text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteSemilatticeSup α s✝ t : Set α a b : α s : ι → α ⊢ a ≤ iSup s ↔ ∀ (b : α), (∀ (i : ι), s i ≤ b) → a ≤ b [PROOFSTEP] simp [iSup, le_sSup_iff, upperBounds] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteSemilatticeInf α s✝ t : Set α a b : α s : ι → α ⊢ iInf s ≤ a ↔ ∀ (b : α), (∀ (i : ι), b ≤ s i) → b ≤ a [PROOFSTEP] simp [iInf, sInf_le_iff, lowerBounds] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteSemilatticeInf α s t : Set α a b : α h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x ⊢ ∀ (c : α), c ≤ sInf t → c ≤ sInf s [PROOFSTEP] simp only [le_sInf_iff] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteSemilatticeInf α s t : Set α a b : α h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x ⊢ ∀ (c : α), (∀ (b : α), b ∈ t → c ≤ b) → ∀ (b : α), b ∈ s → c ≤ b [PROOFSTEP] introv h₀ h₁ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteSemilatticeInf α s t : Set α a b✝ : α h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x c : α h₀ : ∀ (b : α), b ∈ t → c ≤ b b : α h₁ : b ∈ s ⊢ c ≤ b [PROOFSTEP] rcases h _ h₁ with ⟨y, hy, hy'⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteSemilatticeInf α s t : Set α a b✝ : α h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ y ≤ x c : α h₀ : ∀ (b : α), b ∈ t → c ≤ b b : α h₁ : b ∈ s y : α hy : y ∈ t hy' : y ≤ b ⊢ c ≤ b [PROOFSTEP] solve_by_elim [le_trans _ hy'] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : InfSet α isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s) a b c : α hac : a ≤ c hbc : b ≤ c ⊢ c ∈ {x | a ≤ x ∧ b ≤ x} [PROOFSTEP] simp [*] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : InfSet α isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s) a b c : α hab : a ≤ b hac : a ≤ c ⊢ a ≤ b ⊓ c [PROOFSTEP] apply (isGLB_sInf _).2 [GOAL] case a α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : InfSet α isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s) a b c : α hab : a ≤ b hac : a ≤ c ⊢ a ∈ lowerBounds {b, c} [PROOFSTEP] simp [*] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : InfSet α isGLB_sInf : ∀ (s : Set α), IsGLB s (sInf s) a : α ⊢ a ∈ lowerBounds ∅ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : SupSet α isLUB_sSup : ∀ (s : Set α), IsLUB s (sSup s) a b c : α hac : a ≤ c hbc : b ≤ c ⊢ c ∈ upperBounds {a, b} [PROOFSTEP] simp [*] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : SupSet α isLUB_sSup : ∀ (s : Set α), IsLUB s (sSup s) a b c : α hab : a ≤ b hac : a ≤ c ⊢ a ∈ {x | x ≤ b ∧ x ≤ c} [PROOFSTEP] simp [*] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 H1 : PartialOrder α H2 : SupSet α isLUB_sSup : ∀ (s : Set α), IsLUB s (sSup s) x : α ⊢ x ∈ upperBounds ∅ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 i : CompleteLinearOrder α a b : α ⊢ min a b = if a ≤ b then a else b [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 i : CompleteLinearOrder α a b : α h : a ≤ b ⊢ min a b = a [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 i : CompleteLinearOrder α a b : α h : ¬a ≤ b ⊢ min a b = b [PROOFSTEP] simp [(CompleteLinearOrder.le_total a b).resolve_left h] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 i : CompleteLinearOrder α a b : α ⊢ max a b = if a ≤ b then b else a [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 i : CompleteLinearOrder α a b : α h : a ≤ b ⊢ max a b = b [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 i : CompleteLinearOrder α a b : α h : ¬a ≤ b ⊢ max a b = a [PROOFSTEP] simp [(CompleteLinearOrder.le_total a b).resolve_left h] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α s✝ t : Set α a b : α s : Set α h_sup : sSup s = ⊥ hne : Set.Nonempty s ⊢ s = {⊥} [PROOFSTEP] rw [Set.eq_singleton_iff_nonempty_unique_mem] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α s✝ t : Set α a b : α s : Set α h_sup : sSup s = ⊥ hne : Set.Nonempty s ⊢ Set.Nonempty s ∧ ∀ (x : α), x ∈ s → x = ⊥ [PROOFSTEP] rw [sSup_eq_bot] at h_sup [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α s✝ t : Set α a b : α s : Set α h_sup : ∀ (a : α), a ∈ s → a = ⊥ hne : Set.Nonempty s ⊢ Set.Nonempty s ∧ ∀ (x : α), x ∈ s → x = ⊥ [PROOFSTEP] exact ⟨hne, h_sup⟩ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f g : ι → α s : Set α ⊢ sSup s = ⨆ (a : ↑s), ↑a [PROOFSTEP] rw [iSup, Subtype.range_coe] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g✝ : ι → α f : ι → ι' hf : Surjective f g : ι' → α ⊢ ⨆ (x : ι), g (f x) = ⨆ (y : ι'), g y [PROOFSTEP] simp [iSup] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g✝ : ι → α f : ι → ι' hf : Surjective f g : ι' → α ⊢ sSup (range fun x => g (f x)) = sSup (range fun y => g y) [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g✝ : ι → α f : ι → ι' hf : Surjective f g : ι' → α ⊢ (range fun x => g (f x)) = range fun y => g y [PROOFSTEP] exact hf.range_comp g [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f g✝ : ι → α g : ι' → α h : ι → ι' h1 : Surjective h h2 : ∀ (x : ι), g (h x) = f x ⊢ ⨆ (x : ι), f x = ⨆ (y : ι'), g y [PROOFSTEP] convert h1.iSup_comp g [GOAL] case h.e'_2.h.e'_4.h α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f g✝ : ι → α g : ι' → α h : ι → ι' h1 : Surjective h h2 : ∀ (x : ι), g (h x) = f x x✝ : ι ⊢ f x✝ = g (h x✝) [PROOFSTEP] exact (h2 _).symm [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g : ι → α p q : Prop f₁ : p → α f₂ : q → α pq : p ↔ q f : ∀ (x : q), f₁ (_ : p) = f₂ x ⊢ iSup f₁ = iSup f₂ [PROOFSTEP] obtain rfl := propext pq [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g : ι → α p : Prop f₁ f₂ : p → α pq : p ↔ p f : ∀ (x : p), f₁ (_ : p) = f₂ x ⊢ iSup f₁ = iSup f₂ [PROOFSTEP] congr with x [GOAL] case e_s.h α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g : ι → α p : Prop f₁ f₂ : p → α pq : p ↔ p f : ∀ (x : p), f₁ (_ : p) = f₂ x x : p ⊢ f₁ x = f₂ x [PROOFSTEP] apply f [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g✝ : ι → α g : β → α f : ι → β ⊢ ⨆ (b : ↑(range f)), g ↑b = ⨆ (i : ι), g (f i) [PROOFSTEP] rw [iSup, iSup, ← image_eq_range, ← range_comp] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g✝ : ι → α g : β → α f : ι → β ⊢ sSup (range (g ∘ f)) = sSup (range fun i => g (f i)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : SupSet α f✝ g : ι → α s : Set β f : β → α ⊢ sSup (f '' s) = ⨆ (a : ↑s), f ↑a [PROOFSTEP] rw [iSup, image_eq_range] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : (i : ι) → κ i → α ⊢ ⨆ (i : ι) (j : κ i), f i j ≤ a ↔ ∀ (i : ι) (j : κ i), f i j ≤ a [PROOFSTEP] simp_rw [iSup_le_iff] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : (i : ι) → κ i → α ⊢ a ≤ ⨅ (i : ι) (j : κ i), f i j ↔ ∀ (i : ι) (j : κ i), a ≤ f i j [PROOFSTEP] simp_rw [le_iInf_iff] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s✝ t : ι → α a b : α inst✝ : CompleteLattice β s : Set α f : α → β hf : Monotone f ⊢ ⨆ (a : α) (_ : a ∈ s), f a ≤ f (sSup s) [PROOFSTEP] rw [sSup_eq_iSup] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s✝ t : ι → α a b : α inst✝ : CompleteLattice β s : Set α f : α → β hf : Monotone f ⊢ ⨆ (a : α) (_ : a ∈ s), f a ≤ f (⨆ (a : α) (_ : a ∈ s), a) [PROOFSTEP] exact hf.le_map_iSup₂ _ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s t : ι → α a b : α inst✝ : CompleteLattice β f : α ≃o β x✝ : ι → α x : α ⊢ ↑f (⨆ (i : ι), x✝ i) ≤ ↑f x ↔ ⨆ (i : ι), ↑f (x✝ i) ≤ ↑f x [PROOFSTEP] simp only [f.le_iff_le, iSup_le_iff] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s✝ t : ι → α a b : α inst✝ : CompleteLattice β f : α ≃o β s : Set α ⊢ ↑f (sSup s) = ⨆ (a : α) (_ : a ∈ s), ↑f a [PROOFSTEP] simp only [sSup_eq_iSup, OrderIso.map_iSup] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s✝ t : ι → α a b : α inst✝ : CompleteLattice β s : Set α f : α → β hf : Antitone f ⊢ f (sSup s) ≤ ⨅ (a : α) (_ : a ∈ s), f a [PROOFSTEP] rw [sSup_eq_iSup] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s✝ t : ι → α a b : α inst✝ : CompleteLattice β s : Set α f : α → β hf : Antitone f ⊢ f (⨆ (a : α) (_ : a ∈ s), a) ≤ ⨅ (a : α) (_ : a ∈ s), f a [PROOFSTEP] exact hf.map_iSup₂_le _ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f g s t : ι → α a b : α inst✝ : Nonempty ι ⊢ ⨆ (x : ι), a = a [PROOFSTEP] rw [iSup, range_const, sSup_singleton] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : (i : ι) → κ i → α ⊢ ⨆ (i : ι) (j : κ i), f i j = ⊥ ↔ ∀ (i : ι) (j : κ i), f i j = ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : (i : ι) → κ i → α ⊢ ⨅ (i : ι) (j : κ i), f i j = ⊤ ↔ ∀ (i : ι) (j : κ i), f i j = ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f g s t : ι → α a✝ b : α p : Prop inst✝ : Decidable p a : p → α ⊢ ⨆ (h : p), a h = if h : p then a h else ⊥ [PROOFSTEP] by_cases h : p [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f g s t : ι → α a✝ b : α p : Prop inst✝ : Decidable p a : p → α h : p ⊢ ⨆ (h : p), a h = if h : p then a h else ⊥ [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f g s t : ι → α a✝ b : α p : Prop inst✝ : Decidable p a : p → α h : ¬p ⊢ ⨆ (h : p), a h = if h : p then a h else ⊥ [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α ι₁ : Sort u_9 ι₂ : Sort u_10 κ₁ : ι₁ → Sort u_11 κ₂ : ι₂ → Sort u_12 f : (i₁ : ι₁) → κ₁ i₁ → (i₂ : ι₂) → κ₂ i₂ → α ⊢ ⨆ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), f i₁ j₁ i₂ j₂ = ⨆ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), f i₁ j₁ i₂ j₂ [PROOFSTEP] simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α ι₁ : Sort u_9 ι₂ : Sort u_10 κ₁ : ι₁ → Sort u_11 κ₂ : ι₂ → Sort u_12 f : (i₁ : ι₁) → κ₁ i₁ → (i₂ : ι₂) → κ₂ i₂ → α ⊢ ⨅ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), f i₁ j₁ i₂ j₂ = ⨅ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), f i₁ j₁ i₂ j₂ [PROOFSTEP] simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b✝ : α b : β f : (x : β) → x = b → α c : β ⊢ ∀ (i : c = b), f c i ≤ f b (_ : b = b) [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α c : β f : (x : β) → x = c → α ⊢ f c (_ : c = c) ≤ f c (_ : c = c) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b✝ : α b : β f : (x : β) → b = x → α c : β ⊢ ∀ (j : b = c), f c j ≤ f b (_ : b = b) [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b✝ : α b : β f : (x : β) → b = x → α ⊢ f b (_ : b = b) ≤ f b (_ : b = b) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι✝ : Sort u_5 ι' : Sort u_6 κ : ι✝ → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s✝ t : ι✝ → α a✝ b : α ι : Type u_9 a : α s : Set ι hs : Set.Nonempty s ⊢ ⨆ (i : ι) (_ : i ∈ s), a = a [PROOFSTEP] haveI : Nonempty s := Set.nonempty_coe_sort.mpr hs [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι✝ : Sort u_5 ι' : Sort u_6 κ : ι✝ → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s✝ t : ι✝ → α a✝ b : α ι : Type u_9 a : α s : Set ι hs : Set.Nonempty s this : Nonempty ↑s ⊢ ⨆ (i : ι) (_ : i ∈ s), a = a [PROOFSTEP] rw [← iSup_subtype'', iSup_const] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s t : ι → α a✝ b : α inst✝ : Nonempty ι f : ι → α a : α ⊢ (⨆ (x : ι), f x) ⊔ a = ⨆ (x : ι), f x ⊔ a [PROOFSTEP] rw [iSup_sup_eq, iSup_const] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s t : ι → α a✝ b : α inst✝ : Nonempty ι f : ι → α a : α ⊢ (⨅ (x : ι), f x) ⊓ a = ⨅ (x : ι), f x ⊓ a [PROOFSTEP] rw [iInf_inf_eq, iInf_const] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s t : ι → α a✝ b : α inst✝ : Nonempty ι f : ι → α a : α ⊢ a ⊔ ⨆ (x : ι), f x = ⨆ (x : ι), a ⊔ f x [PROOFSTEP] rw [iSup_sup_eq, iSup_const] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g s t : ι → α a✝ b : α inst✝ : Nonempty ι f : ι → α a : α ⊢ a ⊓ ⨅ (x : ι), f x = ⨅ (x : ι), a ⊓ f x [PROOFSTEP] rw [iInf_inf_eq, iInf_const] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a✝ b : α p : ι → Prop f : (i : ι) → p i → α a : α h : ∃ i, p i ⊢ (⨆ (i : ι) (h : p i), f i h) ⊔ a = ⨆ (i : ι) (h : p i), f i h ⊔ a [PROOFSTEP] haveI : Nonempty { i // p i } := let ⟨i, hi⟩ := h ⟨⟨i, hi⟩⟩ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a✝ b : α p : ι → Prop f : (i : ι) → p i → α a : α h : ∃ i, p i this : Nonempty { i // p i } ⊢ (⨆ (i : ι) (h : p i), f i h) ⊔ a = ⨆ (i : ι) (h : p i), f i h ⊔ a [PROOFSTEP] rw [iSup_subtype', iSup_subtype', iSup_sup] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a✝ b : α p : ι → Prop f : (i : ι) → p i → α a : α h : ∃ i, p i ⊢ a ⊔ ⨆ (i : ι) (h : p i), f i h = ⨆ (i : ι) (h : p i), a ⊔ f i h [PROOFSTEP] simpa only [sup_comm] using @biSup_sup α _ _ p _ _ h [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s✝ t : ι → α a b : α s : False → α ⊢ iSup s = ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s✝ t : ι → α a b : α s : False → α ⊢ iInf s = ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g✝ s t : ι → α a b : α p : ι → Prop inst✝ : DecidablePred p f : (i : ι) → p i → α g : (i : ι) → ¬p i → α ⊢ (⨆ (i : ι), if h : p i then f i h else g i h) = (⨆ (i : ι) (h : p i), f i h) ⊔ ⨆ (i : ι) (h : ¬p i), g i h [PROOFSTEP] rw [← iSup_sup_eq] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g✝ s t : ι → α a b : α p : ι → Prop inst✝ : DecidablePred p f : (i : ι) → p i → α g : (i : ι) → ¬p i → α ⊢ (⨆ (i : ι), if h : p i then f i h else g i h) = ⨆ (x : ι), (⨆ (h : p x), f x h) ⊔ ⨆ (h : ¬p x), g x h [PROOFSTEP] congr 1 with i [GOAL] case e_s.h α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g✝ s t : ι → α a b : α p : ι → Prop inst✝ : DecidablePred p f : (i : ι) → p i → α g : (i : ι) → ¬p i → α i : ι ⊢ (if h : p i then f i h else g i h) = (⨆ (h : p i), f i h) ⊔ ⨆ (h : ¬p i), g i h [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g✝ s t : ι → α a b : α p : ι → Prop inst✝ : DecidablePred p f : (i : ι) → p i → α g : (i : ι) → ¬p i → α i : ι h : p i ⊢ f i h = (⨆ (h : p i), f i h) ⊔ ⨆ (h : ¬p i), g i h [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : CompleteLattice α f✝ g✝ s t : ι → α a b : α p : ι → Prop inst✝ : DecidablePred p f : (i : ι) → p i → α g : (i : ι) → ¬p i → α i : ι h : ¬p i ⊢ g i h = (⨆ (h : p i), f i h) ⊔ ⨆ (h : ¬p i), g i h [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g✝ s t : ι → α a b : α g : β → α f : ι → β ⊢ ⨆ (b : β) (_ : b ∈ range f), g b = ⨆ (i : ι), g (f i) [PROOFSTEP] rw [← iSup_subtype'', iSup_range'] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t : ι → α a b : α s : Set β f : β → α ⊢ sSup (f '' s) = ⨆ (a : β) (_ : a ∈ s), f a [PROOFSTEP] rw [← iSup_subtype'', sSup_image'] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α ⊢ ⨆ (x : β) (_ : x ∈ ∅), f x = ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α ⊢ ⨅ (x : β) (_ : x ∈ ∅), f x = ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α ⊢ ⨆ (x : β) (_ : x ∈ univ), f x = ⨆ (x : β), f x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α ⊢ ⨅ (x : β) (_ : x ∈ univ), f x = ⨅ (x : β), f x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t✝ : ι → α a b : α f : β → α s t : Set β ⊢ ⨆ (x : β) (_ : x ∈ s ∪ t), f x = (⨆ (x : β) (_ : x ∈ s), f x) ⊔ ⨆ (x : β) (_ : x ∈ t), f x [PROOFSTEP] simp_rw [mem_union, iSup_or, iSup_sup_eq] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α p : β → Prop ⊢ ⨆ (i : β), f i = (⨆ (i : β) (_ : p i), f i) ⊔ ⨆ (i : β) (_ : ¬p i), f i [PROOFSTEP] simpa [Classical.em] using @iSup_union _ _ _ f {i | p i} {i | ¬p i} [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α i₀ : β ⊢ ⨆ (i : β), f i = f i₀ ⊔ ⨆ (i : β) (_ : i ≠ i₀), f i [PROOFSTEP] convert iSup_split f (fun i => i = i₀) [GOAL] case h.e'_3.h.e'_3 α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β → α i₀ : β ⊢ f i₀ = ⨆ (i : β) (_ : i = i₀), f i [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b✝ : α f : β → α b : β ⊢ ⨆ (x : β) (_ : x ∈ {b}), f x = f b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b✝ : α f : β → α b : β ⊢ ⨅ (x : β) (_ : x ∈ {b}), f x = f b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a✝ b✝ : α f : β → α a b : β ⊢ ⨆ (x : β) (_ : x ∈ {a, b}), f x = f a ⊔ f b [PROOFSTEP] rw [iSup_insert, iSup_singleton] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a✝ b✝ : α f : β → α a b : β ⊢ ⨅ (x : β) (_ : x ∈ {a, b}), f x = f a ⊓ f b [PROOFSTEP] rw [iInf_insert, iInf_singleton] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ✝ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g✝ s t✝ : ι → α a b : α γ : Type u_9 f : β → γ g : γ → α t : Set β ⊢ ⨆ (c : γ) (_ : c ∈ f '' t), g c = ⨆ (b : β) (_ : b ∈ t), g (f b) [PROOFSTEP] rw [← sSup_image, ← sSup_image, ← image_comp] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ✝ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g✝ s t✝ : ι → α a b : α γ : Type u_9 f : β → γ g : γ → α t : Set β ⊢ sSup ((fun c => g c) ∘ f '' t) = sSup ((fun b => g (f b)) '' t) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α e : ι → β he : Injective e f : ι → α ⊢ ⨆ (j : β), extend e f ⊥ j = ⨆ (i : ι), f i [PROOFSTEP] rw [iSup_split _ fun j => ∃ i, e i = j] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α e : ι → β he : Injective e f : ι → α ⊢ (⨆ (i : β) (_ : ∃ i_1, e i_1 = i), extend e f ⊥ i) ⊔ ⨆ (i : β) (_ : ¬∃ i_1, e i_1 = i), extend e f ⊥ i = ⨆ (i : ι), f i [PROOFSTEP] simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : Bool → α ⊢ ⨆ (b : Bool), f b = f true ⊔ f false [PROOFSTEP] rw [iSup, Bool.range_eq, sSup_pair, sup_comm] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b x y : α ⊢ x ⊔ y = ⨆ (b : Bool), bif b then x else y [PROOFSTEP] rw [iSup_bool_eq, Bool.cond_true, Bool.cond_false] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t : ι → α a b : α s : Set β f : β → α ⊢ IsGLB (f '' s) (⨅ (x : β) (_ : x ∈ s), f x) [PROOFSTEP] simpa only [range_comp, Subtype.range_coe, iInf_subtype'] using @isGLB_iInf α s _ (f ∘ fun x => (x : β)) [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t : ι → α a b : α s : Set β f : β → α ⊢ IsLUB (f '' s) (⨆ (x : β) (_ : x ∈ s), f x) [PROOFSTEP] simpa only [range_comp, Subtype.range_coe, iSup_subtype'] using @isLUB_iSup α s _ (f ∘ fun x => (x : β)) [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α p : β → Type u_9 f : Sigma p → α c : α ⊢ ⨆ (x : Sigma p), f x ≤ c ↔ ⨆ (i : β) (j : p i), f { fst := i, snd := j } ≤ c [PROOFSTEP] simp only [iSup_le_iff, Sigma.forall] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β × γ → α c : α ⊢ ⨆ (x : β × γ), f x ≤ c ↔ ⨆ (i : β) (j : γ), f (i, j) ≤ c [PROOFSTEP] simp only [iSup_le_iff, Prod.forall] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t✝ : ι → α a b : α f : β × γ → α s : Set β t : Set γ ⊢ ⨆ (x : β × γ) (_ : x ∈ s ×ˢ t), f x = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b) [PROOFSTEP] simp_rw [iSup_prod, mem_prod, iSup_and] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t✝ : ι → α a b : α f : β × γ → α s : Set β t : Set γ ⊢ ⨆ (i : β) (j : γ) (_ : i ∈ s) (_ : j ∈ t), f (i, j) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f (a, b) [PROOFSTEP] exact iSup_congr fun _ => iSup_comm [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : β ⊕ γ → α c : α ⊢ ⨆ (x : β ⊕ γ), f x ≤ c ↔ (⨆ (i : β), f (Sum.inl i)) ⊔ ⨆ (j : γ), f (Sum.inr j) ≤ c [PROOFSTEP] simp only [sup_le_iff, iSup_le_iff, Sum.forall] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : Option β → α c : α ⊢ ⨆ (o : Option β), f o ≤ c ↔ f none ⊔ ⨆ (b : β), f (some b) ≤ c [PROOFSTEP] simp only [iSup_le_iff, sup_le_iff, Option.forall] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a✝ b a : α f : β → α ⊢ ⨆ (o : Option β), Option.elim o a f = a ⊔ ⨆ (b : β), f b [PROOFSTEP] simp [iSup_option] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α ⊢ ⨆ (i : { i // f i ≠ ⊥ }), f ↑i = ⨆ (i : ι), f i [PROOFSTEP] by_cases htriv : ∀ i, f i = ⊥ [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ∀ (i : ι), f i = ⊥ ⊢ ⨆ (i : { i // f i ≠ ⊥ }), f ↑i = ⨆ (i : ι), f i [PROOFSTEP] simp only [iSup_bot, (funext htriv : f = _)] [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ¬∀ (i : ι), f i = ⊥ ⊢ ⨆ (i : { i // f i ≠ ⊥ }), f ↑i = ⨆ (i : ι), f i [PROOFSTEP] refine' (iSup_comp_le f _).antisymm (iSup_mono' fun i => _) [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ¬∀ (i : ι), f i = ⊥ i : ι ⊢ ∃ i', f i ≤ f ↑i' [PROOFSTEP] by_cases hi : f i = ⊥ [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ¬∀ (i : ι), f i = ⊥ i : ι hi : f i = ⊥ ⊢ ∃ i', f i ≤ f ↑i' [PROOFSTEP] rw [hi] [GOAL] case pos α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ¬∀ (i : ι), f i = ⊥ i : ι hi : f i = ⊥ ⊢ ∃ i', ⊥ ≤ f ↑i' [PROOFSTEP] obtain ⟨i₀, hi₀⟩ := not_forall.mp htriv [GOAL] case pos.intro α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ¬∀ (i : ι), f i = ⊥ i : ι hi : f i = ⊥ i₀ : ι hi₀ : ¬f i₀ = ⊥ ⊢ ∃ i', ⊥ ≤ f ↑i' [PROOFSTEP] exact ⟨⟨i₀, hi₀⟩, bot_le⟩ [GOAL] case neg α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ι → α htriv : ¬∀ (i : ι), f i = ⊥ i : ι hi : ¬f i = ⊥ ⊢ ∃ i', f i ≤ f ↑i' [PROOFSTEP] exact ⟨⟨i, hi⟩, rfl.le⟩ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t✝ : ι → α a b : α f : β → γ → α s : Set β t : Set γ ⊢ sSup (image2 f s t) = ⨆ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f a b [PROOFSTEP] rw [← image_prod, sSup_image, biSup_prod] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s✝ t✝ : ι → α a b : α f : β → γ → α s : Set β t : Set γ ⊢ sInf (image2 f s t) = ⨅ (a : β) (_ : a ∈ s) (b : γ) (_ : b ∈ t), f a b [PROOFSTEP] rw [← image_prod, sInf_image, biInf_prod] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n : ℕ ⊢ ⨆ (i : ℕ) (_ : i ≥ n), u i = ⨆ (i : ℕ), u (i + n) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n : ℕ ⊢ ⨆ (i : ℕ) (_ : i ≥ n), u i ≤ ⨆ (i : ℕ), u (i + n) [PROOFSTEP] simp only [iSup_le_iff] [GOAL] case a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n : ℕ ⊢ ⨆ (i : ℕ), u (i + n) ≤ ⨆ (i : ℕ) (_ : i ≥ n), u i [PROOFSTEP] simp only [iSup_le_iff] [GOAL] case a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n : ℕ ⊢ ∀ (i : ℕ), i ≥ n → u i ≤ ⨆ (i : ℕ), u (i + n) [PROOFSTEP] refine fun i hi => le_sSup ⟨i - n, ?_⟩ [GOAL] case a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n i : ℕ hi : i ≥ n ⊢ (fun i => u (i + n)) (i - n) = u i [PROOFSTEP] dsimp only [GOAL] case a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n i : ℕ hi : i ≥ n ⊢ u (i - n + n) = u i [PROOFSTEP] rw [Nat.sub_add_cancel hi] [GOAL] case a α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α n : ℕ ⊢ ∀ (i : ℕ), u (i + n) ≤ ⨆ (i : ℕ) (_ : i ≥ n), u i [PROOFSTEP] exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩ [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ℕ → α k : ℕ ⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f i [PROOFSTEP] have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => biInf_mono fun i => h.trans [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ℕ → α k : ℕ hf : Monotone fun n => ⨅ (i : ℕ) (_ : i ≥ n), f i ⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f i [PROOFSTEP] rw [← Monotone.iSup_nat_add hf k] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ℕ → α k : ℕ hf : Monotone fun n => ⨅ (i : ℕ) (_ : i ≥ n), f i ⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n + k), f i [PROOFSTEP] simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α ⊢ u 0 ⊔ ⨆ (i : ℕ), u (i + 1) = ⨆ (x : ℕ) (_ : x ∈ {0} ∪ range Nat.succ), u x [PROOFSTEP] {rw [iSup_union, iSup_singleton, iSup_range] } [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α ⊢ u 0 ⊔ ⨆ (i : ℕ), u (i + 1) = ⨆ (x : ℕ) (_ : x ∈ {0} ∪ range Nat.succ), u x [PROOFSTEP] rw [iSup_union, iSup_singleton, iSup_range] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f g s t : ι → α a b : α u : ℕ → α ⊢ ⨆ (x : ℕ) (_ : x ∈ {0} ∪ range Nat.succ), u x = ⨆ (i : ℕ), u i [PROOFSTEP] rw [Nat.zero_union_range_succ, iSup_univ] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ℕ → α ⊢ ⨅ (i : ℕ) (_ : i > 0), f i = ⨅ (i : ℕ), f (i + 1) [PROOFSTEP] rw [← iInf_range, Nat.range_succ] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α f✝ g s t : ι → α a b : α f : ℕ → α ⊢ ⨅ (i : ℕ) (_ : i > 0), f i = ⨅ (b : ℕ) (_ : b ∈ {i | 0 < i}), f b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLinearOrder α f : ι → α ⊢ iSup f = ⊤ ↔ ∀ (b : α), b < ⊤ → ∃ i, b < f i [PROOFSTEP] simp only [← sSup_range, sSup_eq_top, Set.exists_range_iff] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLinearOrder α f : ι → α ⊢ iInf f = ⊥ ↔ ∀ (b : α), b > ⊥ → ∃ i, f i < b [PROOFSTEP] simp only [← sInf_range, sInf_eq_bot, Set.exists_range_iff] [GOAL] α✝ : Type u_1 β✝ : Type u_2 β₂ : Type u_3 γ : Type u_4 ι✝ : Sort u_5 ι' : Sort u_6 κ : ι✝ → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 β : α → Type u_10 ι : Sort u_11 inst✝ : (i : α) → SupSet (β i) f : ι → (a : α) → β a a : α ⊢ iSup (fun i => f i) a = ⨆ (i : ι), f i a [PROOFSTEP] rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ← range_comp] [GOAL] α✝ : Type u_1 β✝ : Type u_2 β₂ : Type u_3 γ : Type u_4 ι✝ : Sort u_5 ι' : Sort u_6 κ : ι✝ → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 β : α → Type u_10 ι : Sort u_11 inst✝ : (i : α) → SupSet (β i) f : ι → (a : α) → β a a : α ⊢ sSup (range ((fun f => f a) ∘ f)) = sSup (range fun i => f i a) [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 s : Set (α → Prop) a : α ⊢ sSup s a ↔ ∃ r, r ∈ s ∧ r a [PROOFSTEP] rw [sSup_apply] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 s : Set (α → Prop) a : α ⊢ ⨆ (f : ↑s), ↑f a ↔ ∃ r, r ∈ s ∧ r a [PROOFSTEP] simp [← eq_iff_iff] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 s : Set (α → Prop) a : α ⊢ sInf s a ↔ ∀ (r : α → Prop), r ∈ s → r a [PROOFSTEP] rw [sInf_apply] [GOAL] α✝ : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 s : Set (α → Prop) a : α ⊢ ⨅ (f : ↑s), ↑f a ↔ ∀ (r : α → Prop), r ∈ s → r a [PROOFSTEP] simp [← eq_iff_iff] [GOAL] α✝ : Type u_1 β✝ : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 β : Type u_10 s : Set (α → β → Prop) a : α b : β ⊢ sSup s a b ↔ ∃ r, r ∈ s ∧ r a b [PROOFSTEP] rw [sSup_apply] [GOAL] α✝ : Type u_1 β✝ : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 β : Type u_10 s : Set (α → β → Prop) a : α b : β ⊢ iSup (fun f => ↑f a) b ↔ ∃ r, r ∈ s ∧ r a b [PROOFSTEP] simp [← eq_iff_iff] [GOAL] α✝ : Type u_1 β✝ : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 β : Type u_10 s : Set (α → β → Prop) a : α b : β ⊢ sInf s a b ↔ ∀ (r : α → β → Prop), r ∈ s → r a b [PROOFSTEP] rw [sInf_apply] [GOAL] α✝ : Type u_1 β✝ : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 α : Type u_9 β : Type u_10 s : Set (α → β → Prop) a : α b : β ⊢ iInf (fun f => ↑f a) b ↔ ∀ (r : α → β → Prop), r ∈ s → r a b [PROOFSTEP] simp [← eq_iff_iff] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : InfSet α inst✝ : InfSet β f : ι → α × β ⊢ swap (iInf f) = ⨅ (i : ι), swap (f i) [PROOFSTEP] simp_rw [iInf, swap_sInf, ← range_comp, Function.comp] -- Porting note: need to unfold `∘` [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝¹ : SupSet α inst✝ : SupSet β f : ι → α × β ⊢ swap (iSup f) = ⨆ (i : ι), swap (f i) [PROOFSTEP] simp_rw [iSup, swap_sSup, ← range_comp, Function.comp] -- Porting note: need to unfold `∘` [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α s : Set (ULift α) ⊢ (sSup s).down = ⨆ (a : ULift α) (_ : a ∈ s), a.down [PROOFSTEP] rw [sSup_eq_iSup', down_iSup, iSup_subtype''] [GOAL] α : Type u_1 β : Type u_2 β₂ : Type u_3 γ : Type u_4 ι : Sort u_5 ι' : Sort u_6 κ : ι → Sort u_7 κ' : ι' → Sort u_8 inst✝ : CompleteLattice α s : Set (ULift α) ⊢ (sInf s).down = ⨅ (a : ULift α) (_ : a ∈ s), a.down [PROOFSTEP] rw [sInf_eq_iInf', down_iInf, iInf_subtype'']
{"mathlib_filename": "Mathlib.Order.CompleteLattice", "llama_tokens": 24681}
{"mathlib_filename": "Mathlib.Order.KrullDimension", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 finsetIcc : α → α → Finset α mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b a b x : α ⊢ x ∈ (fun a b => filter (fun x => ¬b ≤ x) (finsetIcc a b)) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [Finset.mem_filter, mem_Icc, and_assoc, lt_iff_le_not_le] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 finsetIcc : α → α → Finset α mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b a b x : α ⊢ x ∈ (fun a b => filter (fun x => ¬x ≤ a) (finsetIcc a b)) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [Finset.mem_filter, mem_Icc, and_right_comm, lt_iff_le_not_le] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 finsetIcc : α → α → Finset α mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b a b x : α ⊢ x ∈ (fun a b => filter (fun x => ¬x ≤ a ∧ ¬b ≤ x) (finsetIcc a b)) a b ↔ a < x ∧ x < b [PROOFSTEP] rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_not_le, lt_iff_le_not_le] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : DecidableEq α finsetIcc : α → α → Finset α mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b a b x : α ⊢ x ∈ (fun a b => filter (fun x => x ≠ b) (finsetIcc a b)) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [Finset.mem_filter, mem_Icc, and_assoc, lt_iff_le_and_ne] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : DecidableEq α finsetIcc : α → α → Finset α mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b a b x : α ⊢ x ∈ (fun a b => filter (fun x => a ≠ x) (finsetIcc a b)) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [Finset.mem_filter, mem_Icc, and_right_comm, lt_iff_le_and_ne] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : DecidableEq α finsetIcc : α → α → Finset α mem_Icc : ∀ (a b x : α), x ∈ finsetIcc a b ↔ a ≤ x ∧ x ≤ b a b x : α ⊢ x ∈ (fun a b => filter (fun x => a ≠ x ∧ x ≠ b) (finsetIcc a b)) a b ↔ a < x ∧ x < b [PROOFSTEP] rw [Finset.mem_filter, mem_Icc, and_and_and_comm, lt_iff_le_and_ne, lt_iff_le_and_ne] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 finsetIci : α → Finset α mem_Ici : ∀ (a x : α), x ∈ finsetIci a ↔ a ≤ x a x : α ⊢ x ∈ (fun a => filter (fun x => ¬x ≤ a) (finsetIci a)) a ↔ a < x [PROOFSTEP] rw [mem_filter, mem_Ici, lt_iff_le_not_le] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : DecidableEq α finsetIci : α → Finset α mem_Ici : ∀ (a x : α), x ∈ finsetIci a ↔ a ≤ x a x : α ⊢ x ∈ (fun a => filter (fun x => a ≠ x) (finsetIci a)) a ↔ a < x [PROOFSTEP] rw [mem_filter, mem_Ici, lt_iff_le_and_ne] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 finsetIic : α → Finset α mem_Iic : ∀ (a x : α), x ∈ finsetIic a ↔ x ≤ a a x : α ⊢ x ∈ (fun a => filter (fun x => ¬a ≤ x) (finsetIic a)) a ↔ x < a [PROOFSTEP] rw [mem_filter, mem_Iic, lt_iff_le_not_le] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : DecidableEq α finsetIic : α → Finset α mem_Iic : ∀ (a x : α), x ∈ finsetIic a ↔ x ≤ a a x : α ⊢ x ∈ (fun a => filter (fun x => x ≠ a) (finsetIic a)) a ↔ x < a [PROOFSTEP] rw [mem_filter, mem_Iic, lt_iff_le_and_ne] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : LocallyFiniteOrder α inst✝ : OrderTop α a✝ x✝ a x : α ⊢ x ∈ (fun b => Icc b ⊤) a ↔ a ≤ x [PROOFSTEP] rw [mem_Icc, and_iff_left le_top] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : LocallyFiniteOrder α inst✝ : OrderTop α a✝ x✝ a x : α ⊢ x ∈ (fun b => Ioc b ⊤) a ↔ a < x [PROOFSTEP] rw [mem_Ioc, and_iff_left le_top] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : LocallyFiniteOrder α b x✝ a x : α ⊢ x ∈ Icc ⊥ a ↔ x ≤ a [PROOFSTEP] rw [mem_Icc, and_iff_right bot_le] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : LocallyFiniteOrder α b x✝ a x : α ⊢ x ∈ Ico ⊥ a ↔ x < a [PROOFSTEP] rw [mem_Ico, and_iff_right bot_le] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α a b x : α ⊢ x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [Icc, ← Finset.mem_def, Finset.mem_Icc] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α a b x : α ⊢ x ∈ Ico a b ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [Ico, ← Finset.mem_def, Finset.mem_Ico] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α a b x : α ⊢ x ∈ Ioc a b ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [Ioc, ← Finset.mem_def, Finset.mem_Ioc] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrder α a b x : α ⊢ x ∈ Ioo a b ↔ a < x ∧ x < b [PROOFSTEP] rw [Ioo, ← Finset.mem_def, Finset.mem_Ioo] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α a x : α ⊢ x ∈ Ici a ↔ a ≤ x [PROOFSTEP] rw [Ici, ← Finset.mem_def, Finset.mem_Ici] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α a x : α ⊢ x ∈ Ioi a ↔ a < x [PROOFSTEP] rw [Ioi, ← Finset.mem_def, Finset.mem_Ioi] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α b x : α ⊢ x ∈ Iic b ↔ x ≤ b [PROOFSTEP] rw [Iic, ← Finset.mem_def, Finset.mem_Iic] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α b x : α ⊢ x ∈ Iio b ↔ x < b [PROOFSTEP] rw [Iio, ← Finset.mem_def, Finset.mem_Iio] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h : ∀ (a b : α), Set.Finite (Set.Icc a b) a b x : α ⊢ x ∈ (fun a b => Set.Finite.toFinset (_ : Set.Finite (Set.Icc a b))) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [Set.Finite.mem_toFinset, Set.mem_Icc] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Fintype α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a b x : α ⊢ x ∈ (fun a b => Set.toFinset (Set.Icc a b)) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] simp only [Set.mem_toFinset, Set.mem_Icc] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Fintype α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a b x : α ⊢ x ∈ (fun a b => Set.toFinset (Set.Ico a b)) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] simp only [Set.mem_toFinset, Set.mem_Ico] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Fintype α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a b x : α ⊢ x ∈ (fun a b => Set.toFinset (Set.Ioc a b)) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] simp only [Set.mem_toFinset, Set.mem_Ioc] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Fintype α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a b x : α ⊢ x ∈ (fun a b => Set.toFinset (Set.Ioo a b)) a b ↔ a < x ∧ x < b [PROOFSTEP] simp only [Set.mem_toFinset, Set.mem_Ioo] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀ h₁ : LocallyFiniteOrder α ⊢ h₀ = h₁ [PROOFSTEP] cases' h₀ with h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo h₀_finset_mem_Icc h₀_finset_mem_Ico h₀_finset_mem_Ioc h₀_finset_mem_Ioo [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₁ : LocallyFiniteOrder α h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b ⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo, finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc, finset_mem_Ioo := h₀_finset_mem_Ioo } = h₁ [PROOFSTEP] cases' h₁ with h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo h₁_finset_mem_Icc h₁_finset_mem_Ico h₁_finset_mem_Ioc h₁_finset_mem_Ioo [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b ⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo, finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc, finset_mem_Ioo := h₀_finset_mem_Ioo } = { finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo, finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc, finset_mem_Ioo := h₁_finset_mem_Ioo } [PROOFSTEP] have hIcc : h₀_finset_Icc = h₁_finset_Icc := by ext a b x rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b ⊢ h₀_finset_Icc = h₁_finset_Icc [PROOFSTEP] ext a b x [GOAL] case h.h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b a b x : α ⊢ x ∈ h₀_finset_Icc a b ↔ x ∈ h₁_finset_Icc a b [PROOFSTEP] rw [h₀_finset_mem_Icc, h₁_finset_mem_Icc] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc ⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo, finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc, finset_mem_Ioo := h₀_finset_mem_Ioo } = { finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo, finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc, finset_mem_Ioo := h₁_finset_mem_Ioo } [PROOFSTEP] have hIco : h₀_finset_Ico = h₁_finset_Ico := by ext a b x rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc ⊢ h₀_finset_Ico = h₁_finset_Ico [PROOFSTEP] ext a b x [GOAL] case h.h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc a b x : α ⊢ x ∈ h₀_finset_Ico a b ↔ x ∈ h₁_finset_Ico a b [PROOFSTEP] rw [h₀_finset_mem_Ico, h₁_finset_mem_Ico] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico ⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo, finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc, finset_mem_Ioo := h₀_finset_mem_Ioo } = { finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo, finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc, finset_mem_Ioo := h₁_finset_mem_Ioo } [PROOFSTEP] have hIoc : h₀_finset_Ioc = h₁_finset_Ioc := by ext a b x rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico ⊢ h₀_finset_Ioc = h₁_finset_Ioc [PROOFSTEP] ext a b x [GOAL] case h.h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico a b x : α ⊢ x ∈ h₀_finset_Ioc a b ↔ x ∈ h₁_finset_Ioc a b [PROOFSTEP] rw [h₀_finset_mem_Ioc, h₁_finset_mem_Ioc] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico hIoc : h₀_finset_Ioc = h₁_finset_Ioc ⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo, finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc, finset_mem_Ioo := h₀_finset_mem_Ioo } = { finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo, finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc, finset_mem_Ioo := h₁_finset_mem_Ioo } [PROOFSTEP] have hIoo : h₀_finset_Ioo = h₁_finset_Ioo := by ext a b x rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico hIoc : h₀_finset_Ioc = h₁_finset_Ioc ⊢ h₀_finset_Ioo = h₁_finset_Ioo [PROOFSTEP] ext a b x [GOAL] case h.h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico hIoc : h₀_finset_Ioc = h₁_finset_Ioc a b x : α ⊢ x ∈ h₀_finset_Ioo a b ↔ x ∈ h₁_finset_Ioo a b [PROOFSTEP] rw [h₀_finset_mem_Ioo, h₁_finset_mem_Ioo] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Icc h₀_finset_Ico h₀_finset_Ioc h₀_finset_Ioo : α → α → Finset α h₀_finset_mem_Icc : ∀ (a b x : α), x ∈ h₀_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₀_finset_mem_Ico : ∀ (a b x : α), x ∈ h₀_finset_Ico a b ↔ a ≤ x ∧ x < b h₀_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₀_finset_Ioc a b ↔ a < x ∧ x ≤ b h₀_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₀_finset_Ioo a b ↔ a < x ∧ x < b h₁_finset_Icc h₁_finset_Ico h₁_finset_Ioc h₁_finset_Ioo : α → α → Finset α h₁_finset_mem_Icc : ∀ (a b x : α), x ∈ h₁_finset_Icc a b ↔ a ≤ x ∧ x ≤ b h₁_finset_mem_Ico : ∀ (a b x : α), x ∈ h₁_finset_Ico a b ↔ a ≤ x ∧ x < b h₁_finset_mem_Ioc : ∀ (a b x : α), x ∈ h₁_finset_Ioc a b ↔ a < x ∧ x ≤ b h₁_finset_mem_Ioo : ∀ (a b x : α), x ∈ h₁_finset_Ioo a b ↔ a < x ∧ x < b hIcc : h₀_finset_Icc = h₁_finset_Icc hIco : h₀_finset_Ico = h₁_finset_Ico hIoc : h₀_finset_Ioc = h₁_finset_Ioc hIoo : h₀_finset_Ioo = h₁_finset_Ioo ⊢ { finsetIcc := h₀_finset_Icc, finsetIco := h₀_finset_Ico, finsetIoc := h₀_finset_Ioc, finsetIoo := h₀_finset_Ioo, finset_mem_Icc := h₀_finset_mem_Icc, finset_mem_Ico := h₀_finset_mem_Ico, finset_mem_Ioc := h₀_finset_mem_Ioc, finset_mem_Ioo := h₀_finset_mem_Ioo } = { finsetIcc := h₁_finset_Icc, finsetIco := h₁_finset_Ico, finsetIoc := h₁_finset_Ioc, finsetIoo := h₁_finset_Ioo, finset_mem_Icc := h₁_finset_mem_Icc, finset_mem_Ico := h₁_finset_mem_Ico, finset_mem_Ioc := h₁_finset_mem_Ioc, finset_mem_Ioo := h₁_finset_mem_Ioo } [PROOFSTEP] simp_rw [hIcc, hIco, hIoc, hIoo] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀ h₁ : LocallyFiniteOrderTop α ⊢ h₀ = h₁ [PROOFSTEP] cases' h₀ with h₀_finset_Ioi h₀_finset_Ici h₀_finset_mem_Ici h₀_finset_mem_Ioi [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₁ : LocallyFiniteOrderTop α h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x ⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici, finset_mem_Ioi := h₀_finset_mem_Ioi } = h₁ [PROOFSTEP] cases' h₁ with h₁_finset_Ioi h₁_finset_Ici h₁_finset_mem_Ici h₁_finset_mem_Ioi [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x ⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici, finset_mem_Ioi := h₀_finset_mem_Ioi } = { finsetIoi := h₁_finset_Ioi, finsetIci := h₁_finset_Ici, finset_mem_Ici := h₁_finset_mem_Ici, finset_mem_Ioi := h₁_finset_mem_Ioi } [PROOFSTEP] have hIci : h₀_finset_Ici = h₁_finset_Ici := by ext a b rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x ⊢ h₀_finset_Ici = h₁_finset_Ici [PROOFSTEP] ext a b [GOAL] case h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x a b : α ⊢ b ∈ h₀_finset_Ici a ↔ b ∈ h₁_finset_Ici a [PROOFSTEP] rw [h₀_finset_mem_Ici, h₁_finset_mem_Ici] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x hIci : h₀_finset_Ici = h₁_finset_Ici ⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici, finset_mem_Ioi := h₀_finset_mem_Ioi } = { finsetIoi := h₁_finset_Ioi, finsetIci := h₁_finset_Ici, finset_mem_Ici := h₁_finset_mem_Ici, finset_mem_Ioi := h₁_finset_mem_Ioi } [PROOFSTEP] have hIoi : h₀_finset_Ioi = h₁_finset_Ioi := by ext a b rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x hIci : h₀_finset_Ici = h₁_finset_Ici ⊢ h₀_finset_Ioi = h₁_finset_Ioi [PROOFSTEP] ext a b [GOAL] case h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x hIci : h₀_finset_Ici = h₁_finset_Ici a b : α ⊢ b ∈ h₀_finset_Ioi a ↔ b ∈ h₁_finset_Ioi a [PROOFSTEP] rw [h₀_finset_mem_Ioi, h₁_finset_mem_Ioi] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Ioi h₀_finset_Ici : α → Finset α h₀_finset_mem_Ici : ∀ (a x : α), x ∈ h₀_finset_Ici a ↔ a ≤ x h₀_finset_mem_Ioi : ∀ (a x : α), x ∈ h₀_finset_Ioi a ↔ a < x h₁_finset_Ioi h₁_finset_Ici : α → Finset α h₁_finset_mem_Ici : ∀ (a x : α), x ∈ h₁_finset_Ici a ↔ a ≤ x h₁_finset_mem_Ioi : ∀ (a x : α), x ∈ h₁_finset_Ioi a ↔ a < x hIci : h₀_finset_Ici = h₁_finset_Ici hIoi : h₀_finset_Ioi = h₁_finset_Ioi ⊢ { finsetIoi := h₀_finset_Ioi, finsetIci := h₀_finset_Ici, finset_mem_Ici := h₀_finset_mem_Ici, finset_mem_Ioi := h₀_finset_mem_Ioi } = { finsetIoi := h₁_finset_Ioi, finsetIci := h₁_finset_Ici, finset_mem_Ici := h₁_finset_mem_Ici, finset_mem_Ioi := h₁_finset_mem_Ioi } [PROOFSTEP] simp_rw [hIci, hIoi] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀ h₁ : LocallyFiniteOrderBot α ⊢ h₀ = h₁ [PROOFSTEP] cases' h₀ with h₀_finset_Iio h₀_finset_Iic h₀_finset_mem_Iic h₀_finset_mem_Iio [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₁ : LocallyFiniteOrderBot α h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a ⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic, finset_mem_Iio := h₀_finset_mem_Iio } = h₁ [PROOFSTEP] cases' h₁ with h₁_finset_Iio h₁_finset_Iic h₁_finset_mem_Iic h₁_finset_mem_Iio [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a ⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic, finset_mem_Iio := h₀_finset_mem_Iio } = { finsetIio := h₁_finset_Iio, finsetIic := h₁_finset_Iic, finset_mem_Iic := h₁_finset_mem_Iic, finset_mem_Iio := h₁_finset_mem_Iio } [PROOFSTEP] have hIic : h₀_finset_Iic = h₁_finset_Iic := by ext a b rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a ⊢ h₀_finset_Iic = h₁_finset_Iic [PROOFSTEP] ext a b [GOAL] case h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a a b : α ⊢ b ∈ h₀_finset_Iic a ↔ b ∈ h₁_finset_Iic a [PROOFSTEP] rw [h₀_finset_mem_Iic, h₁_finset_mem_Iic] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a hIic : h₀_finset_Iic = h₁_finset_Iic ⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic, finset_mem_Iio := h₀_finset_mem_Iio } = { finsetIio := h₁_finset_Iio, finsetIic := h₁_finset_Iic, finset_mem_Iic := h₁_finset_mem_Iic, finset_mem_Iio := h₁_finset_mem_Iio } [PROOFSTEP] have hIio : h₀_finset_Iio = h₁_finset_Iio := by ext a b rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a hIic : h₀_finset_Iic = h₁_finset_Iic ⊢ h₀_finset_Iio = h₁_finset_Iio [PROOFSTEP] ext a b [GOAL] case h.a α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a hIic : h₀_finset_Iic = h₁_finset_Iic a b : α ⊢ b ∈ h₀_finset_Iio a ↔ b ∈ h₁_finset_Iio a [PROOFSTEP] rw [h₀_finset_mem_Iio, h₁_finset_mem_Iio] [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β h₀_finset_Iio h₀_finset_Iic : α → Finset α h₀_finset_mem_Iic : ∀ (a x : α), x ∈ h₀_finset_Iic a ↔ x ≤ a h₀_finset_mem_Iio : ∀ (a x : α), x ∈ h₀_finset_Iio a ↔ x < a h₁_finset_Iio h₁_finset_Iic : α → Finset α h₁_finset_mem_Iic : ∀ (a x : α), x ∈ h₁_finset_Iic a ↔ x ≤ a h₁_finset_mem_Iio : ∀ (a x : α), x ∈ h₁_finset_Iio a ↔ x < a hIic : h₀_finset_Iic = h₁_finset_Iic hIio : h₀_finset_Iio = h₁_finset_Iio ⊢ { finsetIio := h₀_finset_Iio, finsetIic := h₀_finset_Iic, finset_mem_Iic := h₀_finset_mem_Iic, finset_mem_Iio := h₀_finset_mem_Iio } = { finsetIio := h₁_finset_Iio, finsetIic := h₁_finset_Iic, finset_mem_Iic := h₁_finset_mem_Iic, finset_mem_Iio := h₁_finset_mem_Iio } [PROOFSTEP] simp_rw [hIic, hIio] -- Should this be called `LocallyFiniteOrder.lift`? [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ↪o β a b x : α ⊢ x ∈ (fun a b => preimage (Icc (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Icc (↑f a) (↑f b))))) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [mem_preimage, mem_Icc, f.le_iff_le, f.le_iff_le] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ↪o β a b x : α ⊢ x ∈ (fun a b => preimage (Ico (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Ico (↑f a) (↑f b))))) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] rw [mem_preimage, mem_Ico, f.le_iff_le, f.lt_iff_lt] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ↪o β a b x : α ⊢ x ∈ (fun a b => preimage (Ioc (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Ioc (↑f a) (↑f b))))) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] rw [mem_preimage, mem_Ioc, f.lt_iff_lt, f.le_iff_le] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ↪o β a b x : α ⊢ x ∈ (fun a b => preimage (Ioo (↑f a) (↑f b)) ↑f (_ : Set.InjOn (↑f.toEmbedding) (↑f ⁻¹' ↑(Ioo (↑f a) (↑f b))))) a b ↔ a < x ∧ x < b [PROOFSTEP] rw [mem_preimage, mem_Ioo, f.lt_iff_lt, f.lt_iff_lt] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Icc (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Icc b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Icc (↑toDual a) (↑toDual b) = Icc b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ c ∈ Icc (↑toDual a) (↑toDual b) ↔ c ∈ Icc b a [PROOFSTEP] rw [mem_Icc, mem_Icc (α := α)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ ↑toDual a ≤ c ∧ c ≤ ↑toDual b ↔ b ≤ c ∧ c ≤ a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Ico (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Ioc b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Ico (↑toDual a) (↑toDual b) = Ioc b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ c ∈ Ico (↑toDual a) (↑toDual b) ↔ c ∈ Ioc b a [PROOFSTEP] rw [mem_Ico, mem_Ioc (α := α)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ ↑toDual a ≤ c ∧ c < ↑toDual b ↔ b < c ∧ c ≤ a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Ioc (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Ico b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Ioc (↑toDual a) (↑toDual b) = Ico b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ c ∈ Ioc (↑toDual a) (↑toDual b) ↔ c ∈ Ico b a [PROOFSTEP] rw [mem_Ioc, mem_Ico (α := α)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ ↑toDual a < c ∧ c ≤ ↑toDual b ↔ b ≤ c ∧ c < a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Ioo (↑toDual a) (↑toDual b) = map (Equiv.toEmbedding toDual) (Ioo b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α ⊢ Ioo (↑toDual a) (↑toDual b) = Ioo b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ c ∈ Ioo (↑toDual a) (↑toDual b) ↔ c ∈ Ioo b a [PROOFSTEP] rw [mem_Ioo, mem_Ioo (α := α)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a b : α c : (fun x => αᵒᵈ) a ⊢ ↑toDual a < c ∧ c < ↑toDual b ↔ b < c ∧ c < a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Icc (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Icc b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Icc (↑ofDual a) (↑ofDual b) = Icc b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ c ∈ Icc (↑ofDual a) (↑ofDual b) ↔ c ∈ Icc b a [PROOFSTEP] rw [mem_Icc, mem_Icc (α := αᵒᵈ)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ ↑ofDual a ≤ c ∧ c ≤ ↑ofDual b ↔ b ≤ c ∧ c ≤ a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Ico (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Ioc b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Ico (↑ofDual a) (↑ofDual b) = Ioc b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ c ∈ Ico (↑ofDual a) (↑ofDual b) ↔ c ∈ Ioc b a [PROOFSTEP] rw [mem_Ico, mem_Ioc (α := αᵒᵈ)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ ↑ofDual a ≤ c ∧ c < ↑ofDual b ↔ b < c ∧ c ≤ a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Ioc (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Ico b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Ioc (↑ofDual a) (↑ofDual b) = Ico b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ c ∈ Ioc (↑ofDual a) (↑ofDual b) ↔ c ∈ Ico b a [PROOFSTEP] rw [mem_Ioc, mem_Ico (α := αᵒᵈ)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ ↑ofDual a < c ∧ c ≤ ↑ofDual b ↔ b ≤ c ∧ c < a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Ioo (↑ofDual a) (↑ofDual b) = map (Equiv.toEmbedding ofDual) (Ioo b a) [PROOFSTEP] refine' Eq.trans _ map_refl.symm [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ ⊢ Ioo (↑ofDual a) (↑ofDual b) = Ioo b a [PROOFSTEP] ext c [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ c ∈ Ioo (↑ofDual a) (↑ofDual b) ↔ c ∈ Ioo b a [PROOFSTEP] rw [mem_Ioo, mem_Ioo (α := αᵒᵈ)] [GOAL] case a α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder α a✝ b✝ : α a b : αᵒᵈ c : (fun x => α) a ⊢ ↑ofDual a < c ∧ c < ↑ofDual b ↔ b < c ∧ c < a [PROOFSTEP] exact and_comm [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : LocallyFiniteOrder α inst✝¹ : LocallyFiniteOrder β inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a b x : α × β ⊢ x ∈ (fun a b => Icc a.fst b.fst ×ˢ Icc a.snd b.snd) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rw [mem_product, mem_Icc, mem_Icc, and_and_and_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : LocallyFiniteOrder α inst✝¹ : LocallyFiniteOrder β inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a b x : α × β ⊢ (a.fst ≤ x.fst ∧ a.snd ≤ x.snd) ∧ x.fst ≤ b.fst ∧ x.snd ≤ b.snd ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : LocallyFiniteOrderTop α inst✝¹ : LocallyFiniteOrderTop β inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a x : α × β ⊢ x ∈ (fun a => Ici a.fst ×ˢ Ici a.snd) a ↔ a ≤ x [PROOFSTEP] rw [mem_product, mem_Ici, mem_Ici] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : LocallyFiniteOrderTop α inst✝¹ : LocallyFiniteOrderTop β inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a x : α × β ⊢ a.fst ≤ x.fst ∧ a.snd ≤ x.snd ↔ a ≤ x [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : LocallyFiniteOrderBot α inst✝¹ : LocallyFiniteOrderBot β inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a x : α × β ⊢ x ∈ (fun a => Iic a.fst ×ˢ Iic a.snd) a ↔ x ≤ a [PROOFSTEP] rw [mem_product, mem_Iic, mem_Iic] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : LocallyFiniteOrderBot α inst✝¹ : LocallyFiniteOrderBot β inst✝ : DecidableRel fun x x_1 => x ≤ x_1 a x : α × β ⊢ x.fst ≤ a.fst ∧ x.snd ≤ a.snd ↔ x ≤ a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α x : α p : α → Prop ⊢ (∃ a, p a ∧ Option.some a = Option.some x) ↔ p x [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α x : α p : α → Prop ⊢ (∃ a, p a ∧ Option.some a = Option.some x) → p x [PROOFSTEP] rintro ⟨x', hx, hx'⟩ [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α x : α p : α → Prop x' : α hx : p x' hx' : Option.some x' = Option.some x ⊢ p x [PROOFSTEP] obtain rfl := Option.some_inj.mp hx' [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α p : α → Prop x' : α hx : p x' hx' : Option.some x' = Option.some x' ⊢ p x' [PROOFSTEP] exact hx [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α x : α p : α → Prop ⊢ p x → ∃ a, p a ∧ Option.some a = Option.some x [PROOFSTEP] exact fun h => ⟨x, h, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x : WithTop α a : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, none => {⊤} | none, Option.some b => ∅ | Option.some a, none => ↑insertNone (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Icc a b)) ↑a ⊤ ↔ ↑a ≤ ⊤ ∧ ⊤ ≤ ⊤ [PROOFSTEP] simp [WithTop.some, WithTop.top, insertNone] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x✝ : WithTop α a x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, none => {⊤} | none, Option.some b => ∅ | Option.some a, none => ↑insertNone (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Icc a b)) ↑a ⊤ ↔ ↑a ≤ ↑x ∧ ↑x ≤ ⊤ [PROOFSTEP] simp only [some, le_eq_subset, some_le_some, le_top, and_true] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x✝ : WithTop α a x : α ⊢ Option.some x ∈ ↑insertNone (Ici a) ↔ a ≤ x [PROOFSTEP] rw [some_mem_insertNone] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x✝ : WithTop α a x : α ⊢ x ∈ Ici a ↔ a ≤ x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x : WithTop α a b : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, none => {⊤} | none, Option.some b => ∅ | Option.some a, none => ↑insertNone (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Icc a b)) ↑a ↑b ↔ ↑a ≤ ⊤ ∧ ⊤ ≤ ↑b [PROOFSTEP] simp only [some, le_eq_subset, mem_map, mem_Icc, le_top, top_le_iff, and_false, iff_false, not_exists, not_and, and_imp, Embedding.some, forall_const] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x✝ : WithTop α a b x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, none => {⊤} | none, Option.some b => ∅ | Option.some a, none => ↑insertNone (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Icc a b)) ↑a ↑b ↔ ↑a ≤ ↑x ∧ ↑x ≤ ↑b [PROOFSTEP] simp only [some, le_eq_subset, Embedding.some, mem_map, mem_Icc, Embedding.coeFn_mk, some_le_some, aux] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x : WithTop α a : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Ico a b)) ↑a ⊤ ↔ ↑a ≤ ⊤ ∧ ⊤ < ⊤ [PROOFSTEP] simp [some, Embedding.some] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x✝ : WithTop α a x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Ico a b)) ↑a ⊤ ↔ ↑a ≤ ↑x ∧ ↑x < ⊤ [PROOFSTEP] simp only [some, Embedding.some, mem_map, mem_Ici, Embedding.coeFn_mk, some_le_some, aux, top, some_lt_none, and_true] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x : WithTop α a b : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Ico a b)) ↑a ↑b ↔ ↑a ≤ ⊤ ∧ ⊤ < ↑b [PROOFSTEP] simp [some, Embedding.some] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x✝ : WithTop α a b x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ici a) | Option.some a, Option.some b => Finset.map Embedding.some (Ico a b)) ↑a ↑b ↔ ↑a ≤ ↑x ∧ ↑x < ↑b [PROOFSTEP] simp [some, Embedding.some, aux] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x : WithTop α a : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => ↑insertNone (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b)) ↑a ⊤ ↔ ↑a < ⊤ ∧ ⊤ ≤ ⊤ [PROOFSTEP] simp [some, insertNone, top] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x✝ : WithTop α a x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => ↑insertNone (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b)) ↑a ⊤ ↔ ↑a < ↑x ∧ ↑x ≤ ⊤ [PROOFSTEP] simp [some, Embedding.some, insertNone, aux] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x : WithTop α a b : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => ↑insertNone (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b)) ↑a ↑b ↔ ↑a < ⊤ ∧ ⊤ ≤ ↑b [PROOFSTEP] simp [some, Embedding.some, insertNone] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x✝ : WithTop α a b x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => ↑insertNone (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioc a b)) ↑a ↑b ↔ ↑a < ↑x ∧ ↑x ≤ ↑b [PROOFSTEP] simp [some, Embedding.some, insertNone, aux] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x : WithTop α a : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b)) ↑a ⊤ ↔ ↑a < ⊤ ∧ ⊤ < ⊤ [PROOFSTEP] simp [some, Embedding.some, insertNone] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b x✝ : WithTop α a x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b)) ↑a ⊤ ↔ ↑a < ↑x ∧ ↑x < ⊤ [PROOFSTEP] simp [some, Embedding.some, insertNone, aux, top] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x : WithTop α a b : α ⊢ ⊤ ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b)) ↑a ↑b ↔ ↑a < ⊤ ∧ ⊤ < ↑b [PROOFSTEP] simp [some, Embedding.some, insertNone] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : LocallyFiniteOrder α a✝ b✝ x✝ : WithTop α a b x : α ⊢ ↑x ∈ (fun a b => match a, b with | none, x => ∅ | Option.some a, none => Finset.map Embedding.some (Ioi a) | Option.some a, Option.some b => Finset.map Embedding.some (Ioo a b)) ↑a ↑b ↔ ↑a < ↑x ∧ ↑x < ↑b [PROOFSTEP] simp [some, Embedding.some, insertNone, aux] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ≃o β ⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Icc (↑f a) (↑f b))) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ≃o β ⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Ico (↑f a) (↑f b))) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ≃o β ⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Ioc (↑f a) (↑f b))) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrder β f : α ≃o β ⊢ ∀ (a b x : α), x ∈ (fun a b => map (Equiv.toEmbedding (symm f).toEquiv) (Ioo (↑f a) (↑f b))) a b ↔ a < x ∧ x < b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrderTop β f : α ≃o β ⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Ici (↑f a))) a ↔ a ≤ x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrderTop β f : α ≃o β ⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Ioi (↑f a))) a ↔ a < x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrderBot β f : α ≃o β ⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Iic (↑f a))) a ↔ x ≤ a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : LocallyFiniteOrderBot β f : α ≃o β ⊢ ∀ (a x : α), x ∈ (fun a => map (Equiv.toEmbedding (symm f).toEquiv) (Iio (↑f a))) a ↔ x < a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b x : Subtype p ⊢ x ∈ (fun a b => Finset.subtype p (Icc ↑a ↑b)) a b ↔ a ≤ x ∧ x ≤ b [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Icc, Subtype.coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b x : Subtype p ⊢ x ∈ (fun a b => Finset.subtype p (Ico ↑a ↑b)) a b ↔ a ≤ x ∧ x < b [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Ico, Subtype.coe_le_coe, Subtype.coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b x : Subtype p ⊢ x ∈ (fun a b => Finset.subtype p (Ioc ↑a ↑b)) a b ↔ a < x ∧ x ≤ b [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Ioc, Subtype.coe_le_coe, Subtype.coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b x : Subtype p ⊢ x ∈ (fun a b => Finset.subtype p (Ioo ↑a ↑b)) a b ↔ a < x ∧ x < b [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Ioo, Subtype.coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderTop α a x : Subtype p ⊢ x ∈ (fun a => Finset.subtype p (Ici ↑a)) a ↔ a ≤ x [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Ici, Subtype.coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderTop α a x : Subtype p ⊢ x ∈ (fun a => Finset.subtype p (Ioi ↑a)) a ↔ a < x [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Ioi, Subtype.coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderBot α a x : Subtype p ⊢ x ∈ (fun a => Finset.subtype p (Iic ↑a)) a ↔ x ≤ a [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Iic, Subtype.coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderBot α a x : Subtype p ⊢ x ∈ (fun a => Finset.subtype p (Iio ↑a)) a ↔ x < a [PROOFSTEP] simp_rw [Finset.mem_subtype, mem_Iio, Subtype.coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Icc a b) = Icc ↑a ↑b [PROOFSTEP] rw [subtype_Icc_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Icc ↑a ↑b)) = Icc ↑a ↑b [PROOFSTEP] refine' Finset.subtype_map_of_mem fun x hx => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Icc ↑a ↑b ⊢ p x [PROOFSTEP] rw [mem_Icc] at hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : ↑a ≤ x ∧ x ≤ ↑b ⊢ p x [PROOFSTEP] exact hp hx.1 hx.2 a.prop b.