _ _ _ _ ⊥, Int.toNat_of_nonneg (toZ_nonneg bot_le)]
| {"mathlib_filename": "Mathlib.Order.SuccPred.LinearLocallyFinite", "llama_tokens": 44157} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
⊢ Finset.univ = {⊤, ⊥}
[PROOFSTEP]
change Finset.map _ (Finset.univ : Finset Bool) = _
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
⊢ Finset.map { toFun := ↑IsSimpleOrder.equivBool.symm, inj' := (_ : Function.Injective ↑IsSimpleOrder.equivBool.symm) }
Finset.univ =
{⊤, ⊥}
[PROOFSTEP]
rw [Fintype.univ_bool]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
⊢ Finset.map { toFun := ↑IsSimpleOrder.equivBool.symm, inj' := (_ : Function.Injective ↑IsSimpleOrder.equivBool.symm) }
{true, false} =
{⊤, ⊥}
[PROOFSTEP]
simp only [Finset.map_insert, Function.Embedding.coeFn_mk, Finset.map_singleton]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
⊢ {↑IsSimpleOrder.equivBool.symm true, ↑IsSimpleOrder.equivBool.symm false} = {⊤, ⊥}
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
a : Bool
⊢ a = ⊥ ∨ a = ⊤
[PROOFSTEP]
rw [← Finset.mem_singleton, Or.comm, ← Finset.mem_insert, top_eq_true, bot_eq_false, ← Fintype.univ_bool]
[GOAL]
α : Type u_1
β : Type u_2
a : Bool
⊢ a ∈ Finset.univ
[PROOFSTEP]
apply Finset.mem_univ
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : Finite α
⊢ IsCoatomic α
[PROOFSTEP]
refine' IsCoatomic.mk fun b => or_iff_not_imp_left.2 fun ht => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : Finite α
b : α
ht : ¬b = ⊤
⊢ ∃ a, IsCoatom a ∧ b ≤ a
[PROOFSTEP]
obtain ⟨c, hc, hmax⟩ := Set.Finite.exists_maximal_wrt id {x : α | b ≤ x ∧ x ≠ ⊤} (Set.toFinite _) ⟨b, le_rfl, ht⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : Finite α
b : α
ht : ¬b = ⊤
c : α
hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤}
hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a'
⊢ ∃ a, IsCoatom a ∧ b ≤ a
[PROOFSTEP]
refine' ⟨c, ⟨hc.2, fun y hcy => _⟩, hc.1⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : Finite α
b : α
ht : ¬b = ⊤
c : α
hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤}
hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a'
y : α
hcy : c < y
⊢ y = ⊤
[PROOFSTEP]
by_contra hyt
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : Finite α
b : α
ht : ¬b = ⊤
c : α
hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤}
hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a'
y : α
hcy : c < y
hyt : ¬y = ⊤
⊢ False
[PROOFSTEP]
obtain rfl : c = y := hmax y ⟨hc.1.trans hcy.le, hyt⟩ hcy.le
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : Finite α
b : α
ht : ¬b = ⊤
c : α
hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤}
hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a'
hcy : c < c
hyt : ¬c = ⊤
⊢ False
[PROOFSTEP]
exact (lt_self_iff_false _).mp hcy
| {"mathlib_filename": "Mathlib.Order.Atoms.Finite", "llama_tokens": 1636} |
{"mathlib_filename": "Mathlib.Order.RelIso.Set", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Order.RelIso.Group", "llama_tokens": 0} |
|
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : SupSet α
inst✝¹ : SupSet β
inst✝ : sSupHomClass F α β
f : F
g : ι → α
⊢ ↑f (⨆ (i : ι), g i) = ⨆ (i : ι), ↑f (g i)
[PROOFSTEP]
simp [iSup, ← Set.range_comp, Function.comp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : SupSet α
inst✝¹ : SupSet β
inst✝ : sSupHomClass F α β
f : F
g : (i : ι) → κ i → α
⊢ ↑f (⨆ (i : ι) (j : κ i), g i j) = ⨆ (i : ι) (j : κ i), ↑f (g i j)
[PROOFSTEP]
simp_rw [map_iSup]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : InfSet α
inst✝¹ : InfSet β
inst✝ : sInfHomClass F α β
f : F
g : ι → α
⊢ ↑f (⨅ (i : ι), g i) = ⨅ (i : ι), ↑f (g i)
[PROOFSTEP]
simp [iInf, ← Set.range_comp, Function.comp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : InfSet α
inst✝¹ : InfSet β
inst✝ : sInfHomClass F α β
f : F
g : (i : ι) → κ i → α
⊢ ↑f (⨅ (i : ι) (j : κ i), g i j) = ⨅ (i : ι) (j : κ i), ↑f (g i j)
[PROOFSTEP]
simp_rw [map_iInf]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sSupHomClass F α β
src✝ : sSupHomClass F α β := inst✝
f : F
a b : α
⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b
[PROOFSTEP]
rw [← sSup_pair, map_sSup]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sSupHomClass F α β
src✝ : sSupHomClass F α β := inst✝
f : F
a b : α
⊢ sSup (↑f '' {a, b}) = ↑f a ⊔ ↑f b
[PROOFSTEP]
simp only [Set.image_pair, sSup_insert, sSup_singleton]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sSupHomClass F α β
src✝ : sSupHomClass F α β := inst✝
f : F
⊢ ↑f ⊥ = ⊥
[PROOFSTEP]
rw [← sSup_empty, map_sSup, Set.image_empty]
-- Porting note: rw [sSup_empty] does not work, but exact sSup_empty does?
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sSupHomClass F α β
src✝ : sSupHomClass F α β := inst✝
f : F
⊢ sSup ∅ = ⊥
[PROOFSTEP]
exact sSup_empty
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sInfHomClass F α β
src✝ : sInfHomClass F α β := inst✝
f : F
a b : α
⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b
[PROOFSTEP]
rw [← sInf_pair, map_sInf, Set.image_pair]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sInfHomClass F α β
src✝ : sInfHomClass F α β := inst✝
f : F
a b : α
⊢ sInf {↑f a, ↑f b} = ↑f a ⊓ ↑f b
[PROOFSTEP]
simp only [Set.image_pair, sInf_insert, sInf_singleton]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sInfHomClass F α β
src✝ : sInfHomClass F α β := inst✝
f : F
⊢ ↑f ⊤ = ⊤
[PROOFSTEP]
rw [← sInf_empty, map_sInf, Set.image_empty]
-- Porting note: rw [sInf_empty] does not work, but exact sInf_empty does?
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : sInfHomClass F α β
src✝ : sInfHomClass F α β := inst✝
f : F
⊢ sInf ∅ = ⊤
[PROOFSTEP]
exact sInf_empty
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : OrderIsoClass F α β
src✝ : OrderHomClass F α β :=
let_fun this := inferInstance;
this
f : F
s : Set α
c : (fun x => β) (sSup s)
⊢ ↑f (sSup s) ≤ c ↔ sSup (↑f '' s) ≤ c
[PROOFSTEP]
simp only [← le_map_inv_iff, sSup_le_iff, Set.ball_image_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝² : CompleteLattice α
inst✝¹ : CompleteLattice β
inst✝ : OrderIsoClass F α β
src✝ : OrderHomClass F α β :=
let_fun this := inferInstance;
this
f : F
s : Set α
c : (fun x => β) (sInf s)
⊢ c ≤ ↑f (sInf s) ↔ c ≤ sInf (↑f '' s)
[PROOFSTEP]
simp only [← map_inv_le_iff, le_sInf_iff, Set.ball_image_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
f g : sSupHom α β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
g : sSupHom α β
toFun✝ : α → β
map_sSup'✝ : ∀ (s : Set α), toFun✝ (sSup s) = sSup (toFun✝ '' s)
h : { toFun := toFun✝, map_sSup' := map_sSup'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_sSup' := map_sSup'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
toFun✝¹ : α → β
map_sSup'✝¹ : ∀ (s : Set α), toFun✝¹ (sSup s) = sSup (toFun✝¹ '' s)
toFun✝ : α → β
map_sSup'✝ : ∀ (s : Set α), toFun✝ (sSup s) = sSup (toFun✝ '' s)
h : { toFun := toFun✝¹, map_sSup' := map_sSup'✝¹ }.toFun = { toFun := toFun✝, map_sSup' := map_sSup'✝ }.toFun
⊢ { toFun := toFun✝¹, map_sSup' := map_sSup'✝¹ } = { toFun := toFun✝, map_sSup' := map_sSup'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
s : Set α
⊢ id (sSup s) = sSup (id '' s)
[PROOFSTEP]
rw [id, Set.image_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
f : sSupHom β γ
g : sSupHom α β
s : Set α
⊢ (↑f ∘ ↑g) (sSup s) = sSup (↑f ∘ ↑g '' s)
[PROOFSTEP]
rw [comp_apply, map_sSup, map_sSup, Set.image_image]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
f : sSupHom β γ
g : sSupHom α β
s : Set α
⊢ sSup ((fun x => ↑f (↑g x)) '' s) = sSup (↑f ∘ ↑g '' s)
[PROOFSTEP]
simp only [Function.comp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : SupSet α
inst✝² : SupSet β
inst✝¹ : SupSet γ
inst✝ : SupSet δ
g : sSupHom β γ
f₁ f₂ : sSupHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝ : SupSet α
x✝ : CompleteLattice β
s : Set α
⊢ (fun x => ⊥) (sSup s) = sSup ((fun x => ⊥) '' s)
[PROOFSTEP]
obtain rfl | hs := s.eq_empty_or_nonempty
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝ : SupSet α
x✝ : CompleteLattice β
⊢ (fun x => ⊥) (sSup ∅) = sSup ((fun x => ⊥) '' ∅)
[PROOFSTEP]
rw [Set.image_empty, sSup_empty]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝ : SupSet α
x✝ : CompleteLattice β
s : Set α
hs : Set.Nonempty s
⊢ (fun x => ⊥) (sSup s) = sSup ((fun x => ⊥) '' s)
[PROOFSTEP]
rw [hs.image_const, sSup_singleton]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
f g : sInfHom α β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
g : sInfHom α β
toFun✝ : α → β
map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s)
h : { toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_sInf' := map_sInf'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
toFun✝¹ : α → β
map_sInf'✝¹ : ∀ (s : Set α), toFun✝¹ (sInf s) = sInf (toFun✝¹ '' s)
toFun✝ : α → β
map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s)
h : { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }.toFun = { toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun
⊢ { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ } = { toFun := toFun✝, map_sInf' := map_sInf'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
s : Set α
⊢ id (sInf s) = sInf (id '' s)
[PROOFSTEP]
rw [id, Set.image_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
f : sInfHom β γ
g : sInfHom α β
s : Set α
⊢ (↑f ∘ ↑g) (sInf s) = sInf (↑f ∘ ↑g '' s)
[PROOFSTEP]
rw [comp_apply, map_sInf, map_sInf, Set.image_image]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
f : sInfHom β γ
g : sInfHom α β
s : Set α
⊢ sInf ((fun x => ↑f (↑g x)) '' s) = sInf (↑f ∘ ↑g '' s)
[PROOFSTEP]
simp only [Function.comp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : InfSet α
inst✝² : InfSet β
inst✝¹ : InfSet γ
inst✝ : InfSet δ
g : sInfHom β γ
f₁ f₂ : sInfHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝¹ : InfSet α
inst✝ : CompleteLattice β
s : Set α
⊢ (fun x => ⊤) (sInf s) = sInf ((fun x => ⊤) '' s)
[PROOFSTEP]
obtain rfl | hs := s.eq_empty_or_nonempty
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝¹ : InfSet α
inst✝ : CompleteLattice β
⊢ (fun x => ⊤) (sInf ∅) = sInf ((fun x => ⊤) '' ∅)
[PROOFSTEP]
rw [Set.image_empty, sInf_empty]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝¹ : InfSet α
inst✝ : CompleteLattice β
s : Set α
hs : Set.Nonempty s
⊢ (fun x => ⊤) (sInf s) = sInf ((fun x => ⊤) '' s)
[PROOFSTEP]
rw [hs.image_const, sInf_singleton]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
f g : FrameHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
g : FrameHom α β
toFun✝ : α → β
map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b
map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤
map_sSup'✝ :
∀ (s : Set α),
InfHom.toFun { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom (sSup s) =
sSup ({ toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom.toFun '' s)
h :
(fun f => f.toFun)
{ toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ },
map_sSup' := map_sSup'✝ } =
(fun f => f.toFun) g
⊢ { toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ },
map_sSup' := map_sSup'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
toFun✝¹ : α → β
map_inf'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊓ b) = toFun✝¹ a ⊓ toFun✝¹ b
map_top'✝¹ : InfHom.toFun { toFun := toFun✝¹, map_inf' := map_inf'✝¹ } ⊤ = ⊤
map_sSup'✝¹ :
∀ (s : Set α),
InfHom.toFun { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ }.toInfHom
(sSup s) =
sSup ({ toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ }.toInfHom.toFun '' s)
toFun✝ : α → β
map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b
map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤
map_sSup'✝ :
∀ (s : Set α),
InfHom.toFun { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom (sSup s) =
sSup ({ toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom.toFun '' s)
h :
(fun f => f.toFun)
{ toInfTopHom := { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ },
map_sSup' := map_sSup'✝¹ } =
(fun f => f.toFun)
{ toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ },
map_sSup' := map_sSup'✝ }
⊢ { toInfTopHom := { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ },
map_sSup' := map_sSup'✝¹ } =
{ toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ },
map_sSup' := map_sSup'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
g : FrameHom β γ
f₁ f₂ : FrameHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
f g : CompleteLatticeHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
g : CompleteLatticeHom α β
toFun✝ : α → β
map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s)
map_sSup'✝ :
∀ (s : Set α),
sInfHom.toFun { toFun := toFun✝, map_sInf' := map_sInf'✝ } (sSup s) =
sSup ({ toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun '' s)
h :
(fun f => f.toFun) { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ } =
(fun f => f.toFun) g
⊢ { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ } = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
toFun✝¹ : α → β
map_sInf'✝¹ : ∀ (s : Set α), toFun✝¹ (sInf s) = sInf (toFun✝¹ '' s)
map_sSup'✝¹ :
∀ (s : Set α),
sInfHom.toFun { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ } (sSup s) =
sSup ({ toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }.toFun '' s)
toFun✝ : α → β
map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s)
map_sSup'✝ :
∀ (s : Set α),
sInfHom.toFun { toFun := toFun✝, map_sInf' := map_sInf'✝ } (sSup s) =
sSup ({ toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun '' s)
h :
(fun f => f.toFun) { tosInfHom := { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }, map_sSup' := map_sSup'✝¹ } =
(fun f => f.toFun) { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ }
⊢ { tosInfHom := { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }, map_sSup' := map_sSup'✝¹ } =
{ tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝³ : CompleteLattice α
inst✝² : CompleteLattice β
inst✝¹ : CompleteLattice γ
inst✝ : CompleteLattice δ
g : CompleteLatticeHom β γ
f₁ f₂ : CompleteLatticeHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set β)
⊢ ⋂ (t : Set β) (_ : t ∈ s), f ⁻¹' t = sInf (preimage f '' s)
[PROOFSTEP]
simp only [Set.sInf_eq_sInter, Set.sInter_image]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set β)
⊢ ⋃ (t : Set β) (_ : t ∈ s), (fun x => f x) ⁻¹' t =
sSup
({ toFun := preimage f, map_sInf' := (_ : ∀ (s : Set (Set β)), f ⁻¹' ⋂₀ s = sInf (preimage f '' s)) }.toFun '' s)
[PROOFSTEP]
simp only [Set.sSup_eq_sUnion, Set.sUnion_image]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
⊢ f '' sSup s = sSup (image f '' s)
[PROOFSTEP]
ext b
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
b : β
⊢ b ∈ f '' sSup s ↔ b ∈ sSup (image f '' s)
[PROOFSTEP]
simp only [sSup_eq_sUnion, mem_image, mem_sUnion, exists_prop, sUnion_image, mem_iUnion]
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
b : β
⊢ (∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = b) ↔ ∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = b
[PROOFSTEP]
constructor
[GOAL]
case h.mp
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
b : β
⊢ (∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = b) → ∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = b
[PROOFSTEP]
rintro ⟨a, ⟨t, ht₁, ht₂⟩, rfl⟩
[GOAL]
case h.mp.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
a : α
t : Set α
ht₁ : t ∈ s
ht₂ : a ∈ t
⊢ ∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = f a
[PROOFSTEP]
exact ⟨t, ht₁, a, ht₂, rfl⟩
[GOAL]
case h.mpr
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
b : β
⊢ (∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = b) → ∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = b
[PROOFSTEP]
rintro ⟨t, ht₁, a, ht₂, rfl⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
f : α → β
s : Set (Set α)
t : Set α
ht₁ : t ∈ s
a : α
ht₂ : a ∈ t
⊢ ∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = f a
[PROOFSTEP]
exact ⟨a, ⟨t, ht₁, ht₂⟩, rfl⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
e : α ≃ β
s : Set α
⊢ (fun s => ↑e.symm '' s) ((fun s => ↑e '' s) s) = s
[PROOFSTEP]
simp only [← image_comp, Equiv.symm_comp_self, id.def, image_id']
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
e : α ≃ β
s : Set β
⊢ (fun s => ↑e '' s) ((fun s => ↑e.symm '' s) s) = s
[PROOFSTEP]
simp only [← image_comp, Equiv.self_comp_symm, id.def, image_id']
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
e : α ≃ β
a✝ b✝ : Set α
h :
↑{ toFun := fun s => ↑e '' s, invFun := fun s => ↑e.symm '' s,
left_inv := (_ : ∀ (s : Set α), ↑e.symm '' (fun s => ↑e '' s) s = s),
right_inv := (_ : ∀ (s : Set β), ↑e '' (fun s => ↑e.symm '' s) s = s) }
a✝ ≤
↑{ toFun := fun s => ↑e '' s, invFun := fun s => ↑e.symm '' s,
left_inv := (_ : ∀ (s : Set α), ↑e.symm '' (fun s => ↑e '' s) s = s),
right_inv := (_ : ∀ (s : Set β), ↑e '' (fun s => ↑e.symm '' s) s = s) }
b✝
⊢ a✝ ≤ b✝
[PROOFSTEP]
simpa using @monotone_image _ _ e.symm _ _ h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝ : CompleteLattice α
x : α × α
s : Set (α × α)
⊢ (fun x => x.fst ⊔ x.snd) (sSup s) = sSup ((fun x => x.fst ⊔ x.snd) '' s)
[PROOFSTEP]
simp_rw [Prod.fst_sSup, Prod.snd_sSup, sSup_image, iSup_sup_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
ι : Sort u_6
κ : ι → Sort u_7
inst✝ : CompleteLattice α
x : α × α
s : Set (α × α)
⊢ (fun x => x.fst ⊓ x.snd) (sInf s) = sInf ((fun x => x.fst ⊓ x.snd) '' s)
[PROOFSTEP]
simp_rw [Prod.fst_sInf, Prod.snd_sInf, sInf_image, iInf_inf_eq]
| {"mathlib_filename": "Mathlib.Order.Hom.CompleteLattice", "llama_tokens": 11705} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f g h : α → β
⊢ map id = id
[PROOFSTEP]
ext ⟨f⟩
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g h : α → β
x✝ : Germ l β
f : α → β
⊢ map id (Quot.mk Setoid.r f) = id (Quot.mk Setoid.r f)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g✝ h : α → β
op : β → γ → δ
f f' : α → β
Hf✝ : Setoid.r f f'
g g' : α → γ
Hg✝ : Setoid.r g g'
x : α
Hf : f x = f' x
Hg : g x = g' x
⊢ (fun f g x => op (f x) (g x)) f g x = (fun f g x => op (f x) (g x)) f' g' x
[PROOFSTEP]
simp only [Hf, Hg]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
f✝ : Germ l β
f : α → β
⊢ 1 • ↑f = ↑f
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
f✝ : Germ l β
f : α → β
⊢ 1 • f =ᶠ[l] f
[PROOFSTEP]
simp only [one_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
f✝ : Germ l β
f : α → β
⊢ f =ᶠ[l] f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
c₁ c₂ : M
f✝ : Germ l β
f : α → β
⊢ (c₁ * c₂) • ↑f = c₁ • c₂ • ↑f
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
c₁ c₂ : M
f✝ : Germ l β
f : α → β
⊢ (c₁ * c₂) • f =ᶠ[l] c₁ • c₂ • f
[PROOFSTEP]
simp only [mul_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
c₁ c₂ : M
f✝ : Germ l β
f : α → β
⊢ c₁ • c₂ • f =ᶠ[l] c₁ • c₂ • f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
f✝ : Germ l β
f : α → β
⊢ 1 • ↑f = ↑f
[PROOFSTEP]
simp only [← coe_one, ← coe_smul', one_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
c₁✝ c₂✝ : Germ l M
f✝ : Germ l β
c₁ c₂ : α → M
f : α → β
⊢ (↑c₁ * ↑c₂) • ↑f = ↑c₁ • ↑c₂ • ↑f
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
c₁✝ c₂✝ : Germ l M
f✝ : Germ l β
c₁ c₂ : α → M
f : α → β
⊢ (c₁ * c₂) • f =ᶠ[l] c₁ • c₂ • f
[PROOFSTEP]
simp only [mul_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝¹ : Monoid M
inst✝ : MulAction M β
c₁✝ c₂✝ : Germ l M
f✝ : Germ l β
c₁ c₂ : α → M
f : α → β
⊢ c₁ • c₂ • f =ᶠ[l] c₁ • c₂ • f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c : M
⊢ c • 0 = 0
[PROOFSTEP]
simp only [← coe_zero, ← coe_smul, smul_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g✝¹ h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c : M
f✝ g✝ : Germ l N
f g : α → N
⊢ c • (↑f + ↑g) = c • ↑f + c • ↑g
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g✝¹ h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c : M
f✝ g✝ : Germ l N
f g : α → N
⊢ c • (f + g) =ᶠ[l] c • f + c • g
[PROOFSTEP]
simp only [smul_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g✝¹ h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c : M
f✝ g✝ : Germ l N
f g : α → N
⊢ c • f + c • g =ᶠ[l] c • f + c • g
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c✝ : Germ l M
c : α → M
⊢ ↑c • 0 = 0
[PROOFSTEP]
simp only [← coe_zero, ← coe_smul', smul_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g✝¹ h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c✝ : Germ l M
f✝ g✝ : Germ l N
c : α → M
f g : α → N
⊢ ↑c • (↑f + ↑g) = ↑c • ↑f + ↑c • ↑g
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g✝¹ h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c✝ : Germ l M
f✝ g✝ : Germ l N
c : α → M
f g : α → N
⊢ c • (f + g) =ᶠ[l] c • f + c • g
[PROOFSTEP]
simp only [smul_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g✝¹ h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : DistribMulAction M N
c✝ : Germ l M
f✝ g✝ : Germ l N
c : α → M
f g : α → N
⊢ c • f + c • g =ᶠ[l] c • f + c • g
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
c₁ c₂ : R
f✝ : Germ l M
f : α → M
⊢ (c₁ + c₂) • ↑f = c₁ • ↑f + c₂ • ↑f
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
c₁ c₂ : R
f✝ : Germ l M
f : α → M
⊢ (c₁ + c₂) • f =ᶠ[l] c₁ • f + c₂ • f
[PROOFSTEP]
simp only [add_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
c₁ c₂ : R
f✝ : Germ l M
f : α → M
⊢ c₁ • f + c₂ • f =ᶠ[l] c₁ • f + c₂ • f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f✝ : Germ l M
f : α → M
⊢ 0 • ↑f = 0
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f✝ : Germ l M
f : α → M
⊢ 0 • f =ᶠ[l] 0
[PROOFSTEP]
simp only [zero_smul, coe_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f✝ : Germ l M
f : α → M
⊢ 0 =ᶠ[l] 0
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
c₁✝ c₂✝ : Germ l R
f✝ : Germ l M
c₁ c₂ : α → R
f : α → M
⊢ (↑c₁ + ↑c₂) • ↑f = ↑c₁ • ↑f + ↑c₂ • ↑f
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
c₁✝ c₂✝ : Germ l R
f✝ : Germ l M
c₁ c₂ : α → R
f : α → M
⊢ (c₁ + c₂) • f =ᶠ[l] c₁ • f + c₂ • f
[PROOFSTEP]
simp only [add_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
c₁✝ c₂✝ : Germ l R
f✝ : Germ l M
c₁ c₂ : α → R
f : α → M
⊢ c₁ • f + c₂ • f =ᶠ[l] c₁ • f + c₂ • f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝¹ g h : α → β
M : Type u_5
N : Type u_6
R : Type u_7
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f✝ : Germ l M
f : α → M
⊢ 0 • ↑f = 0
[PROOFSTEP]
simp only [← coe_zero, ← coe_smul', zero_smul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g✝ h✝ : α → β
inst✝² : Mul β
inst✝¹ : LE β
inst✝ : ExistsMulOfLE β
x y : Germ l β
f g : α → β
h : f ≤ᶠ[l] g
⊢ ∃ c, ↑g = ↑f * c
[PROOFSTEP]
classical
choose c hc using fun x (hx : f x ≤ g x) ↦ exists_mul_of_le hx
refine ⟨ofFun <| fun x ↦ if hx : f x ≤ g x then c x hx else f x, coe_eq.2 ?_⟩
filter_upwards [h] with x hx
rw [dif_pos hx, hc]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g✝ h✝ : α → β
inst✝² : Mul β
inst✝¹ : LE β
inst✝ : ExistsMulOfLE β
x y : Germ l β
f g : α → β
h : f ≤ᶠ[l] g
⊢ ∃ c, ↑g = ↑f * c
[PROOFSTEP]
choose c hc using fun x (hx : f x ≤ g x) ↦ exists_mul_of_le hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g✝ h✝ : α → β
inst✝² : Mul β
inst✝¹ : LE β
inst✝ : ExistsMulOfLE β
x y : Germ l β
f g : α → β
h : f ≤ᶠ[l] g
c : (x : α) → f x ≤ g x → β
hc : ∀ (x : α) (hx : f x ≤ g x), g x = f x * c x hx
⊢ ∃ c, ↑g = ↑f * c
[PROOFSTEP]
refine ⟨ofFun <| fun x ↦ if hx : f x ≤ g x then c x hx else f x, coe_eq.2 ?_⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g✝ h✝ : α → β
inst✝² : Mul β
inst✝¹ : LE β
inst✝ : ExistsMulOfLE β
x y : Germ l β
f g : α → β
h : f ≤ᶠ[l] g
c : (x : α) → f x ≤ g x → β
hc : ∀ (x : α) (hx : f x ≤ g x), g x = f x * c x hx
⊢ g =ᶠ[l] (fun f g x => (fun x x_1 => x * x_1) (f x) (g x)) f fun x => if hx : f x ≤ g x then c x hx else f x
[PROOFSTEP]
filter_upwards [h] with x hx
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
l : Filter α
f✝ g✝ h✝ : α → β
inst✝² : Mul β
inst✝¹ : LE β
inst✝ : ExistsMulOfLE β
x✝ y : Germ l β
f g : α → β
h : f ≤ᶠ[l] g
c : (x : α) → f x ≤ g x → β
hc : ∀ (x : α) (hx : f x ≤ g x), g x = f x * c x hx
x : α
hx : f x ≤ g x
⊢ g x = f x * if hx : f x ≤ g x then c x hx else f x
[PROOFSTEP]
rw [dif_pos hx, hc]
| {"mathlib_filename": "Mathlib.Order.Filter.Germ", "llama_tokens": 6049} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
F : Type u_5
inst✝ : RelHomClass F r s
f : F
a : α
⊢ Acc s (↑f a) → Acc r a
[PROOFSTEP]
generalize h : f a = b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
F : Type u_5
inst✝ : RelHomClass F r s
f : F
a : α
b : β
h : ↑f a = b
⊢ Acc s b → Acc r a
[PROOFSTEP]
intro ac
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
F : Type u_5
inst✝ : RelHomClass F r s
f : F
a : α
b : β
h : ↑f a = b
ac : Acc s b
⊢ Acc r a
[PROOFSTEP]
induction' ac with _ H IH generalizing a
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
F : Type u_5
inst✝ : RelHomClass F r s
f : F
a✝ : α
b : β
h✝ : ↑f a✝ = b
x✝ : β
H : ∀ (y : β), s y x✝ → Acc s y
IH : ∀ (y : β), s y x✝ → ∀ (a : α), ↑f a = y → Acc r a
a : α
h : ↑f a = x✝
⊢ Acc r a
[PROOFSTEP]
subst h
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
F : Type u_5
inst✝ : RelHomClass F r s
f : F
a✝ : α
b : β
h : ↑f a✝ = b
a : α
H : ∀ (y : β), s y (↑f a) → Acc s y
IH : ∀ (y : β), s y (↑f a) → ∀ (a : α), ↑f a = y → Acc r a
⊢ Acc r a
[PROOFSTEP]
exact ⟨_, fun a' h => IH (f a') (map_rel f h) _ rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f g : r →r s
h : (fun o => o.toFun) f = (fun o => o.toFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
g : r →r s
toFun✝ : α → β
map_rel'✝ : ∀ {a b : α}, r a b → s (toFun✝ a) (toFun✝ b)
h : (fun o => o.toFun) { toFun := toFun✝, map_rel' := map_rel'✝ } = (fun o => o.toFun) g
⊢ { toFun := toFun✝, map_rel' := map_rel'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
toFun✝¹ : α → β
map_rel'✝¹ : ∀ {a b : α}, r a b → s (toFun✝¹ a) (toFun✝¹ b)
toFun✝ : α → β
map_rel'✝ : ∀ {a b : α}, r a b → s (toFun✝ a) (toFun✝ b)
h :
(fun o => o.toFun) { toFun := toFun✝¹, map_rel' := map_rel'✝¹ } =
(fun o => o.toFun) { toFun := toFun✝, map_rel' := map_rel'✝ }
⊢ { toFun := toFun✝¹, map_rel' := map_rel'✝¹ } = { toFun := toFun✝, map_rel' := map_rel'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
⊢ Injective f
[PROOFSTEP]
intro x y hxy
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
⊢ x = y
[PROOFSTEP]
rcases trichotomous_of r x y with (h | h | h)
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r x y
⊢ x = y
[PROOFSTEP]
have := hf h
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r x y
this : s (f x) (f y)
⊢ x = y
[PROOFSTEP]
rw [hxy] at this
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r x y
this : s (f y) (f y)
⊢ x = y
[PROOFSTEP]
exfalso
[GOAL]
case inl.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r x y
this : s (f y) (f y)
⊢ False
[PROOFSTEP]
exact irrefl_of s (f y) this
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : x = y
⊢ x = y
[PROOFSTEP]
exact h
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r y x
⊢ x = y
[PROOFSTEP]
have := hf h
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r y x
this : s (f y) (f x)
⊢ x = y
[PROOFSTEP]
rw [hxy] at this
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r y x
this : s (f y) (f y)
⊢ x = y
[PROOFSTEP]
exfalso
[GOAL]
case inr.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsIrrefl β s
f : α → β
hf : ∀ {x y : α}, r x y → s (f x) (f y)
x y : α
hxy : f x = f y
h : r y x
this : s (f y) (f y)
⊢ False
[PROOFSTEP]
exact irrefl_of s (f y) this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
⊢ WellFounded r → WellFounded s
[PROOFSTEP]
refine RelHomClass.wellFounded (RelHom.mk ?_ ?_ : s →r r)
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
⊢ β → α
[PROOFSTEP]
exact Classical.choose hf.hasRightInverse
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
⊢ ∀ {a b : β}, s a b → r (Classical.choose (_ : HasRightInverse f) a) (Classical.choose (_ : HasRightInverse f) b)
[PROOFSTEP]
intro a b h
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ r (Classical.choose (_ : HasRightInverse f) a) (Classical.choose (_ : HasRightInverse f) b)
[PROOFSTEP]
apply o.2
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ s (f (Classical.choose (_ : HasRightInverse f) a)) (f (Classical.choose (_ : HasRightInverse f) b))
[PROOFSTEP]
convert h
[GOAL]
case h.e'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ f (Classical.choose (_ : HasRightInverse f) a) = a
case h.e'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ f (Classical.choose (_ : HasRightInverse f) b) = b
[PROOFSTEP]
iterate 2 apply Classical.choose_spec hf.hasRightInverse
[GOAL]
case h.e'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ f (Classical.choose (_ : HasRightInverse f) a) = a
case h.e'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ f (Classical.choose (_ : HasRightInverse f) b) = b
[PROOFSTEP]
apply Classical.choose_spec hf.hasRightInverse
[GOAL]
case h.e'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : α → β
hf : Surjective f
o : ∀ {a b : α}, r a b ↔ s (f a) (f b)
a b : β
h : s a b
⊢ f (Classical.choose (_ : HasRightInverse f) b) = b
[PROOFSTEP]
apply Classical.choose_spec hf.hasRightInverse
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f g : r ↪r s
h : (fun x => x.toFun) f = (fun x => x.toFun) g
⊢ f = g
[PROOFSTEP]
rcases f with ⟨⟨⟩⟩
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
g : r ↪r s
toFun✝ : α → β
inj'✝ : Injective toFun✝
map_rel_iff'✝ : ∀ {a b : α}, s (↑{ toFun := toFun✝, inj' := inj'✝ } a) (↑{ toFun := toFun✝, inj' := inj'✝ } b) ↔ r a b
h :
(fun x => x.toFun) { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ } =
(fun x => x.toFun) g
⊢ { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ } = g
[PROOFSTEP]
rcases g with ⟨⟨⟩⟩
[GOAL]
case mk.mk.mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
toFun✝¹ : α → β
inj'✝¹ : Injective toFun✝¹
map_rel_iff'✝¹ :
∀ {a b : α}, s (↑{ toFun := toFun✝¹, inj' := inj'✝¹ } a) (↑{ toFun := toFun✝¹, inj' := inj'✝¹ } b) ↔ r a b
toFun✝ : α → β
inj'✝ : Injective toFun✝
map_rel_iff'✝ : ∀ {a b : α}, s (↑{ toFun := toFun✝, inj' := inj'✝ } a) (↑{ toFun := toFun✝, inj' := inj'✝ } b) ↔ r a b
h :
(fun x => x.toFun) { toEmbedding := { toFun := toFun✝¹, inj' := inj'✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } =
(fun x => x.toFun) { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ }
⊢ { toEmbedding := { toFun := toFun✝¹, inj' := inj'✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } =
{ toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : s ↪r t
⊢ ∀ {a b : α},
t (↑(Embedding.trans f.toEmbedding g.toEmbedding) a) (↑(Embedding.trans f.toEmbedding g.toEmbedding) b) ↔ r a b
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
⊢ r = ↑f ⁻¹'o s
[PROOFSTEP]
ext a b
[GOAL]
case h.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
a b : α
⊢ r a b ↔ (↑f ⁻¹'o s) a b
[PROOFSTEP]
exact f.map_rel_iff.symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
a : α
⊢ Acc s (↑f a) → Acc r a
[PROOFSTEP]
generalize h : f a = b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
a : α
b : β
h : ↑f a = b
⊢ Acc s b → Acc r a
[PROOFSTEP]
intro ac
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
a : α
b : β
h : ↑f a = b
ac : Acc s b
⊢ Acc r a
[PROOFSTEP]
induction' ac with _ H IH generalizing a
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
a✝ : α
b : β
h✝ : ↑f a✝ = b
x✝ : β
H : ∀ (y : β), s y x✝ → Acc s y
IH : ∀ (y : β), s y x✝ → ∀ (a : α), ↑f a = y → Acc r a
a : α
h : ↑f a = x✝
⊢ Acc r a
[PROOFSTEP]
subst h
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
a✝ : α
b : β
h : ↑f a✝ = b
a : α
H : ∀ (y : β), s y (↑f a) → Acc s y
IH : ∀ (y : β), s y (↑f a) → ∀ (a : α), ↑f a = y → Acc r a
⊢ Acc r a
[PROOFSTEP]
exact ⟨_, fun a' h => IH (f a') (f.map_rel_iff.2 h) _ rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
⊢ ∀ {a b : Quotient inst✝}, r (↑(Embedding.quotientOut α) a) (↑(Embedding.quotientOut α) b) ↔ Quotient.lift₂ r H a b
[PROOFSTEP]
refine' @fun x y => Quotient.inductionOn₂ x y fun a b => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
x y : Quotient inst✝
a b : α
⊢ r (↑(Embedding.quotientOut α) (Quotient.mk inst✝ a)) (↑(Embedding.quotientOut α) (Quotient.mk inst✝ b)) ↔
Quotient.lift₂ r H (Quotient.mk inst✝ a) (Quotient.mk inst✝ b)
[PROOFSTEP]
apply iff_iff_eq.2 (H _ _ _ _ _ _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
x y : Quotient inst✝
a b : α
⊢ ↑(Embedding.quotientOut α) (Quotient.mk inst✝ a) ≈ a
[PROOFSTEP]
apply Quotient.mk_out
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
x y : Quotient inst✝
a b : α
⊢ ↑(Embedding.quotientOut α) (Quotient.mk inst✝ b) ≈ b
[PROOFSTEP]
apply Quotient.mk_out
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a : α
⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) ↔ Acc r a
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a : α
⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) → Acc r a
[PROOFSTEP]
exact RelHomClass.acc (Quotient.mkRelHom H) a
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a : α
⊢ Acc r a → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a)
[PROOFSTEP]
intro ac
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a : α
ac : Acc r a
⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a)
[PROOFSTEP]
induction' ac with _ _ IH
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a x✝ : α
h✝ : ∀ (y : α), r y x✝ → Acc r y
IH : ∀ (y : α), r y x✝ → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ y)
⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ x✝)
[PROOFSTEP]
refine' ⟨_, fun q h => _⟩
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a x✝ : α
h✝ : ∀ (y : α), r y x✝ → Acc r y
IH : ∀ (y : α), r y x✝ → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ y)
q : Quotient inst✝
h : Quotient.lift₂ r H q (Quotient.mk inst✝ x✝)
⊢ Acc (Quotient.lift₂ r H) q
[PROOFSTEP]
obtain ⟨a', rfl⟩ := q.exists_rep
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
a x✝ : α
h✝ : ∀ (y : α), r y x✝ → Acc r y
IH : ∀ (y : α), r y x✝ → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ y)
a' : α
h : Quotient.lift₂ r H (Quotient.mk inst✝ a') (Quotient.mk inst✝ x✝)
⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a')
[PROOFSTEP]
exact IH a' h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
⊢ WellFounded (Quotient.lift₂ r H) ↔ WellFounded r
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
⊢ WellFounded (Quotient.lift₂ r H) → WellFounded r
[PROOFSTEP]
exact RelHomClass.wellFounded (Quotient.mkRelHom H)
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
⊢ WellFounded r → WellFounded (Quotient.lift₂ r H)
[PROOFSTEP]
refine' fun wf => ⟨fun q => _⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
wf : WellFounded r
q : Quotient inst✝
⊢ Acc (Quotient.lift₂ r H) q
[PROOFSTEP]
obtain ⟨a, rfl⟩ := q.exists_rep
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝ : Setoid α
r : α → α → Prop
H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂
wf : WellFounded r
a : α
⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a)
[PROOFSTEP]
exact acc_lift₂_iff.2 (wf.apply a)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
⊢ r ↪r s
[PROOFSTEP]
haveI := @IsAsymm.isIrrefl β s _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
⊢ r ↪r s
[PROOFSTEP]
refine' ⟨⟨f, fun a b e => _⟩, @fun a b => ⟨fun h => _, H _ _⟩⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
e : f a = f b
⊢ a = b
[PROOFSTEP]
refine' ((@trichotomous _ r _ a b).resolve_left _).resolve_right _
[GOAL]
case refine'_1.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
e : f a = f b
⊢ ¬r a b
[PROOFSTEP]
exact fun h => @irrefl _ s _ _ (by simpa [e] using H _ _ h)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
e : f a = f b
h : r a b
⊢ s (?m.45031 h) (?m.45031 h)
[PROOFSTEP]
simpa [e] using H _ _ h
[GOAL]
case refine'_1.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
e : f a = f b
⊢ ¬r b a
[PROOFSTEP]
exact fun h => @irrefl _ s _ _ (by simpa [e] using H _ _ h)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
e : f a = f b
h : r b a
⊢ s (?m.45243 h) (?m.45243 h)
[PROOFSTEP]
simpa [e] using H _ _ h
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
h :
s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a)
(↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } b)
⊢ r a b
[PROOFSTEP]
refine' (@trichotomous _ r _ a b).resolve_right (Or.rec (fun e => _) fun h' => _)
[GOAL]
case refine'_2.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
h :
s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a)
(↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } b)
e : a = b
⊢ False
[PROOFSTEP]
subst e
[GOAL]
case refine'_2.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a : α
h :
s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a)
(↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a)
⊢ False
[PROOFSTEP]
exact irrefl _ h
[GOAL]
case refine'_2.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
inst✝¹ : IsTrichotomous α r
inst✝ : IsAsymm β s
f : α → β
H : ∀ (a b : α), r a b → s (f a) (f b)
this : IsIrrefl β s
a b : α
h :
s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a)
(↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } b)
h' : r b a
⊢ False
[PROOFSTEP]
exact asymm (H _ _ h') h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
⊢ ∀ {a b : α ⊕ γ},
Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } a)
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } b) ↔
Sum.LiftRel r t a b
[PROOFSTEP]
rintro (a | b) (c | d)
[GOAL]
case inl.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
a c : α
⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔
Sum.LiftRel r t (Sum.inl a) (Sum.inl c)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
case inl.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
a : α
d : γ
⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔
Sum.LiftRel r t (Sum.inl a) (Sum.inr d)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
b : γ
c : α
⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔
Sum.LiftRel r t (Sum.inr b) (Sum.inl c)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
b d : γ
⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔
Sum.LiftRel r t (Sum.inr b) (Sum.inr d)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
⊢ ∀ {a b : α ⊕ γ},
Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } a)
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } b) ↔
Sum.Lex r t a b
[PROOFSTEP]
rintro (a | b) (c | d)
[GOAL]
case inl.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
a c : α
⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔
Sum.Lex r t (Sum.inl a) (Sum.inl c)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
case inl.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
a : α
d : γ
⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔
Sum.Lex r t (Sum.inl a) (Sum.inr d)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
b : γ
c : α
⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔
Sum.Lex r t (Sum.inr b) (Sum.inl c)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
b d : γ
⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b))
(↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔
Sum.Lex r t (Sum.inr b) (Sum.inr d)
[PROOFSTEP]
simp [f.map_rel_iff, g.map_rel_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
s : β → β → Prop
a : α
h : ¬r a a
⊢ ∀ {a_1 b : β},
Prod.Lex r s (↑{ toFun := Prod.mk a, inj' := (_ : Injective (Prod.mk a)) } a_1)
(↑{ toFun := Prod.mk a, inj' := (_ : Injective (Prod.mk a)) } b) ↔
s a_1 b
[PROOFSTEP]
simp [Prod.lex_def, h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
r : α → α → Prop
b : β
h : ¬s b b
⊢ ∀ {a b_1 : α},
Prod.Lex r s (↑{ toFun := fun a => (a, b), inj' := (_ : Injective fun a => (a, b)) } a)
(↑{ toFun := fun a => (a, b), inj' := (_ : Injective fun a => (a, b)) } b_1) ↔
r a b_1
[PROOFSTEP]
simp [Prod.lex_def, h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ↪r s
g : t ↪r u
⊢ ∀ {a b : α × γ},
Prod.Lex s u (↑{ toFun := Prod.map ↑f ↑g, inj' := (_ : Injective (Prod.map ↑f ↑g)) } a)
(↑{ toFun := Prod.map ↑f ↑g, inj' := (_ : Injective (Prod.map ↑f ↑g)) } b) ↔
Prod.Lex r t a b
[PROOFSTEP]
simp [Prod.lex_def, f.map_rel_iff, g.map_rel_iff, f.inj]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
e₁ : α ≃ β
o₁ : ∀ {a b : α}, s (↑e₁ a) (↑e₁ b) ↔ r a b
e₂ : α ≃ β
map_rel_iff'✝ : ∀ {a b : α}, s (↑e₂ a) (↑e₂ b) ↔ r a b
h : { toEquiv := e₁, map_rel_iff' := o₁ }.toEquiv = { toEquiv := e₂, map_rel_iff' := map_rel_iff'✝ }.toEquiv
⊢ { toEquiv := e₁, map_rel_iff' := o₁ } = { toEquiv := e₂, map_rel_iff' := map_rel_iff'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
f : r ≃r s
a b : β
⊢ r (↑f.symm a) (↑f.symm b) ↔ s a b
[PROOFSTEP]
erw [← f.map_rel_iff, f.1.apply_symm_apply, f.1.apply_symm_apply]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α✝ → α✝ → Prop
s✝ : β✝ → β✝ → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α β : Type u
r : α → α → Prop
s : β → β → Prop
h₁ : α = β
h₂ : HEq r s
a b : α
⊢ s (↑(Equiv.cast h₁) a) (↑(Equiv.cast h₁) b) ↔ r a b
[PROOFSTEP]
subst h₁
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α✝ → α✝ → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α : Type u
r : α → α → Prop
a b : α
s : α → α → Prop
h₂ : HEq r s
⊢ s (↑(Equiv.cast (_ : α = α)) a) (↑(Equiv.cast (_ : α = α)) b) ↔ r a b
[PROOFSTEP]
rw [eq_of_heq h₂]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r✝ : α✝ → α✝ → Prop
s✝ : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α : Type u
r : α → α → Prop
a b : α
s : α → α → Prop
h₂ : HEq r s
⊢ s (↑(Equiv.cast (_ : α = α)) a) (↑(Equiv.cast (_ : α = α)) b) ↔ s a b
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
r✝ : α✝ → α✝ → Prop
s✝ : β✝ → β✝ → Prop
t✝ : γ✝ → γ✝ → Prop
u : δ → δ → Prop
α β γ : Type u
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
h₁ : α = β
h₁' : β = γ
h₂ : HEq r s
h₂' : HEq s t
x : α
⊢ ↑(RelIso.trans (RelIso.cast h₁ h₂) (RelIso.cast h₁' h₂')) x = ↑(RelIso.cast (_ : α = γ) (_ : HEq r t)) x
[PROOFSTEP]
subst h₁
[GOAL]
α✝ : Type u_1
β : Type u_2
γ✝ : Type u_3
δ : Type u_4
r✝ : α✝ → α✝ → Prop
s✝ : β → β → Prop
t✝ : γ✝ → γ✝ → Prop
u : δ → δ → Prop
α γ : Type u
r : α → α → Prop
t : γ → γ → Prop
x : α
s : α → α → Prop
h₁' : α = γ
h₂ : HEq r s
h₂' : HEq s t
⊢ ↑(RelIso.trans (RelIso.cast (_ : α = α) h₂) (RelIso.cast h₁' h₂')) x = ↑(RelIso.cast (_ : α = γ) (_ : HEq r t)) x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
e : r ≃r s
x : α
y : β
⊢ r x (↑(RelIso.symm e) y) ↔ s (↑e x) y
[PROOFSTEP]
rw [← e.map_rel_iff, e.apply_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
e : r ≃r s
x : β
y : α
⊢ r (↑(RelIso.symm e) x) y ↔ s x (↑e y)
[PROOFSTEP]
rw [← e.map_rel_iff, e.apply_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
e₁ : r₁ ≃r s₁
e₂ : r₂ ≃r s₂
a b : α₁ ⊕ α₂
⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr e₁.toEquiv e₂.toEquiv) a) (↑(Equiv.sumCongr e₁.toEquiv e₂.toEquiv) b) ↔
Sum.Lex r₁ r₂ a b
[PROOFSTEP]
cases' e₁ with f hf
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
e₂ : r₂ ≃r s₂
a b : α₁ ⊕ α₂
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv e₂.toEquiv) a)
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv e₂.toEquiv) b) ↔
Sum.Lex r₁ r₂ a b
[PROOFSTEP]
cases' e₂ with g hg
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
a b : α₁ ⊕ α₂
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) a)
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) b) ↔
Sum.Lex r₁ r₂ a b
[PROOFSTEP]
cases a
[GOAL]
case mk.mk.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
b : α₁ ⊕ α₂
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
val✝ : α₁
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inl val✝))
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) b) ↔
Sum.Lex r₁ r₂ (Sum.inl val✝) b
[PROOFSTEP]
cases b
[GOAL]
case mk.mk.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
b : α₁ ⊕ α₂
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
val✝ : α₂
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inr val✝))
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) b) ↔
Sum.Lex r₁ r₂ (Sum.inr val✝) b
[PROOFSTEP]
cases b
[GOAL]
case mk.mk.inl.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
val✝¹ val✝ : α₁
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inl val✝¹))
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inl val✝)) ↔
Sum.Lex r₁ r₂ (Sum.inl val✝¹) (Sum.inl val✝)
[PROOFSTEP]
simp [hf, hg]
[GOAL]
case mk.mk.inl.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
val✝¹ : α₁
val✝ : α₂
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inl val✝¹))
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inr val✝)) ↔
Sum.Lex r₁ r₂ (Sum.inl val✝¹) (Sum.inr val✝)
[PROOFSTEP]
simp [hf, hg]
[GOAL]
case mk.mk.inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
val✝¹ : α₂
val✝ : α₁
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inr val✝¹))
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inl val✝)) ↔
Sum.Lex r₁ r₂ (Sum.inr val✝¹) (Sum.inl val✝)
[PROOFSTEP]
simp [hf, hg]
[GOAL]
case mk.mk.inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.80676
α₂ : Type ?u.80684
β₁ : Type ?u.80677
β₂ : Type ?u.80685
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
f : α₁ ≃ β₁
hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b
g : α₂ ≃ β₂
hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b
val✝¹ val✝ : α₂
⊢ Sum.Lex s₁ s₂