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Ico a b) = Ico ↑a ↑b [PROOFSTEP] rw [subtype_Ico_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ico ↑a ↑b)) = Ico ↑a ↑b [PROOFSTEP] refine' Finset.subtype_map_of_mem fun x hx => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Ico ↑a ↑b ⊢ p x [PROOFSTEP] rw [mem_Ico] at hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : ↑a ≤ x ∧ x < ↑b ⊢ p x [PROOFSTEP] exact hp hx.1 hx.2.le a.prop b.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Ioc a b) = Ioc ↑a ↑b [PROOFSTEP] rw [subtype_Ioc_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ioc ↑a ↑b)) = Ioc ↑a ↑b [PROOFSTEP] refine' Finset.subtype_map_of_mem fun x hx => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Ioc ↑a ↑b ⊢ p x [PROOFSTEP] rw [mem_Ioc] at hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : ↑a < x ∧ x ≤ ↑b ⊢ p x [PROOFSTEP] exact hp hx.1.le hx.2 a.prop b.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Ioo a b) = Ioo ↑a ↑b [PROOFSTEP] rw [subtype_Ioo_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ioo ↑a ↑b)) = Ioo ↑a ↑b [PROOFSTEP] refine' Finset.subtype_map_of_mem fun x hx => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Ioo ↑a ↑b ⊢ p x [PROOFSTEP] rw [mem_Ioo] at hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : ↑a < x ∧ x < ↑b ⊢ p x [PROOFSTEP] exact hp hx.1.le hx.2.le a.prop b.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderTop α a : Subtype p hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x ⊢ map (Embedding.subtype p) (Ici a) = Ici ↑a [PROOFSTEP] rw [subtype_Ici_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderTop α a : Subtype p hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ici ↑a)) = Ici ↑a [PROOFSTEP] exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ici.1 hx) a.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderTop α a : Subtype p hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x ⊢ map (Embedding.subtype p) (Ioi a) = Ioi ↑a [PROOFSTEP] rw [subtype_Ioi_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderTop α a : Subtype p hp : ∀ ⦃a x : α⦄, a ≤ x → p a → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ioi ↑a)) = Ioi ↑a [PROOFSTEP] exact Finset.subtype_map_of_mem fun x hx => hp (mem_Ioi.1 hx).le a.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderBot α a : Subtype p hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x ⊢ map (Embedding.subtype p) (Iic a) = Iic ↑a [PROOFSTEP] rw [subtype_Iic_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderBot α a : Subtype p hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Iic ↑a)) = Iic ↑a [PROOFSTEP] exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iic.1 hx) a.prop [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderBot α a : Subtype p hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x ⊢ map (Embedding.subtype p) (Iio a) = Iio ↑a [PROOFSTEP] rw [subtype_Iio_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrderBot α a : Subtype p hp : ∀ ⦃a x : α⦄, x ≤ a → p a → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Iio ↑a)) = Iio ↑a [PROOFSTEP] exact Finset.subtype_map_of_mem fun x hx => hp (mem_Iio.1 hx).le a.prop [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : SemilatticeSup α inst✝¹ : LocallyFiniteOrder α inst✝ : OrderBot α h : Set.Finite s x : α hx : x ∈ s ⊢ x ∈ Finite.toFinset h [PROOFSTEP] simpa [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α ⊢ Set.Finite s ↔ BddBelow s ∧ BddAbove s [PROOFSTEP] obtain (rfl | hs) := s.eq_empty_or_nonempty [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α ⊢ Set.Finite ∅ ↔ BddBelow ∅ ∧ BddAbove ∅ [PROOFSTEP] simp only [Set.finite_empty, bddBelow_empty, bddAbove_empty, and_self] [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α hs : Set.Nonempty s ⊢ Set.Finite s ↔ BddBelow s ∧ BddAbove s [PROOFSTEP] exact ⟨fun h ↦ ⟨⟨h.toFinset.inf' (by simpa) id, fun x hx ↦ Finset.inf'_le id (by simpa)⟩, ⟨h.toFinset.sup' (by simpa) id, fun x hx ↦ Finset.le_sup' id (by simpa)⟩⟩, fun ⟨⟨a, ha⟩, ⟨b, hb⟩⟩ ↦ (Set.finite_Icc a b).subset (fun x hx ↦ ⟨ha hx, hb hx⟩)⟩ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α hs : Set.Nonempty s h : Set.Finite s ⊢ Finset.Nonempty (Finite.toFinset h) [PROOFSTEP] simpa [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α hs : Set.Nonempty s h : Set.Finite s x : α hx : x ∈ s ⊢ x ∈ Finite.toFinset h [PROOFSTEP] simpa [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α hs : Set.Nonempty s h : Set.Finite s ⊢ Finset.Nonempty (Finite.toFinset h) [PROOFSTEP] simpa [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁴ : Preorder α✝ p : α✝ → Prop inst✝³ : DecidablePred p α : Type u_3 s : Set α inst✝² : Nonempty α inst✝¹ : Lattice α inst✝ : LocallyFiniteOrder α hs : Set.Nonempty s h : Set.Finite s x : α hx : x ∈ s ⊢ x ∈ Finite.toFinset h [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a : { x // x ≤ y } ⊢ y ≤ y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a : { x // x ≤ y } ⊢ y ≤ y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // x ≤ y } ⊢ b ∈ (fun a => Icc a { val := y, property := (_ : y ≤ y) }) a ↔ a ≤ b [PROOFSTEP] simp only [Finset.mem_Icc, and_iff_left_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // x ≤ y } ⊢ a ≤ b → b ≤ { val := y, property := (_ : y ≤ y) } [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // x ≤ y } ⊢ b ∈ (fun a => Ioc a { val := y, property := (_ : y ≤ y) }) a ↔ a < b [PROOFSTEP] simp only [Finset.mem_Ioc, and_iff_left_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // x ≤ y } ⊢ a < b → b ≤ { val := y, property := (_ : y ≤ y) } [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // x < y } ⊢ b ∈ (fun a => Finset.subtype (fun x => x < y) (Ico (↑a) y)) a ↔ a ≤ b [PROOFSTEP] simp only [Finset.mem_subtype, Finset.mem_Ico, Subtype.coe_le_coe, and_iff_left_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // x < y } ⊢ a ≤ b → ↑b < y [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // x < y } ⊢ b ∈ (fun a => Finset.subtype (fun x => x < y) (Ioo (↑a) y)) a ↔ a < b [PROOFSTEP] simp only [Finset.mem_subtype, Finset.mem_Ioo, Subtype.coe_lt_coe, and_iff_left_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // x < y } ⊢ a < b → ↑b < y [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a : { x // y ≤ x } ⊢ y ≤ y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a : { x // y ≤ x } ⊢ y ≤ y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // y ≤ x } ⊢ b ∈ (fun a => Icc { val := y, property := (_ : y ≤ y) } a) a ↔ b ≤ a [PROOFSTEP] simp only [Finset.mem_Icc, and_iff_right_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // y ≤ x } ⊢ b ≤ a → { val := y, property := (_ : y ≤ y) } ≤ b [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // y ≤ x } ⊢ b ∈ (fun a => Ico { val := y, property := (_ : y ≤ y) } a) a ↔ b < a [PROOFSTEP] simp only [Finset.mem_Ico, and_iff_right_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : LocallyFiniteOrder α a b : { x // y ≤ x } ⊢ b < a → { val := y, property := (_ : y ≤ y) } ≤ b [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // y < x } ⊢ b ∈ (fun a => Finset.subtype (fun x => y < x) (Ioc y ↑a)) a ↔ b ≤ a [PROOFSTEP] simp only [Finset.mem_subtype, Finset.mem_Ioc, Subtype.coe_le_coe, and_iff_right_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // y < x } ⊢ b ≤ a → y < ↑b [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // y < x } ⊢ b ∈ (fun a => Finset.subtype (fun x => y < x) (Ioo y ↑a)) a ↔ b < a [PROOFSTEP] simp only [Finset.mem_subtype, Finset.mem_Ioo, Subtype.coe_lt_coe, and_iff_right_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Preorder α p : α → Prop inst✝³ : DecidablePred p y : α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : LocallyFiniteOrder α a b : { x // y < x } ⊢ b < a → y < ↑b [PROOFSTEP] exact fun _ => b.property [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α ⊢ Finite { x // x ≤ y } [PROOFSTEP] apply Set.Finite.to_subtype [GOAL] case h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α ⊢ Set.Finite fun x => Preorder.toLE.1 x y [PROOFSTEP] convert (Finset.Iic y).finite_toSet using 1 [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α ⊢ (fun x => Preorder.toLE.1 x y) = ↑(Iic y) [PROOFSTEP] ext [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLE.1 x y) ↔ x✝ ∈ ↑(Iic y) [PROOFSTEP] simp [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLE.1 x y) ↔ x✝ ≤ y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α ⊢ Finite { x // x < y } [PROOFSTEP] apply Set.Finite.to_subtype [GOAL] case h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α ⊢ Set.Finite fun x => Preorder.toLT.1 x y [PROOFSTEP] convert (Finset.Iio y).finite_toSet using 1 [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α ⊢ (fun x => Preorder.toLT.1 x y) = ↑(Iio y) [PROOFSTEP] ext [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLT.1 x y) ↔ x✝ ∈ ↑(Iio y) [PROOFSTEP] simp [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderBot α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLT.1 x y) ↔ x✝ < y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α ⊢ Finite { x // y ≤ x } [PROOFSTEP] apply Set.Finite.to_subtype [GOAL] case h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α ⊢ Set.Finite fun x => Preorder.toLE.1 y x [PROOFSTEP] convert (Finset.Ici y).finite_toSet using 1 [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α ⊢ (fun x => Preorder.toLE.1 y x) = ↑(Ici y) [PROOFSTEP] ext [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLE.1 y x) ↔ x✝ ∈ ↑(Ici y) [PROOFSTEP] simp [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLE.1 y x) ↔ y ≤ x✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α ⊢ Finite { x // y < x } [PROOFSTEP] apply Set.Finite.to_subtype [GOAL] case h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α ⊢ Set.Finite fun x => Preorder.toLT.1 y x [PROOFSTEP] convert (Finset.Ioi y).finite_toSet using 1 [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α ⊢ (fun x => Preorder.toLT.1 y x) = ↑(Ioi y) [PROOFSTEP] ext [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLT.1 y x) ↔ x✝ ∈ ↑(Ioi y) [PROOFSTEP] simp [GOAL] case h.e'_2.h α : Type u_1 β : Type u_2 inst✝³ : Preorder α p : α → Prop inst✝² : DecidablePred p y : α inst✝¹ : Preorder α inst✝ : LocallyFiniteOrderTop α x✝ : α ⊢ (x✝ ∈ fun x => Preorder.toLT.1 y x) ↔ y < x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Order.LocallyFinite", "llama_tokens": 41333}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 ⊢ ∀ (p q : Bool), p ∆ q = xor p q [PROOFSTEP] decide [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ b = b ∆ a [PROOFSTEP] simp only [symmDiff, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ a = ⊥ [PROOFSTEP] rw [symmDiff, sup_idem, sdiff_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ ⊥ = a [PROOFSTEP] rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ ⊥ ∆ a = a [PROOFSTEP] rw [symmDiff_comm, symmDiff_bot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α ⊢ a ∆ b = ⊥ ↔ a = b [PROOFSTEP] simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α h : a ≤ b ⊢ a ∆ b = b \ a [PROOFSTEP] rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α h : b ≤ a ⊢ a ∆ b = a \ b [PROOFSTEP] rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c [PROOFSTEP] simp_rw [symmDiff, sup_le_iff, sdiff_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ b = (a ⊔ b) \ (a ⊓ b) [PROOFSTEP] simp [sup_sdiff, symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α h : Disjoint a b ⊢ a ∆ b = a ⊔ b [PROOFSTEP] rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) [PROOFSTEP] rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ b \ (a ⊓ b) = a ∆ b [PROOFSTEP] rw [symmDiff_sdiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ (b ⊔ a ⊓ b) ⊔ b \ (a ⊔ a ⊓ b) = a ∆ b [PROOFSTEP] simp [symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ (b \ a) = a ⊔ b [PROOFSTEP] rw [symmDiff, sdiff_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ (b \ a) ⊔ b \ a = a ⊔ b [PROOFSTEP] exact le_antisymm (sup_le_sup sdiff_le sdiff_le) (sup_le le_sdiff_sup <| le_sdiff_sup.trans <| sup_le le_sup_right le_sdiff_sup) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a \ b) ∆ b = a ⊔ b [PROOFSTEP] rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ b ⊔ a ⊓ b = a ⊔ b [PROOFSTEP] refine' le_antisymm (sup_le symmDiff_le_sup inf_le_sup) _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ⊔ b ≤ a ∆ b ⊔ a ⊓ b [PROOFSTEP] rw [sup_inf_left, symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ⊔ b ≤ (a \ b ⊔ b \ a ⊔ a) ⊓ (a \ b ⊔ b \ a ⊔ b) [PROOFSTEP] refine' sup_le (le_inf le_sup_right _) (le_inf _ le_sup_right) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ≤ a \ b ⊔ b \ a ⊔ b [PROOFSTEP] rw [sup_right_comm] [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ≤ a \ b ⊔ b ⊔ b \ a [PROOFSTEP] exact le_sup_of_le_left le_sdiff_sup [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ b ≤ a \ b ⊔ b \ a ⊔ a [PROOFSTEP] rw [sup_assoc] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ b ≤ a \ b ⊔ (b \ a ⊔ a) [PROOFSTEP] exact le_sup_of_le_right le_sdiff_sup [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ⊓ b ⊔ a ∆ b = a ⊔ b [PROOFSTEP] rw [sup_comm, symmDiff_sup_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ b ∆ (a ⊓ b) = a ⊔ b [PROOFSTEP] rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a ⊓ b) ∆ (a ∆ b) = a ⊔ b [PROOFSTEP] rw [symmDiff_comm, symmDiff_symmDiff_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ∆ c ≤ a ∆ b ⊔ b ∆ c [PROOFSTEP] refine' (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c [PROOFSTEP] rw [@sup_comm _ _ (c \ b), sup_sup_sup_comm, symmDiff, symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⇔ b = b ⇔ a [PROOFSTEP] simp only [(· ⇔ ·), inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⇔ a = ⊤ [PROOFSTEP] rw [bihimp, inf_idem, himp_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⇔ ⊤ = a [PROOFSTEP] rw [bihimp, himp_top, top_himp, inf_top_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ ⊤ ⇔ a = a [PROOFSTEP] rw [bihimp_comm, bihimp_top] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α h : a ≤ b ⊢ a ⇔ b = b ⇨ a [PROOFSTEP] rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α h : b ≤ a ⊢ a ⇔ b = a ⇨ b [PROOFSTEP] rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b [PROOFSTEP] simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⇔ b = a ⊔ b ⇨ a ⊓ b [PROOFSTEP] simp [himp_inf_distrib, bihimp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α h : Codisjoint a b ⊢ a ⇔ b = a ⊓ b [PROOFSTEP] rw [bihimp, h.himp_eq_left, h.himp_eq_right] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) [PROOFSTEP] rw [bihimp, himp_inf_distrib, himp_himp, himp_himp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⊔ b ⇨ a ⇔ b = a ⇔ b [PROOFSTEP] rw [himp_bihimp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ ((a ⊔ b) ⊓ b ⇨ a) ⊓ ((a ⊔ b) ⊓ a ⇨ b) = a ⇔ b [PROOFSTEP] simp [bihimp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a : α ⊢ a ∆ ⊤ = ¬a [PROOFSTEP] simp [symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a : α ⊢ ⊤ ∆ a = ¬a [PROOFSTEP] simp [symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a : α ⊢ (¬a) ∆ a = ⊤ [PROOFSTEP] rw [eq_top_iff, symmDiff, hnot_sdiff, sup_sdiff_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a : α ⊢ ⊤ ≤ ¬a ⊔ a [PROOFSTEP] exact Codisjoint.top_le codisjoint_hnot_left [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a : α ⊢ a ∆ (¬a) = ⊤ [PROOFSTEP] rw [symmDiff_comm, hnot_symmDiff_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : CoheytingAlgebra α a✝ a b : α h : IsCompl a b ⊢ a ∆ b = ⊤ [PROOFSTEP] rw [h.eq_hnot, hnot_symmDiff_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : HeytingAlgebra α a : α ⊢ a ⇔ ⊥ = aᶜ [PROOFSTEP] simp [bihimp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : HeytingAlgebra α a : α ⊢ ⊥ ⇔ a = aᶜ [PROOFSTEP] simp [bihimp] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : HeytingAlgebra α a✝ a b : α h : IsCompl a b ⊢ a ⇔ b = ⊥ [PROOFSTEP] rw [h.eq_compl, compl_bihimp_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ (a ⊔ b) \ (a ⊓ b) = a ∆ b [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ Disjoint (a ∆ b) (a ⊓ b) [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ Disjoint ((a ⊔ b) \ (a ⊓ b)) (a ⊓ b) [PROOFSTEP] exact disjoint_sdiff_self_left [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ⊓ b ∆ c = (a ⊓ b) ∆ (a ⊓ c) [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf, inf_sdiff_distrib_left, inf_sup_left, inf_inf_distrib_left, symmDiff_eq_sup_sdiff_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b ⊓ c = (a ⊓ c) ∆ (b ⊓ c) [PROOFSTEP] simp_rw [@inf_comm _ _ _ c, inf_symmDiff_distrib_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ a ⊓ c \ b [PROOFSTEP] simp only [(· ∆ ·), sdiff_sdiff_sup_sdiff'] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ c \ a ∆ b = c ⊓ a ⊓ b ⊔ c \ (a ⊔ b) [PROOFSTEP] rw [sdiff_symmDiff, sdiff_sup, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b \ a = b \ a [PROOFSTEP] rw [symmDiff_def, sup_sdiff, sdiff_idem, sdiff_sdiff_self, bot_sup_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b \ b = a \ b [PROOFSTEP] rw [symmDiff_comm, symmDiff_sdiff_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a \ a ∆ b = a ⊓ b [PROOFSTEP] simp [sdiff_symmDiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ b \ a ∆ b = a ⊓ b [PROOFSTEP] rw [symmDiff_comm, inf_comm, sdiff_symmDiff_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b = a ⊔ b ↔ Disjoint a b [PROOFSTEP] refine' ⟨fun h => _, Disjoint.symmDiff_eq_sup⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α h : a ∆ b = a ⊔ b ⊢ Disjoint a b [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq_self_iff_disjoint] at h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α h : Disjoint (a ⊓ b) (a ⊔ b) ⊢ Disjoint a b [PROOFSTEP] exact h.of_disjoint_inf_of_le le_sup_left [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ≤ a ∆ b ↔ Disjoint a b [PROOFSTEP] refine' ⟨fun h => _, fun h => h.symmDiff_eq_sup.symm ▸ le_sup_left⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α h : a ≤ a ∆ b ⊢ Disjoint a b [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf] at h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α h : a ≤ (a ⊔ b) \ (a ⊓ b) ⊢ Disjoint a b [PROOFSTEP] exact disjoint_iff_inf_le.mpr (le_sdiff_iff.1 <| inf_le_of_left_le h).le [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ b ≤ a ∆ b ↔ Disjoint a b [PROOFSTEP] rw [symmDiff_comm, le_symmDiff_iff_left, disjoint_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b \ c ⊔ c \ a ∆ b = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b) [PROOFSTEP] {rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff] } [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b \ c ⊔ c \ a ∆ b = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b) [PROOFSTEP] rw [sdiff_symmDiff', @sup_comm _ _ (c ⊓ a ⊓ b), symmDiff_sdiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ (c \ (a ⊔ b) ⊔ c ⊓ a ⊓ b) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c [PROOFSTEP] ac_rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a \ b ∆ c ⊔ b ∆ c \ a = a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a)) [PROOFSTEP] {rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff] } [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a \ b ∆ c ⊔ b ∆ c \ a = a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a)) [PROOFSTEP] rw [sdiff_symmDiff', @sup_comm _ _ (a ⊓ b ⊓ c), symmDiff_sdiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a \ (b ⊔ c) ⊔ a ⊓ b ⊓ c ⊔ (b \ (c ⊔ a) ⊔ c \ (b ⊔ a)) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊔ c \ (a ⊔ b) ⊔ a ⊓ b ⊓ c [PROOFSTEP] ac_rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b ∆ c = a ∆ (b ∆ c) [PROOFSTEP] rw [symmDiff_symmDiff_left, symmDiff_symmDiff_right] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ (b ∆ c) = b ∆ (a ∆ c) [PROOFSTEP] simp_rw [← symmDiff_assoc, symmDiff_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b ∆ c = a ∆ c ∆ b [PROOFSTEP] simp_rw [symmDiff_assoc, symmDiff_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b ∆ (c ∆ d) = a ∆ c ∆ (b ∆ d) [PROOFSTEP] simp_rw [symmDiff_assoc, symmDiff_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ (a ∆ b) = b [PROOFSTEP] simp [← symmDiff_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ b ∆ a ∆ a = b [PROOFSTEP] simp [symmDiff_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b ∆ a = b [PROOFSTEP] rw [symmDiff_comm, symmDiff_symmDiff_cancel_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b = a ↔ a ∆ b = a ∆ ⊥ [PROOFSTEP] rw [symmDiff_bot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b = a ∆ ⊥ ↔ b = ⊥ [PROOFSTEP] rw [symmDiff_right_inj] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ⊢ a ∆ b = b ↔ a = ⊥ [PROOFSTEP] rw [symmDiff_comm, symmDiff_eq_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ha : Disjoint a c hb : Disjoint b c ⊢ Disjoint (a ∆ b) c [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ha : Disjoint a c hb : Disjoint b c ⊢ Disjoint ((a ⊔ b) \ (a ⊓ b)) c [PROOFSTEP] exact (ha.sup_left hb).disjoint_sdiff_left [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ha : a ≤ c ⊢ a ∆ b = c ↔ c \ a = b [PROOFSTEP] rw [← symmDiff_of_le ha] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : GeneralizedBooleanAlgebra α a b c d : α ha : a ≤ c ⊢ a ∆ b = c ↔ a ∆ c = b [PROOFSTEP] exact ((symmDiff_right_involutive a).toPerm _).apply_eq_iff_eq_symm_apply.trans eq_comm [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ (b ⇔ c) = b ⇔ (a ⇔ c) [PROOFSTEP] simp_rw [← bihimp_assoc, bihimp_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ b ⇔ c = a ⇔ c ⇔ b [PROOFSTEP] simp_rw [bihimp_assoc, bihimp_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ b ⇔ (c ⇔ d) = a ⇔ c ⇔ (b ⇔ d) [PROOFSTEP] simp_rw [bihimp_assoc, bihimp_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ (a ⇔ b) = b [PROOFSTEP] simp [← bihimp_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ b ⇔ a ⇔ a = b [PROOFSTEP] simp [bihimp_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ b ⇔ a = b [PROOFSTEP] rw [bihimp_comm, bihimp_bihimp_cancel_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ∆ b = a ⊓ bᶜ ⊔ b ⊓ aᶜ [PROOFSTEP] simp only [(· ∆ ·), sdiff_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ b = (a ⊔ bᶜ) ⊓ (b ⊔ aᶜ) [PROOFSTEP] simp only [(· ⇔ ·), himp_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ) [PROOFSTEP] rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq, compl_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ (a ∆ b)ᶜ = a ⇔ b [PROOFSTEP] simp_rw [symmDiff, compl_sup_distrib, compl_sdiff, bihimp, inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ bᶜ \ aᶜ ⊔ aᶜ \ bᶜ = a ∆ b [PROOFSTEP] simp_rw [compl_sdiff_compl, sdiff_eq, symmDiff_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ∆ b = ⊤ ↔ IsCompl a b [PROOFSTEP] rw [symmDiff_eq', ← compl_inf, inf_eq_top_iff, compl_eq_top, isCompl_iff, disjoint_iff, codisjoint_iff, and_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⇔ b = ⊥ ↔ IsCompl a b [PROOFSTEP] rw [bihimp_eq', ← compl_sup, sup_eq_bot_iff, compl_eq_bot, isCompl_iff, disjoint_iff, codisjoint_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ∆ (b ∆ c) = a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ [PROOFSTEP] {rw [symmDiff_eq, compl_symmDiff, bihimp_eq', symmDiff_eq] } [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ∆ (b ∆ c) = a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ [PROOFSTEP] rw [symmDiff_eq, compl_symmDiff, bihimp_eq', symmDiff_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ [PROOFSTEP] {rw [inf_sup_left, inf_sup_right, ← sup_assoc, ← inf_assoc, ← inf_assoc] } [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⊓ (b ⊓ c ⊔ bᶜ ⊓ cᶜ) ⊔ (b ⊓ cᶜ ⊔ c ⊓ bᶜ) ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ [PROOFSTEP] rw [inf_sup_left, inf_sup_right, ← sup_assoc, ← inf_assoc, ← inf_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ ⊔ c ⊓ bᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ ⊔ aᶜ ⊓ bᶜ ⊓ c [PROOFSTEP] congr 1 [GOAL] case e_a ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ b ⊓ cᶜ ⊓ aᶜ = a ⊓ b ⊓ c ⊔ a ⊓ bᶜ ⊓ cᶜ ⊔ aᶜ ⊓ b ⊓ cᶜ [PROOFSTEP] congr 1 [GOAL] case e_a.e_a ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ b ⊓ cᶜ ⊓ aᶜ = aᶜ ⊓ b ⊓ cᶜ [PROOFSTEP] rw [inf_comm, inf_assoc] [GOAL] case e_a ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α ⊢ c ⊓ bᶜ ⊓ aᶜ = aᶜ ⊓ bᶜ ⊓ c [PROOFSTEP] apply inf_left_right_swap [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α h : Disjoint a b ⊢ c ≤ a ∆ c ⊔ b ∆ c [PROOFSTEP] trans c \ (a ⊓ b) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α h : Disjoint a b ⊢ c ≤ c \ (a ⊓ b) [PROOFSTEP] rw [h.eq_bot, sdiff_bot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α h : Disjoint a b ⊢ c \ (a ⊓ b) ≤ a ∆ c ⊔ b ∆ c [PROOFSTEP] rw [sdiff_inf] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α h : Disjoint a b ⊢ c \ a ⊔ c \ b ≤ a ∆ c ⊔ b ∆ c [PROOFSTEP] exact sup_le_sup le_sup_right le_sup_right [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α h : Disjoint b c ⊢ a ≤ a ∆ b ⊔ a ∆ c [PROOFSTEP] simp_rw [symmDiff_comm a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 π : ι → Type u_4 inst✝ : BooleanAlgebra α a b c d : α h : Disjoint b c ⊢ a ≤ b ∆ a ⊔ c ∆ a [PROOFSTEP] exact h.le_symmDiff_sup_symmDiff_left
{"mathlib_filename": "Mathlib.Order.SymmDiff", "llama_tokens": 13036}
[GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] by_cases xy : x ≤ y [GOAL] case pos α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : x ≤ y ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] by_cases yx : y ≤ x [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : ¬x ≤ y ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] by_cases yx : y ≤ x [GOAL] case pos α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : x ≤ y yx : y ≤ x ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] simp [cmpLE, *, Ordering.swap] [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : x ≤ y yx : ¬y ≤ x ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] simp [cmpLE, *, Ordering.swap] [GOAL] case pos α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : ¬x ≤ y yx : y ≤ x ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] simp [cmpLE, *, Ordering.swap] [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : ¬x ≤ y yx : ¬y ≤ x ⊢ Ordering.swap (cmpLE x y) = cmpLE y x [PROOFSTEP] simp [cmpLE, *, Ordering.swap] [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝² : LE α inst✝¹ : IsTotal α fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α xy : ¬x ≤ y yx : ¬y ≤ x ⊢ False [PROOFSTEP] cases not_or_of_not xy yx (total_of _ _ _) [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α ⊢ cmpLE x y = cmp x y [PROOFSTEP] by_cases xy : x ≤ y [GOAL] case pos α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : x ≤ y ⊢ cmpLE x y = cmp x y [PROOFSTEP] by_cases yx : y ≤ x [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : ¬x ≤ y ⊢ cmpLE x y = cmp x y [PROOFSTEP] by_cases yx : y ≤ x [GOAL] case pos α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : x ≤ y yx : y ≤ x ⊢ cmpLE x y = cmp x y [PROOFSTEP] simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing] [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : x ≤ y yx : ¬y ≤ x ⊢ cmpLE x y = cmp x y [PROOFSTEP] simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing] [GOAL] case pos α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : ¬x ≤ y yx : y ≤ x ⊢ cmpLE x y = cmp x y [PROOFSTEP] simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing] [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : ¬x ≤ y yx : ¬y ≤ x ⊢ cmpLE x y = cmp x y [PROOFSTEP] simp [cmpLE, lt_iff_le_not_le, *, cmp, cmpUsing] [GOAL] case neg α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝³ : Preorder α inst✝² : IsTotal α fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α xy : ¬x ≤ y yx : ¬y ≤ x ⊢ False [PROOFSTEP] cases not_or_of_not xy yx (total_of _ _ _) [GOAL] α : Type u_1 β : Type u_2 inst✝ : LT α a b : α o : Ordering ⊢ Compares (swap o) a b ↔ Compares o b a [PROOFSTEP] cases o [GOAL] case lt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares (swap lt) a b ↔ Compares lt b a [PROOFSTEP] exact Iff.rfl [GOAL] case eq α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares (swap eq) a b ↔ Compares eq b a [PROOFSTEP] exact eq_comm [GOAL] case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares (swap gt) a b ↔ Compares gt b a [PROOFSTEP] exact Iff.rfl [GOAL] α : Type u_1 β : Type u_2 o o' : Ordering ⊢ swap o = o' ↔ o = swap o' [PROOFSTEP] rw [← swap_inj, swap_swap] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α h✝ : Compares eq a b h : eq = lt ⊢ a < b [PROOFSTEP] injection h [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α h✝ : Compares gt a b h : gt = lt ⊢ a < b [PROOFSTEP] injection h [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α h✝ : Compares eq a b x✝ : b ≤ a h : eq = lt ⊢ False [PROOFSTEP] injection h [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α h✝ : Compares gt a b x✝ : b ≤ a h : gt = lt ⊢ False [PROOFSTEP] injection h [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α h✝ : Compares lt a b h : lt = eq ⊢ a = b [PROOFSTEP] injection h [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α h✝ : Compares gt a b h : gt = eq ⊢ a = b [PROOFSTEP] injection h [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ⊢ Compares o a b ↔ Compares o a' b' [PROOFSTEP] refine' ⟨h, fun ho => _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' ⊢ Compares o a b [PROOFSTEP] cases' lt_trichotomy a b with hab hab [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab : a < b ⊢ Compares o a b [PROOFSTEP] have hab : Compares Ordering.lt a b := hab [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab✝ : a < b hab : Compares lt a b ⊢ Compares o a b [PROOFSTEP] rwa [ho.inj (h hab)] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab : a = b ∨ b < a ⊢ Compares o a b [PROOFSTEP] cases' hab with hab hab [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab : a = b ⊢ Compares o a b [PROOFSTEP] have hab : Compares Ordering.eq a b := hab [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab✝ : a = b hab : Compares eq a b ⊢ Compares o a b [PROOFSTEP] rwa [ho.inj (h hab)] [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab : b < a ⊢ Compares o a b [PROOFSTEP] have hab : Compares Ordering.gt a b := hab [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a b : α a' b' : β h : ∀ {o : Ordering}, Compares o a b → Compares o a' b' o : Ordering ho : Compares o a' b' hab✝ : b < a hab : Compares gt a b ⊢ Compares o a b [PROOFSTEP] rwa [ho.inj (h hab)] [GOAL] α : Type u_1 β : Type u_2 o₁ o₂ : Ordering ⊢ swap (orElse o₁ o₂) = orElse (swap o₁) (swap o₂) [PROOFSTEP] cases o₁ [GOAL] case lt α : Type u_1 β : Type u_2 o₂ : Ordering ⊢ swap (orElse lt o₂) = orElse (swap lt) (swap o₂) [PROOFSTEP] rfl [GOAL] case eq α : Type u_1 β : Type u_2 o₂ : Ordering ⊢ swap (orElse eq o₂) = orElse (swap eq) (swap o₂) [PROOFSTEP] rfl [GOAL] case gt α : Type u_1 β : Type u_2 o₂ : Ordering ⊢ swap (orElse gt o₂) = orElse (swap gt) (swap o₂) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 o₁ o₂ : Ordering ⊢ orElse o₁ o₂ = lt ↔ o₁ = lt ∨ o₁ = eq ∧ o₂ = lt [PROOFSTEP] cases o₁ [GOAL] case lt α : Type u_1 β : Type u_2 o₂ : Ordering ⊢ orElse lt o₂ = lt ↔ lt = lt ∨ lt = eq ∧ o₂ = lt [PROOFSTEP] cases o₂ [GOAL] case eq α : Type u_1 β : Type u_2 o₂ : Ordering ⊢ orElse eq o₂ = lt ↔ eq = lt ∨ eq = eq ∧ o₂ = lt [PROOFSTEP] cases o₂ [GOAL] case gt α : Type u_1 β : Type u_2 o₂ : Ordering ⊢ orElse gt o₂ = lt ↔ gt = lt ∨ gt = eq ∧ o₂ = lt [PROOFSTEP] cases o₂ [GOAL] case lt.lt α : Type u_1 β : Type u_2 ⊢ orElse lt lt = lt ↔ lt = lt ∨ lt = eq ∧ lt = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse lt lt = lt ↔ lt = lt ∨ lt = eq ∧ lt = lt [PROOFSTEP] decide [GOAL] case lt.eq α : Type u_1 β : Type u_2 ⊢ orElse lt eq = lt ↔ lt = lt ∨ lt = eq ∧ eq = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse lt eq = lt ↔ lt = lt ∨ lt = eq ∧ eq = lt [PROOFSTEP] decide [GOAL] case lt.gt α : Type u_1 β : Type u_2 ⊢ orElse lt gt = lt ↔ lt = lt ∨ lt = eq ∧ gt = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse lt gt = lt ↔ lt = lt ∨ lt = eq ∧ gt = lt [PROOFSTEP] decide [GOAL] case eq.lt α : Type u_1 β : Type u_2 ⊢ orElse eq lt = lt ↔ eq = lt ∨ eq = eq ∧ lt = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse eq lt = lt ↔ eq = lt ∨ eq = eq ∧ lt = lt [PROOFSTEP] decide [GOAL] case eq.eq α : Type u_1 β : Type u_2 ⊢ orElse eq eq = lt ↔ eq = lt ∨ eq = eq ∧ eq = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse eq eq = lt ↔ eq = lt ∨ eq = eq ∧ eq = lt [PROOFSTEP] decide [GOAL] case eq.gt α : Type u_1 β : Type u_2 ⊢ orElse eq gt = lt ↔ eq = lt ∨ eq = eq ∧ gt = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse eq gt = lt ↔ eq = lt ∨ eq = eq ∧ gt = lt [PROOFSTEP] decide [GOAL] case gt.lt α : Type u_1 β : Type u_2 ⊢ orElse gt lt = lt ↔ gt = lt ∨ gt = eq ∧ lt = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse gt lt = lt ↔ gt = lt ∨ gt = eq ∧ lt = lt [PROOFSTEP] decide [GOAL] case gt.eq α : Type u_1 β : Type u_2 ⊢ orElse gt eq = lt ↔ gt = lt ∨ gt = eq ∧ eq = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse gt eq = lt ↔ gt = lt ∨ gt = eq ∧ eq = lt [PROOFSTEP] decide [GOAL] case gt.gt α : Type u_1 β : Type u_2 ⊢ orElse gt gt = lt ↔ gt = lt ∨ gt = eq ∧ gt = lt [PROOFSTEP] exact by decide [GOAL] α : Type u_1 β : Type u_2 ⊢ orElse gt gt = lt ↔ gt = lt ∨ gt = eq ∧ gt = lt [PROOFSTEP] decide [GOAL] α : Type u_1 β : Type u_2 inst✝ : LT α a b : α o : Ordering ⊢ Compares o (↑toDual a) (↑toDual b) ↔ Compares o b a [PROOFSTEP] cases o [GOAL] case lt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares lt (↑toDual a) (↑toDual b) ↔ Compares lt b a case eq α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares eq (↑toDual a) (↑toDual b) ↔ Compares eq b a case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ Compares gt (↑toDual a) (↑toDual b) ↔ Compares gt b a [PROOFSTEP] exacts [Iff.rfl, eq_comm, Iff.rfl] [GOAL] α : Type u_1 β : Type u_2 inst✝ : LT α a b : αᵒᵈ o : Ordering ⊢ Compares o (↑ofDual a) (↑ofDual b) ↔ Compares o b a [PROOFSTEP] cases o [GOAL] case lt α : Type u_1 β : Type u_2 inst✝ : LT α a b : αᵒᵈ ⊢ Compares lt (↑ofDual a) (↑ofDual b) ↔ Compares lt b a case eq α : Type u_1 β : Type u_2 inst✝ : LT α a b : αᵒᵈ ⊢ Compares eq (↑ofDual a) (↑ofDual b) ↔ Compares eq b a case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : αᵒᵈ ⊢ Compares gt (↑ofDual a) (↑ofDual b) ↔ Compares gt b a [PROOFSTEP] exacts [Iff.rfl, eq_comm, Iff.rfl] [GOAL] α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b : α ⊢ Compares (cmp a b) a b [PROOFSTEP] obtain h | h | h := lt_trichotomy a b [GOAL] case inl α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b : α h : a < b ⊢ Compares (cmp a b) a b [PROOFSTEP] simp [cmp, cmpUsing, h, h.not_lt] [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b : α h : a = b ⊢ Compares (cmp a b) a b [PROOFSTEP] simp [cmp, cmpUsing, h, h.not_lt] [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b : α h : b < a ⊢ Compares (cmp a b) a b [PROOFSTEP] simp [cmp, cmpUsing, h, h.not_lt] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α ⊢ swap (cmp a b) = cmp b a [PROOFSTEP] unfold cmp cmpUsing [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] by_cases h : a < b [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : a < b ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] by_cases h₂ : b < a [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : ¬a < b ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] by_cases h₂ : b < a [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : a < b h₂ : b < a ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] simp [h, h₂, Ordering.swap] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : a < b h₂ : ¬b < a ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] simp [h, h₂, Ordering.swap] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : ¬a < b h₂ : b < a ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] simp [h, h₂, Ordering.swap] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : ¬a < b h₂ : ¬b < a ⊢ swap (if (fun x x_1 => x < x_1) a b then lt else if (fun x x_1 => x < x_1) b a then gt else eq) = if (fun x x_1 => x < x_1) b a then lt else if (fun x x_1 => x < x_1) a b then gt else eq [PROOFSTEP] simp [h, h₂, Ordering.swap] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a b : α h : a < b h₂ : b < a ⊢ False [PROOFSTEP] exact lt_asymm h h₂ [GOAL] α : Type u_1 β : Type u_2 inst✝ : LinearOrder α x y : α ⊢ cmp x x = eq [PROOFSTEP] rw [cmp_eq_eq_iff] [GOAL] α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ cmp y x = cmp y' x' [PROOFSTEP] rwa [← cmp_swap x', ← cmp_swap, swap_inj] [GOAL] α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp y x = cmp y' x' ⊢ cmp x y = cmp x' y' [PROOFSTEP] rwa [← cmp_swap y', ← cmp_swap, swap_inj] [GOAL] α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ x < y ↔ x' < y' [PROOFSTEP] rw [← cmp_eq_lt_iff, ← cmp_eq_lt_iff, h] [GOAL] α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ x ≤ y ↔ x' ≤ y' [PROOFSTEP] rw [← not_lt, ← not_lt] [GOAL] α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ ¬y < x ↔ ¬y' < x' [PROOFSTEP] apply not_congr [GOAL] case h α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ y < x ↔ y' < x' [PROOFSTEP] apply lt_iff_lt_of_cmp_eq_cmp [GOAL] case h.h α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ cmp y x = cmp y' x' [PROOFSTEP] rwa [cmp_eq_cmp_symm] [GOAL] α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ x = y ↔ x' = y' [PROOFSTEP] rw [le_antisymm_iff, le_antisymm_iff, le_iff_le_of_cmp_eq_cmp h, le_iff_le_of_cmp_eq_cmp (cmp_eq_cmp_symm.1 h)]
{"mathlib_filename": "Mathlib.Order.Compare", "llama_tokens": 9322}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α ⊢ IsBounded r ⊥ ↔ Nonempty α [PROOFSTEP] simp [IsBounded, exists_true_iff_nonempty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α ⊢ IsBounded r ⊤ ↔ ∃ t, ∀ (x : α), r x t [PROOFSTEP] simp [IsBounded, eq_univ_iff_forall] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α s : Set α ⊢ IsBounded r (𝓟 s) ↔ ∃ t, ∀ (x : α), x ∈ s → r x t [PROOFSTEP] simp [IsBounded, subset_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α inst✝ : Preorder β l : Filter α u v : α → β hu : IsBoundedUnder (fun x x_1 => x ≤ x_1) l u hv : v ≤ᶠ[l] u ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l v [PROOFSTEP] apply hu.imp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α inst✝ : Preorder β l : Filter α u v : α → β hu : IsBoundedUnder (fun x x_1 => x ≤ x_1) l u hv : v ≤ᶠ[l] u ⊢ ∀ (a : β), (∀ᶠ (x : β) in map u l, (fun x x_1 => x ≤ x_1) x a) → ∀ᶠ (x : β) in map v l, (fun x x_1 => x ≤ x_1) x a [PROOFSTEP] exact fun b hb => (eventually_map.1 hb).mp <| hv.mono fun x => le_trans [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝² : Preorder β inst✝¹ : NoMaxOrder β f : α → β l : Filter α inst✝ : NeBot l hf : Tendsto f l atTop ⊢ ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] rintro ⟨b, hb⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝² : Preorder β inst✝¹ : NoMaxOrder β f : α → β l : Filter α inst✝ : NeBot l hf : Tendsto f l atTop b : β hb : ∀ᶠ (x : β) in map f l, (fun x x_1 => x ≤ x_1) x b ⊢ False [PROOFSTEP] rw [eventually_map] at hb [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝² : Preorder β inst✝¹ : NoMaxOrder β f : α → β l : Filter α inst✝ : NeBot l hf : Tendsto f l atTop b : β hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b ⊢ False [PROOFSTEP] obtain ⟨b', h⟩ := exists_gt b [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝² : Preorder β inst✝¹ : NoMaxOrder β f : α → β l : Filter α inst✝ : NeBot l hf : Tendsto f l atTop b : β hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b b' : β h : b < b' ⊢ False [PROOFSTEP] have hb' := (tendsto_atTop.mp hf) b' [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝² : Preorder β inst✝¹ : NoMaxOrder β f : α → β l : Filter α inst✝ : NeBot l hf : Tendsto f l atTop b : β hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b b' : β h : b < b' hb' : ∀ᶠ (a : α) in l, b' ≤ f a ⊢ False [PROOFSTEP] have : {x : α | f x ≤ b} ∩ {x : α | b' ≤ f x} = ∅ := eq_empty_of_subset_empty fun x hx => (not_le_of_lt h) (le_trans hx.2 hx.1) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝² : Preorder β inst✝¹ : NoMaxOrder β f : α → β l : Filter α inst✝ : NeBot l hf : Tendsto f l atTop b : β hb : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) (f a) b b' : β h : b < b' hb' : ∀ᶠ (a : α) in l, b' ≤ f a this : {x | f x ≤ b} ∩ {x | b' ≤ f x} = ∅ ⊢ False [PROOFSTEP] exact (nonempty_of_mem (hb.and hb')).ne_empty this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝ : SemilatticeSup β f : α → β hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) cofinite f ⊢ BddAbove (range f) [PROOFSTEP] rcases hf with ⟨b, hb⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝ : SemilatticeSup β f : α → β b : β hb : ∀ᶠ (x : β) in map f cofinite, (fun x x_1 => x ≤ x_1) x b ⊢ BddAbove (range f) [PROOFSTEP] haveI : Nonempty β := ⟨b⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝ : SemilatticeSup β f : α → β b : β hb : ∀ᶠ (x : β) in map f cofinite, (fun x x_1 => x ≤ x_1) x b this : Nonempty β ⊢ BddAbove (range f) [PROOFSTEP] rw [← image_univ, ← union_compl_self {x | f x ≤ b}, image_union, bddAbove_union] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝ : SemilatticeSup β f : α → β b : β hb : ∀ᶠ (x : β) in map f cofinite, (fun x x_1 => x ≤ x_1) x b this : Nonempty β ⊢ BddAbove (f '' {x | f x ≤ b}) ∧ BddAbove (f '' {x | f x ≤ b}ᶜ) [PROOFSTEP] exact ⟨⟨b, ball_image_iff.2 fun x => id⟩, (hb.image f).bddAbove⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝ : SemilatticeSup β f : ℕ → β hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop f ⊢ BddAbove (range f) [PROOFSTEP] rw [← Nat.cofinite_eq_atTop] at hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f✝ g : Filter α inst✝ : SemilatticeSup β f : ℕ → β hf : IsBoundedUnder (fun x x_1 => x ≤ x_1) cofinite f ⊢ BddAbove (range f) [PROOFSTEP] exact hf.bddAbove_range_of_cofinite [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α ⊢ IsCobounded r ⊥ ↔ ∃ b, ∀ (x : α), r b x [PROOFSTEP] simp [IsCobounded] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α ⊢ IsCobounded r ⊤ ↔ Nonempty α [PROOFSTEP] simp (config := { contextual := true }) [IsCobounded, eq_univ_iff_forall, exists_true_iff_nonempty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r : α → α → Prop f g : Filter α s : Set α ⊢ IsCobounded r (𝓟 s) ↔ ∃ b, ∀ (a : α), (∀ (x : α), x ∈ s → r x a) → r b a [PROOFSTEP] simp [IsCobounded, subset_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β l : Filter γ u : γ → α a : α ⊢ (∀ᶠ (x : β) in map (fun x => ↑e (u x)) l, (fun x x_1 => x ≤ x_1) x (↑e a)) ↔ ∀ᶠ (x : α) in map u l, (fun x x_1 => x ≤ x_1) x a [PROOFSTEP] simp only [eventually_map, e.le_iff_le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SemilatticeSup α f : Filter β u v : β → α bu : α hu : ∀ᶠ (x : β) in f, u x ≤ bu bv : α hv : ∀ᶠ (x : β) in f, v x ≤ bv ⊢ ∀ᶠ (x : β) in f, u x ⊔ v x ≤ bu ⊔ bv [PROOFSTEP] filter_upwards [hu, hv] with _ using sup_le_sup [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α ⊢ (blimsup u f fun x => True) = limsup u f [PROOFSTEP] simp [blimsup_eq, limsup_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α ⊢ (bliminf u f fun x => True) = liminf u f [PROOFSTEP] simp [bliminf_eq, liminf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α p : β → Prop ⊢ blimsup u f p = limsup (u ∘ Subtype.val) (comap Subtype.val f) [PROOFSTEP] simp only [blimsup_eq, limsup_eq, Function.comp_apply, eventually_comap, SetCoe.forall, Subtype.coe_mk, mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α p : β → Prop ⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = sInf {a | ∀ᶠ (b : β) in f, ∀ (a_1 : { x // p x }), ↑a_1 = b → u ↑a_1 ≤ a} [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α p : β → Prop ⊢ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = {a | ∀ᶠ (b : β) in f, ∀ (a_1 : { x // p x }), ↑a_1 = b → u ↑a_1 ≤ a} [PROOFSTEP] ext a [GOAL] case e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α p : β → Prop a : α ⊢ a ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ a ∈ {a | ∀ᶠ (b : β) in f, ∀ (a_1 : { x // p x }), ↑a_1 = b → u ↑a_1 ≤ a} [PROOFSTEP] simp_rw [Subtype.forall] [GOAL] case e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u : β → α p : β → Prop a : α ⊢ a ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ a ∈ {a | ∀ᶠ (b : β) in f, ∀ (a_1 : β), p a_1 → a_1 = b → u a_1 ≤ a} [PROOFSTEP] exact eventually_congr (eventually_of_forall fun x => ⟨fun hx y hy hxy => hxy.symm ▸ hx (hxy ▸ hy), fun hx hx' => hx x hx' rfl⟩) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α s : Set α h : BddAbove s hs : Set.Nonempty s ⊢ limsSup (𝓟 s) = sSup s [PROOFSTEP] simp only [limsSup, eventually_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α s : Set α h : BddAbove s hs : Set.Nonempty s ⊢ sInf {a | ∀ (x : α), x ∈ s → x ≤ a} = sSup s [PROOFSTEP] exact csInf_upper_bounds_eq_csSup h hs [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice α✝ α : Type u_5 inst✝ : ConditionallyCompleteLattice β f : Filter α u v : α → β h : ∀ᶠ (a : α) in f, u a = v a ⊢ limsup u f = limsup v f [PROOFSTEP] rw [limsup_eq] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice α✝ α : Type u_5 inst✝ : ConditionallyCompleteLattice β f : Filter α u v : α → β h : ∀ᶠ (a : α) in f, u a = v a ⊢ sInf {a | ∀ᶠ (n : α) in f, u n ≤ a} = limsup v f [PROOFSTEP] congr with b [GOAL] case e_a.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice α✝ α : Type u_5 inst✝ : ConditionallyCompleteLattice β f : Filter α u v : α → β h : ∀ᶠ (a : α) in f, u a = v a b : β ⊢ b ∈ {a | ∀ᶠ (n : α) in f, u n ≤ a} ↔ b ∈ {a | ∀ᶠ (n : β) in map v f, n ≤ a} [PROOFSTEP] exact eventually_congr (h.mono fun x hx => by simp [hx]) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice α✝ α : Type u_5 inst✝ : ConditionallyCompleteLattice β f : Filter α u v : α → β h : ∀ᶠ (a : α) in f, u a = v a b : β x : α hx : u x = v x ⊢ u x ≤ b ↔ v x ∈ {x | (fun n => n ≤ b) x} [PROOFSTEP] simp [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a ⊢ blimsup u f p = blimsup v f p [PROOFSTEP] rw [blimsup_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a ⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = blimsup v f p [PROOFSTEP] congr with b [GOAL] case e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a b : α ⊢ b ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ b ∈ {a | ∀ᶠ (x : β) in f, p x → v x ≤ a} [PROOFSTEP] refine' eventually_congr (h.mono fun x hx => ⟨fun h₁ h₂ => _, fun h₁ h₂ => _⟩) [GOAL] case e_a.h.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a b : α x : β hx : p x → u x = v x h₁ : p x → u x ≤ b h₂ : p x ⊢ v x ≤ b [PROOFSTEP] rw [← hx h₂] [GOAL] case e_a.h.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a b : α x : β hx : p x → u x = v x h₁ : p x → u x ≤ b h₂ : p x ⊢ u x ≤ b [PROOFSTEP] exact h₁ h₂ [GOAL] case e_a.h.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a b : α x : β hx : p x → u x = v x h₁ : p x → v x ≤ b h₂ : p x ⊢ u x ≤ b [PROOFSTEP] rw [hx h₂] [GOAL] case e_a.h.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : ConditionallyCompleteLattice α f : Filter β u v : β → α p : β → Prop h : ∀ᶠ (a : β) in f, p a → u a = v a b : α x : β hx : p x → u x = v x h₁ : p x → v x ≤ b h₂ : p x ⊢ v x ≤ b [PROOFSTEP] exact h₁ h₂ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : ConditionallyCompleteLattice α✝ α : Type u_5 inst✝¹ : ConditionallyCompleteLattice β f : Filter α inst✝ : NeBot f b : β ⊢ limsup (fun x => b) f = b [PROOFSTEP] simpa only [limsup_eq, eventually_const] using csInf_Ici [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α ⊢ ⊥ ∈ {a | ∀ᶠ (n : α) in ⊥, n ≤ a} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : β → α ⊢ limsup f ⊥ = ⊥ [PROOFSTEP] simp [limsup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α ⊢ ⊤ ∈ {a | ∀ᶠ (n : α) in ⊥, a ≤ n} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : β → α ⊢ liminf f ⊥ = ⊤ [PROOFSTEP] simp [liminf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α ⊢ ∀ (b : α), b ∈ {a | ∀ᶠ (n : α) in ⊤, n ≤ a} → ⊤ ≤ b [PROOFSTEP] simp [eq_univ_iff_forall] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α ⊢ ∀ (b : α), (∀ (x : α), x ≤ b) → b = ⊤ [PROOFSTEP] exact fun b hb => top_unique <| hb _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α ⊢ ∀ (b : α), b ∈ {a | ∀ᶠ (n : α) in ⊤, a ≤ n} → b ≤ ⊥ [PROOFSTEP] simp [eq_univ_iff_forall] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α ⊢ ∀ (b : α), (∀ (x : α), b ≤ x) → b = ⊥ [PROOFSTEP] exact fun b hb => bot_unique <| hb _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β u : β → α ⊢ (blimsup u f fun x => False) = ⊥ [PROOFSTEP] simp [blimsup_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β u : β → α ⊢ (bliminf u f fun x => False) = ⊤ [PROOFSTEP] simp [bliminf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β ⊢ limsup (fun x => ⊥) f = ⊥ [PROOFSTEP] rw [limsup_eq, eq_bot_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β ⊢ sInf {a | ∀ᶠ (n : β) in f, ⊥ ≤ a} ≤ ⊥ [PROOFSTEP] exact sInf_le (eventually_of_forall fun _ => le_rfl) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β u : β → α ⊢ IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u [PROOFSTEP] isBoundedDefault [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β u : β → α ⊢ IsCoboundedUnder (fun x x_1 => x ≥ x_1) f u [PROOFSTEP] isBoundedDefault [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β u : β → α ⊢ ⨅ (i : Set β) (_ : i ∈ f), sSup (u '' id i) = ⨅ (s : Set β) (_ : s ∈ f), ⨆ (a : β) (_ : a ∈ s), u a [PROOFSTEP] simp only [sSup_image, id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α u : ℕ → α ⊢ ⨅ (i : ℕ) (_ : True), sSup (u '' Ici i) = ⨅ (n : ℕ), ⨆ (i : ℕ) (_ : i ≥ n), u i [PROOFSTEP] simp only [sSup_image, iInf_const] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α u : ℕ → α ⊢ ⨅ (i : ℕ), ⨆ (a : ℕ) (_ : a ∈ Ici i), u a = ⨅ (n : ℕ), ⨆ (i : ℕ) (_ : i ≥ n), u i [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α u : ℕ → α ⊢ limsup u atTop = ⨅ (n : ℕ), ⨆ (i : ℕ), u (i + n) [PROOFSTEP] simp only [limsup_eq_iInf_iSup_of_nat, iSup_ge_eq_iSup_nat_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α p : ι → Prop s : ι → Set β f : Filter β u : β → α h : HasBasis f p s ⊢ ⨅ (i : ι) (_ : p i), sSup (u '' s i) = ⨅ (i : ι) (_ : p i), ⨆ (a : β) (_ : a ∈ s i), u a [PROOFSTEP] simp only [sSup_image, id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) ⊢ blimsup u f p = blimsup u f q [PROOFSTEP] simp only [blimsup_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) ⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = sInf {a | ∀ᶠ (x : β) in f, q x → u x ≤ a} [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) ⊢ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = {a | ∀ᶠ (x : β) in f, q x → u x ≤ a} [PROOFSTEP] ext a [GOAL] case e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) a : α ⊢ a ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ a ∈ {a | ∀ᶠ (x : β) in f, q x → u x ≤ a} [PROOFSTEP] refine' eventually_congr (h.mono fun b hb => _) [GOAL] case e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) a : α b : β hb : u b ≠ ⊥ → (p b ↔ q b) ⊢ p b → u b ≤ a ↔ q b → u b ≤ a [PROOFSTEP] cases' eq_or_ne (u b) ⊥ with hu hu [GOAL] case e_a.h.inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) a : α b : β hb : u b ≠ ⊥ → (p b ↔ q b) hu : u b = ⊥ ⊢ p b → u b ≤ a ↔ q b → u b ≤ a [PROOFSTEP] simp [hu] [GOAL] case e_a.h.inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p q : β → Prop u : β → α h : ∀ᶠ (x : β) in f, u x ≠ ⊥ → (p x ↔ q x) a : α b : β hb : u b ≠ ⊥ → (p b ↔ q b) hu : u b ≠ ⊥ ⊢ p b → u b ≤ a ↔ q b → u b ≤ a [PROOFSTEP] rw [hb hu] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α ⊢ blimsup u f p = ⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] refine' le_antisymm (sInf_le_sInf _) (iInf_le_iff.mpr fun a ha => le_sInf_iff.mpr fun a' ha' => _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α ⊢ (range fun s => ⨅ (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b) ⊆ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} [PROOFSTEP] rintro - ⟨s, rfl⟩ [GOAL] case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β ⊢ (fun s => ⨅ (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b) s ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} [PROOFSTEP] simp only [mem_setOf_eq, le_iInf_iff] [GOAL] case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β ⊢ ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] conv => congr ext rw [Imp.swap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β | ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] congr ext rw [Imp.swap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β | ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] congr ext rw [Imp.swap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β | ∀ᶠ (x : β) in f, p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] congr [GOAL] case p α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β | fun x => p x → s ∈ f → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b case f α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β | f [PROOFSTEP] ext [GOAL] case p.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β x✝ : β | p x✝ → s ∈ f → u x✝ ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b case f α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β | f [PROOFSTEP] rw [Imp.swap] [GOAL] case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β ⊢ ∀ᶠ (x : β) in f, s ∈ f → p x → u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] refine' eventually_imp_distrib_left.mpr fun h => eventually_iff_exists_mem.2 ⟨s, h, fun x h₁ h₂ => _⟩ [GOAL] case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α s : Set β h : s ∈ f x : β h₁ : x ∈ s h₂ : p x ⊢ u x ≤ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b [PROOFSTEP] exact @le_iSup₂ α β (fun b => p b ∧ b ∈ s) _ (fun b _ => u b) x ⟨h₂, h₁⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α a : α ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b a' : α ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ⊢ a ≤ a' [PROOFSTEP] obtain ⟨s, hs, hs'⟩ := eventually_iff_exists_mem.mp ha' [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α a : α ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b a' : α ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} s : Set β hs : s ∈ f hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a' ⊢ a ≤ a' [PROOFSTEP] have : ∀ (y : β), p y → y ∈ s → u y ≤ a' := fun y ↦ by rw [Imp.swap]; exact hs' y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α a : α ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b a' : α ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} s : Set β hs : s ∈ f hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a' y : β ⊢ p y → y ∈ s → u y ≤ a' [PROOFSTEP] rw [Imp.swap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α a : α ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b a' : α ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} s : Set β hs : s ∈ f hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a' y : β ⊢ y ∈ s → p y → u y ≤ a' [PROOFSTEP] exact hs' y [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α a : α ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b a' : α ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} s : Set β hs : s ∈ f hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a' this : ∀ (y : β), p y → y ∈ s → u y ≤ a' ⊢ a ≤ a' [PROOFSTEP] exact (le_iInf_iff.mp (ha s) hs).trans (by simpa only [iSup₂_le_iff, and_imp]) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : Filter β p : β → Prop u : β → α a : α ha : ∀ (i : Set β), a ≤ ⨅ (_ : i ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ i), u b a' : α ha' : a' ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} s : Set β hs : s ∈ f hs' : ∀ (y : β), y ∈ s → p y → u y ≤ a' this : ∀ (y : β), p y → y ∈ s → u y ≤ a' ⊢ ⨆ (b : β) (_ : p b ∧ b ∈ s), u b ≤ a' [PROOFSTEP] simpa only [iSup₂_le_iff, and_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α p : ℕ → Prop u : ℕ → α ⊢ blimsup u atTop p = ⨅ (i : ℕ), ⨆ (j : ℕ) (_ : p j ∧ i ≤ j), u j [PROOFSTEP] simp only [blimsup_eq_limsup_subtype, Function.comp, (atTop_basis.comap ((↑) : {x | p x} → ℕ)).limsup_eq_iInf_iSup, iSup_subtype, iSup_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α p : ℕ → Prop u : ℕ → α ⊢ ⨅ (i : ℕ) (_ : True), ⨆ (i_1 : ℕ) (x : i_1 ∈ {x | p x}) (_ : { val := i_1, property := (_ : i_1 ∈ {x | p x}) } ∈ Subtype.val ⁻¹' Ici i), u i_1 = ⨅ (i : ℕ), ⨆ (j : ℕ) (_ : p j) (_ : i ≤ j), u j [PROOFSTEP] simp only [mem_setOf_eq, mem_preimage, mem_Ici, not_le, iInf_pos] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R ⊢ limsup a F = sInf ((fun I => sSup (a '' I)) '' F.sets) [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R ⊢ limsup a F ≤ sInf ((fun I => sSup (a '' I)) '' F.sets) [PROOFSTEP] rw [limsup_eq] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R ⊢ sInf {a_1 | ∀ᶠ (n : ι) in F, a n ≤ a_1} ≤ sInf ((fun I => sSup (a '' I)) '' F.sets) [PROOFSTEP] refine' sInf_le_sInf fun x hx => _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R x : R hx : x ∈ (fun I => sSup (a '' I)) '' F.sets ⊢ x ∈ {a_1 | ∀ᶠ (n : ι) in F, a n ≤ a_1} [PROOFSTEP] rcases(mem_image _ F.sets x).mp hx with ⟨I, ⟨I_mem_F, hI⟩⟩ [GOAL] case refine'_1.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R x : R hx : x ∈ (fun I => sSup (a '' I)) '' F.sets I : Set ι I_mem_F : I ∈ F.sets hI : sSup (a '' I) = x ⊢ x ∈ {a_1 | ∀ᶠ (n : ι) in F, a n ≤ a_1} [PROOFSTEP] filter_upwards [I_mem_F] with i hi [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R x : R hx : x ∈ (fun I => sSup (a '' I)) '' F.sets I : Set ι I_mem_F : I ∈ F.sets hI : sSup (a '' I) = x i : ι hi : i ∈ I ⊢ a i ≤ x [PROOFSTEP] exact hI ▸ le_sSup (mem_image_of_mem _ hi) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R ⊢ sInf ((fun I => sSup (a '' I)) '' F.sets) ≤ limsup a F [PROOFSTEP] refine' le_sInf_iff.mpr fun b hb => sInf_le_of_le (mem_image_of_mem _ <| Filter.mem_sets.mpr hb) <| sSup_le _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R b : R hb : b ∈ {a_1 | ∀ᶠ (n : R) in map a F, n ≤ a_1} ⊢ ∀ (b_1 : R), b_1 ∈ a '' (a ⁻¹' {x | (fun n => n ≤ b) x}) → b_1 ≤ b [PROOFSTEP] rintro _ ⟨_, h, rfl⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 inst✝¹ : CompleteLattice α ι : Type u_5 R : Type u_6 F : Filter ι inst✝ : CompleteLattice R a : ι → R b : R hb : b ∈ {a_1 | ∀ᶠ (n : R) in map a F, n ≤ a_1} w✝ : ι h : w✝ ∈ a ⁻¹' {x | (fun n => n ≤ b) x} ⊢ a w✝ ≤ b [PROOFSTEP] exact h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : ℕ → α k : ℕ ⊢ liminf (fun i => f (i + k)) atTop = liminf f atTop [PROOFSTEP] simp_rw [liminf_eq_iSup_iInf_of_nat] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : ℕ → α k : ℕ ⊢ ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f (i + k) = ⨆ (n : ℕ), ⨅ (i : ℕ) (_ : i ≥ n), f i [PROOFSTEP] exact iSup_iInf_ge_nat_add f k [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x : β h : ∃ᶠ (a : α) in f, u a ≤ x ⊢ liminf u f ≤ x [PROOFSTEP] rw [liminf_eq] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x : β h : ∃ᶠ (a : α) in f, u a ≤ x ⊢ sSup {a | ∀ᶠ (n : α) in f, a ≤ u n} ≤ x [PROOFSTEP] refine' sSup_le fun b hb => _ [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x : β h : ∃ᶠ (a : α) in f, u a ≤ x b : β hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n} ⊢ b ≤ x [PROOFSTEP] have hbx : ∃ᶠ _ in f, b ≤ x := by revert h rw [← not_imp_not, not_frequently, not_frequently] exact fun h => hb.mp (h.mono fun a hbx hba hax => hbx (hba.trans hax)) [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x : β h : ∃ᶠ (a : α) in f, u a ≤ x b : β hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n} ⊢ ∃ᶠ (x_1 : α) in f, b ≤ x [PROOFSTEP] revert h [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x b : β hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n} ⊢ (∃ᶠ (a : α) in f, u a ≤ x) → ∃ᶠ (x_1 : α) in f, b ≤ x [PROOFSTEP] rw [← not_imp_not, not_frequently, not_frequently] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x b : β hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n} ⊢ (∀ᶠ (x_1 : α) in f, ¬b ≤ x) → ∀ᶠ (x_1 : α) in f, ¬u x_1 ≤ x [PROOFSTEP] exact fun h => hb.mp (h.mono fun a hbx hba hax => hbx (hba.trans hax)) [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α✝ α : Type u_5 β : Type u_6 inst✝ : CompleteLattice β f : Filter α u : α → β x : β h : ∃ᶠ (a : α) in f, u a ≤ x b : β hb : b ∈ {a | ∀ᶠ (n : α) in f, a ≤ u n} hbx : ∃ᶠ (x_1 : α) in f, b ≤ x ⊢ b ≤ x [PROOFSTEP] exact hbx.exists.choose_spec [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ↑f (limsup (fun n => (↑f)^[n] a) atTop) = limsup (fun n => (↑f)^[n] a) atTop [PROOFSTEP] rw [limsup_eq_iInf_iSup_of_nat', map_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ⨅ (i : ℕ), ↑f (⨆ (i_1 : ℕ), (↑f)^[i_1 + i] a) = ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a [PROOFSTEP] simp_rw [_root_.map_iSup, ← Function.comp_apply (f := f), ← Function.iterate_succ' f, ← Nat.add_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ⨅ (i : ℕ), ⨆ (i_1 : ℕ), (↑f)^[i_1 + Nat.succ i] a = ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a [PROOFSTEP] conv_rhs => rw [iInf_split _ ((· < ·) (0 : ℕ))] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α | ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a [PROOFSTEP] rw [iInf_split _ ((· < ·) (0 : ℕ))] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α | ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a [PROOFSTEP] rw [iInf_split _ ((· < ·) (0 : ℕ))] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α | ⨅ (n : ℕ), ⨆ (i : ℕ), (↑f)^[i + n] a [PROOFSTEP] rw [iInf_split _ ((· < ·) (0 : ℕ))] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ⨅ (i : ℕ), ⨆ (i_1 : ℕ), (↑f)^[i_1 + Nat.succ i] a = (⨅ (i : ℕ) (_ : (fun x x_1 => x < x_1) 0 i), ⨆ (i_1 : ℕ), (↑f)^[i_1 + i] a) ⊓ ⨅ (i : ℕ) (_ : ¬(fun x x_1 => x < x_1) 0 i), ⨆ (i_1 : ℕ), (↑f)^[i_1 + i] a [PROOFSTEP] simp only [not_lt, le_zero_iff, iInf_iInf_eq_left, add_zero, iInf_nat_gt_zero_eq, left_eq_inf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ⨅ (i : ℕ), ⨆ (i_1 : ℕ), (↑f)^[i_1 + Nat.succ i] a ≤ ⨆ (i : ℕ), (↑f)^[i] a [PROOFSTEP] refine' (iInf_le (fun i => ⨆ j, f^[j + (i + 1)] a) 0).trans _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ⨆ (j : ℕ), (↑f)^[j + (0 + 1)] a ≤ ⨆ (i : ℕ), (↑f)^[i] a [PROOFSTEP] simp only [zero_add, Function.comp_apply, iSup_le_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f : CompleteLatticeHom α α a : α ⊢ ∀ (i : ℕ), (↑f)^[i + 1] a ≤ ⨆ (i : ℕ), (↑f)^[i] a [PROOFSTEP] exact fun i => le_iSup (fun i => f^[i] a) (i + 1) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α h : ∀ (x : β), p x → q x a : α ha : a ∈ {a | ∀ᶠ (x : β) in f, q x → u x ≤ a} ⊢ ∀ (x : β), (q x → u x ≤ a) → p x → u x ≤ a [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α h : ∀ (x : β), p x → q x a : α ha : a ∈ {a | ∀ᶠ (x : β) in f, q x → a ≤ u x} ⊢ ∀ (x : β), (q x → a ≤ u x) → p x → a ≤ u x [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α ⊢ ∀ (x : β), p x ∧ q x → p x [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α ⊢ ∀ (x : β), p x ∧ q x → q x [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α ⊢ ∀ (x : β), p x → p x ∨ q x [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α ⊢ ∀ (x : β), q x → p x ∨ q x [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ e : α ≃o γ ⊢ ↑e (blimsup u f p) = blimsup (↑e ∘ u) f p [PROOFSTEP] simp only [blimsup_eq, map_sInf, Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ e : α ≃o γ ⊢ sInf ((fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a}) = sInf {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a} [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ e : α ≃o γ ⊢ (fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a} [PROOFSTEP] ext c [GOAL] case e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ e : α ≃o γ c : γ ⊢ c ∈ (fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ c ∈ {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a} [PROOFSTEP] obtain ⟨a, rfl⟩ := e.surjective c [GOAL] case e_a.h.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ e : α ≃o γ a : α ⊢ ↑e a ∈ (fun a => ↑e a) '' {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ ↑e a ∈ {a | ∀ᶠ (x : β) in f, p x → ↑e (u x) ≤ a} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g✝ : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ g : sSupHom α γ ⊢ ↑g (blimsup u f p) ≤ blimsup (↑g ∘ u) f p [PROOFSTEP] simp only [blimsup_eq_iInf_biSup, Function.comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g✝ : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ g : sSupHom α γ ⊢ ↑g (⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b) ≤ ⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), ↑g (u b) [PROOFSTEP] refine' ((OrderHomClass.mono g).map_iInf₂_le _).trans _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteLattice α f g✝ : Filter β p q : β → Prop u v : β → α inst✝ : CompleteLattice γ g : sSupHom α γ ⊢ ⨅ (i : Set β) (_ : i ∈ f), ↑g (⨆ (b : β) (_ : p b ∧ b ∈ i), u b) ≤ ⨅ (s : Set β) (_ : s ∈ f), ⨆ (b : β) (_ : p b ∧ b ∈ s), ↑g (u b) [PROOFSTEP] simp only [_root_.map_iSup, le_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α ⊢ (blimsup u f fun x => p x ∨ q x) = blimsup u f p ⊔ blimsup u f q [PROOFSTEP] refine' le_antisymm _ blimsup_sup_le_or [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α ⊢ (blimsup u f fun x => p x ∨ q x) ≤ blimsup u f p ⊔ blimsup u f q [PROOFSTEP] simp only [blimsup_eq, sInf_sup_eq, sup_sInf_eq, le_iInf₂_iff, mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α ⊢ ∀ (i : α), (∀ᶠ (x : β) in f, q x → u x ≤ i) → ∀ (i_1 : α), (∀ᶠ (x : β) in f, p x → u x ≤ i_1) → sInf {a | ∀ᶠ (x : β) in f, p x ∨ q x → u x ≤ a} ≤ i_1 ⊔ i [PROOFSTEP] refine' fun a' ha' a ha => sInf_le ((ha.and ha').mono fun b h hb => _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α a' : α ha' : ∀ᶠ (x : β) in f, q x → u x ≤ a' a : α ha : ∀ᶠ (x : β) in f, p x → u x ≤ a b : β h : (p b → u b ≤ a) ∧ (q b → u b ≤ a') hb : p b ∨ q b ⊢ u b ≤ a ⊔ a' [PROOFSTEP] exact Or.elim hb (fun hb => le_sup_of_le_left <| h.1 hb) fun hb => le_sup_of_le_right <| h.2 hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α ⊢ a ⊔ limsup u f = limsup (fun x => a ⊔ u x) f [PROOFSTEP] simp only [limsup_eq_iInf_iSup, iSup_sup_eq, sup_iInf₂_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α ⊢ ⨅ (i : Set β) (_ : i ∈ f), a ⊔ ⨆ (a : β) (_ : a ∈ i), u a = ⨅ (s : Set β) (_ : s ∈ f), (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x [PROOFSTEP] congr [GOAL] case e_s α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α ⊢ (fun i => ⨅ (_ : i ∈ f), a ⊔ ⨆ (a : β) (_ : a ∈ i), u a) = fun s => ⨅ (_ : s ∈ f), (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x [PROOFSTEP] ext s [GOAL] case e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α s : Set β ⊢ ⨅ (_ : s ∈ f), a ⊔ ⨆ (a : β) (_ : a ∈ s), u a = ⨅ (_ : s ∈ f), (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x [PROOFSTEP] congr [GOAL] case e_s.h.e_s α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α s : Set β ⊢ (fun j => a ⊔ ⨆ (a : β) (_ : a ∈ s), u a) = fun x => (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x [PROOFSTEP] ext hs [GOAL] case e_s.h.e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α s : Set β hs : s ∈ f ⊢ a ⊔ ⨆ (a : β) (_ : a ∈ s), u a = (⨆ (x : β) (_ : x ∈ s), a) ⊔ ⨆ (x : β) (_ : x ∈ s), u x [PROOFSTEP] congr [GOAL] case e_s.h.e_s.h.e_a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α inst✝ : NeBot f a : α s : Set β hs : s ∈ f ⊢ a = ⨆ (x : β) (_ : x ∈ s), a [PROOFSTEP] exact (biSup_const (nonempty_of_mem hs)).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α a : α ⊢ a ⊔ liminf u f = liminf (fun x => a ⊔ u x) f [PROOFSTEP] simp only [liminf_eq_iSup_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α a : α ⊢ a ⊔ ⨆ (s : Set β) (_ : s ∈ f), ⨅ (a : β) (_ : a ∈ s), u a = ⨆ (s : Set β) (_ : s ∈ f), ⨅ (a_1 : β) (_ : a_1 ∈ s), a ⊔ u a_1 [PROOFSTEP] rw [sup_comm, biSup_sup (⟨univ, univ_mem⟩ : ∃ i : Set β, i ∈ f)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteDistribLattice α f : Filter β p q : β → Prop u : β → α a : α ⊢ ⨆ (i : Set β) (_ : i ∈ f), (⨅ (a : β) (_ : a ∈ i), u a) ⊔ a = ⨆ (s : Set β) (_ : s ∈ f), ⨅ (a_1 : β) (_ : a_1 ∈ s), a ⊔ u a_1 [PROOFSTEP] simp_rw [iInf₂_sup_eq, sup_comm (a := a)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α ⊢ (limsup u f)ᶜ = liminf (compl ∘ u) f [PROOFSTEP] simp only [limsup_eq_iInf_iSup, compl_iInf, compl_iSup, liminf_eq_iSup_iInf, Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α ⊢ (liminf u f)ᶜ = limsup (compl ∘ u) f [PROOFSTEP] simp only [limsup_eq_iInf_iSup, compl_iInf, compl_iSup, liminf_eq_iSup_iInf, Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ limsup u f \ a = limsup (fun b => u b \ a) f [PROOFSTEP] simp only [limsup_eq_iInf_iSup, sdiff_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ (⨅ (s : Set β) (_ : s ∈ f), ⨆ (a : β) (_ : a ∈ s), u a) ⊓ aᶜ = ⨅ (s : Set β) (_ : s ∈ f), ⨆ (a_1 : β) (_ : a_1 ∈ s), u a_1 ⊓ aᶜ [PROOFSTEP] rw [biInf_inf (⟨univ, univ_mem⟩ : ∃ i : Set β, i ∈ f)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ ⨅ (i : Set β) (_ : i ∈ f), (⨆ (a : β) (_ : a ∈ i), u a) ⊓ aᶜ = ⨅ (s : Set β) (_ : s ∈ f), ⨆ (a_1 : β) (_ : a_1 ∈ s), u a_1 ⊓ aᶜ [PROOFSTEP] simp_rw [inf_comm, inf_iSup₂_eq, inf_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteBooleanAlgebra α f : Filter β u : β → α inst✝ : NeBot f a : α ⊢ liminf u f \ a = liminf (fun b => u b \ a) f [PROOFSTEP] simp only [sdiff_eq, inf_comm (b := aᶜ), inf_liminf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteBooleanAlgebra α f : Filter β u : β → α inst✝ : NeBot f a : α ⊢ a \ limsup u f = liminf (fun b => a \ u b) f [PROOFSTEP] rw [← compl_inj_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : CompleteBooleanAlgebra α f : Filter β u : β → α inst✝ : NeBot f a : α ⊢ (a \ limsup u f)ᶜ = (liminf (fun b => a \ u b) f)ᶜ [PROOFSTEP] simp only [sdiff_eq, liminf_compl, (· ∘ ·), compl_inf, compl_compl, sup_limsup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ a \ liminf u f = limsup (fun b => a \ u b) f [PROOFSTEP] rw [← compl_inj_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : CompleteBooleanAlgebra α f : Filter β u : β → α a : α ⊢ (a \ liminf u f)ᶜ = (limsup (fun b => a \ u b) f)ᶜ [PROOFSTEP] simp only [sdiff_eq, limsup_compl, (· ∘ ·), compl_inf, compl_compl, sup_liminf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ blimsup s cofinite p = {x | Set.Infinite {n | p n ∧ x ∈ s n}} [PROOFSTEP] simp only [blimsup_eq, le_eq_subset, eventually_cofinite, not_forall, sInf_eq_sInter, exists_prop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} = {x | Set.Infinite {n | p n ∧ x ∈ s n}} [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α ⊢ x ∈ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} ↔ x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} [PROOFSTEP] refine' ⟨fun h => _, fun hx t h => _⟩ [GOAL] case h.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α h : x ∈ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} ⊢ x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} [PROOFSTEP] contrapose! h [GOAL] case h.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α hx : x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} t : Set α h : t ∈ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} ⊢ x ∈ t [PROOFSTEP] contrapose! h [GOAL] case h.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} ⊢ ¬x ∈ ⋂₀ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} [PROOFSTEP] simp only [mem_sInter, mem_setOf_eq, not_forall, exists_prop] [GOAL] case h.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} ⊢ ∃ x_1, Set.Finite {x | p x ∧ ¬s x ⊆ x_1} ∧ ¬x ∈ x_1 [PROOFSTEP] exact ⟨{ x }ᶜ, by simpa using h, by simp⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} ⊢ Set.Finite {x_1 | p x_1 ∧ ¬s x_1 ⊆ {x}ᶜ} [PROOFSTEP] simpa using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α h : ¬x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} ⊢ ¬x ∈ {x}ᶜ [PROOFSTEP] simp [GOAL] case h.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α x : α hx : x ∈ {x | Set.Infinite {n | p n ∧ x ∈ s n}} t : Set α h : ¬x ∈ t ⊢ ¬t ∈ {a | Set.Finite {x | p x ∧ ¬s x ⊆ a}} [PROOFSTEP] exact hx.mono fun i hi => ⟨hi.1, fun hit => h (hit hi.2)⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ bliminf s cofinite p = {x | Set.Finite {n | p n ∧ ¬x ∈ s n}} [PROOFSTEP] rw [← compl_inj_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ (bliminf s cofinite p)ᶜ = {x | Set.Finite {n | p n ∧ ¬x ∈ s n}}ᶜ [PROOFSTEP] simp only [bliminf_eq_iSup_biInf, compl_iInf, compl_iSup, ← blimsup_eq_iInf_biSup, cofinite.blimsup_set_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ {x | Set.Infinite {n | p n ∧ x ∈ (s n)ᶜ}} = {x | Set.Finite {n | p n ∧ ¬x ∈ s n}}ᶜ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ limsup s cofinite = {x | Set.Infinite {n | x ∈ s n}} [PROOFSTEP] simp only [← cofinite.blimsup_true s, cofinite.blimsup_set_eq, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p : ι → Prop s : ι → Set α ⊢ liminf s cofinite = {x | Set.Finite {n | ¬x ∈ s n}} [PROOFSTEP] simp only [← cofinite.bliminf_true s, cofinite.bliminf_set_eq, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β q : ι → Prop hl : HasBasis l q b u : β → Set α p : β → Prop x : α hx : x ∈ blimsup u l p ⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i [PROOFSTEP] rw [blimsup_eq_iInf_biSup] at hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β q : ι → Prop hl : HasBasis l q b u : β → Set α p : β → Prop x : α hx : x ∈ ⨅ (s : Set β) (_ : s ∈ l), ⨆ (b : β) (_ : p b ∧ b ∈ s), u b ⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i [PROOFSTEP] simp only [iSup_eq_iUnion, iInf_eq_iInter, mem_iInter, mem_iUnion, exists_prop] at hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β q : ι → Prop hl : HasBasis l q b u : β → Set α p : β → Prop x : α hx : ∀ (i : Set β), i ∈ l → ∃ i_2, (p i_2 ∧ i_2 ∈ i) ∧ x ∈ u i_2 ⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i [PROOFSTEP] choose g hg hg' using hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β q : ι → Prop hl : HasBasis l q b u : β → Set α p : β → Prop x : α g : (i : Set β) → i ∈ l → β hg : ∀ (i : Set β) (i_1 : i ∈ l), p (g i i_1) ∧ g i i_1 ∈ i hg' : ∀ (i : Set β) (i_1 : i ∈ l), x ∈ u (g i i_1) ⊢ ∃ f, ∀ (i : ↑{i | q i}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i [PROOFSTEP] refine' ⟨fun i : {i | q i} => g (b i) (hl.mem_of_mem i.2), fun i => ⟨_, _⟩⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β q : ι → Prop hl : HasBasis l q b u : β → Set α p : β → Prop x : α g : (i : Set β) → i ∈ l → β hg : ∀ (i : Set β) (i_1 : i ∈ l), p (g i i_1) ∧ g i i_1 ∈ i hg' : ∀ (i : Set β) (i_1 : i ∈ l), x ∈ u (g i i_1) i : ↑{i | q i} ⊢ x ∈ u ((fun i => g (b ↑i) (_ : b ↑i ∈ l)) i) [PROOFSTEP] exact hg' (b i) (hl.mem_of_mem i.2) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β q : ι → Prop hl : HasBasis l q b u : β → Set α p : β → Prop x : α g : (i : Set β) → i ∈ l → β hg : ∀ (i : Set β) (i_1 : i ∈ l), p (g i i_1) ∧ g i i_1 ∈ i hg' : ∀ (i : Set β) (i_1 : i ∈ l), x ∈ u (g i i_1) i : ↑{i | q i} ⊢ p ((fun i => g (b ↑i) (_ : b ↑i ∈ l)) i) ∧ (fun i => g (b ↑i) (_ : b ↑i ∈ l)) i ∈ b ↑i [PROOFSTEP] exact hg (b i) (hl.mem_of_mem i.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β hl : HasBasis l (fun x => True) b u : β → Set α p : β → Prop x : α hx : x ∈ blimsup u l p ⊢ ∃ f, ∀ (i : ι), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b i [PROOFSTEP] obtain ⟨f, hf⟩ := exists_forall_mem_of_hasBasis_mem_blimsup hl hx [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 p✝ : ι → Prop s : ι → Set α l : Filter β b : ι → Set β hl : HasBasis l (fun x => True) b u : β → Set α p : β → Prop x : α hx : x ∈ blimsup u l p f : ↑{i | True} → β hf : ∀ (i : ↑{i | True}), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b ↑i ⊢ ∃ f, ∀ (i : ι), x ∈ u (f i) ∧ p (f i) ∧ f i ∈ b i [PROOFSTEP] exact ⟨fun i => f ⟨i, trivial⟩, fun i => hf ⟨i, trivial⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder α a : α hf : autoParam (IsCobounded (fun x x_1 => x ≤ x_1) f) _auto✝ h : a < limsSup f ⊢ ∃ᶠ (n : α) in f, a < n [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder α a : α hf : autoParam (IsCobounded (fun x x_1 => x ≤ x_1) f) _auto✝ h : ¬∃ᶠ (n : α) in f, a < n ⊢ limsSup f ≤ a [PROOFSTEP] simp only [not_frequently, not_lt] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder α a : α hf : autoParam (IsCobounded (fun x x_1 => x ≤ x_1) f) _auto✝ h : ∀ᶠ (x : α) in f, x ≤ a ⊢ limsSup f ≤ a [PROOFSTEP] exact limsSup_le_of_le hf h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder β u : α → β b : β h : b < liminf u f hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ ⊢ ∀ᶠ (a : α) in f, b < u a [PROOFSTEP] obtain ⟨c, hc, hbc⟩ : ∃ (c : β) (_ : c ∈ {c : β | ∀ᶠ n : α in f, c ≤ u n}), b < c := by simp_rw [exists_prop] exact exists_lt_of_lt_csSup hu h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder β u : α → β b : β h : b < liminf u f hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ ⊢ ∃ c x, b < c [PROOFSTEP] simp_rw [exists_prop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder β u : α → β b : β h : b < liminf u f hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ ⊢ ∃ c, c ∈ {c | ∀ᶠ (n : α) in f, c ≤ u n} ∧ b < c [PROOFSTEP] exact exists_lt_of_lt_csSup hu h [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 f : Filter α inst✝ : ConditionallyCompleteLinearOrder β u : α → β b : β h : b < liminf u f hu : autoParam (IsBoundedUnder (fun x x_1 => x ≥ x_1) f u) _auto✝ c : β hc : c ∈ {c | ∀ᶠ (n : α) in f, c ≤ u n} hbc : b < c ⊢ ∀ᶠ (a : α) in f, b < u a [PROOFSTEP] exact hc.mono fun x hx => lt_of_lt_of_le hbc hx [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu_le : ∃ᶠ (x : α) in f, b ≤ u x hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ⊢ b ≤ limsup u f [PROOFSTEP] revert hu_le [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ⊢ (∃ᶠ (x : α) in f, b ≤ u x) → b ≤ limsup u f [PROOFSTEP] rw [← not_imp_not, not_frequently] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ⊢ ¬b ≤ limsup u f → ∀ᶠ (x : α) in f, ¬b ≤ u x [PROOFSTEP] simp_rw [← lt_iff_not_ge] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ ⊢ limsup u f < b → ∀ᶠ (x : α) in f, u x < b [PROOFSTEP] exact fun h => eventually_lt_of_limsup_lt h hu [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h : b < limsup u f ⊢ ∃ᶠ (x : α) in f, b < u x [PROOFSTEP] contrapose! h [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h : ¬∃ᶠ (x : α) in f, b < u x ⊢ limsup u f ≤ b [PROOFSTEP] apply limsSup_le_of_le hu [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 β : Type u_6 inst✝ : ConditionallyCompleteLinearOrder β f : Filter α u : α → β b : β hu : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ h : ¬∃ᶠ (x : α) in f, b < u x ⊢ ∀ᶠ (n : β) in map u f, n ≤ b [PROOFSTEP] simpa using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] refine' ⟨_, fun h => h.isBoundedUnder (α := β) hg⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) → IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop c : γ hc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x x_1 => x ≤ x_1) x c ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] rw [eventually_map] at hc [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop c : γ hc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] obtain ⟨b, hb⟩ : ∃ b, ∀ a ≥ b, c < g a := eventually_atTop.1 (hg'.eventually_gt_atTop c) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : Nonempty β inst✝² : LinearOrder β inst✝¹ : Preorder γ inst✝ : NoMaxOrder γ g : β → γ f : α → β l : Filter α hg : Monotone g hg' : Tendsto g atTop atTop c : γ hc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c b : β hb : ∀ (a : β), a ≥ b → c < g a ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f [PROOFSTEP] exact ⟨b, hc.mono fun x hx => not_lt.1 fun h => (hb _ h.le).not_le hx⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α v : α → β l : β → γ u : γ → β gc : GaloisConnection l u hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝ hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝ ⊢ l (limsup v f) ≤ limsup (fun x => l (v x)) f [PROOFSTEP] refine' le_limsSup_of_le hlv fun c hc => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α v : α → β l : β → γ u : γ → β gc : GaloisConnection l u hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝ hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝ c : γ hc : ∀ᶠ (n : γ) in map (fun x => l (v x)) f, n ≤ c ⊢ l (limsup v f) ≤ c [PROOFSTEP] rw [Filter.eventually_map] at hc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α v : α → β l : β → γ u : γ → β gc : GaloisConnection l u hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝ hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝ c : γ hc : ∀ᶠ (a : α) in f, l (v a) ≤ c ⊢ l (limsup v f) ≤ c [PROOFSTEP] simp_rw [gc _ _] at hc ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α v : α → β l : β → γ u : γ → β gc : GaloisConnection l u hlv : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => l (v x)) _auto✝ hv_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f v) _auto✝ c : γ hc : ∀ᶠ (a : α) in f, v a ≤ u c ⊢ limsup v f ≤ u c [PROOFSTEP] exact limsSup_le_of_le hv_co hc [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ ⊢ ↑g (limsup u f) = limsup (fun x => ↑g (u x)) f [PROOFSTEP] refine' le_antisymm ((OrderIso.to_galoisConnection g).l_limsup_le hgu hu_co) _ [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ ⊢ limsup (fun x => ↑g (u x)) f ≤ ↑g (limsup u f) [PROOFSTEP] rw [← g.symm.symm_apply_apply <| limsup (fun x => g (u x)) f, g.symm_symm] [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ ⊢ ↑g (↑(symm g) (limsup (fun x => ↑g (u x)) f)) ≤ ↑g (limsup u f) [PROOFSTEP] refine' g.monotone _ [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ ⊢ ↑(symm g) (limsup (fun x => ↑g (u x)) f) ≤ limsup u f [PROOFSTEP] have hf : u = fun i => g.symm (g (u i)) := funext fun i => (g.symm_apply_apply (u i)).symm [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hf : u = fun i => ↑(symm g) (↑g (u i)) ⊢ ↑(symm g) (limsup (fun x => ↑g (u x)) f) ≤ limsup u f [PROOFSTEP] nth_rw 2 [hf] [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hf : u = fun i => ↑(symm g) (↑g (u i)) ⊢ ↑(symm g) (limsup (fun x => ↑g (u x)) f) ≤ limsup (fun i => ↑(symm g) (↑g (u i))) f [PROOFSTEP] refine' (OrderIso.to_galoisConnection g.symm).l_limsup_le _ hgu_co [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hf : u = fun i => ↑(symm g) (↑g (u i)) ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑(symm g) (↑g (u x)) [PROOFSTEP] simp_rw [g.symm_apply_apply] [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 ι : Type u_4 γ : Type u_5 inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : Filter α u : α → β g : β ≃o γ hu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f u) _auto✝ hgu : autoParam (IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hgu_co : autoParam (IsCoboundedUnder (fun x x_1 => x ≤ x_1) f fun x => ↑g (u x)) _auto✝ hf : u = fun i => ↑(symm g) (↑g (u i)) ⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) f fun x => u x [PROOFSTEP] exact hu
{"mathlib_filename": "Mathlib.Order.LiminfLimsup", "llama_tokens": 34866}
[GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop inst✝¹ : IsPreorder α r inst✝ : Inhabited α ⊢ Inhabited (Antisymmetrization α r) [PROOFSTEP] unfold Antisymmetrization [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop inst✝¹ : IsPreorder α r inst✝ : Inhabited α ⊢ Inhabited (Quotient (AntisymmRel.setoid α r)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b : α ⊢ Relation.Fibration (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (toAntisymmetrization fun x x_1 => x ≤ x_1) [PROOFSTEP] rintro a ⟨b⟩ h [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a✝ b✝¹ a : α b✝ : Antisymmetrization α fun x x_1 => x ≤ x_1 b : α h : Quot.mk Setoid.r b < toAntisymmetrization (fun x x_1 => x ≤ x_1) a ⊢ ∃ a', (fun x x_1 => x < x_1) a' a ∧ toAntisymmetrization (fun x x_1 => x ≤ x_1) a' = Quot.mk Setoid.r b [PROOFSTEP] exact ⟨b, h, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a✝¹ b : α a✝ : (Antisymmetrization α fun x x_1 => x ≤ x_1)ᵒᵈ a : α ⊢ Quotient.map' id (_ : ∀ (x x_1 : αᵒᵈ), (fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x → (fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1) (Quotient.map' id (_ : ∀ (x x_1 : α), (fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x → (fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1) (Quotient.mk'' a)) = Quotient.mk'' a [PROOFSTEP] simp_rw [Quotient.map'_mk'', id] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a✝¹ b : α a✝ : Antisymmetrization αᵒᵈ fun x x_1 => x ≤ x_1 a : αᵒᵈ ⊢ Quotient.map' id (_ : ∀ (x x_1 : α), (fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x → (fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1) (Quotient.map' id (_ : ∀ (x x_1 : αᵒᵈ), (fun x x_2 => x ≤ x_2) x x_1 ∧ (fun x x_2 => x ≤ x_2) x_1 x → (fun x x_2 => x ≤ x_2) x_1 x ∧ (fun x x_2 => x ≤ x_2) x x_1) (Quotient.mk'' a)) = Quotient.mk'' a [PROOFSTEP] simp_rw [Quotient.map'_mk'', id]
{"mathlib_filename": "Mathlib.Order.Antisymmetrization", "llama_tokens": 1171}
[GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c ⊢ IsCoatomic α [PROOFSTEP] refine ⟨fun x => le_top.eq_or_lt.imp_right fun hx => ?_⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ ⊢ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] have : ∃ y ∈ Ico x ⊤, x ≤ y ∧ ∀ z ∈ Ico x ⊤, y ≤ z → z = y := by refine zorn_nonempty_partialOrder₀ (Ico x ⊤) (fun c hxc hc y hy => ?_) x (left_mem_Ico.2 hx) rcases h c hc ⟨y, hy⟩ fun h => (hxc h).2.ne rfl with ⟨z, hz, hcz⟩ exact ⟨z, ⟨le_trans (hxc hy).1 (hcz hy), hz.lt_top⟩, hcz⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ ⊢ ∃ y, y ∈ Ico x ⊤ ∧ x ≤ y ∧ ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y [PROOFSTEP] refine zorn_nonempty_partialOrder₀ (Ico x ⊤) (fun c hxc hc y hy => ?_) x (left_mem_Ico.2 hx) [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ c : Set α hxc : c ⊆ Ico x ⊤ hc : IsChain (fun x x_1 => x ≤ x_1) c y : α hy : y ∈ c ⊢ ∃ ub, ub ∈ Ico x ⊤ ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] rcases h c hc ⟨y, hy⟩ fun h => (hxc h).2.ne rfl with ⟨z, hz, hcz⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ c : Set α hxc : c ⊆ Ico x ⊤ hc : IsChain (fun x x_1 => x ≤ x_1) c y : α hy : y ∈ c z : α hz : z ≠ ⊤ hcz : z ∈ upperBounds c ⊢ ∃ ub, ub ∈ Ico x ⊤ ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] exact ⟨z, ⟨le_trans (hxc hy).1 (hcz hy), hz.lt_top⟩, hcz⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ this : ∃ y, y ∈ Ico x ⊤ ∧ x ≤ y ∧ ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y ⊢ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] rcases this with ⟨y, ⟨hxy, hy⟩, -, hy'⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ y : α hxy : x ≤ y hy : y < ⊤ hy' : ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y ⊢ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] refine ⟨y, ⟨hy.ne, fun z hyz => le_top.eq_or_lt.resolve_right fun hz => ?_⟩, hxy⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : ∀ (c : Set α), IsChain (fun x x_1 => x ≤ x_1) c → Set.Nonempty c → ¬⊤ ∈ c → ∃ x x_1, x ∈ upperBounds c x : α hx : x < ⊤ y : α hxy : x ≤ y hy : y < ⊤ hy' : ∀ (z : α), z ∈ Ico x ⊤ → y ≤ z → z = y z : α hyz : y < z hz : z < ⊤ ⊢ False [PROOFSTEP] exact hyz.ne' (hy' z ⟨hxy.trans hyz.le, hz⟩ hyz.le)
{"mathlib_filename": "Mathlib.Order.ZornAtoms", "llama_tokens": 1705}
[GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) f : (x : { x // x ∈ U }) → Localizations R ↑x hf : IsFraction f ⊢ ∃ r s, ∀ (x : { x // x ∈ U }), ∃ hs, f x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) r { val := s, property := hs } [PROOFSTEP] rcases hf with ⟨r, s, h⟩ [GOAL] case intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) f : (x : { x // x ∈ U }) → Localizations R ↑x r s : R h : ∀ (x : { x // x ∈ U }), ¬s ∈ (↑x).asIdeal ∧ f x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r ⊢ ∃ r s, ∀ (x : { x // x ∈ U }), ∃ hs, f x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) r { val := s, property := hs } [PROOFSTEP] refine' ⟨r, s, fun x => ⟨(h x).1, (IsLocalization.mk'_eq_iff_eq_mul.mpr _).symm⟩⟩ [GOAL] case intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) f : (x : { x // x ∈ U }) → Localizations R ↑x r s : R h : ∀ (x : { x // x ∈ U }), ¬s ∈ (↑x).asIdeal ∧ f x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r x : { x // x ∈ U } ⊢ ↑(algebraMap R (Localizations R ↑x)) r = f x * ↑(algebraMap R (Localizations R ↑x)) ↑{ val := s, property := (_ : ¬s ∈ (↑x).asIdeal) } [PROOFSTEP] exact (h x).2.symm [GOAL] R : Type u inst✝ : CommRing R ⊢ ∀ {U V : Opens ↑(PrimeSpectrum.Top R)} (i : U ⟶ V) (f : (x : { x // x ∈ V }) → Localizations R ↑x), (fun {U} f => IsFraction f) f → (fun {U} f => IsFraction f) fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] rintro V U i f ⟨r, s, w⟩ [GOAL] case intro.intro R : Type u inst✝ : CommRing R V U : Opens ↑(PrimeSpectrum.Top R) i : V ⟶ U f : (x : { x // x ∈ U }) → Localizations R ↑x r s : R w : ∀ (x : { x // x ∈ U }), ¬s ∈ (↑x).asIdeal ∧ f x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r ⊢ IsFraction fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] exact ⟨r, s, fun x => w (i x)⟩ [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ ⊢ ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → a * b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} [PROOFSTEP] intro a b ha hb x [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases ha x with ⟨Va, ma, ia, ra, sa, wa⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases hb x with ⟨Vb, mb, ib, rb, sb, wb⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] refine' ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ra * rb, sa * sb, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb ⊢ ∀ (x : { x // x ∈ Va ⊓ Vb }), ¬sa * sb ∈ (↑x).asIdeal ∧ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) (sa * sb) = ↑(algebraMap R (Localizations R ↑x)) (ra * rb) [PROOFSTEP] intro y [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } ⊢ ¬sa * sb ∈ (↑y).asIdeal ∧ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * rb) [PROOFSTEP] rcases wa (Opens.infLELeft _ _ y) with ⟨nma, wa⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra ⊢ ¬sa * sb ∈ (↑y).asIdeal ∧ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * rb) [PROOFSTEP] rcases wb (Opens.infLERight _ _ y) with ⟨nmb, wb⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ ¬sa * sb ∈ (↑y).asIdeal ∧ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * rb) [PROOFSTEP] fconstructor [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ ¬sa * sb ∈ (↑y).asIdeal [PROOFSTEP] intro H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb H : sa * sb ∈ (↑y).asIdeal ⊢ False [PROOFSTEP] cases y.1.IsPrime.mem_or_mem H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inl R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb H : sa * sb ∈ (↑y).asIdeal h✝ : sa ∈ (↑y).asIdeal ⊢ False [PROOFSTEP] contradiction [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inr R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb H : sa * sb ∈ (↑y).asIdeal h✝ : sb ∈ (↑y).asIdeal ⊢ False [PROOFSTEP] contradiction [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * rb) [PROOFSTEP] simp only [Pi.mul_apply, RingHom.map_mul] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) = ↑(algebraMap R (Localizations R ↑y)) ra * ↑(algebraMap R (Localizations R ↑y)) rb [PROOFSTEP] erw [← wa, ← wb] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} hb : b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) = (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa * ((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb) [PROOFSTEP] simp only [mul_left_comm, mul_assoc, mul_comm] [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ ⊢ 1 ∈ { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.carrier [PROOFSTEP] refine' fun x => ⟨unop U, x.2, 𝟙 _, 1, 1, fun y => ⟨_, _⟩⟩ [GOAL] case refine'_1 R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ x y : { x // x ∈ U.unop } ⊢ ¬1 ∈ (↑y).asIdeal [PROOFSTEP] rw [← Ideal.ne_top_iff_one] [GOAL] case refine'_1 R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ x y : { x // x ∈ U.unop } ⊢ (↑y).asIdeal ≠ ⊤ [PROOFSTEP] exact y.1.IsPrime.1 [GOAL] case refine'_2 R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ x y : { x // x ∈ U.unop } ⊢ (fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) 1 = ↑(algebraMap R (Localizations R ↑y)) 1 [PROOFSTEP] simp [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ ⊢ ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier [PROOFSTEP] intro a b ha hb x [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases ha x with ⟨Va, ma, ia, ra, sa, wa⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases hb x with ⟨Vb, mb, ib, rb, sb, wb⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] refine' ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ra * sb + rb * sa, sa * sb, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb ⊢ ∀ (x : { x // x ∈ Va ⊓ Vb }), ¬sa * sb ∈ (↑x).asIdeal ∧ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) (sa * sb) = ↑(algebraMap R (Localizations R ↑x)) (ra * sb + rb * sa) [PROOFSTEP] intro y [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } ⊢ ¬sa * sb ∈ (↑y).asIdeal ∧ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa) [PROOFSTEP] rcases wa (Opens.infLELeft _ _ y) with ⟨nma, wa⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra ⊢ ¬sa * sb ∈ (↑y).asIdeal ∧ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa) [PROOFSTEP] rcases wb (Opens.infLERight _ _ y) with ⟨nmb, wb⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ ¬sa * sb ∈ (↑y).asIdeal ∧ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa) [PROOFSTEP] fconstructor [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ ¬sa * sb ∈ (↑y).asIdeal [PROOFSTEP] intro H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb H : sa * sb ∈ (↑y).asIdeal ⊢ False [PROOFSTEP] cases y.1.IsPrime.mem_or_mem H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inl R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb H : sa * sb ∈ (↑y).asIdeal h✝ : sa ∈ (↑y).asIdeal ⊢ False [PROOFSTEP] contradiction [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.left.inr R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb H : sa * sb ∈ (↑y).asIdeal h✝ : sb ∈ (↑y).asIdeal ⊢ False [PROOFSTEP] contradiction [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) (sa * sb) = ↑(algebraMap R (Localizations R ↑y)) (ra * sb + rb * sa) [PROOFSTEP] simp only [add_mul, RingHom.map_add, Pi.add_apply, RingHom.map_mul] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) + b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) = ↑(algebraMap R (Localizations R ↑y)) ra * ↑(algebraMap R (Localizations R ↑y)) sb + ↑(algebraMap R (Localizations R ↑y)) rb * ↑(algebraMap R (Localizations R ↑y)) sa [PROOFSTEP] erw [← wa, ← wb] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) + b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) = (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa * ↑(algebraMap R (Localizations R ↑y)) sb + (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb * ↑(algebraMap R (Localizations R ↑y)) sa [PROOFSTEP] simp only [mul_assoc] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) + b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) = a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb) + b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } * (↑(algebraMap R (Localizations R ↑y)) sb * ↑(algebraMap R (Localizations R ↑y)) sa) [PROOFSTEP] congr 2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.right.e_a.e_a R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier hb : b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier x : { x // x ∈ U.unop } Va : Opens ↑(PrimeSpectrum.Top R) ma : ↑x ∈ Va ia : Va ⟶ U.unop ra sa : R wa✝ : ∀ (x : { x // x ∈ Va }), ¬sa ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sa = ↑(algebraMap R (Localizations R ↑x)) ra Vb : Opens ↑(PrimeSpectrum.Top R) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop rb sb : R wb✝ : ∀ (x : { x // x ∈ Vb }), ¬sb ∈ (↑x).asIdeal ∧ (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) sb = ↑(algebraMap R (Localizations R ↑x)) rb y : { x // x ∈ Va ⊓ Vb } nma : ¬sa ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asIdeal wa : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) sa = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y))) ra nmb : ¬sb ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asIdeal wb : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) * ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) sb = ↑(algebraMap R (Localizations R ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y))) rb ⊢ ↑(algebraMap R (Localizations R ↑y)) sa * ↑(algebraMap R (Localizations R ↑y)) sb = ↑(algebraMap R (Localizations R ↑y)) sb * ↑(algebraMap R (Localizations R ↑y)) sa [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ ⊢ 0 ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier [PROOFSTEP] refine' fun x => ⟨unop U, x.2, 𝟙 _, 0, 1, fun y => ⟨_, _⟩⟩ [GOAL] case refine'_1 R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ x y : { x // x ∈ U.unop } ⊢ ¬1 ∈ (↑y).asIdeal [PROOFSTEP] rw [← Ideal.ne_top_iff_one] [GOAL] case refine'_1 R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ x y : { x // x ∈ U.unop } ⊢ (↑y).asIdeal ≠ ⊤ [PROOFSTEP] exact y.1.IsPrime.1 [GOAL] case refine'_2 R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ x y : { x // x ∈ U.unop } ⊢ (fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) 1 = ↑(algebraMap R (Localizations R ↑y)) 0 [PROOFSTEP] simp [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ ⊢ ∀ {x : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier → -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] intro a ha x [GOAL] R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases ha x with ⟨V, m, i, r, s, w⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] refine' ⟨V, m, i, -r, s, _⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r ⊢ ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) (-r) [PROOFSTEP] intro y [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r y : { x // x ∈ V } ⊢ ¬s ∈ (↑y).asIdeal ∧ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) (-r) [PROOFSTEP] rcases w y with ⟨nm, w⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w✝ : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r y : { x // x ∈ V } nm : ¬s ∈ (↑y).asIdeal w : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) r ⊢ ¬s ∈ (↑y).asIdeal ∧ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) (-r) [PROOFSTEP] fconstructor [GOAL] case intro.intro.intro.intro.intro.intro.left R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w✝ : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r y : { x // x ∈ V } nm : ¬s ∈ (↑y).asIdeal w : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) r ⊢ ¬s ∈ (↑y).asIdeal [PROOFSTEP] exact nm [GOAL] case intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w✝ : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r y : { x // x ∈ V } nm : ¬s ∈ (↑y).asIdeal w : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) r ⊢ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) (-r) [PROOFSTEP] simp only [RingHom.map_neg, Pi.neg_apply] [GOAL] case intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w✝ : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r y : { x // x ∈ V } nm : ¬s ∈ (↑y).asIdeal w : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) r ⊢ -a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * ↑(algebraMap R (Localizations R ↑y)) s = -↑(algebraMap R (Localizations R ↑y)) r [PROOFSTEP] erw [← w] [GOAL] case intro.intro.intro.intro.intro.intro.right R : Type u inst✝ : CommRing R U : (Opens ↑(PrimeSpectrum.Top R))ᵒᵖ a : (x : { x // x ∈ U.unop }) → Localizations R ↑x ha : a ∈ { toSubmonoid := { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, add_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f}, mul_mem' := (_ : ∀ {a b : (x : { x // x ∈ U.unop }) → Localizations R ↑x}, a ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → b ∈ {f | PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate f} → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }, one_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubsemigroup.carrier → ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)), zero_mem' := (_ : ∀ (x : { x // x ∈ U.unop }), ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal R) fun x => OfNat.ofNat 0 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) }.toSubmonoid.toSubsemigroup.carrier x : { x // x ∈ U.unop } V : Opens ↑(PrimeSpectrum.Top R) m : ↑x ∈ V i : V ⟶ U.unop r s : R w✝ : ∀ (x : { x // x ∈ V }), ¬s ∈ (↑x).asIdeal ∧ (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) s = ↑(algebraMap R (Localizations R ↑x)) r y : { x // x ∈ V } nm : ¬s ∈ (↑y).asIdeal w : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s = ↑(algebraMap R (Localizations R ↑y)) r ⊢ -a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * ↑(algebraMap R (Localizations R ↑y)) s = -((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) s) [PROOFSTEP] simp only [neg_mul] [GOAL] R : Type u inst✝ : CommRing R f : R U : Opens ↑(PrimeSpectrum.Top R) hu : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → f ∈ Ideal.primeCompl x.asIdeal x : { x // x ∈ (op U).unop } ⊢ ↑(algebraMap R (Localizations R ↑x)) 0 = ↑0 x * ↑(algebraMap R (Localizations R ↑x)) ↑{ val := f, property := (_ : f ∈ Ideal.primeCompl (↑x).asIdeal) } [PROOFSTEP] erw [RingHom.map_zero, Subring.coe_zero, Pi.zero_apply, zero_mul] [GOAL] R : Type u inst✝ : CommRing R f₁ f₂ g₁ g₂ : R U : Opens ↑(PrimeSpectrum.Top R) hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal x : { x // x ∈ (op U).unop } ⊢ ↑(const R (f₁ * f₂) (g₁ * g₂) U (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ * g₂ ∈ Ideal.primeCompl x.asIdeal)) x = ↑(const R f₁ g₁ U hu₁ * const R f₂ g₂ U hu₂) x [PROOFSTEP] convert IsLocalization.mk'_mul _ f₁ f₂ ⟨g₁, hu₁ x x.2⟩ ⟨g₂, hu₂ x x.2⟩ [GOAL] R : Type u inst✝ : CommRing R f₁ f₂ g₁ g₂ : R U : Opens ↑(PrimeSpectrum.Top R) hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal h : f₁ * g₂ = f₂ * g₁ x : { x // x ∈ (op U).unop } ⊢ ↑{ val := g₁, property := (_ : g₁ ∈ Ideal.primeCompl (↑x).asIdeal) } * f₂ = ↑{ val := g₂, property := (_ : g₂ ∈ Ideal.primeCompl (↑x).asIdeal) } * f₁ [PROOFSTEP] rw [mul_comm, Subtype.coe_mk, ← h, mul_comm, Subtype.coe_mk] [GOAL] R : Type u inst✝ : CommRing R f₁ f₂ g₁ g₂ : R U : Opens ↑(PrimeSpectrum.Top R) hu : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal hf : f₁ = f₂ hg : g₁ = g₂ ⊢ const R f₁ g₁ U hu = const R f₂ g₂ U (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] substs hf hg [GOAL] R : Type u inst✝ : CommRing R f₁ g₁ : R U : Opens ↑(PrimeSpectrum.Top R) hu : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal ⊢ const R f₁ g₁ U hu = const R f₁ g₁ U (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R f g : R U : Opens ↑(PrimeSpectrum.Top R) hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g ∈ Ideal.primeCompl x.asIdeal hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → f ∈ Ideal.primeCompl x.asIdeal ⊢ const R f g U hu₁ * const R g f U hu₂ = 1 [PROOFSTEP] rw [const_mul, const_congr R rfl (mul_comm g f), const_self] [GOAL] R : Type u inst✝ : CommRing R f g₁ g₂ : R U : Opens ↑(PrimeSpectrum.Top R) hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal ⊢ const R f g₁ U hu₁ * const R g₁ g₂ U hu₂ = const R f g₂ U hu₂ [PROOFSTEP] rw [const_mul, const_ext] [GOAL] case h R : Type u inst✝ : CommRing R f g₁ g₂ : R U : Opens ↑(PrimeSpectrum.Top R) hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal ⊢ f * g₁ * g₂ = f * (g₁ * g₂) [PROOFSTEP] rw [mul_assoc] [GOAL] R : Type u inst✝ : CommRing R f g₁ g₂ : R U : Opens ↑(PrimeSpectrum.Top R) hu₁ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₁ ∈ Ideal.primeCompl x.asIdeal hu₂ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ U → g₂ ∈ Ideal.primeCompl x.asIdeal ⊢ const R g₁ g₂ U hu₂ * const R f g₁ U hu₁ = const R f g₂ U hu₂ [PROOFSTEP] rw [mul_comm, const_mul_cancel] [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) f : ↑(CommRingCat.of R) x : { x // x ∈ (op U).unop } y : { x // x ∈ U } ⊢ (fun x => (fun x => ↑(algebraMap R (Localizations R ↑x)) f) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) y * ↑(algebraMap R (Localizations R ↑y)) 1 = ↑(algebraMap R (Localizations R ↑y)) f [PROOFSTEP] rw [RingHom.map_one, mul_one] [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) ⊢ x ∈ ⊤ [PROOFSTEP] trivial [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : { x // x ∈ U } ⊢ toOpen R U ≫ germ (Sheaf.presheaf (structureSheaf R)) x = toStalk R ↑x [PROOFSTEP] rw [← toOpen_res R ⊤ U (homOfLE le_top : U ⟶ ⊤), Category.assoc, Presheaf.germ_res] [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : { x // x ∈ U } ⊢ toOpen R ⊤ ≫ germ (structureSheaf R).val ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑⊤) }) x) = toStalk R ↑x [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : { x // x ∈ U } f : R ⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) x) (↑(toOpen R U) f) = ↑(toStalk R ↑x) f [PROOFSTEP] rw [← toOpen_germ] [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : { x // x ∈ U } f : R ⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) x) (↑(toOpen R U) f) = ↑(toOpen R U ≫ germ (Sheaf.presheaf (structureSheaf R)) x) f [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R f : R ⊢ ↑(toOpen R (PrimeSpectrum.basicOpen f)) f * const R 1 f (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → x ∈ PrimeSpectrum.basicOpen f) = 1 [PROOFSTEP] rw [toOpen_eq_const, const_mul_rev] [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) f : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal } ⊢ IsUnit (↑(toStalk R x) ↑f) [PROOFSTEP] erw [← germ_toOpen R (PrimeSpectrum.basicOpen (f : R)) ⟨x, f.2⟩ (f : R)] [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) f : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal } ⊢ IsUnit (↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := (_ : ↑f ∈ Ideal.primeCompl x.asIdeal) }) (↑(toOpen R (PrimeSpectrum.basicOpen ↑f)) ↑f)) [PROOFSTEP] exact RingHom.isUnit_map _ (isUnit_to_basicOpen_self R f) [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) f : R s : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal } ⊢ ↑(toStalk R x) f = ↑(toStalk R x) ↑s * ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := (_ : ↑s ∈ Ideal.primeCompl x.asIdeal) }) (const R f (↑s) (PrimeSpectrum.basicOpen ↑s) (_ : ∀ (x_1 : ↑(PrimeSpectrum.Top R)), x_1 ∈ PrimeSpectrum.basicOpen ↑s → x_1 ∈ PrimeSpectrum.basicOpen ↑s)) [PROOFSTEP] erw [← germ_toOpen R (PrimeSpectrum.basicOpen s) ⟨x, s.2⟩, ← germ_toOpen R (PrimeSpectrum.basicOpen s) ⟨x, s.2⟩, ← RingHom.map_mul, toOpen_eq_const, toOpen_eq_const, const_mul_cancel'] [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) x : { x // x ∈ U } s : ↑((structureSheaf R).val.obj (op U)) ⊢ ↑(stalkToFiberRingHom R ↑x) (↑(germ (Sheaf.presheaf (structureSheaf R)) x) s) = ↑s x [PROOFSTEP] cases x [GOAL] case mk R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) val✝ : ↑(PrimeSpectrum.Top R) property✝ : val✝ ∈ U ⊢ ↑(stalkToFiberRingHom R ↑{ val := val✝, property := property✝ }) (↑(germ (Sheaf.presheaf (structureSheaf R)) { val := val✝, property := property✝ }) s) = ↑s { val := val✝, property := property✝ } [PROOFSTEP] exact stalkToFiberRingHom_germ' R U _ _ _ [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) ⊢ toStalk R x ≫ stalkToFiberRingHom R x = algebraMap R (Localization.AtPrime x.asIdeal) [PROOFSTEP] erw [toStalk, Category.assoc, germ_comp_stalkToFiberRingHom] [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) ⊢ toOpen R ⊤ ≫ openToLocalization R ⊤ ↑{ val := x, property := True.intro } (_ : ↑{ val := x, property := True.intro } ∈ ⊤) = algebraMap R (Localization.AtPrime x.asIdeal) [PROOFSTEP] rfl [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) ⊢ stalkToFiberRingHom R x ≫ localizationToStalk R x = 𝟙 (stalk (Sheaf.presheaf (structureSheaf R)) x) [PROOFSTEP] ext U hxU s [GOAL] case ih.w R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) ⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU } ≫ stalkToFiberRingHom R x ≫ localizationToStalk R x) s = ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU } ≫ 𝟙 (stalk (Sheaf.presheaf (structureSheaf R)) x)) s [PROOFSTEP] simp only [FunctorToTypes.map_comp_apply, CommRingCat.forget_map, CommRingCat.coe_of, Category.comp_id] [GOAL] case ih.w R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) ⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU } ≫ stalkToFiberRingHom R x ≫ localizationToStalk R x) s = ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s [PROOFSTEP] rw [comp_apply, comp_apply, stalkToFiberRingHom_germ'] [GOAL] case ih.w R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) ⊢ ↑(localizationToStalk R x) (↑s { val := x, property := hxU }) = ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s [PROOFSTEP] obtain ⟨V, hxV, iVU, f, g, (hg : V ≤ PrimeSpectrum.basicOpen _), hs⟩ := exists_const _ _ s x hxU [GOAL] case ih.w.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) V : Opens ↑(PrimeSpectrum.Top R) hxV : x ∈ V iVU : V ⟶ U f g : R hg : V ≤ PrimeSpectrum.basicOpen g hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s ⊢ ↑(localizationToStalk R x) (↑s { val := x, property := hxU }) = ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s [PROOFSTEP] erw [← res_apply R U V iVU s ⟨x, hxV⟩, ← hs, const_apply, localizationToStalk_mk'] [GOAL] case ih.w.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) V : Opens ↑(PrimeSpectrum.Top R) hxV : x ∈ V iVU : V ⟶ U f g : R hg : V ≤ PrimeSpectrum.basicOpen g hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s ⊢ ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := (_ : ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) } ∈ Ideal.primeCompl x.asIdeal) }) (const R f (↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) }) (PrimeSpectrum.basicOpen ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) }) (_ : ∀ (x_1 : ↑(PrimeSpectrum.Top R)), x_1 ∈ PrimeSpectrum.basicOpen ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) } → x_1 ∈ PrimeSpectrum.basicOpen ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })) = ↑(germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := hxU }) s [PROOFSTEP] refine' (structureSheaf R).presheaf.germ_ext V hxV (homOfLE hg) iVU _ [GOAL] case ih.w.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) V : Opens ↑(PrimeSpectrum.Top R) hxV : x ∈ V iVU : V ⟶ U f g : R hg : V ≤ PrimeSpectrum.basicOpen g hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s ⊢ ↑((Sheaf.presheaf (structureSheaf R)).map (homOfLE hg).op) (const R f (↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) }) (PrimeSpectrum.basicOpen ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) }) (_ : ∀ (x_1 : ↑(PrimeSpectrum.Top R)), x_1 ∈ PrimeSpectrum.basicOpen ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) } → x_1 ∈ PrimeSpectrum.basicOpen ↑{ val := g, property := (_ : ↑{ val := x, property := hxV } ∈ ↑(PrimeSpectrum.basicOpen ?m.680272)) })) = ↑((Sheaf.presheaf (structureSheaf R)).map iVU.op) s [PROOFSTEP] dsimp [GOAL] case ih.w.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) U : Opens ↑(PrimeSpectrum.Top R) hxU : x ∈ U s : (forget CommRingCat).obj ((Sheaf.presheaf (structureSheaf R)).obj (op U)) V : Opens ↑(PrimeSpectrum.Top R) hxV : x ∈ V iVU : V ⟶ U f g : R hg : V ≤ PrimeSpectrum.basicOpen g hs : const R f g V hg = ↑((structureSheaf R).val.map iVU.op) s ⊢ ↑((Sheaf.presheaf (structureSheaf R)).map (homOfLE hg).op) (const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen g → x ∈ PrimeSpectrum.basicOpen g)) = ↑((Sheaf.presheaf (structureSheaf R)).map iVU.op) s [PROOFSTEP] erw [← hs, res_const'] [GOAL] R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) ⊢ RingHom.comp (RingHom.comp (stalkToFiberRingHom R x) (localizationToStalk R x)) (algebraMap R (Localization.AtPrime x.asIdeal)) = RingHom.comp (RingHom.id (Localization.AtPrime x.asIdeal)) (algebraMap R (Localization.AtPrime x.asIdeal)) [PROOFSTEP] ext f [GOAL] case a R : Type u inst✝ : CommRing R x : ↑(PrimeSpectrum.Top R) f : R ⊢ ↑(RingHom.comp (RingHom.comp (stalkToFiberRingHom R x) (localizationToStalk R x)) (algebraMap R (Localization.AtPrime x.asIdeal))) f = ↑(RingHom.comp (RingHom.id (Localization.AtPrime x.asIdeal)) (algebraMap R (Localization.AtPrime x.asIdeal))) f [PROOFSTEP] rw [RingHom.comp_apply, RingHom.comp_apply, localizationToStalk_of, stalkToFiberRingHom_toStalk, RingHom.comp_apply, RingHom.id_apply] [GOAL] R : Type u inst✝ : CommRing R s f : R g : { x // x ∈ Submonoid.powers s } ⊢ ↑(toOpen R (PrimeSpectrum.basicOpen s)) f = ↑(toOpen R (PrimeSpectrum.basicOpen s)) ↑g * const R f (↑g) (PrimeSpectrum.basicOpen s) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen s → ↑g ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] rw [toOpen_eq_const, toOpen_eq_const, const_mul_cancel'] [GOAL] R : Type u inst✝ : CommRing R f g : R ⊢ ↑(RingHom.comp (toBasicOpen R f) (algebraMap R (Localization.Away f))) g = ↑(toOpen R (PrimeSpectrum.basicOpen f)) g [PROOFSTEP] rw [toBasicOpen, IsLocalization.Away.lift, RingHom.comp_apply, IsLocalization.lift_eq] [GOAL] R : Type u inst✝ : CommRing R f : R ⊢ Function.Injective ↑(toBasicOpen R f) [PROOFSTEP] intro s t h_eq [GOAL] R : Type u inst✝ : CommRing R f : R s t : Localization.Away f h_eq : ↑(toBasicOpen R f) s = ↑(toBasicOpen R f) t ⊢ s = t [PROOFSTEP] obtain ⟨a, ⟨b, hb⟩, rfl⟩ := IsLocalization.mk'_surjective (Submonoid.powers f) s [GOAL] case intro.intro.mk R : Type u inst✝ : CommRing R f : R t : Localization.Away f a b : R hb : b ∈ Submonoid.powers f h_eq : ↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) a { val := b, property := hb }) = ↑(toBasicOpen R f) t ⊢ IsLocalization.mk' (Localization.Away f) a { val := b, property := hb } = t [PROOFSTEP] obtain ⟨c, ⟨d, hd⟩, rfl⟩ := IsLocalization.mk'_surjective (Submonoid.powers f) t [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : ↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) a { val := b, property := hb }) = ↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) c { val := d, property := hd }) ⊢ IsLocalization.mk' (Localization.Away f) a { val := b, property := hb } = IsLocalization.mk' (Localization.Away f) c { val := d, property := hd } [PROOFSTEP] simp only [toBasicOpen_mk'] at h_eq [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) ⊢ IsLocalization.mk' (Localization.Away f) a { val := b, property := hb } = IsLocalization.mk' (Localization.Away f) c { val := d, property := hd } [PROOFSTEP] rw [IsLocalization.eq] -- We know that the fractions `a/b` and `c/d` are equal as sections of the structure sheaf on -- `basicOpen f`. We need to show that they agree as elements in the localization of `R` at `f`. -- This amounts showing that `r * (d * a) = r * (b * c)`, for some power `r = f ^ n` of `f`. -- We define `I` as the ideal of *all* elements `r` satisfying the above equation. [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) ⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c) [PROOFSTEP] let I : Ideal R := { carrier := {r : R | r * (d * a) = r * (b * c)} zero_mem' := by simp only [Set.mem_setOf_eq, zero_mul] add_mem' := fun {r₁ r₂} hr₁ hr₂ => by dsimp at hr₁ hr₂ ⊢; simp only [add_mul, hr₁, hr₂] smul_mem' := fun {r₁ r₂} hr₂ => by dsimp at hr₂ ⊢; simp only [mul_assoc, hr₂] } -- Our claim now reduces to showing that `f` is contained in the radical of `I` [GOAL] R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) r₁ r₂ : R hr₁ : r₁ ∈ {r | r * (d * a) = r * (b * c)} hr₂ : r₂ ∈ {r | r * (d * a) = r * (b * c)} ⊢ r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)} [PROOFSTEP] dsimp at hr₁ hr₂ ⊢ [GOAL] R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) r₁ r₂ : R hr₁ : r₁ * (d * a) = r₁ * (b * c) hr₂ : r₂ * (d * a) = r₂ * (b * c) ⊢ (r₁ + r₂) * (d * a) = (r₁ + r₂) * (b * c) [PROOFSTEP] simp only [add_mul, hr₁, hr₂] [GOAL] R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) ⊢ 0 ∈ { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }.carrier [PROOFSTEP] simp only [Set.mem_setOf_eq, zero_mul] [GOAL] R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) r₁ r₂ : R hr₂ : r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier ⊢ r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier [PROOFSTEP] dsimp at hr₂ ⊢ [GOAL] R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) r₁ r₂ : R hr₂ : r₂ * (d * a) = r₂ * (b * c) ⊢ r₁ * r₂ * (d * a) = r₁ * r₂ * (b * c) [PROOFSTEP] simp only [mul_assoc, hr₂] [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } ⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c) [PROOFSTEP] suffices f ∈ I.radical by cases' this with n hn exact ⟨⟨f ^ n, n, rfl⟩, hn⟩ [GOAL] R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } this : f ∈ Ideal.radical I ⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c) [PROOFSTEP] cases' this with n hn [GOAL] case intro R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } n : ℕ hn : f ^ n ∈ I ⊢ ∃ c_1, ↑c_1 * (↑{ val := d, property := hd } * a) = ↑c_1 * (↑{ val := b, property := hb } * c) [PROOFSTEP] exact ⟨⟨f ^ n, n, rfl⟩, hn⟩ [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } ⊢ f ∈ Ideal.radical I [PROOFSTEP] rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.mem_vanishingIdeal] [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } ⊢ ∀ (x : PrimeSpectrum R), x ∈ PrimeSpectrum.zeroLocus ↑I → f ∈ x.asIdeal [PROOFSTEP] intro p hfp [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : p ∈ PrimeSpectrum.zeroLocus ↑I ⊢ f ∈ p.asIdeal [PROOFSTEP] contrapose hfp [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : ¬f ∈ p.asIdeal ⊢ ¬p ∈ PrimeSpectrum.zeroLocus ↑I [PROOFSTEP] rw [PrimeSpectrum.mem_zeroLocus, Set.not_subset] [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : ¬f ∈ p.asIdeal ⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal [PROOFSTEP] have := congr_fun (congr_arg Subtype.val h_eq) ⟨p, hfp⟩ [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : ¬f ∈ p.asIdeal this : ↑(const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal)) { val := p, property := hfp } = ↑(const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal)) { val := p, property := hfp } ⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal [PROOFSTEP] dsimp at this [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : ¬f ∈ p.asIdeal this : IsLocalization.mk' (Localizations R p) a { val := b, property := (_ : b ∈ Ideal.primeCompl p.asIdeal) } = IsLocalization.mk' (Localizations R p) c { val := d, property := (_ : d ∈ Ideal.primeCompl p.asIdeal) } ⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal [PROOFSTEP] erw [IsLocalization.eq (S := Localization.AtPrime p.asIdeal)] at this [GOAL] case intro.intro.mk.intro.intro.mk R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : ¬f ∈ p.asIdeal this : ∃ c_1, ↑c_1 * (↑{ val := d, property := (_ : d ∈ Ideal.primeCompl p.asIdeal) } * a) = ↑c_1 * (↑{ val := b, property := (_ : b ∈ Ideal.primeCompl p.asIdeal) } * c) ⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal [PROOFSTEP] cases' this with r hr [GOAL] case intro.intro.mk.intro.intro.mk.intro R : Type u inst✝ : CommRing R f a b : R hb : b ∈ Submonoid.powers f c d : R hd : d ∈ Submonoid.powers f h_eq : const R a b (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := b, property := hb } ∈ Ideal.primeCompl x.asIdeal) = const R c d (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := d, property := hd } ∈ Ideal.primeCompl x.asIdeal) I : Ideal R := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }, smul_mem' := (_ : ∀ {r₁ r₂ : R}, r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier → r₁ • r₂ ∈ { toAddSubsemigroup := { carrier := {r | r * (d * a) = r * (b * c)}, add_mem' := (_ : ∀ {r₁ r₂ : R}, r₁ ∈ {r | r * (d * a) = r * (b * c)} → r₂ ∈ {r | r * (d * a) = r * (b * c)} → r₁ + r₂ ∈ {r | r * (d * a) = r * (b * c)}) }, zero_mem' := (_ : 0 * (d * a) = 0 * (b * c)) }.toAddSubsemigroup.carrier) } p : PrimeSpectrum R hfp : ¬f ∈ p.asIdeal r : { x // x ∈ Ideal.primeCompl p.asIdeal } hr : ↑r * (↑{ val := d, property := (_ : d ∈ Ideal.primeCompl p.asIdeal) } * a) = ↑r * (↑{ val := b, property := (_ : b ∈ Ideal.primeCompl p.asIdeal) } * c) ⊢ ∃ a, a ∈ ↑I ∧ ¬a ∈ ↑p.asIdeal [PROOFSTEP] exact ⟨r.1, hr, r.2⟩ [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] obtain ⟨V, hxV : x.1 ∈ V.1, iVU, f, g, hVDg : V ≤ PrimeSpectrum.basicOpen g, s_eq⟩ := exists_const R U s x.1 x.2 [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] obtain ⟨_, ⟨h, rfl⟩, hxDh, hDhV : PrimeSpectrum.basicOpen h ≤ V⟩ := PrimeSpectrum.isTopologicalBasis_basic_opens.exists_subset_of_mem_open hxV V.2 -- The problem is of course, that `g` and `h` don't need to coincide. -- But, since `basicOpen h ≤ basicOpen g`, some power of `h` must be a multiple of `g` [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] cases' (PrimeSpectrum.basicOpen_le_basicOpen_iff h g).mp (Set.Subset.trans hDhV hVDg) with n hn [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ hn : h ^ n ∈ Ideal.span {g} ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] replace hn := Ideal.mul_mem_left (Ideal.span { g }) h hn [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ hn : h * h ^ n ∈ Ideal.span {g} ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] rw [← pow_succ, Ideal.mem_span_singleton'] at hn [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ hn : ∃ a, a * g = h ^ (n + 1) ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] cases' hn with c hc [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] have basic_opens_eq := PrimeSpectrum.basicOpen_pow h (n + 1) (by linarith) [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) ⊢ 0 < n + 1 [PROOFSTEP] linarith [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] have i_basic_open := eqToHom basic_opens_eq ≫ homOfLE hDhV [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ ∃ f g i, ↑x ∈ PrimeSpectrum.basicOpen g ∧ const R f g (PrimeSpectrum.basicOpen g) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen g → y ∈ PrimeSpectrum.basicOpen g) = ↑((structureSheaf R).val.map i.op) s [PROOFSTEP] use f * c, h ^ (n + 1), i_basic_open ≫ iVU, (basic_opens_eq.symm.le : _) hxDh [GOAL] case right R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1))) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) = ↑((structureSheaf R).val.map (i_basic_open ≫ iVU).op) s [PROOFSTEP] rw [op_comp, Functor.map_comp] --, comp_apply, ← s_eq, res_const] -- Porting note : `comp_apply` can't be rewritten, so use a change [GOAL] case right R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1))) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) = ↑((structureSheaf R).val.map iVU.op ≫ (structureSheaf R).val.map i_basic_open.op) s [PROOFSTEP] change const R _ _ _ _ = (structureSheaf R).1.map i_basic_open.op ((structureSheaf R).1.map iVU.op s) [GOAL] case right R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1))) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) = ↑((structureSheaf R).val.map i_basic_open.op) (↑((structureSheaf R).val.map iVU.op) s) [PROOFSTEP] rw [← s_eq, res_const] -- Note that the last rewrite here generated an additional goal, which was a parameter -- of `res_const`. We prove this goal first [GOAL] case right R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1))) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) = const R f g (PrimeSpectrum.basicOpen (h ^ (n + 1))) ?right.hv case right.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → g ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] swap [GOAL] case right.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → g ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] intro y hy [GOAL] case right.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V y : ↑(PrimeSpectrum.Top R) hy : y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) ⊢ g ∈ Ideal.primeCompl y.asIdeal [PROOFSTEP] rw [basic_opens_eq] at hy [GOAL] case right.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V y : ↑(PrimeSpectrum.Top R) hy : y ∈ PrimeSpectrum.basicOpen h ⊢ g ∈ Ideal.primeCompl y.asIdeal [PROOFSTEP] exact (Set.Subset.trans hDhV hVDg : _) hy [GOAL] case right R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ const R (f * c) (h ^ (n + 1)) (PrimeSpectrum.basicOpen (h ^ (n + 1))) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1))) = const R f g (PrimeSpectrum.basicOpen (h ^ (n + 1))) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h ^ (n + 1)) → y ∈ ↑(PrimeSpectrum.basicOpen g)) [PROOFSTEP] apply const_ext [GOAL] case right.h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) x : { x // x ∈ U } V : Opens ↑(PrimeSpectrum.Top R) hxV : ↑x ∈ V.carrier iVU : V ⟶ U f g : R hVDg : V ≤ PrimeSpectrum.basicOpen g s_eq : const R f g V hVDg = ↑((structureSheaf R).val.map iVU.op) s h : R hxDh : ↑x ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) h hDhV : PrimeSpectrum.basicOpen h ≤ V n : ℕ c : R hc : c * g = h ^ (n + 1) basic_opens_eq : PrimeSpectrum.basicOpen (h ^ (n + 1)) = PrimeSpectrum.basicOpen h i_basic_open : PrimeSpectrum.basicOpen (h ^ (n + 1)) ⟶ V ⊢ f * c * g = f * h ^ (n + 1) [PROOFSTEP] rw [mul_assoc f c g, hc] [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] have fractions_eq : ∀ i j : ι, IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) ⟨h i * h j, Submonoid.mem_powers _⟩ = IsLocalization.mk' _ (h i * a j) ⟨h i * h j, Submonoid.mem_powers _⟩ := by intro i j let D := PrimeSpectrum.basicOpen (h i * h j) let iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (PrimeSpectrum.basicOpen_mul_le_left _ _) let iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (PrimeSpectrum.basicOpen_mul_le_right _ _) -- Crucially, we need injectivity of `toBasicOpen` apply toBasicOpen_injective R (h i * h j) rw [toBasicOpen_mk', toBasicOpen_mk'] simp only [] -- Here, both sides of the equation are equal to a restriction of `s` trans convert congr_arg ((structureSheaf R).1.map iDj.op) (hs j).symm using 1 convert congr_arg ((structureSheaf R).1.map iDi.op) (hs i) using 1; swap all_goals rw [res_const]; apply const_ext; ring -- The remaining two goals were generated during the rewrite of `res_const` -- These can be solved immediately exacts [PrimeSpectrum.basicOpen_mul_le_right _ _, PrimeSpectrum.basicOpen_mul_le_left _ _] -- From the equality in the localization, we obtain for each `(i,j)` some power `(h i * h j) ^ n` -- which equalizes `a i * h j` and `h i * a j` [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s ⊢ ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } [PROOFSTEP] intro i j [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι ⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } [PROOFSTEP] let D := PrimeSpectrum.basicOpen (h i * h j) [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) ⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } [PROOFSTEP] let iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (PrimeSpectrum.basicOpen_mul_le_left _ _) [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) ⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } [PROOFSTEP] let iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (PrimeSpectrum.basicOpen_mul_le_right _ _) -- Crucially, we need injectivity of `toBasicOpen` [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } [PROOFSTEP] apply toBasicOpen_injective R (h i * h j) [GOAL] case a R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ↑(toBasicOpen R (h i * h j)) (IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }) = ↑(toBasicOpen R (h i * h j)) (IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }) [PROOFSTEP] rw [toBasicOpen_mk', toBasicOpen_mk'] [GOAL] case a R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = const R (h i * a j) (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) }) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] simp only [] -- Here, both sides of the equation are equal to a restriction of `s` [GOAL] case a R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] trans [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = ?m.984852 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ?m.984852 = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen (h i * h j)))) [PROOFSTEP] convert congr_arg ((structureSheaf R).1.map iDj.op) (hs j).symm using 1 [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = ↑((structureSheaf R).val.map iDj.op) (↑((structureSheaf R).val.map (iDh j).op) s) R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ↑((structureSheaf R).val.map iDj.op) (const R (a j) (h j) (PrimeSpectrum.basicOpen (h j)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] convert congr_arg ((structureSheaf R).1.map iDi.op) (hs i) using 1 [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = ↑((structureSheaf R).val.map iDi.op) (const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))) R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ↑((structureSheaf R).val.map iDj.op) (const R (a j) (h j) (PrimeSpectrum.basicOpen (h j)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] swap [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ↑((structureSheaf R).val.map iDj.op) (const R (a j) (h j) (PrimeSpectrum.basicOpen (h j)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = ↑((structureSheaf R).val.map iDi.op) (const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))) [PROOFSTEP] all_goals rw [res_const]; apply const_ext; ring -- The remaining two goals were generated during the rewrite of `res_const` -- These can be solved immediately [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ↑((structureSheaf R).val.map iDj.op) (const R (a j) (h j) (PrimeSpectrum.basicOpen (h j)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h j) → y ∈ PrimeSpectrum.basicOpen (h j))) = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) [PROOFSTEP] rw [res_const] [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a j) (h j) D ?hv = const R (h i * a j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) case hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h j ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] apply const_ext [GOAL] case h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ a j * (h i * h j) = h i * a j * h j case hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h j ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] ring -- The remaining two goals were generated during the rewrite of `res_const` -- These can be solved immediately [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = ↑((structureSheaf R).val.map iDi.op) (const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))) [PROOFSTEP] rw [res_const] [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ const R (a i * h j) (h i * h j) (PrimeSpectrum.basicOpen (h i * h j)) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i * h j) → ↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ∈ Ideal.primeCompl x.asIdeal) = const R (a i) (h i) D ?h.e'_2.hv case h.e'_2.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h i ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] apply const_ext [GOAL] case h.e'_2.h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ a i * h j * h i = a i * (h i * h j) case h.e'_2.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h i ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] ring -- The remaining two goals were generated during the rewrite of `res_const` -- These can be solved immediately [GOAL] case hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h j ∈ Ideal.primeCompl x.asIdeal case h.e'_2.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s i j : ι D : Opens (PrimeSpectrum R) := PrimeSpectrum.basicOpen (h i * h j) iDi : D ⟶ PrimeSpectrum.basicOpen (h i) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h i)) iDj : D ⟶ PrimeSpectrum.basicOpen (h j) := homOfLE (_ : PrimeSpectrum.basicOpen (h i * h j) ≤ PrimeSpectrum.basicOpen (h j)) ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ D → h i ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] exacts [PrimeSpectrum.basicOpen_mul_le_right _ _, PrimeSpectrum.basicOpen_mul_le_left _ _] -- From the equality in the localization, we obtain for each `(i,j)` some power `(h i * h j) ^ n` -- which equalizes `a i * h j` and `h i * a j` [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] have exists_power : ∀ i j : ι, ∃ n : ℕ, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n := by intro i j obtain ⟨⟨c, n, rfl⟩, hc⟩ := IsLocalization.eq.mp (fractions_eq i j) use n + 1 rw [pow_succ] dsimp at hc convert hc using 1 <;> ring [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } ⊢ ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n [PROOFSTEP] intro i j [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι ⊢ ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n [PROOFSTEP] obtain ⟨⟨c, n, rfl⟩, hc⟩ := IsLocalization.eq.mp (fractions_eq i j) [GOAL] case intro.mk.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι n : ℕ hc : ↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } * (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (a i * h j)) = ↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } * (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (h i * a j)) ⊢ ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n [PROOFSTEP] use n + 1 [GOAL] case h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι n : ℕ hc : ↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } * (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (a i * h j)) = ↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } * (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (h i * a j)) ⊢ a i * h j * (h i * h j) ^ (n + 1) = h i * a j * (h i * h j) ^ (n + 1) [PROOFSTEP] rw [pow_succ] [GOAL] case h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι n : ℕ hc : ↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } * (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (a i * h j)) = ↑{ val := (fun x x_1 => x ^ x_1) (h i * h j) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (h i * h j) y = (fun x x_1 => x ^ x_1) (h i * h j) n) } * (↑{ val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } * (h i * a j)) ⊢ a i * h j * (h i * h j * (h i * h j) ^ n) = h i * a j * (h i * h j * (h i * h j) ^ n) [PROOFSTEP] dsimp at hc [GOAL] case h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι n : ℕ hc : (h i * h j) ^ n * (h i * h j * (a i * h j)) = (h i * h j) ^ n * (h i * h j * (h i * a j)) ⊢ a i * h j * (h i * h j * (h i * h j) ^ n) = h i * a j * (h i * h j * (h i * h j) ^ n) [PROOFSTEP] convert hc using 1 [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι n : ℕ hc : (h i * h j) ^ n * (h i * h j * (a i * h j)) = (h i * h j) ^ n * (h i * h j * (h i * a j)) ⊢ a i * h j * (h i * h j * (h i * h j) ^ n) = (h i * h j) ^ n * (h i * h j * (a i * h j)) [PROOFSTEP] ring [GOAL] case h.e'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } i j : ι n : ℕ hc : (h i * h j) ^ n * (h i * h j * (a i * h j)) = (h i * h j) ^ n * (h i * h j * (h i * a j)) ⊢ h i * a j * (h i * h j * (h i * h j) ^ n) = (h i * h j) ^ n * (h i * h j * (h i * a j)) [PROOFSTEP] ring [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] let n := fun p : ι × ι => (exists_power p.1 p.2).choose [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] have n_spec := fun p : ι × ι => (exists_power p.fst p.snd).choose_spec [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] let N := (t ×ˢ t).sup n [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] have basic_opens_eq : ∀ i : ι, PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) := fun i => PrimeSpectrum.basicOpen_pow _ _ (by linarith) -- Expanding the fraction `a i / h i` by the power `(h i) ^ n` gives the desired normalization [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n i : ι ⊢ 0 < N + 1 [PROOFSTEP] linarith [GOAL] R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) ⊢ ∃ a' h' iDh', U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ∧ (∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a' i * h' j = h' i * a' j) ∧ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh' i).op) s = const R (a' i) (h' i) (PrimeSpectrum.basicOpen (h' i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' i) → y ∈ PrimeSpectrum.basicOpen (h' i)) [PROOFSTEP] refine' ⟨fun i => a i * h i ^ N, fun i => h i ^ (N + 1), fun i => eqToHom (basic_opens_eq i) ≫ iDh i, _, _, _⟩ [GOAL] case refine'_1 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) ⊢ U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) [PROOFSTEP] simpa only [basic_opens_eq] using h_cover [GOAL] case refine'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) ⊢ ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j [PROOFSTEP] intro i hi j hj [GOAL] case refine'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t ⊢ (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j [PROOFSTEP] have n_le_N : n (i, j) ≤ N := Finset.le_sup (Finset.mem_product.mpr ⟨hi, hj⟩) [GOAL] case refine'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N ⊢ (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j [PROOFSTEP] cases' Nat.le.dest n_le_N with k hk [GOAL] case refine'_2.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N k : ℕ hk : n (i, j) + k = N ⊢ (fun i => a i * h i ^ N) i * (fun i => h i ^ (N + 1)) j = (fun i => h i ^ (N + 1)) i * (fun i => a i * h i ^ N) j [PROOFSTEP] simp only [← hk, pow_add, pow_one] -- To accommodate for the difference `k`, we multiply both sides of the equation `n_spec (i, j)` -- by `(h i * h j) ^ k` [GOAL] case refine'_2.intro R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N k : ℕ hk : n (i, j) + k = N ⊢ a i * (h i ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h i ^ k) * (h j ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h j ^ k * h j) = h i ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h i ^ k * h i * (a j * (h j ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h j ^ k)) [PROOFSTEP] convert congr_arg (fun z => z * (h i * h j) ^ k) (n_spec (i, j)) using 1 [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N k : ℕ hk : n (i, j) + k = N ⊢ a i * (h i ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h i ^ k) * (h j ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h j ^ k * h j) = a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * (h i * h j) ^ k [PROOFSTEP] simp only [mul_pow] [GOAL] case h.e'_2 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N k : ℕ hk : n (i, j) + k = N ⊢ a i * (h i ^ Exists.choose (_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) * h i ^ k) * (h j ^ Exists.choose (_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) * h j ^ k * h j) = a i * h j * (h i ^ Exists.choose (_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1) * h j ^ Exists.choose (_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1)) * (h i ^ k * h j ^ k) [PROOFSTEP] ring -- Lastly, we need to show that the new fractions still represent our original `s` [GOAL] case h.e'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N k : ℕ hk : n (i, j) + k = N ⊢ h i ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h i ^ k * h i * (a j * (h j ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * h j ^ k)) = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ Exists.choose (_ : ∃ n, a (i, j).fst * h (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n = h (i, j).fst * a (i, j).snd * (h (i, j).fst * h (i, j).snd) ^ n) * (h i * h j) ^ k [PROOFSTEP] simp only [mul_pow] [GOAL] case h.e'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι hi : i ∈ t j : ι hj : j ∈ t n_le_N : n (i, j) ≤ N k : ℕ hk : n (i, j) + k = N ⊢ h i ^ Exists.choose (_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) * h i ^ k * h i * (a j * (h j ^ Exists.choose (_ : ∃ a_1, (fun n => a i * h j * (h i ^ n * h j ^ n) = h i * a j * (h i ^ n * h j ^ n)) a_1) * h j ^ k)) = h i * a j * (h i ^ Exists.choose (_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1) * h j ^ Exists.choose (_ : ∃ a_1, (fun a_2 => a i * h j * (h i ^ a_2 * h j ^ a_2) = h i * a j * (h i ^ a_2 * h j ^ a_2)) a_1)) * (h i ^ k * h j ^ k) [PROOFSTEP] ring -- Lastly, we need to show that the new fractions still represent our original `s` [GOAL] case refine'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) ⊢ ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map ((fun i => eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)) ≫ iDh i) i).op) s = const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i) (PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) → y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) [PROOFSTEP] intro i _ [GOAL] case refine'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ ↑((structureSheaf R).val.map ((fun i => eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i)) ≫ iDh i) i).op) s = const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i) (PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) → y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) [PROOFSTEP] rw [op_comp, Functor.map_comp] -- Porting note : `comp_apply` can't be rewritten, so use a change [GOAL] case refine'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ ↑((structureSheaf R).val.map (iDh i).op ≫ (structureSheaf R).val.map (eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i))).op) s = const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i) (PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) → y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) [PROOFSTEP] change (structureSheaf R).1.map (eqToHom (basic_opens_eq _)).op ((structureSheaf R).1.map (iDh i).op s) = _ [GOAL] case refine'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ ↑((structureSheaf R).val.map (eqToHom (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i))).op) (↑((structureSheaf R).val.map (iDh i).op) s) = const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i) (PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) → y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) [PROOFSTEP] rw [← hs, res_const] -- additional goal spit out by `res_const` [GOAL] case refine'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ const R (a i) (h i) (PrimeSpectrum.basicOpen (h i ^ (N + 1))) ?refine'_3.hv = const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i) (PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) → y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) case refine'_3.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i ^ (N + 1)) → h i ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] swap [GOAL] case refine'_3.hv R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i ^ (N + 1)) → h i ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] exact (basic_opens_eq i).le [GOAL] case refine'_3 R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ const R (a i) (h i) (PrimeSpectrum.basicOpen (h i ^ (N + 1))) (_ : PrimeSpectrum.basicOpen (h i ^ (N + 1)) ≤ PrimeSpectrum.basicOpen (h i)) = const R ((fun i => a i * h i ^ N) i) ((fun i => h i ^ (N + 1)) i) (PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i) → y ∈ PrimeSpectrum.basicOpen ((fun i => h i ^ (N + 1)) i)) [PROOFSTEP] apply const_ext [GOAL] case refine'_3.h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ a i * (fun i => h i ^ (N + 1)) i = (fun i => a i * h i ^ N) i * h i [PROOFSTEP] dsimp [GOAL] case refine'_3.h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ a i * h i ^ ((Finset.sup (t ×ˢ t) fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) + 1) = (a i * h i ^ Finset.sup (t ×ˢ t) fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) * h i [PROOFSTEP] rw [pow_succ] [GOAL] case refine'_3.h R : Type u inst✝ : CommRing R U : Opens ↑(PrimeSpectrum.Top R) s : ↑((structureSheaf R).val.obj (op U)) ι : Type u_1 t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ U h_cover : U ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) hs : ∀ (i : ι), const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) = ↑((structureSheaf R).val.map (iDh i).op) s fractions_eq : ∀ (i j : ι), IsLocalization.mk' (Localization.Away (h i * h j)) (a i * h j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } = IsLocalization.mk' (Localization.Away (h i * h j)) (h i * a j) { val := h i * h j, property := (_ : h i * h j ∈ Submonoid.powers (h i * h j)) } exists_power : ∀ (i j : ι), ∃ n, a i * h j * (h i * h j) ^ n = h i * a j * (h i * h j) ^ n n : ι × ι → ℕ := fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) n_spec : ∀ (p : ι × ι), a p.fst * h p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) = h p.fst * a p.snd * (h p.fst * h p.snd) ^ Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n) N : ℕ := Finset.sup (t ×ˢ t) n basic_opens_eq : ∀ (i : ι), PrimeSpectrum.basicOpen (h i ^ (N + 1)) = PrimeSpectrum.basicOpen (h i) i : ι a✝ : i ∈ t ⊢ a i * (h i * h i ^ Finset.sup (t ×ˢ t) fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) = (a i * h i ^ Finset.sup (t ×ˢ t) fun p => Exists.choose (_ : ∃ n, a p.fst * h p.snd * (h p.fst * h p.snd) ^ n = h p.fst * a p.snd * (h p.fst * h p.snd) ^ n)) * h i [PROOFSTEP] ring [GOAL] R : Type u inst✝ : CommRing R f : R ⊢ Function.Surjective ↑(toBasicOpen R f) [PROOFSTEP] intro s [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] let ι : Type u := PrimeSpectrum.basicOpen f [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] choose a' h' iDh' hxDh' s_eq' using locally_const_basicOpen R (PrimeSpectrum.basicOpen f) s [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x) s_eq' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) = ↑((structureSheaf R).val.map (iDh' x).op) s ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] obtain ⟨t, ht_cover'⟩ := (PrimeSpectrum.isCompact_basicOpen f).elim_finite_subcover (fun i : ι => PrimeSpectrum.basicOpen (h' i)) (fun i => PrimeSpectrum.isOpen_basicOpen) -- Here, we need to show that our basic opens actually form a cover of `basicOpen f` fun x hx => by rw [Set.mem_iUnion]; exact ⟨⟨x, hx⟩, hxDh' ⟨x, hx⟩⟩ [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x) s_eq' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) = ↑((structureSheaf R).val.map (iDh' x).op) s x : PrimeSpectrum R hx : x ∈ ↑(PrimeSpectrum.basicOpen f) ⊢ x ∈ ⋃ (i : ι), (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x) s_eq' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) = ↑((structureSheaf R).val.map (iDh' x).op) s x : PrimeSpectrum R hx : x ∈ ↑(PrimeSpectrum.basicOpen f) ⊢ ∃ i, x ∈ (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i [PROOFSTEP] exact ⟨⟨x, hx⟩, hxDh' ⟨x, hx⟩⟩ [GOAL] case intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x) s_eq' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) = ↑((structureSheaf R).val.map (iDh' x).op) s t : Finset ι ht_cover' : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h' i)) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] simp only [← Opens.coe_iSup, SetLike.coe_subset_coe] at ht_cover' [GOAL] case intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x) s_eq' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) = ↑((structureSheaf R).val.map (iDh' x).op) s t : Finset ι ht_cover' : PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] obtain ⟨a, h, iDh, ht_cover, ah_ha, s_eq⟩ := normalize_finite_fraction_representation R (PrimeSpectrum.basicOpen f) s t a' h' iDh' ht_cover' s_eq' [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } a' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R iDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f hxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x) s_eq' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) = ↑((structureSheaf R).val.map (iDh' x).op) s t : Finset ι ht_cover' : PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i) a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] clear s_eq' iDh' hxDh' ht_cover' a' h' [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i) ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] rw [← SetLike.coe_subset_coe, Opens.coe_iSup] at ht_cover [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)) ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] replace ht_cover : (PrimeSpectrum.basicOpen f : Set <| PrimeSpectrum R) ⊆ ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.basicOpen (h i) : Set _) [GOAL] case ht_cover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)) ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ⊢ ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) [PROOFSTEP] convert ht_cover using 2 [GOAL] case h.e'_4.h.h.e'_3.