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inr val✝¹))
(↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv)
(Sum.inr val✝)) ↔
Sum.Lex r₁ r₂ (Sum.inr val✝¹) (Sum.inr val✝)
[PROOFSTEP]
simp [hf, hg]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
u : δ → δ → Prop
α₁ : Type ?u.82669
α₂ : Type ?u.82677
β₁ : Type ?u.82670
β₂ : Type ?u.82678
r₁ : α₁ → α₁ → Prop
r₂ : α₂ → α₂ → Prop
s₁ : β₁ → β₁ → Prop
s₂ : β₂ → β₂ → Prop
e₁ : r₁ ≃r s₁
e₂ : r₂ ≃r s₂
⊢ ∀ {a b : α₁ × α₂},
Prod.Lex s₁ s₂ (↑(Equiv.prodCongr e₁.toEquiv e₂.toEquiv) a) (↑(Equiv.prodCongr e₁.toEquiv e₂.toEquiv) b) ↔
Prod.Lex r₁ r₂ a b
[PROOFSTEP]
simp [Prod.lex_def, e₁.map_rel_iff, e₂.map_rel_iff, e₁.injective.eq_iff]
| {"mathlib_filename": "Mathlib.Order.RelIso.Basic", "llama_tokens": 22313} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : HeytingAlgebra α
x✝ : HeytingAlgebra β
inst✝ : HeytingHomClass F α β
src✝ : HeytingHomClass F α β := inst✝
f : F
⊢ ↑f ⊤ = ⊤
[PROOFSTEP]
rw [← @himp_self α _ ⊥, ← himp_self, map_himp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : CoheytingAlgebra α
x✝ : CoheytingAlgebra β
inst✝ : CoheytingHomClass F α β
src✝ : CoheytingHomClass F α β := inst✝
f : F
⊢ ↑f ⊥ = ⊥
[PROOFSTEP]
rw [← @sdiff_self α _ ⊤, ← sdiff_self, map_sdiff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : BiheytingHomClass F α β
src✝ : BiheytingHomClass F α β := inst✝
f : F
⊢ ↑f ⊥ = ⊥
[PROOFSTEP]
rw [← @sdiff_self α _ ⊤, ← sdiff_self, BiheytingHomClass.map_sdiff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : BiheytingHomClass F α β
src✝ : BiheytingHomClass F α β := inst✝
f : F
⊢ ↑f ⊤ = ⊤
[PROOFSTEP]
rw [← @himp_self α _ ⊥, ← himp_self, map_himp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : HeytingAlgebra α
x✝ : HeytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass
f : F
a b : α
c : (fun x => β) (a ⇨ b)
⊢ c ≤ ↑f (a ⇨ b) ↔ c ≤ ↑f a ⇨ ↑f b
[PROOFSTEP]
simp only [← map_inv_le_iff, le_himp_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : HeytingAlgebra α
x✝ : HeytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass
f : F
a b : α
c : (fun x => β) (a ⇨ b)
⊢ EquivLike.inv f c ⊓ a ≤ b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b
[PROOFSTEP]
rw [← OrderIsoClass.map_le_map_iff f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : HeytingAlgebra α
x✝ : HeytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass
f : F
a b : α
c : (fun x => β) (a ⇨ b)
⊢ ↑f (EquivLike.inv f c ⊓ a) ≤ ↑f b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : CoheytingAlgebra α
x✝ : CoheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass
f : F
a b : α
c : (fun x => β) (a \ b)
⊢ ↑f (a \ b) ≤ c ↔ ↑f a \ ↑f b ≤ c
[PROOFSTEP]
simp only [← le_map_inv_iff, sdiff_le_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : CoheytingAlgebra α
x✝ : CoheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass
f : F
a b : α
c : (fun x => β) (a \ b)
⊢ a ≤ b ⊔ EquivLike.inv f c ↔ a ≤ EquivLike.inv f (↑f b ⊔ c)
[PROOFSTEP]
rw [← OrderIsoClass.map_le_map_iff f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : CoheytingAlgebra α
x✝ : CoheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass
f : F
a b : α
c : (fun x => β) (a \ b)
⊢ ↑f a ≤ ↑f (b ⊔ EquivLike.inv f c) ↔ a ≤ EquivLike.inv f (↑f b ⊔ c)
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : LatticeHomClass F α β := toLatticeHomClass
f : F
a b : α
c : (fun x => β) (a ⇨ b)
⊢ c ≤ ↑f (a ⇨ b) ↔ c ≤ ↑f a ⇨ ↑f b
[PROOFSTEP]
simp only [← map_inv_le_iff, le_himp_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : LatticeHomClass F α β := toLatticeHomClass
f : F
a b : α
c : (fun x => β) (a ⇨ b)
⊢ EquivLike.inv f c ⊓ a ≤ b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b
[PROOFSTEP]
rw [← OrderIsoClass.map_le_map_iff f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : LatticeHomClass F α β := toLatticeHomClass
f : F
a b : α
c : (fun x => β) (a ⇨ b)
⊢ ↑f (EquivLike.inv f c ⊓ a) ≤ ↑f b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : LatticeHomClass F α β := toLatticeHomClass
f : F
a b : α
c : (fun x => β) (a \ b)
⊢ ↑f (a \ b) ≤ c ↔ ↑f a \ ↑f b ≤ c
[PROOFSTEP]
simp only [← le_map_inv_iff, sdiff_le_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : LatticeHomClass F α β := toLatticeHomClass
f : F
a b : α
c : (fun x => β) (a \ b)
⊢ a ≤ b ⊔ EquivLike.inv f c ↔ a ≤ EquivLike.inv f (↑f b ⊔ c)
[PROOFSTEP]
rw [← OrderIsoClass.map_le_map_iff f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : BiheytingAlgebra α
x✝ : BiheytingAlgebra β
inst✝ : OrderIsoClass F α β
src✝ : LatticeHomClass F α β := toLatticeHomClass
f : F
a b : α
c : (fun x => β) (a \ b)
⊢ ↑f a ≤ ↑f (b ⊔ EquivLike.inv f c) ↔ a ≤ EquivLike.inv f (↑f b ⊔ c)
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : BooleanAlgebra α
inst✝¹ : BooleanAlgebra β
inst✝ : BoundedLatticeHomClass F α β
src✝ : BoundedLatticeHomClass F α β := inst✝
f : F
a b : α
⊢ ↑f (a ⇨ b) = ↑f a ⇨ ↑f b
[PROOFSTEP]
rw [himp_eq, himp_eq, map_sup, (isCompl_compl.map _).compl_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : BooleanAlgebra α
inst✝¹ : BooleanAlgebra β
inst✝ : BoundedLatticeHomClass F α β
src✝ : BoundedLatticeHomClass F α β := inst✝
f : F
a b : α
⊢ ↑f (a \ b) = ↑f a \ ↑f b
[PROOFSTEP]
rw [sdiff_eq, sdiff_eq, map_inf, (isCompl_compl.map _).compl_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : HeytingAlgebra α
inst✝¹ : HeytingAlgebra β
inst✝ : HeytingHomClass F α β
f : F
a : α
⊢ ↑f aᶜ = (↑f a)ᶜ
[PROOFSTEP]
rw [← himp_bot, ← himp_bot, map_himp, map_bot]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : HeytingAlgebra α
inst✝¹ : HeytingAlgebra β
inst✝ : HeytingHomClass F α β
f : F
a b : α
⊢ ↑f (a ⇔ b) = ↑f a ⇔ ↑f b
[PROOFSTEP]
simp_rw [bihimp, map_inf, map_himp]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : CoheytingAlgebra α
inst✝¹ : CoheytingAlgebra β
inst✝ : CoheytingHomClass F α β
f : F
a : α
⊢ ↑f (¬a) = ¬↑f a
[PROOFSTEP]
rw [← top_sdiff', ← top_sdiff', map_sdiff, map_top]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : CoheytingAlgebra α
inst✝¹ : CoheytingAlgebra β
inst✝ : CoheytingHomClass F α β
f : F
a b : α
⊢ ↑f (a ∆ b) = ↑f a ∆ ↑f b
[PROOFSTEP]
simp_rw [symmDiff, map_sup, map_sdiff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f g : HeytingHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
g : HeytingHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_bot'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥
map_himp'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_bot' := map_bot'✝, map_himp' := map_himp'✝ } =
(fun f => f.toFun) g
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_bot' := map_bot'✝, map_himp' := map_himp'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
map_inf'✝¹ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b
map_bot'✝¹ :
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊥ = ⊥
map_himp'✝¹ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a ⇨ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a ⇨
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_bot'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥
map_himp'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_bot' := map_bot'✝¹, map_himp' := map_himp'✝¹ } =
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_bot' := map_bot'✝, map_himp' := map_himp'✝ }
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_bot' := map_bot'✝¹, map_himp' := map_himp'✝¹ } =
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_bot' := map_bot'✝, map_himp' := map_himp'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f : HeytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b
[PROOFSTEP]
simpa only [h] using map_sup f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f : HeytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b
[PROOFSTEP]
simpa only [h] using map_inf f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f : HeytingHom α β
f' : α → β
h : f' = ↑f
⊢ SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom
⊥ =
⊥
[PROOFSTEP]
simpa only [h] using map_bot f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f : HeytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
(a ⇨ b) =
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
a ⇨
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
b
[PROOFSTEP]
simpa only [h] using map_himp f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f : HeytingHom β γ
g : HeytingHom α β
src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom
⊢ SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
⊥ =
⊥
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f : HeytingHom β γ
g : HeytingHom α β
src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom
a b : α
⊢ SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
(a ⇨ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
a ⇨
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
b
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : HeytingAlgebra α
inst✝² : HeytingAlgebra β
inst✝¹ : HeytingAlgebra γ
inst✝ : HeytingAlgebra δ
f f₁ f₂ : HeytingHom α β
g g₁ g₂ : HeytingHom β γ
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f g : CoheytingHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
g : CoheytingHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_top'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤
map_sdiff'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ } =
(fun f => f.toFun) g
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
map_inf'✝¹ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b
map_top'✝¹ :
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊤ = ⊤
map_sdiff'✝¹ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a \ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a \
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_top'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤
map_sdiff'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_top' := map_top'✝¹, map_sdiff' := map_sdiff'✝¹ } =
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ }
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_top' := map_top'✝¹, map_sdiff' := map_sdiff'✝¹ } =
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f : CoheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b
[PROOFSTEP]
simpa only [h] using map_sup f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f : CoheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b
[PROOFSTEP]
simpa only [h] using map_inf f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f : CoheytingHom α β
f' : α → β
h : f' = ↑f
⊢ SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom
⊤ =
⊤
[PROOFSTEP]
simpa only [h] using map_top f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f : CoheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
(a \ b) =
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
a \
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
b
[PROOFSTEP]
simpa only [h] using map_sdiff f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f : CoheytingHom β γ
g : CoheytingHom α β
src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom
⊢ SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
⊤ =
⊤
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f : CoheytingHom β γ
g : CoheytingHom α β
src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom
a b : α
⊢ SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
(a \ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
a \
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
b
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : CoheytingAlgebra α
inst✝² : CoheytingAlgebra β
inst✝¹ : CoheytingAlgebra γ
inst✝ : CoheytingAlgebra δ
f f₁ f₂ : CoheytingHom α β
g g₁ g₂ : CoheytingHom β γ
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f g : BiheytingHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
g : BiheytingHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_himp'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
map_sdiff'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ } =
(fun f => f.toFun) g
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
map_inf'✝¹ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b
map_himp'✝¹ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a ⇨ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a ⇨
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b
map_sdiff'✝¹ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a \ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a \
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_himp'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
map_sdiff'✝ :
∀ (a b : α),
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) =
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_himp' := map_himp'✝¹, map_sdiff' := map_sdiff'✝¹ } =
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ }
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_himp' := map_himp'✝¹, map_sdiff' := map_sdiff'✝¹ } =
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f : BiheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b
[PROOFSTEP]
simpa only [h] using map_sup f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f : BiheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b
[PROOFSTEP]
simpa only [h] using map_inf f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f : BiheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
(a ⇨ b) =
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
a ⇨
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
b
[PROOFSTEP]
simpa only [h] using map_himp f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f : BiheytingHom α β
f' : α → β
h : f' = ↑f
⊢ ∀ (a b : α),
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
(a \ b) =
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
a \
SupHom.toFun
{ toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) =
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓
SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }
b) }.toSupHom
b
[PROOFSTEP]
simpa only [h] using map_sdiff f
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f : BiheytingHom β γ
g : BiheytingHom α β
src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom
a b : α
⊢ SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
(a ⇨ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
a ⇨
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
b
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f : BiheytingHom β γ
g : BiheytingHom α β
src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom
a b : α
⊢ SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
(a \ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
a \
SupHom.toFun
{
toSupHom :=
{ toFun := ↑f ∘ ↑g,
map_sup' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊔ b) =
SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) },
map_inf' :=
(_ :
∀ (a b : α),
SupHom.toFun src✝.toSupHom (a ⊓ b) =
SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom
b
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : BiheytingAlgebra α
inst✝² : BiheytingAlgebra β
inst✝¹ : BiheytingAlgebra γ
inst✝ : BiheytingAlgebra δ
f f₁ f₂ : BiheytingHom α β
g g₁ g₂ : BiheytingHom β γ
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
| {"mathlib_filename": "Mathlib.Order.Heyting.Hom", "llama_tokens": 21708} |
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
⊢ IsEquipartition P ↔
∀ (a : Finset α),
a ∈ P.parts →
Finset.card a = Finset.card s / Finset.card P.parts ∨ Finset.card a = Finset.card s / Finset.card P.parts + 1
[PROOFSTEP]
simp_rw [IsEquipartition, Finset.equitableOn_iff, P.sum_card_parts]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
hP : IsEquipartition P
ht : t ∈ P.parts
⊢ Finset.card s / Finset.card P.parts ≤ Finset.card t
[PROOFSTEP]
rw [← P.sum_card_parts]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
hP : IsEquipartition P
ht : t ∈ P.parts
⊢ (Finset.sum P.parts fun i => Finset.card i) / Finset.card P.parts ≤ Finset.card t
[PROOFSTEP]
exact Finset.EquitableOn.le hP ht
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
hP : IsEquipartition P
ht : t ∈ P.parts
⊢ Finset.card t ≤ Finset.card s / Finset.card P.parts + 1
[PROOFSTEP]
rw [← P.sum_card_parts]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
hP : IsEquipartition P
ht : t ∈ P.parts
⊢ Finset.card t ≤ (Finset.sum P.parts fun i => Finset.card i) / Finset.card P.parts + 1
[PROOFSTEP]
exact Finset.EquitableOn.le_add_one hP ht
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
⊢ ∀ (a : Finset α), a ∈ ↑⊥.parts → Finset.card a = 1 ∨ Finset.card a = 1 + 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
hs : s ≠ ∅
⊢ IsEquipartition (indiscrete hs)
[PROOFSTEP]
rw [IsEquipartition, indiscrete_parts, coe_singleton]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
hs : s ≠ ∅
⊢ Set.EquitableOn {s} Finset.card
[PROOFSTEP]
exact Set.equitableOn_singleton s _
| {"mathlib_filename": "Mathlib.Order.Partition.Equipartition", "llama_tokens": 811} |
[GOAL]
⊢ ConcreteCategory ωCPO
[PROOFSTEP]
unfold ωCPO
[GOAL]
⊢ ConcreteCategory (Bundled OmegaCompletePartialOrder)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
f : J → ωCPO
s : Cone (Discrete.functor f)
m : s.pt ⟶ (product f).pt
w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j
⊢ m =
(fun s =>
{
toOrderHom :=
{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) },
cont :=
(_ :
∀ (x : Chain ↑s.pt),
↑{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y →
∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) }
(ωSup x) =
ωSup
(Chain.map x
{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y →
∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) })) })
s
[PROOFSTEP]
ext t
[GOAL]
case w
J : Type v
f : J → ωCPO
s : Cone (Discrete.functor f)
m : s.pt ⟶ (product f).pt
w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j
t : (forget ωCPO).obj s.pt
⊢ ↑m t =
↑((fun s =>
{
toOrderHom :=
{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) },
cont :=
(_ :
∀ (x : Chain ↑s.pt),
↑{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y →
∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) }
(ωSup x) =
ωSup
(Chain.map x
{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y →
∀ (j : J),
↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) })) })
s)
t
[PROOFSTEP]
funext j
[GOAL]
case w.h
J : Type v
f : J → ωCPO
s : Cone (Discrete.functor f)
m : s.pt ⟶ (product f).pt
w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j
t : (forget ωCPO).obj s.pt
j : J
⊢ ↑m t j =
↑((fun s =>
{
toOrderHom :=
{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) },
cont :=
(_ :
∀ (x : Chain ↑s.pt),
↑{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y →
∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) }
(ωSup x) =
ωSup
(Chain.map x
{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t,
monotone' :=
(_ :
∀ (x y : ↑s.pt),
x ≤ y →
∀ (j : J),
↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) })) })
s)
t j
[PROOFSTEP]
change m.toFun t j = (s.π.app ⟨j⟩).toFun t
[GOAL]
case w.h
J : Type v
f : J → ωCPO
s : Cone (Discrete.functor f)
m : s.pt ⟶ (product f).pt
w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j
t : (forget ωCPO).obj s.pt
j : J
⊢ OrderHom.toFun m.toOrderHom t j = OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t
[PROOFSTEP]
rw [← w ⟨j⟩]
[GOAL]
case w.h
J : Type v
f : J → ωCPO
s : Cone (Discrete.functor f)
m : s.pt ⟶ (product f).pt
w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j
t : (forget ωCPO).obj s.pt
j : J
⊢ OrderHom.toFun m.toOrderHom t j = OrderHom.toFun (m ≫ NatTrans.app (product f).π { as := j }).toOrderHom t
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : OmegaCompletePartialOrder β
f g : α →𝒄 β
c : Chain α
hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i
⊢ ↑f (ωSup c) = ↑g (ωSup c)
[PROOFSTEP]
rw [f.continuous, g.continuous]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : OmegaCompletePartialOrder β
f g : α →𝒄 β
c : Chain α
hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i
⊢ ωSup (Chain.map c ↑f) = ωSup (Chain.map c ↑g)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : OmegaCompletePartialOrder β
f g : α →𝒄 β
c : Chain α
hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i
⊢ Chain.map c ↑f = Chain.map c ↑g
[PROOFSTEP]
apply OrderHom.ext
[GOAL]
case e_a.h
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : OmegaCompletePartialOrder β
f g : α →𝒄 β
c : Chain α
hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i
⊢ ↑(Chain.map c ↑f) = ↑(Chain.map c ↑g)
[PROOFSTEP]
funext x
[GOAL]
case e_a.h.h
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : OmegaCompletePartialOrder β
f g : α →𝒄 β
c : Chain α
hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i
x : ℕ
⊢ ↑(Chain.map c ↑f) x = ↑(Chain.map c ↑g) x
[PROOFSTEP]
apply hc _ ⟨_, rfl⟩
[GOAL]
X Y : ωCPO
f g : X ⟶ Y
s : Fork f g
x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)
⊢ OrderHom.toFun f.toOrderHom (OrderHom.toFun (Fork.ι s).toOrderHom x) =
OrderHom.toFun g.toOrderHom (OrderHom.toFun (Fork.ι s).toOrderHom x)
[PROOFSTEP]
apply ContinuousHom.congr_fun s.condition
[GOAL]
X Y : ωCPO
f g : X ⟶ Y
s : Fork f g
⊢ {
toOrderHom :=
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) },
cont :=
(_ :
∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }
(ωSup x) =
ωSup
(Chain.map x
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) } ≫
Fork.ι (equalizer f g) =
Fork.ι s
[PROOFSTEP]
ext
[GOAL]
case w
X Y : ωCPO
f g : X ⟶ Y
s : Fork f g
x✝ : (forget ωCPO).obj (((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)
⊢ ↑({
toOrderHom :=
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) },
cont :=
(_ :
∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }
(ωSup x) =
ωSup
(Chain.map x
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) } ≫
Fork.ι (equalizer f g))
x✝ =
↑(Fork.ι s) x✝
[PROOFSTEP]
rfl
[GOAL]
X Y : ωCPO
f g : X ⟶ Y
s : Fork f g
m✝ :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizer f g).pt).obj WalkingParallelPair.zero
hm : m✝ ≫ Fork.ι (equalizer f g) = Fork.ι s
⊢ m✝ =
{
toOrderHom :=
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) },
cont :=
(_ :
∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }
(ωSup x) =
ωSup
(Chain.map x
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) }
[PROOFSTEP]
apply
ContinuousHom.ext _ _ fun x =>
Subtype.ext
?_
-- Porting note: Originally `ext`
[GOAL]
X Y : ωCPO
f g : X ⟶ Y
s : Fork f g
m✝ :
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶
((Functor.const WalkingParallelPair).obj (equalizer f g).pt).obj WalkingParallelPair.zero
hm : m✝ ≫ Fork.ι (equalizer f g) = Fork.ι s
x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)
⊢ ↑(↑m✝ x) =
↑(↑{
toOrderHom :=
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) },
cont :=
(_ :
∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
↑{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }
(ωSup x) =
ωSup
(Chain.map x
{
toFun := fun x =>
{ val := OrderHom.toFun (Fork.ι s).toOrderHom x,
property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) },
monotone' :=
(_ :
∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)),
x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) }
x)
[PROOFSTEP]
apply ContinuousHom.congr_fun hm
| {"mathlib_filename": "Mathlib.Order.Category.OmegaCompletePartialOrder", "llama_tokens": 5444} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ EquivLike.inv f b ≤ a ↔ b ≤ ↑f a
[PROOFSTEP]
convert (@map_le_map_iff _ _ _ _ _ _ f (EquivLike.inv f b) a).symm
[GOAL]
case h.e'_2.h.e'_3
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ b = ↑f (EquivLike.inv f b)
[PROOFSTEP]
exact (EquivLike.right_inv f _).symm
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ a ≤ EquivLike.inv f b ↔ ↑f a ≤ b
[PROOFSTEP]
convert (@map_le_map_iff _ _ _ _ _ _ f a (EquivLike.inv f b)).symm
[GOAL]
case h.e'_2.h.e'_4
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ b = ↑f (EquivLike.inv f b)
[PROOFSTEP]
exact (EquivLike.right_inv _ _).symm
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ EquivLike.inv f b < a ↔ b < ↑f a
[PROOFSTEP]
rw [← map_lt_map_iff f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ ↑f (EquivLike.inv f b) < ↑f a ↔ b < ↑f a
[PROOFSTEP]
simp only [EquivLike.apply_inv_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ a < EquivLike.inv f b ↔ ↑f a < b
[PROOFSTEP]
rw [← map_lt_map_iff f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : OrderIsoClass F α β
f : F
a : α
b : β
⊢ ↑f a < ↑f (EquivLike.inv f b) ↔ ↑f a < b
[PROOFSTEP]
simp only [EquivLike.apply_inv_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f g : α →o β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
g : α →o β
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
h : { toFun := toFun✝, monotone' := monotone'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, monotone' := monotone'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
toFun✝¹ : α → β
monotone'✝¹ : Monotone toFun✝¹
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
h : { toFun := toFun✝¹, monotone' := monotone'✝¹ }.toFun = { toFun := toFun✝, monotone' := monotone'✝ }.toFun
⊢ { toFun := toFun✝¹, monotone' := monotone'✝¹ } = { toFun := toFun✝, monotone' := monotone'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
⊢ ∀ {a b : α × β →o γ},
↑{
toFun := fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) },
invFun := fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) },
left_inv :=
(_ :
∀ (x : α × β →o γ),
(fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
((fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
x) =
(fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
((fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
x)),
right_inv :=
(_ :
∀ (x : α →o β →o γ),
(fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
((fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
x) =
(fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
((fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
x)) }
a ≤
↑{
toFun := fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) },
invFun := fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) },
left_inv :=
(_ :
∀ (x : α × β →o γ),
(fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
((fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
x) =
(fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
((fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
x)),
right_inv :=
(_ :
∀ (x : α →o β →o γ),
(fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
((fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
x) =
(fun f =>
{
toFun := fun x =>
{ toFun := Function.curry (↑f) x,
monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) },
monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) })
((fun f =>
{ toFun := Function.uncurry fun x => ↑(↑f x),
monotone' :=
(_ :
∀ (x y : α × β),
x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) })
x)) }
b ↔
a ≤ b
[PROOFSTEP]
simp [le_def]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α →o β
⊢ comp f id = f
[PROOFSTEP]
ext
[GOAL]
case h.h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α →o β
x✝ : α
⊢ ↑(comp f id) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α →o β
⊢ comp id f = f
[PROOFSTEP]
ext
[GOAL]
case h.h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
f : α →o β
x✝ : α
⊢ ↑(comp id f) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
⊢ OrderHom.prod fst snd = id
[PROOFSTEP]
ext ⟨x, y⟩ : 2
[GOAL]
case h.h.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : Preorder γ
inst✝ : Preorder δ
x : α
y : β
⊢ ↑(OrderHom.prod fst snd) (x, y) = ↑id (x, y)
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Preorder γ
inst✝¹ : Preorder δ
ι : Type u_6
π : ι → Type u_7
inst✝ : (i : ι) → Preorder (π i)
p q : α → Prop
h : ∀ (a : α), p a → q a
src✝ : { x // p x } ↪ { x // q x } := Subtype.impEmbedding (fun x => p x) (fun x => q x) h
⊢ ∀ {a b : { x // p x }},
↑{ toFun := src✝.toFun, inj' := (_ : Function.Injective src✝.toFun) } a ≤
↑{ toFun := src✝.toFun, inj' := (_ : Function.Injective src✝.toFun) } b ↔
a ≤ b
[PROOFSTEP]
aesop
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
f : (fun x x_1 => x < x_1) ↪r fun x x_1 => x < x_1
⊢ ∀ {a b : α}, ↑f.toEmbedding a ≤ ↑f.toEmbedding b ↔ a ≤ b
[PROOFSTEP]
intros
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
f : (fun x x_1 => x < x_1) ↪r fun x x_1 => x < x_1
a✝ b✝ : α
⊢ ↑f.toEmbedding a✝ ≤ ↑f.toEmbedding b✝ ↔ a✝ ≤ b✝
[PROOFSTEP]
simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ↪o β
⊢ ∀ {a b : α}, ↑f.toEmbedding a < ↑f.toEmbedding b ↔ a < b
[PROOFSTEP]
intros
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
f : α ↪o β
a✝ b✝ : α
⊢ ↑f.toEmbedding a✝ < ↑f.toEmbedding b✝ ↔ a✝ < b✝
[PROOFSTEP]
simp [lt_iff_le_not_le, f.map_rel_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
f g : α ≃o β
h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g
h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
g : α ≃o β
toFun✝ : α → β
invFun✝ : β → α
left_inv✝ : Function.LeftInverse invFun✝ toFun✝
right_inv✝ : Function.RightInverse invFun✝ toFun✝
map_rel_iff'✝ :
∀ {a b : α},
↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } a ≤
↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } b ↔
a ≤ b
h₁ :
(fun f => f.toFun)
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_rel_iff' := map_rel_iff'✝ } =
(fun f => f.toFun) g
h₂ :
(fun f => f.invFun)
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_rel_iff' := map_rel_iff'✝ } =
(fun f => f.invFun) g
⊢ { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_rel_iff' := map_rel_iff'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
toFun✝¹ : α → β
invFun✝¹ : β → α
left_inv✝¹ : Function.LeftInverse invFun✝¹ toFun✝¹
right_inv✝¹ : Function.RightInverse invFun✝¹ toFun✝¹
map_rel_iff'✝¹ :
∀ {a b : α},
↑{ toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } a ≤
↑{ toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } b ↔
a ≤ b
toFun✝ : α → β
invFun✝ : β → α
left_inv✝ : Function.LeftInverse invFun✝ toFun✝
right_inv✝ : Function.RightInverse invFun✝ toFun✝
map_rel_iff'✝ :
∀ {a b : α},
↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } a ≤
↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } b ↔
a ≤ b
h₁ :
(fun f => f.toFun)
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_rel_iff' := map_rel_iff'✝¹ } =
(fun f => f.toFun)
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_rel_iff' := map_rel_iff'✝ }
h₂ :
(fun f => f.invFun)
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_rel_iff' := map_rel_iff'✝¹ } =
(fun f => f.invFun)
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_rel_iff' := map_rel_iff'✝ }
⊢ { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_rel_iff' := map_rel_iff'✝¹ } =
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_rel_iff' := map_rel_iff'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e : α ≃o β
⊢ symm (symm e) = e
[PROOFSTEP]
ext
[GOAL]
case h.h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e : α ≃o β
x✝ : α
⊢ ↑(symm (symm e)) x✝ = ↑e x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e e' : α ≃o β
h : symm e = symm e'
⊢ e = e'
[PROOFSTEP]
rw [← e.symm_symm, h, e'.symm_symm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e : α ≃o β
⊢ trans (refl α) e = e
[PROOFSTEP]
ext x
[GOAL]
case h.h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e : α ≃o β
x : α
⊢ ↑(trans (refl α) e) x = ↑e x
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e : α ≃o β
⊢ trans e (refl β) = e
[PROOFSTEP]
ext x
[GOAL]
case h.h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LE α
inst✝¹ : LE β
inst✝ : LE γ
e : α ≃o β
x : α
⊢ ↑(trans e (refl β)) x = ↑e x
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.90717
β : Type ?u.90720
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
e : (fun x x_1 => x < x_1) ≃r fun x x_1 => x < x_1
⊢ ∀ {a b : α}, ↑e.toEquiv a ≤ ↑e.toEquiv b ↔ a ≤ b
[PROOFSTEP]
simp [le_iff_eq_or_lt, e.map_rel_iff, e.injective.eq_iff]
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type u_6
β : Type u_7
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
e : α ≃o β
⊢ ofRelIsoLT (toRelIsoLT e) = e
[PROOFSTEP]
ext
[GOAL]
case h.h
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type u_6
β : Type u_7
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
e : α ≃o β
x✝ : α
⊢ ↑(ofRelIsoLT (toRelIsoLT e)) x✝ = ↑e x✝
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type u_6
β : Type u_7
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
e : (fun x x_1 => x < x_1) ≃r fun x x_1 => x < x_1
⊢ toRelIsoLT (ofRelIsoLT e) = e
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type u_6
β : Type u_7
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
e : (fun x x_1 => x < x_1) ≃r fun x x_1 => x < x_1
x✝ : α
⊢ ↑(toRelIsoLT (ofRelIsoLT e)) x✝ = ↑e x✝
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
⊢ ∀ (a : α), a = g (f a)
[PROOFSTEP]
intro
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
a✝ : α
⊢ a✝ = g (f a✝)
[PROOFSTEP]
rw [← cmp_eq_eq_iff, h, cmp_self_eq_eq]
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
gf : ∀ (a : α), a = g (f a)
⊢ Function.RightInverse g f
[PROOFSTEP]
intro
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
gf : ∀ (a : α), a = g (f a)
x✝ : β
⊢ f (g x✝) = x✝
[PROOFSTEP]
rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq]
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
gf : ∀ (a : α), a = g (f a)
⊢ ∀ {a b : α},
↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) }
a ≤
↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a),
right_inv := (_ : ∀ (x : β), f (g x) = x) }
b ↔
a ≤ b
[PROOFSTEP]
intros a b
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
gf : ∀ (a : α), a = g (f a)
a b : α
⊢ ↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } a ≤
↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) }
b ↔
a ≤ b
[PROOFSTEP]
apply le_iff_le_of_cmp_eq_cmp
[GOAL]
case h
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
gf : ∀ (a : α), a = g (f a)
a b : α
⊢ cmp
(↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) }
a)
(↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) }
b) =
cmp a b
[PROOFSTEP]
convert (h a (f b)).symm
[GOAL]
case h.e'_3.h.e'_5
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type ?u.94646
β : Type ?u.94649
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
g : β → α
h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b
gf : ∀ (a : α), a = g (f a)
a b : α
⊢ b = g (f b)
[PROOFSTEP]
apply gf
[GOAL]
F✝ : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Preorder γ
F : Type u_6
G : Type u_7
inst✝¹ : OrderHomClass F α β
inst✝ : OrderHomClass G β α
f : F
g : G
h₁ : OrderHom.comp ↑f ↑g = OrderHom.id
h₂ : OrderHom.comp ↑g ↑f = OrderHom.id
a b : α
h :
↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x),
right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) }
a ≤
↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x),
right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) }
b
⊢ a ≤ b
[PROOFSTEP]
replace h := map_rel g h
[GOAL]
F✝ : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α
inst✝³ : Preorder β
inst✝² : Preorder γ
F : Type u_6
G : Type u_7
inst✝¹ : OrderHomClass F α β
inst✝ : OrderHomClass G β α
f : F
g : G
h₁ : OrderHom.comp ↑f ↑g = OrderHom.id
h₂ : OrderHom.comp ↑g ↑f = OrderHom.id
a b : α
h :
↑g
(↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x),
right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) }
a) ≤
↑g
(↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x),
right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) }
b)
⊢ a ≤ b
[PROOFSTEP]
rwa [Equiv.coe_fn_mk, show g (f a) = (g : β →o α).comp (f : α →o β) a from rfl,
show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Preorder α✝
inst✝³ : Preorder β✝
inst✝² : Preorder γ
α : Type u_6
β : Type u_7
inst✝¹ : Unique α
inst✝ : Preorder β
⊢ ∀ {a b : α → β}, ↑(Equiv.funUnique α β) a ≤ ↑(Equiv.funUnique α β) b ↔ a ≤ b
[PROOFSTEP]
simp [Pi.le_def, Unique.forall_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
e : α ≃ β
h₁ : Monotone ↑e
h₂ : Monotone ↑e.symm
a✝ b✝ : α
h : ↑e a✝ ≤ ↑e b✝
⊢ a✝ ≤ b✝
[PROOFSTEP]
simpa only [e.symm_apply_apply] using h₂ h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : LE α
inst✝ : PartialOrder β
f : α ≃o β
x : α
y : β
hx : ∀ (x' : α), x ≤ x'
hy : ∀ (y' : β), y ≤ y'
⊢ ↑f x = y
[PROOFSTEP]
refine' le_antisymm _ (hy _)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : LE α
inst✝ : PartialOrder β
f : α ≃o β
x : α
y : β
hx : ∀ (x' : α), x ≤ x'
hy : ∀ (y' : β), y ≤ y'
⊢ ↑f x ≤ y
[PROOFSTEP]
rw [← f.apply_symm_apply y, f.map_rel_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : LE α
inst✝ : PartialOrder β
f : α ≃o β
x : α
y : β
hx : ∀ (x' : α), x ≤ x'
hy : ∀ (y' : β), y ≤ y'
⊢ x ≤ ↑(symm f) y
[PROOFSTEP]
apply hx
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf β
f : α ≃o β
x y : α
⊢ ↑f (x ⊓ y) = ↑f x ⊓ ↑f y
[PROOFSTEP]
refine' (f.toOrderEmbedding.map_inf_le x y).antisymm _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf β
f : α ≃o β
x y : α
⊢ ↑(toOrderEmbedding f) x ⊓ ↑(toOrderEmbedding f) y ≤ ↑(toOrderEmbedding f) (x ⊓ y)
[PROOFSTEP]
apply f.symm.le_iff_le.1
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf β
f : α ≃o β
x y : α
⊢ ↑(symm f) (↑(toOrderEmbedding f) x ⊓ ↑(toOrderEmbedding f) y) ≤ ↑(symm f) (↑(toOrderEmbedding f) (x ⊓ y))
[PROOFSTEP]
simpa using f.symm.toOrderEmbedding.map_inf_le (f x) (f y)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : SemilatticeInf α
inst✝² : OrderBot α
inst✝¹ : SemilatticeInf β
inst✝ : OrderBot β
a b : α
f : α ≃o β
ha : Disjoint a b
⊢ Disjoint (↑f a) (↑f b)
[PROOFSTEP]
rw [disjoint_iff_inf_le, ← f.map_inf, ← f.map_bot]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : SemilatticeInf α
inst✝² : OrderBot α
inst✝¹ : SemilatticeInf β
inst✝ : OrderBot β
a b : α
f : α ≃o β
ha : Disjoint a b
⊢ ↑f (a ⊓ b) ≤ ↑f ⊥
[PROOFSTEP]
exact f.monotone ha.le_bot
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : SemilatticeSup α
inst✝² : OrderTop α
inst✝¹ : SemilatticeSup β
inst✝ : OrderTop β
a b : α
f : α ≃o β
ha : Codisjoint a b
⊢ Codisjoint (↑f a) (↑f b)
[PROOFSTEP]
rw [codisjoint_iff_le_sup, ← f.map_sup, ← f.map_top]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : SemilatticeSup α
inst✝² : OrderTop α
inst✝¹ : SemilatticeSup β
inst✝ : OrderTop β
a b : α
f : α ≃o β
ha : Codisjoint a b
⊢ ↑f ⊤ ≤ ↑f (a ⊔ b)
[PROOFSTEP]
exact f.monotone ha.top_le
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Lattice α
inst✝³ : Lattice β
inst✝² : BoundedOrder α
inst✝¹ : BoundedOrder β
f : α ≃o β
inst✝ : ComplementedLattice α
x : β
⊢ ∃ b, IsCompl x b
[PROOFSTEP]
obtain ⟨y, hy⟩ := exists_isCompl (f.symm x)
[GOAL]
case intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Lattice α
inst✝³ : Lattice β
inst✝² : BoundedOrder α
inst✝¹ : BoundedOrder β
f : α ≃o β
inst✝ : ComplementedLattice α
x : β
y : α
hy : IsCompl (↑(symm f) x) y
⊢ ∃ b, IsCompl x b
[PROOFSTEP]
rw [← f.symm_apply_apply y] at hy
[GOAL]
case intro
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : Lattice α
inst✝³ : Lattice β
inst✝² : BoundedOrder α
inst✝¹ : BoundedOrder β
f : α ≃o β
inst✝ : ComplementedLattice α
x : β
y : α
hy : IsCompl (↑(symm f) x) (↑(symm f) (↑f y))
⊢ ∃ b, IsCompl x b
[PROOFSTEP]
exact ⟨f y, f.symm.isCompl_iff.2 hy⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : BoundedOrder α
inst✝ : BoundedOrder β
f : α ≃o β
⊢ ComplementedLattice α → ComplementedLattice β
[PROOFSTEP]
intro
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : BoundedOrder α
inst✝ : BoundedOrder β
f : α ≃o β
a✝ : ComplementedLattice α
⊢ ComplementedLattice β
[PROOFSTEP]
exact f.complementedLattice
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : BoundedOrder α
inst✝ : BoundedOrder β
f : α ≃o β
⊢ ComplementedLattice β → ComplementedLattice α
[PROOFSTEP]
intro
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : BoundedOrder α
inst✝ : BoundedOrder β
f : α ≃o β
a✝ : ComplementedLattice β
⊢ ComplementedLattice α
[PROOFSTEP]
exact f.symm.complementedLattice
| {"mathlib_filename": "Mathlib.Order.Hom.Basic", "llama_tokens": 15289} |
[GOAL]
α : Type u
f g : Filter α
s t : Set α
⊢ f = g ↔ ∀ (s : Set α), s ∈ f ↔ s ∈ g
[PROOFSTEP]
simp only [filter_eq_iff, ext_iff, Filter.mem_sets]
[GOAL]
α : Type u
f g : Filter α
s✝ t : Set α
β : Type v
s : β → Set α
is : Set β
hf : Set.Finite is
⊢ ⋂ (i : β) (_ : i ∈ ∅), s i ∈ f ↔ ∀ (i : β), i ∈ ∅ → s i ∈ f
[PROOFSTEP]
simp
[GOAL]
α : Type u
f g : Filter α
s✝¹ t : Set α
β : Type v
s : β → Set α
is : Set β
hf : Set.Finite is
a✝ : β
s✝ : Set β
x✝¹ : ¬a✝ ∈ s✝
x✝ : Set.Finite s✝
hs : ⋂ (i : β) (_ : i ∈ s✝), s i ∈ f ↔ ∀ (i : β), i ∈ s✝ → s i ∈ f
⊢ ⋂ (i : β) (_ : i ∈ insert a✝ s✝), s i ∈ f ↔ ∀ (i : β), i ∈ insert a✝ s✝ → s i ∈ f
[PROOFSTEP]
simp [hs]
[GOAL]
α : Type u
f g : Filter α
s✝ t : Set α
s : Set (Set α)
hfin : Set.Finite s
⊢ ⋂₀ s ∈ f ↔ ∀ (U : Set α), U ∈ s → U ∈ f
[PROOFSTEP]
rw [sInter_eq_biInter, biInter_mem hfin]
[GOAL]
α : Type u
f g : Filter α
s t : Set α
P Q : Set α → Prop
hP : Antitone P
hQ : Antitone Q
⊢ ((∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u) ↔ ∃ u, u ∈ f ∧ P u ∧ Q u
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
f g : Filter α
s t : Set α
P Q : Set α → Prop
hP : Antitone P
hQ : Antitone Q
⊢ ((∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u) → ∃ u, u ∈ f ∧ P u ∧ Q u
[PROOFSTEP]
rintro ⟨⟨u, huf, hPu⟩, v, hvf, hQv⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
α : Type u
f g : Filter α
s t : Set α
P Q : Set α → Prop
hP : Antitone P
hQ : Antitone Q
u : Set α
huf : u ∈ f
hPu : P u
v : Set α
hvf : v ∈ f
hQv : Q v
⊢ ∃ u, u ∈ f ∧ P u ∧ Q u
[PROOFSTEP]
exact ⟨u ∩ v, inter_mem huf hvf, hP (inter_subset_left _ _) hPu, hQ (inter_subset_right _ _) hQv⟩
[GOAL]
case mpr
α : Type u
f g : Filter α
s t : Set α
P Q : Set α → Prop
hP : Antitone P
hQ : Antitone Q
⊢ (∃ u, u ∈ f ∧ P u ∧ Q u) → (∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u
[PROOFSTEP]
rintro ⟨u, huf, hPu, hQu⟩
[GOAL]
case mpr.intro.intro.intro
α : Type u
f g : Filter α
s t : Set α
P Q : Set α → Prop
hP : Antitone P
hQ : Antitone Q
u : Set α
huf : u ∈ f
hPu : P u
hQu : Q u
⊢ (∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u
[PROOFSTEP]
exact ⟨⟨u, huf, hPu⟩, u, huf, hQu⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (Filter α)
⊢ univ ∈ {s | {t | s ∈ t} ∈ f}
[PROOFSTEP]
simp only [mem_setOf_eq, univ_sets, ← Filter.mem_sets, setOf_true]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
⊢ ¬f ≤ g ↔ ∃ s, s ∈ g ∧ ¬s ∈ f
[PROOFSTEP]
simp_rw [le_def, not_forall, exists_prop]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ U ∈ generate s ↔ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ U ∈ generate s → ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U
[PROOFSTEP]
intro h
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ (∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U) → U ∈ generate s
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
h : U ∈ generate s
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U
[PROOFSTEP]
induction h
[GOAL]
case mp.basic
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ : Set α
a✝ : s✝ ∈ s
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
case mp.univ
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ
case mp.superset
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : s✝ ⊆ t✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
case mp.inter
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : GenerateSets s t✝
a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝
[PROOFSTEP]
case basic V V_in => exact ⟨{ V }, singleton_subset_iff.2 V_in, finite_singleton _, (sInter_singleton _).subset⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U V : Set α
V_in : V ∈ s
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V
[PROOFSTEP]
case basic V V_in => exact ⟨{ V }, singleton_subset_iff.2 V_in, finite_singleton _, (sInter_singleton _).subset⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U V : Set α
V_in : V ∈ s
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V
[PROOFSTEP]
exact ⟨{ V }, singleton_subset_iff.2 V_in, finite_singleton _, (sInter_singleton _).subset⟩
[GOAL]
case mp.univ
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ
case mp.superset
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : s✝ ⊆ t✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
case mp.inter
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : GenerateSets s t✝
a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝
[PROOFSTEP]
case univ => exact ⟨∅, empty_subset _, finite_empty, subset_univ _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ
[PROOFSTEP]
case univ => exact ⟨∅, empty_subset _, finite_empty, subset_univ _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ
[PROOFSTEP]
exact ⟨∅, empty_subset _, finite_empty, subset_univ _⟩
[GOAL]
case mp.superset
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : s✝ ⊆ t✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
case mp.inter
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : GenerateSets s t✝
a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝
[PROOFSTEP]
case superset V W _ hVW hV =>
rcases hV with ⟨t, hts, ht, htV⟩
exact ⟨t, hts, ht, htV.trans hVW⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U V W : Set α
a✝ : GenerateSets s V
hVW : V ⊆ W
hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W
[PROOFSTEP]
case superset V W _ hVW hV =>
rcases hV with ⟨t, hts, ht, htV⟩
exact ⟨t, hts, ht, htV.trans hVW⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U V W : Set α
a✝ : GenerateSets s V
hVW : V ⊆ W
hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W
[PROOFSTEP]
rcases hV with ⟨t, hts, ht, htV⟩
[GOAL]
case intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ : Set α
s : Set (Set α)
U V W : Set α
a✝ : GenerateSets s V
hVW : V ⊆ W
t : Set (Set α)
hts : t ⊆ s
ht : Set.Finite t
htV : ⋂₀ t ⊆ V
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W
[PROOFSTEP]
exact ⟨t, hts, ht, htV.trans hVW⟩
[GOAL]
case mp.inter
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝¹ t : Set α
s : Set (Set α)
U s✝ t✝ : Set α
a✝¹ : GenerateSets s s✝
a✝ : GenerateSets s t✝
a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝
a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝
[PROOFSTEP]
case inter V W _ _ hV hW =>
rcases hV, hW with ⟨⟨t, hts, ht, htV⟩, u, hus, hu, huW⟩
exact ⟨t ∪ u, union_subset hts hus, ht.union hu, (sInter_union _ _).subset.trans <| inter_subset_inter htV huW⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U V W : Set α
a✝¹ : GenerateSets s V
a✝ : GenerateSets s W
hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V
hW : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ∩ W
[PROOFSTEP]
case inter V W _ _ hV hW =>
rcases hV, hW with ⟨⟨t, hts, ht, htV⟩, u, hus, hu, huW⟩
exact ⟨t ∪ u, union_subset hts hus, ht.union hu, (sInter_union _ _).subset.trans <| inter_subset_inter htV huW⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U V W : Set α
a✝¹ : GenerateSets s V
a✝ : GenerateSets s W
hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V
hW : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ∩ W
[PROOFSTEP]
rcases hV, hW with ⟨⟨t, hts, ht, htV⟩, u, hus, hu, huW⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ : Set α
s : Set (Set α)
U V W : Set α
a✝¹ : GenerateSets s V
a✝ : GenerateSets s W
t : Set (Set α)
hts : t ⊆ s
ht : Set.Finite t
htV : ⋂₀ t ⊆ V
u : Set (Set α)
hus : u ⊆ s
hu : Set.Finite u
huW : ⋂₀ u ⊆ W
⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ∩ W
[PROOFSTEP]
exact ⟨t ∪ u, union_subset hts hus, ht.union hu, (sInter_union _ _).subset.trans <| inter_subset_inter htV huW⟩
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
s : Set (Set α)
U : Set α
h : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U
⊢ U ∈ generate s
[PROOFSTEP]
rcases h with ⟨t, hts, tfin, h⟩
[GOAL]
case mpr.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ : Set α
s : Set (Set α)
U : Set α
t : Set (Set α)
hts : t ⊆ s
tfin : Set.Finite t
h : ⋂₀ t ⊆ U
⊢ U ∈ generate s
[PROOFSTEP]
exact mem_of_superset ((sInter_mem tfin).2 fun V hV => GenerateSets.basic <| hts hV) h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
⊢ univ = univ ∩ univ
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
⊢ ∀ {x y : Set α}, x ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} → x ⊆ y → y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b}
[PROOFSTEP]
rintro x y ⟨a, ha, b, hb, rfl⟩ xy
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
y a : Set α
ha : a ∈ f
b : Set α
hb : b ∈ g
xy : a ∩ b ⊆ y
⊢ y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b}
[PROOFSTEP]
refine' ⟨a ∪ y, mem_of_superset ha (subset_union_left a y), b ∪ y, mem_of_superset hb (subset_union_left b y), _⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
y a : Set α
ha : a ∈ f
b : Set α
hb : b ∈ g
xy : a ∩ b ⊆ y
⊢ y = (a ∪ y) ∩ (b ∪ y)
[PROOFSTEP]
rw [← inter_union_distrib_right, union_eq_self_of_subset_left xy]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
⊢ ∀ {x y : Set α},
x ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} →
y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} → x ∩ y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b}
[PROOFSTEP]
rintro x y ⟨a, ha, b, hb, rfl⟩ ⟨c, hc, d, hd, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
a : Set α
ha : a ∈ f
b : Set α
hb : b ∈ g
c : Set α
hc : c ∈ f
d : Set α
hd : d ∈ g
⊢ a ∩ b ∩ (c ∩ d) ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b}
[PROOFSTEP]
refine' ⟨a ∩ c, inter_mem ha hc, b ∩ d, inter_mem hb hd, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
a : Set α
ha : a ∈ f
b : Set α
hb : b ∈ g
c : Set α
hc : c ∈ f
d : Set α
hd : d ∈ g
⊢ a ∩ b ∩ (c ∩ d) = a ∩ c ∩ (b ∩ d)
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t s : Set α
⊢ s ∈ ⊤ ↔ s = univ
[PROOFSTEP]
rw [mem_top_iff_forall, eq_univ_iff_forall]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
⊢ NeBot (f ⊔ g) ↔ NeBot f ∨ NeBot g
[PROOFSTEP]
simp only [neBot_iff, not_and_or, Ne.def, sup_eq_bot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
⊢ ¬Disjoint f f ↔ NeBot f
[PROOFSTEP]
rw [disjoint_self, neBot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t x : Set α
f : ι → Filter α
⊢ x ∈ iSup f ↔ ∀ (i : ι), x ∈ f i
[PROOFSTEP]
simp only [← Filter.mem_sets, iSup_sets_eq, iff_self_iff, mem_iInter]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
⊢ NeBot (⨆ (i : ι), f i) ↔ ∃ i, NeBot (f i)
[PROOFSTEP]
simp [neBot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
I_fin : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
hU : ⋂ (i : ↑I), V i ⊆ U
⊢ U ∈ ⨅ (i : ι), s i
[PROOFSTEP]
haveI := I_fin.fintype
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
I_fin : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
hU : ⋂ (i : ↑I), V i ⊆ U
this : Fintype ↑I
⊢ U ∈ ⨅ (i : ι), s i
[PROOFSTEP]
refine' mem_of_superset (iInter_mem.2 fun i => _) hU
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
I_fin : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
hU : ⋂ (i : ↑I), V i ⊆ U
this : Fintype ↑I
i : ↑I
⊢ V i ∈ ⨅ (i : ι), s i
[PROOFSTEP]
exact mem_iInf_of_mem (i : ι) (hV _)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ U ∈ ⨅ (i : ι), s i ↔ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ U ∈ ⨅ (i : ι), s i → ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
rw [iInf_eq_generate, mem_generate_iff]
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ (∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U) → ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
rintro ⟨t, tsub, tfin, tinter⟩
[GOAL]
case mp.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
t : Set (Set α)
tsub : t ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite t
tinter : ⋂₀ t ⊆ U
⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
rcases eq_finite_iUnion_of_finite_subset_iUnion tfin tsub with ⟨I, Ifin, σ, σfin, σsub, rfl⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂₀ ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ U
⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
rw [sInter_iUnion] at tinter
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
set V := fun i => U ∪ ⋂₀ σ i with hV
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
have V_in : ∀ i, V i ∈ s i := by
rintro i
have : ⋂₀ σ i ∈ s i := by
rw [sInter_mem (σfin _)]
apply σsub
exact mem_of_superset this (subset_union_right _ _)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
⊢ ∀ (i : ↑{i | i ∈ I}), V i ∈ s ↑i
[PROOFSTEP]
rintro i
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
i : ↑{i | i ∈ I}
⊢ V i ∈ s ↑i
[PROOFSTEP]
have : ⋂₀ σ i ∈ s i := by
rw [sInter_mem (σfin _)]
apply σsub
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
i : ↑{i | i ∈ I}
⊢ ⋂₀ σ i ∈ s ↑i
[PROOFSTEP]
rw [sInter_mem (σfin _)]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
i : ↑{i | i ∈ I}
⊢ ∀ (U : Set α), U ∈ σ i → U ∈ s ↑i
[PROOFSTEP]
apply σsub
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
i : ↑{i | i ∈ I}
this : ⋂₀ σ i ∈ s ↑i
⊢ V i ∈ s ↑i
[PROOFSTEP]
exact mem_of_superset this (subset_union_right _ _)
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
V_in : ∀ (i : ↑{i | i ∈ I}), V i ∈ s ↑i
⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
refine' ⟨I, Ifin, V, V_in, _⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
I : Set ι
Ifin : Set.Finite I
σ : ↑{i | i ∈ I} → Set (Set α)
σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i)
σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets
tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets
tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i)
tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U
V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i
hV : V = fun i => U ∪ ⋂₀ σ i
V_in : ∀ (i : ↑{i | i ∈ I}), V i ∈ s ↑i
⊢ U = ⋂ (i : ↑I), V i
[PROOFSTEP]
rwa [hV, ← union_iInter, union_eq_self_of_subset_right]
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i) → U ∈ ⨅ (i : ι), s i
[PROOFSTEP]
rintro ⟨I, Ifin, V, V_in, rfl⟩
[GOAL]
case mpr.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
Ifin : Set.Finite I
V : ↑I → Set α
V_in : ∀ (i : ↑I), V i ∈ s ↑i
⊢ ⋂ (i : ↑I), V i ∈ ⨅ (i : ι), s i
[PROOFSTEP]
exact mem_iInf_of_iInter Ifin V_in Subset.rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ U ∈ ⨅ (i : ι), s i ↔
∃ I,
Set.Finite I ∧
∃ V,
(∀ (i : ι), V i ∈ s i) ∧
(∀ (i : ι), ¬i ∈ I → V i = univ) ∧ U = ⋂ (i : ι) (_ : i ∈ I), V i ∧ U = ⋂ (i : ι), V i
[PROOFSTEP]
simp only [mem_iInf, SetCoe.forall', biInter_eq_iInter]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i) ↔
∃ I,
Set.Finite I ∧
∃ V, (∀ (i : ι), V i ∈ s i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ U = ⋂ (x : ↑I), V ↑x ∧ U = ⋂ (i : ι), V i
[PROOFSTEP]
refine' ⟨_, fun ⟨I, If, V, hVs, _, hVU, _⟩ => ⟨I, If, fun i => V i, fun i => hVs i, hVU⟩⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
U : Set α
⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i) →
∃ I,
Set.Finite I ∧
∃ V, (∀ (i : ι), V i ∈ s i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ U = ⋂ (x : ↑I), V ↑x ∧ U = ⋂ (i : ι), V i
[PROOFSTEP]
rintro ⟨I, If, V, hV, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
⊢ ∃ I_1,
Set.Finite I_1 ∧
∃ V_1,
(∀ (i : ι), V_1 i ∈ s i) ∧
(∀ (i : ι), ¬i ∈ I_1 → V_1 i = univ) ∧
⋂ (i : ↑I), V i = ⋂ (x : ↑I_1), V_1 ↑x ∧ ⋂ (i : ↑I), V i = ⋂ (i : ι), V_1 i
[PROOFSTEP]
refine' ⟨I, If, fun i => if hi : i ∈ I then V ⟨i, hi⟩ else univ, fun i => _, fun i hi => _, _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
i : ι
⊢ (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) i ∈ s i
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro.intro.intro.refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
i : ι
⊢ (if hi : i ∈ I then V { val := i, property := hi } else univ) ∈ s i
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
i : ι
h✝ : i ∈ I
⊢ V { val := i, property := h✝ } ∈ s i
case neg
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
i : ι
h✝ : ¬i ∈ I
⊢ univ ∈ s i
[PROOFSTEP]
exacts [hV _, univ_mem]
[GOAL]
case intro.intro.intro.intro.refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
i : ι
hi : ¬i ∈ I
⊢ (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) i = univ
[PROOFSTEP]
exact dif_neg hi
[GOAL]
case intro.intro.intro.intro.refine'_3
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Type u_2
s : ι → Filter α
I : Set ι
If : Set.Finite I
V : ↑I → Set α
hV : ∀ (i : ↑I), V i ∈ s ↑i
⊢ ⋂ (i : ↑I), V i = ⋂ (x : ↑I), (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) ↑x ∧
⋂ (i : ↑I), V i = ⋂ (i : ι), (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) i
[PROOFSTEP]
simp only [iInter_dite, biInter_eq_iInter, dif_pos (Subtype.coe_prop _), Subtype.coe_eta, iInter_univ, inter_univ,
eq_self_iff_true, true_and_iff]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α✝
s✝ t : Set α✝
ι : Type u_2
inst✝ : Finite ι
α : Type u_3
f : ι → Filter α
s : Set α
⊢ s ∈ ⨅ (i : ι), f i ↔ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i
[PROOFSTEP]
refine' ⟨exists_iInter_of_mem_iInf, _⟩
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α✝
s✝ t : Set α✝
ι : Type u_2
inst✝ : Finite ι
α : Type u_3
f : ι → Filter α
s : Set α
⊢ (∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i) → s ∈ ⨅ (i : ι), f i
[PROOFSTEP]
rintro ⟨t, ht, rfl⟩
[GOAL]
case intro.intro
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α✝
s t✝ : Set α✝
ι : Type u_2
inst✝ : Finite ι
α : Type u_3
f : ι → Filter α
t : ι → Set α
ht : ∀ (i : ι), t i ∈ f i
⊢ ⋂ (i : ι), t i ∈ ⨅ (i : ι), f i
[PROOFSTEP]
exact iInter_mem.2 fun i => mem_iInf_of_mem i (ht i)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t : Set α
⊢ 𝓟 s ≤ 𝓟 t ↔ s ⊆ t
[PROOFSTEP]
simp only [le_principal_iff, iff_self_iff, mem_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t : Set α
⊢ 𝓟 s = 𝓟 t ↔ s = t
[PROOFSTEP]
simp only [le_antisymm_iff, le_principal_iff, mem_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t : Set α
⊢ s ⊆ t ∧ t ⊆ s ↔ s ≤ t ∧ t ≤ s
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
⊢ ⊤ ≤ 𝓟 univ
[PROOFSTEP]
simp only [le_principal_iff, mem_top, eq_self_iff_true]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
S : Set (Set α)
f : Filter α
⊢ f ≤ generate S ↔ f ≤ ⨅ (s : Set α) (_ : s ∈ S), 𝓟 s
[PROOFSTEP]
simp [le_generate_iff, le_principal_iff, subset_def]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
⊢ Disjoint f g ↔ ∃ s, s ∈ f ∧ ∃ t, t ∈ g ∧ Disjoint s t
[PROOFSTEP]
simp only [disjoint_iff, ← empty_mem_iff_bot, mem_inf_iff, inf_eq_inter, bot_eq_empty, @eq_comm _ ∅]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g✝ : Filter α
s t : Set α
f g : Filter α
⊢ f ⊓ g = ⊥ ↔ ∃ U, U ∈ f ∧ ∃ V, V ∈ g ∧ U ∩ V = ∅
[PROOFSTEP]
simp only [← disjoint_iff, Filter.disjoint_iff, Set.disjoint_iff_inter_eq_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s t : Set α
ι : Type u_2
inst✝ : Finite ι
l : ι → Filter α
hd : Pairwise (Disjoint on l)
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ Pairwise (Disjoint on s)
[PROOFSTEP]
have : ∀ i j, i ≠ j → ∃ (s : { s // s ∈ l i }) (t : { t // t ∈ l j }), Disjoint s.1 t.1
[GOAL]
case this
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s t : Set α
ι : Type u_2
inst✝ : Finite ι
l : ι → Filter α
hd : Pairwise (Disjoint on l)
⊢ ∀ (i j : ι), i ≠ j → ∃ s t, Disjoint ↑s ↑t
[PROOFSTEP]
simpa only [Pairwise, Function.onFun, Filter.disjoint_iff, exists_prop, Subtype.exists] using hd
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s t : Set α
ι : Type u_2
inst✝ : Finite ι
l : ι → Filter α
hd : Pairwise (Disjoint on l)
this : ∀ (i j : ι), i ≠ j → ∃ s t, Disjoint ↑s ↑t
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ Pairwise (Disjoint on s)
[PROOFSTEP]
choose! s t hst using this
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
inst✝ : Finite ι
l : ι → Filter α
hd : Pairwise (Disjoint on l)
s : (i : ι) → ι → { s // s ∈ l i }
t : ι → (j : ι) → { t // t ∈ l j }
hst : ∀ (i j : ι), i ≠ j → Disjoint ↑(s i j) ↑(t i j)
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ Pairwise (Disjoint on s)
[PROOFSTEP]
refine' ⟨fun i => ⋂ j, s i j ∩ t j i, fun i => _, fun i j hij => _⟩
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
inst✝ : Finite ι
l : ι → Filter α
hd : Pairwise (Disjoint on l)
s : (i : ι) → ι → { s // s ∈ l i }
t : ι → (j : ι) → { t // t ∈ l j }
hst : ∀ (i j : ι), i ≠ j → Disjoint ↑(s i j) ↑(t i j)
i : ι
⊢ (fun i => ⋂ (j : ι), ↑(s i j) ∩ ↑(t j i)) i ∈ l i
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
inst✝ : Finite ι
l : ι → Filter α
hd : Pairwise (Disjoint on l)
s : (i : ι) → ι → { s // s ∈ l i }
t : ι → (j : ι) → { t // t ∈ l j }
hst : ∀ (i j : ι), i ≠ j → Disjoint ↑(s i j) ↑(t i j)
i j : ι
hij : i ≠ j
⊢ (Disjoint on fun i => ⋂ (j : ι), ↑(s i j) ∩ ↑(t j i)) i j
[PROOFSTEP]
exacts [iInter_mem.2 fun j => inter_mem (@s i j).2 (@t j i).2,
(hst _ _ hij).mono ((iInter_subset _ j).trans (inter_subset_left _ _))
((iInter_subset _ i).trans (inter_subset_right _ _))]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s t✝ : Set α
ι : Type u_2
l : ι → Filter α
t : Set ι
hd : PairwiseDisjoint t l
ht : Set.Finite t
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s
[PROOFSTEP]
haveI := ht.to_subtype
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s t✝ : Set α
ι : Type u_2
l : ι → Filter α
t : Set ι
hd : PairwiseDisjoint t l
ht : Set.Finite t
this : Finite ↑t
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s
[PROOFSTEP]
rcases(hd.subtype _ _).exists_mem_filter_of_disjoint with ⟨s, hsl, hsd⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
l : ι → Filter α
t : Set ι
hd : PairwiseDisjoint t l
ht : Set.Finite t
this : Finite ↑t
s : ↑t → Set α
hsl : ∀ (i : ↑t), s i ∈ l ↑i
hsd : Pairwise (Disjoint on s)
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s
[PROOFSTEP]
lift s to (i : t) → { s // s ∈ l i } using hsl
[GOAL]
case intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
l : ι → Filter α
t : Set ι
hd : PairwiseDisjoint t l
ht : Set.Finite t
this : Finite ↑t
s : (i : ↑t) → { s // s ∈ l ↑i }
hsd : Pairwise (Disjoint on fun i => ↑(s i))
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s
[PROOFSTEP]
[email protected]_pi_extension ι (fun i => { s // s ∈ l i }) _ _ s with ⟨s, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t✝ : Set α
ι : Type u_2
l : ι → Filter α
t : Set ι
hd : PairwiseDisjoint t l
ht : Set.Finite t
this : Finite ↑t
s : (i : ι) → { s // s ∈ l i }
hsd : Pairwise (Disjoint on fun i => ↑((fun i => s ↑i) i))
⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s
[PROOFSTEP]
exact ⟨fun i => s i, fun i => (s i).2, hsd.set_of_subtype _ _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
inst✝¹ : Subsingleton α
l : Filter α
inst✝ : NeBot l
⊢ l = ⊤
[PROOFSTEP]
refine' top_unique fun s hs => _
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
inst✝¹ : Subsingleton α
l : Filter α
inst✝ : NeBot l
s : Set α
hs : s ∈ l
⊢ s ∈ ⊤
[PROOFSTEP]
obtain rfl : s = univ
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
inst✝¹ : Subsingleton α
l : Filter α
inst✝ : NeBot l
s : Set α
hs : s ∈ l
⊢ s = univ
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
inst✝¹ : Subsingleton α
l : Filter α
inst✝ : NeBot l
hs : univ ∈ l
⊢ univ ∈ ⊤
[PROOFSTEP]
exact Subsingleton.eq_univ_of_nonempty (nonempty_of_mem hs)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
inst✝¹ : Subsingleton α
l : Filter α
inst✝ : NeBot l
hs : univ ∈ l
⊢ univ ∈ ⊤
[PROOFSTEP]
exact univ_mem
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
inst✝ : Nonempty α
s : Set α
hs : s ∈ ⊤
⊢ Set.Nonempty s
[PROOFSTEP]
rwa [mem_top.1 hs, ← nonempty_iff_univ_nonempty]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
p : ι → Prop
l : Filter α
h : ∀ {s : Set α}, s ∈ l ↔ ∃ i, p i ∧ s ∈ f i
⊢ l = ⨅ (i : ι) (_ : p i), f i
[PROOFSTEP]
rw [iInf_subtype']
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
p : ι → Prop
l : Filter α
h : ∀ {s : Set α}, s ∈ l ↔ ∃ i, p i ∧ s ∈ f i
⊢ l = ⨅ (x : { i // p i }), f ↑x
[PROOFSTEP]
exact eq_iInf_of_mem_iff_exists_mem <| fun {_} => by simp only [Subtype.exists, h, exists_prop]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
p : ι → Prop
l : Filter α
h : ∀ {s : Set α}, s ∈ l ↔ ∃ i, p i ∧ s ∈ f i
x✝ : Set α
⊢ x✝ ∈ l ↔ ∃ i, x✝ ∈ f ↑i
[PROOFSTEP]
simp only [Subtype.exists, h, exists_prop]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
⊢ ∀ {x y : Set α}, x ∈ ⋃ (i : ι), (f i).sets → x ⊆ y → y ∈ ⋃ (i : ι), (f i).sets
[PROOFSTEP]
simp only [mem_iUnion, exists_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
⊢ ∀ {x y : Set α} (x_1 : ι), x ∈ (f x_1).sets → x ⊆ y → ∃ i, y ∈ (f i).sets
[PROOFSTEP]
exact fun i hx hxy => ⟨i, mem_of_superset hx hxy⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
⊢ ∀ {x y : Set α}, x ∈ ⋃ (i : ι), (f i).sets → y ∈ ⋃ (i : ι), (f i).sets → x ∩ y ∈ ⋃ (i : ι), (f i).sets
[PROOFSTEP]
simp only [mem_iUnion, exists_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
⊢ ∀ {x y : Set α} (x_1 : ι), x ∈ (f x_1).sets → ∀ (x_2 : ι), y ∈ (f x_2).sets → ∃ i, x ∩ y ∈ (f i).sets
[PROOFSTEP]
intro x y a hx b hy
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
x y : Set α
a : ι
hx : x ∈ (f a).sets
b : ι
hy : y ∈ (f b).sets
⊢ ∃ i, x ∩ y ∈ (f i).sets
[PROOFSTEP]
rcases h a b with ⟨c, ha, hb⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
x y : Set α
a : ι
hx : x ∈ (f a).sets
b : ι
hy : y ∈ (f b).sets
c : ι
ha : f a ≥ f c
hb : f b ≥ f c
⊢ ∃ i, x ∩ y ∈ (f i).sets
[PROOFSTEP]
exact ⟨c, inter_mem (ha hx) (hb hy)⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
ne : Nonempty ι
i : ι
u : Filter α :=
{ sets := ⋃ (i : ι), (f i).sets, univ_sets := (_ : univ ∈ ⋃ (i : ι), (f i).sets), sets_of_superset := ?m.89808,
inter_sets := ?m.89809 }
this : u = iInf f
⊢ u.sets = ⋃ (i : ι), (f i).sets
[PROOFSTEP]
simp only
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
h : Directed (fun x x_1 => x ≥ x_1) f
inst✝ : Nonempty ι
s : Set α
⊢ s ∈ iInf f ↔ ∃ i, s ∈ f i
[PROOFSTEP]
simp only [← Filter.mem_sets, iInf_sets_eq h, mem_iUnion]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
f : β → Filter α
s : Set β
h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) s
ne : Set.Nonempty s
t : Set α
⊢ t ∈ ⨅ (i : β) (_ : i ∈ s), f i ↔ ∃ i, i ∈ s ∧ t ∈ f i
[PROOFSTEP]
haveI := ne.to_subtype
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
f : β → Filter α
s : Set β
h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) s
ne : Set.Nonempty s
t : Set α
this : Nonempty ↑s
⊢ t ∈ ⨅ (i : β) (_ : i ∈ s), f i ↔ ∃ i, i ∈ s ∧ t ∈ f i
[PROOFSTEP]
simp_rw [iInf_subtype', mem_iInf_of_directed h.directed_val, Subtype.exists, exists_prop]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
f : β → Filter α
s : Set β
h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) s
ne : Set.Nonempty s
t : Set α
⊢ t ∈ (⨅ (i : β) (_ : i ∈ s), f i).sets ↔ t ∈ ⋃ (i : β) (_ : i ∈ s), (f i).sets
[PROOFSTEP]
simp [mem_biInf_of_directed h ne]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s t : Set α
ι : Type u_2
f : ι → Filter α
⊢ (⨅ (i : ι), f i).sets = ⋃ (t : Finset ι), (⨅ (i : ι) (_ : i ∈ t), f i).sets
[PROOFSTEP]
rw [iInf_eq_iInf_finset, iInf_sets_eq]
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s t : Set α
ι : Type u_2
f : ι → Filter α
⊢ Directed (fun x x_1 => x ≥ x_1) fun t => ⨅ (i : ι) (_ : i ∈ t), f i
[PROOFSTEP]
exact directed_of_sup fun _ _ => biInf_mono
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
⊢ (⨅ (i : ι), f i).sets = ⋃ (t : Finset (PLift ι)), (⨅ (i : PLift ι) (_ : i ∈ t), f i.down).sets
[PROOFSTEP]
rw [← iInf_sets_eq_finite, ← Equiv.plift.surjective.iInf_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
⊢ (⨅ (x : PLift ι), f (↑Equiv.plift x)).sets = (⨅ (i : PLift ι), f i.down).sets
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
f₁ f₂ : Filter (Filter α)
x : Set α
⊢ x ∈ join f₁ ⊔ join f₂ ↔ x ∈ join (f₁ ⊔ f₂)
[PROOFSTEP]
simp only [mem_sup, mem_join]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s t : Set α
ι : Sort w
f : ι → Filter (Filter α)
x : Set α
⊢ x ∈ ⨆ (x : ι), join (f x) ↔ x ∈ join (⨆ (x : ι), f x)
[PROOFSTEP]
simp only [mem_iSup, mem_join]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
⊢ ∀ (x y z : Filter α), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
[PROOFSTEP]
intro x y z s
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
x y z : Filter α
s : Set α
⊢ s ∈ x ⊔ y ⊓ z → s ∈ (x ⊔ y) ⊓ (x ⊔ z)
[PROOFSTEP]
simp only [and_assoc, mem_inf_iff, mem_sup, exists_prop, exists_imp, and_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
x y z : Filter α
s : Set α
⊢ s ∈ x →
∀ (x_1 : Set α),
x_1 ∈ y → ∀ (x_2 : Set α), x_2 ∈ z → s = x_1 ∩ x_2 → ∃ t₁, t₁ ∈ x ∧ t₁ ∈ y ∧ ∃ t₂, t₂ ∈ x ∧ t₂ ∈ z ∧ s = t₁ ∩ t₂
[PROOFSTEP]
rintro hs t₁ ht₁ t₂ ht₂ rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s t : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
x y z : Filter α
t₁ : Set α
ht₁ : t₁ ∈ y
t₂ : Set α
ht₂ : t₂ ∈ z
hs : t₁ ∩ t₂ ∈ x
⊢ ∃ t₁_1, t₁_1 ∈ x ∧ t₁_1 ∈ y ∧ ∃ t₂_1, t₂_1 ∈ x ∧ t₂_1 ∈ z ∧ t₁ ∩ t₂ = t₁_1 ∩ t₂_1
[PROOFSTEP]
exact
⟨t₁, x.sets_of_superset hs (inter_subset_left t₁ t₂), ht₁, t₂, x.sets_of_superset hs (inter_subset_right t₁ t₂), ht₂,
rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
h₂ : t ∈ (sInf s).sets
⊢ t ∈ ⨅ (b : Filter α) (_ : b ∈ s), f ⊔ b
[PROOFSTEP]
rw [iInf_subtype']
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
h₂ : t ∈ (sInf s).sets
⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x
[PROOFSTEP]
rw [sInf_eq_iInf', iInf_sets_eq_finite, mem_iUnion] at h₂
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
h₂ : ∃ i, t ∈ (⨅ (i_1 : ↑s) (_ : i_1 ∈ i), ↑i_1).sets
⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x
[PROOFSTEP]
obtain ⟨u, hu⟩ := h₂
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
u : Finset ↑s
hu : t ∈ (⨅ (i : ↑s) (_ : i ∈ u), ↑i).sets
⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x
[PROOFSTEP]
rw [← Finset.inf_eq_iInf] at hu
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
u : Finset ↑s
hu : t ∈ (Finset.inf u fun i => ↑i).sets
⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x
[PROOFSTEP]
suffices ⨅ i : s, f ⊔ ↑i ≤ f ⊔ u.inf fun i => ↑i from this ⟨h₁, hu⟩
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
u : Finset ↑s
hu : t ∈ (Finset.inf u fun i => ↑i).sets
⊢ ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf u fun i => ↑i
[PROOFSTEP]
refine' Finset.induction_on u (le_sup_of_le_right le_top) _
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
u : Finset ↑s
hu : t ∈ (Finset.inf u fun i => ↑i).sets
⊢ ∀ ⦃a : ↑s⦄ {s_1 : Finset ↑s},
¬a ∈ s_1 →
(⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf s_1 fun i => ↑i) →
⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf (insert a s_1) fun i => ↑i
[PROOFSTEP]
rintro ⟨i⟩ u _ ih
[GOAL]
case intro.mk
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
u✝ : Finset ↑s
hu : t ∈ (Finset.inf u✝ fun i => ↑i).sets
i : Filter α
property✝ : i ∈ s
u : Finset ↑s
a✝ : ¬{ val := i, property := property✝ } ∈ u
ih : ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf u fun i => ↑i
⊢ ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf (insert { val := i, property := property✝ } u) fun i => ↑i
[PROOFSTEP]
rw [Finset.inf_insert, sup_inf_left]
[GOAL]
case intro.mk
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter
f : Filter α
s : Set (Filter α)
t : Set α
x✝ : t ∈ f ⊔ sInf s
h₁ : t ∈ f.sets
u✝ : Finset ↑s
hu : t ∈ (Finset.inf u✝ fun i => ↑i).sets
i : Filter α
property✝ : i ∈ s
u : Finset ↑s
a✝ : ¬{ val := i, property := property✝ } ∈ u
ih : ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf u fun i => ↑i
⊢ ⨅ (i : ↑s), f ⊔ ↑i ≤ (f ⊔ ↑{ val := i, property := property✝ }) ⊓ (f ⊔ Finset.inf u fun i => ↑i)
[PROOFSTEP]
exact le_inf (iInf_le _ _) ih
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
s : Finset α
f : α → Filter β
t : Set β
⊢ t ∈ ⨅ (a : α) (_ : a ∈ s), f a ↔ ∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (a : α) (_ : a ∈ s), p a
[PROOFSTEP]
simp only [← Finset.set_biInter_coe, biInter_eq_iInter, iInf_subtype']
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
s : Finset α
f : α → Filter β
t : Set β
⊢ t ∈ ⨅ (x : { i // i ∈ s }), f ↑x ↔ ∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (x : ↑↑s), p ↑x
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
s : Finset α
f : α → Filter β
t : Set β
h : t ∈ ⨅ (x : { i // i ∈ s }), f ↑x
⊢ ∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (x : ↑↑s), p ↑x
[PROOFSTEP]
rcases(mem_iInf_of_finite _).1 h with ⟨p, hp, rfl⟩
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
s : Finset α
f : α → Filter β
p : { i // i ∈ s } → Set β
hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i
h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x
⊢ ∃ p_1, (∀ (a : α), a ∈ s → p_1 a ∈ f a) ∧ ⋂ (i : { i // i ∈ s }), p i = ⋂ (x : ↑↑s), p_1 ↑x
[PROOFSTEP]
refine' ⟨fun a => if h : a ∈ s then p ⟨a, h⟩ else univ, fun a ha => by simpa [ha] using hp ⟨a, ha⟩, _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
s : Finset α
f : α → Filter β
p : { i // i ∈ s } → Set β
hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i
h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x
a : α
ha : a ∈ s
⊢ (fun a => if h : a ∈ s then p { val := a, property := h } else univ) a ∈ f a
[PROOFSTEP]
simpa [ha] using hp ⟨a, ha⟩
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
s : Finset α
f : α → Filter β
p : { i // i ∈ s } → Set β
hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i
h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x
⊢ ⋂ (i : { i // i ∈ s }), p i = ⋂ (x : ↑↑s), (fun a => if h : a ∈ s then p { val := a, property := h } else univ) ↑x
[PROOFSTEP]
refine' iInter_congr_of_surjective id surjective_id _
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
s : Finset α
f : α → Filter β
p : { i // i ∈ s } → Set β
hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i
h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x
⊢ ∀ (x : { i // i ∈ s }), (fun a => if h : a ∈ s then p { val := a, property := h } else univ) ↑(id x) = p x
[PROOFSTEP]
rintro ⟨a, ha⟩
[GOAL]
case refine'_1.intro.intro.mk
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
s : Finset α
f : α → Filter β
p : { i // i ∈ s } → Set β
hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i
h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x
a : α
ha : a ∈ s
⊢ (fun a => if h : a ∈ s then p { val := a, property := h } else univ) ↑(id { val := a, property := ha }) =
p { val := a, property := ha }
[PROOFSTEP]
simp [ha]
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
s : Finset α
f : α → Filter β
t : Set β
⊢ (∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (x : ↑↑s), p ↑x) → t ∈ ⨅ (x : { i // i ∈ s }), f ↑x
[PROOFSTEP]
rintro ⟨p, hpf, rfl⟩
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
s : Finset α
f : α → Filter β
p : α → Set β
hpf : ∀ (a : α), a ∈ s → p a ∈ f a
⊢ ⋂ (x : ↑↑s), p ↑x ∈ ⨅ (x : { i // i ∈ s }), f ↑x
[PROOFSTEP]
exact iInter_mem.2 fun a => mem_iInf_of_mem a (hpf a a.2)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
inst✝ : Nonempty ι
hd : Directed (fun x x_1 => x ≥ x_1) f
⊢ ¬NeBot (iInf f) → ¬∀ (i : ι), NeBot (f i)
[PROOFSTEP]
simpa only [not_forall, not_neBot, ← empty_mem_iff_bot, mem_iInf_of_directed hd] using id
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
hn : Nonempty α
hd : Directed (fun x x_1 => x ≥ x_1) f
hb : ∀ (i : ι), NeBot (f i)
⊢ NeBot (iInf f)
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
hn : Nonempty α
hd : Directed (fun x x_1 => x ≥ x_1) f
hb : ∀ (i : ι), NeBot (f i)
h✝ : IsEmpty ι
⊢ NeBot (iInf f)
[PROOFSTEP]
constructor
[GOAL]
case inl.ne'
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
hn : Nonempty α
hd : Directed (fun x x_1 => x ≥ x_1) f
hb : ∀ (i : ι), NeBot (f i)
h✝ : IsEmpty ι
⊢ iInf f ≠ ⊥
[PROOFSTEP]
simp [iInf_of_empty f, top_ne_bot]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
hn : Nonempty α
hd : Directed (fun x x_1 => x ≥ x_1) f
hb : ∀ (i : ι), NeBot (f i)
h✝ : Nonempty ι
⊢ NeBot (iInf f)
[PROOFSTEP]
exact iInf_neBot_of_directed' hd hb
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
s : Set α
hs : s ∈ iInf f
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
⊢ p s
[PROOFSTEP]
rw [mem_iInf_finite'] at hs
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
s : Set α
hs : ∃ t, s ∈ ⨅ (i : PLift ι) (_ : i ∈ t), f i.down
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
⊢ p s
[PROOFSTEP]
simp only [← Finset.inf_eq_iInf] at hs
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
s : Set α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
hs : ∃ t, s ∈ Finset.inf t fun a => f a.down
⊢ p s
[PROOFSTEP]
rcases hs with ⟨is, his⟩
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
s : Set α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
is : Finset (PLift ι)
his : s ∈ Finset.inf is fun a => f a.down
⊢ p s
[PROOFSTEP]
induction is using Finset.induction_on generalizing s
[GOAL]
case intro.empty
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
s : Set α
his : s ∈ Finset.inf ∅ fun a => f a.down
⊢ p s
case intro.insert
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝¹ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
a✝² : PLift ι
s✝ : Finset (PLift ι)
a✝¹ : ¬a✝² ∈ s✝
a✝ : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s
s : Set α
his : s ∈ Finset.inf (insert a✝² s✝) fun a => f a.down
⊢ p s
[PROOFSTEP]
case empty => rwa [mem_top.1 his]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
s : Set α
his : s ∈ Finset.inf ∅ fun a => f a.down
⊢ p s
[PROOFSTEP]
case empty => rwa [mem_top.1 his]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
s : Set α
his : s ∈ Finset.inf ∅ fun a => f a.down
⊢ p s
[PROOFSTEP]
rwa [mem_top.1 his]
[GOAL]
case intro.insert
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝¹ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
a✝² : PLift ι
s✝ : Finset (PLift ι)
a✝¹ : ¬a✝² ∈ s✝
a✝ : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s
s : Set α
his : s ∈ Finset.inf (insert a✝² s✝) fun a => f a.down
⊢ p s
[PROOFSTEP]
case insert ih =>
rw [Finset.inf_insert, mem_inf_iff] at his
rcases his with ⟨s₁, hs₁, s₂, hs₂, rfl⟩
exact ins hs₁ (ih hs₂)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝¹ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
a✝¹ : PLift ι
s✝ : Finset (PLift ι)
a✝ : ¬a✝¹ ∈ s✝
ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s
s : Set α
his : s ∈ Finset.inf (insert a✝¹ s✝) fun a => f a.down
⊢ p s
[PROOFSTEP]
case insert ih =>
rw [Finset.inf_insert, mem_inf_iff] at his
rcases his with ⟨s₁, hs₁, s₂, hs₂, rfl⟩
exact ins hs₁ (ih hs₂)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝¹ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
a✝¹ : PLift ι
s✝ : Finset (PLift ι)
a✝ : ¬a✝¹ ∈ s✝
ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s
s : Set α
his : s ∈ Finset.inf (insert a✝¹ s✝) fun a => f a.down
⊢ p s
[PROOFSTEP]
rw [Finset.inf_insert, mem_inf_iff] at his
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝¹ t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
a✝¹ : PLift ι
s✝ : Finset (PLift ι)
a✝ : ¬a✝¹ ∈ s✝
ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s
s : Set α
his : ∃ t₁, t₁ ∈ f a✝¹.down ∧ ∃ t₂, (t₂ ∈ Finset.inf s✝ fun a => f a.down) ∧ s = t₁ ∩ t₂
⊢ p s
[PROOFSTEP]
rcases his with ⟨s₁, hs₁, s₂, hs₂, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s t : Set α
f : ι → Filter α
p : Set α → Prop
uni : p univ
ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)
a✝¹ : PLift ι
s✝ : Finset (PLift ι)
a✝ : ¬a✝¹ ∈ s✝
ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s
s₁ : Set α
hs₁ : s₁ ∈ f a✝¹.down
s₂ : Set α
hs₂ : s₂ ∈ Finset.inf s✝ fun a => f a.down
⊢ p (s₁ ∩ s₂)
[PROOFSTEP]
exact ins hs₁ (ih hs₂)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t : Set α
⊢ 𝓟 s ⊓ 𝓟 t ≤ 𝓟 (s ∩ t)
[PROOFSTEP]
simp only [le_principal_iff, mem_inf_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t : Set α
⊢ ∃ t₁, t₁ ∈ 𝓟 s ∧ ∃ t₂, t₂ ∈ 𝓟 t ∧ s ∩ t = t₁ ∩ t₂
[PROOFSTEP]
exact ⟨s, Subset.rfl, t, Subset.rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t : Set α
⊢ 𝓟 (s ∩ t) ≤ 𝓟 s ⊓ 𝓟 t
[PROOFSTEP]
simp [le_inf_iff, inter_subset_left, inter_subset_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t✝ s t u : Set α
⊢ u ∈ 𝓟 s ⊔ 𝓟 t ↔ u ∈ 𝓟 (s ∪ t)
[PROOFSTEP]
simp only [union_subset_iff, mem_sup, mem_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f g : Filter α
s✝ t : Set α
ι : Sort w
s : ι → Set α
x : Set α
⊢ x ∈ ⨆ (x : ι), 𝓟 (s x) ↔ x ∈ 𝓟 (⋃ (i : ι), s i)
[PROOFSTEP]
simp only [mem_iSup, mem_principal, iUnion_subset_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t s : Set α
⊢ 𝓟 s ⊓ 𝓟 sᶜ = ⊥
[PROOFSTEP]
rw [inf_principal, inter_compl_self, principal_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
s✝ t s : Set α
⊢ 𝓟 s ⊔ 𝓟 sᶜ = ⊤
[PROOFSTEP]
rw [sup_principal, union_compl_self, principal_univ]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
f : Filter α
s t : Set α
⊢ s ∈ f ⊓ 𝓟 t ↔ tᶜ ∪ s ∈ f
[PROOFSTEP]
simp only [← le_principal_iff, (isCompl_principal s).le_left_iff, disjoint_assoc, inf_principal, ←
(isCompl_principal (t ∩ sᶜ)).le_right_iff, compl_inter, compl_compl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
f : Filter α
s t : Set α
⊢ s ∈ f ⊓ 𝓟 t ↔ {x | x ∈ t → x ∈ s} ∈ f
[PROOFSTEP]
simp only [mem_inf_principal', imp_iff_not_or]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t✝ : Set α
f : Filter α
s t : Set α
⊢ tᶜ ∪ s ∈ f ↔ {x | ¬x ∈ t ∨ x ∈ s} ∈ f
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : ι → Filter α
s : Set α
⊢ ⨆ (i : ι), f i ⊓ 𝓟 s = (⨆ (i : ι), f i) ⊓ 𝓟 s
[PROOFSTEP]
ext
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝¹ t : Set α
f : ι → Filter α
s s✝ : Set α
⊢ s✝ ∈ ⨆ (i : ι), f i ⊓ 𝓟 s ↔ s✝ ∈ (⨆ (i : ι), f i) ⊓ 𝓟 s
[PROOFSTEP]
simp only [mem_iSup, mem_inf_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : Filter α
s : Set α
⊢ f ⊓ 𝓟 s = ⊥ ↔ sᶜ ∈ f
[PROOFSTEP]
rw [← empty_mem_iff_bot, mem_inf_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : Filter α
s : Set α
⊢ {x | x ∈ s → x ∈ ∅} ∈ f ↔ sᶜ ∈ f
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t : Set α
f : Filter α
s : Set α
h : f ⊓ 𝓟 sᶜ = ⊥
⊢ s ∈ f
[PROOFSTEP]
rwa [inf_principal_eq_bot, compl_compl] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t s : Set α
f : Filter α
⊢ 𝓟 s ≤ f ↔ ∀ (V : Set α), V ∈ f → s ⊆ V
[PROOFSTEP]
change (∀ V, V ∈ f → V ∈ _) ↔ _
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ g : Filter α
s✝ t s : Set α
f : Filter α
⊢ (∀ (V : Set α), V ∈ f → V ∈ 𝓟 s) ↔ ∀ (V : Set α), V ∈ f → s ⊆ V
[PROOFSTEP]
simp_rw [mem_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s✝ t : Set α
ι : Type w
s : Finset ι
f : ι → Set α
⊢ ⨅ (i : ι) (_ : i ∈ s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ s), f i)
[PROOFSTEP]
induction' s using Finset.induction_on with i s _ hs
[GOAL]
case empty
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s t : Set α
ι : Type w
f : ι → Set α
⊢ ⨅ (i : ι) (_ : i ∈ ∅), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ ∅), f i)
[PROOFSTEP]
simp
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s✝ t : Set α
ι : Type w
f : ι → Set α
i : ι
s : Finset ι
a✝ : ¬i ∈ s
hs : ⨅ (i : ι) (_ : i ∈ s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ s), f i)
⊢ ⨅ (i_1 : ι) (_ : i_1 ∈ insert i s), 𝓟 (f i_1) = 𝓟 (⋂ (i_1 : ι) (_ : i_1 ∈ insert i s), f i_1)
[PROOFSTEP]
rw [Finset.iInf_insert, Finset.set_biInter_insert, hs, inf_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s t : Set α
ι : Type w
inst✝ : Finite ι
f : ι → Set α
⊢ ⨅ (i : ι), 𝓟 (f i) = 𝓟 (⋂ (i : ι), f i)
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s t : Set α
ι : Type w
inst✝ : Finite ι
f : ι → Set α
val✝ : Fintype ι
⊢ ⨅ (i : ι), 𝓟 (f i) = 𝓟 (⋂ (i : ι), f i)
[PROOFSTEP]
simpa using iInf_principal_finset Finset.univ f
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s✝ t : Set α
ι : Type w
s : Set ι
hs : Set.Finite s
f : ι → Set α
⊢ ⨅ (i : ι) (_ : i ∈ s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ s), f i)
[PROOFSTEP]
lift s to Finset ι using hs
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ g : Filter α
s✝ t : Set α
ι : Type w
f : ι → Set α
s : Finset ι
⊢ ⨅ (i : ι) (_ : i ∈ ↑s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ ↑s), f i)
[PROOFSTEP]
exact_mod_cast iInf_principal_finset s f
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
t : NeBot f
p : Prop
h : p
⊢ (∀ᶠ (x : α) in f, p) ↔ p
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
t : NeBot f
p : Prop
h : ¬p
⊢ (∀ᶠ (x : α) in f, p) ↔ p
[PROOFSTEP]
simpa [h] using t.ne
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p q : α → Prop
h : ∀ᶠ (x : α) in f, p x ↔ q x
hq : ∀ᶠ (x : α) in f, q x
⊢ ∀ᶠ (x : α) in f, q x ↔ p x
[PROOFSTEP]
simpa only [Iff.comm] using h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
ι : Type u_2
inst✝ : Finite ι
l : Filter α
p : ι → α → Prop
⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), p i x) ↔ ∀ (i : ι), ∀ᶠ (x : α) in l, p i x
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
ι : Type u_2
inst✝ : Finite ι
l : Filter α
p : ι → α → Prop
val✝ : Fintype ι
⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), p i x) ↔ ∀ (i : ι), ∀ᶠ (x : α) in l, p i x
[PROOFSTEP]
simpa only [Filter.Eventually, setOf_forall] using iInter_mem
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
ι : Type u_2
I : Set ι
hI : Set.Finite I
l : Filter α
p : ι → α → Prop
⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), i ∈ I → p i x) ↔ ∀ (i : ι), i ∈ I → ∀ᶠ (x : α) in l, p i x
[PROOFSTEP]
simpa only [Filter.Eventually, setOf_forall] using biInter_mem hI
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : Prop
q : α → Prop
h : p
⊢ (∀ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∀ᶠ (x : α) in f, q x
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : Prop
q : α → Prop
h : ¬p
⊢ (∀ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∀ᶠ (x : α) in f, q x
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : α → Prop
q : Prop
⊢ (∀ᶠ (x : α) in f, p x ∨ q) ↔ (∀ᶠ (x : α) in f, p x) ∨ q
[PROOFSTEP]
simp only [@or_comm _ q, eventually_or_distrib_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : Prop
q : α → Prop
⊢ (∀ᶠ (x : α) in f, p → q x) ↔ p → ∀ᶠ (x : α) in f, q x
[PROOFSTEP]
simp only [imp_iff_not_or, eventually_or_distrib_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p q : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
hq : ∀ᶠ (x : α) in f, q x
⊢ ∃ᶠ (x : α) in f, p x ∧ q x
[PROOFSTEP]
refine' mt (fun h => hq.mp <| h.mono _) hp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p q : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
hq : ∀ᶠ (x : α) in f, q x
h : ∀ᶠ (x : α) in f, ¬(fun x => p x ∧ q x) x
⊢ ∀ (x : α), ¬(fun x => p x ∧ q x) x → q x → ¬(fun x => p x) x
[PROOFSTEP]
exact fun x hpq hq hp => hpq ⟨hp, hq⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p q : α → Prop
f : Filter α
hp : ∀ᶠ (x : α) in f, p x
hq : ∃ᶠ (x : α) in f, q x
⊢ ∃ᶠ (x : α) in f, p x ∧ q x
[PROOFSTEP]
simpa only [and_comm] using hq.and_eventually hp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
⊢ ∃ x, p x
[PROOFSTEP]
by_contra H
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
H : ¬∃ x, p x
⊢ False
[PROOFSTEP]
replace H : ∀ᶠ x in f, ¬p x
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
H : ¬∃ x, p x
⊢ ∀ᶠ (x : α) in f, ¬p x
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
H : ∀ᶠ (x : α) in f, ¬p x
⊢ False
[PROOFSTEP]
exact eventually_of_forall (not_exists.1 H)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
hp : ∃ᶠ (x : α) in f, p x
H : ∀ᶠ (x : α) in f, ¬p x
⊢ False
[PROOFSTEP]
exact hp H
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
H : ∀ {q : α → Prop}, (∀ᶠ (x : α) in f, q x) → ∃ x, p x ∧ q x
hp : ∀ᶠ (x : α) in f, ¬(fun x => p x) x
⊢ False
[PROOFSTEP]
simpa only [and_not_self_iff, exists_false] using H hp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
P : α → Prop
⊢ (∃ᶠ (x : α) in f, P x) ↔ ∀ {U : Set α}, U ∈ f → ∃ x, x ∈ U ∧ P x
[PROOFSTEP]
simp only [frequently_iff_forall_eventually_exists_and, exists_prop, @and_comm (P _)]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
P : α → Prop
⊢ (∀ {q : α → Prop}, (∀ᶠ (x : α) in f, q x) → ∃ x, q x ∧ P x) ↔ ∀ {U : Set α}, U ∈ f → ∃ x, x ∈ U ∧ P x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
⊢ (¬∀ᶠ (x : α) in f, p x) ↔ ∃ᶠ (x : α) in f, ¬p x
[PROOFSTEP]
simp [Filter.Frequently]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f : Filter α
⊢ (¬∃ᶠ (x : α) in f, p x) ↔ ∀ᶠ (x : α) in f, ¬p x
[PROOFSTEP]
simp only [Filter.Frequently, not_not]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
⊢ (∃ᶠ (x : α) in f, True) ↔ NeBot f
[PROOFSTEP]
simp [Filter.Frequently, -not_eventually, eventually_false_iff_eq_bot, neBot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
⊢ ¬∃ᶠ (x : α) in f, False
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
inst✝ : NeBot f
p : Prop
h : p
⊢ (∃ᶠ (x : α) in f, p) ↔ p
[PROOFSTEP]
simpa [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
inst✝ : NeBot f
p : Prop
h : ¬p
⊢ (∃ᶠ (x : α) in f, p) ↔ p
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p q : α → Prop
⊢ (∃ᶠ (x : α) in f, p x ∨ q x) ↔ (∃ᶠ (x : α) in f, p x) ∨ ∃ᶠ (x : α) in f, q x
[PROOFSTEP]
simp only [Filter.Frequently, ← not_and_or, not_or, eventually_and]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
inst✝ : NeBot f
p : Prop
q : α → Prop
⊢ (∃ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∃ᶠ (x : α) in f, q x
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
inst✝ : NeBot f
p : α → Prop
q : Prop
⊢ (∃ᶠ (x : α) in f, p x ∨ q) ↔ (∃ᶠ (x : α) in f, p x) ∨ q
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p q : α → Prop
⊢ (∃ᶠ (x : α) in f, p x → q x) ↔ (∀ᶠ (x : α) in f, p x) → ∃ᶠ (x : α) in f, q x
[PROOFSTEP]
simp [imp_iff_not_or, not_eventually, frequently_or_distrib]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
inst✝ : NeBot f
p : Prop
q : α → Prop
⊢ (∃ᶠ (x : α) in f, p → q x) ↔ p → ∃ᶠ (x : α) in f, q x
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
inst✝ : NeBot f
p : α → Prop
q : Prop
⊢ (∃ᶠ (x : α) in f, p x → q) ↔ (∀ᶠ (x : α) in f, p x) → q
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : α → Prop
q : Prop
⊢ (∀ᶠ (x : α) in f, p x → q) ↔ (∃ᶠ (x : α) in f, p x) → q
[PROOFSTEP]
simp only [imp_iff_not_or, eventually_or_distrib_right, not_frequently]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : Prop
q : α → Prop
⊢ (∃ᶠ (x : α) in f, p ∧ q x) ↔ p ∧ ∃ᶠ (x : α) in f, q x
[PROOFSTEP]
simp only [Filter.Frequently, not_and, eventually_imp_distrib_left, not_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
p : α → Prop
q : Prop