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)) ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) e_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R) e_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R) ⊢ (fun i => ⋃ (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))) = fun i => ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)) [PROOFSTEP] exact funext fun j => by rw [Opens.coe_iSup] -- Next we show that some power of `f` is a linear combination of the `h i` [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)) ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) e_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R) e_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R) j : ι ⊢ ⋃ (_ : j ∈ t), ↑(PrimeSpectrum.basicOpen (h j)) = ↑(⨆ (_ : j ∈ t), PrimeSpectrum.basicOpen (h j)) [PROOFSTEP] rw [Opens.coe_iSup] -- Next we show that some power of `f` is a linear combination of the `h i` [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] obtain ⟨n, hn⟩ : f ∈ (Ideal.span (h '' ↑t)).radical := by rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.zeroLocus_span] -- Porting note : simp with `PrimeSpectrum.basicOpen_eq_zeroLocus_compl` does not work replace ht_cover : (PrimeSpectrum.zeroLocus { f })ᶜ ⊆ ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ · convert ht_cover · rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl] · simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl] rw [Set.compl_subset_comm] at ht_cover simp_rw [Set.compl_iUnion, compl_compl, ← PrimeSpectrum.zeroLocus_iUnion, ← Finset.set_biUnion_coe, ← Set.image_eq_iUnion] at ht_cover apply PrimeSpectrum.vanishingIdeal_anti_mono ht_cover exact PrimeSpectrum.subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f) [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) ⊢ f ∈ Ideal.radical (Ideal.span (h '' ↑t)) [PROOFSTEP] rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.zeroLocus_span] -- Porting note : simp with `PrimeSpectrum.basicOpen_eq_zeroLocus_compl` does not work [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) ⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t)) [PROOFSTEP] replace ht_cover : (PrimeSpectrum.zeroLocus { f })ᶜ ⊆ ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ [GOAL] case ht_cover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) ⊢ (PrimeSpectrum.zeroLocus {f})ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ [PROOFSTEP] convert ht_cover [GOAL] case h.e'_3 R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) ⊢ (PrimeSpectrum.zeroLocus {f})ᶜ = ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl] [GOAL] case h.e'_4.h.e'_3.h.f R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) x✝¹ : ι x✝ : x✝¹ ∈ t ⊢ (PrimeSpectrum.zeroLocus {h x✝¹})ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹)) [PROOFSTEP] simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl] [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : (PrimeSpectrum.zeroLocus {f})ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ ⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t)) [PROOFSTEP] rw [Set.compl_subset_comm] at ht_cover [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : (⋃ (i : ι) (_ : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ)ᶜ ⊆ PrimeSpectrum.zeroLocus {f} ⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t)) [PROOFSTEP] simp_rw [Set.compl_iUnion, compl_compl, ← PrimeSpectrum.zeroLocus_iUnion, ← Finset.set_biUnion_coe, ← Set.image_eq_iUnion] at ht_cover [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f} ⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t)) [PROOFSTEP] apply PrimeSpectrum.vanishingIdeal_anti_mono ht_cover [GOAL] case a R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f} ⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus {f}) [PROOFSTEP] exact PrimeSpectrum.subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f) [GOAL] case intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ hn : f ^ n ∈ Ideal.span (h '' ↑t) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] replace hn := Ideal.mul_mem_left _ f hn [GOAL] case intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ hn : f * f ^ n ∈ Ideal.span (h '' ↑t) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] erw [← pow_succ, Finsupp.mem_span_image_iff_total] at hn [GOAL] case intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ hn : ∃ l, l ∈ Finsupp.supported R R ↑t ∧ ↑(Finsupp.total ι R R h) l = f ^ (n + 1) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] rcases hn with ⟨b, b_supp, hb⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ↑(Finsupp.total ι R R h) b = f ^ (n + 1) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] rw [Finsupp.total_apply_of_mem_supported R b_supp] at hb [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i • h i = f ^ (n + 1) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] dsimp at hb [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) ⊢ ∃ a, ↑(toBasicOpen R f) a = s [PROOFSTEP] use IsLocalization.mk' (Localization.Away f) (∑ i : ι in t, b i * a i) (⟨f ^ (n + 1), n + 1, rfl⟩ : Submonoid.powers _) [GOAL] case h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) ⊢ ↑(toBasicOpen R f) (IsLocalization.mk' (Localization.Away f) (∑ i in t, ↑b i * a i) { val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) = s [PROOFSTEP] rw [toBasicOpen_mk'] -- Since the structure sheaf is a sheaf, we can show the desired equality locally. -- Annoyingly, `Sheaf.eq_of_locally_eq'` requires an open cover indexed by a *type*, so we need to -- coerce our finset `t` to a type first. [GOAL] case h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) ⊢ const R (∑ i in t, ↑b i * a i) (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈ Ideal.primeCompl x.asIdeal) = s [PROOFSTEP] let tt := ((t : Set (PrimeSpectrum.basicOpen f)) : Type u) [GOAL] case h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t ⊢ const R (∑ i in t, ↑b i * a i) (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈ Ideal.primeCompl x.asIdeal) = s [PROOFSTEP] apply (structureSheaf R).eq_of_locally_eq' (fun i : tt => PrimeSpectrum.basicOpen (h i)) (PrimeSpectrum.basicOpen f) fun i : tt => iDh i [GOAL] case h.hcover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t ⊢ PrimeSpectrum.basicOpen f ≤ ⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i) [PROOFSTEP] intro x hx [GOAL] case h.hcover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t x : ↑(PrimeSpectrum.Top R) hx : x ∈ ↑(PrimeSpectrum.basicOpen f) ⊢ x ∈ ↑(⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i)) [PROOFSTEP] erw [TopologicalSpace.Opens.mem_iSup] [GOAL] case h.hcover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t x : ↑(PrimeSpectrum.Top R) hx : x ∈ ↑(PrimeSpectrum.basicOpen f) ⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i) [PROOFSTEP] have := ht_cover hx [GOAL] case h.hcover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t x : ↑(PrimeSpectrum.Top R) hx : x ∈ ↑(PrimeSpectrum.basicOpen f) this : x ∈ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) ⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i) [PROOFSTEP] rw [← Finset.set_biUnion_coe, Set.mem_iUnion₂] at this [GOAL] case h.hcover R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t x : ↑(PrimeSpectrum.Top R) hx : x ∈ ↑(PrimeSpectrum.basicOpen f) this : ∃ i j, x ∈ ↑(PrimeSpectrum.basicOpen (h i)) ⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i) [PROOFSTEP] rcases this with ⟨i, i_mem, x_mem⟩ [GOAL] case h.hcover.intro.intro R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t x : ↑(PrimeSpectrum.Top R) hx : x ∈ ↑(PrimeSpectrum.basicOpen f) i : ι i_mem : i ∈ ↑t x_mem : x ∈ ↑(PrimeSpectrum.basicOpen (h i)) ⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i) [PROOFSTEP] refine ⟨⟨i, i_mem⟩, x_mem⟩ [GOAL] case h.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t ⊢ ∀ (i : tt), ↑((structureSheaf R).val.map (iDh ↑i).op) (const R (∑ i in t, ↑b i * a i) (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈ Ideal.primeCompl x.asIdeal)) = ↑((structureSheaf R).val.map (iDh ↑i).op) s [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case h.h.mk R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ↑((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op) (const R (∑ i in t, ↑b i * a i) (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈ Ideal.primeCompl x.asIdeal)) = ↑((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op) s [PROOFSTEP] dsimp [GOAL] case h.h.mk R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ↑((structureSheaf R).val.map (iDh i).op) (const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) = ↑((structureSheaf R).val.map (iDh i).op) s [PROOFSTEP] change (structureSheaf R).1.map _ _ = (structureSheaf R).1.map _ _ [GOAL] case h.h.mk R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ↑((structureSheaf R).val.map (iDh i).op) (const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f) (_ : ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) = ↑((structureSheaf R).val.map (iDh i).op) s [PROOFSTEP] rw [s_eq i hi, res_const] -- Again, `res_const` spits out an additional goal [GOAL] case h.h.mk R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i)) ?h.h.mk.hv = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) case h.h.mk.hv R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] swap [GOAL] case h.h.mk.hv R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal [PROOFSTEP] intro y hy [GOAL] case h.h.mk.hv R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t y : ↑(PrimeSpectrum.Top R) hy : y ∈ PrimeSpectrum.basicOpen (h i) ⊢ f ^ (n + 1) ∈ Ideal.primeCompl y.asIdeal [PROOFSTEP] change y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1)) [GOAL] case h.h.mk.hv R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t y : ↑(PrimeSpectrum.Top R) hy : y ∈ PrimeSpectrum.basicOpen (h i) ⊢ y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1)) [PROOFSTEP] rw [PrimeSpectrum.basicOpen_pow f (n + 1) (by linarith)] [GOAL] R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t y : ↑(PrimeSpectrum.Top R) hy : y ∈ PrimeSpectrum.basicOpen (h i) ⊢ 0 < n + 1 [PROOFSTEP] linarith [GOAL] case h.h.mk.hv R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t y : ↑(PrimeSpectrum.Top R) hy : y ∈ PrimeSpectrum.basicOpen (h i) ⊢ y ∈ PrimeSpectrum.basicOpen f [PROOFSTEP] exact (leOfHom (iDh i) : _) hy [GOAL] case h.h.mk R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))) = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) [PROOFSTEP] apply const_ext [GOAL] case h.h.mk.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ (∑ i in t, ↑b i * a i) * h i = a i * f ^ (n + 1) [PROOFSTEP] rw [← hb, Finset.sum_mul, Finset.mul_sum] [GOAL] case h.h.mk.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ∑ x in t, ↑b x * a x * h i = ∑ x in t, a i * (↑b x * h x) [PROOFSTEP] apply Finset.sum_congr rfl [GOAL] case h.h.mk.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t ⊢ ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), x ∈ t → ↑b x * a x * h i = a i * (↑b x * h x) [PROOFSTEP] intro j hj [GOAL] case h.h.mk.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t j : { x // x ∈ PrimeSpectrum.basicOpen f } hj : j ∈ t ⊢ ↑b j * a j * h i = a i * (↑b j * h j) [PROOFSTEP] rw [mul_assoc, ah_ha j hj i hi] [GOAL] case h.h.mk.h R : Type u inst✝ : CommRing R f : R s : ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen f))) ι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f } t : Finset ι a h : ι → R iDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f ah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j s_eq : ∀ (i : ι), i ∈ t → ↑((structureSheaf R).val.map (iDh i).op) s = const R (a i) (h i) (PrimeSpectrum.basicOpen (h i)) (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i)) ht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i)) n : ℕ b : ι →₀ R b_supp : b ∈ Finsupp.supported R R ↑t hb : ∑ i in t, ↑b i * h i = f ^ (n + 1) tt : Type u := ↑↑t i : ι hi : i ∈ ↑t j : { x // x ∈ PrimeSpectrum.basicOpen f } hj : j ∈ t ⊢ ↑b j * (h j * a i) = a i * (↑b j * h j) [PROOFSTEP] ring [GOAL] R : Type u inst✝ : CommRing R p : PrimeSpectrum R ⊢ IsLocalization.AtPrime (↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) p.asIdeal [PROOFSTEP] convert (IsLocalization.isLocalization_iff_of_ringEquiv (S := Localization.AtPrime p.asIdeal) _ (stalkIso R p).symm.commRingCatIsoToRingEquiv).mp Localization.isLocalization [GOAL] case h.e'_5.h R : Type u inst✝ : CommRing R p : PrimeSpectrum R ⊢ stalkAlgebra R p = RingHom.toAlgebra (RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (stalkIso R p).symm)) (algebraMap R (Localization.AtPrime p.asIdeal))) [PROOFSTEP] apply Algebra.algebra_ext [GOAL] case h.e'_5.h.h R : Type u inst✝ : CommRing R p : PrimeSpectrum R ⊢ ∀ (r : R), ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r = ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r [PROOFSTEP] intro [GOAL] case h.e'_5.h.h R : Type u inst✝ : CommRing R p : PrimeSpectrum R r✝ : R ⊢ ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r✝ = ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r✝ [PROOFSTEP] rw [stalkAlgebra_map] [GOAL] case h.e'_5.h.h R : Type u inst✝ : CommRing R p : PrimeSpectrum R r✝ : R ⊢ ↑(toStalk R p) r✝ = ↑(algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p)) r✝ [PROOFSTEP] congr 1 [GOAL] case h.e'_5.h.h.e_a R : Type u inst✝ : CommRing R p : PrimeSpectrum R r✝ : R ⊢ toStalk R p = algebraMap R ↑(stalk (Sheaf.presheaf (structureSheaf R)) p) [PROOFSTEP] change toStalk R p = _ ≫ (stalkIso R p).inv [GOAL] case h.e'_5.h.h.e_a R : Type u inst✝ : CommRing R p : PrimeSpectrum R r✝ : R ⊢ toStalk R p = algebraMap R (Localization.AtPrime p.asIdeal) ≫ (stalkIso R p).inv [PROOFSTEP] erw [Iso.eq_comp_inv] [GOAL] case h.e'_5.h.h.e_a R : Type u inst✝ : CommRing R p : PrimeSpectrum R r✝ : R ⊢ toStalk R p ≫ (stalkIso R p).hom = algebraMap R (Localization.AtPrime p.asIdeal) [PROOFSTEP] exact toStalk_comp_stalkToFiberRingHom R p [GOAL] R : Type u inst✝ : CommRing R r : R ⊢ IsLocalization.Away r ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r))) [PROOFSTEP] convert (IsLocalization.isLocalization_iff_of_ringEquiv (S := Localization.Away r) _ (basicOpenIso R r).symm.commRingCatIsoToRingEquiv).mp Localization.isLocalization [GOAL] case h.e'_3 R : Type u inst✝ : CommRing R r : R ⊢ openAlgebra R (op (PrimeSpectrum.basicOpen r)) = RingHom.toAlgebra (RingHom.comp (RingEquiv.toRingHom (Iso.commRingCatIsoToRingEquiv (basicOpenIso R r).symm)) (algebraMap R (Localization.Away r))) [PROOFSTEP] apply Algebra.algebra_ext [GOAL] case h.e'_3.h R : Type u inst✝ : CommRing R r : R ⊢ ∀ (r_1 : R), ↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) r_1 = ↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) r_1 [PROOFSTEP] intro x [GOAL] case h.e'_3.h R : Type u inst✝ : CommRing R r x : R ⊢ ↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) x = ↑(algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) x [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h.e_a R : Type u inst✝ : CommRing R r x : R ⊢ algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r))) = algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r))) [PROOFSTEP] exact (localization_toBasicOpen R r).symm [GOAL] R : Type u inst✝ : CommRing R r : R S : CommRingCat f g : (structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)) ⟶ S h : toOpen R (PrimeSpectrum.basicOpen r) ≫ f = toOpen R (PrimeSpectrum.basicOpen r) ≫ g ⊢ f = g [PROOFSTEP] refine' IsLocalization.ringHom_ext (R := R) (S := (structureSheaf R).val.obj (op <| PrimeSpectrum.basicOpen r)) _ _ [GOAL] R : Type u inst✝ : CommRing R r : R S : CommRingCat f g : (structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)) ⟶ S h : toOpen R (PrimeSpectrum.basicOpen r) ≫ f = toOpen R (PrimeSpectrum.basicOpen r) ≫ g ⊢ RingHom.comp f (algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) = RingHom.comp g (algebraMap R ↑((structureSheaf R).val.obj (op (PrimeSpectrum.basicOpen r)))) [PROOFSTEP] exact h [GOAL] R : Type u inst✝ : CommRing R ⊢ toOpen R ⊤ = CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫ toBasicOpen R 1 ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op [PROOFSTEP] rw [← Category.assoc] [GOAL] R : Type u inst✝ : CommRing R ⊢ toOpen R ⊤ = (CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫ toBasicOpen R 1) ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op [PROOFSTEP] change toOpen R ⊤ = (CommRingCat.ofHom <| (toBasicOpen R 1).comp (algebraMap R (Localization.Away 1))) ≫ (structureSheaf R).1.map (eqToHom _).op [GOAL] R : Type u inst✝ : CommRing R ⊢ toOpen R ⊤ = CommRingCat.ofHom (RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1))) ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op [PROOFSTEP] unfold CommRingCat.ofHom [GOAL] R : Type u inst✝ : CommRing R ⊢ toOpen R ⊤ = RingHom.comp (toBasicOpen R 1) (algebraMap R (Localization.Away 1)) ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op [PROOFSTEP] rw [localization_toBasicOpen R, toOpen_res] [GOAL] R : Type u inst✝ : CommRing R ⊢ IsIso (toOpen R ⊤) [PROOFSTEP] let hom := CommRingCat.ofHom (algebraMap R (Localization.Away (1 : R))) [GOAL] R : Type u inst✝ : CommRing R hom : CommRingCat.of R ⟶ CommRingCat.of (Localization.Away 1) := CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ⊢ IsIso (toOpen R ⊤) [PROOFSTEP] haveI : IsIso hom := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso [GOAL] R : Type u inst✝ : CommRing R hom : CommRingCat.of R ⟶ CommRingCat.of (Localization.Away 1) := CommRingCat.ofHom (algebraMap R (Localization.Away 1)) this : IsIso hom ⊢ IsIso (toOpen R ⊤) [PROOFSTEP] rw [to_global_factors R] [GOAL] R : Type u inst✝ : CommRing R hom : CommRingCat.of R ⟶ CommRingCat.of (Localization.Away 1) := CommRingCat.ofHom (algebraMap R (Localization.Away 1)) this : IsIso hom ⊢ IsIso (CommRingCat.ofHom (algebraMap R (Localization.Away 1)) ≫ toBasicOpen R 1 ≫ (structureSheaf R).val.map (eqToHom (_ : ⊤ = PrimeSpectrum.basicOpen 1)).op) [PROOFSTEP] infer_instance [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ toStalk R y ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h = toStalk R x [PROOFSTEP] dsimp [toStalk] [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ (toOpen R ⊤ ≫ germ (Sheaf.presheaf (structureSheaf R)) { val := y, property := True.intro }) ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h = toOpen R ⊤ ≫ germ (Sheaf.presheaf (structureSheaf R)) { val := x, property := True.intro } [PROOFSTEP] simp [-toOpen_germ] [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ localizationToStalk R y ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h = CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x [PROOFSTEP] apply IsLocalization.ringHom_ext (S := Localization.AtPrime y.asIdeal) y.asIdeal.primeCompl [GOAL] case h R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ RingHom.comp (localizationToStalk R y ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h) (algebraMap R (Localization.AtPrime y.asIdeal)) = RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x) (algebraMap R (Localization.AtPrime y.asIdeal)) [PROOFSTEP] erw [RingHom.comp_assoc] [GOAL] case h R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h) (RingHom.comp (localizationToStalk R y) (algebraMap R (Localization.AtPrime y.asIdeal))) = RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x) (algebraMap R (Localization.AtPrime y.asIdeal)) [PROOFSTEP] conv_rhs => erw [RingHom.comp_assoc] [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y | RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x) (algebraMap R (Localization.AtPrime y.asIdeal)) [PROOFSTEP] erw [RingHom.comp_assoc] [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y | RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x) (algebraMap R (Localization.AtPrime y.asIdeal)) [PROOFSTEP] erw [RingHom.comp_assoc] [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y | RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h) ≫ localizationToStalk R x) (algebraMap R (Localization.AtPrime y.asIdeal)) [PROOFSTEP] erw [RingHom.comp_assoc] [GOAL] case h R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h) (RingHom.comp (localizationToStalk R y) (algebraMap R (Localization.AtPrime y.asIdeal))) = RingHom.comp (localizationToStalk R x) (RingHom.comp (CommRingCat.ofHom (PrimeSpectrum.localizationMapOfSpecializes h)) (algebraMap R (Localization.AtPrime y.asIdeal))) [PROOFSTEP] dsimp [CommRingCat.ofHom, localizationToStalk, PrimeSpectrum.localizationMapOfSpecializes] [GOAL] case h R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h) (RingHom.comp (IsLocalization.lift (_ : ∀ (f : { x // x ∈ Ideal.primeCompl y.asIdeal }), IsUnit (↑(toStalk R y) ↑f))) (algebraMap R (Localization.AtPrime y.asIdeal))) = RingHom.comp (IsLocalization.lift (_ : ∀ (f : { x_1 // x_1 ∈ Ideal.primeCompl x.asIdeal }), IsUnit (↑(toStalk R x) ↑f))) (RingHom.comp (IsLocalization.lift (_ : ∀ (y_1 : { x // x ∈ Ideal.primeCompl y.asIdeal }), IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑y_1))) (algebraMap R (Localization.AtPrime y.asIdeal))) [PROOFSTEP] rw [IsLocalization.lift_comp, IsLocalization.lift_comp, IsLocalization.lift_comp] [GOAL] case h R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ RingHom.comp (stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h) (toStalk R y) = toStalk R x [PROOFSTEP] exact toStalk_stalkSpecializes h [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h ≫ stalkToFiberRingHom R x = stalkToFiberRingHom R y ≫ let_fun this := PrimeSpectrum.localizationMapOfSpecializes h; this [PROOFSTEP] change _ ≫ (StructureSheaf.stalkIso R x).hom = (StructureSheaf.stalkIso R y).hom ≫ _ [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h ≫ (stalkIso R x).hom = (stalkIso R y).hom ≫ let_fun this := PrimeSpectrum.localizationMapOfSpecializes h; this [PROOFSTEP] rw [← Iso.eq_comp_inv, Category.assoc, ← Iso.inv_comp_eq] [GOAL] R✝ : Type u inst✝¹ : CommRing R✝ R : Type u_1 inst✝ : CommRing R x y : PrimeSpectrum R h : x ⤳ y ⊢ (stalkIso R y).inv ≫ stalkSpecializes (Sheaf.presheaf (structureSheaf R)) h = (let_fun this := PrimeSpectrum.localizationMapOfSpecializes h; this) ≫ (stalkIso R x).inv [PROOFSTEP] exact localizationToStalk_stalkSpecializes h [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s ⊢ PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV s) [PROOFSTEP] rintro ⟨p, hpV⟩ -- Since `s` is locally fraction, we can find a neighborhood `W` of `PrimeSpectrum.comap f p` -- in `U`, such that `s = a / b` on `W`, for some ring elements `a, b : R`. [GOAL] case mk R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V ⊢ ∃ V_1 x i, PrelocalPredicate.pred (isFractionPrelocal S) fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] rcases hs ⟨PrimeSpectrum.comap f p, hUV hpV⟩ with ⟨W, m, iWU, a, b, h_frac⟩ -- We claim that we can write our new section as the fraction `f a / f b` on the neighborhood -- `(comap f) ⁻¹ W ⊓ V` of `p`. [GOAL] case mk.intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R h_frac : ∀ (x : { x // x ∈ W }), ¬b ∈ (↑x).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) b = ↑(algebraMap R (Localizations R ↑x)) a ⊢ ∃ V_1 x i, PrelocalPredicate.pred (isFractionPrelocal S) fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] refine' ⟨Opens.comap (PrimeSpectrum.comap f) W ⊓ V, ⟨m, hpV⟩, Opens.infLERight _ _, f a, f b, _⟩ [GOAL] case mk.intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R h_frac : ∀ (x : { x // x ∈ W }), ¬b ∈ (↑x).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) b = ↑(algebraMap R (Localizations R ↑x)) a ⊢ ∀ (x : { x // x ∈ ↑(Opens.comap (PrimeSpectrum.comap f)) W ⊓ V }), ¬↑f b ∈ (↑x).asIdeal ∧ (fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) x * ↑(algebraMap S (Localizations S ↑x)) (↑f b) = ↑(algebraMap S (Localizations S ↑x)) (↑f a) [PROOFSTEP] rintro ⟨q, ⟨hqW, hqV⟩⟩ [GOAL] case mk.intro.intro.intro.intro.intro.mk.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R h_frac : ∀ (x : { x // x ∈ W }), ¬b ∈ (↑x).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) x * ↑(algebraMap R (Localizations R ↑x)) b = ↑(algebraMap R (Localizations R ↑x)) a q : ↑(PrimeSpectrum.Top S) hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) hqV : q ∈ ↑V ⊢ ¬↑f b ∈ (↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }).asIdeal ∧ (fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) { val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } * ↑(algebraMap S (Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) })) (↑f b) = ↑(algebraMap S (Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) })) (↑f a) [PROOFSTEP] specialize h_frac ⟨PrimeSpectrum.comap f q, hqW⟩ [GOAL] case mk.intro.intro.intro.intro.intro.mk.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R q : ↑(PrimeSpectrum.Top S) hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) hqV : q ∈ ↑V h_frac : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) { val := ↑(PrimeSpectrum.comap f) q, property := hqW } * ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b = ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a ⊢ ¬↑f b ∈ (↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) }).asIdeal ∧ (fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) { val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } * ↑(algebraMap S (Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) })) (↑f b) = ↑(algebraMap S (Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) })) (↑f a) [PROOFSTEP] refine' ⟨h_frac.1, _⟩ [GOAL] case mk.intro.intro.intro.intro.intro.mk.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R q : ↑(PrimeSpectrum.Top S) hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) hqV : q ∈ ↑V h_frac : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) { val := ↑(PrimeSpectrum.comap f) q, property := hqW } * ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b = ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a ⊢ (fun x => comapFun f U V hUV s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) { val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } * ↑(algebraMap S (Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) })) (↑f b) = ↑(algebraMap S (Localizations S ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) })) (↑f a) [PROOFSTEP] dsimp only [comapFun] [GOAL] case mk.intro.intro.intro.intro.intro.mk.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R q : ↑(PrimeSpectrum.Top S) hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) hqV : q ∈ ↑V h_frac : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) { val := ↑(PrimeSpectrum.comap f) q, property := hqW } * ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b = ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) q).asIdeal q.asIdeal f (_ : (↑(PrimeSpectrum.comap f) ↑{ val := q, property := (_ : ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } ∈ ↑V) }).asIdeal = (↑(PrimeSpectrum.comap f) ↑{ val := q, property := (_ : ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } ∈ ↑V) }).asIdeal)) (s { val := ↑(PrimeSpectrum.comap f) q, property := (_ : ↑{ val := q, property := (_ : ↑{ val := q, property := (_ : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) ∧ q ∈ ↑V) } ∈ ↑V) } ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) * ↑(algebraMap S (Localizations S q)) (↑f b) = ↑(algebraMap S (Localizations S q)) (↑f a) [PROOFSTEP] erw [← Localization.localRingHom_to_map (PrimeSpectrum.comap f q).asIdeal, ← RingHom.map_mul, h_frac.2, Localization.localRingHom_to_map] [GOAL] case mk.intro.intro.intro.intro.intro.mk.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s : (x : { x // x ∈ U }) → Localizations R ↑x hs : PrelocalPredicate.pred (isLocallyFraction R).toPrelocalPredicate s p : ↑(PrimeSpectrum.Top S) hpV : p ∈ V W : Opens ↑(PrimeSpectrum.Top R) m : ↑{ val := ↑(PrimeSpectrum.comap f) p, property := (_ : p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) } ∈ W iWU : W ⟶ U a b : R q : ↑(PrimeSpectrum.Top S) hqW : q ∈ ↑(↑(Opens.comap (PrimeSpectrum.comap f)) W) hqV : q ∈ ↑V h_frac : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW }).asIdeal ∧ (fun x => s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)) { val := ↑(PrimeSpectrum.comap f) q, property := hqW } * ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) b = ↑(algebraMap R (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) q, property := hqW })) a ⊢ ↑(algebraMap ((fun x => S) a) (Localization.AtPrime q.asIdeal)) (↑f a) = ↑(algebraMap S (Localizations S q)) (↑f a) [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier p : { x // x ∈ (op V).unop } ⊢ ↑((fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1) p = ↑1 p [PROOFSTEP] dsimp [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier p : { x // x ∈ (op V).unop } ⊢ comapFun f U V hUV (↑1) p = ↑1 p [PROOFSTEP] rw [comapFun, (sectionsSubring R (op U)).coe_one, Pi.one_apply, RingHom.map_one] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier p : { x // x ∈ (op V).unop } ⊢ 1 = ↑1 p [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s t : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ ↑(OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } (s * t)) p = ↑(OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } s * OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } t) p [PROOFSTEP] dsimp [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s t : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ comapFun f U V hUV (↑(s * t)) p = ↑({ val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } * { val := comapFun f U V hUV ↑t, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) }) p [PROOFSTEP] rw [comapFun, (sectionsSubring R (op U)).coe_mul, Pi.mul_apply, RingHom.map_mul] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s t : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f (_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) * ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f (_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal)) (↑t { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) = ↑({ val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } * { val := comapFun f U V hUV ↑t, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) }) p [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier p : { x // x ∈ (op V).unop } ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) }, map_mul' := (_ : ∀ (s t : ↑((structureSheaf R).val.obj (op U))), OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } (s * t) = OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } s * OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } t) }) 0) p = ↑0 p [PROOFSTEP] dsimp [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier p : { x // x ∈ (op V).unop } ⊢ comapFun f U V hUV (↑0) p = ↑0 p [PROOFSTEP] rw [comapFun, (sectionsSubring R (op U)).coe_zero, Pi.zero_apply, RingHom.map_zero] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier p : { x // x ∈ (op V).unop } ⊢ 0 = ↑0 p [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s t : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) }, map_mul' := (_ : ∀ (s t : ↑((structureSheaf R).val.obj (op U))), OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } (s * t) = OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } s * OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } t) }) (s + t)) p = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) }, map_mul' := (_ : ∀ (s t : ↑((structureSheaf R).val.obj (op U))), OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } (s * t) = OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } s * OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } t) }) s + OneHom.toFun (↑{ toOneHom := { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) }, map_mul' := (_ : ∀ (s t : ↑((structureSheaf R).val.obj (op U))), OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } (s * t) = OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } s * OneHom.toFun { toFun := fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }, map_one' := (_ : (fun s => { val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) }) 1 = 1) } t) }) t) p [PROOFSTEP] dsimp [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s t : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ comapFun f U V hUV (↑(s + t)) p = ↑({ val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } + { val := comapFun f U V hUV ↑t, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) }) p [PROOFSTEP] rw [comapFun, (sectionsSubring R (op U)).coe_add, Pi.add_apply, RingHom.map_add] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier s t : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f (_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) + ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f (_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal)) (↑t { val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) = ↑({ val := comapFun f U V hUV ↑s, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑s)) } + { val := comapFun f U V hUV ↑t, property := (_ : PrelocalPredicate.pred (isLocallyFraction S).toPrelocalPredicate (comapFun f U V hUV ↑t)) }) p [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier a b : R hb : ∀ (x : PrimeSpectrum R), x ∈ U → b ∈ Ideal.primeCompl x.asIdeal p : { x // x ∈ (op V).unop } ⊢ ↑(↑(comap f U V hUV) (const R a b U hb)) p = ↑(const S (↑f a) (↑f b) V (_ : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → b ∈ Ideal.primeCompl (↑(PrimeSpectrum.comap f) p).asIdeal)) p [PROOFSTEP] rw [comap_apply, const_apply, const_apply] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier a b : R hb : ∀ (x : PrimeSpectrum R), x ∈ U → b ∈ Ideal.primeCompl x.asIdeal p : { x // x ∈ (op V).unop } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) ↑p).asIdeal (↑p).asIdeal f (_ : (↑(PrimeSpectrum.comap f) ↑p).asIdeal = (↑(PrimeSpectrum.comap f) ↑p).asIdeal)) (IsLocalization.mk' (Localizations R ↑{ val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }) a { val := b, property := (_ : b ∈ Ideal.primeCompl (↑{ val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }).asIdeal) }) = IsLocalization.mk' (Localizations S ↑p) (↑f a) { val := ↑f b, property := (_ : b ∈ Ideal.primeCompl (↑(PrimeSpectrum.comap f) ↑p).asIdeal) } [PROOFSTEP] erw [Localization.localRingHom_mk'] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) hUV : V.carrier ⊆ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier a b : R hb : ∀ (x : PrimeSpectrum R), x ∈ U → b ∈ Ideal.primeCompl x.asIdeal p : { x // x ∈ (op V).unop } ⊢ IsLocalization.mk' (Localization.AtPrime (↑p).asIdeal) (↑f a) { val := ↑f ↑{ val := b, property := (_ : b ∈ Ideal.primeCompl (↑{ val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }).asIdeal) }, property := (_ : ↑{ val := b, property := (_ : b ∈ Ideal.primeCompl (↑{ val := ↑(PrimeSpectrum.comap f) ↑p, property := (_ : ↑p ∈ ↑(PrimeSpectrum.comap f) ⁻¹' U.carrier) }).asIdeal) } ∈ Submonoid.comap f (Ideal.primeCompl (↑p).asIdeal)) } = IsLocalization.mk' (Localizations S ↑p) (↑f a) { val := ↑f b, property := (_ : b ∈ Ideal.primeCompl (↑(PrimeSpectrum.comap f) ↑p).asIdeal) } [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ ↑(↑(comap (RingHom.id R) U V (_ : ∀ (p : ↑(PrimeSpectrum.Top R)), p ∈ V.carrier → p ∈ ↑U)) s) p = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] rw [comap_apply] -- Unfortunately, we cannot use `Localization.localRingHom_id` here, because -- `PrimeSpectrum.comap (RingHom.id R) p` is not *definitionally* equal to `p`. Instead, we use -- that we can write `s` as a fraction `a/b` in a small neighborhood around `p`. Since -- `PrimeSpectrum.comap (RingHom.id R) p` equals `p`, it is also contained in the same -- neighborhood, hence `s` equals `a/b` there too. [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R) (_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] obtain ⟨W, hpW, iWU, h⟩ := s.2 (iVU p) [GOAL] case intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } W : Opens ↑(PrimeSpectrum.Top R) hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W iWU : W ⟶ (op U).unop h : PrelocalPredicate.pred (isFractionPrelocal R) fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x) ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R) (_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] obtain ⟨a, b, h'⟩ := h.eq_mk' [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } W : Opens ↑(PrimeSpectrum.Top R) hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W iWU : W ⟶ (op U).unop h : PrelocalPredicate.pred (isFractionPrelocal R) fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x) a b : R h' : ∀ (x : { x // x ∈ W }), ∃ hs, (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R) (_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] obtain ⟨hb₁, s_eq₁⟩ := h' ⟨p, hpW⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } W : Opens ↑(PrimeSpectrum.Top R) hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W iWU : W ⟶ (op U).unop h : PrelocalPredicate.pred (isFractionPrelocal R) fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x) a b : R h' : ∀ (x : { x // x ∈ W }), ∃ hs, (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs } hb₁ : ¬b ∈ (↑{ val := ↑p, property := hpW }).asIdeal s_eq₁ : (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) { val := ↑p, property := hpW } = IsLocalization.mk' (Localization.AtPrime (↑{ val := ↑p, property := hpW }).asIdeal) a { val := b, property := hb₁ } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R) (_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] obtain ⟨hb₂, s_eq₂⟩ := h' ⟨PrimeSpectrum.comap (RingHom.id _) p.1, hpW⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } W : Opens ↑(PrimeSpectrum.Top R) hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W iWU : W ⟶ (op U).unop h : PrelocalPredicate.pred (isFractionPrelocal R) fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x) a b : R h' : ∀ (x : { x // x ∈ W }), ∃ hs, (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs } hb₁ : ¬b ∈ (↑{ val := ↑p, property := hpW }).asIdeal s_eq₁ : (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) { val := ↑p, property := hpW } = IsLocalization.mk' (Localization.AtPrime (↑{ val := ↑p, property := hpW }).asIdeal) a { val := b, property := hb₁ } hb₂ : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW }).asIdeal s_eq₂ : (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW } = IsLocalization.mk' (Localization.AtPrime (↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW }).asIdeal) a { val := b, property := hb₂ } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R) (_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] dsimp only at s_eq₁ s_eq₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) iVU : V ⟶ U s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op V).unop } W : Opens ↑(PrimeSpectrum.Top R) hpW : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) p) ∈ W iWU : W ⟶ (op U).unop h : PrelocalPredicate.pred (isFractionPrelocal R) fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x) a b : R h' : ∀ (x : { x // x ∈ W }), ∃ hs, (fun x => ↑s ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op U).unop) }) x)) x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) a { val := b, property := hs } hb₁ : ¬b ∈ (↑{ val := ↑p, property := hpW }).asIdeal s_eq₁ : ↑s { val := ↑p, property := (_ : ↑{ val := ↑p, property := hpW } ∈ ↑(op U).unop) } = IsLocalization.mk' (Localization.AtPrime (↑p).asIdeal) a { val := b, property := hb₁ } hb₂ : ¬b ∈ (↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW }).asIdeal s_eq₂ : ↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑{ val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := hpW } ∈ ↑(op U).unop) } = IsLocalization.mk' (Localization.AtPrime (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal) a { val := b, property := hb₂ } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal (↑p).asIdeal (RingHom.id R) (_ : (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.id R)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.id R)) ↑p, property := (_ : ↑p ∈ ↑U) }) = ↑(↑((structureSheaf R).val.map iVU.op) s) p [PROOFSTEP] erw [s_eq₂, Localization.localRingHom_mk', ← s_eq₁, ← res_apply _ _ _ iVU] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) hUV : U = V p : ↑(PrimeSpectrum.Top R) hpV : p ∈ V.carrier ⊢ p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier [PROOFSTEP] rwa [hUV, PrimeSpectrum.comap_id] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) hUV : U = V ⊢ (structureSheaf R).val.obj (op U) = (structureSheaf R).val.obj (op V) [PROOFSTEP] rw [hUV] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U V : Opens ↑(PrimeSpectrum.Top R) hUV : U = V ⊢ comap (RingHom.id R) U V (_ : ∀ (p : ↑(PrimeSpectrum.Top R)), p ∈ V.carrier → p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier) = eqToHom (_ : (structureSheaf R).val.obj (op U) = (structureSheaf R).val.obj (op V)) [PROOFSTEP] erw [comap_id_eq_map U V (eqToHom hUV.symm), eqToHom_op, eqToHom_map] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U : Opens ↑(PrimeSpectrum.Top R) p : ↑(PrimeSpectrum.Top R) hpU : p ∈ U.carrier ⊢ p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier [PROOFSTEP] rwa [PrimeSpectrum.comap_id] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U : Opens ↑(PrimeSpectrum.Top R) ⊢ comap (RingHom.id R) U U (_ : ∀ (p : ↑(PrimeSpectrum.Top R)), p ∈ U.carrier → p ∈ ↑(PrimeSpectrum.comap (RingHom.id R)) ⁻¹' U.carrier) = RingHom.id ↑((structureSheaf R).val.obj (op U)) [PROOFSTEP] rw [comap_id U U rfl] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P U : Opens ↑(PrimeSpectrum.Top R) ⊢ eqToHom (_ : (structureSheaf R).val.obj (op U) = (structureSheaf R).val.obj (op U)) = RingHom.id ↑((structureSheaf R).val.obj (op U)) [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S g : S →+* P U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) W : Opens ↑(PrimeSpectrum.Top P) hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op W).unop } ⊢ ↑(↑(comap (RingHom.comp g f) U W (_ : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W.carrier → ↑(PrimeSpectrum.comap f) (↑(PrimeSpectrum.comap g) p) ∈ U)) s) p = ↑(↑(RingHom.comp (comap g V W hVW) (comap f U V hUV)) s) p [PROOFSTEP] rw [comap_apply] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S g : S →+* P U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) W : Opens ↑(PrimeSpectrum.Top P) hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op W).unop } ⊢ ↑(Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal (↑p).asIdeal (RingHom.comp g f) (_ : (↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal = (↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p, property := (_ : ↑(PrimeSpectrum.comap f) (↑(PrimeSpectrum.comap g) ↑p) ∈ U) }) = ↑(↑(RingHom.comp (comap g V W hVW) (comap f U V hUV)) s) p [PROOFSTEP] erw [Localization.localRingHom_comp _ (PrimeSpectrum.comap g p.1).asIdeal] [GOAL] R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S g : S →+* P U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) W : Opens ↑(PrimeSpectrum.Top P) hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op W).unop } ⊢ ↑(RingHom.comp (Localization.localRingHom (↑(PrimeSpectrum.comap g) ↑p).asIdeal (↑p).asIdeal g ?hJK) (Localization.localRingHom (↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p).asIdeal (↑(PrimeSpectrum.comap g) ↑p).asIdeal f ?hIJ)) (↑s { val := ↑(PrimeSpectrum.comap (RingHom.comp g f)) ↑p, property := (_ : ↑(PrimeSpectrum.comap f) (↑(PrimeSpectrum.comap g) ↑p) ∈ U) }) = ↑(↑(RingHom.comp (comap g V W hVW) (comap f U V hUV)) s) p [PROOFSTEP] rfl [GOAL] case hJK R : Type u inst✝² : CommRing R S : Type u inst✝¹ : CommRing S P : Type u inst✝ : CommRing P f : R →+* S g : S →+* P U : Opens ↑(PrimeSpectrum.Top R) V : Opens ↑(PrimeSpectrum.Top S) W : Opens ↑(PrimeSpectrum.Top P) hUV : ∀ (p : ↑(PrimeSpectrum.Top S)), p ∈ V → ↑(PrimeSpectrum.comap f) p ∈ U hVW : ∀ (p : ↑(PrimeSpectrum.Top P)), p ∈ W → ↑(PrimeSpectrum.comap g) p ∈ V s : ↑((structureSheaf R).val.obj (op U)) p : { x // x ∈ (op W).unop } ⊢ (↑(PrimeSpectrum.comap g) ↑p).asIdeal = Ideal.comap g (↑p).asIdeal [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.AlgebraicGeometry.StructureSheaf", "llama_tokens": 189626}
[GOAL] P : Type u_1 inst✝ : Preorder P x y : P F s t : PFilter P p q : P ⊢ principal q ≤ principal p ↔ p ≤ q [PROOFSTEP] simp [GOAL] P : Type u_1 inst✝ : CompleteSemilatticeInf P F✝ : PFilter P x : P F : (PFilter P)ᵒᵈ ⊢ (fun x => ↑toDual (principal x)) x ≤ F ↔ x ≤ (fun F => sInf ↑(↑ofDual F)) F [PROOFSTEP] simp [GOAL] P : Type u_1 inst✝ : CompleteSemilatticeInf P F✝ : PFilter P x : P F : (PFilter P)ᵒᵈ ⊢ ↑toDual (principal x) ≤ F ↔ ∀ (b : P), b ∈ ↑ofDual F → x ≤ b [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Order.PFilter", "llama_tokens": 262}
[GOAL] α : Type u β : Type u_1 w x✝ y✝ z : α inst✝ : GeneralizedBooleanAlgebra α x y : α ⊢ x \ y ⊔ x ⊓ y = x [PROOFSTEP] rw [sup_comm, sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x✝ y✝ z : α inst✝ : GeneralizedBooleanAlgebra α x y : α ⊢ x \ y ⊓ (x ⊓ y) = ⊥ [PROOFSTEP] rw [inf_comm, inf_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α src✝ : Bot α := toBot a : α ⊢ ⊥ ≤ a [PROOFSTEP] rw [← inf_inf_sdiff a a, inf_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α src✝ : Bot α := toBot a : α ⊢ a ⊓ (a ⊓ a \ a) ≤ a [PROOFSTEP] exact inf_le_left [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : x ⊓ y ⊔ z = x i : x ⊓ y ⊓ z = ⊥ ⊢ x \ y = z [PROOFSTEP] conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : x ⊓ y ⊔ z = x i : x ⊓ y ⊓ z = ⊥ | x [PROOFSTEP] rw [← sup_inf_sdiff x y, sup_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : x ⊓ y ⊔ z = x i : x ⊓ y ⊓ z = ⊥ | x [PROOFSTEP] rw [← sup_inf_sdiff x y, sup_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : x ⊓ y ⊔ z = x i : x ⊓ y ⊓ z = ⊥ | x [PROOFSTEP] rw [← sup_inf_sdiff x y, sup_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : x ⊓ y ⊔ z = x \ y ⊔ x ⊓ y i : x ⊓ y ⊓ z = ⊥ ⊢ x \ y = z [PROOFSTEP] rw [sup_comm] at s [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y i : x ⊓ y ⊓ z = ⊥ ⊢ x \ y = z [PROOFSTEP] conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y i : x ⊓ y ⊓ z = ⊥ | ⊥ [PROOFSTEP] rw [← inf_inf_sdiff x y, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y i : x ⊓ y ⊓ z = ⊥ | ⊥ [PROOFSTEP] rw [← inf_inf_sdiff x y, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y i : x ⊓ y ⊓ z = ⊥ | ⊥ [PROOFSTEP] rw [← inf_inf_sdiff x y, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y i : x ⊓ y ⊓ z = x \ y ⊓ (x ⊓ y) ⊢ x \ y = z [PROOFSTEP] rw [inf_comm] at i [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α s : z ⊔ x ⊓ y = x \ y ⊔ x ⊓ y i : z ⊓ (x ⊓ y) = x \ y ⊓ (x ⊓ y) ⊢ x \ y = z [PROOFSTEP] exact (eq_of_inf_eq_sup_eq i s).symm [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) [PROOFSTEP] rw [sup_inf_self] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y \ x ⊔ (x ⊔ x ⊓ y) = y ⊓ x ⊔ y \ x ⊔ x [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y ⊓ x ⊔ y \ x ⊔ x = y ⊔ x [PROOFSTEP] rw [sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ ⊥ = x ⊓ y ⊓ x \ y [PROOFSTEP] rw [inf_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ x \ y = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y [PROOFSTEP] rw [sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y [PROOFSTEP] rw [inf_sup_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y [PROOFSTEP] rw [inf_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y [PROOFSTEP] rw [inf_sup_right, @inf_comm _ _ x y] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y = x ⊓ y \ x ⊓ x \ y [PROOFSTEP] rw [inf_inf_sdiff, bot_sup_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ x ⊓ x \ y = x ⊓ x \ y ⊓ y \ x [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ x \ y ⊓ y \ x = x \ y ⊓ y \ x [PROOFSTEP] rw [inf_of_le_right sdiff_le'] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x [PROOFSTEP] rw [sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊓ y ⊔ x \ y) ⊓ y \ x = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x [PROOFSTEP] rw [inf_sup_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x = ⊥ [PROOFSTEP] rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y \ x ⊓ x = ⊥ [PROOFSTEP] rw [inf_comm, inf_sdiff_self_right] [GOAL] α : Type u β : Type u_1 w x✝ y✝ z✝ : α inst✝ : GeneralizedBooleanAlgebra α src✝¹ : GeneralizedBooleanAlgebra α := inst✝ src✝ : OrderBot α := toOrderBot y x z : α h : y \ x ≤ z ⊢ y \ x = x ⊓ y \ x ⊔ z ⊓ y \ x [PROOFSTEP] rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] [GOAL] α : Type u β : Type u_1 w x✝ y✝ z✝ : α inst✝ : GeneralizedBooleanAlgebra α src✝¹ : GeneralizedBooleanAlgebra α := inst✝ src✝ : OrderBot α := toOrderBot y x z : α h : y \ x ≤ z ⊢ y ⊔ (x ⊔ z) = y \ x ⊔ x ⊔ z [PROOFSTEP] rw [← sup_assoc, ← @sdiff_sup_self' _ x y] [GOAL] α : Type u β : Type u_1 w x✝ y✝ z✝ : α inst✝ : GeneralizedBooleanAlgebra α src✝¹ : GeneralizedBooleanAlgebra α := inst✝ src✝ : OrderBot α := toOrderBot y x z : α h : y \ x ≤ z ⊢ y \ x ⊔ x ⊔ z = x ⊔ z ⊔ y \ x [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x✝ y✝ z✝ : α inst✝ : GeneralizedBooleanAlgebra α src✝¹ : GeneralizedBooleanAlgebra α := inst✝ src✝ : OrderBot α := toOrderBot y x z : α h : y ≤ x ⊔ z ⊢ x ⊔ z ⊔ x ≤ z ⊔ x [PROOFSTEP] rw [sup_assoc, sup_comm, sup_assoc, sup_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x ≤ y ∧ Disjoint x z ⊢ x ≤ y \ z [PROOFSTEP] rw [← h.2.sdiff_eq_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x ≤ y ∧ Disjoint x z ⊢ x \ z ≤ y \ z [PROOFSTEP] exact sdiff_le_sdiff_right h.1 [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hi : Disjoint x z hs : x ⊔ z = y h : y ⊓ x = x ⊢ y ⊓ x ⊔ z = y [PROOFSTEP] rw [h, hs] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hi : Disjoint x z hs : x ⊔ z = y h : y ⊓ x = x ⊢ y ⊓ x ⊓ z = ⊥ [PROOFSTEP] rw [h, hi.eq_bot] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hd : Disjoint x z hz : z ≤ y hs : y ≤ x ⊔ z ⊢ y ⊓ x ⊔ z = y [PROOFSTEP] rw [← inf_eq_right] at hs [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hd : Disjoint x z hz : z ≤ y hs : (x ⊔ z) ⊓ y = y ⊢ y ⊓ x ⊔ z = y [PROOFSTEP] rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hd : Disjoint x z hz : z ≤ y hs : y ≤ x ⊔ z ⊢ y ⊓ x ⊓ z = ⊥ [PROOFSTEP] rw [inf_assoc, hd.eq_bot, inf_bot_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : Disjoint z (y \ x) ⊢ z ⊔ y \ x ≤ x ⊔ y \ x [PROOFSTEP] rw [sup_sdiff_cancel_right hx] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : Disjoint z (y \ x) ⊢ z ⊔ y \ x ≤ y [PROOFSTEP] refine' le_trans (sup_le_sup_left sdiff_le z) _ [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : Disjoint z (y \ x) ⊢ z ⊔ y ≤ y [PROOFSTEP] rw [sup_eq_right.2 hz] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y ⊢ z ⊓ y \ x = ⊥ ↔ z ≤ x [PROOFSTEP] rw [← disjoint_iff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y ⊢ Disjoint z (y \ x) ↔ z ≤ x [PROOFSTEP] exact disjoint_sdiff_iff_le hz hx [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ y = z ⊔ y \ x [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ y ≤ z ⊔ y \ x [PROOFSTEP] conv_lhs => rw [← sup_inf_sdiff y x] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z | y [PROOFSTEP] rw [← sup_inf_sdiff y x] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z | y [PROOFSTEP] rw [← sup_inf_sdiff y x] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z | y [PROOFSTEP] rw [← sup_inf_sdiff y x] [GOAL] case a α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ y ⊓ x ⊔ y \ x ≤ z ⊔ y \ x [PROOFSTEP] apply sup_le_sup_right [GOAL] case a.h₁ α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ y ⊓ x ≤ z [PROOFSTEP] rwa [inf_eq_right.2 hx] [GOAL] case a α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ z ⊔ y \ x ≤ y [PROOFSTEP] apply le_trans [GOAL] case a.a α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ z ⊔ y \ x ≤ ?a.b✝ [PROOFSTEP] apply sup_le_sup_right hz [GOAL] case a.a α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ≤ z ⊢ y ⊔ y \ x ≤ y [PROOFSTEP] rw [sup_sdiff_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : y = z ⊔ y \ x ⊢ x ≤ z [PROOFSTEP] conv_lhs at H => rw [← sup_sdiff_cancel_right hx] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : y = z ⊔ y \ x | y [PROOFSTEP] rw [← sup_sdiff_cancel_right hx] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : y = z ⊔ y \ x | y [PROOFSTEP] rw [← sup_sdiff_cancel_right hx] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : y = z ⊔ y \ x | y [PROOFSTEP] rw [← sup_sdiff_cancel_right hx] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ⊔ y \ x = z ⊔ y \ x ⊢ x ≤ z [PROOFSTEP] refine' le_of_inf_le_sup_le _ H.le [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ⊔ y \ x = z ⊔ y \ x ⊢ x ⊓ y \ x ≤ z ⊓ y \ x [PROOFSTEP] rw [inf_sdiff_self_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hz : z ≤ y hx : x ≤ y H : x ⊔ y \ x = z ⊔ y \ x ⊢ ⊥ ≤ z ⊓ y \ x [PROOFSTEP] exact bot_le [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) [PROOFSTEP] rw [sup_inf_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) [PROOFSTEP] rw [@inf_sup_left _ _ y] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) [PROOFSTEP] rw [sup_inf_sdiff, sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) = y [PROOFSTEP] rw [sup_inf_self, sup_inf_self, inf_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) [PROOFSTEP] rw [inf_sup_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) [PROOFSTEP] rw [inf_sup_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) = ⊥ [PROOFSTEP] rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y \ x = y \ z ⊢ y ⊓ x ⊓ ?m.20593 h = y ⊓ z ⊓ ?m.20593 h [PROOFSTEP] rw [inf_inf_sdiff, h, inf_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y \ x = y \ z ⊢ y ⊓ x ⊔ y \ x = y ⊓ z ⊔ y \ x [PROOFSTEP] rw [sup_inf_sdiff, h, sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y ⊓ x = y ⊓ z ⊢ y \ x = y \ z [PROOFSTEP] rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ y = x ↔ x \ y = x \ ⊥ [PROOFSTEP] rw [sdiff_bot] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y = x ⊓ ⊥ ↔ Disjoint y x [PROOFSTEP] rw [inf_bot_eq, inf_comm, disjoint_iff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ y = x ↔ Disjoint x y [PROOFSTEP] rw [sdiff_eq_self_iff_disjoint, disjoint_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hx : y ≤ x hy : y ≠ ⊥ ⊢ x \ y < x [PROOFSTEP] refine' sdiff_le.lt_of_ne fun h => hy _ [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hx : y ≤ x hy : y ≠ ⊥ h : x \ y = x ⊢ y = ⊥ [PROOFSTEP] rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hx : y ≤ x hy : y ≠ ⊥ h : x ⊓ y = ⊥ ⊢ y = ⊥ [PROOFSTEP] rw [← h, inf_eq_right.mpr hx] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z [PROOFSTEP] rw [inf_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y ⊓ z) ⊔ y \ z = (x ⊔ y \ z) ⊓ y [PROOFSTEP] rw [sup_inf_right, sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊔ y \ z) ⊓ y = x ⊓ y ⊔ y \ z [PROOFSTEP] rw [inf_sup_right, inf_sdiff_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z [PROOFSTEP] rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ (y \ z) = z ⊓ x ⊔ x \ y [PROOFSTEP] apply sdiff_unique [GOAL] case s α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = x [PROOFSTEP] calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) [PROOFSTEP] rw [sup_inf_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) [PROOFSTEP] rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) [PROOFSTEP] rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) [PROOFSTEP] rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) [PROOFSTEP] rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) = x [PROOFSTEP] rw [sup_inf_self, sup_comm, inf_sup_self] [GOAL] case i α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = ⊥ [PROOFSTEP] calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y [PROOFSTEP] rw [inf_sup_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y = x ⊓ y \ z ⊓ x \ y [PROOFSTEP] rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y \ z ⊓ x \ y = x ⊓ (y \ z ⊓ y) ⊓ x \ y [PROOFSTEP] conv_lhs => rw [← inf_sdiff_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α | x ⊓ y \ z ⊓ x \ y [PROOFSTEP] rw [← inf_sdiff_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α | x ⊓ y \ z ⊓ x \ y [PROOFSTEP] rw [← inf_sdiff_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α | x ⊓ y \ z ⊓ x \ y [PROOFSTEP] rw [← inf_sdiff_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊓ y) ⊓ x \ y = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y \ z ⊓ (y ⊓ x \ y)) = ⊥ [PROOFSTEP] rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ y ⊔ x ⊓ y ⊓ z = z ⊓ x ⊓ y ⊔ x \ y [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ x ⊓ y ⊔ x \ y = x \ y ⊔ x ⊓ z [PROOFSTEP] rw [sup_inf_inf_sdiff, sup_comm, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : z ≤ x ⊢ x \ (y \ z) = x \ y ⊔ z [PROOFSTEP] rw [sdiff_sdiff_right', inf_eq_right.2 h] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ (x \ y) = x ⊓ y [PROOFSTEP] rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y ≤ x ⊢ x \ (x \ y) = y [PROOFSTEP] rw [sdiff_sdiff_right_self, inf_of_le_right h] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hy : y ≤ x h : x \ y = z ⊢ x \ z = y [PROOFSTEP] rw [← h, sdiff_sdiff_eq_self hy] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hxz : x ≤ z hyz : y ≤ z h : z \ x = z \ y ⊢ x = y [PROOFSTEP] rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x \ y) \ z = x \ y ⊓ x \ z [PROOFSTEP] rw [sdiff_sdiff_left, sdiff_sup] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) [PROOFSTEP] rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) [PROOFSTEP] rw [sup_inf_left, sup_comm, sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) [PROOFSTEP] rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) [PROOFSTEP] rw [inf_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z \ (x \ y) ⊓ z \ (y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) [PROOFSTEP] rw [sdiff_sdiff_right, sdiff_sdiff_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) [PROOFSTEP] rw [sup_inf_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) [PROOFSTEP] rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) [PROOFSTEP] rw [inf_sup_self, sup_inf_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) = x ⊓ y ⊔ x \ z ⊓ y \ z [PROOFSTEP] rw [@inf_comm _ _ y, sup_inf_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z = ⊥ [PROOFSTEP] rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z [PROOFSTEP] rw [inf_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y ⊓ z ⊔ y \ z) = x ⊓ y [PROOFSTEP] rw [sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) = ⊥ [PROOFSTEP] rw [inf_inf_sdiff, inf_bot_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ z ⊓ y = (x ⊓ y) \ z [PROOFSTEP] rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α a b c : α ⊢ a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) [PROOFSTEP] rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α a b c : α ⊢ a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) [PROOFSTEP] simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ Disjoint (x \ z) y ↔ Disjoint x (y \ z) [PROOFSTEP] simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) [PROOFSTEP] rw [sup_inf_left] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) [PROOFSTEP] rw [sup_sdiff_right, sup_sdiff_right] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊔ y \ x) ⊓ (x \ y ⊔ y) = x ⊔ y [PROOFSTEP] rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z ⊢ x ⊔ y < z [PROOFSTEP] rw [← sup_sdiff_cancel_right hxz] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z ⊢ x ⊔ y < x ⊔ z \ x [PROOFSTEP] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z h' : x ⊔ z \ x ≤ x ⊔ y ⊢ z \ x ≤ y [PROOFSTEP] rw [← sdiff_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z h' : x ⊔ z \ x ≤ x ⊔ y ⊢ (z \ x) \ x ≤ y [PROOFSTEP] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z ⊢ x ⊔ y < z [PROOFSTEP] rw [← sdiff_sup_cancel hyz] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z ⊢ x ⊔ y < z \ y ⊔ y [PROOFSTEP] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z h' : z \ y ⊔ y ≤ x ⊔ y ⊢ z \ y ≤ x [PROOFSTEP] rw [← sdiff_idem] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z h' : z \ y ⊔ y ≤ x ⊔ y ⊢ (z \ y) \ y ≤ x [PROOFSTEP] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le [GOAL] α : Type u β : Type u_1 w x y z : α inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : OrderTop α src✝² : GeneralizedBooleanAlgebra α := inst✝¹ src✝¹ : OrderBot α := toOrderBot src✝ : OrderTop α := inst✝ x✝¹ x✝ : α ⊢ x✝¹ \ x✝ = x✝¹ ⊓ x✝ᶜ [PROOFSTEP] erw [← inf_sdiff_assoc, inf_top_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝ : BooleanAlgebra α := inst✝ a b : α ⊢ a ⊓ b ⊔ a \ b = a [PROOFSTEP] rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝ : BooleanAlgebra α := inst✝ a b : α ⊢ a ⊓ b ⊓ a \ b = ⊥ [PROOFSTEP] rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝¹ : BooleanAlgebra α := inst✝ src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra a b c : α ⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c [PROOFSTEP] rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝¹ : BooleanAlgebra α := inst✝ src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra a : α ⊢ ⊤ \ a = ¬a [PROOFSTEP] rw [sdiff_eq, top_inf_eq] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝¹ : BooleanAlgebra α := inst✝ src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra a : α ⊢ aᶜ = ¬a [PROOFSTEP] rfl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : x = yᶜ ⊢ IsCompl x y [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : x = yᶜ ⊢ IsCompl yᶜ y [PROOFSTEP] exact isCompl_compl.symm [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : xᶜ = y ⊢ IsCompl x y [PROOFSTEP] rw [← h] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : xᶜ = y ⊢ IsCompl x xᶜ [PROOFSTEP] exact isCompl_compl [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ xᶜ = y ↔ yᶜ = x [PROOFSTEP] rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ x = yᶜ ↔ y = xᶜ [PROOFSTEP] rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : yᶜ ≤ xᶜ ⊢ x ≤ y [PROOFSTEP] have h := compl_le_compl h [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h✝ : yᶜ ≤ xᶜ h : xᶜᶜ ≤ yᶜᶜ ⊢ x ≤ y [PROOFSTEP] simp at h [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h✝ : yᶜ ≤ xᶜ h : x ≤ y ⊢ x ≤ y [PROOFSTEP] assumption [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : yᶜ ≤ x ⊢ xᶜ ≤ y [PROOFSTEP] simpa only [compl_compl] using compl_le_compl h [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ xᶜ ≤ x ↔ x = ⊤ [PROOFSTEP] simpa using le_compl_self (a := xᶜ) [GOAL] α : Type u β : Type u_1 w x y z : α inst✝¹ : BooleanAlgebra α inst✝ : Nontrivial α ⊢ xᶜ < x ↔ x = ⊤ [PROOFSTEP] simpa using lt_compl_self (a := xᶜ) [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ x \ yᶜ = x ⊓ y [PROOFSTEP] rw [sdiff_eq, compl_compl] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ x ⊓ y ⊔ x ⊓ yᶜ = x [PROOFSTEP] rw [← sdiff_eq, sup_inf_sdiff _ _] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ (x \ y)ᶜ = x ⇨ y [PROOFSTEP] rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ xᶜ \ yᶜ = y \ x [PROOFSTEP] rw [sdiff_compl, sdiff_eq, inf_comm] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ Disjoint xᶜ y ↔ y ≤ x [PROOFSTEP] rw [← le_compl_iff_disjoint_left, compl_compl] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ Disjoint x yᶜ ↔ x ≤ y [PROOFSTEP] rw [← le_compl_iff_disjoint_right, compl_compl] [GOAL] α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ x ⊓ xᶜ ≤ ⊥ [PROOFSTEP] constructor [GOAL] case left α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ (x ⊓ xᶜ).fst ≤ ⊥.fst [PROOFSTEP] simp [GOAL] case right α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ (x ⊓ xᶜ).snd ≤ ⊥.snd [PROOFSTEP] simp [GOAL] α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ ⊤ ≤ x ⊔ xᶜ [PROOFSTEP] constructor [GOAL] case left α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ ⊤.fst ≤ (x ⊔ xᶜ).fst [PROOFSTEP] simp [GOAL] case right α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ ⊤.snd ≤ (x ⊔ xᶜ).snd [PROOFSTEP] simp [GOAL] α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ x \ y = x ⊓ yᶜ [PROOFSTEP] ext [GOAL] case h₁ α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x \ y).fst = (x ⊓ yᶜ).fst [PROOFSTEP] simp [sdiff_eq] [GOAL] case h₂ α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x \ y).snd = (x ⊓ yᶜ).snd [PROOFSTEP] simp [sdiff_eq] [GOAL] α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ x ⇨ y = y ⊔ xᶜ [PROOFSTEP] ext [GOAL] case h₁ α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x ⇨ y).fst = (y ⊔ xᶜ).fst [PROOFSTEP] simp [himp_eq] [GOAL] case h₂ α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.67933 β : Type ?u.67936 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x ⇨ y).snd = (y ⊔ xᶜ).snd [PROOFSTEP] simp [himp_eq] [GOAL] α : Type u β : Type u_1 w x y z : α src✝¹ : LinearOrder Bool := Bool.linearOrder src✝ : BoundedOrder Bool := Bool.boundedOrder ⊢ ∀ (x y z : Bool), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] decide [GOAL] α : Type u β : Type u_1 w x y z : α inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedBooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf a b : α ⊢ f (a ⊓ b ⊔ a \ b) = f a [PROOFSTEP] erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedBooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf a b : α ⊢ f (a ⊓ b ⊓ a \ b) = f ⊥ [PROOFSTEP] erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a : α ⊢ f a ⊓ f aᶜ = f ⊥ [PROOFSTEP] rw [map_compl, inf_compl_eq_bot, map_bot] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a : α ⊢ f a ⊔ f aᶜ = f ⊤ [PROOFSTEP] rw [map_compl, sup_compl_eq_top, map_top] [GOAL] α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a b : α ⊢ a \ b = a ⊓ bᶜ [PROOFSTEP] refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) [GOAL] α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a b : α ⊢ f a ⊓ (f b)ᶜ = f (a ⊓ bᶜ) [PROOFSTEP] rw [map_inf, map_compl] [GOAL] α : Type u β : Type u_1 w x y z : α ⊢ BooleanAlgebra PUnit [PROOFSTEP] refine' { PUnit.biheytingAlgebra with .. } [GOAL] case refine'_1 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra ⊢ ∀ (x y z : PUnit), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra x✝ y✝ z✝ : PUnit ⊢ (x✝ ⊔ y✝) ⊓ (x✝ ⊔ z✝) ≤ x✝ ⊔ y✝ ⊓ z✝ [PROOFSTEP] trivial [GOAL] case refine'_2 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra ⊢ ∀ (x : PUnit), x ⊓ xᶜ ≤ ⊥ [PROOFSTEP] intros [GOAL] case refine'_2 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra x✝ : PUnit ⊢ x✝ ⊓ x✝ᶜ ≤ ⊥ [PROOFSTEP] trivial [GOAL] case refine'_3 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra ⊢ ∀ (x : PUnit), ⊤ ≤ x ⊔ xᶜ [PROOFSTEP] intros [GOAL] case refine'_3 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra x✝ : PUnit ⊢ ⊤ ≤ x✝ ⊔ x✝ᶜ [PROOFSTEP] trivial [GOAL] case refine'_4 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra ⊢ ∀ (x y : PUnit), x \ y = x ⊓ yᶜ [PROOFSTEP] intros [GOAL] case refine'_4 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra x✝ y✝ : PUnit ⊢ x✝ \ y✝ = x✝ ⊓ y✝ᶜ [PROOFSTEP] trivial [GOAL] case refine'_5 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra ⊢ ∀ (x y : PUnit), x ⇨ y = y ⊔ xᶜ [PROOFSTEP] intros [GOAL] case refine'_5 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit := biheytingAlgebra x✝ y✝ : PUnit ⊢ x✝ ⇨ y✝ = y✝ ⊔ x✝ᶜ [PROOFSTEP] trivial
{"mathlib_filename": "Mathlib.Order.BooleanAlgebra", "llama_tokens": 23922}
[GOAL] α : Type u_1 r✝ : α → α → Prop inst✝ : IsStrictOrder α r✝ a : α r : α → α → Prop h : ¬Acc r a ⊢ ∃ b, ¬Acc r b ∧ r b a [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 r✝ : α → α → Prop inst✝ : IsStrictOrder α r✝ a : α r : α → α → Prop h : ∀ (b : α), ¬Acc r b → ¬r b a ⊢ Acc r a [PROOFSTEP] refine' ⟨_, fun b hr => _⟩ [GOAL] α : Type u_1 r✝ : α → α → Prop inst✝ : IsStrictOrder α r✝ a : α r : α → α → Prop h : ∀ (b : α), ¬Acc r b → ¬r b a b : α hr : r b a ⊢ Acc r b [PROOFSTEP] by_contra hb [GOAL] α : Type u_1 r✝ : α → α → Prop inst✝ : IsStrictOrder α r✝ a : α r : α → α → Prop h : ∀ (b : α), ¬Acc r b → ¬r b a b : α hr : r b a hb : ¬Acc r b ⊢ False [PROOFSTEP] exact h b hb hr [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α ⊢ Acc r x ↔ IsEmpty { f // x ∈ Set.range ↑f } [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α ⊢ Acc r x → IsEmpty { f // x ∈ Set.range ↑f } [PROOFSTEP] refine' fun h => h.recOn fun x _ IH => _ [GOAL] case mp α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝¹ : α h : Acc r x✝¹ x : α x✝ : ∀ (y : α), r y x → Acc r y IH : ∀ (y : α), r y x → IsEmpty { f // y ∈ Set.range ↑f } ⊢ IsEmpty { f // x ∈ Set.range ↑f } [PROOFSTEP] constructor [GOAL] case mp.false α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝¹ : α h : Acc r x✝¹ x : α x✝ : ∀ (y : α), r y x → Acc r y IH : ∀ (y : α), r y x → IsEmpty { f // y ∈ Set.range ↑f } ⊢ { f // x ∈ Set.range ↑f } → False [PROOFSTEP] rintro ⟨f, k, hf⟩ [GOAL] case mp.false.mk.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝¹ : α h : Acc r x✝¹ x : α x✝ : ∀ (y : α), r y x → Acc r y IH : ∀ (y : α), r y x → IsEmpty { f // y ∈ Set.range ↑f } f : (fun x x_1 => x > x_1) ↪r r k : ℕ hf : ↑f k = x ⊢ False [PROOFSTEP] exact IsEmpty.elim' (IH (f (k + 1)) (hf ▸ f.map_rel_iff.2 (lt_add_one k))) ⟨f, _, rfl⟩ [GOAL] case mpr α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α ⊢ IsEmpty { f // x ∈ Set.range ↑f } → Acc r x [PROOFSTEP] have : ∀ x : { a // ¬Acc r a }, ∃ y : { a // ¬Acc r a }, r y.1 x.1 := by rintro ⟨x, hx⟩ cases exists_not_acc_lt_of_not_acc hx with | intro w h => exact ⟨⟨w, h.1⟩, h.2⟩ [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α ⊢ ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝ x : α hx : ¬Acc r x ⊢ ∃ y, r ↑y ↑{ val := x, property := hx } [PROOFSTEP] cases exists_not_acc_lt_of_not_acc hx with | intro w h => exact ⟨⟨w, h.1⟩, h.2⟩ [GOAL] case mk α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝¹ x : α hx : ¬Acc r x x✝ : ∃ b, ¬Acc r b ∧ r b x ⊢ ∃ y, r ↑y ↑{ val := x, property := hx } [PROOFSTEP] cases exists_not_acc_lt_of_not_acc hx with | intro w h => exact ⟨⟨w, h.1⟩, h.2⟩ [GOAL] case mk.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝ x : α hx : ¬Acc r x w : α h : ¬Acc r w ∧ r w x ⊢ ∃ y, r ↑y ↑{ val := x, property := hx } [PROOFSTEP] | intro w h => exact ⟨⟨w, h.1⟩, h.2⟩ [GOAL] case mk.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x✝ x : α hx : ¬Acc r x w : α h : ¬Acc r w ∧ r w x ⊢ ∃ y, r ↑y ↑{ val := x, property := hx } [PROOFSTEP] exact ⟨⟨w, h.1⟩, h.2⟩ [GOAL] case mpr α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x ⊢ IsEmpty { f // x ∈ Set.range ↑f } → Acc r x [PROOFSTEP] obtain ⟨f, h⟩ := Classical.axiom_of_choice this [GOAL] case mpr.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x f : { a // ¬Acc r a } → { a // ¬Acc r a } h : ∀ (x : { a // ¬Acc r a }), r ↑(f x) ↑x ⊢ IsEmpty { f // x ∈ Set.range ↑f } → Acc r x [PROOFSTEP] refine' fun E => by_contradiction fun hx => E.elim' ⟨natGT (fun n => (f^[n] ⟨x, hx⟩).1) fun n => _, 0, rfl⟩ [GOAL] case mpr.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x f : { a // ¬Acc r a } → { a // ¬Acc r a } h : ∀ (x : { a // ¬Acc r a }), r ↑(f x) ↑x E : IsEmpty { f // x ∈ Set.range ↑f } hx : ¬Acc r x n : ℕ ⊢ r ((fun n => ↑(f^[n] { val := x, property := hx })) (n + 1)) ((fun n => ↑(f^[n] { val := x, property := hx })) n) [PROOFSTEP] simp only [Function.iterate_succ'] [GOAL] case mpr.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r x : α this : ∀ (x : { a // ¬Acc r a }), ∃ y, r ↑y ↑x f : { a // ¬Acc r a } → { a // ¬Acc r a } h : ∀ (x : { a // ¬Acc r a }), r ↑(f x) ↑x E : IsEmpty { f // x ∈ Set.range ↑f } hx : ¬Acc r x n : ℕ ⊢ r ↑((f ∘ f^[n]) { val := x, property := hx }) ↑(f^[n] { val := x, property := hx }) [PROOFSTEP] apply h [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r f : (fun x x_1 => x > x_1) ↪r r k : ℕ ⊢ ¬Acc r (↑f k) [PROOFSTEP] rw [acc_iff_no_decreasing_seq, not_isEmpty_iff] [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r f : (fun x x_1 => x > x_1) ↪r r k : ℕ ⊢ Nonempty { f_1 // ↑f k ∈ Set.range ↑f_1 } [PROOFSTEP] exact ⟨⟨f, k, rfl⟩⟩ [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r ⊢ WellFounded r ↔ IsEmpty ((fun x x_1 => x > x_1) ↪r r) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r ⊢ WellFounded r → IsEmpty ((fun x x_1 => x > x_1) ↪r r) [PROOFSTEP] rintro ⟨h⟩ [GOAL] case mp.intro α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r h : ∀ (a : α), Acc r a ⊢ IsEmpty ((fun x x_1 => x > x_1) ↪r r) [PROOFSTEP] exact ⟨fun f => not_acc_of_decreasing_seq f 0 (h _)⟩ [GOAL] case mpr α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r ⊢ IsEmpty ((fun x x_1 => x > x_1) ↪r r) → WellFounded r [PROOFSTEP] intro h [GOAL] case mpr α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r h : IsEmpty ((fun x x_1 => x > x_1) ↪r r) ⊢ WellFounded r [PROOFSTEP] exact ⟨fun x => acc_iff_no_decreasing_seq.2 inferInstance⟩ [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r f : (fun x x_1 => x > x_1) ↪r r ⊢ ¬WellFounded r [PROOFSTEP] rw [wellFounded_iff_no_descending_seq, not_isEmpty_iff] [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsStrictOrder α r f : (fun x x_1 => x > x_1) ↪r r ⊢ Nonempty ((fun x x_1 => x > x_1) ↪r r) [PROOFSTEP] exact ⟨f⟩ [GOAL] α : Type u_1 s : Set ℕ inst✝ : Infinite ↑s ⊢ ℕ ≃o ↑s [PROOFSTEP] classical exact RelIso.ofSurjective (RelEmbedding.orderEmbeddingOfLTEmbedding (RelEmbedding.natLT (Nat.Subtype.ofNat s) fun n => Nat.Subtype.lt_succ_self _)) Nat.Subtype.ofNat_surjective [GOAL] α : Type u_1 s : Set ℕ inst✝ : Infinite ↑s ⊢ ℕ ≃o ↑s [PROOFSTEP] exact RelIso.ofSurjective (RelEmbedding.orderEmbeddingOfLTEmbedding (RelEmbedding.natLT (Nat.Subtype.ofNat s) fun n => Nat.Subtype.lt_succ_self _)) Nat.Subtype.ofNat_surjective [GOAL] α : Type u_1 s : Set ℕ inst✝ : Infinite ↑s dP : DecidablePred fun x => x ∈ s n : ℕ ⊢ ↑(orderIsoOfNat s) n = ofNat s n [PROOFSTEP] simp [orderIsoOfNat] [GOAL] α : Type u_1 s : Set ℕ inst✝ : Infinite ↑s dP : DecidablePred fun x => x ∈ s n : ℕ ⊢ ofNat s n = ofNat s n [PROOFSTEP] congr! [GOAL] α : Type u_1 s✝ : Set ℕ inst✝ : Infinite ↑s✝ s t : Set α e : ℕ → α he : ∀ (n : ℕ), e n ∈ s ∪ t ⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t [PROOFSTEP] classical have : Infinite (e ⁻¹' s) ∨ Infinite (e ⁻¹' t) := by simp only [Set.infinite_coe_iff, ← Set.infinite_union, ← Set.preimage_union, Set.eq_univ_of_forall fun n => Set.mem_preimage.2 (he n), Set.infinite_univ] cases this exacts [⟨Nat.orderEmbeddingOfSet (e ⁻¹' s), Or.inl fun n => (Nat.Subtype.ofNat (e ⁻¹' s) _).2⟩, ⟨Nat.orderEmbeddingOfSet (e ⁻¹' t), Or.inr fun n => (Nat.Subtype.ofNat (e ⁻¹' t) _).2⟩] [GOAL] α : Type u_1 s✝ : Set ℕ inst✝ : Infinite ↑s✝ s t : Set α e : ℕ → α he : ∀ (n : ℕ), e n ∈ s ∪ t ⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t [PROOFSTEP] have : Infinite (e ⁻¹' s) ∨ Infinite (e ⁻¹' t) := by simp only [Set.infinite_coe_iff, ← Set.infinite_union, ← Set.preimage_union, Set.eq_univ_of_forall fun n => Set.mem_preimage.2 (he n), Set.infinite_univ] [GOAL] α : Type u_1 s✝ : Set ℕ inst✝ : Infinite ↑s✝ s t : Set α e : ℕ → α he : ∀ (n : ℕ), e n ∈ s ∪ t ⊢ Infinite ↑(e ⁻¹' s) ∨ Infinite ↑(e ⁻¹' t) [PROOFSTEP] simp only [Set.infinite_coe_iff, ← Set.infinite_union, ← Set.preimage_union, Set.eq_univ_of_forall fun n => Set.mem_preimage.2 (he n), Set.infinite_univ] [GOAL] α : Type u_1 s✝ : Set ℕ inst✝ : Infinite ↑s✝ s t : Set α e : ℕ → α he : ∀ (n : ℕ), e n ∈ s ∪ t this : Infinite ↑(e ⁻¹' s) ∨ Infinite ↑(e ⁻¹' t) ⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t [PROOFSTEP] cases this [GOAL] case inl α : Type u_1 s✝ : Set ℕ inst✝ : Infinite ↑s✝ s t : Set α e : ℕ → α he : ∀ (n : ℕ), e n ∈ s ∪ t h✝ : Infinite ↑(e ⁻¹' s) ⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t case inr α : Type u_1 s✝ : Set ℕ inst✝ : Infinite ↑s✝ s t : Set α e : ℕ → α he : ∀ (n : ℕ), e n ∈ s ∪ t h✝ : Infinite ↑(e ⁻¹' t) ⊢ ∃ g, (∀ (n : ℕ), e (↑g n) ∈ s) ∨ ∀ (n : ℕ), e (↑g n) ∈ t [PROOFSTEP] exacts [⟨Nat.orderEmbeddingOfSet (e ⁻¹' s), Or.inl fun n => (Nat.Subtype.ofNat (e ⁻¹' s) _).2⟩, ⟨Nat.orderEmbeddingOfSet (e ⁻¹' t), Or.inr fun n => (Nat.Subtype.ofNat (e ⁻¹' t) _).2⟩] [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] classical let bad : Set ℕ := {m | ∀ n, m < n → ¬r (f m) (f n)} by_cases hbad : Infinite bad · haveI := hbad refine' ⟨Nat.orderEmbeddingOfSet bad, Or.intro_right _ fun m n mn => _⟩ have h := @Set.mem_range_self _ _ (↑(Nat.orderEmbeddingOfSet bad)) m rw [Nat.orderEmbeddingOfSet_range bad] at h exact h _ ((OrderEmbedding.lt_iff_lt _).2 mn) · rw [Set.infinite_coe_iff, Set.Infinite, not_not] at hbad obtain ⟨m, hm⟩ : ∃ m, ∀ n, m ≤ n → ¬n ∈ bad := by by_cases he : hbad.toFinset.Nonempty · refine' ⟨(hbad.toFinset.max' he).succ, fun n hn nbad => Nat.not_succ_le_self _ (hn.trans (hbad.toFinset.le_max' n (hbad.mem_toFinset.2 nbad)))⟩ · exact ⟨0, fun n _ nbad => he ⟨n, hbad.mem_toFinset.2 nbad⟩⟩ have h : ∀ n : ℕ, ∃ n' : ℕ, n < n' ∧ r (f (n + m)) (f (n' + m)) := by intro n have h := hm _ (le_add_of_nonneg_left n.zero_le) simp only [exists_prop, not_not, Set.mem_setOf_eq, not_forall] at h obtain ⟨n', hn1, hn2⟩ := h obtain ⟨x, hpos, rfl⟩ := exists_pos_add_of_lt hn1 refine' ⟨n + x, add_lt_add_left hpos n, _⟩ rw [add_assoc, add_comm x m, ← add_assoc] exact hn2 let g' : ℕ → ℕ := @Nat.rec (fun _ => ℕ) m fun n gn => Nat.find (h gn) exact ⟨(RelEmbedding.natLT (fun n => g' n + m) fun n => Nat.add_lt_add_right (Nat.find_spec (h (g' n))).1 m).orderEmbeddingOfLTEmbedding, Or.intro_left _ fun n => (Nat.find_spec (h (g' n))).2⟩ [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] let bad : Set ℕ := {m | ∀ n, m < n → ¬r (f m) (f n)} [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] by_cases hbad : Infinite bad [GOAL] case pos α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Infinite ↑bad ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] haveI := hbad [GOAL] case pos α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad this : Infinite ↑bad ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] refine' ⟨Nat.orderEmbeddingOfSet bad, Or.intro_right _ fun m n mn => _⟩ [GOAL] case pos α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad this : Infinite ↑bad m n : ℕ mn : m < n ⊢ ¬r (f (↑(Nat.orderEmbeddingOfSet bad) m)) (f (↑(Nat.orderEmbeddingOfSet bad) n)) [PROOFSTEP] have h := @Set.mem_range_self _ _ (↑(Nat.orderEmbeddingOfSet bad)) m [GOAL] case pos α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad this : Infinite ↑bad m n : ℕ mn : m < n h : ↑(Nat.orderEmbeddingOfSet bad) m ∈ Set.range ↑(Nat.orderEmbeddingOfSet bad) ⊢ ¬r (f (↑(Nat.orderEmbeddingOfSet bad) m)) (f (↑(Nat.orderEmbeddingOfSet bad) n)) [PROOFSTEP] rw [Nat.orderEmbeddingOfSet_range bad] at h [GOAL] case pos α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad this : Infinite ↑bad m n : ℕ mn : m < n h : ↑(Nat.orderEmbeddingOfSet bad) m ∈ bad ⊢ ¬r (f (↑(Nat.orderEmbeddingOfSet bad) m)) (f (↑(Nat.orderEmbeddingOfSet bad) n)) [PROOFSTEP] exact h _ ((OrderEmbedding.lt_iff_lt _).2 mn) [GOAL] case neg α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : ¬Infinite ↑bad ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] rw [Set.infinite_coe_iff, Set.Infinite, not_not] at hbad [GOAL] case neg α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] obtain ⟨m, hm⟩ : ∃ m, ∀ n, m ≤ n → ¬n ∈ bad := by by_cases he : hbad.toFinset.Nonempty · refine' ⟨(hbad.toFinset.max' he).succ, fun n hn nbad => Nat.not_succ_le_self _ (hn.trans (hbad.toFinset.le_max' n (hbad.mem_toFinset.2 nbad)))⟩ · exact ⟨0, fun n _ nbad => he ⟨n, hbad.mem_toFinset.2 nbad⟩⟩ [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad ⊢ ∃ m, ∀ (n : ℕ), m ≤ n → ¬n ∈ bad [PROOFSTEP] by_cases he : hbad.toFinset.Nonempty [GOAL] case pos α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad he : Finset.Nonempty (Set.Finite.toFinset hbad) ⊢ ∃ m, ∀ (n : ℕ), m ≤ n → ¬n ∈ bad [PROOFSTEP] refine' ⟨(hbad.toFinset.max' he).succ, fun n hn nbad => Nat.not_succ_le_self _ (hn.trans (hbad.toFinset.le_max' n (hbad.mem_toFinset.2 nbad)))⟩ [GOAL] case neg α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad he : ¬Finset.Nonempty (Set.Finite.toFinset hbad) ⊢ ∃ m, ∀ (n : ℕ), m ≤ n → ¬n ∈ bad [PROOFSTEP] exact ⟨0, fun n _ nbad => he ⟨n, hbad.mem_toFinset.2 nbad⟩⟩ [GOAL] case neg.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] have h : ∀ n : ℕ, ∃ n' : ℕ, n < n' ∧ r (f (n + m)) (f (n' + m)) := by intro n have h := hm _ (le_add_of_nonneg_left n.zero_le) simp only [exists_prop, not_not, Set.mem_setOf_eq, not_forall] at h obtain ⟨n', hn1, hn2⟩ := h obtain ⟨x, hpos, rfl⟩ := exists_pos_add_of_lt hn1 refine' ⟨n + x, add_lt_add_left hpos n, _⟩ rw [add_assoc, add_comm x m, ← add_assoc] exact hn2 [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad ⊢ ∀ (n : ℕ), ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) [PROOFSTEP] intro n [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n : ℕ ⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) [PROOFSTEP] have h := hm _ (le_add_of_nonneg_left n.zero_le) [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n : ℕ h : ¬n + m ∈ bad ⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) [PROOFSTEP] simp only [exists_prop, not_not, Set.mem_setOf_eq, not_forall] at h [GOAL] α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n : ℕ h : ∃ x, n + m < x ∧ r (f (n + m)) (f x) ⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) [PROOFSTEP] obtain ⟨n', hn1, hn2⟩ := h [GOAL] case intro.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n n' : ℕ hn1 : n + m < n' hn2 : r (f (n + m)) (f n') ⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) [PROOFSTEP] obtain ⟨x, hpos, rfl⟩ := exists_pos_add_of_lt hn1 [GOAL] case intro.intro.intro.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n x : ℕ hpos : 0 < x hn1 : n + m < n + m + x hn2 : r (f (n + m)) (f (n + m + x)) ⊢ ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) [PROOFSTEP] refine' ⟨n + x, add_lt_add_left hpos n, _⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n x : ℕ hpos : 0 < x hn1 : n + m < n + m + x hn2 : r (f (n + m)) (f (n + m + x)) ⊢ r (f (n + m)) (f (n + x + m)) [PROOFSTEP] rw [add_assoc, add_comm x m, ← add_assoc] [GOAL] case intro.intro.intro.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad n x : ℕ hpos : 0 < x hn1 : n + m < n + m + x hn2 : r (f (n + m)) (f (n + m + x)) ⊢ r (f (n + m)) (f (n + m + x)) [PROOFSTEP] exact hn2 [GOAL] case neg.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad h : ∀ (n : ℕ), ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] let g' : ℕ → ℕ := @Nat.rec (fun _ => ℕ) m fun n gn => Nat.find (h gn) [GOAL] case neg.intro α : Type u_1 r : α → α → Prop f : ℕ → α bad : Set ℕ := {m | ∀ (n : ℕ), m < n → ¬r (f m) (f n)} hbad : Set.Finite bad m : ℕ hm : ∀ (n : ℕ), m ≤ n → ¬n ∈ bad h : ∀ (n : ℕ), ∃ n', n < n' ∧ r (f (n + m)) (f (n' + m)) g' : ℕ → ℕ := Nat.rec m fun n gn => Nat.find (_ : ∃ n', gn < n' ∧ r (f (gn + m)) (f (n' + m))) ⊢ ∃ g, (∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1)))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] exact ⟨(RelEmbedding.natLT (fun n => g' n + m) fun n => Nat.add_lt_add_right (Nat.find_spec (h (g' n))).1 m).orderEmbeddingOfLTEmbedding, Or.intro_left _ fun n => (Nat.find_spec (h (g' n))).2⟩ [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α ⊢ ∃ g, (∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] obtain ⟨g, hr | hnr⟩ := exists_increasing_or_nonincreasing_subseq' r f [GOAL] case intro.inl α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1))) ⊢ ∃ g, (∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] refine' ⟨g, Or.intro_left _ fun m n mn => _⟩ [GOAL] case intro.inl α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1))) m n : ℕ mn : m < n ⊢ r (f (↑g m)) (f (↑g n)) [PROOFSTEP] obtain ⟨x, rfl⟩ := exists_add_of_le (Nat.succ_le_iff.2 mn) [GOAL] case intro.inl.intro α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1))) m x : ℕ mn : m < Nat.succ m + x ⊢ r (f (↑g m)) (f (↑g (Nat.succ m + x))) [PROOFSTEP] induction' x with x ih [GOAL] case intro.inl.intro.zero α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1))) m x : ℕ mn✝ : m < Nat.succ m + x mn : m < Nat.succ m + Nat.zero ⊢ r (f (↑g m)) (f (↑g (Nat.succ m + Nat.zero))) [PROOFSTEP] apply hr [GOAL] case intro.inl.intro.succ α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1))) m x✝ : ℕ mn✝ : m < Nat.succ m + x✝ x : ℕ ih : m < Nat.succ m + x → r (f (↑g m)) (f (↑g (Nat.succ m + x))) mn : m < Nat.succ m + Nat.succ x ⊢ r (f (↑g m)) (f (↑g (Nat.succ m + Nat.succ x))) [PROOFSTEP] apply IsTrans.trans _ _ _ _ (hr _) [GOAL] α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hr : ∀ (n : ℕ), r (f (↑g n)) (f (↑g (n + 1))) m x✝ : ℕ mn✝ : m < Nat.succ m + x✝ x : ℕ ih : m < Nat.succ m + x → r (f (↑g m)) (f (↑g (Nat.succ m + x))) mn : m < Nat.succ m + Nat.succ x ⊢ r (f (↑g m)) (f (↑g (Nat.add (Nat.succ m) x))) [PROOFSTEP] exact ih (lt_of_lt_of_le m.lt_succ_self (Nat.le_add_right _ _)) [GOAL] case intro.inr α : Type u_1 r : α → α → Prop inst✝ : IsTrans α r f : ℕ → α g : ℕ ↪o ℕ hnr : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) ⊢ ∃ g, (∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))) ∨ ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) [PROOFSTEP] exact ⟨g, Or.intro_right _ hnr⟩ [GOAL] α : Type u_1 inst✝ : Preorder α ⊢ (WellFounded fun x x_1 => x > x_1) ↔ ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m [PROOFSTEP] refine' ⟨fun h a => _, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝ : Preorder α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α ⊢ ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m [PROOFSTEP] have hne : (Set.range a).Nonempty := ⟨a 0, by simp⟩ [GOAL] α : Type u_1 inst✝ : Preorder α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α ⊢ ↑a 0 ∈ Set.range ↑a [PROOFSTEP] simp [GOAL] case refine'_1 α : Type u_1 inst✝ : Preorder α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α hne : Set.Nonempty (Set.range ↑a) ⊢ ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m [PROOFSTEP] obtain ⟨x, ⟨n, rfl⟩, H⟩ := h.has_min _ hne [GOAL] case refine'_1.intro.intro.intro α : Type u_1 inst✝ : Preorder α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α hne : Set.Nonempty (Set.range ↑a) n : ℕ H : ∀ (x : α), x ∈ Set.range ↑a → ¬x > ↑a n ⊢ ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m [PROOFSTEP] exact ⟨n, fun m _ => H _ (Set.mem_range_self _)⟩ [GOAL] case refine'_2 α : Type u_1 inst✝ : Preorder α h : ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m ⊢ WellFounded fun x x_1 => x > x_1 [PROOFSTEP] refine' RelEmbedding.wellFounded_iff_no_descending_seq.2 ⟨fun a => _⟩ [GOAL] case refine'_2 α : Type u_1 inst✝ : Preorder α h : ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ False [PROOFSTEP] obtain ⟨n, hn⟩ := h (a.swap : ((· < ·) : ℕ → ℕ → Prop) →r ((· < ·) : α → α → Prop)).toOrderHom [GOAL] case refine'_2.intro α : Type u_1 inst✝ : Preorder α h : ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 n : ℕ hn : ∀ (m : ℕ), n ≤ m → ¬↑(RelHom.toOrderHom (RelEmbedding.toRelHom (RelEmbedding.swap a))) n < ↑(RelHom.toOrderHom (RelEmbedding.toRelHom (RelEmbedding.swap a))) m ⊢ False [PROOFSTEP] exact hn n.succ n.lt_succ_self.le ((RelEmbedding.map_rel_iff _).2 n.lt_succ_self) [GOAL] α : Type u_1 inst✝ : PartialOrder α ⊢ (∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m) ↔ ∀ (a : ℕ →o α), ∃ n, ∀ (m : ℕ), n ≤ m → ↑a n = ↑a m [PROOFSTEP] congr! 4 [GOAL] case a.h.h.e'_2.h.h.a α : Type u_1 inst✝ : PartialOrder α a✝¹ : ℕ →o α x✝ a✝ : ℕ ⊢ x✝ ≤ a✝ → ¬↑a✝¹ x✝ < ↑a✝¹ a✝ ↔ x✝ ≤ a✝ → ↑a✝¹ x✝ = ↑a✝¹ a✝ [PROOFSTEP] rename_i a n m [GOAL] case a.h.h.e'_2.h.h.a α : Type u_1 inst✝ : PartialOrder α a : ℕ →o α n m : ℕ ⊢ n ≤ m → ¬↑a n < ↑a m ↔ n ≤ m → ↑a n = ↑a m [PROOFSTEP] simp (config := { contextual := true }) [lt_iff_le_and_ne, fun h => a.mono h] [GOAL] α : Type u_1 inst✝ : CompleteLattice α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α ⊢ iSup ↑a = monotonicSequenceLimit a [PROOFSTEP] refine' (iSup_le fun m => _).antisymm (le_iSup a _) [GOAL] α : Type u_1 inst✝ : CompleteLattice α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α m : ℕ ⊢ ↑a m ≤ monotonicSequenceLimit a [PROOFSTEP] cases' le_or_lt m (monotonicSequenceLimitIndex a) with hm hm [GOAL] case inl α : Type u_1 inst✝ : CompleteLattice α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α m : ℕ hm : m ≤ monotonicSequenceLimitIndex a ⊢ ↑a m ≤ monotonicSequenceLimit a [PROOFSTEP] exact a.monotone hm [GOAL] case inr α : Type u_1 inst✝ : CompleteLattice α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α m : ℕ hm : monotonicSequenceLimitIndex a < m ⊢ ↑a m ≤ monotonicSequenceLimit a [PROOFSTEP] cases' WellFounded.monotone_chain_condition'.1 h a with n hn [GOAL] case inr.intro α : Type u_1 inst✝ : CompleteLattice α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α m : ℕ hm : monotonicSequenceLimitIndex a < m n : ℕ hn : ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m ⊢ ↑a m ≤ monotonicSequenceLimit a [PROOFSTEP] have : n ∈ {n | ∀ m, n ≤ m → a n = a m} := fun k hk => (a.mono hk).eq_of_not_lt (hn k hk) [GOAL] case inr.intro α : Type u_1 inst✝ : CompleteLattice α h : WellFounded fun x x_1 => x > x_1 a : ℕ →o α m : ℕ hm : monotonicSequenceLimitIndex a < m n : ℕ hn : ∀ (m : ℕ), n ≤ m → ¬↑a n < ↑a m this : n ∈ {n | ∀ (m : ℕ), n ≤ m → ↑a n = ↑a m} ⊢ ↑a m ≤ monotonicSequenceLimit a [PROOFSTEP] exact (Nat.sInf_mem ⟨n, this⟩ m hm.le).ge
{"mathlib_filename": "Mathlib.Order.OrderIsoNat", "llama_tokens": 13882}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d y : α x : WithBot α ⊢ unbot' d x = y ↔ x = ↑y ∨ x = ⊥ ∧ y = d [PROOFSTEP] induction x using recBotCoe [GOAL] case bot α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d y : α ⊢ unbot' d ⊥ = y ↔ ⊥ = ↑y ∨ ⊥ = ⊥ ∧ y = d [PROOFSTEP] simp [@eq_comm _ d] [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d y a✝ : α ⊢ unbot' d ↑a✝ = y ↔ ↑a✝ = ↑y ∨ ↑a✝ = ⊥ ∧ y = d [PROOFSTEP] simp [@eq_comm _ d] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d : α x : WithBot α ⊢ unbot' d x = d ↔ x = ↑d ∨ x = ⊥ [PROOFSTEP] simp [unbot'_eq_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d : α x y : WithBot α ⊢ unbot' d x = unbot' d y ↔ x = y ∨ x = ↑d ∧ y = ⊥ ∨ x = ⊥ ∧ y = ↑d [PROOFSTEP] induction y using recBotCoe [GOAL] case bot α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d : α x : WithBot α ⊢ unbot' d x = unbot' d ⊥ ↔ x = ⊥ ∨ x = ↑d ∧ ⊥ = ⊥ ∨ x = ⊥ ∧ ⊥ = ↑d [PROOFSTEP] simp [unbot'_eq_iff, or_comm] [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b d : α x : WithBot α a✝ : α ⊢ unbot' d x = unbot' d ↑a✝ ↔ x = ↑a✝ ∨ x = ↑d ∧ ↑a✝ = ⊥ ∨ x = ⊥ ∧ ↑a✝ = ↑d [PROOFSTEP] simp [unbot'_eq_iff, or_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α x : WithBot α h : x ≠ ⊥ ⊢ ↑(unbot x h) = x [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α h : none ≠ ⊥ ⊢ ↑(unbot none h) = none case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b val✝ : α h : Option.some val✝ ≠ ⊥ ⊢ ↑(unbot (Option.some val✝) h) = Option.some val✝ [PROOFSTEP] exact (h rfl).elim [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b val✝ : α h : Option.some val✝ ≠ ⊥ ⊢ ↑(unbot (Option.some val✝) h) = Option.some val✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α ⊢ Option.some a ≤ Option.some b ↔ a ≤ b [PROOFSTEP] simp [LE.le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝¹ : LE α inst✝ : OrderTop α o : WithBot α a : α ha : a ∈ o ⊢ ∃ b, b ∈ ⊤ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝¹ : LE α inst✝ : OrderTop α a : α ⊢ ∃ b, b ∈ ⊤ ∧ a ≤ b [PROOFSTEP] exact ⟨_, rfl, le_top⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α x : α ⊢ ↑a ≤ Option.some x ↔ ∃ b, Option.some x = ↑b ∧ a ≤ b [PROOFSTEP] simp [some_eq_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α ⊢ ¬∃ b, none = ↑b ∧ a ≤ b [PROOFSTEP] simp [none_eq_bot] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : LE α b : α ⊢ Option.some b ≤ ↑b✝ ↔ ∀ (a : α), Option.some b = ↑a → a ≤ b✝ [PROOFSTEP] simp [some_eq_coe, coe_eq_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α ⊢ none ≤ ↑b ↔ ∀ (a : α), none = ↑a → a ≤ b [PROOFSTEP] simp [none_eq_bot] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : LE α a : α b : WithBot α h : b ≠ ⊥ ⊢ a ≤ unbot b h ↔ ↑a ≤ b [PROOFSTEP] match b, h with | some _, _ => simp only [unbot_coe, coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : LE α a : α b : WithBot α h : b ≠ ⊥ val✝ : α x✝ : ↑val✝ ≠ ⊥ ⊢ a ≤ unbot (↑val✝) x✝ ↔ ↑a ≤ ↑val✝ [PROOFSTEP] simp only [unbot_coe, coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : LE α a : WithBot α h : a ≠ ⊥ b : α ⊢ unbot a h ≤ b ↔ a ≤ ↑b [PROOFSTEP] match a, h with | some _, _ => simp only [unbot_coe, coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : LE α a : WithBot α h : a ≠ ⊥ b val✝ : α x✝ : ↑val✝ ≠ ⊥ ⊢ unbot (↑val✝) x✝ ≤ b ↔ ↑val✝ ≤ ↑b [PROOFSTEP] simp only [unbot_coe, coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LT α ⊢ Option.some a < Option.some b ↔ a < b [PROOFSTEP] simp [LT.lt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : LT α a : WithBot α b : α ⊢ a < Option.some b ↔ ∃ p, Option.some b = ↑p ∧ a < ↑p [PROOFSTEP] simp [some_eq_coe, coe_eq_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : LT α a : WithBot α ⊢ ¬∃ p, none = ↑p ∧ a < ↑p [PROOFSTEP] simp [none_eq_bot] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : LT α b : α ⊢ Option.some b < ↑b✝ ↔ ∀ (a : WithBot α), Option.some b = a → a < ↑b✝ [PROOFSTEP] simp [some_eq_coe, coe_eq_coe, coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LT α ⊢ none < ↑b ↔ ∀ (a : WithBot α), none = a → a < ↑b [PROOFSTEP] simp [none_eq_bot, bot_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LT α ⊢ ⊥ < ⊥ ↔ ⊥ ≠ ⊥ [PROOFSTEP] simpa using not_lt_none ⊥ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LT α x : α ⊢ ⊥ < ↑x ↔ ↑x ≠ ⊥ [PROOFSTEP] simp [bot_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : Preorder α ⊢ ∀ (a b : WithBot α), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] intros a b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : Preorder α a b : WithBot α ⊢ a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : Preorder α b : WithBot α ⊢ none < b ↔ none ≤ b ∧ ¬b ≤ none [PROOFSTEP] cases b [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : Preorder α b : WithBot α val✝ : α ⊢ Option.some val✝ < b ↔ Option.some val✝ ≤ b ∧ ¬b ≤ Option.some val✝ [PROOFSTEP] cases b [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : Preorder α ⊢ none < none ↔ none ≤ none ∧ ¬none ≤ none [PROOFSTEP] simp [lt_iff_le_not_le] [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : Preorder α val✝ : α ⊢ none < Option.some val✝ ↔ none ≤ Option.some val✝ ∧ ¬Option.some val✝ ≤ none [PROOFSTEP] simp [lt_iff_le_not_le] [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : Preorder α val✝ : α ⊢ Option.some val✝ < none ↔ Option.some val✝ ≤ none ∧ ¬none ≤ Option.some val✝ [PROOFSTEP] simp [lt_iff_le_not_le] [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : Preorder α val✝¹ val✝ : α ⊢ Option.some val✝¹ < Option.some val✝ ↔ Option.some val✝¹ ≤ Option.some val✝ ∧ ¬Option.some val✝ ≤ Option.some val✝¹ [PROOFSTEP] simp [lt_iff_le_not_le] [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : Preorder α val✝ : α ⊢ none < Option.some val✝ ↔ ¬Option.some val✝ ≤ none [PROOFSTEP] simp [LE.le, LT.lt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder o₁ o₂ : WithBot α h₁ : o₁ ≤ o₂ h₂ : o₂ ≤ o₁ ⊢ o₁ = o₂ [PROOFSTEP] cases' o₁ with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder o₂ : WithBot α h₁ : none ≤ o₂ h₂ : o₂ ≤ none ⊢ none = o₂ [PROOFSTEP] cases' o₂ with b [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder h₁ h₂ : none ≤ none ⊢ none = none [PROOFSTEP] rfl [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder b : α h₁ : none ≤ Option.some b h₂ : Option.some b ≤ none ⊢ none = Option.some b [PROOFSTEP] rcases h₂ b rfl with ⟨_, ⟨⟩, _⟩ [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder o₂ : WithBot α a : α h₁ : Option.some a ≤ o₂ h₂ : o₂ ≤ Option.some a ⊢ Option.some a = o₂ [PROOFSTEP] rcases h₁ a rfl with ⟨b, ⟨⟩, h₁'⟩ [GOAL] case some.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder a b : α h₁' : a ≤ b h₁ : Option.some a ≤ Option.some b h₂ : Option.some b ≤ Option.some a ⊢ Option.some a = Option.some b [PROOFSTEP] rcases h₂ b rfl with ⟨_, ⟨⟩, h₂'⟩ [GOAL] case some.intro.intro.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : PartialOrder α src✝ : Preorder (WithBot α) := preorder a b : α h₁' : a ≤ b h₁ : Option.some a ≤ Option.some b h₂ : Option.some b ≤ Option.some a h₂' : b ≤ a ⊢ Option.some a = Option.some b [PROOFSTEP] rw [le_antisymm h₁' h₂'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : Preorder α inst✝ : Preorder β f : α → β ⊢ ((Monotone fun a => map f ↑a) ∧ ∀ (x : α), map f ⊥ ≤ map f ↑x) ↔ Monotone f [PROOFSTEP] simp [Monotone] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : Preorder α inst✝ : Preorder β f : α → β ⊢ ((StrictMono fun a => map f ↑a) ∧ ∀ (x : α), map f ⊥ < map f ↑x) ↔ StrictMono f [PROOFSTEP] simp [StrictMono, bot_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : Preorder α inst✝ : Preorder β f : α → β mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b x✝ : WithBot α ⊢ map f ⊥ ≤ map f x✝ ↔ ⊥ ≤ x✝ [PROOFSTEP] simp only [map_bot, bot_le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝¹ : Preorder α inst✝ : Preorder β f : α → β mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b a : α ⊢ map f ↑a ≤ map f ⊥ ↔ ↑a ≤ ⊥ [PROOFSTEP] simp only [map_coe, map_bot, coe_ne_bot, not_coe_le_bot _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝¹ : Preorder α inst✝ : Preorder β f : α → β mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b a b : α ⊢ map f ↑a ≤ map f ↑b ↔ ↑a ≤ ↑b [PROOFSTEP] simpa only [map_coe, coe_le_coe] using mono_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝¹ : LE α inst✝ : OrderBot α a : WithBot α b : α ⊢ unbot' ⊥ a ≤ b ↔ a ≤ ↑b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝¹ : LE α inst✝ : OrderBot α b : α ⊢ unbot' ⊥ none ≤ b ↔ none ≤ ↑b [PROOFSTEP] simp [none_eq_bot, some_eq_coe] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝¹ : LE α inst✝ : OrderBot α b val✝ : α ⊢ unbot' ⊥ (Option.some val✝) ≤ b ↔ Option.some val✝ ≤ ↑b [PROOFSTEP] simp [none_eq_bot, some_eq_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : LT α a : WithBot α b c : α ha : a ≠ ⊥ ⊢ unbot' b a < c ↔ a < ↑c [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : LT α b c : α ha : none ≠ ⊥ ⊢ unbot' b none < c ↔ none < ↑c [PROOFSTEP] exact (ha rfl).elim [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : LT α b c val✝ : α ha : Option.some val✝ ≠ ⊥ ⊢ unbot' b (Option.some val✝) < c ↔ Option.some val✝ < ↑c [PROOFSTEP] rw [some_eq_coe, unbot'_coe, coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ o₂ : WithBot α a : α ha : a ∈ o₁ ⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₂ : WithBot α a : α ⊢ ∃ b, b ∈ Option.some a ⊔ o₂ ∧ a ≤ b [PROOFSTEP] cases o₂ [GOAL] case refl.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a : α ⊢ ∃ b, b ∈ Option.some a ⊔ none ∧ a ≤ b [PROOFSTEP] simp [Option.liftOrGet] [GOAL] case refl.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a val✝ : α ⊢ ∃ b, b ∈ Option.some a ⊔ Option.some val✝ ∧ a ≤ b [PROOFSTEP] simp [Option.liftOrGet] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ o₂ : WithBot α a : α ha : a ∈ o₂ ⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ : WithBot α a : α ⊢ ∃ b, b ∈ o₁ ⊔ Option.some a ∧ a ≤ b [PROOFSTEP] cases o₁ [GOAL] case refl.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a : α ⊢ ∃ b, b ∈ none ⊔ Option.some a ∧ a ≤ b [PROOFSTEP] simp [Option.liftOrGet] [GOAL] case refl.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a val✝ : α ⊢ ∃ b, b ∈ Option.some val✝ ⊔ Option.some a ∧ a ≤ b [PROOFSTEP] simp [Option.liftOrGet] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ o₂ o₃ : WithBot α h₁ : o₁ ≤ o₃ h₂ : o₂ ≤ o₃ a : α ha : a ∈ o₁ ⊔ o₂ ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases' o₁ with b [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₂ o₃ : WithBot α h₂ : o₂ ≤ o₃ a : α h₁ : none ≤ o₃ ha : a ∈ none ⊔ o₂ ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases' o₂ with c [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₂ o₃ : WithBot α h₂ : o₂ ≤ o₃ a b : α h₁ : Option.some b ≤ o₃ ha : a ∈ Option.some b ⊔ o₂ ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases' o₂ with c [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a : α h₁ h₂ : none ≤ o₃ ha : a ∈ none ⊔ none ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a : α h₁ : none ≤ o₃ c : α h₂ : Option.some c ≤ o₃ ha : a ∈ none ⊔ Option.some c ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a b : α h₁ : Option.some b ≤ o₃ h₂ : none ≤ o₃ ha : a ∈ Option.some b ⊔ none ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a b : α h₁ : Option.some b ≤ o₃ c : α h₂ : Option.some c ≤ o₃ ha : a ∈ Option.some b ⊔ Option.some c ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case none.some.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a : α h₁ : none ≤ o₃ h₂ : Option.some a ≤ o₃ ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] exact h₂ a rfl [GOAL] case some.none.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a : α h₂ : none ≤ o₃ h₁ : Option.some a ≤ o₃ ⊢ ∃ b, b ∈ o₃ ∧ a ≤ b [PROOFSTEP] exact h₁ a rfl [GOAL] case some.some.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α b : α h₁ : Option.some b ≤ o₃ c : α h₂ : Option.some c ≤ o₃ ⊢ ∃ b_1, b_1 ∈ o₃ ∧ (fun x x_1 => x ⊔ x_1) b c ≤ b_1 [PROOFSTEP] rcases h₁ b rfl with ⟨d, ⟨⟩, h₁'⟩ [GOAL] case some.some.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot b c d : α h₁' : b ≤ d h₁ : Option.some b ≤ Option.some d h₂ : Option.some c ≤ Option.some d ⊢ ∃ b_1, b_1 ∈ Option.some d ∧ (fun x x_1 => x ⊔ x_1) b c ≤ b_1 [PROOFSTEP] simp at h₂ [GOAL] case some.some.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b✝ : α inst✝ : SemilatticeSup α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot b c d : α h₁' : b ≤ d h₁ : Option.some b ≤ Option.some d h₂ : c ≤ d ⊢ ∃ b_1, b_1 ∈ Option.some d ∧ (fun x x_1 => x ⊔ x_1) b c ≤ b_1 [PROOFSTEP] exact ⟨d, rfl, sup_le h₁' h₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ o₂ : WithBot α a : α ha : a ∈ o₁ ⊓ o₂ ⊢ ∃ b, b ∈ o₁ ∧ a ≤ b [PROOFSTEP] rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a b : α ha : a ⊓ b ∈ Option.some a ⊓ Option.some b ⊢ ∃ b_1, b_1 ∈ Option.some a ∧ a ⊓ b ≤ b_1 [PROOFSTEP] exact ⟨_, rfl, inf_le_left⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ o₂ : WithBot α a : α ha : a ∈ o₁ ⊓ o₂ ⊢ ∃ b, b ∈ o₂ ∧ a ≤ b [PROOFSTEP] rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a b : α ha : a ⊓ b ∈ Option.some a ⊓ Option.some b ⊢ ∃ b_1, b_1 ∈ Option.some b ∧ a ⊓ b ≤ b_1 [PROOFSTEP] exact ⟨_, rfl, inf_le_right⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₁ o₂ o₃ : WithBot α h₁ : o₁ ≤ o₂ h₂ : o₁ ≤ o₃ a : α ha : a ∈ o₁ ⊢ ∃ b, b ∈ o₂ ⊓ o₃ ∧ a ≤ b [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₂ o₃ : WithBot α a : α h₁ : Option.some a ≤ o₂ h₂ : Option.some a ≤ o₃ ⊢ ∃ b, b ∈ o₂ ⊓ o₃ ∧ a ≤ b [PROOFSTEP] rcases h₁ a rfl with ⟨b, ⟨⟩, ab⟩ [GOAL] case refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot o₃ : WithBot α a : α h₂ : Option.some a ≤ o₃ b : α ab : a ≤ b h₁ : Option.some a ≤ Option.some b ⊢ ∃ b_1, b_1 ∈ Option.some b ⊓ o₃ ∧ a ≤ b_1 [PROOFSTEP] rcases h₂ a rfl with ⟨c, ⟨⟩, ac⟩ [GOAL] case refl.intro.intro.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝ : SemilatticeInf α src✝¹ : PartialOrder (WithBot α) := partialOrder src✝ : OrderBot (WithBot α) := orderBot a b : α ab : a ≤ b h₁ : Option.some a ≤ Option.some b c : α ac : a ≤ c h₂ : Option.some a ≤ Option.some c ⊢ ∃ b_1, b_1 ∈ Option.some b ⊓ Option.some c ∧ a ≤ b_1 [PROOFSTEP] exact ⟨_, rfl, le_inf ab ac⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LE α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x y : α h : ¬x ≤ y ⊢ ¬(fun x x_1 => x ≤ x_1) (Option.some x) (Option.some y) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LE α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 x : α h : (fun x x_1 => x ≤ x_1) (Option.some x) none ⊢ False [PROOFSTEP] rcases h x rfl with ⟨y, ⟨_⟩, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LT α inst✝ : DecidableRel fun x x_1 => x < x_1 x : α ⊢ (fun x x_1 => x < x_1) none (Option.some x) [PROOFSTEP] exists x, rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LT α inst✝ : DecidableRel fun x x_1 => x < x_1 x : α ⊢ ∀ (a : α), a ∈ none → a < x [PROOFSTEP] rintro _ ⟨⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LT α inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α h : x < y ⊢ (fun x x_1 => x < x_1) (Option.some x) (Option.some y) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LT α inst✝ : DecidableRel fun x x_1 => x < x_1 x y : α h : ¬x < y ⊢ ¬(fun x x_1 => x < x_1) (Option.some x) (Option.some y) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝¹ : LT α inst✝ : DecidableRel fun x x_1 => x < x_1 x : WithBot α ⊢ ¬(fun x x_1 => x < x_1) x none [PROOFSTEP] rintro ⟨a, ⟨⟨⟩⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LT α h : WellFounded fun x x_1 => x < x_1 not_lt_bot : ∀ (a : WithBot α), ¬a < ⊥ ⊢ ∀ (y : WithBot α), y < ⊥ → Acc (fun x x_1 => x < x_1) y [PROOFSTEP] simp [not_lt_bot] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LE α inst✝¹ : NoTopOrder α inst✝ : Nonempty α ⊢ ∀ (a : WithBot α), ∃ b, ¬b ≤ a [PROOFSTEP] apply recBotCoe [GOAL] case bot α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LE α inst✝¹ : NoTopOrder α inst✝ : Nonempty α ⊢ ∃ b, ¬b ≤ ⊥ [PROOFSTEP] exact ‹Nonempty α›.elim fun a => ⟨a, not_coe_le_bot a⟩ [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LE α inst✝¹ : NoTopOrder α inst✝ : Nonempty α ⊢ ∀ (a : α), ∃ b, ¬b ≤ ↑a [PROOFSTEP] intro a [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝² : LE α inst✝¹ : NoTopOrder α inst✝ : Nonempty α a : α ⊢ ∃ b, ¬b ≤ ↑a [PROOFSTEP] obtain ⟨b, h⟩ := exists_not_le a [GOAL] case coe.