⊢ (∃ᶠ (x : α) in f, p x ∧ q) ↔ (∃ᶠ (x : α) in f, p x) ∧ q
[PROOFSTEP]
simp only [@and_comm _ q, frequently_and_distrib_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
⊢ ¬∃ᶠ (x : α) in ⊥, p x
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
⊢ (∃ᶠ (x : α) in ⊤, p x) ↔ ∃ x, p x
[PROOFSTEP]
simp [Filter.Frequently]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
a : Set α
p : α → Prop
⊢ (∃ᶠ (x : α) in 𝓟 a, p x) ↔ ∃ x, x ∈ a ∧ p x
[PROOFSTEP]
simp [Filter.Frequently, not_forall]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
f g : Filter α
⊢ (∃ᶠ (x : α) in f ⊔ g, p x) ↔ (∃ᶠ (x : α) in f, p x) ∨ ∃ᶠ (x : α) in g, p x
[PROOFSTEP]
simp only [Filter.Frequently, eventually_sup, not_and_or]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
fs : Set (Filter α)
⊢ (∃ᶠ (x : α) in sSup fs, p x) ↔ ∃ f, f ∈ fs ∧ ∃ᶠ (x : α) in f, p x
[PROOFSTEP]
simp only [Filter.Frequently, not_forall, eventually_sSup, exists_prop]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
p : α → Prop
fs : β → Filter α
⊢ (∃ᶠ (x : α) in ⨆ (b : β), fs b, p x) ↔ ∃ b, ∃ᶠ (x : α) in fs b, p x
[PROOFSTEP]
simp only [Filter.Frequently, eventually_iSup, not_forall]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
r : α → β → Prop
l : Filter α
inst✝ : NeBot l
h : ∀ᶠ (x : α) in l, ∃ y, r x y
⊢ ∃ f, ∀ᶠ (x : α) in l, r x (f x)
[PROOFSTEP]
haveI : Nonempty β :=
let ⟨_, hx⟩ := h.exists;
hx.nonempty
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
r : α → β → Prop
l : Filter α
inst✝ : NeBot l
h : ∀ᶠ (x : α) in l, ∃ y, r x y
this : Nonempty β
⊢ ∃ f, ∀ᶠ (x : α) in l, r x (f x)
[PROOFSTEP]
choose! f hf using fun x (hx : ∃ y, r x y) => hx
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
r : α → β → Prop
l : Filter α
inst✝ : NeBot l
h : ∀ᶠ (x : α) in l, ∃ y, r x y
this : Nonempty β
f : α → β
hf : ∀ (x : α), (∃ y, r x y) → r x (f x)
⊢ ∃ f, ∀ᶠ (x : α) in l, r x (f x)
[PROOFSTEP]
exact ⟨f, h.mono hf⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s : Set α
l : Filter α
⊢ s =ᶠ[l] univ ↔ s ∈ l
[PROOFSTEP]
simp [eventuallyEq_set]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l : Filter α
f f' : α → β
hf : f =ᶠ[l] f'
g g' : α → γ
hg : g =ᶠ[l] g'
⊢ ∀ (x : α), g x = g' x → f x = f' x → (fun x => (f x, g x)) x = (fun x => (f' x, g' x)) x
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l : Filter α
f f' : α → β
hf : f =ᶠ[l] f'
g g' : α → γ
hg : g =ᶠ[l] g'
x✝ : α
a✝¹ : g x✝ = g' x✝
a✝ : f x✝ = f' x✝
⊢ (fun x => (f x, g x)) x✝ = (fun x => (f' x, g' x)) x✝
[PROOFSTEP]
simp only [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s : Set α
l : Filter α
⊢ (∀ᶠ (x : α) in l, x ∈ s ↔ x ∈ ∅) ↔ ∀ᶠ (x : α) in l, ¬x ∈ s
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s t : Set α
l : Filter α
⊢ s ∩ t =ᶠ[l] s ↔ ∀ᶠ (x : α) in l, x ∈ s → x ∈ t
[PROOFSTEP]
simp only [eventuallyEq_set, mem_inter_iff, and_iff_left_iff_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s t : Set α
l : Filter α
⊢ s ∩ t =ᶠ[l] t ↔ ∀ᶠ (x : α) in l, x ∈ t → x ∈ s
[PROOFSTEP]
rw [inter_comm, inter_eventuallyEq_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : AddGroup β
f g : α → β
l : Filter α
h : f =ᶠ[l] g
⊢ f - g =ᶠ[l] 0
[PROOFSTEP]
simpa using ((EventuallyEq.refl l f).sub h).symm
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : AddGroup β
f g : α → β
l : Filter α
h : f - g =ᶠ[l] 0
⊢ f =ᶠ[l] g
[PROOFSTEP]
simpa using h.add (EventuallyEq.refl l g)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : LE β
l : Filter α
f f' g g' : α → β
H✝ : f ≤ᶠ[l] g
hf✝ : f =ᶠ[l] f'
hg✝ : g =ᶠ[l] g'
x : α
hf : f x = f' x
hg : g x = g' x
H : f x ≤ g x
⊢ f' x ≤ g' x
[PROOFSTEP]
rwa [hf, hg] at H
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : PartialOrder β
l : Filter α
f g : α → β
⊢ f =ᶠ[l] g ↔ f ≤ᶠ[l] g ∧ g ≤ᶠ[l] f
[PROOFSTEP]
simp only [EventuallyEq, EventuallyLE, le_antisymm_iff, eventually_and]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s t : Set α
l : Filter α
⊢ t ∈ l ⊓ 𝓟 s ↔ l ⊓ 𝓟 s ≤ l ⊓ 𝓟 t
[PROOFSTEP]
simp only [le_inf_iff, inf_le_left, true_and_iff, le_principal_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s t : Set α
l : Filter α
⊢ s =ᶠ[l] t ↔ l ⊓ 𝓟 s = l ⊓ 𝓟 t
[PROOFSTEP]
simp only [eventuallyLE_antisymm_iff, le_antisymm_iff, set_eventuallyLE_iff_inf_principal_le]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝³ : MulZeroClass β
inst✝² : PartialOrder β
inst✝¹ : PosMulMono β
inst✝ : MulPosMono β
l : Filter α
f₁ f₂ g₁ g₂ : α → β
hf : f₁ ≤ᶠ[l] f₂
hg : g₁ ≤ᶠ[l] g₂
hg₀ : 0 ≤ᶠ[l] g₁
hf₀ : 0 ≤ᶠ[l] f₂
⊢ f₁ * g₁ ≤ᶠ[l] f₂ * g₂
[PROOFSTEP]
filter_upwards [hf, hg, hg₀, hf₀] with x using _root_.mul_le_mul
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝³ : Mul β
inst✝² : Preorder β
inst✝¹ : CovariantClass β β (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass β β (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
l : Filter α
f₁ f₂ g₁ g₂ : α → β
hf : f₁ ≤ᶠ[l] f₂
hg : g₁ ≤ᶠ[l] g₂
⊢ f₁ * g₁ ≤ᶠ[l] f₂ * g₂
[PROOFSTEP]
filter_upwards [hf, hg] with x hfx hgx using _root_.mul_le_mul' hfx hgx
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : OrderedSemiring β
l : Filter α
f g : α → β
hf : 0 ≤ᶠ[l] f
hg : 0 ≤ᶠ[l] g
⊢ 0 ≤ᶠ[l] f * g
[PROOFSTEP]
filter_upwards [hf, hg] with x using _root_.mul_nonneg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : SemilatticeSup β
l : Filter α
f₁ f₂ g₁ g₂ : α → β
hf : f₁ ≤ᶠ[l] f₂
hg : g₁ ≤ᶠ[l] g₂
⊢ f₁ ⊔ g₁ ≤ᶠ[l] f₂ ⊔ g₂
[PROOFSTEP]
filter_upwards [hf, hg] with x hfx hgx using sup_le_sup hfx hgx
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : SemilatticeSup β
l : Filter α
f g h : α → β
hf : f ≤ᶠ[l] h
hg : g ≤ᶠ[l] h
⊢ f ⊔ g ≤ᶠ[l] h
[PROOFSTEP]
filter_upwards [hf, hg] with x hfx hgx using _root_.sup_le hfx hgx
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
m : α → β
m' : β → γ
s : Set α
t : Set β
hf : Injective m
h : m '' s ∈ map m f
⊢ s ∈ f
[PROOFSTEP]
rwa [← preimage_image_eq s hf]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ range m ∈ map m f
[PROOFSTEP]
rw [← image_univ]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ m '' univ ∈ map m f
[PROOFSTEP]
exact image_mem_map univ_mem
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter β
⊢ m ⁻¹' univ ⊆ univ
[PROOFSTEP]
simp only [subset_univ, preimage_univ]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter β
p : α → Prop
s : Set α
x✝ : s ∈ comap f l
t : Set β
ht : t ∈ l
hts : f ⁻¹' t ⊆ s
y : β
hy : y ∈ t
x : α
hx : f x = y
⊢ f x ∈ t
[PROOFSTEP]
rwa [hx]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter β
p : α → Prop
s✝ : Set α
x : α
s : Set β
F : Filter (α × β)
⊢ s ∈ comap (Prod.mk x) F ↔ {p | p.fst = x → p.snd ∈ s} ∈ F
[PROOFSTEP]
simp_rw [mem_comap', Prod.ext_iff, and_imp, @forall_swap β (_ = _), forall_eq, eq_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter β
p : α → Prop
s : Set α
⊢ (∃ᶠ (a : α) in comap f l, p a) ↔ ∃ᶠ (b : β) in l, ∃ a, f a = b ∧ p a
[PROOFSTEP]
simp only [Filter.Frequently, eventually_comap, not_exists, not_and]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter β
p : α → Prop
s : Set α
⊢ s ∈ comap f l ↔ (f '' sᶜ)ᶜ ∈ l
[PROOFSTEP]
simp only [mem_comap'', kernImage_eq_compl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter β
p : α → Prop
s : Set α
⊢ sᶜ ∈ comap f l ↔ (f '' s)ᶜ ∈ l
[PROOFSTEP]
rw [mem_comap_iff_compl, compl_compl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
⊢ kernImage m univ = univ
[PROOFSTEP]
simp [kernImage_eq_compl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
⊢ ∀ {x y : Set β}, x ∈ kernImage m '' f.sets → x ⊆ y → y ∈ kernImage m '' f.sets
[PROOFSTEP]
rintro _ t ⟨s, hs, rfl⟩ hst
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
t : Set β
s : Set α
hs : s ∈ f.sets
hst : kernImage m s ⊆ t
⊢ t ∈ kernImage m '' f.sets
[PROOFSTEP]
refine ⟨s ∪ m ⁻¹' t, mem_of_superset hs (subset_union_left s _), ?_⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
t : Set β
s : Set α
hs : s ∈ f.sets
hst : kernImage m s ⊆ t
⊢ kernImage m (s ∪ m ⁻¹' t) = t
[PROOFSTEP]
rw [kernImage_union_preimage, union_eq_right_iff_subset.mpr hst]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
⊢ ∀ {x y : Set β}, x ∈ kernImage m '' f.sets → y ∈ kernImage m '' f.sets → x ∩ y ∈ kernImage m '' f.sets
[PROOFSTEP]
rintro _ _ ⟨s₁, h₁, rfl⟩ ⟨s₂, h₂, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
s₁ : Set α
h₁ : s₁ ∈ f.sets
s₂ : Set α
h₂ : s₂ ∈ f.sets
⊢ kernImage m s₁ ∩ kernImage m s₂ ∈ kernImage m '' f.sets
[PROOFSTEP]
exact ⟨s₁ ∩ s₂, f.inter_sets h₁ h₂, Set.preimage_kernImage.u_inf⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
s : Set β
⊢ s ∈ kernMap m f ↔ ∃ t, tᶜ ∈ f ∧ m '' t = sᶜ
[PROOFSTEP]
rw [mem_kernMap, compl_surjective.exists]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
s : Set β
⊢ (∃ x, xᶜ ∈ f ∧ kernImage m xᶜ = s) ↔ ∃ t, tᶜ ∈ f ∧ m '' t = sᶜ
[PROOFSTEP]
refine exists_congr (fun x ↦ and_congr_right fun _ ↦ ?_)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
s : Set β
x : Set α
x✝ : xᶜ ∈ f
⊢ kernImage m xᶜ = s ↔ m '' x = sᶜ
[PROOFSTEP]
rw [kernImage_compl, compl_eq_comm, eq_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
s : Set β
⊢ sᶜ ∈ kernMap m f ↔ ∃ t, tᶜ ∈ f ∧ m '' t = s
[PROOFSTEP]
simp_rw [mem_kernMap_iff_compl, compl_compl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
a : α
s : Set α
⊢ s ∈ 𝓟 {a} ↔ s ∈ pure a
[PROOFSTEP]
simp only [mem_pure, mem_principal, singleton_subset_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
a : α
m : α → Filter β
⊢ bind (pure a) m = m a
[PROOFSTEP]
simp only [Bind.bind, bind, map_pure, join_pure]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
inst✝ : NeBot f
c : β
⊢ map (fun x => c) f = pure c
[PROOFSTEP]
ext s
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
inst✝ : NeBot f
c : β
s : Set β
⊢ s ∈ map (fun x => c) f ↔ s ∈ pure c
[PROOFSTEP]
by_cases h : c ∈ s
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
inst✝ : NeBot f
c : β
s : Set β
h : c ∈ s
⊢ s ∈ map (fun x => c) f ↔ s ∈ pure c
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
inst✝ : NeBot f
c : β
s : Set β
h : ¬c ∈ s
⊢ s ∈ map (fun x => c) f ↔ s ∈ pure c
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
m : γ → β
n : β → α
s : Set γ
⊢ sᶜ ∈ comap m (comap n f) ↔ sᶜ ∈ comap (n ∘ m) f
[PROOFSTEP]
simp only [compl_mem_comap, image_image, (· ∘ ·)]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
φ : α → β
θ : α → γ
ψ : β → δ
ρ : γ → δ
H : ψ ∘ φ = ρ ∘ θ
F : Filter α
⊢ map ψ (map φ F) = map ρ (map θ F)
[PROOFSTEP]
rw [Filter.map_map, H, ← Filter.map_map]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
φ : α → β
θ : α → γ
ψ : β → δ
ρ : γ → δ
H : ψ ∘ φ = ρ ∘ θ
G : Filter δ
⊢ comap φ (comap ψ G) = comap θ (comap ρ G)
[PROOFSTEP]
rw [Filter.comap_comap, H, ← Filter.comap_comap]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
b : β
⊢ comap m (pure b) = 𝓟 (m ⁻¹' {b})
[PROOFSTEP]
rw [← principal_singleton, comap_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ comap m g ≤ f ↔ g ≤ kernMap m f
[PROOFSTEP]
simp [Filter.le_def, mem_comap'', mem_kernMap, -mem_comap]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
s : Set α
⊢ kernMap m (𝓟 s) = 𝓟 (kernImage m s)
[PROOFSTEP]
refine eq_of_forall_le_iff (fun g ↦ ?_)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
s : Set α
g : Filter β
⊢ g ≤ kernMap m (𝓟 s) ↔ g ≤ 𝓟 (kernImage m s)
[PROOFSTEP]
rw [← comap_le_iff_le_kernMap, le_principal_iff, le_principal_iff, mem_comap'']
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
⊢ map f ⊤ = 𝓟 (range f)
[PROOFSTEP]
rw [← principal_univ, map_principal, image_univ]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
l : Filter α
⊢ l ≤ comap f ⊤
[PROOFSTEP]
rw [comap_top]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
l : Filter α
⊢ l ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
s : Set α
x✝ : s ∈ ⊥
⊢ m ⁻¹' ∅ ⊆ s
[PROOFSTEP]
simp only [empty_subset, preimage_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : NeBot (comap m g)
⊢ NeBot g
[PROOFSTEP]
rw [neBot_iff] at *
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : comap m g ≠ ⊥
⊢ g ≠ ⊥
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : g = ⊥
⊢ comap m g = ⊥
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : g = ⊥
⊢ comap m ⊥ = ⊥
[PROOFSTEP]
exact comap_bot
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ comap m (g ⊓ 𝓟 (range m)) = comap m g
[PROOFSTEP]
simpa only [le_principal_iff, comap_inf, comap_principal, preimage_range, principal_univ, inf_eq_left] using le_top
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : Disjoint g₁ g₂
⊢ Disjoint (comap m g₁) (comap m g₂)
[PROOFSTEP]
simp only [disjoint_iff, ← comap_inf, h.eq_bot, comap_bot]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
s : Set (Filter β)
m : α → β
⊢ comap m (sSup s) = ⨆ (f : Filter β) (_ : f ∈ s), comap m f
[PROOFSTEP]
simp only [sSup_eq_iSup, comap_iSup, eq_self_iff_true]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ comap m (g₁ ⊔ g₂) = comap m g₁ ⊔ comap m g₂
[PROOFSTEP]
rw [sup_eq_iSup, comap_iSup, iSup_bool_eq, Bool.cond_true, Bool.cond_false]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
⊢ map m (comap m f) = f ⊓ 𝓟 (range m)
[PROOFSTEP]
refine' le_antisymm (le_inf map_comap_le <| le_principal_iff.2 range_mem_map) _
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
⊢ f ⊓ 𝓟 (range m) ≤ map m (comap m f)
[PROOFSTEP]
rintro t' ⟨t, ht, sub⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t✝ : Set β
f : Filter β
m : α → β
t' t : Set β
ht : t ∈ f
sub : m ⁻¹' t ⊆ m ⁻¹' t'
⊢ t' ∈ f ⊓ 𝓟 (range m)
[PROOFSTEP]
refine' mem_inf_principal.2 (mem_of_superset ht _)
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t✝ : Set β
f : Filter β
m : α → β
t' t : Set β
ht : t ∈ f
sub : m ⁻¹' t ⊆ m ⁻¹' t'
⊢ t ⊆ {x | x ∈ range m → x ∈ t'}
[PROOFSTEP]
rintro _ hxt ⟨x, rfl⟩
[GOAL]
case intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t✝ : Set β
f : Filter β
m : α → β
t' t : Set β
ht : t ∈ f
sub : m ⁻¹' t ⊆ m ⁻¹' t'
x : α
hxt : m x ∈ t
⊢ m x ∈ t'
[PROOFSTEP]
exact sub hxt
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
f : Filter β
s : Set β
⊢ map Subtype.val (comap Subtype.val f) = f ⊓ 𝓟 s
[PROOFSTEP]
rw [map_comap, Subtype.range_val]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
hf : range m ∈ f
⊢ map m (comap m f) = f
[PROOFSTEP]
rw [map_comap, inf_eq_left.2 (le_principal_iff.2 hf)]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
hf : Surjective f
l : Filter β
⊢ range f ∈ l
[PROOFSTEP]
simp only [hf.range_eq, univ_mem]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s✝ : Set α
t : Set β
s : Set α
f : Filter α
⊢ map Subtype.val (comap Subtype.val f) = f ⊓ 𝓟 s
[PROOFSTEP]
rw [map_comap, Subtype.range_coe]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
c : β → α
h : range c ∈ f
W : Set β
W_in : W ∈ comap c f
⊢ c '' W ∈ f
[PROOFSTEP]
rw [← map_comap_of_mem h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
c : β → α
h : range c ∈ f
W : Set β
W_in : W ∈ comap c f
⊢ c '' W ∈ map c (comap c f)
[PROOFSTEP]
exact image_mem_map W_in
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
U : Set α
h : U ∈ f
W : Set ↑U
W_in : W ∈ comap Subtype.val f
⊢ range Subtype.val ∈ f
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
f : Filter α
m : α → β
h : Injective m
s : Set α
hs : s ∈ f
⊢ m ⁻¹' (m '' s) ⊆ s
[PROOFSTEP]
simp only [preimage_image_eq s h, Subset.rfl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
inj : Injective m
large : range m ∈ f
S : Set α
⊢ S ∈ comap m f ↔ m '' S ∈ f
[PROOFSTEP]
rw [← image_mem_map_iff inj, map_comap_of_mem large]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f g : Filter α
m : α → β
hm : Injective m
⊢ map m f ≤ map m g ↔ f ≤ g
[PROOFSTEP]
rw [map_le_iff_le_comap, comap_map hm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g✝ g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
f g : Filter α
m : α → β
s : Set α
hsf : s ∈ f
hsg : s ∈ g
hm : InjOn m s
⊢ map m f = map m g ↔ f = g
[PROOFSTEP]
simp only [le_antisymm_iff, map_le_map_iff_of_injOn hsf hsg hm, map_le_map_iff_of_injOn hsg hsf hm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
⊢ NeBot (comap m f) ↔ ∀ (t : Set β), t ∈ f → ∃ a, m a ∈ t
[PROOFSTEP]
simp only [← forall_mem_nonempty_iff_neBot, mem_comap, forall_exists_index, and_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
⊢ (∀ (s : Set α) (x : Set β), x ∈ f → m ⁻¹' x ⊆ s → Set.Nonempty s) ↔ ∀ (t : Set β), t ∈ f → ∃ a, m a ∈ t
[PROOFSTEP]
exact ⟨fun h t t_in => h (m ⁻¹' t) t t_in Subset.rfl, fun h s t ht hst => (h t ht).imp hst⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
⊢ NeBot (comap m f) ↔ ∃ᶠ (y : β) in f, y ∈ range m
[PROOFSTEP]
simp only [comap_neBot_iff, frequently_iff, mem_range, @and_comm (_ ∈ _), exists_exists_eq_and]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
m : α → β
hm : Surjective m
⊢ comap m f = ⊥ ↔ f = ⊥
[PROOFSTEP]
rw [comap_eq_bot_iff_compl_range, hm.range_eq, compl_univ, empty_mem_iff_bot]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : Surjective m
⊢ Disjoint (comap m g₁) (comap m g₂) ↔ Disjoint g₁ g₂
[PROOFSTEP]
rw [disjoint_iff, disjoint_iff, ← comap_inf, comap_surjective_eq_bot h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
⊢ NeBot (comap Prod.fst f) ↔ NeBot f ∧ Nonempty β
[PROOFSTEP]
cases isEmpty_or_nonempty β
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
h✝ : IsEmpty β
⊢ NeBot (comap Prod.fst f) ↔ NeBot f ∧ Nonempty β
[PROOFSTEP]
rw [filter_eq_bot_of_isEmpty (f.comap _), ← not_iff_not]
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
h✝ : IsEmpty β
⊢ ¬NeBot ⊥ ↔ ¬(NeBot f ∧ Nonempty β)
[PROOFSTEP]
simp [*]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter α
h✝ : Nonempty β
⊢ NeBot (comap Prod.fst f) ↔ NeBot f ∧ Nonempty β
[PROOFSTEP]
simp [comap_neBot_iff_frequently, *]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
⊢ NeBot (comap Prod.snd f) ↔ Nonempty α ∧ NeBot f
[PROOFSTEP]
cases' isEmpty_or_nonempty α with hα hα
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
hα : IsEmpty α
⊢ NeBot (comap Prod.snd f) ↔ Nonempty α ∧ NeBot f
[PROOFSTEP]
rw [filter_eq_bot_of_isEmpty (f.comap _), ← not_iff_not]
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
hα : IsEmpty α
⊢ ¬NeBot ⊥ ↔ ¬(Nonempty α ∧ NeBot f)
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : Filter β
hα : Nonempty α
⊢ NeBot (comap Prod.snd f) ↔ Nonempty α ∧ NeBot f
[PROOFSTEP]
simp [comap_neBot_iff_frequently, hα]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ f₁ f₂ : Filter α✝
g g₁ g₂ : Filter β
m : α✝ → β
m' : β → γ
s : Set α✝
t : Set β
ι : Type u_2
α : ι → Type u_3
i : ι
f : Filter (α i)
⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f
[PROOFSTEP]
cases' isEmpty_or_nonempty (∀ j, α j) with H H
[GOAL]
case inl
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ f₁ f₂ : Filter α✝
g g₁ g₂ : Filter β
m : α✝ → β
m' : β → γ
s : Set α✝
t : Set β
ι : Type u_2
α : ι → Type u_3
i : ι
f : Filter (α i)
H : IsEmpty ((j : ι) → α j)
⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f
[PROOFSTEP]
rw [filter_eq_bot_of_isEmpty (f.comap _), ← not_iff_not]
[GOAL]
case inl
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ f₁ f₂ : Filter α✝
g g₁ g₂ : Filter β
m : α✝ → β
m' : β → γ
s : Set α✝
t : Set β
ι : Type u_2
α : ι → Type u_3
i : ι
f : Filter (α i)
H : IsEmpty ((j : ι) → α j)
⊢ ¬NeBot ⊥ ↔ ¬((∀ (j : ι), Nonempty (α j)) ∧ NeBot f)
[PROOFSTEP]
simp [← Classical.nonempty_pi]
[GOAL]
case inr
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ f₁ f₂ : Filter α✝
g g₁ g₂ : Filter β
m : α✝ → β
m' : β → γ
s : Set α✝
t : Set β
ι : Type u_2
α : ι → Type u_3
i : ι
f : Filter (α i)
H : Nonempty ((j : ι) → α j)
⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f
[PROOFSTEP]
have : ∀ j, Nonempty (α j) := Classical.nonempty_pi.1 H
[GOAL]
case inr
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ f₁ f₂ : Filter α✝
g g₁ g₂ : Filter β
m : α✝ → β
m' : β → γ
s : Set α✝
t : Set β
ι : Type u_2
α : ι → Type u_3
i : ι
f : Filter (α i)
H : Nonempty ((j : ι) → α j)
this : ∀ (j : ι), Nonempty (α j)
⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f
[PROOFSTEP]
simp [comap_neBot_iff_frequently, *]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
f✝ f₁ f₂ : Filter α✝
g g₁ g₂ : Filter β
m : α✝ → β
m' : β → γ
s : Set α✝
t : Set β
ι : Type u_2
α : ι → Type u_3
inst✝ : ∀ (j : ι), Nonempty (α j)
i : ι
f : Filter (α i)
⊢ NeBot (comap (eval i) f) ↔ NeBot f
[PROOFSTEP]
simp [comap_eval_neBot_iff', *]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
f : Filter β
m : α → β
hf : NeBot f
s : Set α
hs : m '' s ∈ f
⊢ NeBot (comap m f ⊓ 𝓟 s)
[PROOFSTEP]
refine' ⟨compl_compl s ▸ mt mem_of_eq_bot _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
f : Filter β
m : α → β
hf : NeBot f
s : Set α
hs : m '' s ∈ f
⊢ ¬sᶜ ∈ comap m f
[PROOFSTEP]
rintro ⟨t, ht, hts⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t✝ : Set β
f : Filter β
m : α → β
hf : NeBot f
s : Set α
hs : m '' s ∈ f
t : Set β
ht : t ∈ f
hts : m ⁻¹' t ⊆ sᶜ
⊢ False
[PROOFSTEP]
rcases hf.nonempty_of_mem (inter_mem hs ht) with ⟨_, ⟨x, hxs, rfl⟩, hxt⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t✝ : Set β
f : Filter β
m : α → β
hf : NeBot f
s : Set α
hs : m '' s ∈ f
t : Set β
ht : t ∈ f
hts : m ⁻¹' t ⊆ sᶜ
x : α
hxs : x ∈ s
hxt : m x ∈ t
⊢ False
[PROOFSTEP]
exact absurd hxs (hts hxt)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ map m f = ⊥ → f = ⊥
[PROOFSTEP]
rw [← empty_mem_iff_bot, ← empty_mem_iff_bot]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
⊢ ∅ ∈ map m f → ∅ ∈ f
[PROOFSTEP]
exact id
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
h : f = ⊥
⊢ map m f = ⊥
[PROOFSTEP]
simp only [h, map_bot]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter α
⊢ NeBot (map f F) ↔ NeBot F
[PROOFSTEP]
simp only [neBot_iff, Ne, map_eq_bot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
⊢ ⋂₀ (comap f F).sets = ⋂ (U : Set β) (_ : U ∈ F), f ⁻¹' U
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
⊢ x ∈ ⋂₀ (comap f F).sets ↔ x ∈ ⋂ (U : Set β) (_ : U ∈ F), f ⁻¹' U
[PROOFSTEP]
suffices (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ B : Set β, B ∈ F → f x ∈ B by
simp only [mem_sInter, mem_iInter, Filter.mem_sets, mem_comap, this, and_imp, exists_prop, mem_preimage, exists_imp]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
this : (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : Set β), B ∈ F → f x ∈ B
⊢ x ∈ ⋂₀ (comap f F).sets ↔ x ∈ ⋂ (U : Set β) (_ : U ∈ F), f ⁻¹' U
[PROOFSTEP]
simp only [mem_sInter, mem_iInter, Filter.mem_sets, mem_comap, this, and_imp, exists_prop, mem_preimage, exists_imp]
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
⊢ (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : Set β), B ∈ F → f x ∈ B
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
⊢ (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) → ∀ (B : Set β), B ∈ F → f x ∈ B
[PROOFSTEP]
intro h U U_in
[GOAL]
case h.mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
h : ∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A
U : Set β
U_in : U ∈ F
⊢ f x ∈ U
[PROOFSTEP]
simpa only [Subset.rfl, forall_prop_of_true, mem_preimage] using h (f ⁻¹' U) U U_in
[GOAL]
case h.mpr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
⊢ (∀ (B : Set β), B ∈ F → f x ∈ B) → ∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A
[PROOFSTEP]
intro h V U U_in f_U_V
[GOAL]
case h.mpr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f✝ f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m : α → β
m' : β → γ
s : Set α
t : Set β
f : α → β
F : Filter β
x : α
h : ∀ (B : Set β), B ∈ F → f x ∈ B
V : Set α
U : Set β
U_in : U ∈ F
f_U_V : f ⁻¹' U ⊆ V
⊢ x ∈ V
[PROOFSTEP]
exact f_U_V (h U U_in)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : ι → Filter α
m : α → β
hf : Directed (fun x x_1 => x ≥ x_1) f
inst✝ : Nonempty ι
s : Set β
hs : m ⁻¹' s ∈ iInf f
i : ι
hi : m ⁻¹' s ∈ f i
⊢ map m (f i) ≤ 𝓟 s
[PROOFSTEP]
simp only [le_principal_iff, mem_map]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : ι → Filter α
m : α → β
hf : Directed (fun x x_1 => x ≥ x_1) f
inst✝ : Nonempty ι
s : Set β
hs : m ⁻¹' s ∈ iInf f
i : ι
hi : m ⁻¹' s ∈ f i
⊢ m ⁻¹' s ∈ f i
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
ι : Type w
f : ι → Filter α
m : α → β
p : ι → Prop
h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) {x | p x}
ne : ∃ i, p i
⊢ map m (⨅ (i : ι) (_ : p i), f i) = ⨅ (i : ι) (_ : p i), map m (f i)
[PROOFSTEP]
haveI := nonempty_subtype.2 ne
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
ι : Type w
f : ι → Filter α
m : α → β
p : ι → Prop
h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) {x | p x}
ne : ∃ i, p i
this : Nonempty { a // p a }
⊢ map m (⨅ (i : ι) (_ : p i), f i) = ⨅ (i : ι) (_ : p i), map m (f i)
[PROOFSTEP]
simp only [iInf_subtype']
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι✝ : Sort x
ι : Type w
f : ι → Filter α
m : α → β
p : ι → Prop
h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) {x | p x}
ne : ∃ i, p i
this : Nonempty { a // p a }
⊢ map m (⨅ (x : { i // p i }), f ↑x) = ⨅ (x : { i // p i }), map m (f ↑x)
[PROOFSTEP]
exact map_iInf_eq h.directed_val
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
m : α → β
h : Injective m
⊢ map m (f ⊓ g) = map m f ⊓ map m g
[PROOFSTEP]
refine' map_inf_le.antisymm _
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
m : α → β
h : Injective m
⊢ map m f ⊓ map m g ≤ map m (f ⊓ g)
[PROOFSTEP]
rintro t ⟨s₁, hs₁, s₂, hs₂, ht : m ⁻¹' t = s₁ ∩ s₂⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
m : α → β
h : Injective m
t : Set β
s₁ : Set α
hs₁ : s₁ ∈ f
s₂ : Set α
hs₂ : s₂ ∈ g
ht : m ⁻¹' t = s₁ ∩ s₂
⊢ t ∈ map m f ⊓ map m g
[PROOFSTEP]
refine' mem_inf_of_inter (image_mem_map hs₁) (image_mem_map hs₂) _
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
m : α → β
h : Injective m
t : Set β
s₁ : Set α
hs₁ : s₁ ∈ f
s₂ : Set α
hs₂ : s₂ ∈ g
ht : m ⁻¹' t = s₁ ∩ s₂
⊢ m '' s₁ ∩ m '' s₂ ⊆ t
[PROOFSTEP]
rw [← image_inter h, image_subset_iff, ht]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f g : Filter α
m : α → β
t : Set α
htf : t ∈ f
htg : t ∈ g
h : InjOn m t
⊢ map m (f ⊓ g) = map m f ⊓ map m g
[PROOFSTEP]
lift f to Filter t using htf
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : Filter α
m : α → β
t : Set α
htg : t ∈ g
h : InjOn m t
f : Filter ↑t
⊢ map m (map Subtype.val f ⊓ g) = map m (map Subtype.val f) ⊓ map m g
[PROOFSTEP]
lift g to Filter t using htg
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
t : Set α
h : InjOn m t
f g : Filter ↑t
⊢ map m (map Subtype.val f ⊓ map Subtype.val g) = map m (map Subtype.val f) ⊓ map m (map Subtype.val g)
[PROOFSTEP]
replace h : Injective (m ∘ ((↑) : t → α)) := h.injective
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
t : Set α
f g : Filter ↑t
h : Injective (m ∘ Subtype.val)
⊢ map m (map Subtype.val f ⊓ map Subtype.val g) = map m (map Subtype.val f) ⊓ map m (map Subtype.val g)
[PROOFSTEP]
simp only [map_map, ← map_inf Subtype.coe_injective, map_inf h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
hm : Injective m
f₁ f₂ : Filter α
⊢ Disjoint (map m f₁) (map m f₂) ↔ Disjoint f₁ f₂
[PROOFSTEP]
simp only [disjoint_iff, ← map_inf hm, map_eq_bot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
e : α ≃ β
f : Filter β
⊢ map (↑e) (map (↑e.symm) f) = map (↑e) (comap (↑e) f)
[PROOFSTEP]
rw [map_map, e.self_comp_symm, map_id, map_comap_of_surjective e.surjective]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
⊢ map f (F ⊓ comap f G) = map f F ⊓ G
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
⊢ map f (F ⊓ comap f G) ≤ map f F ⊓ G
[PROOFSTEP]
calc
map f (F ⊓ comap f G) ≤ map f F ⊓ (map f <| comap f G) := map_inf_le
_ ≤ map f F ⊓ G := inf_le_inf_left (map f F) map_comap_le
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
⊢ map f F ⊓ G ≤ map f (F ⊓ comap f G)
[PROOFSTEP]
rintro U ⟨V, V_in, W, ⟨Z, Z_in, hZ⟩, h⟩
[GOAL]
case a.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
U : Set β
V : Set α
V_in : V ∈ F
W : Set α
h : f ⁻¹' U = V ∩ W
Z : Set β
Z_in : Z ∈ G
hZ : f ⁻¹' Z ⊆ W
⊢ U ∈ map f F ⊓ G
[PROOFSTEP]
apply mem_inf_of_inter (image_mem_map V_in) Z_in
[GOAL]
case a.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
U : Set β
V : Set α
V_in : V ∈ F
W : Set α
h : f ⁻¹' U = V ∩ W
Z : Set β
Z_in : Z ∈ G
hZ : f ⁻¹' Z ⊆ W
⊢ f '' V ∩ Z ⊆ U
[PROOFSTEP]
calc
f '' V ∩ Z = f '' (V ∩ f ⁻¹' Z) := by rw [image_inter_preimage]
_ ⊆ f '' (V ∩ W) := (image_subset _ (inter_subset_inter_right _ ‹_›))
_ = f '' (f ⁻¹' U) := by rw [h]
_ ⊆ U := image_preimage_subset f U
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
U : Set β
V : Set α
V_in : V ∈ F
W : Set α
h : f ⁻¹' U = V ∩ W
Z : Set β
Z_in : Z ∈ G
hZ : f ⁻¹' Z ⊆ W
⊢ f '' V ∩ Z = f '' (V ∩ f ⁻¹' Z)
[PROOFSTEP]
rw [image_inter_preimage]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
U : Set β
V : Set α
V_in : V ∈ F
W : Set α
h : f ⁻¹' U = V ∩ W
Z : Set β
Z_in : Z ∈ G
hZ : f ⁻¹' Z ⊆ W
⊢ f '' (V ∩ W) = f '' (f ⁻¹' U)
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
F : Filter α
G : Filter β
⊢ map f (comap f G ⊓ F) = G ⊓ map f F
[PROOFSTEP]
simp only [Filter.push_pull, inf_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s : Set α
⊢ 𝓟 s = map Subtype.val ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
F : Filter α
s : Set α
⊢ F ⊓ 𝓟 s = ⊥ ↔ comap Subtype.val F = ⊥
[PROOFSTEP]
rw [principal_eq_map_coe_top s, ← Filter.push_pull', inf_top_eq, map_eq_bot_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
a : α
⊢ f ≤ pure a ↔ {a} ∈ f
[PROOFSTEP]
rw [← principal_singleton, le_principal_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
g : Filter α
s : Set β
⊢ s ∈ seq f g ↔ ∃ u, u ∈ f ∧ ∃ t, t ∈ g ∧ Set.seq u t ⊆ s
[PROOFSTEP]
simp only [mem_seq_def, seq_subset, exists_prop, iff_self_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
⊢ seq (pure g) f = map g f
[PROOFSTEP]
refine' le_antisymm (le_map fun s hs => _) (le_seq fun s hs t ht => _)
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
s : Set α
hs : s ∈ f
⊢ g '' s ∈ seq (pure g) f
[PROOFSTEP]
rw [← singleton_seq]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
s : Set α
hs : s ∈ f
⊢ Set.seq {g} s ∈ seq (pure g) f
[PROOFSTEP]
apply seq_mem_seq _ hs
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
s : Set α
hs : s ∈ f
⊢ {g} ∈ pure g
[PROOFSTEP]
exact singleton_mem_pure
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
s : Set (α → β)
hs : s ∈ pure g
t : Set α
ht : t ∈ f
⊢ Set.seq s t ∈ map g f
[PROOFSTEP]
refine' sets_of_superset (map g f) (image_mem_map ht) _
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
s : Set (α → β)
hs : s ∈ pure g
t : Set α
ht : t ∈ f
⊢ g '' t ⊆ Set.seq s t
[PROOFSTEP]
rintro b ⟨a, ha, rfl⟩
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
g : α → β
f : Filter α
s : Set (α → β)
hs : s ∈ pure g
t : Set α
ht : t ∈ f
a : α
ha : a ∈ t
⊢ g a ∈ Set.seq s t
[PROOFSTEP]
exact ⟨g, hs, a, ha, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
a : α
⊢ seq f (pure a) = map (fun g => g a) f
[PROOFSTEP]
refine' le_antisymm (le_map fun s hs => _) (le_seq fun s hs t ht => _)
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
a : α
s : Set (α → β)
hs : s ∈ f
⊢ (fun g => g a) '' s ∈ seq f (pure a)
[PROOFSTEP]
rw [← seq_singleton]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
a : α
s : Set (α → β)
hs : s ∈ f
⊢ Set.seq s {a} ∈ seq f (pure a)
[PROOFSTEP]
exact seq_mem_seq hs singleton_mem_pure
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
a : α
s : Set (α → β)
hs : s ∈ f
t : Set α
ht : t ∈ pure a
⊢ Set.seq s t ∈ map (fun g => g a) f
[PROOFSTEP]
refine' sets_of_superset (map (fun g : α → β => g a) f) (image_mem_map hs) _
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
a : α
s : Set (α → β)
hs : s ∈ f
t : Set α
ht : t ∈ pure a
⊢ (fun g => g a) '' s ⊆ Set.seq s t
[PROOFSTEP]
rintro b ⟨g, hg, rfl⟩
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter (α → β)
a : α
s : Set (α → β)
hs : s ∈ f
t : Set α
ht : t ∈ pure a
g : α → β
hg : g ∈ s
⊢ (fun g => g a) g ∈ Set.seq s t
[PROOFSTEP]
exact ⟨g, hg, a, ht, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
⊢ seq h (seq g x) = seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x
[PROOFSTEP]
refine' le_antisymm (le_seq fun s hs t ht => _) (le_seq fun s hs t ht => _)
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (α → γ)
hs : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g
t : Set α
ht : t ∈ x
⊢ Set.seq s t ∈ seq h (seq g x)
[PROOFSTEP]
rcases mem_seq_iff.1 hs with ⟨u, hu, v, hv, hs⟩
[GOAL]
case refine'_1.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (α → γ)
hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g
t : Set α
ht : t ∈ x
u : Set ((α → β) → α → γ)
hu : u ∈ map (fun x x_1 => x ∘ x_1) h
v : Set (α → β)
hv : v ∈ g
hs : Set.seq u v ⊆ s
⊢ Set.seq s t ∈ seq h (seq g x)
[PROOFSTEP]
rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hu⟩
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (α → γ)
hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g
t : Set α
ht : t ∈ x
u : Set ((α → β) → α → γ)
hu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h
v : Set (α → β)
hv : v ∈ g
hs : Set.seq u v ⊆ s
w : Set (β → γ)
hw : w ∈ h
hu : (fun x x_1 => x ∘ x_1) '' w ⊆ u
⊢ Set.seq s t ∈ seq h (seq g x)
[PROOFSTEP]
refine' mem_of_superset _ (Set.seq_mono ((Set.seq_mono hu Subset.rfl).trans hs) Subset.rfl)
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (α → γ)
hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g
t : Set α
ht : t ∈ x
u : Set ((α → β) → α → γ)
hu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h
v : Set (α → β)
hv : v ∈ g
hs : Set.seq u v ⊆ s
w : Set (β → γ)
hw : w ∈ h
hu : (fun x x_1 => x ∘ x_1) '' w ⊆ u
⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' w) v) t ∈ seq h (seq g x)
[PROOFSTEP]
rw [← Set.seq_seq]
[GOAL]
case refine'_1.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (α → γ)
hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g
t : Set α
ht : t ∈ x
u : Set ((α → β) → α → γ)
hu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h
v : Set (α → β)
hv : v ∈ g
hs : Set.seq u v ⊆ s
w : Set (β → γ)
hw : w ∈ h
hu : (fun x x_1 => x ∘ x_1) '' w ⊆ u
⊢ Set.seq w (Set.seq v t) ∈ seq h (seq g x)
[PROOFSTEP]
exact seq_mem_seq hw (seq_mem_seq hv ht)
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (β → γ)
hs : s ∈ h
t : Set β
ht : t ∈ seq g x
⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x
[PROOFSTEP]
rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (β → γ)
hs : s ∈ h
t : Set β
ht✝ : t ∈ seq g x
u : Set (α → β)
hu : u ∈ g
v : Set α
hv : v ∈ x
ht : Set.seq u v ⊆ t
⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x
[PROOFSTEP]
refine' mem_of_superset _ (Set.seq_mono Subset.rfl ht)
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (β → γ)
hs : s ∈ h
t : Set β
ht✝ : t ∈ seq g x
u : Set (α → β)
hu : u ∈ g
v : Set α
hv : v ∈ x
ht : Set.seq u v ⊆ t
⊢ Set.seq s (Set.seq u v) ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x
[PROOFSTEP]
rw [Set.seq_seq]
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
x : Filter α
g : Filter (α → β)
h : Filter (β → γ)
s : Set (β → γ)
hs : s ∈ h
t : Set β
ht✝ : t ∈ seq g x
u : Set (α → β)
hu : u ∈ g
v : Set α
hv : v ∈ x
ht : Set.seq u v ⊆ t
⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' s) u) v ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x
[PROOFSTEP]
exact seq_mem_seq (seq_mem_seq (image_mem_map hs) hu) hv
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
⊢ seq (map Prod.mk f) g = seq (map (fun b a => (a, b)) g) f
[PROOFSTEP]
refine' le_antisymm (le_seq fun s hs t ht => _) (le_seq fun s hs t ht => _)
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (α → α × β)
hs : s ∈ map (fun b a => (a, b)) g
t : Set α
ht : t ∈ f
⊢ Set.seq s t ∈ seq (map Prod.mk f) g
[PROOFSTEP]
rcases mem_map_iff_exists_image.1 hs with ⟨u, hu, hs⟩
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (α → α × β)
hs✝ : s ∈ map (fun b a => (a, b)) g
t : Set α
ht : t ∈ f
u : Set β
hu : u ∈ g
hs : (fun b a => (a, b)) '' u ⊆ s
⊢ Set.seq s t ∈ seq (map Prod.mk f) g
[PROOFSTEP]
refine' mem_of_superset _ (Set.seq_mono hs Subset.rfl)
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (α → α × β)
hs✝ : s ∈ map (fun b a => (a, b)) g
t : Set α
ht : t ∈ f
u : Set β
hu : u ∈ g
hs : (fun b a => (a, b)) '' u ⊆ s
⊢ Set.seq ((fun b a => (a, b)) '' u) t ∈ seq (map Prod.mk f) g
[PROOFSTEP]
rw [← Set.prod_image_seq_comm]
[GOAL]
case refine'_1.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (α → α × β)
hs✝ : s ∈ map (fun b a => (a, b)) g
t : Set α
ht : t ∈ f
u : Set β
hu : u ∈ g
hs : (fun b a => (a, b)) '' u ⊆ s
⊢ Set.seq (Prod.mk '' t) u ∈ seq (map Prod.mk f) g
[PROOFSTEP]
exact seq_mem_seq (image_mem_map ht) hu
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (β → α × β)
hs : s ∈ map Prod.mk f
t : Set β
ht : t ∈ g
⊢ Set.seq s t ∈ seq (map (fun b a => (a, b)) g) f
[PROOFSTEP]
rcases mem_map_iff_exists_image.1 hs with ⟨u, hu, hs⟩
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (β → α × β)
hs✝ : s ∈ map Prod.mk f
t : Set β
ht : t ∈ g
u : Set α
hu : u ∈ f
hs : Prod.mk '' u ⊆ s
⊢ Set.seq s t ∈ seq (map (fun b a => (a, b)) g) f
[PROOFSTEP]
refine' mem_of_superset _ (Set.seq_mono hs Subset.rfl)
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (β → α × β)
hs✝ : s ∈ map Prod.mk f
t : Set β
ht : t ∈ g
u : Set α
hu : u ∈ f
hs : Prod.mk '' u ⊆ s
⊢ Set.seq (Prod.mk '' u) t ∈ seq (map (fun b a => (a, b)) g) f
[PROOFSTEP]
rw [Set.prod_image_seq_comm]
[GOAL]
case refine'_2.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
s : Set (β → α × β)
hs✝ : s ∈ map Prod.mk f
t : Set β
ht : t ∈ g
u : Set α
hu : u ∈ f
hs : Prod.mk '' u ⊆ s
⊢ Set.seq ((fun b a => (a, b)) '' t) u ∈ seq (map (fun b a => (a, b)) g) f
[PROOFSTEP]
exact seq_mem_seq (image_mem_map ht) hu
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f₁ f₂ : Filter α
g₁ g₂ : α → Filter β
hf : f₁ ≤ f₂
hg : g₁ ≤ᶠ[f₁] g₂
⊢ bind f₁ g₁ ≤ bind f₂ g₂
[PROOFSTEP]
refine' le_trans (fun s hs => _) (join_mono <| map_mono hf)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f₁ f₂ : Filter α
g₁ g₂ : α → Filter β
hf : f₁ ≤ f₂
hg : g₁ ≤ᶠ[f₁] g₂
s : Set β
hs : s ∈ join (map g₂ f₁)
⊢ s ∈ bind f₁ g₁
[PROOFSTEP]
simp only [mem_join, mem_bind', mem_map] at hs ⊢
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f₁ f₂ : Filter α
g₁ g₂ : α → Filter β
hf : f₁ ≤ f₂
hg : g₁ ≤ᶠ[f₁] g₂
s : Set β
hs : g₂ ⁻¹' {t | s ∈ t} ∈ f₁
⊢ {a | s ∈ g₁ a} ∈ f₁
[PROOFSTEP]
filter_upwards [hg, hs] with _ hx hs using hx hs
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : α → Filter β
s✝ s : Set β
⊢ (s ∈ bind f fun x => g x ⊓ 𝓟 s✝) ↔ s ∈ bind f g ⊓ 𝓟 s✝
[PROOFSTEP]
simp only [mem_bind, mem_inf_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
s : Set α
f : α → Filter β
⊢ join (map f (𝓟 s)) = ⨆ (x : α) (_ : x ∈ s), f x
[PROOFSTEP]
simp only [sSup_image, join_principal_eq_sSup, map_principal, eq_self_iff_true]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
fs : List β'
t : Set (List α')
⊢ t ∈ traverse f fs ↔ ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
fs : List β'
t : Set (List α')
⊢ t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
[PROOFSTEP]
induction fs generalizing t
[GOAL]
case mp.nil
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
t : Set (List α')
⊢ t ∈ traverse f [] → ∃ us, Forall₂ (fun b s => s ∈ f b) [] us ∧ sequence us ⊆ t
case mp.cons
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
head✝ : β'
tail✝ : List β'
tail_ih✝ : ∀ (t : Set (List α')), t ∈ traverse f tail✝ → ∃ us, Forall₂ (fun b s => s ∈ f b) tail✝ us ∧ sequence us ⊆ t
t : Set (List α')
⊢ t ∈ traverse f (head✝ :: tail✝) → ∃ us, Forall₂ (fun b s => s ∈ f b) (head✝ :: tail✝) us ∧ sequence us ⊆ t
[PROOFSTEP]
case nil =>
simp only [sequence, mem_pure, imp_self, forall₂_nil_left_iff, exists_eq_left, Set.pure_def, singleton_subset_iff,
traverse_nil]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
t : Set (List α')
⊢ t ∈ traverse f [] → ∃ us, Forall₂ (fun b s => s ∈ f b) [] us ∧ sequence us ⊆ t
[PROOFSTEP]
case nil =>
simp only [sequence, mem_pure, imp_self, forall₂_nil_left_iff, exists_eq_left, Set.pure_def, singleton_subset_iff,
traverse_nil]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
t : Set (List α')
⊢ t ∈ traverse f [] → ∃ us, Forall₂ (fun b s => s ∈ f b) [] us ∧ sequence us ⊆ t
[PROOFSTEP]
simp only [sequence, mem_pure, imp_self, forall₂_nil_left_iff, exists_eq_left, Set.pure_def, singleton_subset_iff,
traverse_nil]
[GOAL]
case mp.cons
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
head✝ : β'
tail✝ : List β'
tail_ih✝ : ∀ (t : Set (List α')), t ∈ traverse f tail✝ → ∃ us, Forall₂ (fun b s => s ∈ f b) tail✝ us ∧ sequence us ⊆ t
t : Set (List α')
⊢ t ∈ traverse f (head✝ :: tail✝) → ∃ us, Forall₂ (fun b s => s ∈ f b) (head✝ :: tail✝) us ∧ sequence us ⊆ t
[PROOFSTEP]
case cons b fs ih =>
intro ht
rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩
rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hwu⟩
rcases ih v hv with ⟨us, hus, hu⟩
exact ⟨w :: us, Forall₂.cons hw hus, (Set.seq_mono hwu hu).trans ht⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
b : β'
fs : List β'
ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
t : Set (List α')
⊢ t ∈ traverse f (b :: fs) → ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t
[PROOFSTEP]
case cons b fs ih =>
intro ht
rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩
rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hwu⟩
rcases ih v hv with ⟨us, hus, hu⟩
exact ⟨w :: us, Forall₂.cons hw hus, (Set.seq_mono hwu hu).trans ht⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
b : β'
fs : List β'
ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
t : Set (List α')
⊢ t ∈ traverse f (b :: fs) → ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t
[PROOFSTEP]
intro ht
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
b : β'
fs : List β'
ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
t : Set (List α')
ht : t ∈ traverse f (b :: fs)
⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t
[PROOFSTEP]
rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
b : β'
fs : List β'
ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
t : Set (List α')
ht✝ : t ∈ traverse f (b :: fs)
u : Set (List α' → List α')
hu : u ∈ cons <$> f b
v : Set (List α')
hv : v ∈ (fun x => List.traverse f fs) ()
ht : Set.seq u v ⊆ t
⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t
[PROOFSTEP]
rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hwu⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
b : β'
fs : List β'
ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
t : Set (List α')
ht✝ : t ∈ traverse f (b :: fs)
u : Set (List α' → List α')
hu : u ∈ cons <$> f b
v : Set (List α')
hv : v ∈ (fun x => List.traverse f fs) ()
ht : Set.seq u v ⊆ t
w : Set α'
hw : w ∈ f b
hwu : cons '' w ⊆ u
⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t
[PROOFSTEP]
rcases ih v hv with ⟨us, hus, hu⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
b : β'
fs : List β'
ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t
t : Set (List α')
ht✝ : t ∈ traverse f (b :: fs)
u : Set (List α' → List α')
hu✝ : u ∈ cons <$> f b
v : Set (List α')
hv : v ∈ (fun x => List.traverse f fs) ()
ht : Set.seq u v ⊆ t
w : Set α'
hw : w ∈ f b
hwu : cons '' w ⊆ u
us : List (Set α')
hus : Forall₂ (fun b s => s ∈ f b) fs us
hu : sequence us ⊆ v
⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t
[PROOFSTEP]
exact ⟨w :: us, Forall₂.cons hw hus, (Set.seq_mono hwu hu).trans ht⟩
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
fs : List β'
t : Set (List α')
⊢ (∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t) → t ∈ traverse f fs
[PROOFSTEP]
rintro ⟨us, hus, hs⟩
[GOAL]
case mpr.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
α' β' γ' : Type u
f : β' → Filter α'
s : γ' → Set α'
fs : List β'
t : Set (List α')
us : List (Set α')
hus : Forall₂ (fun b s => s ∈ f b) fs us
hs : sequence us ⊆ t
⊢ t ∈ traverse f fs
[PROOFSTEP]
exact mem_of_superset (mem_traverse _ _ hus) hs
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter β
⊢ Tendsto f ⊥ l
[PROOFSTEP]
simp [Tendsto]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
mab : α → β
mba : β → α
f : Filter α
g : Filter β
h₁ : mab ∘ mba =ᶠ[g] id
h₂ : Tendsto mba g f
⊢ g ≤ map mab f
[PROOFSTEP]
rw [← @map_id _ g, ← map_congr h₁, ← map_map]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
mab : α → β
mba : β → α
f : Filter α
g : Filter β
h₁ : mab ∘ mba =ᶠ[g] id
h₂ : Tendsto mba g f
⊢ map mab (map mba g) ≤ map mab f
[PROOFSTEP]
exact map_mono h₂
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
inst✝ : IsEmpty α
f : α → β
la : Filter α
lb : Filter β
⊢ Tendsto f la lb
[PROOFSTEP]
simp only [filter_eq_bot_of_isEmpty la, tendsto_bot]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f₁ f₂ : α → β
l₁ : Filter α
l₂ : Filter β
hl : f₁ =ᶠ[l₁] f₂
⊢ Tendsto f₁ l₁ l₂ ↔ Tendsto f₂ l₁ l₂
[PROOFSTEP]
rw [Tendsto, Tendsto, map_congr hl]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : β → γ
g : α → β
x : Filter α
y : Filter γ
⊢ Tendsto f (map g x) y ↔ Tendsto (f ∘ g) x y
[PROOFSTEP]
rw [Tendsto, Tendsto, map_map]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
g : β → γ
a : Filter α
c : Filter γ
h : Tendsto (g ∘ f) a c
⊢ map g (map f a) ≤ c
[PROOFSTEP]
rwa [map_map]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
g : Filter β
i : γ → α