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝² : LE α inst✝¹ : NoTopOrder α inst✝ : Nonempty α a b : α h : ¬b ≤ a ⊢ ∃ b, ¬b ≤ ↑a [PROOFSTEP] exact ⟨b, by rwa [coe_le_coe]⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝² : LE α inst✝¹ : NoTopOrder α inst✝ : Nonempty α a b : α h : ¬b ≤ a ⊢ ¬↑b ≤ ↑a [PROOFSTEP] rwa [coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LT α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α ⊢ ∀ (a : WithBot α), ∃ b, a < b [PROOFSTEP] apply WithBot.recBotCoe [GOAL] case bot α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LT α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α ⊢ ∃ b, ⊥ < b [PROOFSTEP] apply ‹Nonempty α›.elim [GOAL] case bot α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LT α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α ⊢ α → ∃ b, ⊥ < b [PROOFSTEP] exact fun a => ⟨a, WithBot.bot_lt_coe a⟩ [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝² : LT α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α ⊢ ∀ (a : α), ∃ b, ↑a < b [PROOFSTEP] intro a [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝² : LT α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α a : α ⊢ ∃ b, ↑a < b [PROOFSTEP] obtain ⟨b, ha⟩ := exists_gt a [GOAL] case coe.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b✝ : α inst✝² : LT α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α a b : α ha : a < b ⊢ ∃ b, ↑a < b [PROOFSTEP] exact ⟨b, coe_lt_coe.mpr ha⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α ⊢ ↑a ≤ ↑b ↔ a ≤ b [PROOFSTEP] simp only [← toDual_le_toDual_iff, toDual_apply_coe, WithBot.coe_le_coe, toDual_le_toDual] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝¹ : LE α inst✝ : OrderBot α o : WithTop α a : α ha : a ∈ o ⊢ ∃ b, b ∈ ⊥ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a✝ b : α inst✝¹ : LE α inst✝ : OrderBot α a : α ⊢ ∃ b, b ∈ ⊥ ∧ b ≤ a [PROOFSTEP] exact ⟨_, rfl, bot_le⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α h : IsMin a ⊢ IsMin ↑a [PROOFSTEP] intro _ hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α h : IsMin a b✝ : WithTop α hb : b✝ ≤ ↑a ⊢ ↑a ≤ b✝ [PROOFSTEP] rw [← toDual_le_toDual_iff] at hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 a b : α inst✝ : LE α h : IsMin a b✝ : WithTop α hb : ↑WithTop.toDual ↑a ≤ ↑WithTop.toDual b✝ ⊢ ↑a ≤ b✝ [PROOFSTEP] simpa [toDual_le_iff] using (IsMax.withBot h : IsMax (toDual a : WithBot αᵒᵈ)) hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a b : α ⊢ ↑a < ↑b ↔ a < b [PROOFSTEP] simp only [← toDual_lt_toDual_iff, toDual_apply_coe, WithBot.coe_lt_coe, toDual_lt_toDual] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a✝ b a : α ⊢ ↑a < ⊤ [PROOFSTEP] simp [← toDual_lt_toDual_iff, WithBot.bot_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a✝ b : α a : WithTop α ⊢ ¬none < a [PROOFSTEP] rw [← toDual_lt_toDual_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a✝ b : α a : WithTop α ⊢ ¬↑WithTop.toDual a < ↑WithTop.toDual none [PROOFSTEP] exact WithBot.not_lt_none _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a✝ b✝ : α a b : WithTop α ⊢ a < b ↔ ∃ p, a = ↑p ∧ ↑p < b [PROOFSTEP] rw [← toDual_lt_toDual_iff, WithBot.lt_iff_exists_coe, OrderDual.exists] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a✝ b✝ : α a b : WithTop α ⊢ (∃ a_1, ↑WithTop.toDual a = ↑(↑toDual a_1) ∧ ↑WithTop.toDual b < ↑(↑toDual a_1)) ↔ ∃ p, a = ↑p ∧ ↑p < b [PROOFSTEP] exact exists_congr fun _ => and_congr_left' Iff.rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α a b : α x : WithTop α ⊢ ↑a < x ↔ ∀ (b : WithTop α), x = b → ↑a < b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Preorder α x✝² x✝¹ x✝ : WithTop α ⊢ x✝² ≤ x✝¹ → x✝¹ ≤ x✝ → x✝² ≤ x✝ [PROOFSTEP] simp_rw [← toDual_le_toDual_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Preorder α x✝² x✝¹ x✝ : WithTop α ⊢ ↑WithTop.toDual x✝¹ ≤ ↑WithTop.toDual x✝² → ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝¹ → ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝² [PROOFSTEP] exact Function.swap le_trans [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Preorder α ⊢ ∀ (a b : WithTop α), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] simp [← toDual_lt_toDual_iff, lt_iff_le_not_le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : PartialOrder α src✝ : Preorder (WithTop α) := preorder x✝¹ x✝ : WithTop α ⊢ x✝¹ ≤ x✝ → x✝ ≤ x✝¹ → x✝¹ = x✝ [PROOFSTEP] simp_rw [← toDual_le_toDual_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : PartialOrder α src✝ : Preorder (WithTop α) := preorder x✝¹ x✝ : WithTop α ⊢ ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝¹ → ↑WithTop.toDual x✝¹ ≤ ↑WithTop.toDual x✝ → x✝¹ = x✝ [PROOFSTEP] exact Function.swap le_antisymm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β f : α → β ⊢ ((Monotone fun a => map f ↑a) ∧ ∀ (x : α), map f ↑x ≤ map f ⊤) ↔ Monotone f [PROOFSTEP] simp [Monotone] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β f : α → β ⊢ ((StrictMono fun a => map f ↑a) ∧ ∀ (x : α), map f ↑x < map f ⊤) ↔ StrictMono f [PROOFSTEP] simp [StrictMono, coe_lt_top] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β f : α → β a b : WithTop α mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b ⊢ map f a ≤ map f b ↔ a ≤ b [PROOFSTEP] erw [← toDual_le_toDual_iff, toDual_map, toDual_map, WithBot.map_le_iff, toDual_le_toDual_iff] [GOAL] case mono_iff α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β f : α → β a b : WithTop α mono_iff : ∀ {a b : α}, f a ≤ f b ↔ a ≤ b ⊢ ∀ {a b : αᵒᵈ}, (↑OrderDual.toDual ∘ f ∘ ↑OrderDual.ofDual) a ≤ (↑OrderDual.toDual ∘ f ∘ ↑OrderDual.ofDual) b ↔ a ≤ b [PROOFSTEP] simp [mono_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ : WithTop α a : α ha : a ∈ o₁ ⊢ ∃ b, b ∈ o₁ ⊓ o₂ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₂ : WithTop α a : α ⊢ ∃ b, b ∈ Option.some a ⊓ o₂ ∧ b ≤ a [PROOFSTEP] cases o₂ [GOAL] case refl.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder a : α ⊢ ∃ b, b ∈ Option.some a ⊓ none ∧ b ≤ a [PROOFSTEP] simp [Option.liftOrGet] [GOAL] case refl.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder a val✝ : α ⊢ ∃ b, b ∈ Option.some a ⊓ Option.some val✝ ∧ b ≤ a [PROOFSTEP] simp [Option.liftOrGet] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ : WithTop α a : α ha : a ∈ o₂ ⊢ ∃ b, b ∈ o₁ ⊓ o₂ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a : α ⊢ ∃ b, b ∈ o₁ ⊓ Option.some a ∧ b ≤ a [PROOFSTEP] cases o₁ [GOAL] case refl.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder a : α ⊢ ∃ b, b ∈ none ⊓ Option.some a ∧ b ≤ a [PROOFSTEP] simp [Option.liftOrGet] [GOAL] case refl.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder a val✝ : α ⊢ ∃ b, b ∈ Option.some val✝ ⊓ Option.some a ∧ b ≤ a [PROOFSTEP] simp [Option.liftOrGet] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ o₃ : WithTop α h₁ : o₁ ≤ o₂ h₂ : o₁ ≤ o₃ a : α ha : a ∈ o₂ ⊓ o₃ ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases' o₂ with b [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₃ : WithTop α h₂ : o₁ ≤ o₃ a : α h₁ : o₁ ≤ none ha : a ∈ none ⊓ o₃ ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases' o₃ with c [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₃ : WithTop α h₂ : o₁ ≤ o₃ a b : α h₁ : o₁ ≤ Option.some b ha : a ∈ Option.some b ⊓ o₃ ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases' o₃ with c [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a : α h₁ h₂ : o₁ ≤ none ha : a ∈ none ⊓ none ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a : α h₁ : o₁ ≤ none c : α h₂ : o₁ ≤ Option.some c ha : a ∈ none ⊓ Option.some c ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a b : α h₁ : o₁ ≤ Option.some b h₂ : o₁ ≤ none ha : a ∈ Option.some b ⊓ none ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a b : α h₁ : o₁ ≤ Option.some b c : α h₂ : o₁ ≤ Option.some c ha : a ∈ Option.some b ⊓ Option.some c ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case none.some.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a : α h₁ : o₁ ≤ none h₂ : o₁ ≤ Option.some a ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] exact h₂ a rfl [GOAL] case some.none.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α a : α h₂ : o₁ ≤ none h₁ : o₁ ≤ Option.some a ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] exact h₁ a rfl [GOAL] case some.some.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder o₁ : WithTop α b : α h₁ : o₁ ≤ Option.some b c : α h₂ : o₁ ≤ Option.some c ⊢ ∃ b_1, b_1 ∈ o₁ ∧ b_1 ≤ (fun x x_1 => x ⊓ x_1) b c [PROOFSTEP] rcases h₁ b rfl with ⟨d, ⟨⟩, h₁'⟩ [GOAL] case some.some.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder b c d : α h₁' : d ≤ b h₁ : Option.some d ≤ Option.some b h₂ : Option.some d ≤ Option.some c ⊢ ∃ b_1, b_1 ∈ Option.some d ∧ b_1 ≤ (fun x x_1 => x ⊓ x_1) b c [PROOFSTEP] simp at h₂ [GOAL] case some.some.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeInf α src✝ : PartialOrder (WithTop α) := partialOrder b c d : α h₁' : d ≤ b h₁ : Option.some d ≤ Option.some b h₂ : d ≤ c ⊢ ∃ b_1, b_1 ∈ Option.some d ∧ b_1 ≤ (fun x x_1 => x ⊓ x_1) b c [PROOFSTEP] exact ⟨d, rfl, le_inf h₁' h₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ : WithTop α a : α ha : a ∈ o₁ ⊔ o₂ ⊢ ∃ b, b ∈ o₁ ∧ b ≤ a [PROOFSTEP] rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder a b : α ha : a ⊔ b ∈ Option.some a ⊔ Option.some b ⊢ ∃ b_1, b_1 ∈ Option.some a ∧ b_1 ≤ a ⊔ b [PROOFSTEP] exact ⟨_, rfl, le_sup_left⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ : WithTop α a : α ha : a ∈ o₁ ⊔ o₂ ⊢ ∃ b, b ∈ o₂ ∧ b ≤ a [PROOFSTEP] rcases Option.mem_map₂_iff.1 ha with ⟨a, b, (rfl : _ = _), (rfl : _ = _), rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder a b : α ha : a ⊔ b ∈ Option.some a ⊔ Option.some b ⊢ ∃ b_1, b_1 ∈ Option.some b ∧ b_1 ≤ a ⊔ b [PROOFSTEP] exact ⟨_, rfl, le_sup_right⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ o₃ : WithTop α h₁ : o₁ ≤ o₃ h₂ : o₂ ≤ o₃ a : α ha : a ∈ o₃ ⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ b ≤ a [PROOFSTEP] cases ha [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder o₁ o₂ : WithTop α a : α h₁ : o₁ ≤ Option.some a h₂ : o₂ ≤ Option.some a ⊢ ∃ b, b ∈ o₁ ⊔ o₂ ∧ b ≤ a [PROOFSTEP] rcases h₁ a rfl with ⟨b, ⟨⟩, ab⟩ [GOAL] case refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder o₂ : WithTop α a : α h₂ : o₂ ≤ Option.some a b : α ab : b ≤ a h₁ : Option.some b ≤ Option.some a ⊢ ∃ b_1, b_1 ∈ Option.some b ⊔ o₂ ∧ b_1 ≤ a [PROOFSTEP] rcases h₂ a rfl with ⟨c, ⟨⟩, ac⟩ [GOAL] case refl.intro.intro.refl.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : SemilatticeSup α src✝ : PartialOrder (WithTop α) := partialOrder a b : α ab : b ≤ a h₁ : Option.some b ≤ Option.some a c : α ac : c ≤ a h₂ : Option.some c ≤ Option.some a ⊢ ∃ b_1, b_1 ∈ Option.some b ⊔ Option.some c ∧ b_1 ≤ a [PROOFSTEP] exact ⟨_, rfl, sup_le ab ac⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : LE α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x✝¹ x✝ : WithTop α ⊢ x✝¹ ≤ x✝ ∨ x✝ ≤ x✝¹ [PROOFSTEP] simp_rw [← toDual_le_toDual_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : LE α inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x✝¹ x✝ : WithTop α ⊢ ↑WithTop.toDual x✝ ≤ ↑WithTop.toDual x✝¹ ∨ ↑WithTop.toDual x✝¹ ≤ ↑WithTop.toDual x✝ [PROOFSTEP] exact total_of _ _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] have : Acc (· < ·) (WithTop.toDual a) := WellFounded.apply (WithBot.wellFounded_lt (by convert h using 1)) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] convert h using 1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α this : Acc (fun x x_1 => x < x_1) (↑WithTop.toDual a) ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] revert this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α ⊢ Acc (fun x x_1 => x < x_1) (↑WithTop.toDual a) → Acc (fun x x_1 => x > x_1) a [PROOFSTEP] generalize ha : WithBot.toDual a = b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a = b ⊢ Acc (fun x x_1 => x < x_1) b → Acc (fun x x_1 => x > x_1) a [PROOFSTEP] intro ac [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a = b ac : Acc (fun x x_1 => x < x_1) b ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] dsimp at ac [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithTop α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a = b ac : Acc (fun x x_1 => x < x_1) b ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] induction' ac with _ H IH generalizing a [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a✝ : WithTop α b : WithTop αᵒᵈ ha✝ : ↑WithBot.toDual a✝ = b x✝ : WithTop αᵒᵈ H : ∀ (y : WithTop αᵒᵈ), y < x✝ → Acc (fun x x_1 => x < x_1) y IH : ∀ (y : WithTop αᵒᵈ), y < x✝ → ∀ (a : WithTop α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a a : WithTop α ha : ↑WithBot.toDual a = x✝ ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] subst ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a✝ : WithTop α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a✝ = b a : WithTop α H : ∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → Acc (fun x x_1 => x < x_1) y IH : ∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → ∀ (a : WithTop α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] exact ⟨_, fun a' h => IH (WithTop.toDual a') (toDual_lt_toDual.mpr h) _ rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] have : Acc (· < ·) (WithBot.toDual a) := WellFounded.apply (WithTop.wellFounded_lt (by convert h using 1)) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] convert h using 1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α this : Acc (fun x x_1 => x < x_1) (↑WithBot.toDual a) ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] revert this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α ⊢ Acc (fun x x_1 => x < x_1) (↑WithBot.toDual a) → Acc (fun x x_1 => x > x_1) a [PROOFSTEP] generalize ha : WithBot.toDual a = b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a = b ⊢ Acc (fun x x_1 => x < x_1) b → Acc (fun x x_1 => x > x_1) a [PROOFSTEP] intro ac [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a = b ac : Acc (fun x x_1 => x < x_1) b ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] dsimp at ac [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a : WithBot α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a = b ac : Acc (fun x x_1 => x < x_1) b ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] induction' ac with _ H IH generalizing a [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a✝ : WithBot α b : WithTop αᵒᵈ ha✝ : ↑WithBot.toDual a✝ = b x✝ : WithTop αᵒᵈ H : ∀ (y : WithTop αᵒᵈ), y < x✝ → Acc (fun x x_1 => x < x_1) y IH : ∀ (y : WithTop αᵒᵈ), y < x✝ → ∀ (a : WithBot α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a a : WithBot α ha : ↑WithBot.toDual a = x✝ ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] subst ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : LT α h : WellFounded fun x x_1 => x > x_1 a✝ : WithBot α b : WithTop αᵒᵈ ha : ↑WithBot.toDual a✝ = b a : WithBot α H : ∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → Acc (fun x x_1 => x < x_1) y IH : ∀ (y : WithTop αᵒᵈ), y < ↑WithBot.toDual a → ∀ (a : WithBot α), ↑WithBot.toDual a = y → Acc (fun x x_1 => x > x_1) a ⊢ Acc (fun x x_1 => x > x_1) a [PROOFSTEP] exact ⟨_, fun a' h => IH (WithBot.toDual a') (toDual_lt_toDual.mpr h) _ rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x < x_1 ⊢ ∀ (a b : WithTop α), a < b ∨ a = b ∨ b < a [PROOFSTEP] rintro (a | a) (b | b) [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x < x_1 ⊢ none < none ∨ none = none ∨ none < none [PROOFSTEP] simp [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x < x_1 b : α ⊢ none < Option.some b ∨ none = Option.some b ∨ Option.some b < none [PROOFSTEP] simp [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x < x_1 a : α ⊢ Option.some a < none ∨ Option.some a = none ∨ none < Option.some a [PROOFSTEP] simp [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x < x_1 a b : α ⊢ Option.some a < Option.some b ∨ Option.some a = Option.some b ∨ Option.some b < Option.some a [PROOFSTEP] simpa [some_eq_coe, IsTrichotomous, coe_eq_coe] using @trichotomous α (· < ·) _ a b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x > x_1 ⊢ ∀ (a b : WithTop α), a > b ∨ a = b ∨ b > a [PROOFSTEP] rintro (a | a) (b | b) [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x > x_1 ⊢ none > none ∨ none = none ∨ none > none [PROOFSTEP] simp [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x > x_1 b : α ⊢ none > Option.some b ∨ none = Option.some b ∨ Option.some b > none [PROOFSTEP] simp [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x > x_1 a : α ⊢ Option.some a > none ∨ Option.some a = none ∨ none > Option.some a [PROOFSTEP] simp [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Preorder α inst✝ : IsTrichotomous α fun x x_1 => x > x_1 a b : α ⊢ Option.some a > Option.some b ∨ Option.some a = Option.some b ∨ Option.some b > Option.some a [PROOFSTEP] simpa [some_eq_coe, IsTrichotomous, coe_eq_coe] using @trichotomous α (· > ·) _ a b
{"mathlib_filename": "Mathlib.Order.WithBot", "llama_tokens": 24425}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β g : β → α h : IsOrderRightAdjoint f g e : β ≃o γ y : γ ⊢ IsLUB {x | (↑e ∘ f) x ≤ y} ((g ∘ ↑(OrderIso.symm e)) y) [PROOFSTEP] simpa [e.le_symm_apply] using h (e.symm y) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β g : β → α h : IsOrderRightAdjoint f g e : γ ≃o α ⊢ IsOrderRightAdjoint (f ∘ ↑e) (↑(OrderIso.symm e) ∘ g) [PROOFSTEP] intro y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β g : β → α h : IsOrderRightAdjoint f g e : γ ≃o α y : β ⊢ IsLUB {x | (f ∘ ↑e) x ≤ y} ((↑(OrderIso.symm e) ∘ g) y) [PROOFSTEP] change IsLUB (e ⁻¹' {x | f x ≤ y}) (e.symm (g y)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β g : β → α h : IsOrderRightAdjoint f g e : γ ≃o α y : β ⊢ IsLUB (↑e ⁻¹' {x | f x ≤ y}) (↑(OrderIso.symm e) (g y)) [PROOFSTEP] rw [e.isLUB_preimage, e.apply_symm_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β g : β → α h : IsOrderRightAdjoint f g e : γ ≃o α y : β ⊢ IsLUB {x | f x ≤ y} (g y) [PROOFSTEP] exact h y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder α inst✝ : Preorder β fa : α ≃o α fb : β ↪o β g : α → β h : Semiconj g ↑fa ↑fb g' : β → α hg' : IsOrderRightAdjoint g g' ⊢ Semiconj g' ↑fb ↑fa [PROOFSTEP] refine' fun y => (hg' _).unique _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder α inst✝ : Preorder β fa : α ≃o α fb : β ↪o β g : α → β h : Semiconj g ↑fa ↑fb g' : β → α hg' : IsOrderRightAdjoint g g' y : β ⊢ IsLUB {x | g x ≤ ↑fb y} (↑fa (g' y)) [PROOFSTEP] rw [← fa.surjective.image_preimage {x | g x ≤ fb y}, preimage_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder α inst✝ : Preorder β fa : α ≃o α fb : β ↪o β g : α → β h : Semiconj g ↑fa ↑fb g' : β → α hg' : IsOrderRightAdjoint g g' y : β ⊢ IsLUB (↑fa '' {a | g (↑fa a) ≤ ↑fb y}) (↑fa (g' y)) [PROOFSTEP] simp only [h.eq, fb.le_iff_le, fa.leftOrdContinuous (hg' _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 G : Type u_4 inst✝¹ : PartialOrder α inst✝ : Group G f₁ f₂ : G →* α ≃o α h : α → α H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x) g : G ⊢ Semiconj h ↑(↑f₂ g) ↑(↑f₁ g) [PROOFSTEP] refine' fun y => (H _).unique _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 G : Type u_4 inst✝¹ : PartialOrder α inst✝ : Group G f₁ f₂ : G →* α ≃o α h : α → α H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x) g : G y : α ⊢ IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') (↑(↑f₂ g) y))) (↑(↑f₁ g) (h y)) [PROOFSTEP] have := (f₁ g).leftOrdContinuous (H y) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 G : Type u_4 inst✝¹ : PartialOrder α inst✝ : Group G f₁ f₂ : G →* α ≃o α h : α → α H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x) g : G y : α this : IsLUB (↑(↑f₁ g) '' range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') y)) (↑(↑f₁ g) (h y)) ⊢ IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') (↑(↑f₂ g) y))) (↑(↑f₁ g) (h y)) [PROOFSTEP] rw [← range_comp, ← (Equiv.mulRight g).surjective.range_comp _] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 G : Type u_4 inst✝¹ : PartialOrder α inst✝ : Group G f₁ f₂ : G →* α ≃o α h : α → α H : ∀ (x : α), IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') x)) (h x) g : G y : α this : IsLUB (range ((↑(↑f₁ g) ∘ fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') y)) ∘ ↑(Equiv.mulRight g))) (↑(↑f₁ g) (h y)) ⊢ IsLUB (range fun g' => ↑(↑f₁ g')⁻¹ (↑(↑f₂ g') (↑(↑f₂ g) y))) (↑(↑f₁ g) (h y)) [PROOFSTEP] simpa [(· ∘ ·)] using this
{"mathlib_filename": "Mathlib.Order.SemiconjSup", "llama_tokens": 2127}
[GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α ⊢ Unbounded (fun x x_1 => x ≤ x_1) s ↔ ∀ (a : α), ∃ b, b ∈ s ∧ a < b [PROOFSTEP] simp only [Unbounded, not_le] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α ⊢ Unbounded (fun x x_1 => x < x_1) s ↔ ∀ (a : α), ∃ b, b ∈ s ∧ a ≤ b [PROOFSTEP] simp only [Unbounded, not_lt] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMaxOrder α ⊢ Bounded (fun x x_1 => x ≤ x_1) s ↔ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] refine' ⟨fun h => _, bounded_le_of_bounded_lt⟩ [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMaxOrder α h : Bounded (fun x x_1 => x ≤ x_1) s ⊢ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] cases' h with a ha [GOAL] case intro α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMaxOrder α a : α ha : ∀ (b : α), b ∈ s → (fun x x_1 => x ≤ x_1) b a ⊢ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] cases' exists_gt a with b hb [GOAL] case intro.intro α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMaxOrder α a : α ha : ∀ (b : α), b ∈ s → (fun x x_1 => x ≤ x_1) b a b : α hb : a < b ⊢ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] exact ⟨b, fun c hc => lt_of_le_of_lt (ha c hc) hb⟩ [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMaxOrder α ⊢ Unbounded (fun x x_1 => x < x_1) s ↔ Unbounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMaxOrder α a : α ⊢ Bounded (fun x x_1 => x < x_1) (Iic a) [PROOFSTEP] simp only [← bounded_le_iff_bounded_lt, bounded_le_Iic] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : Preorder α inst✝ : NoMinOrder α a : α ⊢ Bounded (fun x x_1 => x > x_1) (Ici a) [PROOFSTEP] simp only [← bounded_ge_iff_bounded_gt, bounded_ge_Ici] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m a : α ⊢ Bounded r (s ∩ {b | ¬r b a}) ↔ Bounded r s [PROOFSTEP] refine' ⟨_, Bounded.mono (Set.inter_subset_left s _)⟩ [GOAL] α : Type u_1 r : α → α → Prop s t : Set α H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m a : α ⊢ Bounded r (s ∩ {b | ¬r b a}) → Bounded r s [PROOFSTEP] rintro ⟨b, hb⟩ [GOAL] case intro α : Type u_1 r : α → α → Prop s t : Set α H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m a b : α hb : ∀ (b_1 : α), b_1 ∈ s ∩ {b | ¬r b a} → r b_1 b ⊢ Bounded r s [PROOFSTEP] cases' H a b with m hm [GOAL] case intro.intro α : Type u_1 r : α → α → Prop s t : Set α H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m a b : α hb : ∀ (b_1 : α), b_1 ∈ s ∩ {b | ¬r b a} → r b_1 b m : α hm : ∀ (c : α), r c a ∨ r c b → r c m ⊢ Bounded r s [PROOFSTEP] exact ⟨m, fun c hc => hm c (or_iff_not_imp_left.2 fun hca => hb c ⟨hc, hca⟩)⟩ [GOAL] α : Type u_1 r : α → α → Prop s t : Set α H : ∀ (a b : α), ∃ m, ∀ (c : α), r c a ∨ r c b → r c m a : α ⊢ Unbounded r (s ∩ {b | ¬r b a}) ↔ Unbounded r s [PROOFSTEP] simp_rw [← not_bounded_iff, bounded_inter_not H] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : SemilatticeSup α a : α ⊢ Unbounded (fun x x_1 => x ≤ x_1) (s ∩ {b | ¬b ≤ a}) ↔ Unbounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : SemilatticeSup α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | ¬b ≤ a}) ↔ Bounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] exact bounded_le_inter_not_le a [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] simp_rw [← not_le, bounded_le_inter_not_le] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Unbounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) ↔ Unbounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] convert @unbounded_le_inter_not_le _ s _ a [GOAL] case h.e'_1.h.e'_3.h.e'_4.h.e'_2.h.a α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a x✝ : α ⊢ a < x✝ ↔ ¬x✝ ≤ a [PROOFSTEP] exact lt_iff_not_le [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] refine' ⟨_, Bounded.mono (Set.inter_subset_left s _)⟩ [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) → Bounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] rw [← @bounded_le_inter_lt _ s _ a] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) → Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) [PROOFSTEP] exact Bounded.mono fun x ⟨hx, hx'⟩ => ⟨hx, le_of_lt hx'⟩ [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Unbounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) ↔ Unbounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a ≤ b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] exact bounded_le_inter_le a [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : SemilatticeSup α a : α ⊢ Unbounded (fun x x_1 => x < x_1) (s ∩ {b | ¬b < a}) ↔ Unbounded (fun x x_1 => x < x_1) s [PROOFSTEP] rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : SemilatticeSup α a : α ⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | ¬b < a}) ↔ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] exact bounded_lt_inter_not_lt a [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | a ≤ b}) ↔ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] convert @bounded_lt_inter_not_lt _ s _ a [GOAL] case h.e'_1.h.e'_3.h.e'_4.h.e'_2.h.a α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a x✝ : α ⊢ a ≤ x✝ ↔ ¬x✝ < a [PROOFSTEP] exact not_lt.symm [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a : α ⊢ Unbounded (fun x x_1 => x < x_1) (s ∩ {b | a ≤ b}) ↔ Unbounded (fun x x_1 => x < x_1) s [PROOFSTEP] convert @unbounded_lt_inter_not_lt _ s _ a [GOAL] case h.e'_1.h.e'_3.h.e'_4.h.e'_2.h.a α : Type u_1 r : α → α → Prop s t : Set α inst✝ : LinearOrder α a x✝ : α ⊢ a ≤ x✝ ↔ ¬x✝ < a [PROOFSTEP] exact not_lt.symm [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : LinearOrder α inst✝ : NoMaxOrder α a : α ⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] rw [← bounded_le_iff_bounded_lt, ← bounded_le_iff_bounded_lt] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : LinearOrder α inst✝ : NoMaxOrder α a : α ⊢ Bounded (fun x x_1 => x ≤ x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x ≤ x_1) s [PROOFSTEP] exact bounded_le_inter_lt a [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : LinearOrder α inst✝ : NoMaxOrder α a : α ⊢ Unbounded (fun x x_1 => x < x_1) (s ∩ {b | a < b}) ↔ Unbounded (fun x x_1 => x < x_1) s [PROOFSTEP] rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not] [GOAL] α : Type u_1 r : α → α → Prop s t : Set α inst✝¹ : LinearOrder α inst✝ : NoMaxOrder α a : α ⊢ Bounded (fun x x_1 => x < x_1) (s ∩ {b | a < b}) ↔ Bounded (fun x x_1 => x < x_1) s [PROOFSTEP] exact bounded_lt_inter_lt a
{"mathlib_filename": "Mathlib.Order.Bounded", "llama_tokens": 3948}
[GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b✝ b₁ b₂ : β inst✝¹ : Preorder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u s : Set α b : β ⊢ b ∈ upperBounds (l '' s) ↔ b ∈ u ⁻¹' upperBounds s [PROOFSTEP] simp [upperBounds, gc _ _] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u s : Set α x✝ : BddAbove (l '' s) x : β hx : x ∈ upperBounds (l '' s) ⊢ u x ∈ upperBounds s [PROOFSTEP] rwa [gc.upperBounds_l_image] at hx [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β inst✝¹ : Preorder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u s : Set α a : α h : IsLUB s a b : β hb : b ∈ upperBounds (l '' s) ⊢ u b ∈ upperBounds s [PROOFSTEP] rwa [gc.upperBounds_l_image] at hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β ⊢ u y = z ↔ ∀ (x : α), x ≤ z ↔ l x ≤ y [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β ⊢ u y = z → ∀ (x : α), x ≤ z ↔ l x ≤ y [PROOFSTEP] rintro rfl x [GOAL] case mp α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u y : β x : α ⊢ x ≤ u y ↔ l x ≤ y [PROOFSTEP] exact (gc x y).symm [GOAL] case mpr α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β ⊢ (∀ (x : α), x ≤ z ↔ l x ≤ y) → u y = z [PROOFSTEP] intro H [GOAL] case mpr α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : PartialOrder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u z : α y : β H : ∀ (x : α), x ≤ z ↔ l x ≤ y ⊢ u y = z [PROOFSTEP] exact ((H <| u y).mpr (gc.l_u_le y)).antisymm ((gc _ _).mp <| (H z).mp le_rfl) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : PartialOrder β l : α → β u : β → α gc : GaloisConnection l u x : α z : β ⊢ l x = z ↔ ∀ (y : β), z ≤ y ↔ x ≤ u y [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : PartialOrder β l : α → β u : β → α gc : GaloisConnection l u x : α z : β ⊢ l x = z → ∀ (y : β), z ≤ y ↔ x ≤ u y [PROOFSTEP] rintro rfl y [GOAL] case mp α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : PartialOrder β l : α → β u : β → α gc : GaloisConnection l u x : α y : β ⊢ l x ≤ y ↔ x ≤ u y [PROOFSTEP] exact gc x y [GOAL] case mpr α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : PartialOrder β l : α → β u : β → α gc : GaloisConnection l u x : α z : β ⊢ (∀ (y : β), z ≤ y ↔ x ≤ u y) → l x = z [PROOFSTEP] intro H [GOAL] case mpr α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : PartialOrder β l : α → β u : β → α gc : GaloisConnection l u x : α z : β H : ∀ (y : β), z ≤ y ↔ x ≤ u y ⊢ l x = z [PROOFSTEP] exact ((gc _ _).mpr <| (H z).mp le_rfl).antisymm ((H <| l x).mpr (gc.le_u_l x)) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β l : α → β u : β → α gc : GaloisConnection l u ⊢ IsLUB (l '' {a₁, a₂}) (l a₁ ⊔ l a₂) [PROOFSTEP] simp only [image_pair, isLUB_pair] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β l : α → β u : β → α gc : GaloisConnection l u f : ι → α ⊢ IsLUB (range (l ∘ f)) (l (iSup f)) [PROOFSTEP] rw [range_comp, ← sSup_range] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β l : α → β u : β → α gc : GaloisConnection l u f : ι → α ⊢ IsLUB (l '' range f) (l (sSup (range f))) [PROOFSTEP] exact gc.isLUB_l_image (isLUB_sSup _) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β l : α → β u : β → α gc : GaloisConnection l u f : (i : ι) → κ i → α ⊢ l (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), l (f i j) [PROOFSTEP] simp_rw [gc.l_iSup] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β l : α → β u : β → α gc : GaloisConnection l u s : Set α ⊢ l (sSup s) = ⨆ (a : α) (_ : a ∈ s), l a [PROOFSTEP] simp only [sSup_eq_iSup, gc.l_iSup] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ l1 : α → β u1 : β → α l2 : β → γ u2 : γ → β gc1 : GaloisConnection l1 u1 gc2 : GaloisConnection l2 u2 ⊢ GaloisConnection (l2 ∘ l1) (u1 ∘ u2) [PROOFSTEP] intro a b [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ l1 : α → β u1 : β → α l2 : β → γ u2 : γ → β gc1 : GaloisConnection l1 u1 gc2 : GaloisConnection l2 u2 a : α b : γ ⊢ (l2 ∘ l1) a ≤ b ↔ a ≤ (u1 ∘ u2) b [PROOFSTEP] dsimp [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ l1 : α → β u1 : β → α l2 : β → γ u2 : γ → β gc1 : GaloisConnection l1 u1 gc2 : GaloisConnection l2 u2 a : α b : γ ⊢ l2 (l1 a) ≤ b ↔ a ≤ u1 (u2 b) [PROOFSTEP] rw [gc2, gc1] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β l : α → β u : β → α gc : GaloisConnection l u ⊢ GaloisConnection (compl ∘ u ∘ compl) (compl ∘ l ∘ compl) [PROOFSTEP] intro a b [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β l : α → β u : β → α gc : GaloisConnection l u a : β b : α ⊢ (compl ∘ u ∘ compl) a ≤ b ↔ a ≤ (compl ∘ l ∘ compl) b [PROOFSTEP] dsimp [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β l : α → β u : β → α gc : GaloisConnection l u a : β b : α ⊢ (u aᶜ)ᶜ ≤ b ↔ a ≤ (l bᶜ)ᶜ [PROOFSTEP] rw [le_compl_iff_le_compl, gc, compl_le_iff_compl_le] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : CompleteLattice γ f : α → β → γ s : Set α t : Set β l u : α → β → γ l₁ u₁ : β → γ → α l₂ u₂ : α → γ → β h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b) h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a) ⊢ sSup (image2 l s t) = l (sSup s) (sSup t) [PROOFSTEP] simp_rw [sSup_image2, ← (h₂ _).l_sSup, ← (h₁ _).l_sSup] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : CompleteLattice γ f : α → β → γ s : Set α t : Set β l u : α → β → γ l₁ u₁ : β → γ → α l₂ u₂ : α → γ → β h₁ : ∀ (b : β), GaloisConnection (l₁ b) (swap u b) h₂ : ∀ (a : α), GaloisConnection (l₂ a) (u a) ⊢ sInf (image2 u s t) = u (sInf s) (sInf t) [PROOFSTEP] simp_rw [sInf_image2, ← (h₂ _).u_sInf, ← (h₁ _).u_sInf] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β s : Set β ⊢ BddAbove (↑e ⁻¹' s) ↔ BddAbove s [PROOFSTEP] rw [← e.bddAbove_image, e.image_preimage] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β s : Set β ⊢ BddBelow (↑e ⁻¹' s) ↔ BddBelow s [PROOFSTEP] rw [← e.bddBelow_image, e.image_preimage] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β gi : GaloisInsertion l u a b : β ⊢ l (u a) ⊔ l (u b) = a ⊔ b [PROOFSTEP] simp only [gi.l_u_eq] [GOAL] α : Type u β : Type v γ : Type w ι✝ : Sort x κ : ι✝ → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u ι : Sort x p : ι → Prop f : (i : ι) → p i → β ⊢ l (⨆ (i : ι) (hi : p i), u (f i hi)) = ⨆ (i : ι) (hi : p i), f i hi [PROOFSTEP] simp only [iSup_subtype', gi.l_iSup_u] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u s : Set β ⊢ l (sSup (u '' s)) = sSup s [PROOFSTEP] rw [sSup_image, gi.l_biSup_u, sSup_eq_iSup] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf β gi : GaloisInsertion l u a b : β ⊢ l (u (a ⊓ b)) = a ⊓ b [PROOFSTEP] simp only [gi.l_u_eq] [GOAL] α : Type u β : Type v γ : Type w ι✝ : Sort x κ : ι✝ → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u ι : Sort x p : ι → Prop f : (i : ι) → p i → β ⊢ l (⨅ (i : ι) (hi : p i), u (f i hi)) = ⨅ (i : ι) (hi : p i), f i hi [PROOFSTEP] simp only [iInf_subtype', gi.l_iInf_u] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u s : Set β ⊢ l (sInf (u '' s)) = sInf s [PROOFSTEP] rw [sInf_image, gi.l_biInf_u, sInf_eq_iInf] [GOAL] α : Type u β : Type v γ : Type w ι✝ : Sort x κ : ι✝ → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u ι : Sort x f : ι → α hf : ∀ (i : ι), u (l (f i)) = f i ⊢ l (⨅ (i : ι), f i) = l (⨅ (i : ι), u (l (f i))) [PROOFSTEP] simp [hf] [GOAL] α : Type u β : Type v γ : Type w ι✝ : Sort x κ : ι✝ → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u ι : Sort x p : ι → Prop f : (i : ι) → p i → α hf : ∀ (i : ι) (hi : p i), u (l (f i hi)) = f i hi ⊢ l (⨅ (i : ι) (hi : p i), f i hi) = ⨅ (i : ι) (hi : p i), l (f i hi) [PROOFSTEP] rw [iInf_subtype', iInf_subtype'] [GOAL] α : Type u β : Type v γ : Type w ι✝ : Sort x κ : ι✝ → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β gi : GaloisInsertion l u ι : Sort x p : ι → Prop f : (i : ι) → p i → α hf : ∀ (i : ι) (hi : p i), u (l (f i hi)) = f i hi ⊢ l (⨅ (x : { i // p i }), f ↑x (_ : p ↑x)) = ⨅ (x : { i // p i }), l (f ↑x (_ : p ↑x)) [PROOFSTEP] exact gi.l_iInf_of_ul_eq_self _ fun _ => hf _ _ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : SemilatticeInf α gi : GaloisInsertion l u src✝ : PartialOrder β := inst✝¹ ⊢ ∀ (a b : β), a ⊓ b ≤ a [PROOFSTEP] simp only [gi.choice_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : SemilatticeInf α gi : GaloisInsertion l u src✝ : PartialOrder β := inst✝¹ ⊢ ∀ (a b : β), l (u a ⊓ u b) ≤ a [PROOFSTEP] exact fun a b => gi.gc.l_le inf_le_left [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : SemilatticeInf α gi : GaloisInsertion l u src✝ : PartialOrder β := inst✝¹ ⊢ ∀ (a b : β), a ⊓ b ≤ b [PROOFSTEP] simp only [gi.choice_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : SemilatticeInf α gi : GaloisInsertion l u src✝ : PartialOrder β := inst✝¹ ⊢ ∀ (a b : β), l (u a ⊓ u b) ≤ b [PROOFSTEP] exact fun a b => gi.gc.l_le inf_le_right [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : SemilatticeInf α gi : GaloisInsertion l u src✝ : PartialOrder β := inst✝¹ ⊢ ∀ (a b c : β), a ≤ b → a ≤ c → a ≤ b ⊓ c [PROOFSTEP] simp only [gi.choice_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : SemilatticeInf α gi : GaloisInsertion l u src✝ : PartialOrder β := inst✝¹ ⊢ ∀ (a b c : β), a ≤ b → a ≤ c → a ≤ l (u b ⊓ u c) [PROOFSTEP] exact fun a b c hac hbc => (gi.le_l_u a).trans <| gi.gc.monotone_l <| le_inf (gi.gc.monotone_u hac) (gi.gc.monotone_u hbc) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝² : PartialOrder β inst✝¹ : Preorder α inst✝ : OrderTop α gi : GaloisInsertion l u ⊢ ∀ (a : β), a ≤ ⊤ [PROOFSTEP] simp only [gi.choice_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝² : PartialOrder β inst✝¹ : Preorder α inst✝ : OrderTop α gi : GaloisInsertion l u ⊢ ∀ (a : β), a ≤ l ⊤ [PROOFSTEP] exact fun b => (gi.le_l_u b).trans (gi.gc.monotone_l le_top) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : CompleteLattice α gi : GaloisInsertion l u src✝¹ : BoundedOrder β := liftBoundedOrder gi src✝ : Lattice β := liftLattice gi s : Set β ⊢ ∀ (a : β), a ∈ s → sInf s ≤ a [PROOFSTEP] dsimp [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : CompleteLattice α gi : GaloisInsertion l u src✝¹ : BoundedOrder β := liftBoundedOrder gi src✝ : Lattice β := liftLattice gi s : Set β ⊢ ∀ (a : β), a ∈ s → choice gi (sInf (u '' s)) (_ : u (l (sInf (u '' s))) ≤ sInf (u '' s)) ≤ a [PROOFSTEP] rw [gi.choice_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : CompleteLattice α gi : GaloisInsertion l u src✝¹ : BoundedOrder β := liftBoundedOrder gi src✝ : Lattice β := liftLattice gi s : Set β ⊢ ∀ (a : β), a ∈ s → l (sInf (u '' s)) ≤ a [PROOFSTEP] exact (gi.isGLB_of_u_image (isGLB_sInf _)).1 [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : CompleteLattice α gi : GaloisInsertion l u src✝¹ : BoundedOrder β := liftBoundedOrder gi src✝ : Lattice β := liftLattice gi s : Set β ⊢ ∀ (a : β), (∀ (b : β), b ∈ s → a ≤ b) → a ≤ sInf s [PROOFSTEP] dsimp [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : CompleteLattice α gi : GaloisInsertion l u src✝¹ : BoundedOrder β := liftBoundedOrder gi src✝ : Lattice β := liftLattice gi s : Set β ⊢ ∀ (a : β), (∀ (b : β), b ∈ s → a ≤ b) → a ≤ choice gi (sInf (u '' s)) (_ : u (l (sInf (u '' s))) ≤ sInf (u '' s)) [PROOFSTEP] rw [gi.choice_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder β inst✝ : CompleteLattice α gi : GaloisInsertion l u src✝¹ : BoundedOrder β := liftBoundedOrder gi src✝ : Lattice β := liftLattice gi s : Set β ⊢ ∀ (a : β), (∀ (b : β), b ∈ s → a ≤ b) → a ≤ l (sInf (u '' s)) [PROOFSTEP] exact (gi.isGLB_of_u_image (isGLB_sInf _)).2 [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder α inst✝ : SemilatticeInf β gi : GaloisCoinsertion l u src✝ : PartialOrder α := inst✝¹ a b : α ⊢ a ⊓ b ≤ a [PROOFSTEP] exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_left a b [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder α inst✝ : SemilatticeInf β gi : GaloisCoinsertion l u src✝ : PartialOrder α := inst✝¹ a b : α ⊢ a ⊓ b ≤ b [PROOFSTEP] exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_right a b [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder α inst✝ : SemilatticeInf β gi : GaloisCoinsertion l u src✝ : PartialOrder α := inst✝¹ a b c : α ⊢ a ≤ b → a ≤ c → a ≤ b ⊓ c [PROOFSTEP] exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).le_inf a b c [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder α inst✝ : SemilatticeSup β gi : GaloisCoinsertion l u src✝ : PartialOrder α := inst✝¹ a b : α ⊢ a ≤ a ⊔ b [PROOFSTEP] exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_left a b [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder α inst✝ : SemilatticeSup β gi : GaloisCoinsertion l u src✝ : PartialOrder α := inst✝¹ a b : α ⊢ b ≤ a ⊔ b [PROOFSTEP] exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_right a b [GOAL] α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a✝ a₁ a₂ : α b✝ b₁ b₂ : β l : α → β u : β → α inst✝¹ : PartialOrder α inst✝ : SemilatticeSup β gi : GaloisCoinsertion l u src✝ : PartialOrder α := inst✝¹ a b c : α ⊢ a ≤ c → b ≤ c → a ⊔ b ≤ c [PROOFSTEP] exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).sup_le a b c
{"mathlib_filename": "Mathlib.Order.GaloisConnection", "llama_tokens": 9875}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop ⊢ Injective fun f => f.toFun [PROOFSTEP] rintro ⟨f, hf⟩ ⟨g, hg⟩ h [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ↪r s hf : ∀ (a : α) (b : β), s b (↑f a) → ∃ a', ↑f a' = b g : r ↪r s hg : ∀ (a : α) (b : β), s b (↑g a) → ∃ a', ↑g a' = b h : (fun f => f.toFun) { toRelEmbedding := f, init' := hf } = (fun f => f.toFun) { toRelEmbedding := g, init' := hg } ⊢ { toRelEmbedding := f, init' := hf } = { toRelEmbedding := g, init' := hg } [PROOFSTEP] congr with x [GOAL] case mk.mk.e_toRelEmbedding.h α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ↪r s hf : ∀ (a : α) (b : β), s b (↑f a) → ∃ a', ↑f a' = b g : r ↪r s hg : ∀ (a : α) (b : β), s b (↑g a) → ∃ a', ↑g a' = b h : (fun f => f.toFun) { toRelEmbedding := f, init' := hf } = (fun f => f.toFun) { toRelEmbedding := g, init' := hg } x : α ⊢ ↑f x = ↑g x [PROOFSTEP] exact congr_fun h x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s a : α b : β h : s b (↑f a) ⊢ ∃ a', ↑f a' = b ∧ r a' a [PROOFSTEP] rcases f.init h with ⟨a', rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s a a' : α h : s (↑f a') (↑f a) ⊢ ∃ a'_1, ↑f a'_1 = ↑f a' ∧ r a'_1 a [PROOFSTEP] exact ⟨a', rfl, f.map_rel_iff.1 h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s g : s ≼i t a : α c : γ h : t c (↑(RelEmbedding.trans f.toRelEmbedding g.toRelEmbedding) a) ⊢ ∃ a', ↑(RelEmbedding.trans f.toRelEmbedding g.toRelEmbedding) a' = c [PROOFSTEP] simp at h ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s g : s ≼i t a : α c : γ h : t c (↑g (↑f a)) ⊢ ∃ a', ↑g (↑f a') = c [PROOFSTEP] rcases g.2 _ _ h with ⟨b, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s g : s ≼i t a : α b : β h : t (↑g.toRelEmbedding b) (↑g (↑f a)) ⊢ ∃ a', ↑g (↑f a') = ↑g.toRelEmbedding b [PROOFSTEP] have h := g.map_rel_iff.1 h [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s g : s ≼i t a : α b : β h✝ : t (↑g.toRelEmbedding b) (↑g (↑f a)) h : s b (↑f a) ⊢ ∃ a', ↑g (↑f a') = ↑g.toRelEmbedding b [PROOFSTEP] rcases f.2 _ _ h with ⟨a', rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s g : s ≼i t a a' : α h✝ : t (↑g.toRelEmbedding (↑f.toRelEmbedding a')) (↑g (↑f a)) h : s (↑f.toRelEmbedding a') (↑f a) ⊢ ∃ a'_1, ↑g (↑f a'_1) = ↑g.toRelEmbedding (↑f.toRelEmbedding a') [PROOFSTEP] exact ⟨a', rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝² : IsTrichotomous β s inst✝¹ : IsIrrefl β s inst✝ : IsWellFounded α r f g : r ≼i s ⊢ f = g [PROOFSTEP] ext a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝² : IsTrichotomous β s inst✝¹ : IsIrrefl β s inst✝ : IsWellFounded α r f g : r ≼i s a : α ⊢ ↑f a = ↑g a [PROOFSTEP] refine' IsWellFounded.induction r a fun b IH => extensional_of_trichotomous_of_irrefl s fun x => _ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝² : IsTrichotomous β s inst✝¹ : IsIrrefl β s inst✝ : IsWellFounded α r f g : r ≼i s a b : α IH : ∀ (y : α), r y b → ↑f y = ↑g y x : β ⊢ s x (↑f b) ↔ s x (↑g b) [PROOFSTEP] rw [f.init_iff, g.init_iff] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝² : IsTrichotomous β s inst✝¹ : IsIrrefl β s inst✝ : IsWellFounded α r f g : r ≼i s a b : α IH : ∀ (y : α), r y b → ↑f y = ↑g y x : β ⊢ (∃ a', ↑f a' = x ∧ r a' b) ↔ ∃ a', ↑g a' = x ∧ r a' b [PROOFSTEP] exact exists_congr fun x => and_congr_left fun hx => IH _ hx ▸ Iff.rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s a : r ≼i s ⊢ ∀ (b : r ≼i s), a = b [PROOFSTEP] let _ := a.isWellFounded [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s a : r ≼i s x✝ : IsWellFounded α r := RelEmbedding.isWellFounded a.toRelEmbedding ⊢ ∀ (b : r ≼i s), a = b [PROOFSTEP] exact Subsingleton.elim a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≼i s a : α ⊢ ↑f a = ↑g a [PROOFSTEP] rw [Subsingleton.elim f g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ≼i s h : ¬∃ b, ∀ (x : β), s x b ↔ ∃ y, ↑f y = x b x : β x✝¹ : ∀ (y : β), s y x → Acc s y IH : ∀ (y : β), s y x → ∃ a, ↑f a = y hn : ∀ (x_1 : α), ¬↑f x_1 = x y : β x✝ : ∃ y_1, ↑f y_1 = y a : α e : ↑f a = y ⊢ s y x [PROOFSTEP] rw [← e] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ≼i s h : ¬∃ b, ∀ (x : β), s x b ↔ ∃ y, ↑f y = x b x : β x✝¹ : ∀ (y : β), s y x → Acc s y IH : ∀ (y : β), s y x → ∃ a, ↑f a = y hn : ∀ (x_1 : α), ¬↑f x_1 = x y : β x✝ : ∃ y_1, ↑f y_1 = y a : α e : ↑f a = y ⊢ s (↑f a) x [PROOFSTEP] exact (trichotomous _ _).resolve_right (not_or_of_not (hn a) fun hl => not_exists.2 hn (f.init hl)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop p : Set β f : r ≼i s H : ∀ (a : α), ↑f a ∈ p a : α x✝ : ↑p b : β m : b ∈ p h : Subrel s p { val := b, property := m } (↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a) a' : α e : ↑f a' = ↑{ val := b, property := m } ⊢ ↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a' = { val := b, property := m } [PROOFSTEP] subst e [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop p : Set β f : r ≼i s H : ∀ (a : α), ↑f a ∈ p a : α x✝ : ↑p a' : α m : ↑f a' ∈ p h : Subrel s p { val := ↑f a', property := m } (↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a) ⊢ ↑(RelEmbedding.codRestrict p f.toRelEmbedding H) a' = { val := ↑f a', property := m } [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop r : α → α → Prop s : β → β → Prop a : α b : α ⊕ β ⊢ Sum.Lex r s b (↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a) → ∃ a', ↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a' = b [PROOFSTEP] cases b <;> [exact fun _ => ⟨_, rfl⟩; exact False.elim ∘ Sum.lex_inr_inl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop r : α → α → Prop s : β → β → Prop a : α b : α ⊕ β ⊢ Sum.Lex r s b (↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a) → ∃ a', ↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a' = b [PROOFSTEP] cases b [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop r : α → α → Prop s : β → β → Prop a val✝ : α ⊢ Sum.Lex r s (Sum.inl val✝) (↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a) → ∃ a', ↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a' = Sum.inl val✝ [PROOFSTEP] exact fun _ => ⟨_, rfl⟩ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop r : α → α → Prop s : β → β → Prop a : α val✝ : β ⊢ Sum.Lex r s (Sum.inr val✝) (↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a) → ∃ a', ↑{ toEmbedding := { toFun := Sum.inl, inj' := (_ : ∀ (x x_1 : α), Sum.inl x = Sum.inl x_1 → x = x_1) }, map_rel_iff' := (_ : ∀ {a b : α}, Sum.Lex r s (Sum.inl a) (Sum.inl b) ↔ r a b) } a' = Sum.inr val✝ [PROOFSTEP] exact False.elim ∘ Sum.lex_inr_inl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s a : α ⊢ Acc r a → Acc s (↑f a) [PROOFSTEP] refine' fun h => Acc.recOn h fun a _ ha => Acc.intro _ fun b hb => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s a✝ : α h : Acc r a✝ a : α x✝ : ∀ (y : α), r y a → Acc r y ha : ∀ (y : α), r y a → Acc s (↑f y) b : β hb : s b (↑f a) ⊢ Acc s b [PROOFSTEP] obtain ⟨a', rfl⟩ := f.init hb [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≼i s a✝ : α h : Acc r a✝ a : α x✝ : ∀ (y : α), r y a → Acc r y ha : ∀ (y : α), r y a → Acc s (↑f y) a' : α hb : s (↑f a') (↑f a) ⊢ Acc s (↑f a') [PROOFSTEP] exact ha _ (f.map_rel_iff.mp hb) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop r : α → α → Prop inst✝ : IsWellOrder α r f : r ≺i r ⊢ False [PROOFSTEP] have h := f.lt_top f.top [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop r : α → α → Prop inst✝ : IsWellOrder α r f : r ≺i r h : r (↑f.toRelEmbedding f.top) f.top ⊢ False [PROOFSTEP] rw [show f f.top = f.top from InitialSeg.eq (↑f) (InitialSeg.refl r) f.top] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop r : α → α → Prop inst✝ : IsWellOrder α r f : r ≺i r h : r f.top f.top ⊢ False [PROOFSTEP] exact _root_.irrefl _ h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≺i s g : s ≼i t a : γ ⊢ t a (↑g f.top) ↔ ∃ a_1, ↑(RelEmbedding.trans f.toRelEmbedding g.toRelEmbedding) a_1 = a [PROOFSTEP] simp only [g.init_iff, PrincipalSeg.down, exists_and_left.symm, exists_swap, RelEmbedding.trans_apply, exists_eq_right', InitialSeg.coe_coe_fn] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≃r s g : s ≺i t c : γ x✝ : ∃ a, ↑g.toRelEmbedding a = c b : β h : ↑g.toRelEmbedding b = c ⊢ ↑g.toRelEmbedding (↑f (↑(RelIso.symm f) b)) = c [PROOFSTEP] simp only [h, RelIso.apply_symm_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≃r s g : s ≺i t c : γ this : (∃ a, ↑g.toRelEmbedding a = c) ↔ ∃ a, ↑g.toRelEmbedding (↑f a) = c ⊢ t c g.top ↔ ∃ a, ↑(RelEmbedding.trans (RelIso.toRelEmbedding f) g.toRelEmbedding) a = c [PROOFSTEP] simpa [PrincipalSeg.down] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t✝ : γ → γ → Prop r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≺i s g : s ≃r t ⊢ ∀ (b : γ), t b (↑g f.top) ↔ ∃ a, ↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) a = b [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t✝ : γ → γ → Prop r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≺i s g : s ≃r t x : γ ⊢ t x (↑g f.top) ↔ ∃ a, ↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) a = x [PROOFSTEP] rw [← g.apply_symm_apply x, g.map_rel_iff, f.down', exists_congr] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t✝ : γ → γ → Prop r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≺i s g : s ≃r t x : γ ⊢ ∀ (a : α), ↑f.toRelEmbedding a = ↑(RelIso.symm g) x ↔ ↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) a = ↑g (↑(RelIso.symm g) x) [PROOFSTEP] intro y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t✝ : γ → γ → Prop r : α → α → Prop s : β → β → Prop t : γ → γ → Prop f : r ≺i s g : s ≃r t x : γ y : α ⊢ ↑f.toRelEmbedding y = ↑(RelIso.symm g) x ↔ ↑(RelEmbedding.trans f.toRelEmbedding (RelIso.toRelEmbedding g)) y = ↑g (↑(RelIso.symm g) x) [PROOFSTEP] exact ⟨congr_arg g, fun h => g.toEquiv.bijective.1 h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ⊢ f = g [PROOFSTEP] have ef : (f : α → β) = g := by show ((f : r ≼i s) : α → β) = (g : r ≼i s) rw [@Subsingleton.elim _ _ (f : r ≼i s) g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ⊢ ↑f.toRelEmbedding = ↑g.toRelEmbedding [PROOFSTEP] show ((f : r ≼i s) : α → β) = (g : r ≼i s) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ⊢ ↑{ toRelEmbedding := f.toRelEmbedding, init' := (_ : ∀ (x : α) (x_1 : β), s x_1 (↑f.toRelEmbedding x) → ∃ a', ↑f.toRelEmbedding a' = x_1) } = ↑{ toRelEmbedding := g.toRelEmbedding, init' := (_ : ∀ (x : α) (x_1 : β), s x_1 (↑g.toRelEmbedding x) → ∃ a', ↑g.toRelEmbedding a' = x_1) } [PROOFSTEP] rw [@Subsingleton.elim _ _ (f : r ≼i s) g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding ⊢ f = g [PROOFSTEP] have et : f.top = g.top := by refine' extensional_of_trichotomous_of_irrefl s fun x => _ simp only [PrincipalSeg.down, ef] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding ⊢ f.top = g.top [PROOFSTEP] refine' extensional_of_trichotomous_of_irrefl s fun x => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding x : β ⊢ s x f.top ↔ s x g.top [PROOFSTEP] simp only [PrincipalSeg.down, ef] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f g : r ≺i s ef : ↑f.toRelEmbedding = ↑g.toRelEmbedding et : f.top = g.top ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s g : r ≺i s toRelEmbedding✝ : r ↪r s top✝ : β down'✝ : ∀ (b : β), s b top✝ ↔ ∃ a, ↑toRelEmbedding✝ a = b ef : ↑{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding = ↑g.toRelEmbedding et : { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.top = g.top ⊢ { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s toRelEmbedding✝¹ : r ↪r s top✝¹ : β down'✝¹ : ∀ (b : β), s b top✝¹ ↔ ∃ a, ↑toRelEmbedding✝¹ a = b toRelEmbedding✝ : r ↪r s top✝ : β down'✝ : ∀ (b : β), s b top✝ ↔ ∃ a, ↑toRelEmbedding✝ a = b ef : ↑{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.toRelEmbedding = ↑{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding et : { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.top = { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.top ⊢ { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ } = { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ } [PROOFSTEP] have := RelEmbedding.coe_fn_injective ef [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s toRelEmbedding✝¹ : r ↪r s top✝¹ : β down'✝¹ : ∀ (b : β), s b top✝¹ ↔ ∃ a, ↑toRelEmbedding✝¹ a = b toRelEmbedding✝ : r ↪r s top✝ : β down'✝ : ∀ (b : β), s b top✝ ↔ ∃ a, ↑toRelEmbedding✝ a = b ef : ↑{ toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.toRelEmbedding = ↑{ toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding et : { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.top = { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.top this : { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ }.toRelEmbedding = { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ }.toRelEmbedding ⊢ { toRelEmbedding := toRelEmbedding✝¹, top := top✝¹, down' := down'✝¹ } = { toRelEmbedding := toRelEmbedding✝, top := top✝, down' := down'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder γ t