h : range i ∈ f
⊢ Tendsto (m ∘ i) (comap i f) g ↔ Tendsto m f g
[PROOFSTEP]
rw [Tendsto, ← map_compose]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
m : α → β
f : Filter α
g : Filter β
i : γ → α
h : range i ∈ f
⊢ (map m ∘ map i) (comap i f) ≤ g ↔ Tendsto m f g
[PROOFSTEP]
simp only [(· ∘ ·), map_comap_of_mem h, Tendsto]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
g : β → γ
a : Filter α
b : Filter β
c : Filter γ
hfg : Tendsto (g ∘ f) a c
hg : comap g c ≤ b
⊢ Tendsto f a b
[PROOFSTEP]
rw [tendsto_iff_comap] at hfg ⊢
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
g : β → γ
a : Filter α
b : Filter β
c : Filter γ
hfg : a ≤ comap (g ∘ f) c
hg : comap g c ≤ b
⊢ a ≤ comap f b
[PROOFSTEP]
calc
a ≤ comap (g ∘ f) c := hfg
_ ≤ comap f b := by simpa [comap_comap] using comap_mono hg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
g : β → γ
a : Filter α
b : Filter β
c : Filter γ
hfg : a ≤ comap (g ∘ f) c
hg : comap g c ≤ b
⊢ comap (g ∘ f) c ≤ comap f b
[PROOFSTEP]
simpa [comap_comap] using comap_mono hg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
φ : α → β
ψ : β → α
eq : ψ ∘ φ = id
hφ : Tendsto φ f g
hψ : Tendsto ψ g f
⊢ comap φ g = f
[PROOFSTEP]
refine' ((comap_mono <| map_le_iff_le_comap.1 hψ).trans _).antisymm (map_le_iff_le_comap.1 hφ)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
φ : α → β
ψ : β → α
eq : ψ ∘ φ = id
hφ : Tendsto φ f g
hψ : Tendsto ψ g f
⊢ comap φ (comap ψ f) ≤ f
[PROOFSTEP]
rw [comap_comap, eq, comap_id]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
φ : α → β
ψ : β → α
eq : φ ∘ ψ = id
hφ : Tendsto φ f g
hψ : Tendsto ψ g f
⊢ map φ f = g
[PROOFSTEP]
refine' le_antisymm hφ (le_trans _ (map_mono hψ))
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : Filter α
g : Filter β
φ : α → β
ψ : β → α
eq : φ ∘ ψ = id
hφ : Tendsto φ f g
hψ : Tendsto ψ g f
⊢ g ≤ map φ (map ψ g)
[PROOFSTEP]
rw [map_map, eq, map_id]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
x : Filter α
y₁ y₂ : Filter β
⊢ Tendsto f x (y₁ ⊓ y₂) ↔ Tendsto f x y₁ ∧ Tendsto f x y₂
[PROOFSTEP]
simp only [Tendsto, le_inf_iff, iff_self_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
x : Filter α
y : ι → Filter β
⊢ Tendsto f x (⨅ (i : ι), y i) ↔ ∀ (i : ι), Tendsto f x (y i)
[PROOFSTEP]
simp only [Tendsto, iff_self_iff, le_iInf_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
x₁ x₂ : Filter α
y : Filter β
⊢ Tendsto f (x₁ ⊔ x₂) y ↔ Tendsto f x₁ y ∧ Tendsto f x₂ y
[PROOFSTEP]
simp only [Tendsto, map_sup, sup_le_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
x : ι → Filter α
y : Filter β
⊢ Tendsto f (⨆ (i : ι), x i) y ↔ ∀ (i : ι), Tendsto f (x i) y
[PROOFSTEP]
simp only [Tendsto, map_iSup, iSup_le_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
l : Filter α
s : Set β
⊢ Tendsto f l (𝓟 s) ↔ ∀ᶠ (a : α) in l, f a ∈ s
[PROOFSTEP]
simp only [Tendsto, le_principal_iff, mem_map', Filter.Eventually]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
s : Set α
t : Set β
⊢ Tendsto f (𝓟 s) (𝓟 t) ↔ ∀ (a : α), a ∈ s → f a ∈ t
[PROOFSTEP]
simp only [tendsto_principal, eventually_principal]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
a : Filter α
b : β
⊢ Tendsto f a (pure b) ↔ ∀ᶠ (x : α) in a, f x = b
[PROOFSTEP]
simp only [Tendsto, le_pure_iff, mem_map', mem_singleton_iff, Filter.Eventually]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
f : α → β
s : Set β
l : Filter α
t : Set β
⊢ t ∈ map f (l ⊓ 𝓟 (f ⁻¹' s)) ↔ t ∈ map f l ⊓ 𝓟 s
[PROOFSTEP]
simp only [mem_map', mem_inf_principal, mem_setOf_eq, mem_preimage]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : Tendsto f (l₁ ⊓ 𝓟 {x | p x}) l₂
h₁ : Tendsto g (l₁ ⊓ 𝓟 {x | ¬p x}) l₂
⊢ Tendsto (fun x => if p x then f x else g x) l₁ l₂
[PROOFSTEP]
simp only [tendsto_def, mem_inf_principal] at *
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁
h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁
⊢ ∀ (s : Set β), s ∈ l₂ → (fun x => if p x then f x else g x) ⁻¹' s ∈ l₁
[PROOFSTEP]
intro s hs
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁
h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁
s : Set β
hs : s ∈ l₂
⊢ (fun x => if p x then f x else g x) ⁻¹' s ∈ l₁
[PROOFSTEP]
filter_upwards [h₀ s hs, h₁ s hs] with x hp₀ hp₁
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁
h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁
s : Set β
hs : s ∈ l₂
x : α
hp₀ : p x → x ∈ f ⁻¹' s
hp₁ : ¬p x → x ∈ g ⁻¹' s
⊢ x ∈ (fun x => if p x then f x else g x) ⁻¹' s
[PROOFSTEP]
rw [mem_preimage]
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁
h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁
s : Set β
hs : s ∈ l₂
x : α
hp₀ : p x → x ∈ f ⁻¹' s
hp₁ : ¬p x → x ∈ g ⁻¹' s
⊢ (if p x then f x else g x) ∈ s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁
h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁
s : Set β
hs : s ∈ l₂
x : α
hp₀ : p x → x ∈ f ⁻¹' s
hp₁ : ¬p x → x ∈ g ⁻¹' s
h : p x
⊢ f x ∈ s
case neg
α : Type u
β : Type v
γ : Type w
δ : Type u_1
ι : Sort x
l₁ : Filter α
l₂ : Filter β
f g : α → β
p : α → Prop
inst✝ : (x : α) → Decidable (p x)
h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁
h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁
s : Set β
hs : s ∈ l₂
x : α
hp₀ : p x → x ∈ f ⁻¹' s
hp₁ : ¬p x → x ∈ g ⁻¹' s
h : ¬p x
⊢ g x ∈ s
[PROOFSTEP]
exacts [hp₀ h, hp₁ h]
| {"mathlib_filename": "Mathlib.Order.Filter.Basic", "llama_tokens": 72930} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ≤ b ⇨ c ↔ b ⊓ a ≤ c
[PROOFSTEP]
rw [le_himp_iff, inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ≤ b ⇨ c ↔ b ≤ a ⇨ c
[PROOFSTEP]
rw [le_himp_iff, le_himp_iff']
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ≤ a ⇨ b ↔ a ≤ b
[PROOFSTEP]
rw [le_himp_iff, inf_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⊓ (a ⇨ b) ≤ b
[PROOFSTEP]
rw [inf_comm, ← le_himp_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
⊢ a ⊓ (a ⇨ b) ≤ b
[PROOFSTEP]
rw [inf_comm, ← le_himp_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
⊢ (a ⇨ b) ⊓ a = b ⊓ a
[PROOFSTEP]
rw [inf_comm, inf_himp, inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ a ⇨ b = ⊤ ↔ a ≤ b
[PROOFSTEP]
rw [← top_le_iff, le_himp_iff, top_inf_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b✝ c d b : α
⊢ b ≤ ⊤ ⇨ a ↔ b ≤ a
[PROOFSTEP]
rw [le_himp_iff, inf_top_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ d ≤ a ⇨ b ⇨ c ↔ d ≤ a ⊓ b ⇨ c
[PROOFSTEP]
simp_rw [le_himp_iff, inf_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c
[PROOFSTEP]
rw [le_himp_iff, le_himp_iff, inf_assoc, himp_inf_self, ← inf_assoc, himp_inf_self, inf_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ c ⊓ (b ⊓ a) ≤ c
[PROOFSTEP]
exact inf_le_left
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ (b ⇨ c) ⊓ (a ⇨ b) ⊓ a ≤ c
[PROOFSTEP]
simpa using @himp_le_himp_himp_himp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ a ⇨ b ⇨ c = b ⇨ a ⇨ c
[PROOFSTEP]
simp_rw [himp_himp, inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
⊢ b ⇨ b ⇨ a = b ⇨ a
[PROOFSTEP]
rw [himp_himp, inf_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ d ≤ a ⇨ b ⊓ c ↔ d ≤ (a ⇨ b) ⊓ (a ⇨ c)
[PROOFSTEP]
simp_rw [le_himp_iff, le_inf_iff, le_himp_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ d ≤ a ⊔ b ⇨ c ↔ d ≤ (a ⇨ c) ⊓ (b ⇨ c)
[PROOFSTEP]
rw [le_inf_iff, le_himp_comm, sup_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ a ≤ d ⇨ c ∧ b ≤ d ⇨ c ↔ d ≤ a ⇨ c ∧ d ≤ b ⇨ c
[PROOFSTEP]
simp_rw [le_himp_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
⊢ a ⊔ b ⇨ a = b ⇨ a
[PROOFSTEP]
rw [sup_himp_distrib, himp_self, top_inf_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c d a b : α
⊢ a ⊔ b ⇨ b = a ⇨ b
[PROOFSTEP]
rw [sup_himp_distrib, himp_self, inf_top_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
⊢ b ⇨ a = a
[PROOFSTEP]
conv_rhs => rw [← @top_himp _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
| a
[PROOFSTEP]
rw [← @top_himp _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
| a
[PROOFSTEP]
rw [← @top_himp _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
| a
[PROOFSTEP]
rw [← @top_himp _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
⊢ b ⇨ a = ⊤ ⇨ a
[PROOFSTEP]
rw [← h.eq_top, sup_himp_self_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
⊢ a ⇨ a ⊓ b = b
[PROOFSTEP]
rw [himp_inf_distrib, himp_self, top_inf_eq, h.himp_eq_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a b c d : α
h : Codisjoint a b
⊢ b ⇨ a ⊓ b = a
[PROOFSTEP]
rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c
[PROOFSTEP]
rw [le_himp_iff, inf_right_comm, ← le_himp_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ (a ⇨ b) ⊓ a ≤ (b ⇨ c) ⇨ c
[PROOFSTEP]
exact himp_inf_le.trans le_himp_himp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c
[PROOFSTEP]
simp_rw [@inf_comm _ _ a, ← le_himp_iff, sup_le_iff, le_himp_iff, ← sup_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ b ⊓ a ⊔ c ⊓ a ≤ b ⊓ a ⊔ c ⊓ a
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : OrderBot αᵒᵈ := orderBot α
a b c : αᵒᵈ
⊢ a \ b ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
rw [sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedHeytingAlgebra α
a✝ b✝ c✝ d : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : OrderBot αᵒᵈ := orderBot α
a b c : αᵒᵈ
⊢ a \ b ≤ c ↔ a ≤ c ⊔ b
[PROOFSTEP]
exact le_himp_iff
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝¹ : GeneralizedHeytingAlgebra α✝
a b c d : α✝
α : ι → Type u_4
inst✝ : (i : ι) → GeneralizedHeytingAlgebra (α i)
src✝¹ : Lattice ((i : ι) → α i) := lattice
src✝ : OrderTop ((i : ι) → α i) := orderTop
i : (i : ι) → α i
⊢ ∀ (b c : (i : ι) → α i), i ≤ b ⇨ c ↔ i ⊓ b ≤ c
[PROOFSTEP]
simp [le_def]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ b ≤ c ↔ a ≤ c ⊔ b
[PROOFSTEP]
rw [sdiff_le_iff, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ b ≤ c ↔ a \ c ≤ b
[PROOFSTEP]
rw [sdiff_le_iff, sdiff_le_iff']
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ b ≤ b ↔ a ≤ b
[PROOFSTEP]
rw [sdiff_le_iff, sup_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ≤ a \ b ⊔ b
[PROOFSTEP]
rw [sup_comm, ← sdiff_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
⊢ b \ a ⊔ a = b ⊔ a
[PROOFSTEP]
rw [sup_comm, sup_sdiff_self, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
hab : a ≤ b
hbc : b ≤ c
⊢ b ⊔ c \ a = c
[PROOFSTEP]
rw [sup_sdiff_eq_sup hab, sup_of_le_right hbc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : b ≤ a
⊢ a \ b ⊔ b = a
[PROOFSTEP]
rw [sup_comm, sup_sdiff_cancel_right h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a \ b = ⊥ ↔ a ≤ b
[PROOFSTEP]
rw [← le_bot_iff, sdiff_le_iff, sup_bot_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b✝ c d b : α
⊢ a \ ⊥ ≤ b ↔ a ≤ b
[PROOFSTEP]
rw [sdiff_le_iff, bot_sup_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a \ b) \ (a \ c) ≤ c \ b
[PROOFSTEP]
rw [sdiff_le_iff, sdiff_le_iff, sup_left_comm, sup_sdiff_self, sup_left_comm, sdiff_sup_self, sup_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ≤ a ⊔ (b ⊔ c)
[PROOFSTEP]
exact le_sup_left
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ a ≤ b ⊔ (a \ c ⊔ c \ b)
[PROOFSTEP]
simpa using @sdiff_sdiff_sdiff_le_sdiff
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ (a \ b) \ c ≤ d ↔ a \ (b ⊔ c) ≤ d
[PROOFSTEP]
simp_rw [sdiff_le_iff, sup_assoc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ (a \ b) \ c = (a \ c) \ b
[PROOFSTEP]
simp_rw [sdiff_sdiff, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a \ b) \ b = a \ b
[PROOFSTEP]
rw [sdiff_sdiff_left, sup_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a \ b) \ a = ⊥
[PROOFSTEP]
rw [sdiff_sdiff_comm, sdiff_self, bot_sdiff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ (a ⊔ b) \ c ≤ d ↔ a \ c ⊔ b \ c ≤ d
[PROOFSTEP]
simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ a \ (b ⊓ c) ≤ d ↔ a \ b ⊔ a \ c ≤ d
[PROOFSTEP]
rw [sup_le_iff, sdiff_le_comm, le_inf_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d✝ a b c d : α
⊢ a \ d ≤ b ∧ a \ d ≤ c ↔ a \ b ≤ d ∧ a \ c ≤ d
[PROOFSTEP]
simp_rw [sdiff_le_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a ⊔ b) \ b = a \ b
[PROOFSTEP]
rw [sup_sdiff, sdiff_self, sup_bot_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
⊢ (a ⊔ b) \ a = b \ a
[PROOFSTEP]
rw [sup_comm, sup_sdiff_right_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
⊢ a \ (a ⊓ b) = a \ b
[PROOFSTEP]
rw [sdiff_inf, sdiff_self, bot_sup_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c d a b : α
⊢ b \ (a ⊓ b) = b \ a
[PROOFSTEP]
rw [sdiff_inf, sdiff_self, sup_bot_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
⊢ a \ b = a
[PROOFSTEP]
conv_rhs => rw [← @sdiff_bot _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
| a
[PROOFSTEP]
rw [← @sdiff_bot _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
| a
[PROOFSTEP]
rw [← @sdiff_bot _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
| a
[PROOFSTEP]
rw [← @sdiff_bot _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
⊢ a \ b = a \ ⊥
[PROOFSTEP]
rw [← h.eq_bot, sdiff_inf_self_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
⊢ (a ⊔ b) \ a = b
[PROOFSTEP]
rw [sup_sdiff, sdiff_self, bot_sup_eq, h.sdiff_eq_right]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : Disjoint a b
⊢ (a ⊔ b) \ b = a
[PROOFSTEP]
rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ a \ c ≤ a \ b ⊔ b \ c
[PROOFSTEP]
rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d a b c : α
⊢ a \ (a \ b) ≤ c ⊔ b \ c
[PROOFSTEP]
exact sdiff_sdiff_le.trans le_sup_sdiff
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : c ⊔ a ≤ c ⊔ b
⊢ a \ c ≤ b \ c
[PROOFSTEP]
rw [← sup_sdiff_left_self, ← @sup_sdiff_left_self _ _ _ b]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : c ⊔ a ≤ c ⊔ b
⊢ (c ⊔ a) \ c ≤ (c ⊔ b) \ c
[PROOFSTEP]
exact sdiff_le_sdiff_right h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : a ⊔ c ≤ b ⊔ c
⊢ a \ c ≤ b \ c
[PROOFSTEP]
rw [← sup_sdiff_right_self, ← @sup_sdiff_right_self _ _ b]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a b c d : α
h : a ⊔ c ≤ b ⊔ c
⊢ (a ⊔ c) \ c ≤ (b ⊔ c) \ c
[PROOFSTEP]
exact sdiff_le_sdiff_right h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d : α
src✝ : GeneralizedCoheytingAlgebra α := inst✝
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c
[PROOFSTEP]
simp_rw [← sdiff_le_iff, le_inf_iff, sdiff_le_iff, ← le_inf_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d : α
src✝ : GeneralizedCoheytingAlgebra α := inst✝
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ (a ⊔ b) ⊓ (a ⊔ c)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : OrderTop αᵒᵈ := orderTop α
a b c : αᵒᵈ
⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
[PROOFSTEP]
rw [inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : GeneralizedCoheytingAlgebra α
a✝ b✝ c✝ d : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : OrderTop αᵒᵈ := orderTop α
a b c : αᵒᵈ
⊢ a ≤ b ⇨ c ↔ b ⊓ a ≤ c
[PROOFSTEP]
exact sdiff_le_iff
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝¹ : GeneralizedCoheytingAlgebra α✝
a b c d : α✝
α : ι → Type u_4
inst✝ : (i : ι) → GeneralizedCoheytingAlgebra (α i)
src✝¹ : Lattice ((i : ι) → α i) := lattice
src✝ : OrderBot ((i : ι) → α i) := orderBot
i : (i : ι) → α i
⊢ ∀ (b c : (i : ι) → α i), i \ b ≤ c ↔ i ≤ b ⊔ c
[PROOFSTEP]
simp [le_def]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ
[PROOFSTEP]
simp_rw [← himp_bot, sup_himp_distrib]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b c a : α
⊢ a ⇨ aᶜ = aᶜ
[PROOFSTEP]
rw [← himp_bot, himp_himp, inf_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ a ⇨ bᶜ = b ⇨ aᶜ
[PROOFSTEP]
simp_rw [← himp_bot, himp_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a b c : α
⊢ a ≤ bᶜ ↔ Disjoint a b
[PROOFSTEP]
rw [← himp_bot, le_himp_iff, disjoint_iff_inf_le]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a b c : α
⊢ a ≤ bᶜ ↔ b ≤ aᶜ
[PROOFSTEP]
rw [le_compl_iff_disjoint_right, le_compl_iff_disjoint_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b c a : α
⊢ a ≤ ⊤ᶜ ↔ a ≤ ⊥
[PROOFSTEP]
rw [le_compl_iff_disjoint_right, disjoint_top, le_bot_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a b c : α
⊢ ⊥ᶜ = ⊤
[PROOFSTEP]
rw [← himp_bot, himp_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a b c : α
⊢ a ≤ aᶜ ↔ a = ⊥
[PROOFSTEP]
rw [le_compl_iff_disjoint_left, disjoint_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : HeytingAlgebra α
a b c : α
inst✝ : Nontrivial α
⊢ a ≠ aᶜ
[PROOFSTEP]
intro h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : HeytingAlgebra α
a b c : α
inst✝ : Nontrivial α
h : a = aᶜ
⊢ False
[PROOFSTEP]
cases le_compl_self.1 (le_of_eq h)
[GOAL]
case refl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : HeytingAlgebra α
b c : α
inst✝ : Nontrivial α
h : ⊥ = ⊥ᶜ
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : HeytingAlgebra α
a b c : α
inst✝ : Nontrivial α
⊢ a < aᶜ ↔ a = ⊥
[PROOFSTEP]
rw [lt_iff_le_and_ne]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : HeytingAlgebra α
a b c : α
inst✝ : Nontrivial α
⊢ a ≤ aᶜ ∧ a ≠ aᶜ ↔ a = ⊥
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a b c : α
⊢ Disjoint aᶜᶜ b ↔ Disjoint a b
[PROOFSTEP]
simp_rw [← le_compl_iff_disjoint_left, compl_compl_compl]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a b c : α
⊢ Disjoint a bᶜᶜ ↔ Disjoint a b
[PROOFSTEP]
simp_rw [← le_compl_iff_disjoint_right, compl_compl_compl]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜᶜ
[PROOFSTEP]
refine' ((compl_anti compl_sup_compl_le).trans (compl_sup_distrib _ _).le).antisymm _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ aᶜᶜ ⊓ bᶜᶜ ≤ (a ⊓ b)ᶜᶜ
[PROOFSTEP]
rw [le_compl_iff_disjoint_right, disjoint_assoc, disjoint_compl_compl_left_iff, disjoint_left_comm,
disjoint_compl_compl_left_iff, ← disjoint_assoc, inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ Disjoint (a ⊓ b) (a ⊓ b)ᶜ
[PROOFSTEP]
exact disjoint_compl_right
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜᶜ
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ (a ⇨ b)ᶜᶜ ≤ aᶜᶜ ⇨ bᶜᶜ
[PROOFSTEP]
rw [le_himp_iff, ← compl_compl_inf_distrib]
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ ((a ⇨ b) ⊓ a)ᶜᶜ ≤ bᶜᶜ
[PROOFSTEP]
exact compl_anti (compl_anti himp_inf_le)
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ aᶜᶜ ⇨ bᶜᶜ ≤ (a ⇨ b)ᶜᶜ
[PROOFSTEP]
refine' le_compl_comm.1 ((compl_anti compl_sup_le_himp).trans _)
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ (aᶜ ⊔ b)ᶜ ≤ (aᶜᶜ ⇨ bᶜᶜ)ᶜ
[PROOFSTEP]
rw [compl_sup_distrib, le_compl_iff_disjoint_right, disjoint_right_comm, ← le_compl_iff_disjoint_right]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c a b : α
⊢ aᶜᶜ ⊓ (aᶜᶜ ⇨ bᶜᶜ) ≤ bᶜᶜ
[PROOFSTEP]
exact inf_himp_le
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c✝ : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : BoundedOrder αᵒᵈ := boundedOrder α
a b c : αᵒᵈ
⊢ a \ b ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
rw [sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : HeytingAlgebra α
a✝ b✝ c✝ : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : BoundedOrder αᵒᵈ := boundedOrder α
a b c : αᵒᵈ
⊢ a \ b ≤ c ↔ a ≤ c ⊔ b
[PROOFSTEP]
exact le_himp_iff
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬(a ⊓ b) = ¬a ⊔ ¬b
[PROOFSTEP]
simp_rw [← top_sdiff', sdiff_inf_distrib]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c✝ : α
src✝ : CoheytingAlgebra α := inst✝
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c
[PROOFSTEP]
simp_rw [← sdiff_le_iff, le_inf_iff, sdiff_le_iff, ← le_inf_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c✝ : α
src✝ : CoheytingAlgebra α := inst✝
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ (a ⊔ b) ⊓ (a ⊔ c)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b c a : α
⊢ ¬a \ a = ¬a
[PROOFSTEP]
rw [← top_sdiff', sdiff_sdiff, sup_idem]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬a \ b = ¬b \ a
[PROOFSTEP]
simp_rw [← top_sdiff', sdiff_right_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a b c : α
⊢ ¬a ≤ b ↔ Codisjoint a b
[PROOFSTEP]
rw [← top_sdiff', sdiff_le_iff, codisjoint_iff_le_sup]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a b c : α
⊢ ¬a ≤ b ↔ ¬b ≤ a
[PROOFSTEP]
rw [hnot_le_iff_codisjoint_right, hnot_le_iff_codisjoint_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b c a : α
⊢ ¬⊥ ≤ a ↔ ⊤ ≤ a
[PROOFSTEP]
rw [hnot_le_iff_codisjoint_left, codisjoint_bot, top_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a b c : α
⊢ ¬⊤ = ⊥
[PROOFSTEP]
rw [← top_sdiff', sdiff_self]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a b c : α
⊢ Codisjoint (¬¬a) b ↔ Codisjoint a b
[PROOFSTEP]
simp_rw [← hnot_le_iff_codisjoint_right, hnot_hnot_hnot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a b c : α
⊢ Codisjoint a (¬¬b) ↔ Codisjoint a b
[PROOFSTEP]
simp_rw [← hnot_le_iff_codisjoint_left, hnot_hnot_hnot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b
[PROOFSTEP]
refine' ((hnot_inf_distrib _ _).ge.trans <| hnot_anti le_hnot_inf_hnot).antisymm' _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬(a ⊔ b) ≤ ¬¬a ⊔ ¬¬b
[PROOFSTEP]
rw [hnot_le_iff_codisjoint_left, codisjoint_assoc, codisjoint_hnot_hnot_left_iff, codisjoint_left_comm,
codisjoint_hnot_hnot_left_iff, ← codisjoint_assoc, sup_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ Codisjoint (a ⊔ b) (¬(a ⊔ b))
[PROOFSTEP]
exact codisjoint_hnot_right
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬(a \ b) = ¬¬a \ ¬¬b
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬(a \ b) ≤ ¬¬a \ ¬¬b
[PROOFSTEP]
refine' hnot_le_comm.1 ((hnot_anti sdiff_le_inf_hnot).trans' _)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬(¬¬a \ ¬¬b) ≤ ¬(a ⊓ ¬b)
[PROOFSTEP]
rw [hnot_inf_distrib, hnot_le_iff_codisjoint_right, codisjoint_left_comm, ← hnot_le_iff_codisjoint_right]
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬a ≤ ¬¬a \ ¬¬b ⊔ ¬¬b
[PROOFSTEP]
exact le_sdiff_sup
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬a \ ¬¬b ≤ ¬¬(a \ b)
[PROOFSTEP]
rw [sdiff_le_iff, ← hnot_hnot_sup_distrib]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c a b : α
⊢ ¬¬a ≤ ¬¬(b ⊔ a \ b)
[PROOFSTEP]
exact hnot_anti (hnot_anti le_sup_sdiff)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c✝ : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : BoundedOrder αᵒᵈ := boundedOrder α
a b c : αᵒᵈ
⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
[PROOFSTEP]
rw [inf_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : CoheytingAlgebra α
a✝ b✝ c✝ : α
src✝¹ : Lattice αᵒᵈ := lattice α
src✝ : BoundedOrder αᵒᵈ := boundedOrder α
a b c : αᵒᵈ
⊢ a ≤ b ⇨ c ↔ b ⊓ a ≤ c
[PROOFSTEP]
exact sdiff_le_iff
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
[PROOFSTEP]
change _ ≤ ite _ _ _ ↔ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
⊢ (a ≤ if b ≤ c then ⊤ else c) ↔ a ⊓ b ≤ c
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
h : b ≤ c
⊢ a ≤ ⊤ ↔ a ⊓ b ≤ c
[PROOFSTEP]
exact iff_of_true le_top (inf_le_of_right_le h)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
h : ¬b ≤ c
⊢ a ≤ c ↔ a ⊓ b ≤ c
[PROOFSTEP]
rw [inf_le_iff, or_iff_left h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
⊢ a \ b ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
change ite _ _ _ ≤ _ ↔ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
⊢ (if a ≤ b then ⊥ else a) ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
h : a ≤ b
⊢ ⊥ ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
exact iff_of_true bot_le (le_sup_of_le_left h)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrder α
inst✝ : BoundedOrder α
src✝¹ : Lattice α := toLattice
src✝ : BoundedOrder α := inst✝
a b c : α
h : ¬a ≤ b
⊢ a ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
rw [le_sup_iff, or_iff_right h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Top α
inst✝¹ : HImp α
inst✝ : GeneralizedHeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Top α := inst✝²
src✝ : HImp α := inst✝¹
a : α
⊢ a ≤ ⊤
[PROOFSTEP]
change f _ ≤ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Top α
inst✝¹ : HImp α
inst✝ : GeneralizedHeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Top α := inst✝²
src✝ : HImp α := inst✝¹
a : α
⊢ f a ≤ f ⊤
[PROOFSTEP]
rw [map_top]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Top α
inst✝¹ : HImp α
inst✝ : GeneralizedHeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Top α := inst✝²
src✝ : HImp α := inst✝¹
a : α
⊢ f a ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Top α
inst✝¹ : HImp α
inst✝ : GeneralizedHeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Top α := inst✝²
src✝ : HImp α := inst✝¹
a b c : α
⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
[PROOFSTEP]
change f _ ≤ _ ↔ f _ ≤ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Top α
inst✝¹ : HImp α
inst✝ : GeneralizedHeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Top α := inst✝²
src✝ : HImp α := inst✝¹
a b c : α
⊢ f a ≤ f (b ⇨ c) ↔ f (a ⊓ b) ≤ f c
[PROOFSTEP]
erw [map_himp, map_inf, le_himp_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedCoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Bot α := inst✝²
src✝ : SDiff α := inst✝¹
a : α
⊢ ⊥ ≤ a
[PROOFSTEP]
change f _ ≤ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedCoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Bot α := inst✝²
src✝ : SDiff α := inst✝¹
a : α
⊢ f ⊥ ≤ f a
[PROOFSTEP]
rw [map_bot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedCoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Bot α := inst✝²
src✝ : SDiff α := inst✝¹
a : α
⊢ ⊥ ≤ f a
[PROOFSTEP]
exact bot_le
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedCoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Bot α := inst✝²
src✝ : SDiff α := inst✝¹
a b c : α
⊢ a \ b ≤ c ↔ a ≤ b ⊔ c
[PROOFSTEP]
change f _ ≤ _ ↔ f _ ≤ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedCoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : Lattice α := Injective.lattice f hf map_sup map_inf
src✝¹ : Bot α := inst✝²
src✝ : SDiff α := inst✝¹
a b c : α
⊢ f (a \ b) ≤ f c ↔ f a ≤ f (b ⊔ c)
[PROOFSTEP]
erw [map_sdiff, map_sup, sdiff_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : HImp α
inst✝ : HeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp
src✝¹ : Bot α := inst✝³
src✝ : HasCompl α := inst✝²
a : α
⊢ ⊥ ≤ a
[PROOFSTEP]
change f _ ≤ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : HImp α
inst✝ : HeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp
src✝¹ : Bot α := inst✝³
src✝ : HasCompl α := inst✝²
a : α
⊢ f ⊥ ≤ f a
[PROOFSTEP]
rw [map_bot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : HImp α
inst✝ : HeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp
src✝¹ : Bot α := inst✝³
src✝ : HasCompl α := inst✝²
a : α
⊢ ⊥ ≤ f a
[PROOFSTEP]
exact bot_le
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : HImp α
inst✝ : HeytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b
src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp
src✝¹ : Bot α := inst✝³
src✝ : HasCompl α := inst✝²
a : α
⊢ f (a ⇨ ⊥) = f aᶜ
[PROOFSTEP]
erw [map_himp, map_compl, map_bot, himp_bot]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HNot α
inst✝¹ : SDiff α
inst✝ : CoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_hnot : ∀ (a : α), f (¬a) = ¬f a
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝¹ : Top α := inst✝⁴
src✝ : HNot α := inst✝²
a : α
⊢ a ≤ ⊤
[PROOFSTEP]
change f _ ≤ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HNot α
inst✝¹ : SDiff α
inst✝ : CoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_hnot : ∀ (a : α), f (¬a) = ¬f a
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝¹ : Top α := inst✝⁴
src✝ : HNot α := inst✝²
a : α
⊢ f a ≤ f ⊤
[PROOFSTEP]
rw [map_top]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HNot α
inst✝¹ : SDiff α
inst✝ : CoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_hnot : ∀ (a : α), f (¬a) = ¬f a
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝¹ : Top α := inst✝⁴
src✝ : HNot α := inst✝²
a : α
⊢ f a ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HNot α
inst✝¹ : SDiff α
inst✝ : CoheytingAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_hnot : ∀ (a : α), f (¬a) = ¬f a
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝¹ : Top α := inst✝⁴
src✝ : HNot α := inst✝²
a : α
⊢ f (⊤ \ a) = f (¬a)
[PROOFSTEP]
erw [map_sdiff, map_hnot, map_top, top_sdiff']
| {"mathlib_filename": "Mathlib.Order.Heyting.Basic", "llama_tokens": 19922} |
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : Nontrivial α
⊢ Disjoint atBot atTop
[PROOFSTEP]
rcases exists_pair_ne α with ⟨x, y, hne⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : Nontrivial α
x y : α
hne : x ≠ y
⊢ Disjoint atBot atTop
[PROOFSTEP]
by_cases hle : x ≤ y
[GOAL]
case pos
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : Nontrivial α
x y : α
hne : x ≠ y
hle : x ≤ y
⊢ Disjoint atBot atTop
[PROOFSTEP]
refine' disjoint_of_disjoint_of_mem _ (Iic_mem_atBot x) (Ici_mem_atTop y)
[GOAL]
case pos
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : Nontrivial α
x y : α
hne : x ≠ y
hle : x ≤ y
⊢ Disjoint (Iic x) (Ici y)
[PROOFSTEP]
exact Iic_disjoint_Ici.2 (hle.lt_of_ne hne).not_le
[GOAL]
case neg
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : Nontrivial α
x y : α
hne : x ≠ y
hle : ¬x ≤ y
⊢ Disjoint atBot atTop
[PROOFSTEP]
refine' disjoint_of_disjoint_of_mem _ (Iic_mem_atBot y) (Ici_mem_atTop x)
[GOAL]
case neg
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : PartialOrder α
inst✝ : Nontrivial α
x y : α
hne : x ≠ y
hle : ¬x ≤ y
⊢ Disjoint (Iic y) (Ici x)
[PROOFSTEP]
exact Iic_disjoint_Ici.2 hle
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder α
p : α → Prop
⊢ (∀ᶠ (x : α) in atTop, ∀ (y : α), x ≤ y → p y) ↔ ∀ᶠ (x : α) in atTop, p x
[PROOFSTEP]
refine ⟨fun h ↦ h.mono fun x hx ↦ hx x le_rfl, fun h ↦ ?_⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder α
p : α → Prop
h : ∀ᶠ (x : α) in atTop, p x
⊢ ∀ᶠ (x : α) in atTop, ∀ (y : α), x ≤ y → p y
[PROOFSTEP]
rcases(hasBasis_iInf_principal_finite _).eventually_iff.1 h with ⟨S, hSf, hS⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder α
p : α → Prop
h : ∀ᶠ (x : α) in atTop, p x
S : Set α
hSf : Set.Finite S
hS : ∀ ⦃x : α⦄, x ∈ ⋂ (i : α) (_ : i ∈ S), Ici i → p x
⊢ ∀ᶠ (x : α) in atTop, ∀ (y : α), x ≤ y → p y
[PROOFSTEP]
refine mem_iInf_of_iInter hSf (V := fun x ↦ Ici x.1) (fun _ ↦ Subset.rfl) fun x hx y hy ↦ ?_
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder α
p : α → Prop
h : ∀ᶠ (x : α) in atTop, p x
S : Set α
hSf : Set.Finite S
hS : ∀ ⦃x : α⦄, x ∈ ⋂ (i : α) (_ : i ∈ S), Ici i → p x
x : α
hx : x ∈ ⋂ (i : ↑S), (fun x => Ici ↑x) i
y : α
hy : x ≤ y
⊢ p y
[PROOFSTEP]
simp only [mem_iInter] at hS hx
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder α
p : α → Prop
h : ∀ᶠ (x : α) in atTop, p x
S : Set α
hSf : Set.Finite S
x y : α
hy : x ≤ y
hS : ∀ ⦃x : α⦄, (∀ (i : α), i ∈ S → x ∈ Ici i) → p x
hx : ∀ (i : ↑S), x ∈ Ici ↑i
⊢ p y
[PROOFSTEP]
exact hS fun z hz ↦ le_trans (hx ⟨z, hz⟩) hy
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β✝ : Type u_4
γ : Type u_5
α : Type u_6
β : Type u_7
inst✝ : Preorder β
l : Filter α
p : β → Prop
f : α → β
hf : Tendsto f l atTop
h_evtl : ∀ᶠ (x : β) in atTop, p x
⊢ ∀ᶠ (x : α) in l, ∀ (y : β), f x ≤ y → p y
[PROOFSTEP]
rw [← Filter.eventually_forall_ge_atTop] at h_evtl
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β✝ : Type u_4
γ : Type u_5
α : Type u_6
β : Type u_7
inst✝ : Preorder β
l : Filter α
p : β → Prop
f : α → β
hf : Tendsto f l atTop
h_evtl : ∀ᶠ (x : β) in atTop, ∀ (y : β), x ≤ y → p y
⊢ ∀ᶠ (x : α) in l, ∀ (y : β), f x ≤ y → p y
[PROOFSTEP]
exact (h_evtl.comap f).filter_mono hf.le_comap
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β✝ : Type u_4
γ : Type u_5
α : Type u_6
β : Type u_7
inst✝ : Preorder β
l : Filter α
p : β → Prop
f : α → β
hf : Tendsto f l atBot
h_evtl : ∀ᶠ (x : β) in atBot, p x
⊢ ∀ᶠ (x : α) in l, ∀ (y : β), y ≤ f x → p y
[PROOFSTEP]
rw [← Filter.eventually_forall_le_atBot] at h_evtl
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β✝ : Type u_4
γ : Type u_5
α : Type u_6
β : Type u_7
inst✝ : Preorder β
l : Filter α
p : β → Prop
f : α → β
hf : Tendsto f l atBot
h_evtl : ∀ᶠ (x : β) in atBot, ∀ (y : β), y ≤ x → p y
⊢ ∀ᶠ (x : α) in l, ∀ (y : β), y ≤ f x → p y
[PROOFSTEP]
exact (h_evtl.comap f).filter_mono hf.le_comap
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝¹ : Subsingleton α
inst✝ : Preorder α
⊢ atTop = ⊤
[PROOFSTEP]
refine' top_unique fun s hs x => _
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝¹ : Subsingleton α
inst✝ : Preorder α
s : Set α
hs : s ∈ atTop
x : α
⊢ x ∈ s
[PROOFSTEP]
rw [atTop, ciInf_subsingleton x, mem_principal] at hs
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝¹ : Subsingleton α
inst✝ : Preorder α
s : Set α
x : α
hs : Ici x ⊆ s
⊢ x ∈ s
[PROOFSTEP]
exact hs left_mem_Ici
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
r : α → β → Prop
⊢ (∃ b, ∀ᶠ (a : α) in atTop, r a b) ↔ ∀ᶠ (a₀ : α) in atTop, ∃ b, ∀ (a : α), a ≥ a₀ → r a b
[PROOFSTEP]
simp_rw [eventually_atTop, ← exists_swap (α := α)]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
r : α → β → Prop
⊢ (∃ x y, ∀ (b : α), b ≥ x → r b y) ↔ ∃ a, ∀ (b : α), b ≥ a → ∃ b_1, ∀ (a : α), a ≥ b → r a b_1
[PROOFSTEP]
exact exists_congr fun a ↦ .symm <| forall_ge_iff <| Monotone.exists fun _ _ _ hb H n hn ↦ H n (hb.trans hn)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : Nonempty α
r : α → β → Prop
⊢ (∃ b, ∀ᶠ (a : α) in atBot, r a b) ↔ ∀ᶠ (a₀ : α) in atBot, ∃ b, ∀ (a : α), a ≤ a₀ → r a b
[PROOFSTEP]
simp_rw [eventually_atBot, ← exists_swap (α := α)]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : Nonempty α
r : α → β → Prop
⊢ (∃ x y, ∀ (b : α), b ≤ x → r b y) ↔ ∃ a, ∀ (b : α), b ≤ a → ∃ b_1, ∀ (a : α), a ≤ b → r a b_1
[PROOFSTEP]
exact exists_congr fun a ↦ .symm <| forall_le_iff <| Antitone.exists fun _ _ _ hb H n hn ↦ H n (hn.trans hb)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
p : α → Prop
⊢ (∀ (i : α), True → ∃ x, x ∈ Ici i ∧ p x) ↔ ∀ (a : α), ∃ b, b ≥ a ∧ p b
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : NoMaxOrder α
p : α → Prop
⊢ (∀ (i : α), True → ∃ x, x ∈ Ioi i ∧ p x) ↔ ∀ (a : α), ∃ b, b > a ∧ p b
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder β
m : α → β
f : Filter α
⊢ Tendsto m f atTop ↔ ∀ (b : β), ∀ᶠ (a : α) in f, b ≤ m a
[PROOFSTEP]
simp only [atTop, tendsto_iInf, tendsto_principal, mem_Ici]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder β
l : Filter α
f₁ f₂ : α → β
h : f₁ ≤ᶠ[l] f₂
h₁ : Tendsto f₁ l atTop
b : β
⊢ ∀ᶠ (a : α) in l, b ≤ f₂ a
[PROOFSTEP]
filter_upwards [tendsto_atTop.1 h₁ b, h] with x using le_trans
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
e : α ≃o β
⊢ comap (↑e) atTop = atTop
[PROOFSTEP]
simp [atTop, ← e.surjective.iInf_comp]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
e : α ≃o β
⊢ map (↑e) atTop = atTop
[PROOFSTEP]
rw [← e.comap_atTop, map_comap_of_surjective e.surjective]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
l : Filter γ
f : γ → α
e : α ≃o β
⊢ Tendsto (fun x => ↑e (f x)) l atTop ↔ Tendsto f l atTop
[PROOFSTEP]
rw [← e.comap_atTop, tendsto_comap_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
l : Filter γ
f : γ → α
e : α ≃o β
⊢ Tendsto (fun x => ↑e (f x)) l atTop ↔ Tendsto (↑e ∘ f) l atTop
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
F : Filter β
u : α → β
⊢ NeBot (F ⊓ map u atTop) ↔ ∀ (U : Set β), U ∈ F → ∀ (N : α), ∃ n, n ≥ N ∧ u n ∈ U
[PROOFSTEP]
simp_rw [inf_neBot_iff_frequently_left, frequently_map, frequently_atTop]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
F : Filter β
u : α → β
⊢ (∀ {p : β → Prop}, (∀ᶠ (x : β) in F, p x) → ∀ (a : α), ∃ b, b ≥ a ∧ p (u b)) ↔
∀ (U : Set β), U ∈ F → ∀ (N : α), ∃ n, n ≥ N ∧ u n ∈ U
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → Prop
h : ∀ (N : ℕ), ∃ n, n > N ∧ P n
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n)
[PROOFSTEP]
choose u hu hu' using h
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → Prop
u : ℕ → ℕ
hu : ∀ (N : ℕ), u N > N
hu' : ∀ (N : ℕ), P (u N)
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n)
[PROOFSTEP]
refine ⟨fun n => u^[n + 1] 0, strictMono_nat_of_lt_succ fun n => ?_, fun n => ?_⟩
[GOAL]
case refine_1
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → Prop
u : ℕ → ℕ
hu : ∀ (N : ℕ), u N > N
hu' : ∀ (N : ℕ), P (u N)
n : ℕ
⊢ u^[n + 1] 0 < u^[n + 1 + 1] 0
[PROOFSTEP]
exact Trans.trans (hu _) (Function.iterate_succ_apply' _ _ _).symm
[GOAL]
case refine_2
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → Prop
u : ℕ → ℕ
hu : ∀ (N : ℕ), u N > N
hu' : ∀ (N : ℕ), P (u N)
n : ℕ
⊢ P ((fun n => u^[n + 1] 0) n)
[PROOFSTEP]
simpa only [Function.iterate_succ_apply'] using hu' _
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → Prop
h : ∃ᶠ (n : ℕ) in atTop, P n
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n)
[PROOFSTEP]
rw [frequently_atTop'] at h
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → Prop
h : ∀ (a : ℕ), ∃ b, b > a ∧ P b
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n)
[PROOFSTEP]
exact extraction_of_frequently_atTop' h
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
h : ∀ (n : ℕ), ∃ᶠ (k : ℕ) in atTop, P n k
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n)
[PROOFSTEP]
simp only [frequently_atTop'] at h
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
h : ∀ (n a : ℕ), ∃ b, b > a ∧ P n b
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n)
[PROOFSTEP]
choose u hu hu' using h
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n)
[PROOFSTEP]
use(fun n => Nat.recOn n (u 0 0) fun n v => u (n + 1) v : ℕ → ℕ)
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
⊢ (StrictMono fun n => Nat.recOn n (u 0 0) fun n v => u (n + 1) v) ∧
∀ (n : ℕ), P n (Nat.recOn n (u 0 0) fun n v => u (n + 1) v)
[PROOFSTEP]
constructor
[GOAL]
case h.left
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
⊢ StrictMono fun n => Nat.recOn n (u 0 0) fun n v => u (n + 1) v
[PROOFSTEP]
apply strictMono_nat_of_lt_succ
[GOAL]
case h.left.hf
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
⊢ ∀ (n : ℕ), (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) < Nat.recOn (n + 1) (u 0 0) fun n v => u (n + 1) v
[PROOFSTEP]
intro n
[GOAL]
case h.left.hf
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
n : ℕ
⊢ (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) < Nat.recOn (n + 1) (u 0 0) fun n v => u (n + 1) v
[PROOFSTEP]
apply hu
[GOAL]
case h.right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
⊢ ∀ (n : ℕ), P n (Nat.recOn n (u 0 0) fun n v => u (n + 1) v)
[PROOFSTEP]
intro n
[GOAL]
case h.right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
n : ℕ
⊢ P n (Nat.recOn n (u 0 0) fun n v => u (n + 1) v)
[PROOFSTEP]
cases n
[GOAL]
case h.right.zero
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
⊢ P Nat.zero (Nat.recOn Nat.zero (u 0 0) fun n v => u (n + 1) v)
[PROOFSTEP]
simp [hu']
[GOAL]
case h.right.succ
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
u : ℕ → ℕ → ℕ
hu : ∀ (n a : ℕ), u n a > a
hu' : ∀ (n a : ℕ), P n (u n a)
n✝ : ℕ
⊢ P (Nat.succ n✝) (Nat.recOn (Nat.succ n✝) (u 0 0) fun n v => u (n + 1) v)
[PROOFSTEP]
simp [hu']
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
P : ℕ → ℕ → Prop
h : ∀ (n : ℕ), ∃ N, ∀ (k : ℕ), k ≥ N → P n k
⊢ ∀ (n : ℕ), ∀ᶠ (k : ℕ) in atTop, P n k
[PROOFSTEP]
simp [eventually_atTop, h]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
hp : ∀ (k : ℕ), k < n → ∀ᶠ (a : ℕ) in atTop, p (n * a + k)
⊢ ∀ᶠ (a : ℕ) in atTop, p a
[PROOFSTEP]
simp only [eventually_atTop] at hp ⊢
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
hp : ∀ (k : ℕ), k < n → ∃ a, ∀ (b : ℕ), b ≥ a → p (n * b + k)
⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b
[PROOFSTEP]
choose! N hN using hp
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
N : ℕ → ℕ
hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)
⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b
[PROOFSTEP]
refine ⟨(Finset.range n).sup (n * N ·), fun b hb => ?_⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
N : ℕ → ℕ
hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)
b : ℕ
hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x
⊢ p b
[PROOFSTEP]
rw [← Nat.div_add_mod b n]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
N : ℕ → ℕ
hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)
b : ℕ
hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x
⊢ p (n * (b / n) + b % n)
[PROOFSTEP]
have hlt := Nat.mod_lt b hn.bot_lt
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
N : ℕ → ℕ
hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)
b : ℕ
hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x
hlt : b % n < n
⊢ p (n * (b / n) + b % n)
[PROOFSTEP]
refine hN _ hlt _ ?_
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
N : ℕ → ℕ
hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)
b : ℕ
hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x
hlt : b % n < n
⊢ b / n ≥ N (b % n)
[PROOFSTEP]
rw [ge_iff_le, Nat.le_div_iff_mul_le hn.bot_lt, mul_comm]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
p : ℕ → Prop
n : ℕ
hn : n ≠ 0
N : ℕ → ℕ
hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)
b : ℕ
hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x
hlt : b % n < n
⊢ n * N (b % n) ≤ b
[PROOFSTEP]
exact (Finset.le_sup (f := (n * N ·)) (Finset.mem_range.2 hlt)).trans hb
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Preorder β
u : α → β
h : Tendsto u atTop atTop
a : α
b : β
⊢ ∃ a', a' ≥ a ∧ b ≤ u a'
[PROOFSTEP]
have : Nonempty α := ⟨a⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Preorder β
u : α → β
h : Tendsto u atTop atTop
a : α
b : β
this : Nonempty α
⊢ ∃ a', a' ≥ a ∧ b ≤ u a'
[PROOFSTEP]
have : ∀ᶠ x in atTop, a ≤ x ∧ b ≤ u x := (eventually_ge_atTop a).and (h.eventually <| eventually_ge_atTop b)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Preorder β
u : α → β
h : Tendsto u atTop atTop
a : α
b : β
this✝ : Nonempty α
this : ∀ᶠ (x : α) in atTop, a ≤ x ∧ b ≤ u x
⊢ ∃ a', a' ≥ a ∧ b ≤ u a'
[PROOFSTEP]
exact this.exists
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
u : α → β
h : Tendsto u atTop atTop
a : α
b : β
⊢ ∃ a', a' ≥ a ∧ b < u a'
[PROOFSTEP]
cases' exists_gt b with b' hb'
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
u : α → β
h : Tendsto u atTop atTop
a : α
b b' : β
hb' : b < b'
⊢ ∃ a', a' ≥ a ∧ b < u a'
[PROOFSTEP]
rcases exists_le_of_tendsto_atTop h a b' with ⟨a', ha', ha''⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
u : α → β
h : Tendsto u atTop atTop
a : α
b b' : β
hb' : b < b'
a' : α
ha' : a' ≥ a
ha'' : b' ≤ u a'
⊢ ∃ a', a' ≥ a ∧ b < u a'
[PROOFSTEP]
exact ⟨a', ha', lt_of_lt_of_le hb' ha''⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
⊢ ∀ (N : ℕ), ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
intro N
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N : ℕ
⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
obtain ⟨k : ℕ, - : k ≤ N, hku : ∀ l ≤ N, u l ≤ u k⟩ : ∃ k ≤ N, ∀ l ≤ N, u l ≤ u k
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N : ℕ
⊢ ∃ k, k ≤ N ∧ ∀ (l : ℕ), l ≤ N → u l ≤ u k
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
exact exists_max_image _ u (finite_le_nat N) ⟨N, le_refl N⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
have ex : ∃ n ≥ N, u k < u n := exists_lt_of_tendsto_atTop hu _ _
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
obtain ⟨n : ℕ, hnN : n ≥ N, hnk : u k < u n, hn_min : ∀ m, m < n → N ≤ m → u m ≤ u k⟩ :
∃ n ≥ N, u k < u n ∧ ∀ m, m < n → N ≤ m → u m ≤ u k :=
by
rcases Nat.findX ex with ⟨n, ⟨hnN, hnk⟩, hn_min⟩
push_neg at hn_min
exact ⟨n, hnN, hnk, hn_min⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
⊢ ∃ n, n ≥ N ∧ u k < u n ∧ ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
[PROOFSTEP]
rcases Nat.findX ex with ⟨n, ⟨hnN, hnk⟩, hn_min⟩
[GOAL]
case mk.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hn_min : ∀ (m : ℕ), m < n → ¬(m ≥ N ∧ u k < u m)
hnN : n ≥ N
hnk : u k < u n
⊢ ∃ n, n ≥ N ∧ u k < u n ∧ ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
[PROOFSTEP]
push_neg at hn_min
[GOAL]
case mk.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → m ≥ N → u m ≤ u k
⊢ ∃ n, n ≥ N ∧ u k < u n ∧ ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
[PROOFSTEP]
exact ⟨n, hnN, hnk, hn_min⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
use n, hnN
[GOAL]
case right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
⊢ ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
rintro (l : ℕ) (hl : l < n)
[GOAL]
case right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
l : ℕ
hl : l < n
⊢ u l < u n
[PROOFSTEP]
have hlk : u l ≤ u k := by
cases' (le_total l N : l ≤ N ∨ N ≤ l) with H H
· exact hku l H
· exact hn_min l hl H
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
l : ℕ
hl : l < n
⊢ u l ≤ u k
[PROOFSTEP]
cases' (le_total l N : l ≤ N ∨ N ≤ l) with H H
[GOAL]
case inl
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
l : ℕ
hl : l < n
H : l ≤ N
⊢ u l ≤ u k
[PROOFSTEP]
exact hku l H
[GOAL]
case inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
l : ℕ
hl : l < n
H : N ≤ l
⊢ u l ≤ u k
[PROOFSTEP]
exact hn_min l hl H
[GOAL]
case right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
N k : ℕ
hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k
ex : ∃ n, n ≥ N ∧ u k < u n
n : ℕ
hnN : n ≥ N
hnk : u k < u n
hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k
l : ℕ
hl : l < n
hlk : u l ≤ u k
⊢ u l < u n
[PROOFSTEP]
calc
u l ≤ u k := hlk
_ < u n := hnk
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrder β
inst✝ : NoMaxOrder β
u : ℕ → β
hu : Tendsto u atTop atTop
⊢ ∃ᶠ (n : ℕ) in atTop, ∀ (k : ℕ), k < n → u k < u n
[PROOFSTEP]
simpa [frequently_atTop] using high_scores hu
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : OrderedAddCommGroup β
l : Filter α
f g : α → β
C : β
hf : ∀ᶠ (x : α) in l, C ≤ f x
hg : Tendsto g l atTop
⊢ ∀ᶠ (x : α) in l, (fun x => -f x) x ≤ -C
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : OrderedAddCommGroup β
l : Filter α
f g : α → β
C : β
hf : ∀ᶠ (x : α) in l, C ≤ f x
hg : Tendsto g l atTop
⊢ Tendsto (fun x => (fun x => -f x) x + (fun x => f x + g x) x) l atTop
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : OrderedAddCommGroup β
l : Filter α
f g : α → β
C : β
hf : Tendsto f l atTop
hg : ∀ᶠ (x : α) in l, C ≤ g x
⊢ ∀ᶠ (x : α) in l, (fun x => -g x) x ≤ -C
[PROOFSTEP]
simp [hg]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : OrderedAddCommGroup β
l : Filter α
f g : α → β
C : β
hf : Tendsto f l atTop
hg : ∀ᶠ (x : α) in l, C ≤ g x
⊢ Tendsto (fun x => (fun x => f x + g x) x + (fun x => -g x) x) l atTop
[PROOFSTEP]
simp [hf]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedSemiring α
l : Filter β
f g : β → α
hf : Tendsto f l atTop
hg : Tendsto g l atTop
⊢ Tendsto (fun x => f x * g x) l atTop
[PROOFSTEP]
refine' tendsto_atTop_mono' _ _ hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedSemiring α
l : Filter β
f g : β → α
hf : Tendsto f l atTop
hg : Tendsto g l atTop
⊢ g ≤ᶠ[l] fun x => f x * g x
[PROOFSTEP]
filter_upwards [hg.eventually (eventually_ge_atTop 0), hf.eventually (eventually_ge_atTop 1)] with _ using
le_mul_of_one_le_left
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedRing α
l : Filter β
f g : β → α
hf : Tendsto f l atTop
hg : Tendsto g l atBot
⊢ Tendsto (fun x => f x * g x) l atBot
[PROOFSTEP]
have := hf.atTop_mul_atTop <| tendsto_neg_atBot_atTop.comp hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedRing α
l : Filter β
f g : β → α
hf : Tendsto f l atTop
hg : Tendsto g l atBot
this : Tendsto (fun x => f x * (Neg.neg ∘ g) x) l atTop
⊢ Tendsto (fun x => f x * g x) l atBot
[PROOFSTEP]
simpa only [(· ∘ ·), neg_mul_eq_mul_neg, neg_neg] using tendsto_neg_atTop_atBot.comp this
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedRing α
l : Filter β
f g : β → α
hf : Tendsto f l atBot
hg : Tendsto g l atTop
⊢ Tendsto (fun x => f x * g x) l atBot
[PROOFSTEP]
have : Tendsto (fun x => -f x * g x) l atTop := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_atTop hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedRing α
l : Filter β
f g : β → α
hf : Tendsto f l atBot
hg : Tendsto g l atTop
this : Tendsto (fun x => -f x * g x) l atTop
⊢ Tendsto (fun x => f x * g x) l atBot
[PROOFSTEP]
simpa only [(· ∘ ·), neg_mul_eq_neg_mul, neg_neg] using tendsto_neg_atTop_atBot.comp this
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedRing α
l : Filter β
f g : β → α
hf : Tendsto f l atBot
hg : Tendsto g l atBot
⊢ Tendsto (fun x => f x * g x) l atTop
[PROOFSTEP]
have : Tendsto (fun x => -f x * -g x) l atTop :=
(tendsto_neg_atBot_atTop.comp hf).atTop_mul_atTop (tendsto_neg_atBot_atTop.comp hg)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : StrictOrderedRing α
l : Filter β
f g : β → α
hf : Tendsto f l atBot
hg : Tendsto g l atBot
this : Tendsto (fun x => -f x * -g x) l atTop
⊢ Tendsto (fun x => f x * g x) l atTop
[PROOFSTEP]
simpa only [neg_mul_neg] using this
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedAddCommGroup α
⊢ comap abs atTop = atBot ⊔ atTop
[PROOFSTEP]
refine'
le_antisymm (((atTop_basis.comap _).le_basis_iff (atBot_basis.sup atTop_basis)).2 _)
(sup_le tendsto_abs_atBot_atTop.le_comap tendsto_abs_atTop_atTop.le_comap)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedAddCommGroup α
⊢ ∀ (i' : α × α), True ∧ True → ∃ i, True ∧ abs ⁻¹' Ici i ⊆ Iic i'.fst ∪ Ici i'.snd
[PROOFSTEP]
rintro ⟨a, b⟩ -
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedAddCommGroup α
a b : α
⊢ ∃ i, True ∧ abs ⁻¹' Ici i ⊆ Iic (a, b).fst ∪ Ici (a, b).snd
[PROOFSTEP]
refine' ⟨max (-a) b, trivial, fun x hx => _⟩
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedAddCommGroup α
a b x : α
hx : x ∈ abs ⁻¹' Ici (max (-a) b)
⊢ x ∈ Iic (a, b).fst ∪ Ici (a, b).snd
[PROOFSTEP]
rw [mem_preimage, mem_Ici, le_abs', max_le_iff, ← min_neg_neg, le_min_iff, neg_neg] at hx
[GOAL]
case mk
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedAddCommGroup α
a b x : α
hx : x ≤ a ∧ x ≤ -b ∨ -a ≤ x ∧ b ≤ x
⊢ x ∈ Iic (a, b).fst ∪ Ici (a, b).snd
[PROOFSTEP]
exact hx.imp And.left And.right
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemiring α
l : Filter β
f : β → α
n : ℕ
h : Tendsto (fun x => x ^ n) atTop atTop
hn : n = 0
⊢ False
[PROOFSTEP]
simp only [hn, pow_zero, not_tendsto_const_atTop] at h
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedRing α
⊢ ¬Tendsto (fun x => x ^ 0) atTop atBot
[PROOFSTEP]
simp [not_tendsto_const_atBot]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
hr : 0 < r
h : Tendsto f l atTop
⊢ Tendsto (fun x => r⁻¹ * (r * f x)) l atTop
[PROOFSTEP]
simpa only [inv_mul_cancel_left₀ hr.ne']
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
hr : 0 < r
⊢ Tendsto (fun x => f x * r) l atTop ↔ Tendsto f l atTop
[PROOFSTEP]
simpa only [mul_comm] using tendsto_const_mul_atTop_of_pos hr
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
inst✝ : NeBot l
h : Tendsto f l atTop
⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r
[PROOFSTEP]
refine' ⟨fun hrf => not_le.mp fun hr => _, fun hr => (tendsto_const_mul_atTop_of_pos hr).mpr h⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
inst✝ : NeBot l
h : Tendsto f l atTop
hrf : Tendsto (fun x => r * f x) l atTop
hr : r ≤ 0
⊢ False
[PROOFSTEP]
rcases((h.eventually_ge_atTop 0).and (hrf.eventually_gt_atTop 0)).exists with ⟨x, hx, hrx⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
inst✝ : NeBot l
h : Tendsto f l atTop
hrf : Tendsto (fun x => r * f x) l atTop
hr : r ≤ 0
x : β
hx : 0 ≤ f x
hrx : 0 < r * f x
⊢ False
[PROOFSTEP]
exact (mul_nonpos_of_nonpos_of_nonneg hr hx).not_lt hrx
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
inst✝ : NeBot l
h : Tendsto f l atTop
⊢ Tendsto (fun x => f x * r) l atTop ↔ 0 < r
[PROOFSTEP]
simp only [mul_comm _ r, tendsto_const_mul_atTop_iff_pos h]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
hr : 0 < r
hf : Tendsto f l atTop
⊢ Tendsto (fun x => f x / r) l atTop
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hf.atTop_mul_const (inv_pos.2 hr)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
⊢ Tendsto (fun x => c * x ^ n) atTop atTop ↔ n ≠ 0 ∧ 0 < c
[PROOFSTEP]
refine' ⟨fun h => ⟨_, _⟩, fun h => tendsto_const_mul_pow_atTop h.1 h.2⟩
[GOAL]
case refine'_1
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
h : Tendsto (fun x => c * x ^ n) atTop atTop
⊢ n ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
case refine'_1
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
h : Tendsto (fun x => c * x ^ 0) atTop atTop
⊢ False
[PROOFSTEP]
simp only [pow_zero, not_tendsto_const_atTop] at h
[GOAL]
case refine'_2
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
h : Tendsto (fun x => c * x ^ n) atTop atTop
⊢ 0 < c
[PROOFSTEP]
rcases((h.eventually_gt_atTop 0).and (eventually_ge_atTop 0)).exists with ⟨k, hck, hk⟩
[GOAL]
case refine'_2.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedSemifield α
l : Filter β
f : β → α
r c : α
n : ℕ
h : Tendsto (fun x => c * x ^ n) atTop atTop
k : α
hck : 0 < c * k ^ n
hk : 0 ≤ k
⊢ 0 < c
[PROOFSTEP]
exact pos_of_mul_pos_left hck (pow_nonneg hk _)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : 0 < r
⊢ Tendsto (fun x => r * f x) l atBot ↔ Tendsto f l atBot
[PROOFSTEP]
simpa only [← mul_neg, ← tendsto_neg_atTop_iff] using tendsto_const_mul_atTop_of_pos hr
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : 0 < r
⊢ Tendsto (fun x => f x * r) l atBot ↔ Tendsto f l atBot
[PROOFSTEP]
simpa only [mul_comm] using tendsto_const_mul_atBot_of_pos hr
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : r < 0
⊢ Tendsto (fun x => r * f x) l atTop ↔ Tendsto f l atBot
[PROOFSTEP]
simpa only [neg_mul, tendsto_neg_atBot_iff] using tendsto_const_mul_atBot_of_pos (neg_pos.2 hr)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : r < 0
⊢ Tendsto (fun x => f x * r) l atTop ↔ Tendsto f l atBot
[PROOFSTEP]
simpa only [mul_comm] using tendsto_const_mul_atTop_of_neg hr
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : r < 0
⊢ Tendsto (fun x => r * f x) l atBot ↔ Tendsto f l atTop
[PROOFSTEP]
simpa only [neg_mul, tendsto_neg_atTop_iff] using tendsto_const_mul_atTop_of_pos (neg_pos.2 hr)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : r < 0
⊢ Tendsto (fun x => f x * r) l atBot ↔ Tendsto f l atTop
[PROOFSTEP]
simpa only [mul_comm] using tendsto_const_mul_atBot_of_neg hr
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot
[PROOFSTEP]
rcases lt_trichotomy r 0 with (hr | rfl | hr)
[GOAL]
case inl
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
hr : r < 0
⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot
[PROOFSTEP]
simp [hr, hr.not_lt, tendsto_const_mul_atTop_of_neg]
[GOAL]
case inr.inl
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
inst✝ : NeBot l
⊢ Tendsto (fun x => 0 * f x) l atTop ↔ 0 < 0 ∧ Tendsto f l atTop ∨ 0 < 0 ∧ Tendsto f l atBot
[PROOFSTEP]
simp [not_tendsto_const_atTop]
[GOAL]
case inr.inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
hr : 0 < r
⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot
[PROOFSTEP]
simp [hr, hr.not_lt, tendsto_const_mul_atTop_of_pos]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
⊢ Tendsto (fun x => f x * r) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot
[PROOFSTEP]
simp only [mul_comm _ r, tendsto_const_mul_atTop_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
⊢ Tendsto (fun x => r * f x) l atBot ↔ 0 < r ∧ Tendsto f l atBot ∨ r < 0 ∧ Tendsto f l atTop
[PROOFSTEP]
simp only [← tendsto_neg_atTop_iff, ← mul_neg, tendsto_const_mul_atTop_iff, neg_neg]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
⊢ Tendsto (fun x => f x * r) l atBot ↔ 0 < r ∧ Tendsto f l atBot ∨ r < 0 ∧ Tendsto f l atTop
[PROOFSTEP]
simp only [mul_comm _ r, tendsto_const_mul_atBot_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
h : Tendsto f l atBot
⊢ Tendsto (fun x => r * f x) l atTop ↔ r < 0
[PROOFSTEP]
simp [tendsto_const_mul_atTop_iff, h, h.not_tendsto disjoint_atBot_atTop]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
h : Tendsto f l atBot
⊢ Tendsto (fun x => f x * r) l atTop ↔ r < 0
[PROOFSTEP]
simp only [mul_comm _ r, tendsto_const_mul_atTop_iff_neg h]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
h : Tendsto f l atBot
⊢ Tendsto (fun x => r * f x) l atBot ↔ 0 < r
[PROOFSTEP]
simp [tendsto_const_mul_atBot_iff, h, h.not_tendsto disjoint_atBot_atTop]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
h : Tendsto f l atBot
⊢ Tendsto (fun x => f x * r) l atBot ↔ 0 < r
[PROOFSTEP]
simp only [mul_comm _ r, tendsto_const_mul_atBot_iff_pos h]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
h : Tendsto f l atTop
⊢ Tendsto (fun x => r * f x) l atBot ↔ r < 0
[PROOFSTEP]
simp [tendsto_const_mul_atBot_iff, h, h.not_tendsto disjoint_atTop_atBot]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : LinearOrderedField α
l : Filter β
f : β → α
r : α
inst✝ : NeBot l
h : Tendsto f l atTop
⊢ Tendsto (fun x => f x * r) l atBot ↔ r < 0
[PROOFSTEP]
simp only [mul_comm _ r, tendsto_const_mul_atBot_iff_neg h]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r : α
hr : 0 < r
hf : Tendsto f l atBot
⊢ Tendsto (fun x => f x / r) l atBot
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hf.atBot_mul_const (inv_pos.2 hr)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : LinearOrderedField α
l : Filter β
f : β → α
r c : α
n : ℕ
⊢ Tendsto (fun x => c * x ^ n) atTop atBot ↔ n ≠ 0 ∧ c < 0
[PROOFSTEP]
simp only [← tendsto_neg_atTop_iff, ← neg_mul, tendsto_const_mul_pow_atTop_iff, neg_pos]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Nonempty α
inst✝ : SemilatticeSup α
f : α → β
l : Filter β
⊢ Tendsto f atTop l ↔ ∀ (s : Set β), s ∈ l → ∃ a, ∀ (b : α), b ≥ a → f b ∈ s
[PROOFSTEP]
simp only [tendsto_def, mem_atTop_sets]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Nonempty α
inst✝ : SemilatticeSup α
f : α → β
l : Filter β
⊢ (∀ (s : Set β), s ∈ l → ∃ a, ∀ (b : α), b ≥ a → b ∈ f ⁻¹' s) ↔ ∀ (s : Set β), s ∈ l → ∃ a, ∀ (b : α), b ≥ a → f b ∈ s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Nonempty β
inst✝ : SemilatticeSup β
f : β → α
s : Set α
⊢ Tendsto f atTop (𝓟 s) ↔ ∃ N, ∀ (n : β), n ≥ N → f n ∈ s
[PROOFSTEP]
rw [tendsto_iff_comap, comap_principal, le_principal_iff, mem_atTop_sets]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Nonempty β
inst✝ : SemilatticeSup β
f : β → α
s : Set α
⊢ (∃ a, ∀ (b : β), b ≥ a → b ∈ f ⁻¹' s) ↔ ∃ N, ∀ (n : β), n ≥ N → f n ∈ s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder β
inst✝ : Preorder γ
f : α → β
e : β → γ
l : Filter α
hm : ∀ (b₁ b₂ : β), e b₁ ≤ e b₂ ↔ b₁ ≤ b₂
hu : ∀ (c : γ), ∃ b, c ≤ e b
⊢ Tendsto (e ∘ f) l atTop ↔ Tendsto f l atTop
[PROOFSTEP]
rw [← comap_embedding_atTop hm hu, tendsto_comap_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
⊢ atTop = ⨅ (x : α), 𝓟 (Ici {x})
[PROOFSTEP]
refine' le_antisymm (le_iInf fun i => le_principal_iff.2 <| mem_atTop { i }) _
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
⊢ ⨅ (x : α), 𝓟 (Ici {x}) ≤ atTop
[PROOFSTEP]
refine' le_iInf fun s => le_principal_iff.2 <| mem_iInf_of_iInter s.finite_toSet (fun i => mem_principal_self _) _
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
s : Finset α
⊢ ⋂ (i : ↑↑s), Ici {↑i} ⊆ Ici s
[PROOFSTEP]
simp only [subset_def, mem_iInter, SetCoe.forall, mem_Ici, Finset.le_iff_subset, Finset.mem_singleton,
Finset.subset_iff, forall_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
s : Finset α
⊢ ∀ (x : Finset α), (∀ (x_1 : α), x_1 ∈ ↑s → x_1 ∈ x) → ∀ ⦃x_1 : α⦄, x_1 ∈ s → x_1 ∈ x
[PROOFSTEP]
exact fun t => id
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder β
f : β → Finset α
h : Monotone f
h' : ∀ (x : α), ∃ n, x ∈ f n
⊢ Tendsto f atTop atTop
[PROOFSTEP]
simp only [atTop_finset_eq_iInf, tendsto_iInf, tendsto_principal]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder β
f : β → Finset α
h : Monotone f
h' : ∀ (x : α), ∃ n, x ∈ f n
⊢ ∀ (i : α), ∀ᶠ (a : β) in atTop, f a ∈ Ici {i}
[PROOFSTEP]
intro a
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder β
f : β → Finset α
h : Monotone f
h' : ∀ (x : α), ∃ n, x ∈ f n
a : α
⊢ ∀ᶠ (a_1 : β) in atTop, f a_1 ∈ Ici {a}
[PROOFSTEP]
rcases h' a with ⟨b, hb⟩
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : Preorder β
f : β → Finset α
h : Monotone f
h' : ∀ (x : α), ∃ n, x ∈ f n
a : α
b : β
hb : a ∈ f b
⊢ ∀ᶠ (a_1 : β) in atTop, f a_1 ∈ Ici {a}
[PROOFSTEP]
exact (eventually_ge_atTop b).mono fun b' hb' => (Finset.singleton_subset_iff.2 hb).trans (h hb')
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : DecidableEq β
i : β → γ
j : γ → β
h : Function.LeftInverse j i
a : β
⊢ a ∈ Finset.image j {i a}
[PROOFSTEP]
simp only [Finset.image_singleton, h a, Finset.mem_singleton]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
⊢ atTop ×ˢ atTop = atTop
[PROOFSTEP]
cases isEmpty_or_nonempty α
[GOAL]
case inl
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
h✝ : IsEmpty α
⊢ atTop ×ˢ atTop = atTop
case inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
h✝ : Nonempty α
⊢ atTop ×ˢ atTop = atTop
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
h✝ : Nonempty α
⊢ atTop ×ˢ atTop = atTop
[PROOFSTEP]
cases isEmpty_or_nonempty β
[GOAL]
case inr.inl
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
h✝¹ : Nonempty α
h✝ : IsEmpty β
⊢ atTop ×ˢ atTop = atTop
case inr.inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
h✝¹ : Nonempty α
h✝ : Nonempty β
⊢ atTop ×ˢ atTop = atTop
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case inr.inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
h✝¹ : Nonempty α
h✝ : Nonempty β
⊢ atTop ×ˢ atTop = atTop
[PROOFSTEP]
simpa [atTop, prod_iInf_left, prod_iInf_right, iInf_prod] using iInf_comm
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
α₁ : Type u_6
α₂ : Type u_7
β₁ : Type u_8
β₂ : Type u_9
inst✝¹ : Preorder β₁
inst✝ : Preorder β₂
u₁ : β₁ → α₁
u₂ : β₂ → α₂
⊢ map u₁ atTop ×ˢ map u₂ atTop = map (Prod.map u₁ u₂) atTop
[PROOFSTEP]
rw [prod_map_map_eq, prod_atTop_atTop_eq, Prod.map_def]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
⊢ Tendsto (fun a => (a, a)) atBot atBot
[PROOFSTEP]
rw [← prod_atBot_atBot_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
⊢ Tendsto (fun a => (a, a)) atBot (atBot ×ˢ atBot)
[PROOFSTEP]
exact tendsto_id.prod_mk tendsto_id
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
⊢ Tendsto (fun a => (a, a)) atTop atTop
[PROOFSTEP]
rw [← prod_atTop_atTop_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
⊢ Tendsto (fun a => (a, a)) atTop (atTop ×ˢ atTop)
[PROOFSTEP]
exact tendsto_id.prod_mk tendsto_id
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf γ
F : Filter α
G : Filter β
f : α → γ
g : β → γ
hf : Tendsto f F atBot
hg : Tendsto g G atBot
⊢ Tendsto (Prod.map f g) (F ×ˢ G) atBot
[PROOFSTEP]
rw [← prod_atBot_atBot_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf γ
F : Filter α
G : Filter β
f : α → γ
g : β → γ
hf : Tendsto f F atBot
hg : Tendsto g G atBot
⊢ Tendsto (Prod.map f g) (F ×ˢ G) (atBot ×ˢ atBot)
[PROOFSTEP]
exact hf.prod_map hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup γ
F : Filter α
G : Filter β
f : α → γ
g : β → γ
hf : Tendsto f F atTop
hg : Tendsto g G atTop
⊢ Tendsto (Prod.map f g) (F ×ˢ G) atTop
[PROOFSTEP]
rw [← prod_atTop_atTop_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup γ
F : Filter α
G : Filter β
f : α → γ
g : β → γ
hf : Tendsto f F atTop
hg : Tendsto g G atTop
⊢ Tendsto (Prod.map f g) (F ×ˢ G) (atTop ×ˢ atTop)
[PROOFSTEP]
exact hf.prod_map hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf γ
f g : α → γ
hf : Tendsto f atBot atBot
hg : Tendsto g atBot atBot
⊢ Tendsto (Prod.map f g) atBot atBot
[PROOFSTEP]
rw [← prod_atBot_atBot_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf γ
f g : α → γ
hf : Tendsto f atBot atBot
hg : Tendsto g atBot atBot
⊢ Tendsto (Prod.map f g) (atBot ×ˢ atBot) atBot
[PROOFSTEP]
exact hf.prod_map_prod_atBot hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup γ
f g : α → γ
hf : Tendsto f atTop atTop
hg : Tendsto g atTop atTop
⊢ Tendsto (Prod.map f g) atTop atTop
[PROOFSTEP]
rw [← prod_atTop_atTop_eq]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup γ
f g : α → γ
hf : Tendsto f atTop atTop
hg : Tendsto g atTop atTop
⊢ Tendsto (Prod.map f g) (atTop ×ˢ atTop) atTop
[PROOFSTEP]
exact hf.prod_map_prod_atTop hg
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : Nonempty α
p : α × α → Prop
⊢ (∀ᶠ (x : α × α) in atBot, p x) ↔ ∃ a, ∀ (k l : α), k ≤ a → l ≤ a → p (k, l)
[PROOFSTEP]
simp [← prod_atBot_atBot_eq, (@atBot_basis α _ _).prod_self.eventually_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : Nonempty α
p : α × α → Prop
⊢ (∀ᶠ (x : α × α) in atBot, p x) ↔ ∃ a, ∀ (k : α), k ≤ a → ∀ (l : α), l ≤ a → p (k, l)
[PROOFSTEP]
simp only [eventually_atBot_prod_self, ball_cond_comm]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : Nonempty α
p : α × α → Prop
⊢ (∀ᶠ (x : α × α) in atTop, p x) ↔ ∃ a, ∀ (k : α), k ≥ a → ∀ (l : α), l ≥ a → p (k, l)
[PROOFSTEP]
simp only [eventually_atTop_prod_self, ball_cond_comm]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
p : α × β → Prop
hp : ∀ᶠ (x : α × β) in atTop, p x
⊢ ∀ᶠ (k : α) in atTop, ∀ᶠ (l : β) in atTop, p (k, l)
[PROOFSTEP]
rw [← prod_atTop_atTop_eq] at hp
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
p : α × β → Prop
hp : ∀ᶠ (x : α × β) in atTop ×ˢ atTop, p x
⊢ ∀ᶠ (k : α) in atTop, ∀ᶠ (l : β) in atTop, p (k, l)
[PROOFSTEP]
exact hp.curry
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
g : β → α
b' : β
hf : Monotone f
gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b)
hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b)
⊢ map f atTop = atTop
[PROOFSTEP]
refine' le_antisymm (hf.tendsto_atTop_atTop fun b => ⟨g (b ⊔ b'), le_sup_left.trans <| hgi _ le_sup_right⟩) _
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
g : β → α
b' : β
hf : Monotone f
gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b)
hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b)
⊢ atTop ≤ map f atTop
[PROOFSTEP]
rw [@map_atTop_eq _ _ ⟨g b'⟩]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
g : β → α
b' : β
hf : Monotone f
gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b)
hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b)
⊢ atTop ≤ ⨅ (a : α), 𝓟 (f '' {a' | a ≤ a'})
[PROOFSTEP]
refine' le_iInf fun a => iInf_le_of_le (f a ⊔ b') <| principal_mono.2 fun b hb => _
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
g : β → α
b' : β
hf : Monotone f
gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b)
hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b)
a : α
b : β
hb : b ∈ Ici (f a ⊔ b')
⊢ b ∈ f '' {a' | a ≤ a'}
[PROOFSTEP]
rw [mem_Ici, sup_le_iff] at hb
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
g : β → α
b' : β
hf : Monotone f
gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b)
hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b)
a : α
b : β
hb : f a ≤ b ∧ b' ≤ b
⊢ b ∈ f '' {a' | a ≤ a'}
[PROOFSTEP]
exact ⟨g b, (gc _ _ hb.2).1 hb.1, le_antisymm ((gc _ _ hb.2).2 le_rfl) (hgi _ hb.2)⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
⊢ map Subtype.val atTop = atTop
[PROOFSTEP]
haveI : Nonempty s := ⟨⟨a, h le_rfl⟩⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this : Nonempty ↑s
⊢ map Subtype.val atTop = atTop
[PROOFSTEP]
have : Directed (· ≥ ·) fun x : s => 𝓟 (Ici x) := by
intro x y
use⟨x ⊔ y ⊔ a, h le_sup_right⟩
simp only [ge_iff_le, principal_mono, Ici_subset_Ici, ← Subtype.coe_le_coe, Subtype.coe_mk]
exact ⟨le_sup_left.trans le_sup_left, le_sup_right.trans le_sup_left⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this : Nonempty ↑s
⊢ Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
[PROOFSTEP]
intro x y
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this : Nonempty ↑s
x y : ↑s
⊢ ∃ z,
(fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) x) ((fun x => 𝓟 (Ici x)) z) ∧
(fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) y) ((fun x => 𝓟 (Ici x)) z)
[PROOFSTEP]
use⟨x ⊔ y ⊔ a, h le_sup_right⟩
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this : Nonempty ↑s
x y : ↑s
⊢ (fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) x)
((fun x => 𝓟 (Ici x)) { val := ↑x ⊔ ↑y ⊔ a, property := (_ : ↑x ⊔ ↑y ⊔ a ∈ s) }) ∧
(fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) y)
((fun x => 𝓟 (Ici x)) { val := ↑x ⊔ ↑y ⊔ a, property := (_ : ↑x ⊔ ↑y ⊔ a ∈ s) })
[PROOFSTEP]
simp only [ge_iff_le, principal_mono, Ici_subset_Ici, ← Subtype.coe_le_coe, Subtype.coe_mk]
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this : Nonempty ↑s
x y : ↑s
⊢ ↑x ≤ ↑x ⊔ ↑y ⊔ a ∧ ↑y ≤ ↑x ⊔ ↑y ⊔ a
[PROOFSTEP]
exact ⟨le_sup_left.trans le_sup_left, le_sup_right.trans le_sup_left⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
⊢ map Subtype.val atTop = atTop
[PROOFSTEP]
simp only [le_antisymm_iff, atTop, le_iInf_iff, le_principal_iff, mem_map, mem_setOf_eq, map_iInf_eq this,
map_principal]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
⊢ (∀ (i : α), Ici i ∈ ⨅ (i : ↑s), 𝓟 (Subtype.val '' Ici i)) ∧ ∀ (i : ↑s), Subtype.val '' Ici i ∈ ⨅ (a : α), 𝓟 (Ici a)
[PROOFSTEP]
constructor
[GOAL]
case left
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
⊢ ∀ (i : α), Ici i ∈ ⨅ (i : ↑s), 𝓟 (Subtype.val '' Ici i)
[PROOFSTEP]
intro x
[GOAL]
case left
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
x : α
⊢ Ici x ∈ ⨅ (i : ↑s), 𝓟 (Subtype.val '' Ici i)
[PROOFSTEP]
refine' mem_of_superset (mem_iInf_of_mem ⟨x ⊔ a, h le_sup_right⟩ (mem_principal_self _)) _
[GOAL]
case left
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
x : α
⊢ Subtype.val '' Ici { val := x ⊔ a, property := (_ : x ⊔ a ∈ s) } ⊆ Ici x
[PROOFSTEP]
rintro _ ⟨y, hy, rfl⟩
[GOAL]
case left.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
x : α
y : ↑s
hy : y ∈ Ici { val := x ⊔ a, property := (_ : x ⊔ a ∈ s) }
⊢ ↑y ∈ Ici x
[PROOFSTEP]
exact le_trans le_sup_left (Subtype.coe_le_coe.2 hy)
[GOAL]
case right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
⊢ ∀ (i : ↑s), Subtype.val '' Ici i ∈ ⨅ (a : α), 𝓟 (Ici a)
[PROOFSTEP]
intro x
[GOAL]
case right
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
x : ↑s
⊢ Subtype.val '' Ici x ∈ ⨅ (a : α), 𝓟 (Ici a)
[PROOFSTEP]
filter_upwards [mem_atTop (↑x ⊔ a)] with b hb
[GOAL]
case h
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
s : Set α
h : Ici a ⊆ s
this✝ : Nonempty ↑s
this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x)
x : ↑s
b : α
hb : ↑x ⊔ a ≤ b
⊢ b ∈ Subtype.val '' Ici x
[PROOFSTEP]
exact ⟨⟨b, h <| le_sup_right.trans hb⟩, Subtype.coe_le_coe.1 (le_sup_left.trans hb), rfl⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
⊢ atTop = comap Subtype.val atTop
[PROOFSTEP]
rcases isEmpty_or_nonempty (Ioi a) with h | ⟨⟨b, hb⟩⟩
[GOAL]
case inl
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
h : IsEmpty ↑(Ioi a)
⊢ atTop = comap Subtype.val atTop
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case inr.intro.mk
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a b : α
hb : b ∈ Ioi a
⊢ atTop = comap Subtype.val atTop
[PROOFSTEP]
rw [← map_val_atTop_of_Ici_subset (Ici_subset_Ioi.2 hb), comap_map Subtype.coe_injective]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
⊢ atTop = comap Subtype.val atTop
[PROOFSTEP]
rw [← map_val_Ici_atTop a, comap_map Subtype.coe_injective]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
f : β → ↑(Ioi a)
l : Filter β
⊢ Tendsto f l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop
[PROOFSTEP]
rw [atTop_Ioi_eq, tendsto_comap_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
f : β → ↑(Ioi a)
l : Filter β
⊢ Tendsto (Subtype.val ∘ f) l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
a : α
f : β → ↑(Iio a)
l : Filter β
⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot
[PROOFSTEP]
rw [atBot_Iio_eq, tendsto_comap_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
a : α
f : β → ↑(Iio a)
l : Filter β
⊢ Tendsto (Subtype.val ∘ f) l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
f : β → ↑(Ici a)
l : Filter β
⊢ Tendsto f l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop
[PROOFSTEP]
rw [atTop_Ici_eq, tendsto_comap_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
f : β → ↑(Ici a)
l : Filter β
⊢ Tendsto (Subtype.val ∘ f) l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
a : α
f : β → ↑(Iic a)
l : Filter β
⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot
[PROOFSTEP]
rw [atBot_Iic_eq, tendsto_comap_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
a : α
f : β → ↑(Iic a)
l : Filter β
⊢ Tendsto (Subtype.val ∘ f) l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : NoMaxOrder α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l
[PROOFSTEP]
rw [← map_val_Ioi_atTop a, tendsto_map'_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeSup α
inst✝ : NoMaxOrder α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l
[PROOFSTEP]
rw [← map_val_Ici_atTop a, tendsto_map'_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeSup α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : NoMinOrder α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto f atBot l
[PROOFSTEP]
rw [← map_val_Iio_atBot a, tendsto_map'_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : NoMinOrder α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto (f ∘ Subtype.val) atBot l
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto f atBot l
[PROOFSTEP]
rw [← map_val_Iic_atBot a, tendsto_map'_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : SemilatticeInf α
a : α
f : α → β
l : Filter β
⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto (f ∘ Subtype.val) atBot l
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
k a : ℕ
h : a ≥ k
⊢ a ≤ (fun a => a - k) a + k
[PROOFSTEP]
rw [tsub_add_cancel_of_le h]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
k b : ℕ
x✝ : b ≥ 0
⊢ b ≤ (fun a => a + k) b - k
[PROOFSTEP]
rw [add_tsub_cancel_right]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : ℕ → α
l : Filter α
k : ℕ
⊢ Tendsto (f ∘ fun n => n + k) atTop l ↔ Tendsto f atTop l
[PROOFSTEP]
rw [← tendsto_map'_iff, map_add_atTop_eq_nat]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
k : ℕ
hk : 0 < k
a b : ℕ
x✝ : b ≥ 1
⊢ a / k ≤ b ↔ a ≤ (fun b => b * k + (k - 1)) b
[PROOFSTEP]
simp only [← Nat.lt_succ_iff, Nat.div_lt_iff_lt_mul hk, Nat.succ_eq_add_one, add_assoc,
tsub_add_cancel_of_le (Nat.one_le_iff_ne_zero.2 hk.ne'), add_mul, one_mul]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
k : ℕ
hk : 0 < k
b : ℕ
x✝ : b ≥ 1
⊢ b = b * k / k
[PROOFSTEP]
rw [Nat.mul_div_cancel b hk]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder ι
inst✝ : LinearOrder α
u : ι → α
h : Monotone u
H : ¬BddAbove (range u)
⊢ Tendsto u atTop atTop
[PROOFSTEP]
apply h.tendsto_atTop_atTop
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder ι
inst✝ : LinearOrder α
u : ι → α
h : Monotone u
H : ¬BddAbove (range u)
⊢ ∀ (b : α), ∃ a, b ≤ u a
[PROOFSTEP]
intro b
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder ι
inst✝ : LinearOrder α
u : ι → α
h : Monotone u
H : ¬BddAbove (range u)
b : α
⊢ ∃ a, b ≤ u a
[PROOFSTEP]
rcases not_bddAbove_iff.1 H b with ⟨_, ⟨N, rfl⟩, hN⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : Preorder ι
inst✝ : LinearOrder α
u : ι → α
h : Monotone u
H : ¬BddAbove (range u)
b : α
N : ι
hN : b < u N
⊢ ∃ a, b ≤ u a
[PROOFSTEP]
exact ⟨N, le_of_lt hN⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝³ : Nonempty α
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
f : α → β
h : Tendsto f atTop atTop
⊢ ¬BddAbove (range f)
[PROOFSTEP]
rintro ⟨M, hM⟩
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝³ : Nonempty α
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
f : α → β
h : Tendsto f atTop atTop
M : β
hM : M ∈ upperBounds (range f)
⊢ False
[PROOFSTEP]
cases' mem_atTop_sets.mp (h <| Ioi_mem_atTop M) with a ha
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝³ : Nonempty α
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
f : α → β
h : Tendsto f atTop atTop
M : β
hM : M ∈ upperBounds (range f)
a : α
ha : ∀ (b : α), b ≥ a → b ∈ f ⁻¹' Ioi M
⊢ False
[PROOFSTEP]
apply lt_irrefl M
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝³ : Nonempty α
inst✝² : SemilatticeSup α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
f : α → β
h : Tendsto f atTop atTop
M : β
hM : M ∈ upperBounds (range f)
a : α
ha : ∀ (b : α), b ≥ a → b ∈ f ⁻¹' Ioi M
⊢ M < M
[PROOFSTEP]
calc
M < f a := ha a le_rfl
_ ≤ M := hM (Set.mem_range_self a)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
f : β → α
g : γ → α
h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
⊢ map (fun s => ∏ b in s, f b) atTop ≤ map (fun s => ∏ x in s, g x) atTop
[PROOFSTEP]
classical
refine' ((atTop_basis.map _).le_basis_iff (atTop_basis.map _)).2 fun b _ => _
let ⟨v, hv⟩ := h_eq b
refine ⟨v, trivial, ?_⟩
simpa [image_subset_iff] using hv
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
f : β → α
g : γ → α
h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
⊢ map (fun s => ∏ b in s, f b) atTop ≤ map (fun s => ∏ x in s, g x) atTop
[PROOFSTEP]
refine' ((atTop_basis.map _).le_basis_iff (atTop_basis.map _)).2 fun b _ => _
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
f : β → α
g : γ → α
h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
b : Finset γ
x✝ : True
⊢ ∃ i, True ∧ (fun s => ∏ b in s, f b) '' Ici i ⊆ (fun s => ∏ x in s, g x) '' Ici b
[PROOFSTEP]
let ⟨v, hv⟩ := h_eq b
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
f : β → α
g : γ → α
h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
b : Finset γ
x✝ : True
v : Finset β
hv : ∀ (v' : Finset β), v ⊆ v' → ∃ u', b ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
⊢ ∃ i, True ∧ (fun s => ∏ b in s, f b) '' Ici i ⊆ (fun s => ∏ x in s, g x) '' Ici b
[PROOFSTEP]
refine ⟨v, trivial, ?_⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
f : β → α
g : γ → α
h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
b : Finset γ
x✝ : True
v : Finset β
hv : ∀ (v' : Finset β), v ⊆ v' → ∃ u', b ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b
⊢ (fun s => ∏ b in s, f b) '' Ici v ⊆ (fun s => ∏ x in s, g x) '' Ici b
[PROOFSTEP]
simpa [image_subset_iff] using hv
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
⊢ ∃ φ, StrictMono φ ∧ (∀ ⦃m n : ℕ⦄, m < n → r (φ m) (φ n)) ∧ HasAntitoneBasis f (s ∘ φ)
[PROOFSTEP]
suffices : ∃ φ : ℕ → ℕ, StrictMono φ ∧ ∀ m n, m < n → r (φ m) (φ n)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
this : ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n)
⊢ ∃ φ, StrictMono φ ∧ (∀ ⦃m n : ℕ⦄, m < n → r (φ m) (φ n)) ∧ HasAntitoneBasis f (s ∘ φ)
[PROOFSTEP]
rcases this with ⟨φ, hφ, hrφ⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
φ : ℕ → ℕ
hφ : StrictMono φ
hrφ : ∀ (m n : ℕ), m < n → r (φ m) (φ n)
⊢ ∃ φ, StrictMono φ ∧ (∀ ⦃m n : ℕ⦄, m < n → r (φ m) (φ n)) ∧ HasAntitoneBasis f (s ∘ φ)
[PROOFSTEP]
exact ⟨φ, hφ, hrφ, hs.comp_strictMono hφ⟩
[GOAL]
case this
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n)
[PROOFSTEP]
have : ∀ t : Set ℕ, t.Finite → ∀ᶠ n in atTop, ∀ m ∈ t, m < n ∧ r m n := fun t ht =>
(eventually_all_finite ht).2 fun m _ => (eventually_gt_atTop m).and (hr _)
[GOAL]
case this
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
this : ∀ (t : Set ℕ), Set.Finite t → ∀ᶠ (n : ℕ) in atTop, ∀ (m : ℕ), m ∈ t → m < n ∧ r m n
⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n)
[PROOFSTEP]
rcases seq_of_forall_finite_exists fun t ht => (this t ht).exists with ⟨φ, hφ⟩
[GOAL]
case this.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
this : ∀ (t : Set ℕ), Set.Finite t → ∀ᶠ (n : ℕ) in atTop, ∀ (m : ℕ), m ∈ t → m < n ∧ r m n
φ : ℕ → ℕ
hφ : ∀ (n m : ℕ), m ∈ φ '' Iio n → m < φ n ∧ r m (φ n)
⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n)
[PROOFSTEP]
simp only [ball_image_iff, forall_and, mem_Iio] at hφ
[GOAL]
case this.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
s : ℕ → Set α
hs : HasAntitoneBasis f s
r : ℕ → ℕ → Prop
hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n
this : ∀ (t : Set ℕ), Set.Finite t → ∀ᶠ (n : ℕ) in atTop, ∀ (m : ℕ), m ∈ t → m < n ∧ r m n
φ : ℕ → ℕ
hφ : (∀ (x x_1 : ℕ), x_1 < x → φ x_1 < φ x) ∧ ∀ (x x_1 : ℕ), x_1 < x → r (φ x_1) (φ x)
⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n)
[PROOFSTEP]
exact ⟨φ, forall_swap.2 hφ.1, forall_swap.2 hφ.2⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : NeBot f
⊢ ∃ x, Tendsto x atTop f
[PROOFSTEP]
obtain ⟨B, h⟩ := f.exists_antitone_basis
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : NeBot f
B : ℕ → Set α
h : HasAntitoneBasis f B
⊢ ∃ x, Tendsto x atTop f
[PROOFSTEP]
choose x hx using fun n => Filter.nonempty_of_mem (h.mem n)
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝¹ : IsCountablyGenerated f
inst✝ : NeBot f
B : ℕ → Set α
h : HasAntitoneBasis f B
x : ℕ → α
hx : ∀ (n : ℕ), x n ∈ B n
⊢ ∃ x, Tendsto x atTop f
[PROOFSTEP]
exact ⟨x, h.tendsto hx⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
[PROOFSTEP]
haveI h_ne_bot : (atTop : Filter α).NeBot := atTop_neBot
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
[PROOFSTEP]
obtain ⟨ys, h⟩ := exists_seq_tendsto (atTop : Filter α)
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
[PROOFSTEP]
let xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) Finset.nonempty_range_succ ys
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
[PROOFSTEP]
have h_mono : Monotone xs := by
intro i j hij
rw [Finset.sup'_le_iff]
intro k hk
refine' Finset.le_sup'_of_le _ _ le_rfl
rw [Finset.mem_range] at hk ⊢
exact hk.trans_le (add_le_add_right hij _)
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
⊢ Monotone xs
[PROOFSTEP]
intro i j hij
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
i j : ℕ
hij : i ≤ j
⊢ xs i ≤ xs j
[PROOFSTEP]
rw [Finset.sup'_le_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
i j : ℕ
hij : i ≤ j
⊢ ∀ (b : ℕ), b ∈ Finset.range (i + 1) → ys b ≤ xs j
[PROOFSTEP]
intro k hk
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
i j : ℕ
hij : i ≤ j
k : ℕ
hk : k ∈ Finset.range (i + 1)
⊢ ys k ≤ xs j
[PROOFSTEP]
refine' Finset.le_sup'_of_le _ _ le_rfl
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
i j : ℕ
hij : i ≤ j
k : ℕ
hk : k ∈ Finset.range (i + 1)
⊢ k ∈ Finset.range (j + 1)
[PROOFSTEP]
rw [Finset.mem_range] at hk ⊢
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
i j : ℕ
hij : i ≤ j
k : ℕ
hk : k < i + 1
⊢ k < j + 1
[PROOFSTEP]
exact hk.trans_le (add_le_add_right hij _)
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop
[PROOFSTEP]
refine' ⟨xs, h_mono, _⟩
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
⊢ Tendsto xs atTop atTop
[PROOFSTEP]
refine' tendsto_atTop_atTop_of_monotone h_mono _
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
⊢ ∀ (b : α), ∃ a, b ≤ xs a
[PROOFSTEP]
have : ∀ a : α, ∃ n : ℕ, a ≤ ys n := by
rw [tendsto_atTop_atTop] at h
intro a
obtain ⟨i, hi⟩ := h a
exact ⟨i, hi i le_rfl⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
⊢ ∀ (a : α), ∃ n, a ≤ ys n
[PROOFSTEP]
rw [tendsto_atTop_atTop] at h
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : ∀ (b : α), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ys a
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
⊢ ∀ (a : α), ∃ n, a ≤ ys n
[PROOFSTEP]
intro a
[GOAL]
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : ∀ (b : α), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ys a
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
a : α
⊢ ∃ n, a ≤ ys n
[PROOFSTEP]
obtain ⟨i, hi⟩ := h a
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : ∀ (b : α), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ys a
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
a : α
i : ℕ
hi : ∀ (a_1 : ℕ), i ≤ a_1 → a ≤ ys a_1
⊢ ∃ n, a ≤ ys n
[PROOFSTEP]
exact ⟨i, hi i le_rfl⟩
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
this : ∀ (a : α), ∃ n, a ≤ ys n
⊢ ∀ (b : α), ∃ a, b ≤ xs a
[PROOFSTEP]
intro a
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
this : ∀ (a : α), ∃ n, a ≤ ys n
a : α
⊢ ∃ a_1, a ≤ xs a_1
[PROOFSTEP]
obtain ⟨i, hi⟩ := this a
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
this : ∀ (a : α), ∃ n, a ≤ ys n
a : α
i : ℕ
hi : a ≤ ys i
⊢ ∃ a_1, a ≤ xs a_1
[PROOFSTEP]
refine' ⟨i, hi.trans _⟩
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
this : ∀ (a : α), ∃ n, a ≤ ys n
a : α
i : ℕ
hi : a ≤ ys i
⊢ ys i ≤ xs i
[PROOFSTEP]
refine' Finset.le_sup'_of_le _ _ le_rfl
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : Nonempty α
inst✝ : IsCountablyGenerated atTop
h_ne_bot : NeBot atTop
ys : ℕ → α
h : Tendsto ys atTop atTop
xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys
h_mono : Monotone xs
this : ∀ (a : α), ∃ n, a ≤ ys n
a : α
i : ℕ
hi : a ≤ ys i
⊢ i ∈ Finset.range (i + 1)
[PROOFSTEP]
rw [Finset.mem_range_succ_iff]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
⊢ Tendsto f k l ↔ ∀ (x : ℕ → α), Tendsto x atTop k → Tendsto (f ∘ x) atTop l
[PROOFSTEP]
refine' ⟨fun h x hx => h.comp hx, fun H s hs => _⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
H : ∀ (x : ℕ → α), Tendsto x atTop k → Tendsto (f ∘ x) atTop l
s : Set β
hs : s ∈ l
⊢ s ∈ map f k
[PROOFSTEP]
contrapose! H
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l
[PROOFSTEP]
have : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) := by simpa [neBot_iff, inf_principal_eq_bot]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
⊢ NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ))
[PROOFSTEP]
simpa [neBot_iff, inf_principal_eq_bot]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ))
⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l
[PROOFSTEP]
rcases(k ⊓ 𝓟 (f ⁻¹' sᶜ)).exists_seq_tendsto with ⟨x, hx⟩
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ))
x : ℕ → α
hx : Tendsto x atTop (k ⊓ 𝓟 (f ⁻¹' sᶜ))
⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l
[PROOFSTEP]
rw [tendsto_inf, tendsto_principal] at hx
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ))
x : ℕ → α
hx : Tendsto x atTop k ∧ ∀ᶠ (a : ℕ) in atTop, x a ∈ f ⁻¹' sᶜ
⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l
[PROOFSTEP]
refine' ⟨x, hx.1, fun h => _⟩
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ))
x : ℕ → α
hx : Tendsto x atTop k ∧ ∀ᶠ (a : ℕ) in atTop, x a ∈ f ⁻¹' sᶜ
h : Tendsto (f ∘ x) atTop l
⊢ False
[PROOFSTEP]
rcases(hx.2.and (h hs)).exists with ⟨N, hnmem, hmem⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : α → β
k : Filter α
l : Filter β
inst✝ : IsCountablyGenerated k
s : Set β
hs : s ∈ l
H : ¬s ∈ map f k
this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ))
x : ℕ → α
hx : Tendsto x atTop k ∧ ∀ᶠ (a : ℕ) in atTop, x a ∈ f ⁻¹' sᶜ
h : Tendsto (f ∘ x) atTop l
N : ℕ
hnmem : x N ∈ f ⁻¹' sᶜ
hmem : (f ∘ x) N ∈ s
⊢ False
[PROOFSTEP]
exact hnmem hmem
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
x : ι → α
f : Filter α
l : Filter ι
⊢ ¬Tendsto x l f ↔ ∃ s, s ∈ f ∧ ∃ᶠ (n : ι) in l, ¬x n ∈ s
[PROOFSTEP]
simp only [tendsto_iff_forall_eventually_mem, not_forall, exists_prop, Filter.Frequently, not_not]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
⊢ (∃ᶠ (n : ι) in l, p n) ↔ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
refine' ⟨fun h_freq => _, fun h_exists_freq => _⟩
[GOAL]
case refine'_1
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
have : NeBot (l ⊓ 𝓟 {x : ι | p x}) := by simpa [neBot_iff, inf_principal_eq_bot]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
⊢ NeBot (l ⊓ 𝓟 {x | p x})
[PROOFSTEP]
simpa [neBot_iff, inf_principal_eq_bot]
[GOAL]
case refine'_1
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
this : NeBot (l ⊓ 𝓟 {x | p x})
⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
obtain ⟨x, hx⟩ := exists_seq_tendsto (l ⊓ 𝓟 {x : ι | p x})
[GOAL]
case refine'_1.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
this : NeBot (l ⊓ 𝓟 {x | p x})
x : ℕ → ι
hx : Tendsto x atTop (l ⊓ 𝓟 {x | p x})
⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
rw [tendsto_inf] at hx
[GOAL]
case refine'_1.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
this : NeBot (l ⊓ 𝓟 {x | p x})
x : ℕ → ι
hx : Tendsto x atTop l ∧ Tendsto x atTop (𝓟 {x | p x})
⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
cases' hx with hx_l hx_p
[GOAL]
case refine'_1.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
this : NeBot (l ⊓ 𝓟 {x | p x})
x : ℕ → ι
hx_l : Tendsto x atTop l
hx_p : Tendsto x atTop (𝓟 {x | p x})
⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
refine' ⟨x, hx_l, _⟩
[GOAL]
case refine'_1.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
this : NeBot (l ⊓ 𝓟 {x | p x})
x : ℕ → ι
hx_l : Tendsto x atTop l
hx_p : Tendsto x atTop (𝓟 {x | p x})
⊢ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
rw [tendsto_principal] at hx_p
[GOAL]
case refine'_1.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_freq : ∃ᶠ (n : ι) in l, p n
this : NeBot (l ⊓ 𝓟 {x | p x})
x : ℕ → ι
hx_l : Tendsto x atTop l
hx_p : ∀ᶠ (a : ℕ) in atTop, x a ∈ {x | p x}
⊢ ∃ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
exact hx_p.frequently
[GOAL]
case refine'_2
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h_exists_freq : ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
⊢ ∃ᶠ (n : ι) in l, p n
[PROOFSTEP]
obtain ⟨x, hx_tendsto, hx_freq⟩ := h_exists_freq
[GOAL]
case refine'_2.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
x : ℕ → ι
hx_tendsto : Tendsto x atTop l
hx_freq : ∃ᶠ (n : ℕ) in atTop, p (x n)
⊢ ∃ᶠ (n : ι) in l, p n
[PROOFSTEP]
simp_rw [Filter.Frequently, Filter.Eventually] at hx_freq ⊢
[GOAL]
case refine'_2.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
x : ℕ → ι
hx_tendsto : Tendsto x atTop l
hx_freq : ¬{x_1 | ¬p (x x_1)} ∈ atTop
⊢ ¬{x | ¬p x} ∈ l
[PROOFSTEP]
have : {n : ℕ | ¬p (x n)} = {n | x n ∈ {y | ¬p y}} := rfl
[GOAL]
case refine'_2.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
x : ℕ → ι
hx_tendsto : Tendsto x atTop l
hx_freq : ¬{x_1 | ¬p (x x_1)} ∈ atTop
this : {n | ¬p (x n)} = {n | x n ∈ {y | ¬p y}}
⊢ ¬{x | ¬p x} ∈ l
[PROOFSTEP]
rw [this, ← mem_map'] at hx_freq
[GOAL]
case refine'_2.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
x : ℕ → ι
hx_tendsto : Tendsto x atTop l
hx_freq : ¬{y | ¬p y} ∈ map (fun n => x n) atTop
this : {n | ¬p (x n)} = {n | x n ∈ {y | ¬p y}}
⊢ ¬{x | ¬p x} ∈ l
[PROOFSTEP]
exact mt (@hx_tendsto _) hx_freq
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
⊢ (∀ᶠ (n : ι) in l, p n) ↔ ∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
have : (∀ᶠ n in l, p n) ↔ ¬∃ᶠ n in l, ¬p n := by
rw [not_frequently]
simp_rw [not_not]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
⊢ (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n
[PROOFSTEP]
rw [not_frequently]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
⊢ (∀ᶠ (n : ι) in l, p n) ↔ ∀ᶠ (x : ι) in l, ¬¬p x
[PROOFSTEP]
simp_rw [not_not]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
this : (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n
⊢ (∀ᶠ (n : ι) in l, p n) ↔ ∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
rw [this, frequently_iff_seq_frequently]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
this : (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n
⊢ (¬∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, ¬p (x n)) ↔
∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
push_neg
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
this : (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n
⊢ (∀ (x : ℕ → ι), Tendsto x atTop l → ¬∃ᶠ (n : ℕ) in atTop, ¬p (x n)) ↔
∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n)
[PROOFSTEP]
simp_rw [not_frequently, not_not]
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
x : ℕ → ι
p : ι → Prop
l : Filter ι
h_tendsto : Tendsto x atTop l
h : ∃ᶠ (n : ℕ) in atTop, p (x n)
⊢ ∃ ns, Tendsto (fun n => x (ns n)) atTop l ∧ ∀ (n : ℕ), p (x (ns n))
[PROOFSTEP]
rw [tendsto_iff_seq_tendsto] at h_tendsto
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
x : ℕ → ι
p : ι → Prop
l : Filter ι
h_tendsto : ∀ (x_1 : ℕ → ℕ), Tendsto x_1 atTop atTop → Tendsto (x ∘ x_1) atTop l
h : ∃ᶠ (n : ℕ) in atTop, p (x n)
⊢ ∃ ns, Tendsto (fun n => x (ns n)) atTop l ∧ ∀ (n : ℕ), p (x (ns n))
[PROOFSTEP]
choose ns hge hns using frequently_atTop.1 h
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
x : ℕ → ι
p : ι → Prop
l : Filter ι
h_tendsto : ∀ (x_1 : ℕ → ℕ), Tendsto x_1 atTop atTop → Tendsto (x ∘ x_1) atTop l
h : ∃ᶠ (n : ℕ) in atTop, p (x n)
ns : ℕ → ℕ
hge : ∀ (a : ℕ), ns a ≥ a
hns : ∀ (a : ℕ), p (x (ns a))
⊢ ∃ ns, Tendsto (fun n => x (ns n)) atTop l ∧ ∀ (n : ℕ), p (x (ns n))
[PROOFSTEP]
exact ⟨ns, h_tendsto ns (tendsto_atTop_mono hge tendsto_id), hns⟩
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h : ∃ᶠ (n : ι) in l, p n
⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n)
[PROOFSTEP]
rw [frequently_iff_seq_frequently] at h
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
h : ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n)
⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n)
[PROOFSTEP]
obtain ⟨x, hx_tendsto, hx_freq⟩ := h
[GOAL]
case intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
x : ℕ → ι
hx_tendsto : Tendsto x atTop l
hx_freq : ∃ᶠ (n : ℕ) in atTop, p (x n)
⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n)
[PROOFSTEP]
obtain ⟨n_to_n, h_tendsto, h_freq⟩ := subseq_forall_of_frequently hx_tendsto hx_freq
[GOAL]
case intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
ι : Type u_6
l : Filter ι
p : ι → Prop
hl : IsCountablyGenerated l
x : ℕ → ι
hx_tendsto : Tendsto x atTop l
hx_freq : ∃ᶠ (n : ℕ) in atTop, p (x n)
n_to_n : ℕ → ℕ
h_tendsto : Tendsto (fun n => x (n_to_n n)) atTop l
h_freq : ∀ (n : ℕ), p (x (n_to_n n))
⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n)
[PROOFSTEP]
exact ⟨x ∘ n_to_n, h_tendsto, h_freq⟩
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f
⊢ Tendsto x l f
[PROOFSTEP]
by_contra h
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f
h : ¬Tendsto x l f
⊢ False
[PROOFSTEP]
obtain ⟨s, hs, hfreq⟩ : ∃ s ∈ f, ∃ᶠ n in l, x n ∉ s := by rwa [not_tendsto_iff_exists_frequently_nmem] at h
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f
h : ¬Tendsto x l f
⊢ ∃ s, s ∈ f ∧ ∃ᶠ (n : ι) in l, ¬x n ∈ s
[PROOFSTEP]
rwa [not_tendsto_iff_exists_frequently_nmem] at h
[GOAL]
case intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
⊢ False
[PROOFSTEP]
obtain ⟨y, hy_tendsto, hy_freq⟩ := exists_seq_forall_of_frequently hfreq
[GOAL]
case intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
⊢ False
[PROOFSTEP]
specialize hxy y hy_tendsto
[GOAL]
case intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
hxy : ∃ ms, Tendsto (fun n => x (y (ms n))) atTop f
⊢ False
[PROOFSTEP]
obtain ⟨ms, hms_tendsto⟩ := hxy
[GOAL]
case intro.intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : Tendsto (fun n => x (y (ms n))) atTop f
⊢ False
[PROOFSTEP]
specialize hms_tendsto hs
[GOAL]
case intro.intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : s ∈ map (fun n => x (y (ms n))) atTop
⊢ False
[PROOFSTEP]
rw [mem_map] at hms_tendsto
[GOAL]
case intro.intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop
⊢ False
[PROOFSTEP]
have hms_freq : ∀ n : ℕ, x (y (ms n)) ∉ s := fun n => hy_freq (ms n)
[GOAL]
case intro.intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop
hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s
⊢ False
[PROOFSTEP]
have h_empty : (fun n : ℕ => x (y (ms n))) ⁻¹' s = ∅ := by
ext1 n
simp only [Set.mem_preimage, Set.mem_empty_iff_false, iff_false_iff]
exact hms_freq n
[GOAL]
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop
hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s
⊢ (fun n => x (y (ms n))) ⁻¹' s = ∅
[PROOFSTEP]
ext1 n
[GOAL]
case h
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop
hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s
n : ℕ
⊢ n ∈ (fun n => x (y (ms n))) ⁻¹' s ↔ n ∈ ∅
[PROOFSTEP]
simp only [Set.mem_preimage, Set.mem_empty_iff_false, iff_false_iff]
[GOAL]
case h
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop
hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s
n : ℕ
⊢ ¬x (y (ms n)) ∈ s
[PROOFSTEP]
exact hms_freq n
[GOAL]
case intro.intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop
hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s
h_empty : (fun n => x (y (ms n))) ⁻¹' s = ∅
⊢ False
[PROOFSTEP]
rw [h_empty] at hms_tendsto
[GOAL]
case intro.intro.intro.intro.intro
ι✝ : Type u_1
ι' : Type u_2
α✝ : Type u_3
β : Type u_4
γ : Type u_5
α : Type u_6
ι : Type u_7
x : ι → α
f : Filter α
l : Filter ι
inst✝ : IsCountablyGenerated l
h : ¬Tendsto x l f
s : Set α
hs : s ∈ f
hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s
y : ℕ → ι
hy_tendsto : Tendsto y atTop l
hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s
ms : ℕ → ℕ
hms_tendsto : ∅ ∈ atTop
hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s
h_empty : (fun n => x (y (ms n))) ⁻¹' s = ∅
⊢ False
[PROOFSTEP]
exact empty_not_mem atTop hms_tendsto
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
obtain ⟨B, h⟩ := f.exists_antitone_basis
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
have : ∀ N, ∃ n ≥ N, u n ∈ B N := fun N => Filter.inf_map_atTop_neBot_iff.mp hx _ (h.1.mem_of_mem trivial) N
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
this : ∀ (N : ℕ), ∃ n, n ≥ N ∧ u n ∈ B N
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
choose φ hφ using this
[GOAL]
case intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
cases' forall_and.mp hφ with φ_ge φ_in
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
φ_ge : ∀ (x : ℕ), φ x ≥ x
φ_in : ∀ (x : ℕ), u (φ x) ∈ B x
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
have lim_uφ : Tendsto (u ∘ φ) atTop f := h.tendsto φ_in
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
φ_ge : ∀ (x : ℕ), φ x ≥ x
φ_in : ∀ (x : ℕ), u (φ x) ∈ B x
lim_uφ : Tendsto (u ∘ φ) atTop f
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
have lim_φ : Tendsto φ atTop atTop := tendsto_atTop_mono φ_ge tendsto_id
[GOAL]
case intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
φ_ge : ∀ (x : ℕ), φ x ≥ x
φ_in : ∀ (x : ℕ), u (φ x) ∈ B x
lim_uφ : Tendsto (u ∘ φ) atTop f
lim_φ : Tendsto φ atTop atTop
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
obtain ⟨ψ, hψ, hψφ⟩ : ∃ ψ : ℕ → ℕ, StrictMono ψ ∧ StrictMono (φ ∘ ψ)
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
φ_ge : ∀ (x : ℕ), φ x ≥ x
φ_in : ∀ (x : ℕ), u (φ x) ∈ B x
lim_uφ : Tendsto (u ∘ φ) atTop f
lim_φ : Tendsto φ atTop atTop
⊢ ∃ ψ, StrictMono ψ ∧ StrictMono (φ ∘ ψ)
case intro.intro.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
φ_ge : ∀ (x : ℕ), φ x ≥ x
φ_in : ∀ (x : ℕ), u (φ x) ∈ B x
lim_uφ : Tendsto (u ∘ φ) atTop f
lim_φ : Tendsto φ atTop atTop
ψ : ℕ → ℕ
hψ : StrictMono ψ
hψφ : StrictMono (φ ∘ ψ)
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
exact strictMono_subseq_of_tendsto_atTop lim_φ
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
f : Filter α
inst✝ : IsCountablyGenerated f
u : ℕ → α
hx : NeBot (f ⊓ map u atTop)
B : ℕ → Set α
h : HasAntitoneBasis f B
φ : ℕ → ℕ
hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N
φ_ge : ∀ (x : ℕ), φ x ≥ x
φ_in : ∀ (x : ℕ), u (φ x) ∈ B x
lim_uφ : Tendsto (u ∘ φ) atTop f
lim_φ : Tendsto φ atTop atTop
ψ : ℕ → ℕ
hψ : StrictMono ψ
hψφ : StrictMono (φ ∘ ψ)
⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f
[PROOFSTEP]
exact ⟨φ ∘ ψ, hψφ, lim_uφ.comp hψ.tendsto_atTop⟩
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i
hs : Monotone s
f g : (a : α) → β a
a : α
⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a
[PROOFSTEP]
rcases em (∃ i, a ∈ s i) with ⟨i, hi⟩ | ha
[GOAL]
case inl.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i
hs : Monotone s
f g : (a : α) → β a
a : α
i : ι
hi : a ∈ s i
⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a
[PROOFSTEP]
refine (eventually_ge_atTop i).mono fun j hij ↦ ?_
[GOAL]
case inl.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i
hs : Monotone s
f g : (a : α) → β a
a : α
i : ι
hi : a ∈ s i
j : ι
hij : i ≤ j
⊢ Set.piecewise (s j) f g a = Set.piecewise (⋃ (i : ι), s i) f g a
[PROOFSTEP]
simp only [Set.piecewise_eq_of_mem, hs hij hi, subset_iUnion _ _ hi]
[GOAL]
case inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i
hs : Monotone s
f g : (a : α) → β a
a : α
ha : ¬∃ i, a ∈ s i
⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a
[PROOFSTEP]
refine eventually_of_forall fun i ↦ ?_
[GOAL]
case inr
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i
hs : Monotone s
f g : (a : α) → β a
a : α
ha : ¬∃ i, a ∈ s i
i : ι
⊢ Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a
[PROOFSTEP]
simp only [Set.piecewise_eq_of_not_mem, not_exists.1 ha i, mt mem_iUnion.1 ha]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i
hs : Antitone s
f g : (a : α) → β a
a : α
⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋂ (i : ι), s i) f g a
[PROOFSTEP]
classical
convert ← (compl_anti.comp hs).piecewise_eventually_eq_iUnion g f a using 3
· convert congr_fun (Set.piecewise_compl (s _) g f) a
· simp only [(· ∘ ·), ← compl_iInter, Set.piecewise_compl]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i
hs : Antitone s
f g : (a : α) → β a
a : α
⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋂ (i : ι), s i) f g a
[PROOFSTEP]
convert ← (compl_anti.comp hs).piecewise_eventually_eq_iUnion g f a using 3
[GOAL]
case h.e'_2.h.h.e'_2
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i
hs : Antitone s
f g : (a : α) → β a
a : α
x✝ : ι
⊢ Set.piecewise ((compl ∘ s) x✝) g f a = Set.piecewise (s x✝) f g a
[PROOFSTEP]
convert congr_fun (Set.piecewise_compl (s _) g f) a
[GOAL]
case h.e'_2.h.h.e'_3
ι : Type u_1
ι' : Type u_2
α : Type u_3
β✝ : Type u_4
γ : Type u_5
β : α → Type u_6
inst✝² : Preorder ι
s : ι → Set α
inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i
inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i
hs : Antitone s
f g : (a : α) → β a
a : α
x✝ : ι
⊢ Set.piecewise (⋃ (i : ι), (compl ∘ s) i) g f a = Set.piecewise (⋂ (i : ι), s i) f g a
[PROOFSTEP]
simp only [(· ∘ ·), ← compl_iInter, Set.piecewise_compl]
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
⊢ Filter.map (fun s => ∏ i in s, f (g i)) atTop = Filter.map (fun s => ∏ i in s, f i) atTop
[PROOFSTEP]
haveI := Classical.decEq β
[GOAL]
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
⊢ Filter.map (fun s => ∏ i in s, f (g i)) atTop = Filter.map (fun s => ∏ i in s, f i) atTop
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
⊢ Filter.map (fun s => ∏ i in s, f (g i)) atTop ≤ Filter.map (fun s => ∏ i in s, f i) atTop
[PROOFSTEP]
refine' map_atTop_finset_prod_le_of_prod_eq fun s => _
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
⊢ Filter.map (fun s => ∏ i in s, f i) atTop ≤ Filter.map (fun s => ∏ i in s, f (g i)) atTop
[PROOFSTEP]
refine' map_atTop_finset_prod_le_of_prod_eq fun s => _
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
⊢ ∃ v, ∀ (v' : Finset γ), v ⊆ v' → ∃ u', s ⊆ u' ∧ ∏ x in u', f x = ∏ b in v', f (g b)
[PROOFSTEP]
refine' ⟨s.preimage g (hg.injOn _), fun t ht => _⟩
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
⊢ ∃ u', s ⊆ u' ∧ ∏ x in u', f x = ∏ b in t, f (g b)
[PROOFSTEP]
refine' ⟨t.image g ∪ s, Finset.subset_union_right _ _, _⟩
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
⊢ ∏ x in Finset.image g t ∪ s, f x = ∏ b in t, f (g b)
[PROOFSTEP]
rw [← Finset.prod_image (hg.injOn _)]
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
⊢ ∏ x in Finset.image g t ∪ s, f x = ∏ x in Finset.image (fun x => g x) t, f x
[PROOFSTEP]
refine' (prod_subset (subset_union_left _ _) _).symm
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
⊢ ∀ (x : β), x ∈ Finset.image g t ∪ s → ¬x ∈ Finset.image g t → f x = 1
[PROOFSTEP]
simp only [Finset.mem_union, Finset.mem_image]
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
⊢ ∀ (x : β), (∃ a, a ∈ t ∧ g a = x) ∨ x ∈ s → (¬∃ a, a ∈ t ∧ g a = x) → f x = 1
[PROOFSTEP]
refine' fun y hy hyt => hf y (mt _ hyt)
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
y : β
hy : (∃ a, a ∈ t ∧ g a = y) ∨ y ∈ s
hyt : ¬∃ a, a ∈ t ∧ g a = y
⊢ y ∈ Set.range g → ∃ a, a ∈ t ∧ g a = y
[PROOFSTEP]
rintro ⟨x, rfl⟩
[GOAL]
case a.intro
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset β
t : Finset γ
ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t
x : γ
hy : (∃ a, a ∈ t ∧ g a = g x) ∨ g x ∈ s
hyt : ¬∃ a, a ∈ t ∧ g a = g x
⊢ ∃ a, a ∈ t ∧ g a = g x
[PROOFSTEP]
exact ⟨x, ht (Finset.mem_preimage.2 <| hy.resolve_left hyt), rfl⟩
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset γ
⊢ ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', s ⊆ u' ∧ ∏ x in u', f (g x) = ∏ b in v', f b
[PROOFSTEP]
refine' ⟨s.image g, fun t ht => _⟩
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset γ
t : Finset β
ht : Finset.image g s ⊆ t
⊢ ∃ u', s ⊆ u' ∧ ∏ x in u', f (g x) = ∏ b in t, f b
[PROOFSTEP]
simp only [← prod_preimage _ _ (hg.injOn _) _ fun x _ => hf x]
[GOAL]
case a
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝ : CommMonoid α
g : γ → β
hg : Injective g
f : β → α
hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1
this : DecidableEq β
s : Finset γ
t : Finset β
ht : Finset.image g s ⊆ t
⊢ ∃ u', s ⊆ u' ∧ ∏ x in u', f (g x) = ∏ x in Finset.preimage t g (_ : InjOn g (g ⁻¹' ↑t)), f (g x)
[PROOFSTEP]
exact ⟨_, (image_subset_iff_subset_preimage _).1 ht, rfl⟩
| {"mathlib_filename": "Mathlib.Order.Filter.AtTopBot", "llama_tokens": 62102} |
[GOAL]
α β : DistLatCat
e : ↑α ≃o ↑β
⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : DistLatCat
e : ↑α ≃o ↑β
x✝ : (forget DistLatCat).obj α
⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : DistLatCat
e : ↑α ≃o ↑β
⊢ {
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : DistLatCat
e : ↑α ≃o ↑β
x✝ : (forget DistLatCat).obj β
⊢ ↑({
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.DistLatCat", "llama_tokens": 1347} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderTop α
inst✝² : PartialOrder β
inst✝¹ : OrderTop β
inst✝ : OrderIsoClass F α β
f : F
a : α
⊢ ↑f a = ⊤ ↔ a = ⊤
[PROOFSTEP]
letI : TopHomClass F α β := OrderIsoClass.toTopHomClass
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderTop α
inst✝² : PartialOrder β
inst✝¹ : OrderTop β
inst✝ : OrderIsoClass F α β
f : F
a : α
this : TopHomClass F α β := OrderIsoClass.toTopHomClass
⊢ ↑f a = ⊤ ↔ a = ⊤
[PROOFSTEP]
rw [← map_top f, (EquivLike.injective f).eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderBot α
inst✝² : PartialOrder β
inst✝¹ : OrderBot β
inst✝ : OrderIsoClass F α β
f : F
a : α
⊢ ↑f a = ⊥ ↔ a = ⊥
[PROOFSTEP]
letI : BotHomClass F α β := OrderIsoClass.toBotHomClass
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁴ : LE α
inst✝³ : OrderBot α
inst✝² : PartialOrder β
inst✝¹ : OrderBot β
inst✝ : OrderIsoClass F α β
f : F
a : α
this : BotHomClass F α β := OrderIsoClass.toBotHomClass
⊢ ↑f a = ⊥ ↔ a = ⊥
[PROOFSTEP]
rw [← map_bot f, (EquivLike.injective f).eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
f g : TopHom α β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
g : TopHom α β
toFun✝ : α → β
map_top'✝ : toFun✝ ⊤ = ⊤
h : { toFun := toFun✝, map_top' := map_top'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_top' := map_top'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
toFun✝¹ : α → β
map_top'✝¹ : toFun✝¹ ⊤ = ⊤
toFun✝ : α → β
map_top'✝ : toFun✝ ⊤ = ⊤
h : { toFun := toFun✝¹, map_top' := map_top'✝¹ }.toFun = { toFun := toFun✝, map_top' := map_top'✝ }.toFun
⊢ { toFun := toFun✝¹, map_top' := map_top'✝¹ } = { toFun := toFun✝, map_top' := map_top'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
f : TopHom β γ
g : TopHom α β
⊢ (↑f ∘ ↑g) ⊤ = ⊤
[PROOFSTEP]
rw [comp_apply, map_top, map_top]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Top α
inst✝² : Top β
inst✝¹ : Top γ
inst✝ : Top δ
g : TopHom β γ
f₁ f₂ : TopHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← TopHom.comp_apply, h, TopHom.comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Top α
inst✝¹ : SemilatticeInf β
inst✝ : OrderTop β
f✝ g✝ f g : TopHom α β
⊢ (↑f ⊓ ↑g) ⊤ = ⊤
[PROOFSTEP]
rw [Pi.inf_apply, map_top, map_top, inf_top_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Top α
inst✝¹ : SemilatticeSup β
inst✝ : OrderTop β
f✝ g✝ f g : TopHom α β
⊢ (↑f ⊔ ↑g) ⊤ = ⊤
[PROOFSTEP]
rw [Pi.sup_apply, map_top, map_top, sup_top_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
f g : BotHom α β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
g : BotHom α β
toFun✝ : α → β
map_bot'✝ : toFun✝ ⊥ = ⊥
h : { toFun := toFun✝, map_bot' := map_bot'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_bot' := map_bot'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
toFun✝¹ : α → β
map_bot'✝¹ : toFun✝¹ ⊥ = ⊥
toFun✝ : α → β
map_bot'✝ : toFun✝ ⊥ = ⊥
h : { toFun := toFun✝¹, map_bot' := map_bot'✝¹ }.toFun = { toFun := toFun✝, map_bot' := map_bot'✝ }.toFun
⊢ { toFun := toFun✝¹, map_bot' := map_bot'✝¹ } = { toFun := toFun✝, map_bot' := map_bot'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
f : BotHom β γ
g : BotHom α β
⊢ (↑f ∘ ↑g) ⊥ = ⊥
[PROOFSTEP]
rw [comp_apply, map_bot, map_bot]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : Bot α
inst✝² : Bot β
inst✝¹ : Bot γ
inst✝ : Bot δ
g : BotHom β γ
f₁ f₂ : BotHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← BotHom.comp_apply, h, BotHom.comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Bot α
inst✝¹ : SemilatticeInf β
inst✝ : OrderBot β
f✝ g✝ f g : BotHom α β
⊢ (↑f ⊓ ↑g) ⊥ = ⊥
[PROOFSTEP]
rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : Bot α
inst✝¹ : SemilatticeSup β
inst✝ : OrderBot β
f✝ g✝ f g : BotHom α β
⊢ (↑f ⊔ ↑g) ⊥ = ⊥
[PROOFSTEP]
rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
f g : BoundedOrderHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
g : BoundedOrderHom α β
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
map_top'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊤ = ⊤
map_bot'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊥ = ⊥
h :
(fun f => f.toFun)
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } =
(fun f => f.toFun) g
⊢ { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
toFun✝¹ : α → β
monotone'✝¹ : Monotone toFun✝¹
map_top'✝¹ : OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } ⊤ = ⊤
map_bot'✝¹ : OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } ⊥ = ⊥
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
map_top'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊤ = ⊤
map_bot'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊥ = ⊥
h :
(fun f => f.toFun)
{ toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } =
(fun f => f.toFun)
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ }
⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } =
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
g : BoundedOrderHom β γ
f₁ f₂ : BoundedOrderHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← BoundedOrderHom.comp_apply, h, BoundedOrderHom.comp_apply]
| {"mathlib_filename": "Mathlib.Order.Hom.Bounded", "llama_tokens": 4388} |
[GOAL]
α β : LatCat
e : ↑α ≃o ↑β
⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : LatCat
e : ↑α ≃o ↑β
x✝ : (forget LatCat).obj α
⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : LatCat
e : ↑α ≃o ↑β
⊢ {
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : LatCat
e : ↑α ≃o ↑β
x✝ : (forget LatCat).obj β
⊢ ↑({
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.LatCat", "llama_tokens": 1341} |
[GOAL]
α β : FinPartOrd
e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat
⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : FinPartOrd
e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat
x✝ : (forget FinPartOrd).obj α
⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x✝ = ↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : FinPartOrd
e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat
⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : FinPartOrd
e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat
x✝ : (forget FinPartOrd).obj β
⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.FinPartOrd", "llama_tokens": 362} |
[GOAL]
⊢ ConcreteCategory HeytAlgCat
[PROOFSTEP]
dsimp [HeytAlgCat]
[GOAL]
⊢ ConcreteCategory (Bundled HeytingAlgebra)
[PROOFSTEP]
infer_instance
-- Porting note: No idea why it does not find this instance...
[GOAL]
α β : HeytAlgCat
e : ↑α ≃o ↑β
⊢ {
toLatticeHom :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) } ≫
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥),
map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : HeytAlgCat
e : ↑α ≃o ↑β
x✝ : (forget HeytAlgCat).obj α
⊢ ↑({
toLatticeHom :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) } ≫
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥),
map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : HeytAlgCat
e : ↑α ≃o ↑β
⊢ {
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥),
map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) } ≫
{
toLatticeHom :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : HeytAlgCat
e : ↑α ≃o ↑β
x✝ : (forget HeytAlgCat).obj β
⊢ ↑({
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥),
map_himp' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) } ≫
{
toLatticeHom :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.HeytAlgCat", "llama_tokens": 2162} |
[GOAL]
⊢ ConcreteCategory FrmCat
[PROOFSTEP]
unfold FrmCat
[GOAL]
⊢ ConcreteCategory (Bundled Frame)
[PROOFSTEP]
infer_instance
[GOAL]
α β : FrmCat
e : ↑α ≃o ↑β
⊢ {
toInfTopHom :=
{ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫
{
toInfTopHom :=
{
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : FrmCat
e : ↑α ≃o ↑β
x✝ : (forget FrmCat).obj α
⊢ ↑({
toInfTopHom :=
{ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫
{
toInfTopHom :=
{
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : FrmCat
e : ↑α ≃o ↑β
⊢ {
toInfTopHom :=
{
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫
{
toInfTopHom :=
{ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : FrmCat
e : ↑α ≃o ↑β
x✝ : (forget FrmCat).obj β
⊢ ↑({
toInfTopHom :=
{
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫
{
toInfTopHom :=
{ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.FrmCat", "llama_tokens": 1603} |
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : SemilatticeSup β
inst✝ : SupHomClass F α β
src✝ : SupHomClass F α β := inst✝
f : F
a b : α
h : a ≤ b
⊢ ↑f a ≤ ↑f b
[PROOFSTEP]
rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : SemilatticeInf α
inst✝¹ : SemilatticeInf β
inst✝ : InfHomClass F α β
src✝ : InfHomClass F α β := inst✝
f : F
a b : α
h : a ≤ b
⊢ ↑f a ≤ ↑f b
[PROOFSTEP]
rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : SemilatticeSup α
inst✝¹ : SemilatticeSup β
inst✝ : OrderIsoClass F α β
src✝ : OrderHomClass F α β :=
let_fun this := inferInstance;
this
f : F
a b : α
c : (fun x => β) (a ⊔ b)
⊢ ↑f (a ⊔ b) ≤ c ↔ ↑f a ⊔ ↑f b ≤ c
[PROOFSTEP]
simp only [← le_map_inv_iff, sup_le_iff]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : SemilatticeInf α
inst✝¹ : SemilatticeInf β
inst✝ : OrderIsoClass F α β
src✝ : OrderHomClass F α β :=
let_fun this := inferInstance;
this
f : F
a b : α
c : (fun x => β) (a ⊓ b)
⊢ c ≤ ↑f (a ⊓ b) ↔ c ≤ ↑f a ⊓ ↑f b
[PROOFSTEP]
simp only [← map_inv_le_iff, le_inf_iff]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : Lattice β
inst✝¹ : BoundedOrder β
inst✝ : BoundedLatticeHomClass F α β
f : F
a b : α
h : Disjoint a b
⊢ Disjoint (↑f a) (↑f b)
[PROOFSTEP]
rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : Lattice β
inst✝¹ : BoundedOrder β
inst✝ : BoundedLatticeHomClass F α β
f : F
a b : α
h : Codisjoint a b
⊢ Codisjoint (↑f a) (↑f b)
[PROOFSTEP]
rw [codisjoint_iff, ← map_sup, h.eq_top, map_top]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : BooleanAlgebra α
inst✝¹ : BooleanAlgebra β
inst✝ : BoundedLatticeHomClass F α β
f : F
a b : α
⊢ ↑f (a \ b) = ↑f a \ ↑f b
[PROOFSTEP]
rw [sdiff_eq, sdiff_eq, map_inf, map_compl']
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : BooleanAlgebra α
inst✝¹ : BooleanAlgebra β
inst✝ : BoundedLatticeHomClass F α β
f : F
a b : α
⊢ ↑f (a ∆ b) = ↑f a ∆ ↑f b
[PROOFSTEP]
rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff']
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Sup α
inst✝² : Sup β
inst✝¹ : Sup γ
inst✝ : Sup δ
f g : SupHom α β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Sup α
inst✝² : Sup β
inst✝¹ : Sup γ
inst✝ : Sup δ
g : SupHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
h : { toFun := toFun✝, map_sup' := map_sup'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_sup' := map_sup'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Sup α
inst✝² : Sup β
inst✝¹ : Sup γ
inst✝ : Sup δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
h : { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }.toFun = { toFun := toFun✝, map_sup' := map_sup'✝ }.toFun
⊢ { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } = { toFun := toFun✝, map_sup' := map_sup'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Sup α
inst✝² : Sup β
inst✝¹ : Sup γ
inst✝ : Sup δ
f : SupHom β γ
g : SupHom α β
a b : α
⊢ (↑f ∘ ↑g) (a ⊔ b) = (↑f ∘ ↑g) a ⊔ (↑f ∘ ↑g) b
[PROOFSTEP]
rw [comp_apply, map_sup, map_sup]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Sup α
inst✝² : Sup β
inst✝¹ : Sup γ
inst✝ : Sup δ
f : SupHom β γ
g : SupHom α β
a b : α
⊢ ↑f (↑g a) ⊔ ↑f (↑g b) = (↑f ∘ ↑g) a ⊔ (↑f ∘ ↑g) b
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Sup α
inst✝² : Sup β
inst✝¹ : Sup γ
inst✝ : Sup δ
g : SupHom β γ
f₁ f₂ : SupHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← SupHom.comp_apply, h, SupHom.comp_apply]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f g : SupHom α β
a b : α
⊢ (↑f ⊔ ↑g) (a ⊔ b) = (↑f ⊔ ↑g) a ⊔ (↑f ⊔ ↑g) b
[PROOFSTEP]
rw [Pi.sup_apply, map_sup, map_sup]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f g : SupHom α β
a b : α
⊢ ↑f a ⊔ ↑f b ⊔ (↑g a ⊔ ↑g b) = (↑f ⊔ ↑g) a ⊔ (↑f ⊔ ↑g) b
[PROOFSTEP]
exact sup_sup_sup_comm _ _ _ _
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Inf α
inst✝² : Inf β
inst✝¹ : Inf γ
inst✝ : Inf δ
f g : InfHom α β
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Inf α
inst✝² : Inf β
inst✝¹ : Inf γ
inst✝ : Inf δ
g : InfHom α β
toFun✝ : α → β
map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b
h : { toFun := toFun✝, map_inf' := map_inf'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, map_inf' := map_inf'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Inf α
inst✝² : Inf β
inst✝¹ : Inf γ
inst✝ : Inf δ
toFun✝¹ : α → β
map_inf'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊓ b) = toFun✝¹ a ⊓ toFun✝¹ b
toFun✝ : α → β
map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b
h : { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }.toFun = { toFun := toFun✝, map_inf' := map_inf'✝ }.toFun
⊢ { toFun := toFun✝¹, map_inf' := map_inf'✝¹ } = { toFun := toFun✝, map_inf' := map_inf'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Inf α
inst✝² : Inf β
inst✝¹ : Inf γ
inst✝ : Inf δ
f : InfHom β γ
g : InfHom α β
a b : α
⊢ (↑f ∘ ↑g) (a ⊓ b) = (↑f ∘ ↑g) a ⊓ (↑f ∘ ↑g) b
[PROOFSTEP]
rw [comp_apply, map_inf, map_inf]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Inf α
inst✝² : Inf β
inst✝¹ : Inf γ
inst✝ : Inf δ
f : InfHom β γ
g : InfHom α β
a b : α
⊢ ↑f (↑g a) ⊓ ↑f (↑g b) = (↑f ∘ ↑g) a ⊓ (↑f ∘ ↑g) b
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Inf α
inst✝² : Inf β
inst✝¹ : Inf γ
inst✝ : Inf δ
g : InfHom β γ
f₁ f₂ : InfHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← InfHom.comp_apply, h, InfHom.comp_apply]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f g : InfHom α β
a b : α
⊢ (↑f ⊓ ↑g) (a ⊓ b) = (↑f ⊓ ↑g) a ⊓ (↑f ⊓ ↑g) b
[PROOFSTEP]
rw [Pi.inf_apply, map_inf, map_inf]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f g : InfHom α β
a b : α
⊢ ↑f a ⊓ ↑f b ⊓ (↑g a ⊓ ↑g b) = (↑f ⊓ ↑g) a ⊓ (↑f ⊓ ↑g) b
[PROOFSTEP]
exact inf_inf_inf_comm _ _ _ _
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Sup α
inst✝⁶ : Bot α
inst✝⁵ : Sup β
inst✝⁴ : Bot β
inst✝³ : Sup γ
inst✝² : Bot γ
inst✝¹ : Sup δ
inst✝ : Bot δ
f g : SupBotHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Sup α
inst✝⁶ : Bot α
inst✝⁵ : Sup β
inst✝⁴ : Bot β
inst✝³ : Sup γ
inst✝² : Bot γ
inst✝¹ : Sup δ
inst✝ : Bot δ
g : SupBotHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_bot'✝ : SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } ⊥ = ⊥
h :
(fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ } =
(fun f => f.toFun) g
⊢ { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ } = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Sup α
inst✝⁶ : Bot α
inst✝⁵ : Sup β
inst✝⁴ : Bot β
inst✝³ : Sup γ
inst✝² : Bot γ
inst✝¹ : Sup δ
inst✝ : Bot δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
map_bot'✝¹ : SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } ⊥ = ⊥
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_bot'✝ : SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } ⊥ = ⊥
h :
(fun f => f.toFun) { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_bot' := map_bot'✝¹ } =
(fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ }
⊢ { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_bot' := map_bot'✝¹ } =
{ toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Sup α
inst✝⁶ : Bot α
inst✝⁵ : Sup β
inst✝⁴ : Bot β
inst✝³ : Sup γ
inst✝² : Bot γ
inst✝¹ : Sup δ
inst✝ : Bot δ
g : SupBotHom β γ
f₁ f₂ : SupBotHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Inf α
inst✝⁶ : Top α
inst✝⁵ : Inf β
inst✝⁴ : Top β
inst✝³ : Inf γ
inst✝² : Top γ
inst✝¹ : Inf δ
inst✝ : Top δ
f g : InfTopHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Inf α
inst✝⁶ : Top α
inst✝⁵ : Inf β
inst✝⁴ : Top β
inst✝³ : Inf γ
inst✝² : Top γ
inst✝¹ : Inf δ
inst✝ : Top δ
g : InfTopHom α β
toFun✝ : α → β
map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b
map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤
h :
(fun f => f.toFun) { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ } =
(fun f => f.toFun) g
⊢ { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ } = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Inf α
inst✝⁶ : Top α
inst✝⁵ : Inf β
inst✝⁴ : Top β
inst✝³ : Inf γ
inst✝² : Top γ
inst✝¹ : Inf δ
inst✝ : Top δ
toFun✝¹ : α → β
map_inf'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊓ b) = toFun✝¹ a ⊓ toFun✝¹ b
map_top'✝¹ : InfHom.toFun { toFun := toFun✝¹, map_inf' := map_inf'✝¹ } ⊤ = ⊤
toFun✝ : α → β
map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b
map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤
h :
(fun f => f.toFun) { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ } =
(fun f => f.toFun) { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }
⊢ { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ } =
{ toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Inf α
inst✝⁶ : Top α
inst✝⁵ : Inf β
inst✝⁴ : Top β
inst✝³ : Inf γ
inst✝² : Top γ
inst✝¹ : Inf δ
inst✝ : Top δ
g : InfTopHom β γ
f₁ f₂ : InfTopHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : Lattice γ
inst✝ : Lattice δ
f g : LatticeHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : Lattice γ
inst✝ : Lattice δ
g : LatticeHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
h :
(fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ } =
(fun f => f.toFun) g
⊢ { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ } = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : Lattice γ
inst✝ : Lattice δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
map_inf'✝¹ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
h :
(fun f => f.toFun) { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ } =
(fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }
⊢ { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ } =
{ toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Lattice α
inst✝² : Lattice β
inst✝¹ : Lattice γ
inst✝ : Lattice δ
g : LatticeHom β γ
f₁ f₂ : LatticeHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← LatticeHom.comp_apply, h, LatticeHom.comp_apply]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : LinearOrder α
inst✝¹ : Lattice β
inst✝ : OrderHomClass F α β
src✝ : OrderHomClass F α β := inst✝
f : F
a b : α
⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b
[PROOFSTEP]
obtain h | h := le_total a b
[GOAL]
case inl
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : LinearOrder α
inst✝¹ : Lattice β
inst✝ : OrderHomClass F α β
src✝ : OrderHomClass F α β := inst✝
f : F
a b : α
h : a ≤ b
⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b
[PROOFSTEP]
rw [sup_eq_right.2 h, sup_eq_right.2 (OrderHomClass.mono f h : f a ≤ f b)]
[GOAL]
case inr
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : LinearOrder α
inst✝¹ : Lattice β
inst✝ : OrderHomClass F α β
src✝ : OrderHomClass F α β := inst✝
f : F
a b : α
h : b ≤ a
⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b
[PROOFSTEP]
rw [sup_eq_left.2 h, sup_eq_left.2 (OrderHomClass.mono f h : f b ≤ f a)]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : LinearOrder α
inst✝¹ : Lattice β
inst✝ : OrderHomClass F α β
src✝ : OrderHomClass F α β := inst✝
f : F
a b : α
⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b
[PROOFSTEP]
obtain h | h := le_total a b
[GOAL]
case inl
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : LinearOrder α
inst✝¹ : Lattice β
inst✝ : OrderHomClass F α β
src✝ : OrderHomClass F α β := inst✝
f : F
a b : α
h : a ≤ b
⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b
[PROOFSTEP]
rw [inf_eq_left.2 h, inf_eq_left.2 (OrderHomClass.mono f h : f a ≤ f b)]
[GOAL]
case inr
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : LinearOrder α
inst✝¹ : Lattice β
inst✝ : OrderHomClass F α β
src✝ : OrderHomClass F α β := inst✝
f : F
a b : α
h : b ≤ a
⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b
[PROOFSTEP]
rw [inf_eq_right.2 h, inf_eq_right.2 (OrderHomClass.mono f h : f b ≤ f a)]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Lattice α
inst✝⁶ : Lattice β
inst✝⁵ : Lattice γ
inst✝⁴ : Lattice δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
f g : BoundedLatticeHom α β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Lattice α
inst✝⁶ : Lattice β
inst✝⁵ : Lattice γ
inst✝⁴ : Lattice δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
g : BoundedLatticeHom α β
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_top'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤
map_bot'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_bot' := map_bot'✝ } =
(fun f => f.toFun) g
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_bot' := map_bot'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Lattice α
inst✝⁶ : Lattice β
inst✝⁵ : Lattice γ
inst✝⁴ : Lattice δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
toFun✝¹ : α → β
map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b
map_inf'✝¹ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓
SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b
map_top'✝¹ :
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊤ = ⊤
map_bot'✝¹ :
SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊥ = ⊥
toFun✝ : α → β
map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b
map_inf'✝ :
∀ (a b : α),
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) =
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓
SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b
map_top'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤
map_bot'✝ :
SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥
h :
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } =
(fun f => f.toFun)
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_bot' := map_bot'✝ }
⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ },
map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } =
{ toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ },
map_top' := map_top'✝, map_bot' := map_bot'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝⁷ : Lattice α
inst✝⁶ : Lattice β
inst✝⁵ : Lattice γ
inst✝⁴ : Lattice δ
inst✝³ : BoundedOrder α
inst✝² : BoundedOrder β
inst✝¹ : BoundedOrder γ
inst✝ : BoundedOrder δ
g : BoundedLatticeHom β γ
f₁ f₂ : BoundedLatticeHom α β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Lattice α
inst✝¹ : Lattice β
inst✝ : Lattice γ
⊢ (fun f => ↑f) (withTopWithBot (LatticeHom.id α)) = (fun f => ↑f) (BoundedLatticeHom.id (WithTop (WithBot α)))
[PROOFSTEP]
refine' (congr_arg Option.map _).trans Option.map_id
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Lattice α
inst✝¹ : Lattice β
inst✝ : Lattice γ
⊢ (fun x => ↑(LatticeHom.withBot (LatticeHom.id α)).toSupHom x) = id
[PROOFSTEP]
rw [withBot_id]
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Lattice α
inst✝¹ : Lattice β
inst✝ : Lattice γ
⊢ (fun x => ↑(LatticeHom.id (WithBot α)).toSupHom x) = id
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Lattice α
inst✝¹ : Lattice β
inst✝ : Lattice γ
f : LatticeHom β γ
g : LatticeHom α β
⊢ withTopWithBot (comp f g) = BoundedLatticeHom.comp (withTopWithBot f) (withTopWithBot g)
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
ι : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Lattice α
inst✝¹ : Lattice β
inst✝ : Lattice γ
f : LatticeHom β γ
g : LatticeHom α β
a✝ : WithTop (WithBot α)
⊢ ↑(withTopWithBot (comp f g)) a✝ = ↑(BoundedLatticeHom.comp (withTopWithBot f) (withTopWithBot g)) a✝
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Order.Hom.Lattice", "llama_tokens": 12524} |
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
b : α
hb : b ∈ P.parts
⊢ b ≠ ⊥
[PROOFSTEP]
intro h
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
b : α
hb : b ∈ P.parts
h : b = ⊥
⊢ False
[PROOFSTEP]
refine' P.not_bot_mem (_)
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
b : α
hb : b ∈ P.parts
h : b = ⊥
⊢ ⊥ ∈ P.parts
[PROOFSTEP]
rw [h] at hb
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
b : α
hb : ⊥ ∈ P.parts
h : b = ⊥
⊢ ⊥ ∈ P.parts
[PROOFSTEP]
exact hb
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
⊢ P.parts = ∅ ↔ a = ⊥
[PROOFSTEP]
simp_rw [← P.supParts]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
⊢ P.parts = ∅ ↔ sup P.parts id = ⊥
[PROOFSTEP]
refine' ⟨fun h ↦ _, fun h ↦ eq_empty_iff_forall_not_mem.2 fun b hb ↦ P.not_bot_mem _⟩
[GOAL]
case refine'_1
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
h : P.parts = ∅
⊢ sup P.parts id = ⊥
[PROOFSTEP]
rw [h]
[GOAL]
case refine'_1
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
h : P.parts = ∅
⊢ sup ∅ id = ⊥
[PROOFSTEP]
exact Finset.sup_empty
[GOAL]
case refine'_2
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
h : sup P.parts id = ⊥
b : α
hb : b ∈ P.parts
⊢ ⊥ ∈ P.parts
[PROOFSTEP]
rwa [← le_bot_iff.1 ((le_sup hb).trans h.le)]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P : Finpartition a
⊢ Finset.Nonempty P.parts ↔ a ≠ ⊥
[PROOFSTEP]
rw [nonempty_iff_ne_empty, not_iff_not, parts_eq_empty_iff]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : Inhabited (Finpartition ⊥) := inferInstance
P : Finpartition ⊥
⊢ P = default
[PROOFSTEP]
ext a
[GOAL]
case parts.a
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a✝ : α
P✝ : Finpartition a✝
src✝ : Inhabited (Finpartition ⊥) := inferInstance
P : Finpartition ⊥
a : α
⊢ a ∈ P.parts ↔ a ∈ default.parts
[PROOFSTEP]
exact iff_of_false (fun h ↦ P.ne_bot h <| le_bot_iff.1 <| P.le h) (not_mem_empty a)
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
ha : IsAtom a
P : Finpartition a
⊢ P = default
[PROOFSTEP]
have h : ∀ b ∈ P.parts, b = a := fun _ hb ↦ (ha.le_iff.mp <| P.le hb).resolve_left (P.ne_bot hb)
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
ha : IsAtom a
P : Finpartition a
h : ∀ (b : α), b ∈ P.parts → b = a
⊢ P = default
[PROOFSTEP]
ext b
[GOAL]
case parts.a
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
ha : IsAtom a
P : Finpartition a
h : ∀ (b : α), b ∈ P.parts → b = a
b : α
⊢ b ∈ P.parts ↔ b ∈ default.parts
[PROOFSTEP]
refine' Iff.trans ⟨h b, _⟩ mem_singleton.symm
[GOAL]
case parts.a
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
ha : IsAtom a
P : Finpartition a
h : ∀ (b : α), b ∈ P.parts → b = a
b : α
⊢ b = a → b ∈ P.parts
[PROOFSTEP]
rintro rfl
[GOAL]
case parts.a
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
b : α
P✝ : Finpartition b
ha : IsAtom b
P : Finpartition b
h : ∀ (b_1 : α), b_1 ∈ P.parts → b_1 = b
⊢ b ∈ P.parts
[PROOFSTEP]
obtain ⟨c, hc⟩ := P.parts_nonempty ha.1
[GOAL]
case parts.a.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
b : α
P✝ : Finpartition b
ha : IsAtom b
P : Finpartition b
h : ∀ (b_1 : α), b_1 ∈ P.parts → b_1 = b
c : α
hc : c ∈ P.parts
⊢ b ∈ P.parts
[PROOFSTEP]
simp_rw [← h c hc]
[GOAL]
case parts.a.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
b : α
P✝ : Finpartition b
ha : IsAtom b
P : Finpartition b
h : ∀ (b_1 : α), b_1 ∈ P.parts → b_1 = b
c : α
hc : c ∈ P.parts
⊢ c ∈ P.parts
[PROOFSTEP]
exact hc
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hQR : Q ≤ R
b : α
hb : b ∈ P.parts
⊢ ∃ c, c ∈ R.parts ∧ b ≤ c
[PROOFSTEP]
obtain ⟨c, hc, hbc⟩ := hPQ hb
[GOAL]
case intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hQR : Q ≤ R
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
⊢ ∃ c, c ∈ R.parts ∧ b ≤ c
[PROOFSTEP]
obtain ⟨d, hd, hcd⟩ := hQR hc
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hQR : Q ≤ R
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
d : α
hd : d ∈ R.parts
hcd : c ≤ d
⊢ ∃ c, c ∈ R.parts ∧ b ≤ c
[PROOFSTEP]
exact ⟨d, hd, hbc.trans hcd⟩
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
⊢ P = Q
[PROOFSTEP]
ext b
[GOAL]
case parts.a
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
⊢ b ∈ P.parts ↔ b ∈ Q.parts
[PROOFSTEP]
refine' ⟨fun hb ↦ _, fun hb ↦ _⟩
[GOAL]
case parts.a.refine'_1
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ P.parts
⊢ b ∈ Q.parts
[PROOFSTEP]
obtain ⟨c, hc, hbc⟩ := hPQ hb
[GOAL]
case parts.a.refine'_1.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
⊢ b ∈ Q.parts
[PROOFSTEP]
obtain ⟨d, hd, hcd⟩ := hQP hc
[GOAL]
case parts.a.refine'_1.intro.intro.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
d : α
hd : d ∈ P.parts
hcd : c ≤ d
⊢ b ∈ Q.parts
[PROOFSTEP]
rwa [hbc.antisymm]
[GOAL]
case parts.a.refine'_1.intro.intro.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
d : α
hd : d ∈ P.parts
hcd : c ≤ d
⊢ c ≤ b
[PROOFSTEP]
rwa [P.disjoint.eq_of_le hb hd (P.ne_bot hb) (hbc.trans hcd)]
[GOAL]
case parts.a.refine'_2
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ Q.parts
⊢ b ∈ P.parts
[PROOFSTEP]
obtain ⟨c, hc, hbc⟩ := hQP hb
[GOAL]
case parts.a.refine'_2.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ Q.parts
c : α
hc : c ∈ P.parts
hbc : b ≤ c
⊢ b ∈ P.parts
[PROOFSTEP]
obtain ⟨d, hd, hcd⟩ := hPQ hc
[GOAL]
case parts.a.refine'_2.intro.intro.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ Q.parts
c : α
hc : c ∈ P.parts
hbc : b ≤ c
d : α
hd : d ∈ Q.parts
hcd : c ≤ d
⊢ b ∈ P.parts
[PROOFSTEP]
rwa [hbc.antisymm]
[GOAL]
case parts.a.refine'_2.intro.intro.intro.intro
α : Type u_1
inst✝¹ : Lattice α
inst✝ : OrderBot α
a : α
P✝ : Finpartition a
src✝ : LE (Finpartition a) := inferInstance
P Q : Finpartition a
hPQ : P ≤ Q
hQP : Q ≤ P
b : α
hb : b ∈ Q.parts
c : α
hc : c ∈ P.parts
hbc : b ≤ c
d : α
hd : d ∈ Q.parts
hcd : c ≤ d
⊢ c ≤ b
[PROOFSTEP]
rwa [Q.disjoint.eq_of_le hb hd (Q.ne_bot hb) (hbc.trans hcd)]
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a : α
P✝ : Finpartition a
inst✝ : Decidable (a = ⊥)
P : Finpartition a
⊢ P ≤ ⊤
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a : α
P✝ : Finpartition a
inst✝ : Decidable (a = ⊥)
P : Finpartition a
h : a = ⊥
⊢ P ≤ ⊤
[PROOFSTEP]
intro x hx
[GOAL]
case pos
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a : α
P✝ : Finpartition a
inst✝ : Decidable (a = ⊥)
P : Finpartition a
h : a = ⊥
x : α
hx : x ∈ P.parts
⊢ ∃ c, c ∈ ⊤.parts ∧ x ≤ c
[PROOFSTEP]
simpa [h, P.ne_bot hx] using P.le hx
[GOAL]
case neg
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a : α
P✝ : Finpartition a
inst✝ : Decidable (a = ⊥)
P : Finpartition a
h : ¬a = ⊥
⊢ P ≤ ⊤
[PROOFSTEP]
exact fun b hb ↦ ⟨a, mem_singleton_self _, P.le hb⟩
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a✝ : α
P : Finpartition a✝
a : α
inst✝ : Decidable (a = ⊥)
⊢ ⊤.parts ⊆ {a}
[PROOFSTEP]
intro b hb
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a✝ : α
P : Finpartition a✝
a : α
inst✝ : Decidable (a = ⊥)
b : α
hb : b ∈ ⊤.parts
⊢ b ∈ {a}
[PROOFSTEP]
have hb : b ∈ Finpartition.parts (dite _ _ _) := hb
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a✝ : α
P : Finpartition a✝
a : α
inst✝ : Decidable (a = ⊥)
b : α
hb✝ : b ∈ ⊤.parts
hb : b ∈ (if ha : a = ⊥ then copy (Finpartition.empty α) (_ : ⊥ = a) else indiscrete ha).parts
⊢ b ∈ {a}
[PROOFSTEP]
split_ifs at hb
[GOAL]
case pos
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a✝ : α
P : Finpartition a✝
a : α
inst✝ : Decidable (a = ⊥)
b : α
hb✝ : b ∈ ⊤.parts
h✝ : a = ⊥
hb : b ∈ (copy (Finpartition.empty α) (_ : ⊥ = a)).parts
⊢ b ∈ {a}
[PROOFSTEP]
simp only [copy_parts, empty_parts, not_mem_empty] at hb
[GOAL]
case neg
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
a✝ : α
P : Finpartition a✝
a : α
inst✝ : Decidable (a = ⊥)
b : α
hb✝ : b ∈ ⊤.parts
h✝ : ¬a = ⊥
hb : b ∈ (indiscrete h✝).parts
⊢ b ∈ {a}
[PROOFSTEP]
exact hb
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ SupIndep (image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts)) id
[PROOFSTEP]
rw [supIndep_iff_disjoint_erase]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ ∀ (i : α),
i ∈ image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts) →
Disjoint (id i) (sup (erase (image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts)) i) id)
[PROOFSTEP]
simp only [mem_image, and_imp, exists_prop, forall_exists_index, id.def, Prod.exists, mem_product,
Finset.disjoint_sup_right, mem_erase, Ne.def]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ ∀ (i x x_1 : α),
x ∈ P.parts →
x_1 ∈ Q.parts →
x ⊓ x_1 = i →
∀ ⦃i_1 : α⦄, ¬i_1 = i → ∀ (x x_2 : α), x ∈ P.parts → x_2 ∈ Q.parts → x ⊓ x_2 = i_1 → Disjoint i i_1
[PROOFSTEP]
rintro _ x₁ y₁ hx₁ hy₁ rfl _ h x₂ y₂ hx₂ hy₂ rfl
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
x₁ y₁ : α
hx₁ : x₁ ∈ P.parts
hy₁ : y₁ ∈ Q.parts
x₂ y₂ : α
hx₂ : x₂ ∈ P.parts
hy₂ : y₂ ∈ Q.parts
h : ¬x₂ ⊓ y₂ = x₁ ⊓ y₁
⊢ Disjoint (x₁ ⊓ y₁) (x₂ ⊓ y₂)
[PROOFSTEP]
rcases eq_or_ne x₁ x₂ with (rfl | xdiff)
[GOAL]
case inl
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
x₁ y₁ : α
hx₁ : x₁ ∈ P.parts
hy₁ : y₁ ∈ Q.parts
y₂ : α
hy₂ : y₂ ∈ Q.parts
hx₂ : x₁ ∈ P.parts
h : ¬x₁ ⊓ y₂ = x₁ ⊓ y₁
⊢ Disjoint (x₁ ⊓ y₁) (x₁ ⊓ y₂)
[PROOFSTEP]
refine' Disjoint.mono inf_le_right inf_le_right (Q.disjoint hy₁ hy₂ _)
[GOAL]
case inl
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
x₁ y₁ : α
hx₁ : x₁ ∈ P.parts
hy₁ : y₁ ∈ Q.parts
y₂ : α
hy₂ : y₂ ∈ Q.parts
hx₂ : x₁ ∈ P.parts
h : ¬x₁ ⊓ y₂ = x₁ ⊓ y₁
⊢ y₁ ≠ y₂
[PROOFSTEP]
intro t
[GOAL]
case inl
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
x₁ y₁ : α
hx₁ : x₁ ∈ P.parts
hy₁ : y₁ ∈ Q.parts
y₂ : α
hy₂ : y₂ ∈ Q.parts
hx₂ : x₁ ∈ P.parts
h : ¬x₁ ⊓ y₂ = x₁ ⊓ y₁
t : y₁ = y₂
⊢ False
[PROOFSTEP]
simp [t] at h
[GOAL]
case inr
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
x₁ y₁ : α
hx₁ : x₁ ∈ P.parts
hy₁ : y₁ ∈ Q.parts
x₂ y₂ : α
hx₂ : x₂ ∈ P.parts
hy₂ : y₂ ∈ Q.parts
h : ¬x₂ ⊓ y₂ = x₁ ⊓ y₁
xdiff : x₁ ≠ x₂
⊢ Disjoint (x₁ ⊓ y₁) (x₂ ⊓ y₂)
[PROOFSTEP]
exact Disjoint.mono inf_le_left inf_le_left (P.disjoint hx₁ hx₂ xdiff)
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ sup (image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts)) id = a
[PROOFSTEP]
rw [sup_image, comp.left_id, sup_product_left]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ (sup P.parts fun i => sup Q.parts fun i' => (i, i').fst ⊓ (i, i').snd) = a
[PROOFSTEP]
trans P.parts.sup id ⊓ Q.parts.sup id
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ (sup P.parts fun i => sup Q.parts fun i' => (i, i').fst ⊓ (i, i').snd) = sup P.parts id ⊓ sup Q.parts id
[PROOFSTEP]
simp_rw [Finset.sup_inf_distrib_right, Finset.sup_inf_distrib_left]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ (sup P.parts fun i => sup Q.parts fun i' => i ⊓ i') = sup P.parts fun i => sup Q.parts fun i_1 => id i ⊓ id i_1
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P Q : Finpartition a
⊢ sup P.parts id ⊓ sup Q.parts id = a
[PROOFSTEP]
rw [P.supParts, Q.supParts, inf_idem]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q : Finpartition a
b : α
hb : b ∈ (P ⊓ Q).parts
⊢ ∃ c, c ∈ P.parts ∧ b ≤ c
[PROOFSTEP]
obtain ⟨c, hc, rfl⟩ := mem_image.1 (mem_of_mem_erase hb)
[GOAL]
case intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q : Finpartition a
c : α × α
hc : c ∈ P.parts ×ˢ Q.parts
hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts
⊢ ∃ c_1, c_1 ∈ P.parts ∧ c.fst ⊓ c.snd ≤ c_1
[PROOFSTEP]
rw [mem_product] at hc
[GOAL]
case intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q : Finpartition a
c : α × α
hc : c.fst ∈ P.parts ∧ c.snd ∈ Q.parts
hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts
⊢ ∃ c_1, c_1 ∈ P.parts ∧ c.fst ⊓ c.snd ≤ c_1
[PROOFSTEP]
exact ⟨c.1, hc.1, inf_le_left⟩
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q : Finpartition a
b : α
hb : b ∈ (P ⊓ Q).parts
⊢ ∃ c, c ∈ Q.parts ∧ b ≤ c
[PROOFSTEP]
obtain ⟨c, hc, rfl⟩ := mem_image.1 (mem_of_mem_erase hb)
[GOAL]
case intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q : Finpartition a
c : α × α
hc : c ∈ P.parts ×ˢ Q.parts
hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts
⊢ ∃ c_1, c_1 ∈ Q.parts ∧ c.fst ⊓ c.snd ≤ c_1
[PROOFSTEP]
rw [mem_product] at hc
[GOAL]
case intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q : Finpartition a
c : α × α
hc : c.fst ∈ P.parts ∧ c.snd ∈ Q.parts
hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts
⊢ ∃ c_1, c_1 ∈ Q.parts ∧ c.fst ⊓ c.snd ≤ c_1
[PROOFSTEP]
exact ⟨c.2, hc.2, inf_le_right⟩
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hPR : P ≤ R
b : α
hb : b ∈ P.parts
⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c
[PROOFSTEP]
obtain ⟨c, hc, hbc⟩ := hPQ hb
[GOAL]
case intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hPR : P ≤ R
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c
[PROOFSTEP]
obtain ⟨d, hd, hbd⟩ := hPR hb
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hPR : P ≤ R
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
d : α
hd : d ∈ R.parts
hbd : b ≤ d
⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c
[PROOFSTEP]
have h := _root_.le_inf hbc hbd
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
src✝¹ : PartialOrder (Finpartition a) := inferInstance
src✝ : Inf (Finpartition a) := inferInstance
P Q R : Finpartition a
hPQ : P ≤ Q
hPR : P ≤ R
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ Q.parts
hbc : b ≤ c
d : α
hd : d ∈ R.parts
hbd : b ≤ d
h : b ≤ c ⊓ d
⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c
[PROOFSTEP]
refine'
⟨c ⊓ d,
mem_erase_of_ne_of_mem (ne_bot_of_le_ne_bot (P.ne_bot hb) h) (mem_image.2 ⟨(c, d), mem_product.2 ⟨hc, hd⟩, rfl⟩), h⟩
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
⊢ ∃ c, c ∈ P.parts ∧ c ≤ b
[PROOFSTEP]
by_contra H
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
⊢ False
[PROOFSTEP]
refine' Q.ne_bot hb (disjoint_self.1 <| Disjoint.mono_right (Q.le hb) _)
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
⊢ Disjoint b a
[PROOFSTEP]
rw [← P.supParts, Finset.disjoint_sup_right]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
⊢ ∀ ⦃i : α⦄, i ∈ P.parts → Disjoint b (id i)
[PROOFSTEP]
rintro c hc
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
c : α
hc : c ∈ P.parts
⊢ Disjoint b (id c)
[PROOFSTEP]
obtain ⟨d, hd, hcd⟩ := h hc
[GOAL]
case intro.intro
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
c : α
hc : c ∈ P.parts
d : α
hd : d ∈ Q.parts
hcd : c ≤ d
⊢ Disjoint b (id c)
[PROOFSTEP]
refine' (Q.disjoint hb hd _).mono_right hcd
[GOAL]
case intro.intro
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
c : α
hc : c ∈ P.parts
d : α
hd : d ∈ Q.parts
hcd : c ≤ d
⊢ b ≠ d
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.intro
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
H : ¬∃ c, c ∈ P.parts ∧ c ≤ b
c : α
hc : c ∈ P.parts
hd : b ∈ Q.parts
hcd : c ≤ b
⊢ False
[PROOFSTEP]
simp only [not_exists, not_and] at H
[GOAL]
case intro.intro
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b : α
P Q : Finpartition a
h : P ≤ Q
hb : b ∈ Q.parts
c : α
hc : c ∈ P.parts
hd : b ∈ Q.parts
hcd : c ≤ b
H : ∀ (x : α), x ∈ P.parts → ¬x ≤ b
⊢ False
[PROOFSTEP]
exact H _ hc hcd
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a : α
P Q : Finpartition a
h : P ≤ Q
⊢ card Q.parts ≤ card P.parts
[PROOFSTEP]
classical
have : ∀ b ∈ Q.parts, ∃ c ∈ P.parts, c ≤ b := fun b ↦ exists_le_of_le h
choose f hP hf using this
rw [← card_attach]
refine' card_le_card_of_inj_on (fun b ↦ f _ b.2) (fun b _ ↦ hP _ b.2) fun b _ c _ h ↦ _
exact
Subtype.coe_injective
(Q.disjoint.elim b.2 c.2 fun H ↦
P.ne_bot (hP _ b.2) <| disjoint_self.1 <| H.mono (hf _ b.2) <| h.le.trans <| hf _ c.2)
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a : α
P Q : Finpartition a
h : P ≤ Q
⊢ card Q.parts ≤ card P.parts
[PROOFSTEP]
have : ∀ b ∈ Q.parts, ∃ c ∈ P.parts, c ≤ b := fun b ↦ exists_le_of_le h
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a : α
P Q : Finpartition a
h : P ≤ Q
this : ∀ (b : α), b ∈ Q.parts → ∃ c, c ∈ P.parts ∧ c ≤ b
⊢ card Q.parts ≤ card P.parts
[PROOFSTEP]
choose f hP hf using this
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a : α
P Q : Finpartition a
h : P ≤ Q
f : (b : α) → b ∈ Q.parts → α
hP : ∀ (b : α) (a_1 : b ∈ Q.parts), f b a_1 ∈ P.parts
hf : ∀ (b : α) (a : b ∈ Q.parts), f b a ≤ b
⊢ card Q.parts ≤ card P.parts
[PROOFSTEP]
rw [← card_attach]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a : α
P Q : Finpartition a
h : P ≤ Q
f : (b : α) → b ∈ Q.parts → α
hP : ∀ (b : α) (a_1 : b ∈ Q.parts), f b a_1 ∈ P.parts
hf : ∀ (b : α) (a : b ∈ Q.parts), f b a ≤ b
⊢ card (attach Q.parts) ≤ card P.parts
[PROOFSTEP]
refine' card_le_card_of_inj_on (fun b ↦ f _ b.2) (fun b _ ↦ hP _ b.2) fun b _ c _ h ↦ _
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a : α
P Q : Finpartition a
h✝ : P ≤ Q
f : (b : α) → b ∈ Q.parts → α
hP : ∀ (b : α) (a_1 : b ∈ Q.parts), f b a_1 ∈ P.parts
hf : ∀ (b : α) (a : b ∈ Q.parts), f b a ≤ b
b : { x // x ∈ Q.parts }
x✝¹ : b ∈ attach Q.parts
c : { x // x ∈ Q.parts }
x✝ : c ∈ attach Q.parts
h : (fun b => f ↑b (_ : ↑b ∈ Q.parts)) b = (fun b => f ↑b (_ : ↑b ∈ Q.parts)) c
⊢ b = c
[PROOFSTEP]
exact
Subtype.coe_injective
(Q.disjoint.elim b.2 c.2 fun H ↦
P.ne_bot (hP _ b.2) <| disjoint_self.1 <| H.mono (hf _ b.2) <| h.le.trans <| hf _ c.2)
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ SupIndep (Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) id
[PROOFSTEP]
rw [supIndep_iff_pairwiseDisjoint]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ Set.PairwiseDisjoint (↑(Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts)) id
[PROOFSTEP]
rintro a ha b hb h
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a✝ b✝ c : α
P✝ : Finpartition a✝
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a✝
Q : (i : α) → i ∈ P.parts → Finpartition i
a : α
ha : a ∈ ↑(Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts)
b : α
hb : b ∈ ↑(Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts)
h : a ≠ b
⊢ (Disjoint on id) a b
[PROOFSTEP]
rw [Finset.mem_coe, Finset.mem_biUnion] at ha hb
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a✝ b✝ c : α
P✝ : Finpartition a✝
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a✝
Q : (i : α) → i ∈ P.parts → Finpartition i
a : α
ha : ∃ a_1, a_1 ∈ attach P.parts ∧ a ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts
b : α
hb : ∃ a, a ∈ attach P.parts ∧ b ∈ (Q ↑a (_ : ↑a ∈ P.parts)).parts
h : a ≠ b
⊢ (Disjoint on id) a b
[PROOFSTEP]
obtain ⟨⟨A, hA⟩, -, ha⟩ := ha
[GOAL]
case intro.mk.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a✝ b✝ c : α
P✝ : Finpartition a✝
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a✝
Q : (i : α) → i ∈ P.parts → Finpartition i
a b : α
hb : ∃ a, a ∈ attach P.parts ∧ b ∈ (Q ↑a (_ : ↑a ∈ P.parts)).parts
h : a ≠ b
A : α
hA : A ∈ P.parts
ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts
⊢ (Disjoint on id) a b
[PROOFSTEP]
obtain ⟨⟨B, hB⟩, -, hb⟩ := hb
[GOAL]
case intro.mk.intro.intro.mk.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a✝ b✝ c : α
P✝ : Finpartition a✝
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a✝
Q : (i : α) → i ∈ P.parts → Finpartition i
a b : α
h : a ≠ b
A : α
hA : A ∈ P.parts
ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts
B : α
hB : B ∈ P.parts
hb : b ∈ (Q ↑{ val := B, property := hB } (_ : ↑{ val := B, property := hB } ∈ P.parts)).parts
⊢ (Disjoint on id) a b
[PROOFSTEP]
obtain rfl | hAB := eq_or_ne A B
[GOAL]
case intro.mk.intro.intro.mk.intro.inl
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a✝ b✝ c : α
P✝ : Finpartition a✝
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a✝
Q : (i : α) → i ∈ P.parts → Finpartition i
a b : α
h : a ≠ b
A : α
hA : A ∈ P.parts
ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts
hB : A ∈ P.parts
hb : b ∈ (Q ↑{ val := A, property := hB } (_ : ↑{ val := A, property := hB } ∈ P.parts)).parts
⊢ (Disjoint on id) a b
[PROOFSTEP]
exact (Q A hA).disjoint ha hb h
[GOAL]
case intro.mk.intro.intro.mk.intro.inr
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a✝ b✝ c : α
P✝ : Finpartition a✝
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a✝
Q : (i : α) → i ∈ P.parts → Finpartition i
a b : α
h : a ≠ b
A : α
hA : A ∈ P.parts
ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts
B : α
hB : B ∈ P.parts
hb : b ∈ (Q ↑{ val := B, property := hB } (_ : ↑{ val := B, property := hB } ∈ P.parts)).parts
hAB : A ≠ B
⊢ (Disjoint on id) a b
[PROOFSTEP]
exact (P.disjoint hA hB hAB).mono ((Q A hA).le ha) ((Q B hB).le hb)
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ sup (Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) id = a
[PROOFSTEP]
simp_rw [sup_biUnion]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ (sup (attach P.parts) fun x => sup (Q ↑x (_ : ↑x ∈ P.parts)).parts id) = a
[PROOFSTEP]
trans (sup P.parts id)
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ (sup (attach P.parts) fun x => sup (Q ↑x (_ : ↑x ∈ P.parts)).parts id) = sup P.parts id
[PROOFSTEP]
rw [eq_comm, ← Finset.sup_attach]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ (sup (attach P.parts) fun x => id ↑x) = sup (attach P.parts) fun x => sup (Q ↑x (_ : ↑x ∈ P.parts)).parts id
[PROOFSTEP]
exact sup_congr rfl fun b _hb ↦ (Q b.1 b.2).supParts.symm
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ sup P.parts id = a
[PROOFSTEP]
exact P.supParts
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
h : ⊥ ∈ Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts
⊢ False
[PROOFSTEP]
rw [Finset.mem_biUnion] at h
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
h : ∃ a_1, a_1 ∈ attach P.parts ∧ ⊥ ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts
⊢ False
[PROOFSTEP]
obtain ⟨⟨A, hA⟩, -, h⟩ := h
[GOAL]
case intro.mk.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P✝ : Finpartition a
Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
A : α
hA : A ∈ P.parts
h : ⊥ ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts
⊢ False
[PROOFSTEP]
exact (Q A hA).not_bot_mem h
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ b ∈ (bind P Q).parts ↔ ∃ A hA, b ∈ (Q A hA).parts
[PROOFSTEP]
rw [bind, mem_biUnion]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ (∃ a_1, a_1 ∈ attach P.parts ∧ b ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts) ↔ ∃ A hA, b ∈ (Q A hA).parts
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ (∃ a_1, a_1 ∈ attach P.parts ∧ b ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts) → ∃ A hA, b ∈ (Q A hA).parts
[PROOFSTEP]
rintro ⟨⟨A, hA⟩, -, h⟩
[GOAL]
case mp.intro.mk.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
A : α
hA : A ∈ P.parts
h : b ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts
⊢ ∃ A hA, b ∈ (Q A hA).parts
[PROOFSTEP]
exact ⟨A, hA, h⟩
[GOAL]
case mpr
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ (∃ A hA, b ∈ (Q A hA).parts) → ∃ a_2, a_2 ∈ attach P.parts ∧ b ∈ (Q ↑a_2 (_ : ↑a_2 ∈ P.parts)).parts
[PROOFSTEP]
rintro ⟨A, hA, h⟩
[GOAL]
case mpr.intro.intro
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q : (i : α) → i ∈ P.parts → Finpartition i
A : α
hA : A ∈ P.parts
h : b ∈ (Q A hA).parts
⊢ ∃ a_1, a_1 ∈ attach P.parts ∧ b ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts
[PROOFSTEP]
exact ⟨⟨A, hA⟩, mem_attach _ ⟨A, hA⟩, h⟩
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ card (bind P Q).parts = ∑ A in attach P.parts, card (Q ↑A (_ : ↑A ∈ P.parts)).parts
[PROOFSTEP]
apply card_biUnion
[GOAL]
case h
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i
⊢ ∀ (x : { x // x ∈ P.parts }),
x ∈ attach P.parts →
∀ (y : { x // x ∈ P.parts }),
y ∈ attach P.parts →
x ≠ y → Disjoint ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) x) ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) y)
[PROOFSTEP]
rintro ⟨b, hb⟩ - ⟨c, hc⟩ - hbc
[GOAL]
case h.mk.mk
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
P : Finpartition a
Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ P.parts
hbc : { val := b, property := hb } ≠ { val := c, property := hc }
⊢ Disjoint ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb })
((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc })
[PROOFSTEP]
rw [Finset.disjoint_left]
[GOAL]
case h.mk.mk
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
P : Finpartition a
Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ P.parts
hbc : { val := b, property := hb } ≠ { val := c, property := hc }
⊢ ∀ ⦃a_1 : α⦄,
a_1 ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb } →
¬a_1 ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc }
[PROOFSTEP]
rintro d hdb hdc
[GOAL]
case h.mk.mk
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
P : Finpartition a
Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ P.parts
hbc : { val := b, property := hb } ≠ { val := c, property := hc }
d : α
hdb : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb }
hdc : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc }
⊢ False
[PROOFSTEP]
rw [Ne.def, Subtype.mk_eq_mk] at hbc
[GOAL]
case h.mk.mk
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b✝ c✝ : α
P : Finpartition a
Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i
b : α
hb : b ∈ P.parts
c : α
hc : c ∈ P.parts
hbc : ¬b = c
d : α
hdb : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb }
hdc : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc }
⊢ False
[PROOFSTEP]
exact
(Q b hb).ne_bot hdb
(eq_bot_iff.2 <| (le_inf ((Q b hb).le hdb) <| (Q c hc).le hdc).trans <| (P.disjoint hb hc hbc).le_bot)
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
hb : b ≠ ⊥
hab : Disjoint a b
hc : a ⊔ b = c
⊢ SupIndep (insert b P.parts) id
[PROOFSTEP]
rw [supIndep_iff_pairwiseDisjoint, coe_insert]
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
hb : b ≠ ⊥
hab : Disjoint a b
hc : a ⊔ b = c
⊢ Set.PairwiseDisjoint (insert b ↑P.parts) id
[PROOFSTEP]
exact P.disjoint.insert fun d hd _ ↦ hab.symm.mono_right <| P.le hd
[GOAL]
α : Type u_1
inst✝² : DistribLattice α
inst✝¹ : OrderBot α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
hb : b ≠ ⊥
hab : Disjoint a b
hc : a ⊔ b = c
⊢ sup (insert b P.parts) id = c
[PROOFSTEP]
rwa [sup_insert, P.supParts, id, _root_.sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : DecidableEq α
a b✝ c : α
P : Finpartition a
b : α
⊢ sup (image (fun x => x \ b) P.parts) id = a \ b
[PROOFSTEP]
rw [sup_image, comp.left_id, Finset.sup_sdiff_right, ← id_def, P.supParts]
[GOAL]
α : Type u_1
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
⊢ c ∈ (avoid P b).parts ↔ ∃ d, d ∈ P.parts ∧ ¬d ≤ b ∧ d \ b = c
[PROOFSTEP]
simp only [avoid, ofErase, mem_erase, Ne.def, mem_image, exists_prop, ← exists_and_left, @and_left_comm (c ≠ ⊥)]
[GOAL]
α : Type u_1
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
⊢ (∃ x, x ∈ P.parts ∧ ¬c = ⊥ ∧ x \ b = c) ↔ ∃ d, d ∈ P.parts ∧ ¬d ≤ b ∧ d \ b = c
[PROOFSTEP]
refine' exists_congr fun d ↦ and_congr_right' <| and_congr_left _
[GOAL]
α : Type u_1
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : DecidableEq α
a b c : α
P : Finpartition a
d : α
⊢ d \ b = c → (¬c = ⊥ ↔ ¬d ≤ b)
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : DecidableEq α
a b : α
P : Finpartition a
d : α
⊢ ¬d \ b = ⊥ ↔ ¬d ≤ b
[PROOFSTEP]
rw [sdiff_eq_bot_iff]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
a : α
ha : a ∈ s
⊢ ∃ t, t ∈ P.parts ∧ a ∈ t
[PROOFSTEP]
simp_rw [← P.supParts] at ha
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
a : α
ha : a ∈ sup P.parts id
⊢ ∃ t, t ∈ P.parts ∧ a ∈ t
[PROOFSTEP]
exact mem_sup.1 ha
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
⊢ ∑ i in P.parts, card i = card s
[PROOFSTEP]
convert congr_arg Finset.card P.biUnion_parts
[GOAL]
case h.e'_2
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
⊢ ∑ i in P.parts, card i = card (Finset.biUnion P.parts id)
[PROOFSTEP]
rw [card_biUnion P.supIndep.pairwiseDisjoint]
[GOAL]
case h.e'_2
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
⊢ ∑ i in P.parts, card i = ∑ u in P.parts, card (id u)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
⊢ Set.PairwiseDisjoint (↑(map { toFun := singleton, inj' := (_ : Injective singleton) } s)) id
[PROOFSTEP]
rw [Finset.coe_map]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
⊢ Set.PairwiseDisjoint (↑{ toFun := singleton, inj' := (_ : Injective singleton) } '' ↑s) id
[PROOFSTEP]
exact Finset.pairwiseDisjoint_range_singleton.subset (Set.image_subset_range _ _)
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
⊢ sup (map { toFun := singleton, inj' := (_ : Injective singleton) } s) id = s
[PROOFSTEP]
rw [sup_map, comp.left_id, Embedding.coeFn_mk, Finset.sup_singleton']
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
⊢ ¬⊥ ∈ map { toFun := singleton, inj' := (_ : Injective singleton) } s
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P✝ : Finpartition s✝
s : Finset α
src✝ : Bot (Finpartition s) := inferInstance
P : Finpartition s
t : Finset α
ht : t ∈ ⊥.parts
⊢ ∃ c, c ∈ P.parts ∧ t ≤ c
[PROOFSTEP]
rw [mem_bot_iff] at ht
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P✝ : Finpartition s✝
s : Finset α
src✝ : Bot (Finpartition s) := inferInstance
P : Finpartition s
t : Finset α
ht : ∃ a, a ∈ s ∧ {a} = t
⊢ ∃ c, c ∈ P.parts ∧ t ≤ c
[PROOFSTEP]
obtain ⟨a, ha, rfl⟩ := ht
[GOAL]
case intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P✝ : Finpartition s✝
s : Finset α
src✝ : Bot (Finpartition s) := inferInstance
P : Finpartition s
a : α
ha : a ∈ s
⊢ ∃ c, c ∈ P.parts ∧ {a} ≤ c
[PROOFSTEP]
obtain ⟨t, ht, hat⟩ := P.exists_mem ha
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P✝ : Finpartition s✝
s : Finset α
src✝ : Bot (Finpartition s) := inferInstance
P : Finpartition s
a : α
ha : a ∈ s
t : Finset α
ht : t ∈ P.parts
hat : a ∈ t
⊢ ∃ c, c ∈ P.parts ∧ {a} ≤ c
[PROOFSTEP]
exact ⟨t, ht, singleton_subset_iff.2 hat⟩
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P✝ P : Finpartition s
⊢ card P.parts ≤ card s
[PROOFSTEP]
rw [← card_bot s]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P✝ P : Finpartition s
⊢ card P.parts ≤ card ⊥.parts
[PROOFSTEP]
exact card_mono bot_le
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
x : Finset α
hx : x ∈ ↑(image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F))
y : Finset α
hy : y ∈ ↑(image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F))
h : x ≠ y
z : α
hz1 : z ∈ id x
hz2 : z ∈ id y
⊢ x = y
[PROOFSTEP]
rw [mem_coe, mem_image] at hx hy
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
x : Finset α
hx : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = x
y : Finset α
hy : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = y
h : x ≠ y
z : α
hz1 : z ∈ id x
hz2 : z ∈ id y
⊢ x = y
[PROOFSTEP]
obtain ⟨Q, hQ, rfl⟩ := hx
[GOAL]
case intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
y : Finset α
hy : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = y
z : α
hz2 : z ∈ id y
Q : Finset (Finset α)
hQ : Q ∈ powerset F
h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ y
hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)
⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s = y
[PROOFSTEP]
obtain ⟨R, hR, rfl⟩ := hy
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ∈ powerset F
hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)
R : Finset (Finset α)
hR : R ∈ powerset F
hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s =
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
[PROOFSTEP]
suffices h' : Q = R
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ∈ powerset F
hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)
R : Finset (Finset α)
hR : R ∈ powerset F
hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
h' : Q = R
⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s =
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
[PROOFSTEP]
subst h'
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ∈ powerset F
hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)
hR : Q ∈ powerset F
hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s
⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s =
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s
[PROOFSTEP]
exact of_eq_true (eq_self (filter (fun i ↦ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s))
[GOAL]
case h'
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ∈ powerset F
hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)
R : Finset (Finset α)
hR : R ∈ powerset F
hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
⊢ Q = R
[PROOFSTEP]
rw [id, mem_filter] at hz1 hz2
[GOAL]
case h'
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ∈ powerset F
hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t)
R : Finset (Finset α)
hR : R ∈ powerset F
hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
⊢ Q = R
[PROOFSTEP]
rw [mem_powerset] at hQ hR
[GOAL]
case h'
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ⊆ F
hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t)
R : Finset (Finset α)
hR : R ⊆ F
hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
⊢ Q = R
[PROOFSTEP]
ext i
[GOAL]
case h'.a
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ⊆ F
hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t)
R : Finset (Finset α)
hR : R ⊆ F
hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
i : Finset α
⊢ i ∈ Q ↔ i ∈ R
[PROOFSTEP]
refine' ⟨fun hi ↦ _, fun hi ↦ _⟩
[GOAL]
case h'.a.refine'_1
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ⊆ F
hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t)
R : Finset (Finset α)
hR : R ⊆ F
hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
i : Finset α
hi : i ∈ Q
⊢ i ∈ R
[PROOFSTEP]
rwa [hz2.2 _ (hQ hi), ← hz1.2 _ (hQ hi)]
[GOAL]
case h'.a.refine'_2
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
z : α
Q : Finset (Finset α)
hQ : Q ⊆ F
hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t)
R : Finset (Finset α)
hR : R ⊆ F
hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t)
h :
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠
filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s
i : Finset α
hi : i ∈ R
⊢ i ∈ Q
[PROOFSTEP]
rwa [hz1.2 _ (hR hi), ← hz2.2 _ (hR hi)]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
⊢ sup (image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)) id = s
[PROOFSTEP]
refine' (Finset.sup_le fun t ht ↦ _).antisymm fun a ha ↦ _
[GOAL]
case refine'_1
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
t : Finset α
ht : t ∈ image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)
⊢ id t ≤ s
[PROOFSTEP]
rw [mem_image] at ht
[GOAL]
case refine'_1
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
t : Finset α
ht : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = t
⊢ id t ≤ s
[PROOFSTEP]
obtain ⟨A, _, rfl⟩ := ht
[GOAL]
case refine'_1.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F A : Finset (Finset α)
left✝ : A ∈ powerset F
⊢ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ A ↔ i ∈ t)) s) ≤ s
[PROOFSTEP]
exact s.filter_subset _
[GOAL]
case refine'_2
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
a : α
ha : a ∈ s
⊢ a ∈ sup (image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)) id
[PROOFSTEP]
rw [mem_sup]
[GOAL]
case refine'_2
α : Type u_1
inst✝ : DecidableEq α
s✝ t : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
a : α
ha : a ∈ s
⊢ ∃ v, v ∈ image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F) ∧ a ∈ id v
[PROOFSTEP]
refine'
⟨s.filter fun i ↦ ∀ t, t ∈ F → ((t ∈ F.filter fun u ↦ a ∈ u) ↔ i ∈ t),
mem_image_of_mem _ (mem_powerset.2 <| filter_subset _ _), mem_filter.2 ⟨ha, fun t ht ↦ _⟩⟩
[GOAL]
case refine'_2
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
a : α
ha : a ∈ s
t : Finset α
ht : t ∈ F
⊢ t ∈ filter (fun u => a ∈ u) F ↔ a ∈ t
[PROOFSTEP]
rw [mem_filter]
[GOAL]
case refine'_2
α : Type u_1
inst✝ : DecidableEq α
s✝ t✝ : Finset α
P : Finpartition s✝
s : Finset α
F : Finset (Finset α)
a : α
ha : a ∈ s
t : Finset α
ht : t ∈ F
⊢ t ∈ F ∧ a ∈ t ↔ a ∈ t
[PROOFSTEP]
exact and_iff_right ht
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
⊢ t ∈ (atomise s F).parts ↔ Finset.Nonempty t ∧ ∃ Q x, filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s = t
[PROOFSTEP]
simp only [atomise, ofErase, bot_eq_empty, mem_erase, mem_image, nonempty_iff_ne_empty, mem_singleton, and_comm,
mem_powerset, exists_prop]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
hs : Finset.Nonempty s
⊢ (atomise s ∅).parts = {s}
[PROOFSTEP]
simp only [atomise, powerset_empty, image_singleton, not_mem_empty, IsEmpty.forall_iff, imp_true_iff, filter_True]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
hs : Finset.Nonempty s
⊢ (ofErase {s} (_ : SupIndep {s} id) (_ : sup {s} id = s)).parts = {s}
[PROOFSTEP]
exact erase_eq_of_not_mem (not_mem_singleton.2 hs.ne_empty.symm)
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
⊢ Finset.biUnion (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) id = t
[PROOFSTEP]
ext a
[GOAL]
case a
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
a : α
⊢ a ∈ Finset.biUnion (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) id ↔ a ∈ t
[PROOFSTEP]
refine' mem_biUnion.trans ⟨fun ⟨u, hu, ha⟩ ↦ (mem_filter.1 hu).2.1 ha, fun ha ↦ _⟩
[GOAL]
case a
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
a : α
ha : a ∈ t
⊢ ∃ a_1, a_1 ∈ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ∧ a ∈ id a_1
[PROOFSTEP]
obtain ⟨u, hu, hau⟩ := (atomise s F).exists_mem (hts ha)
[GOAL]
case a.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
a : α
ha : a ∈ t
u : Finset α
hu : u ∈ (atomise s F).parts
hau : a ∈ u
⊢ ∃ a_1, a_1 ∈ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ∧ a ∈ id a_1
[PROOFSTEP]
refine' ⟨u, mem_filter.2 ⟨hu, fun b hb ↦ _, _, hau⟩, hau⟩
[GOAL]
case a.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
a : α
ha : a ∈ t
u : Finset α
hu : u ∈ (atomise s F).parts
hau : a ∈ u
b : α
hb : b ∈ u
⊢ b ∈ t
[PROOFSTEP]
obtain ⟨Q, _hQ, rfl⟩ := (mem_atomise.1 hu).2
[GOAL]
case a.intro.intro.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
a : α
ha : a ∈ t
b : α
Q : Finset (Finset α)
_hQ : Q ⊆ F
hu : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s ∈ (atomise s F).parts
hau : a ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s
hb : b ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s
⊢ b ∈ t
[PROOFSTEP]
rw [mem_filter] at hau hb
[GOAL]
case a.intro.intro.intro.intro
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
hts : t ⊆ s
a : α
ha : a ∈ t
b : α
Q : Finset (Finset α)
_hQ : Q ⊆ F
hu : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s ∈ (atomise s F).parts
hau : a ∈ s ∧ ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ a ∈ u)
hb : b ∈ s ∧ ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ b ∈ u)
⊢ b ∈ t
[PROOFSTEP]
rwa [← hb.2 _ ht, hau.2 _ ht]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
⊢ card (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) ≤ 2 ^ (card F - 1)
[PROOFSTEP]
suffices h :
((atomise s F).parts.filter fun u ↦ u ⊆ t ∧ u.Nonempty) ⊆
(F.erase t).powerset.image fun P ↦ s.filter fun i ↦ ∀ x ∈ F, x ∈ insert t P ↔ i ∈ x
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
h :
filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ⊆
image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t))
⊢ card (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) ≤ 2 ^ (card F - 1)
[PROOFSTEP]
refine' (card_le_of_subset h).trans (card_image_le.trans _)
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
h :
filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ⊆
image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t))
⊢ card (powerset (erase F t)) ≤ 2 ^ (card F - 1)
[PROOFSTEP]
rw [card_powerset, card_erase_of_mem ht]
[GOAL]
case h
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
⊢ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ⊆
image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t))
[PROOFSTEP]
rw [subset_iff]
[GOAL]
case h
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
⊢ ∀ ⦃x : Finset α⦄,
x ∈ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts →
x ∈ image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t))
[PROOFSTEP]
simp_rw [mem_image, mem_powerset, mem_filter, and_imp, Finset.Nonempty, exists_imp, mem_atomise, and_imp,
Finset.Nonempty, exists_imp]
[GOAL]
case h
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
⊢ ∀ ⦃x : Finset α⦄ (x_1 : α),
x_1 ∈ x →
∀ (x_2 : Finset (Finset α)),
x_2 ⊆ F →
filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ x_2 ↔ i ∈ u)) s = x →
x ⊆ t →
∀ (x_4 : α),
x_4 ∈ x →
∃ a, a ⊆ erase F t ∧ filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t a ↔ i ∈ x)) s = x
[PROOFSTEP]
rintro P' i hi P PQ rfl hy₂ j _hj
[GOAL]
case h
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P✝ : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
i : α
P : Finset (Finset α)
PQ : P ⊆ F
hi : i ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s
hy₂ : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s ⊆ t
j : α
_hj : j ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s
⊢ ∃ a,
a ⊆ erase F t ∧
filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t a ↔ i ∈ x)) s =
filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s
[PROOFSTEP]
refine' ⟨P.erase t, erase_subset_erase _ PQ, _⟩
[GOAL]
case h
α : Type u_1
inst✝ : DecidableEq α
s t : Finset α
P✝ : Finpartition s
F : Finset (Finset α)
ht : t ∈ F
i : α
P : Finset (Finset α)
PQ : P ⊆ F
hi : i ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s
hy₂ : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s ⊆ t
j : α
_hj : j ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s
⊢ filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t (erase P t) ↔ i ∈ x)) s =
filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s
[PROOFSTEP]
simp only [insert_erase (((mem_filter.1 hi).2 _ ht).2 <| hy₂ hi)]
| {"mathlib_filename": "Mathlib.Order.Partition.Finpartition", "llama_tokens": 28454} |
[GOAL]
X Y : FinBoolAlgCat
f g : X ⟶ Y
h : (forget₂ FinBoolAlgCat FinPartOrd).map f = (forget₂ FinBoolAlgCat FinPartOrd).map g
⊢ f = g
[PROOFSTEP]
dsimp at *
[GOAL]
X Y : FinBoolAlgCat
f g : X ⟶ Y
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
apply FunLike.coe_injective
[GOAL]
case a
X Y : FinBoolAlgCat
f g : X ⟶ Y
h : ↑f = ↑g
⊢ (fun f => ↑f) f = (fun f => ↑f) g
[PROOFSTEP]
dsimp
[GOAL]
case a
X Y : FinBoolAlgCat
f g : X ⟶ Y
h : ↑f = ↑g
⊢ ↑f = ↑g
[PROOFSTEP]
ext x
[GOAL]
case a.h
X Y : FinBoolAlgCat
f g : X ⟶ Y
h : ↑f = ↑g
x : ↑X.toBoolAlgCat
⊢ ↑f x = ↑g x
[PROOFSTEP]
apply_fun (fun f => f x) at h
[GOAL]
case a.h
X Y : FinBoolAlgCat
f g : X ⟶ Y
x : ↑X.toBoolAlgCat
h : ↑↑f x = ↑↑g x
⊢ ↑f x = ↑g x
[PROOFSTEP]
exact h
[GOAL]
α β : FinBoolAlgCat
e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat
⊢ ((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : FinBoolAlgCat
e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat
x✝ : (forget FinBoolAlgCat).obj α
⊢ ↑((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : FinBoolAlgCat
e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat
⊢ ((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : FinBoolAlgCat
e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat
x✝ : (forget FinBoolAlgCat).obj β
⊢ ↑((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e,
map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toBoolAlgCat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.FinBoolAlgCat", "llama_tokens": 7968} |
[GOAL]
⊢ ConcreteCategory CompleteLatCat
[PROOFSTEP]
dsimp [CompleteLatCat]
[GOAL]
⊢ ConcreteCategory (Bundled CompleteLattice)
[PROOFSTEP]
infer_instance
[GOAL]
α β : CompleteLatCat
e : ↑α ≃o ↑β
⊢ { tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫
{
tosInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : CompleteLatCat
e : ↑α ≃o ↑β
x✝ : (forget CompleteLatCat).obj α
⊢ ↑({ tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫
{
tosInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : CompleteLatCat
e : ↑α ≃o ↑β
⊢ {
tosInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫
{ tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : CompleteLatCat
e : ↑α ≃o ↑β
x✝ : (forget CompleteLatCat).obj β
⊢ ↑({
tosInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫
{ tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) },
map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.CompleteLatCat", "llama_tokens": 1247} |
[GOAL]
α β : BddLatCat
e : ↑α.toLat ≃o ↑β.toLat
⊢ ((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : BddLatCat
e : ↑α.toLat ≃o ↑β.toLat
x✝ : (forget BddLatCat).obj α
⊢ ↑((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : BddLatCat
e : ↑α.toLat ≃o ↑β.toLat
⊢ ((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : BddLatCat
e : ↑α.toLat ≃o ↑β.toLat
x✝ : (forget BddLatCat).obj β
⊢ ↑((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α.toLat),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
X : LatCat
Y : BddLatCat
f : latToBddLatCat.obj X ⟶ Y
a b : ↑X
⊢ (some ∘ some) (a ⊔ b) = (some ∘ some) a ⊔ (some ∘ some) b
[PROOFSTEP]
rfl
[GOAL]
X : LatCat
Y : BddLatCat
f : latToBddLatCat.obj X ⟶ Y
a b : ↑X
⊢ (some ∘ some) (a ⊓ b) = (some ∘ some) a ⊓ (some ∘ some) b
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Order.Category.BddLatCat", "llama_tokens": 7495} |
[GOAL]
α β : SemilatSupCat
e : α.X ≃o β.X
⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥) } ≫
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : SemilatSupCat
e : α.X ≃o β.X
x✝ : (forget SemilatSupCat).obj α
⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥) } ≫
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : SemilatSupCat
e : α.X ≃o β.X
⊢ {
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) } ≫
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : SemilatSupCat
e : α.X ≃o β.X
x✝ : (forget SemilatSupCat).obj β
⊢ ↑({
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) } ≫
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_bot' := (_ : ↑e ⊥ = ⊥) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α β : SemilatInfCat
e : α.X ≃o β.X
⊢ { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) } ≫
{
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) } =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : SemilatInfCat
e : α.X ≃o β.X
x✝ : (forget SemilatInfCat).obj α
⊢ ↑({ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) } ≫
{
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' :=
(_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : SemilatInfCat
e : α.X ≃o β.X
⊢ {
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) } ≫
{ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) } =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : SemilatInfCat
e : α.X ≃o β.X
x✝ : (forget SemilatInfCat).obj β
⊢ ↑({
toInfHom :=
{ toFun := ↑(OrderIso.symm e),
map_inf' :=
(_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) } ≫
{ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) },
map_top' := (_ : ↑e ⊤ = ⊤) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.SemilatCat", "llama_tokens": 2188} |
{"mathlib_filename": "Mathlib.Order.Extension.Well", "llama_tokens": 0} |
|
[GOAL]
α β : LinOrdCat
e : ↑α ≃o ↑β
⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α
[PROOFSTEP]
ext x
[GOAL]
case w
α β : LinOrdCat
e : ↑α ≃o ↑β
x : (forget LinOrdCat).obj α
⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x
[PROOFSTEP]
exact e.symm_apply_apply x
[GOAL]
α β : LinOrdCat
e : ↑α ≃o ↑β
⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext x
[GOAL]
case w
α β : LinOrdCat
e : ↑α ≃o ↑β
x : (forget LinOrdCat).obj β
⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x
[PROOFSTEP]
exact e.apply_symm_apply x
| {"mathlib_filename": "Mathlib.Order.Category.LinOrdCat", "llama_tokens": 306} |
[GOAL]
α β : PartOrdCat
e : ↑α ≃o ↑β
⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α
[PROOFSTEP]
ext x
[GOAL]
case w
α β : PartOrdCat
e : ↑α ≃o ↑β
x : (forget PartOrdCat).obj α
⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x
[PROOFSTEP]
exact e.symm_apply_apply x
[GOAL]
α β : PartOrdCat
e : ↑α ≃o ↑β
⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext x
[GOAL]
case w
α β : PartOrdCat
e : ↑α ≃o ↑β
x : (forget PartOrdCat).obj β
⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x
[PROOFSTEP]
exact e.apply_symm_apply x
[GOAL]
X : PreordCat
⊢ { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
(𝟙 X) =
𝟙
({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.obj
X)
[PROOFSTEP]
ext x
[GOAL]
case w
X : PreordCat
x :
(forget PartOrdCat).obj
({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.obj
X)
⊢ ↑({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
(𝟙 X))
x =
↑(𝟙
({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.obj
X))
x
[PROOFSTEP]
exact Quotient.inductionOn' x fun x => Quotient.map'_mk'' _ (fun a b => id) _
[GOAL]
X✝ Y✝ Z✝ : PreordCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
(f ≫ g) =
{ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
f ≫
{ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
g
[PROOFSTEP]
ext x
[GOAL]
case w
X✝ Y✝ Z✝ : PreordCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
x :
(forget PartOrdCat).obj
({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.obj
X✝)
⊢ ↑({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
(f ≫ g))
x =
↑({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
f ≫
{ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1),
map := fun {X Y} f => OrderHom.antisymmetrization f }.map
g)
x
[PROOFSTEP]
exact Quotient.inductionOn' x fun x => OrderHom.antisymmetrization_apply_mk _ _
| {"mathlib_filename": "Mathlib.Order.Category.PartOrdCat", "llama_tokens": 1377} |
[GOAL]
α β : BoolAlgCat
e : ↑α ≃o ↑β
⊢ ((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) =
𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : BoolAlgCat
e : ↑α ≃o ↑β
x✝ : (forget BoolAlgCat).obj α
⊢ ↑((let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫
let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) })
x✝ =
↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : BoolAlgCat
e : ↑α ≃o ↑β
⊢ ((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) =
𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : BoolAlgCat
e : ↑α ≃o ↑β
x✝ : (forget BoolAlgCat).obj β
⊢ ↑((let src :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
a ⊔
SupHom.toFun
{
toSupHom :=
{ toFun := ↑(OrderIso.symm e),
map_sup' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊔ b) =
↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
↑(OrderIso.symm e) (a ⊓ b) =
↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑β),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫
let src :=
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) };
{
toLatticeHom :=
{
toSupHom :=
{ toFun := ↑e,
map_sup' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
(a ⊔ b) =
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
a ⊔
SupHom.toFun
{ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) },
map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom
b) },
map_inf' :=
(_ :
∀ (a b : ↑α),
SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) },
map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) })
x✝ =
↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.BoolAlgCat", "llama_tokens": 6973} |
[GOAL]
α β : BddOrdCat
e : ↑α.toPartOrd ≃o ↑β.toPartOrd
⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α
[PROOFSTEP]
ext
[GOAL]
case w
α β : BddOrdCat
e : ↑α.toPartOrd ≃o ↑β.toPartOrd
x✝ : (forget BddOrdCat).obj α
⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x✝ = ↑(𝟙 α) x✝
[PROOFSTEP]
exact e.symm_apply_apply _
[GOAL]
α β : BddOrdCat
e : ↑α.toPartOrd ≃o ↑β.toPartOrd
⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β
[PROOFSTEP]
ext
[GOAL]
case w
α β : BddOrdCat
e : ↑α.toPartOrd ≃o ↑β.toPartOrd
x✝ : (forget BddOrdCat).obj β
⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝
[PROOFSTEP]
exact e.apply_symm_apply _
| {"mathlib_filename": "Mathlib.Order.Category.BddOrdCat", "llama_tokens": 360} |