e : r ≃r s f : r ≺i t g : s ≺i t ⊢ f.top = g.top [PROOFSTEP] rw [Subsingleton.elim f (PrincipalSeg.equivLT e g)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder γ t e : r ≃r s f : r ≺i t g : s ≺i t ⊢ (equivLT e g).top = g.top [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t✝ : γ → γ → Prop r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder γ t f : r ≺i s g : s ≺i t h : r ≺i t ⊢ t h.top g.top [PROOFSTEP] rw [Subsingleton.elim h (f.trans g)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s✝ : β → β → Prop t✝ : γ → γ → Prop r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder γ t f : r ≺i s g : s ≺i t h : r ≺i t ⊢ t (PrincipalSeg.trans f g).top g.top [PROOFSTEP] apply PrincipalSeg.lt_top [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop r : α → α → Prop inst✝ : IsEmpty α b : β H : ∀ (b' : β), ¬s b' b src✝ : r ↪r s := RelEmbedding.ofIsEmpty r s ⊢ ∀ (b_1 : β), s b_1 b ↔ ∃ a, ↑{ toEmbedding := src✝.toEmbedding, map_rel_iff' := (_ : ∀ {a b : α}, s (↑src✝.toEmbedding a) (↑src✝.toEmbedding b) ↔ r a b) } a = b_1 [PROOFSTEP] simp [H] [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 r : α → α → Prop s✝ : β✝ → β✝ → Prop t : γ → γ → Prop β : Type u_4 s : β → β → Prop inst✝ : IsTrans β s ⊢ WellFounded s ↔ ∀ (b : β), WellFounded (Subrel s {b' | s b' b}) [PROOFSTEP] refine' ⟨fun wf b => ⟨fun b' => ((PrincipalSeg.ofElement _ b).acc b').mpr (wf.apply b')⟩, fun wf => ⟨fun b => Acc.intro _ fun b' hb' => _⟩⟩ [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 r : α → α → Prop s✝ : β✝ → β✝ → Prop t : γ → γ → Prop β : Type u_4 s : β → β → Prop inst✝ : IsTrans β s wf : ∀ (b : β), WellFounded (Subrel s {b' | s b' b}) b b' : β hb' : s b' b ⊢ Acc s b' [PROOFSTEP] let f := PrincipalSeg.ofElement s b [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 r : α → α → Prop s✝ : β✝ → β✝ → Prop t : γ → γ → Prop β : Type u_4 s : β → β → Prop inst✝ : IsTrans β s wf : ∀ (b : β), WellFounded (Subrel s {b' | s b' b}) b b' : β hb' : s b' b f : Subrel s {b_1 | s b_1 b} ≺i s := PrincipalSeg.ofElement s b ⊢ Acc s b' [PROOFSTEP] obtain ⟨b', rfl⟩ := f.down.mp ((PrincipalSeg.ofElement_top s b).symm ▸ hb' : s b' f.top) [GOAL] case intro α : Type u_1 β✝ : Type u_2 γ : Type u_3 r : α → α → Prop s✝ : β✝ → β✝ → Prop t : γ → γ → Prop β : Type u_4 s : β → β → Prop inst✝ : IsTrans β s wf : ∀ (b : β), WellFounded (Subrel s {b' | s b' b}) b : β f : Subrel s {b_1 | s b_1 b} ≺i s := PrincipalSeg.ofElement s b b' : ↑{b_1 | s b_1 b} hb' : s (↑f.toRelEmbedding b') b ⊢ Acc s (↑f.toRelEmbedding b') [PROOFSTEP] exact (f.acc b').mp ((wf b).apply b') [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ≼i s ⊢ (r ≺i s) ⊕ (r ≃r s) [PROOFSTEP] by_cases h : Surjective f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ≼i s h : Surjective ↑f ⊢ (r ≺i s) ⊕ (r ≃r s) [PROOFSTEP] exact Sum.inr (RelIso.ofSurjective f h) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ≼i s h : ¬Surjective ↑f ⊢ (r ≺i s) ⊕ (r ≃r s) [PROOFSTEP] have h' : _ := (InitialSeg.eq_or_principal f).resolve_left h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ≼i s h : ¬Surjective ↑f h' : ∃ b, ∀ (x : β), s x b ↔ ∃ y, ↑f y = x ⊢ (r ≺i s) ⊕ (r ≃r s) [PROOFSTEP] exact Sum.inl ⟨f, Classical.choose h', Classical.choose_spec h'⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝¹ : IsWellOrder β s inst✝ : IsTrans γ t f : r ≼i s g : s ≺i t a : α ⊢ ↑(leLT f g).toRelEmbedding a = ↑g.toRelEmbedding (↑f a) [PROOFSTEP] delta InitialSeg.leLT [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝¹ : IsWellOrder β s inst✝ : IsTrans γ t f : r ≼i s g : s ≺i t a : α ⊢ ↑(match ltOrEq f with | Sum.inl f' => PrincipalSeg.trans f' g | Sum.inr f' => PrincipalSeg.equivLT f' g).toRelEmbedding a = ↑g.toRelEmbedding (↑f a) [PROOFSTEP] cases' h : f.ltOrEq with f' f' [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝¹ : IsWellOrder β s inst✝ : IsTrans γ t f : r ≼i s g : s ≺i t a : α f' : r ≺i s h : ltOrEq f = Sum.inl f' ⊢ ↑(match Sum.inl f' with | Sum.inl f' => PrincipalSeg.trans f' g | Sum.inr f' => PrincipalSeg.equivLT f' g).toRelEmbedding a = ↑g.toRelEmbedding (↑f a) [PROOFSTEP] simp only [PrincipalSeg.trans_apply, f.ltOrEq_apply_left] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝¹ : IsWellOrder β s inst✝ : IsTrans γ t f : r ≼i s g : s ≺i t a : α f' : r ≃r s h : ltOrEq f = Sum.inr f' ⊢ ↑(match Sum.inr f' with | Sum.inl f' => PrincipalSeg.trans f' g | Sum.inr f' => PrincipalSeg.equivLT f' g).toRelEmbedding a = ↑g.toRelEmbedding (↑f a) [PROOFSTEP] simp only [PrincipalSeg.equivLT_apply, f.ltOrEq_apply_right] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α IH : (y : α) → r y a → { b // ¬s (↑f y) b } ⊢ { b // ¬s (↑f a) b } [PROOFSTEP] let S := {b | ∀ a h, s (IH a h).1 b} [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α IH : (y : α) → r y a → { b // ¬s (↑f y) b } S : Set β := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b} ⊢ { b // ¬s (↑f a) b } [PROOFSTEP] have : f a ∈ S := fun a' h => ((trichotomous _ _).resolve_left fun h' => (IH a' h).2 <| _root_.trans (f.map_rel_iff.2 h) h').resolve_left fun h' => (IH a' h).2 <| h' ▸ f.map_rel_iff.2 h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α IH : (y : α) → r y a → { b // ¬s (↑f y) b } S : Set β := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b} this : ↑f a ∈ S ⊢ { b // ¬s (↑f a) b } [PROOFSTEP] exact ⟨_, IsWellFounded.wf.not_lt_min _ ⟨_, this⟩ this⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a✝ a : α ⊢ r a a✝ → s ↑(collapseF f a) ↑(collapseF f a✝) [PROOFSTEP] revert a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α ⊢ ∀ (a_1 : α), r a_1 a → s ↑(collapseF f a_1) ↑(collapseF f a) [PROOFSTEP] show (collapseF f a).1 ∈ {b | ∀ (a') (_ : r a' a), s (collapseF f a').1 b} [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α ⊢ ↑(collapseF f a) ∈ {b | ∀ (a' : α), r a' a → s (↑(collapseF f a')) b} [PROOFSTEP] unfold collapseF [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α ⊢ ↑(WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) a) ∈ {b | ∀ (a' : α), r a' a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) a')) b} [PROOFSTEP] rw [WellFounded.fix_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α ⊢ ↑(let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑((fun y x => WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) y) a_1 h)) b}; let_fun this := (_ : ∀ (a' : α), r a' a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) a')) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) ∈ {b | ∀ (a' : α), r a' a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) a')) b} [PROOFSTEP] dsimp only [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α ⊢ WellFounded.min (_ : WellFounded s) {b | ∀ (a_1 : α), r a_1 a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => { val := WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) }) a_1)) b} (_ : ∃ x, x ∈ {b | ∀ (a_1 : α), r a_1 a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => { val := WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) }) a_1)) b}) ∈ {b | ∀ (a' : α), r a' a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => { val := WellFounded.min (_ : WellFounded s) {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}))) }) a')) b} [PROOFSTEP] apply WellFounded.min_mem _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α b : β h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b ⊢ ¬s b ↑(collapseF f a) [PROOFSTEP] unfold collapseF [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α b : β h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b ⊢ ¬s b ↑(WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) a) [PROOFSTEP] rw [WellFounded.fix_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α b : β h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b ⊢ ¬s b ↑(let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑((fun y x => WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) y) a_1 h)) b}; let_fun this := (_ : ∀ (a' : α), r a' a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => let S := {b | ∀ (a_1 : α) (h : r a_1 a), s (↑(IH a_1 h)) b}; let_fun this := (_ : ∀ (a' : α) (h : r a' a), s (↑(IH a' h)) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) a')) (↑f a)); { val := WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) S (_ : ∃ x, x ∈ S))) }) [PROOFSTEP] dsimp only [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s a : α b : β h : ∀ (a' : α), r a' a → s (↑(collapseF f a')) b ⊢ ¬s b (WellFounded.min (_ : WellFounded s) {b | ∀ (a_1 : α), r a_1 a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => { val := WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) }) a_1)) b} (_ : ∃ x, x ∈ {b | ∀ (a_1 : α), r a_1 a → s (↑(WellFounded.fix (_ : WellFounded r) (fun a IH => { val := WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}), property := (_ : ¬s (↑f a) (WellFounded.min (_ : WellFounded s) {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b} (_ : ∃ x, x ∈ {b | ∀ (a_2 : α) (h : r a_2 a), s (↑(IH a_2 h)) b}))) }) a_1)) b})) [PROOFSTEP] exact WellFounded.not_lt_min _ _ _ h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s this : IsWellOrder α r a✝ : α b✝ b : β x✝¹ : ∀ (y : β), s y b → Acc s y x✝ : ∀ (y : β), s y b → ∀ (x : α), s y (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) x) → ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = y a : α h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a) ⊢ ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = b [PROOFSTEP] rcases(@IsWellFounded.wf _ r).has_min {a | ¬s (collapseF f a).1 b} ⟨_, asymm h⟩ with ⟨m, hm, hm'⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s this : IsWellOrder α r a✝ : α b✝ b : β x✝¹ : ∀ (y : β), s y b → Acc s y x✝ : ∀ (y : β), s y b → ∀ (x : α), s y (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) x) → ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = y a : α h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a) m : α hm : m ∈ {a | ¬s (↑(collapseF f a)) b} hm' : ∀ (x : α), x ∈ {a | ¬s (↑(collapseF f a)) b} → ¬r x m ⊢ ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = b [PROOFSTEP] refine' ⟨m, ((@trichotomous _ s _ _ _).resolve_left hm).resolve_right (collapseF.not_lt f _ fun a' h' => _)⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s this : IsWellOrder α r a✝ : α b✝ b : β x✝¹ : ∀ (y : β), s y b → Acc s y x✝ : ∀ (y : β), s y b → ∀ (x : α), s y (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) x) → ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = y a : α h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a) m : α hm : m ∈ {a | ¬s (↑(collapseF f a)) b} hm' : ∀ (x : α), x ∈ {a | ¬s (↑(collapseF f a)) b} → ¬r x m a' : α h' : r a' m ⊢ s (↑(collapseF f a')) b [PROOFSTEP] by_contra hn [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop inst✝ : IsWellOrder β s f : r ↪r s this : IsWellOrder α r a✝ : α b✝ b : β x✝¹ : ∀ (y : β), s y b → Acc s y x✝ : ∀ (y : β), s y b → ∀ (x : α), s y (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) x) → ∃ a', ↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a' = y a : α h : s b (↑(ofMonotone (fun a => ↑(collapseF f a)) (_ : ∀ (a b : α), r a b → s ↑(collapseF f a) ↑(collapseF f b))) a) m : α hm : m ∈ {a | ¬s (↑(collapseF f a)) b} hm' : ∀ (x : α), x ∈ {a | ¬s (↑(collapseF f a)) b} → ¬r x m a' : α h' : r a' m hn : ¬s (↑(collapseF f a')) b ⊢ False [PROOFSTEP] exact hm' _ hn h'
{"mathlib_filename": "Mathlib.Order.InitialSeg", "llama_tokens": 19777}
{"mathlib_filename": "Mathlib.Order.ULift", "llama_tokens": 0}
[GOAL] α : Type u_1 s : Set α inst✝¹ : SupSet α inst✝ : Inhabited ↑s t : Set ↑s h : sSup (Subtype.val '' t) ∈ s ⊢ sSup (Subtype.val '' t) = ↑(sSup t) [PROOFSTEP] simp [dif_pos h] [GOAL] α : Type u_1 s : Set α inst✝¹ : InfSet α inst✝ : Inhabited ↑s t : Set ↑s h : sInf (Subtype.val '' t) ∈ s ⊢ sInf (Subtype.val '' t) = ↑(sInf t) [PROOFSTEP] simp [dif_pos h] [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t ⊢ sSup t = sSup univ [PROOFSTEP] have A : ∀ (u : Set s), ¬BddAbove u → BddAbove (Subtype.val '' u) → sSup ((↑) '' u : Set α) ∉ s := by intro u hu Hu contrapose! hu refine ⟨⟨_, hu⟩, ?_⟩ rintro ⟨x, xs⟩ hx simp only [Subtype.mk_le_mk] apply le_csSup Hu exact ⟨⟨x, xs⟩, hx, rfl⟩ [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t ⊢ ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s [PROOFSTEP] intro u hu Hu [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t u : Set ↑s hu : ¬BddAbove u Hu : BddAbove (Subtype.val '' u) ⊢ ¬sSup (Subtype.val '' u) ∈ s [PROOFSTEP] contrapose! hu [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t u : Set ↑s Hu : BddAbove (Subtype.val '' u) hu : sSup (Subtype.val '' u) ∈ s ⊢ BddAbove u [PROOFSTEP] refine ⟨⟨_, hu⟩, ?_⟩ [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t u : Set ↑s Hu : BddAbove (Subtype.val '' u) hu : sSup (Subtype.val '' u) ∈ s ⊢ { val := sSup (Subtype.val '' u), property := hu } ∈ upperBounds u [PROOFSTEP] rintro ⟨x, xs⟩ hx [GOAL] case mk α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t u : Set ↑s Hu : BddAbove (Subtype.val '' u) hu : sSup (Subtype.val '' u) ∈ s x : α xs : x ∈ s hx : { val := x, property := xs } ∈ u ⊢ { val := x, property := xs } ≤ { val := sSup (Subtype.val '' u), property := hu } [PROOFSTEP] simp only [Subtype.mk_le_mk] [GOAL] case mk α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t u : Set ↑s Hu : BddAbove (Subtype.val '' u) hu : sSup (Subtype.val '' u) ∈ s x : α xs : x ∈ s hx : { val := x, property := xs } ∈ u ⊢ x ≤ sSup (Subtype.val '' u) [PROOFSTEP] apply le_csSup Hu [GOAL] case mk α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t u : Set ↑s Hu : BddAbove (Subtype.val '' u) hu : sSup (Subtype.val '' u) ∈ s x : α xs : x ∈ s hx : { val := x, property := xs } ∈ u ⊢ x ∈ Subtype.val '' u [PROOFSTEP] exact ⟨⟨x, xs⟩, hx, rfl⟩ [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s ⊢ sSup t = sSup univ [PROOFSTEP] by_cases Ht : BddAbove ((↑) '' t : Set α) [GOAL] case pos α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) ⊢ sSup t = sSup univ [PROOFSTEP] have I1 : sSup ((↑) '' t : Set α) ∉ s := A t ht Ht [GOAL] case pos α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s ⊢ sSup t = sSup univ [PROOFSTEP] have I2 : sSup ((↑) '' (univ : Set s) : Set α) ∉ s := by apply A · contrapose! ht; exact ht.mono (subset_univ _) · refine ⟨sSup ((↑) '' t : Set α), ?_⟩ rintro - ⟨⟨x, hx⟩, -, rfl⟩ simp [BddAbove, not_nonempty_iff_eq_empty] at ht have : ⟨x, hx⟩ ∉ upperBounds t := by simp [ht] obtain ⟨⟨y, ys⟩, yt, hy⟩ : ∃ y, y ∈ t ∧ { val := x, property := hx } < y := by simpa only [Subtype.mk_le_mk, not_forall, not_le, exists_prop, exists_and_right, mem_upperBounds] refine le_trans (le_of_lt hy) ?_ exact le_csSup Ht ⟨⟨y, ys⟩, yt, rfl⟩ [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s ⊢ ¬sSup (Subtype.val '' univ) ∈ s [PROOFSTEP] apply A [GOAL] case a α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s ⊢ ¬BddAbove univ [PROOFSTEP] contrapose! ht [GOAL] case a α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s ht : BddAbove univ ⊢ BddAbove t [PROOFSTEP] exact ht.mono (subset_univ _) [GOAL] case a α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s ⊢ BddAbove (Subtype.val '' univ) [PROOFSTEP] refine ⟨sSup ((↑) '' t : Set α), ?_⟩ [GOAL] case a α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s ⊢ sSup (Subtype.val '' t) ∈ upperBounds (Subtype.val '' univ) [PROOFSTEP] rintro - ⟨⟨x, hx⟩, -, rfl⟩ [GOAL] case a.intro.mk.intro α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t) [PROOFSTEP] simp [BddAbove, not_nonempty_iff_eq_empty] at ht [GOAL] case a.intro.mk.intro α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ht : upperBounds t = ∅ ⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t) [PROOFSTEP] have : ⟨x, hx⟩ ∉ upperBounds t := by simp [ht] [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ht : upperBounds t = ∅ ⊢ ¬{ val := x, property := hx } ∈ upperBounds t [PROOFSTEP] simp [ht] [GOAL] case a.intro.mk.intro α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ht : upperBounds t = ∅ this : ¬{ val := x, property := hx } ∈ upperBounds t ⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t) [PROOFSTEP] obtain ⟨⟨y, ys⟩, yt, hy⟩ : ∃ y, y ∈ t ∧ { val := x, property := hx } < y := by simpa only [Subtype.mk_le_mk, not_forall, not_le, exists_prop, exists_and_right, mem_upperBounds] [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ht : upperBounds t = ∅ this : ¬{ val := x, property := hx } ∈ upperBounds t ⊢ ∃ y, y ∈ t ∧ { val := x, property := hx } < y [PROOFSTEP] simpa only [Subtype.mk_le_mk, not_forall, not_le, exists_prop, exists_and_right, mem_upperBounds] [GOAL] case a.intro.mk.intro.intro.mk.intro α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ht : upperBounds t = ∅ this : ¬{ val := x, property := hx } ∈ upperBounds t y : α ys : y ∈ s yt : { val := y, property := ys } ∈ t hy : { val := x, property := hx } < { val := y, property := ys } ⊢ ↑{ val := x, property := hx } ≤ sSup (Subtype.val '' t) [PROOFSTEP] refine le_trans (le_of_lt hy) ?_ [GOAL] case a.intro.mk.intro.intro.mk.intro α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s x : α hx : x ∈ s ht : upperBounds t = ∅ this : ¬{ val := x, property := hx } ∈ upperBounds t y : α ys : y ∈ s yt : { val := y, property := ys } ∈ t hy : { val := x, property := hx } < { val := y, property := ys } ⊢ ↑{ val := y, property := ys } ≤ sSup (Subtype.val '' t) [PROOFSTEP] exact le_csSup Ht ⟨⟨y, ys⟩, yt, rfl⟩ [GOAL] case pos α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' t) I1 : ¬sSup (Subtype.val '' t) ∈ s I2 : ¬sSup (Subtype.val '' univ) ∈ s ⊢ sSup t = sSup univ [PROOFSTEP] simp only [sSup, I1, I2, dite_false] [GOAL] case neg α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : ¬BddAbove (Subtype.val '' t) ⊢ sSup t = sSup univ [PROOFSTEP] have I : ¬BddAbove ((↑) '' (univ : Set s) : Set α) := by contrapose! Ht; exact Ht.mono (image_subset Subtype.val (subset_univ _)) [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : ¬BddAbove (Subtype.val '' t) ⊢ ¬BddAbove (Subtype.val '' univ) [PROOFSTEP] contrapose! Ht [GOAL] α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : BddAbove (Subtype.val '' univ) ⊢ BddAbove (Subtype.val '' t) [PROOFSTEP] exact Ht.mono (image_subset Subtype.val (subset_univ _)) [GOAL] case neg α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : ¬BddAbove (Subtype.val '' t) I : ¬BddAbove (Subtype.val '' univ) ⊢ sSup t = sSup univ [PROOFSTEP] have X : sSup ((↑) '' t : Set α) = sSup (univ : Set α) := ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove _ Ht [GOAL] case neg α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : ¬BddAbove (Subtype.val '' t) I : ¬BddAbove (Subtype.val '' univ) X : sSup (Subtype.val '' t) = sSup univ ⊢ sSup t = sSup univ [PROOFSTEP] have Y : sSup ((↑) '' (univ : Set s) : Set α) = sSup (univ : Set α) := ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove _ I [GOAL] case neg α : Type u_1 s✝ : Set α inst✝¹ : ConditionallyCompleteLinearOrder α s : Set α inst✝ : Inhabited ↑s t : Set ↑s ht : ¬BddAbove t A : ∀ (u : Set ↑s), ¬BddAbove u → BddAbove (Subtype.val '' u) → ¬sSup (Subtype.val '' u) ∈ s Ht : ¬BddAbove (Subtype.val '' t) I : ¬BddAbove (Subtype.val '' univ) X : sSup (Subtype.val '' t) = sSup univ Y : sSup (Subtype.val '' univ) = sSup univ ⊢ sSup t = sSup univ [PROOFSTEP] simp only [sSup, X, Y] [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance ⊢ ∀ (s_1 : Set ↑s) (a : ↑s), BddAbove s_1 → a ∈ s_1 → a ≤ sSup s_1 [PROOFSTEP] rintro t c h_bdd hct [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s c : ↑s h_bdd : BddAbove t hct : c ∈ t ⊢ c ≤ sSup t [PROOFSTEP] rw [← Subtype.coe_le_coe, ← subset_sSup_of_within s (h_Sup ⟨c, hct⟩ h_bdd)] [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s c : ↑s h_bdd : BddAbove t hct : c ∈ t ⊢ ↑c ≤ sSup (Subtype.val '' t) [PROOFSTEP] exact (Subtype.mono_coe _).le_csSup_image hct h_bdd [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance ⊢ ∀ (s_1 : Set ↑s) (a : ↑s), Set.Nonempty s_1 → a ∈ upperBounds s_1 → sSup s_1 ≤ a [PROOFSTEP] rintro t B ht hB [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s B : ↑s ht : Set.Nonempty t hB : B ∈ upperBounds t ⊢ sSup t ≤ B [PROOFSTEP] rw [← Subtype.coe_le_coe, ← subset_sSup_of_within s (h_Sup ht ⟨B, hB⟩)] [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s B : ↑s ht : Set.Nonempty t hB : B ∈ upperBounds t ⊢ sSup (Subtype.val '' t) ≤ ↑B [PROOFSTEP] exact (Subtype.mono_coe s).csSup_image_le ht hB [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance ⊢ ∀ (s_1 : Set ↑s) (a : ↑s), BddBelow s_1 → a ∈ s_1 → sInf s_1 ≤ a [PROOFSTEP] rintro t c h_bdd hct [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s c : ↑s h_bdd : BddBelow t hct : c ∈ t ⊢ sInf t ≤ c [PROOFSTEP] rw [← Subtype.coe_le_coe, ← subset_sInf_of_within s (h_Inf ⟨c, hct⟩ h_bdd)] [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s c : ↑s h_bdd : BddBelow t hct : c ∈ t ⊢ sInf (Subtype.val '' t) ≤ ↑c [PROOFSTEP] exact (Subtype.mono_coe s).csInf_image_le hct h_bdd [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance ⊢ ∀ (s_1 : Set ↑s) (a : ↑s), Set.Nonempty s_1 → a ∈ lowerBounds s_1 → a ≤ sInf s_1 [PROOFSTEP] intro t B ht hB [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s B : ↑s ht : Set.Nonempty t hB : B ∈ lowerBounds t ⊢ B ≤ sInf t [PROOFSTEP] rw [← Subtype.coe_le_coe, ← subset_sInf_of_within s (h_Inf ht ⟨B, hB⟩)] [GOAL] α : Type u_1 s : Set α inst✝¹ : ConditionallyCompleteLinearOrder α inst✝ : Inhabited ↑s h_Sup : ∀ {t : Set ↑s}, Set.Nonempty t → BddAbove t → sSup (Subtype.val '' t) ∈ s h_Inf : ∀ {t : Set ↑s}, Set.Nonempty t → BddBelow t → sInf (Subtype.val '' t) ∈ s src✝³ : SupSet ↑s := subsetSupSet s src✝² : InfSet ↑s := subsetInfSet s src✝¹ : Lattice ↑s := DistribLattice.toLattice src✝ : LinearOrder ↑s := inferInstance t : Set ↑s B : ↑s ht : Set.Nonempty t hB : B ∈ lowerBounds t ⊢ ↑B ≤ sInf (Subtype.val '' t) [PROOFSTEP] exact (Subtype.mono_coe s).le_csInf_image ht hB [GOAL] α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s ht : Set.Nonempty t h_bdd : BddAbove t ⊢ sSup (Subtype.val '' t) ∈ s [PROOFSTEP] obtain ⟨c, hct⟩ : ∃ c, c ∈ t := ht [GOAL] case intro α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s h_bdd : BddAbove t c : ↑s hct : c ∈ t ⊢ sSup (Subtype.val '' t) ∈ s [PROOFSTEP] obtain ⟨B, hB⟩ : ∃ B, B ∈ upperBounds t := h_bdd [GOAL] case intro.intro α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s c : ↑s hct : c ∈ t B : ↑s hB : B ∈ upperBounds t ⊢ sSup (Subtype.val '' t) ∈ s [PROOFSTEP] refine' hs.out c.2 B.2 ⟨_, _⟩ [GOAL] case intro.intro.refine'_1 α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s c : ↑s hct : c ∈ t B : ↑s hB : B ∈ upperBounds t ⊢ ↑c ≤ sSup (Subtype.val '' t) [PROOFSTEP] exact (Subtype.mono_coe s).le_csSup_image hct ⟨B, hB⟩ [GOAL] case intro.intro.refine'_2 α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s c : ↑s hct : c ∈ t B : ↑s hB : B ∈ upperBounds t ⊢ sSup (Subtype.val '' t) ≤ ↑B [PROOFSTEP] exact (Subtype.mono_coe s).csSup_image_le ⟨c, hct⟩ hB [GOAL] α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s ht : Set.Nonempty t h_bdd : BddBelow t ⊢ sInf (Subtype.val '' t) ∈ s [PROOFSTEP] obtain ⟨c, hct⟩ : ∃ c, c ∈ t := ht [GOAL] case intro α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s h_bdd : BddBelow t c : ↑s hct : c ∈ t ⊢ sInf (Subtype.val '' t) ∈ s [PROOFSTEP] obtain ⟨B, hB⟩ : ∃ B, B ∈ lowerBounds t := h_bdd [GOAL] case intro.intro α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s c : ↑s hct : c ∈ t B : ↑s hB : B ∈ lowerBounds t ⊢ sInf (Subtype.val '' t) ∈ s [PROOFSTEP] refine' hs.out B.2 c.2 ⟨_, _⟩ [GOAL] case intro.intro.refine'_1 α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s c : ↑s hct : c ∈ t B : ↑s hB : B ∈ lowerBounds t ⊢ ↑B ≤ sInf (Subtype.val '' t) [PROOFSTEP] exact (Subtype.mono_coe s).le_csInf_image ⟨c, hct⟩ hB [GOAL] case intro.intro.refine'_2 α : Type u_1 s✝ : Set α inst✝ : ConditionallyCompleteLinearOrder α s : Set α hs : OrdConnected s t : Set ↑s c : ↑s hct : c ∈ t B : ↑s hB : B ∈ lowerBounds t ⊢ sInf (Subtype.val '' t) ≤ ↑c [PROOFSTEP] exact (Subtype.mono_coe s).csInf_image_le hct ⟨B, hB⟩
{"mathlib_filename": "Mathlib.Order.CompleteLatticeIntervals", "llama_tokens": 11093}
[GOAL] J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j : J U : Opens ↑↑(F.obj j) ⊢ 𝟙 ↑(F.obj j) = (F.map (𝟙 j)).base [PROOFSTEP] simp [GOAL] J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j : J U : Opens ↑↑(F.obj j) ⊢ NatTrans.app (F.map (𝟙 j)).c (op U) = NatTrans.app (Pushforward.id (F.obj j).presheaf).inv (op U) ≫ NatTrans.app (pushforwardEq (_ : 𝟙 ↑(F.obj j) = (F.map (𝟙 j)).base) (F.obj j).presheaf).hom (op U) [PROOFSTEP] cases U [GOAL] case mk J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j : J carrier✝ : Set ↑↑(F.obj j) is_open'✝ : IsOpen carrier✝ ⊢ NatTrans.app (F.map (𝟙 j)).c (op { carrier := carrier✝, is_open' := is_open'✝ }) = NatTrans.app (Pushforward.id (F.obj j).presheaf).inv (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫ NatTrans.app (pushforwardEq (_ : 𝟙 ↑(F.obj j) = (F.map (𝟙 j)).base) (F.obj j).presheaf).hom (op { carrier := carrier✝, is_open' := is_open'✝ }) [PROOFSTEP] simp [PresheafedSpace.congr_app (F.map_id j)] [GOAL] J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : Opens ↑↑(F.obj j₃) ⊢ (F.map f).base ≫ (F.map g).base = (F.map (f ≫ g)).base [PROOFSTEP] rw [F.map_comp] [GOAL] J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : Opens ↑↑(F.obj j₃) ⊢ (F.map f).base ≫ (F.map g).base = (F.map f ≫ F.map g).base [PROOFSTEP] rfl [GOAL] J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : Opens ↑↑(F.obj j₃) ⊢ NatTrans.app (F.map (f ≫ g)).c (op U) = NatTrans.app (F.map g).c (op U) ≫ NatTrans.app (pushforwardMap (F.map g).base (F.map f).c) (op U) ≫ NatTrans.app (Pushforward.comp (F.obj j₁).presheaf (F.map f).base (F.map g).base).inv (op U) ≫ NatTrans.app (pushforwardEq (_ : (F.map f).base ≫ (F.map g).base = (F.map (f ≫ g)).base) (F.obj j₁).presheaf).hom (op U) [PROOFSTEP] cases U [GOAL] case mk J : Type u' inst✝¹ : Category.{v', u'} J C : Type u inst✝ : Category.{v, u} C F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ carrier✝ : Set ↑↑(F.obj j₃) is_open'✝ : IsOpen carrier✝ ⊢ NatTrans.app (F.map (f ≫ g)).c (op { carrier := carrier✝, is_open' := is_open'✝ }) = NatTrans.app (F.map g).c (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫ NatTrans.app (pushforwardMap (F.map g).base (F.map f).c) (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫ NatTrans.app (Pushforward.comp (F.obj j₁).presheaf (F.map f).base (F.map g).base).inv (op { carrier := carrier✝, is_open' := is_open'✝ }) ≫ NatTrans.app (pushforwardEq (_ : (F.map f).base ≫ (F.map g).base = (F.map (f ≫ g)).base) (F.obj j₁).presheaf).hom (op { carrier := carrier✝, is_open' := is_open'✝ }) [PROOFSTEP] simp [PresheafedSpace.congr_app (F.map_comp f g)] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) j k : Jᵒᵖ f : j ⟶ k ⊢ (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U) [PROOFSTEP] rw [← colimit.w F f.unop, comp_base] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) j k : Jᵒᵖ f : j ⟶ k ⊢ (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map ((F.map f.unop).base ≫ (colimit.ι F j.unop).base)).obj U) [PROOFSTEP] rfl [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) x : Jᵒᵖ ⊢ { obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)), map := fun {j k} f => NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map (𝟙 x) = 𝟙 ({ obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)), map := fun {j k} f => NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.obj x) [PROOFSTEP] dsimp [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) x : Jᵒᵖ ⊢ NatTrans.app (F.map (𝟙 x.unop)).c (op ((Opens.map (colimit.ι F x.unop).base).obj U)) ≫ (F.obj x.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (𝟙 x.unop)).base).obj ((Opens.map (colimit.ι F x.unop).base).obj U)) = op ((Opens.map (colimit.ι F x.unop).base).obj U))) = 𝟙 ((F.obj x.unop).presheaf.obj (op ((Opens.map (colimit.ι F x.unop).base).obj U))) [PROOFSTEP] simp [map_id_c_app, pushforwardObj_obj, op_obj, unop_op, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, assoc, eqToHom_trans, eqToHom_refl, comp_id, TopCat.Presheaf.Pushforward.id_inv_app'] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) x : Jᵒᵖ ⊢ NatTrans.app (Pushforward.id (F.obj x.unop).presheaf).inv (op ((Opens.map (colimit.ι F x.unop).base).obj U)) = 𝟙 ((F.obj x.unop).presheaf.obj (op ((Opens.map (colimit.ι F x.unop).base).obj U))) [PROOFSTEP] rw [TopCat.Presheaf.Pushforward.id_inv_app'] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) x : Jᵒᵖ ⊢ (F.obj x.unop).presheaf.map (𝟙 (op { carrier := ((Opens.map (colimit.ι F x.unop).base).toPrefunctor.1 U).carrier, is_open' := (_ : IsOpen ((Opens.map (colimit.ι F x.unop).base).toPrefunctor.1 U).carrier) })) = 𝟙 ((F.obj x.unop).presheaf.obj (op ((Opens.map (colimit.ι F x.unop).base).obj U))) [PROOFSTEP] simp only [Opens.carrier_eq_coe, Opens.mk_coe, map_id] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ { obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)), map := fun {j k} f => NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map (f ≫ g) = { obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)), map := fun {j k} f => NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map f ≫ { obj := fun j => (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)), map := fun {j k} f => NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) }.map g [PROOFSTEP] dsimp [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ NatTrans.app (F.map (g.unop ≫ f.unop)).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) = (NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F j.unop).base).obj U)))) ≫ NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) [PROOFSTEP] simp_rw [map_comp_c_app] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ (NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (pushforwardMap (F.map f.unop).base (F.map g.unop).c) (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (Pushforward.comp (F.obj k.unop).presheaf (F.map g.unop).base (F.map f.unop).base).inv (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (pushforwardEq (_ : (F.map g.unop).base ≫ (F.map f.unop).base = (F.map (g.unop ≫ f.unop)).base) (F.obj k.unop).presheaf).hom (op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) = (NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F j.unop).base).obj U)))) ≫ NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) [PROOFSTEP] simp only [op_obj, unop_op, eqToHom_op, id_eq, id_comp, assoc, eqToHom_trans] [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (pushforwardMap (F.map f.unop).base (F.map g.unop).c) (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (Pushforward.comp (F.obj k.unop).presheaf (F.map g.unop).base (F.map f.unop).base).inv (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (pushforwardEq (_ : (F.map g.unop).base ≫ (F.map f.unop).base = (F.map (g.unop ≫ f.unop)).base) (F.obj k.unop).presheaf).hom (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) = NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫ NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) [PROOFSTEP] congr 1 [GOAL] case e_a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ NatTrans.app (pushforwardMap (F.map f.unop).base (F.map g.unop).c) (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (Pushforward.comp (F.obj k.unop).presheaf (F.map g.unop).base (F.map f.unop).base).inv (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ NatTrans.app (pushforwardEq (_ : (F.map g.unop).base ≫ (F.map f.unop).base = (F.map (g.unop ≫ f.unop)).base) (F.obj k.unop).presheaf).hom (op ((Opens.map (colimit.ι F i.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) = (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫ NatTrans.app (F.map g.unop).c (op ((Opens.map (colimit.ι F j.unop).base).obj U)) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) [PROOFSTEP] rw [TopCat.Presheaf.Pushforward.comp_inv_app, TopCat.Presheaf.pushforwardEq_hom_app, CategoryTheory.NatTrans.naturality_assoc, TopCat.Presheaf.pushforwardMap_app] [GOAL] case e_a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ NatTrans.app (F.map g.unop).c ((Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫ 𝟙 (((F.map f.unop).base _* ((F.map g.unop).base _* (F.obj k.unop).presheaf)).obj (op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫ (F.obj k.unop).presheaf.map (_root_.id (eqToHom (_ : (Opens.map (F.map (g.unop ≫ f.unop)).base).obj (op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop = (Opens.map ((F.map g.unop).base ≫ (F.map f.unop).base)).obj (op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop)).op) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) = NatTrans.app (F.map g.unop).c (op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫ ((F.map g.unop).base _* (F.obj k.unop).presheaf).map (eqToHom (_ : op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) [PROOFSTEP] congr 1 [GOAL] case e_a.e_a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(colimit F) i j k : Jᵒᵖ f : i ⟶ j g : j ⟶ k ⊢ 𝟙 (((F.map f.unop).base _* ((F.map g.unop).base _* (F.obj k.unop).presheaf)).obj (op ((Opens.map (colimit.ι F i.unop).base).obj U))) ≫ (F.obj k.unop).presheaf.map (_root_.id (eqToHom (_ : (Opens.map (F.map (g.unop ≫ f.unop)).base).obj (op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop = (Opens.map ((F.map g.unop).base ≫ (F.map f.unop).base)).obj (op ((Opens.map (colimit.ι F i.unop).base).obj U)).unop)).op) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map (g.unop ≫ f.unop)).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) = ((F.map g.unop).base _* (F.obj k.unop).presheaf).map (eqToHom (_ : op ((Opens.map (F.map f.unop).base).obj ((Opens.map (colimit.ι F i.unop).base).obj U)) = op ((Opens.map (colimit.ι F j.unop).base).obj U))) ≫ (F.obj k.unop).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g.unop).base).obj ((Opens.map (colimit.ι F j.unop).base).obj U)) = op ((Opens.map (colimit.ι F k.unop).base).obj U))) [PROOFSTEP] simp [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J ⊢ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j) = 𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) [PROOFSTEP] apply (opEquiv _ _).injective [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J ⊢ ↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j)) = ↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) (𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) [PROOFSTEP] refine NatTrans.ext _ _ (funext fun U => ?_) [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j))) U = NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) (𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j))) U [PROOFSTEP] induction U with | h U => rcases U with ⟨U, hU⟩ dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id] -- Porting note : some `simp` lemmas are not picked up rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app] simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app'] rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp] dsimp simp [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j))) U = NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) (𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j))) U [PROOFSTEP] induction U with | h U => rcases U with ⟨U, hU⟩ dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id] -- Porting note : some `simp` lemmas are not picked up rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app] simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app'] rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp] dsimp simp [GOAL] case a.h J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Opens ↑(colimit (F ⋙ forget C)) ⊢ NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j))) (op U) = NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) (𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j))) (op U) [PROOFSTEP] | h U => rcases U with ⟨U, hU⟩ dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id] -- Porting note : some `simp` lemmas are not picked up rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app] simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app'] rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp] dsimp simp [GOAL] case a.h J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Opens ↑(colimit (F ⋙ forget C)) ⊢ NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j))) (op U) = NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) (𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j))) (op U) [PROOFSTEP] rcases U with ⟨U, hU⟩ [GOAL] case a.h.mk J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Set ↑(colimit (F ⋙ forget C)) hU : IsOpen U ⊢ NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (𝟙 j))) (op { carrier := U, is_open' := hU }) = NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j)) (𝟙 ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j))) (op { carrier := U, is_open' := hU }) [PROOFSTEP] dsimp [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, Opens.map_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op, unop_id] -- Porting note : some `simp` lemmas are not picked up [GOAL] case a.h.mk J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Set ↑(colimit (F ⋙ forget C)) hU : IsOpen U ⊢ NatTrans.app (pushforwardMap (colimit.ι (F ⋙ forget C) j) (F.map (𝟙 j)).c ≫ (Pushforward.comp (F.obj j).presheaf (F.map (𝟙 j)).base (colimit.ι (F ⋙ forget C) j)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom) (op { carrier := U, is_open' := hU }) = NatTrans.app (𝟙 (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf)) (op { carrier := U, is_open' := hU }) [PROOFSTEP] rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.id_app] [GOAL] case a.h.mk J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Set ↑(colimit (F ⋙ forget C)) hU : IsOpen U ⊢ NatTrans.app (F.map (𝟙 j)).c ((Opens.map (colimit.ι (F ⋙ forget C) j)).op.obj (op { carrier := U, is_open' := hU })) ≫ NatTrans.app ((Pushforward.comp (F.obj j).presheaf (F.map (𝟙 j)).base (colimit.ι (F ⋙ forget C) j)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom) (op { carrier := U, is_open' := hU }) = 𝟙 ((colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf).obj (op { carrier := U, is_open' := hU })) [PROOFSTEP] simp only [op_obj, unop_op, Opens.map_obj, map_id_c_app, Opens.map_id_obj', map_id, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, id_comp, TopCat.Presheaf.Pushforward.id_inv_app'] [GOAL] case a.h.mk J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Set ↑(colimit (F ⋙ forget C)) hU : IsOpen U ⊢ eqToHom (_ : (F.obj j).presheaf.obj (op { carrier := ↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U), is_open' := (_ : IsOpen (↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) }) = (F.obj j).presheaf.obj (op { carrier := ↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U), is_open' := (_ : IsOpen (↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) })) ≫ NatTrans.app ((Pushforward.comp (F.obj j).presheaf (F.map (𝟙 j)).base (colimit.ι (F ⋙ forget C) j)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom) (op { carrier := U, is_open' := hU }) = 𝟙 ((colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf).obj (op { carrier := U, is_open' := hU })) [PROOFSTEP] rw [NatTrans.comp_app, Pushforward.comp_inv_app, id_comp] [GOAL] case a.h.mk J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Set ↑(colimit (F ⋙ forget C)) hU : IsOpen U ⊢ eqToHom (_ : (F.obj j).presheaf.obj (op { carrier := ↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U), is_open' := (_ : IsOpen (↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) }) = (F.obj j).presheaf.obj (op { carrier := ↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U), is_open' := (_ : IsOpen (↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) })) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom (op { carrier := U, is_open' := hU }) = 𝟙 ((colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf).obj (op { carrier := U, is_open' := hU })) [PROOFSTEP] dsimp [GOAL] case a.h.mk J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j : J U : Set ↑(colimit (F ⋙ forget C)) hU : IsOpen U ⊢ eqToHom (_ : (F.obj j).presheaf.obj (op { carrier := ↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U), is_open' := (_ : IsOpen (↑(𝟙 ↑(F.obj j)) ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) }) = (F.obj j).presheaf.obj (op { carrier := ↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U), is_open' := (_ : IsOpen (↑(F.map (𝟙 j)).base ⁻¹' (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U))) })) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map (𝟙 j) ≫ colimit.ι (F ⋙ forget C) j = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom (op { carrier := U, is_open' := hU }) = 𝟙 ((F.obj j).presheaf.obj (op { carrier := ↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U, is_open' := (_ : IsOpen (↑(colimit.ι (F ⋙ forget C) j) ⁻¹' U)) })) [PROOFSTEP] simp [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ ⊢ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (f ≫ g) = { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map f ≫ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map g [PROOFSTEP] apply (opEquiv _ _).injective [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ ⊢ ↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₁) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₃)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (f ≫ g)) = ↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₁) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₃)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map f ≫ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map g) [PROOFSTEP] refine NatTrans.ext _ _ (funext fun U => ?_) [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₁) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₃)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map (f ≫ g))) U = NatTrans.app (↑(opEquiv ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₁) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.obj j₃)) ({ obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map f ≫ { obj := fun j => op (colimit.ι (F ⋙ forget C) j _* (F.obj j).presheaf), map := fun {j j'} f => (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf ((F ⋙ forget C).map f) (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom).op }.map g)) U [PROOFSTEP] dsimp only [comp_obj, forget_obj, Functor.comp_map, forget_map, op_comp, unop_op, pushforwardObj_obj, op_obj, opEquiv, Equiv.coe_fn_mk, unop_comp, Quiver.Hom.unop_op] -- Porting note : some `simp` lemmas are not picked up [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (pushforwardMap (colimit.ι (F ⋙ forget C) j₃) (F.map (f ≫ g)).c ≫ (Pushforward.comp (F.obj j₁).presheaf (F.map (f ≫ g)).base (colimit.ι (F ⋙ forget C) j₃)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map (f ≫ g) ≫ colimit.ι (F ⋙ forget C) j₃ = colimit.ι (F ⋙ forget C) j₁) (F.obj j₁).presheaf).hom) U = NatTrans.app ((pushforwardMap (colimit.ι (F ⋙ forget C) j₃) (F.map g).c ≫ (Pushforward.comp (F.obj j₂).presheaf (F.map g).base (colimit.ι (F ⋙ forget C) j₃)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map g ≫ colimit.ι (F ⋙ forget C) j₃ = colimit.ι (F ⋙ forget C) j₂) (F.obj j₂).presheaf).hom) ≫ pushforwardMap (colimit.ι (F ⋙ forget C) j₂) (F.map f).c ≫ (Pushforward.comp (F.obj j₁).presheaf (F.map f).base (colimit.ι (F ⋙ forget C) j₂)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j₂ = colimit.ι (F ⋙ forget C) j₁) (F.obj j₁).presheaf).hom) U [PROOFSTEP] rw [NatTrans.comp_app, pushforwardMap_app, NatTrans.comp_app, Pushforward.comp_inv_app, id_comp, pushforwardEq_hom_app, NatTrans.comp_app, NatTrans.comp_app, NatTrans.comp_app, pushforwardMap_app, Pushforward.comp_inv_app, id_comp, pushforwardEq_hom_app, NatTrans.comp_app, NatTrans.comp_app, pushforwardEq_hom_app, Pushforward.comp_inv_app, id_comp, pushforwardMap_app] [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (F.map (f ≫ g)).c ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).op.obj U) ≫ (F.obj j₁).presheaf.map (_root_.id (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop = (Opens.map ((F.map (f ≫ g)).base ≫ colimit.ι (F ⋙ forget C) j₃)).obj U.unop)).op) = (NatTrans.app (F.map g).c ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).op.obj U) ≫ (F.obj j₂).presheaf.map (_root_.id (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop = (Opens.map ((F.map g).base ≫ colimit.ι (F ⋙ forget C) j₃)).obj U.unop)).op)) ≫ NatTrans.app (F.map f).c ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).op.obj U) ≫ (F.obj j₁).presheaf.map (_root_.id (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop = (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j₂)).obj U.unop)).op) [PROOFSTEP] simp only [pushforwardObj_obj, op_obj, unop_op, map_comp_c_app, pushforwardMap_app, Opens.map_comp_obj, Pushforward.comp_inv_app, pushforwardEq_hom_app, eqToHom_op, id_eq, eqToHom_map, id_comp, assoc, eqToHom_trans] [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫ NatTrans.app (F.map f).c (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) = NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₂).presheaf.obj (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) = (F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) [PROOFSTEP] dsimp [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫ NatTrans.app (F.map f).c (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) = NatTrans.app (F.map g).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₂).presheaf.obj (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) = (F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) [PROOFSTEP] congr 1 -- The key fact is `(F.map f).c.congr`, -- which allows us in rewrite in the argument of `(F.map f).c.app`. [GOAL] case a.e_a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ NatTrans.app (F.map f).c (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) = eqToHom (_ : (F.obj j₂).presheaf.obj (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) = (F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) [PROOFSTEP] rw [@NatTrans.congr (α := (F.map f).c) (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) (op ((Opens.map (colimit.ι (F ⋙ PresheafedSpace.forget C) j₂)).obj (unop U))) _] [GOAL] case a.e_a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ ((F.obj j₂).presheaf.map (eqToHom ?m.93087) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ ((F.map f).base _* (F.obj j₁).presheaf).map (eqToHom (_ : op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop) = op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))))) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) = eqToHom (_ : (F.obj j₂).presheaf.obj (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) = (F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) = op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop) [PROOFSTEP] swap -- Now we show the open sets are equal. [GOAL] J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) = op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop) [PROOFSTEP] apply unop_injective [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))).unop = (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)).unop [PROOFSTEP] rw [← Opens.map_comp_obj] [GOAL] case a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ (op ((Opens.map ((F.map g).base ≫ colimit.ι (F ⋙ forget C) j₃)).obj U.unop)).unop = (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)).unop [PROOFSTEP] congr [GOAL] case a.e_self.e_x.e_self.e_self.e_f J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ (F.map g).base ≫ colimit.ι (F ⋙ forget C) j₃ = colimit.ι (F ⋙ forget C) j₂ [PROOFSTEP] exact colimit.w (F ⋙ PresheafedSpace.forget C) g [GOAL] case a.e_a J : Type u' inst✝² : Category.{v', u'} J C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimitsOfShape J TopCat F : J ⥤ PresheafedSpace C j₁ j₂ j₃ : J f : j₁ ⟶ j₂ g : j₂ ⟶ j₃ U : (Opens ↑(colimit (F ⋙ forget C)))ᵒᵖ ⊢ ((F.obj j₂).presheaf.map (eqToHom (_ : op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)) = op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ ((F.map f).base _* (F.obj j₁).presheaf).map (eqToHom (_ : op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop) = op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))))) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop)))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) = eqToHom (_ : (F.obj j₂).presheaf.obj (op ((Opens.map (F.map g).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₃)).obj U.unop))) = (F.obj j₂).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) ≫ NatTrans.app (F.map f).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop)) ≫ eqToHom (_ : (F.obj j₁).presheaf.obj (op ((Opens.map (F.map f).base).obj ((Opens.map (colimit.ι (F ⋙ forget C) j₂)).obj U.unop))) = (F.obj j₁).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j₁)).obj U.unop))) [PROOFSTEP] simp [GOAL] J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' ⊢ F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j' = (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f [PROOFSTEP] ext1 [GOAL] case w J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' ⊢ (F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j').base = ((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f).base [PROOFSTEP] ext x [GOAL] case w.w J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' x : (CategoryTheory.forget TopCat).obj ↑(F.obj j) ⊢ ↑(F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j').base x = ↑((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f).base x [PROOFSTEP] exact colimit.w_apply (F ⋙ PresheafedSpace.forget C) f x [GOAL] case h J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' ⊢ (F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j').c ≫ whiskerRight (eqToHom (_ : (Opens.map (F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j').base).op = (Opens.map ((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f).base).op)) (F.obj j).presheaf = ((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f).c [PROOFSTEP] ext ⟨U, hU⟩ [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ NatTrans.app ((F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j').c ≫ whiskerRight (eqToHom (_ : (Opens.map (F.map f ≫ (fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j').base).op = (Opens.map ((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f).base).op)) (F.obj j).presheaf) (op { carrier := U, is_open' := hU }) = NatTrans.app ((fun j => { base := colimit.ι (F ⋙ forget C) j, c := limit.π (pushforwardDiagramToColimit F).leftOp (op j) }) j ≫ ((Functor.const J).obj (colimit F)).map f).c (op { carrier := U, is_open' := hU }) [PROOFSTEP] dsimp [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ NatTrans.app ((F.map f ≫ { base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op = (Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op)) (F.obj j).presheaf) (op { carrier := U, is_open' := hU }) = NatTrans.app (𝟙 (colimit F)).c (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op { carrier := U, is_open' := hU }) [PROOFSTEP] rw [PresheafedSpace.id_c_app, map_id] [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ NatTrans.app ((F.map f ≫ { base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op = (Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op)) (F.obj j).presheaf) (op { carrier := U, is_open' := hU }) = 𝟙 ((colimit F).presheaf.obj (op { carrier := U, is_open' := hU })) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op { carrier := U, is_open' := hU }) [PROOFSTEP] erw [id_comp] [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ NatTrans.app ((F.map f ≫ { base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op = (Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op)) (F.obj j).presheaf) (op { carrier := U, is_open' := hU }) = NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op { carrier := U, is_open' := hU }) [PROOFSTEP] rw [NatTrans.comp_app, PresheafedSpace.comp_c_app, whiskerRight_app, eqToHom_app, ← congr_arg NatTrans.app (limit.w (pushforwardDiagramToColimit F).leftOp f.op), NatTrans.comp_app, Functor.leftOp_map, pushforwardDiagramToColimit_map] [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ (NatTrans.app { base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }.c (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (F.map f).c (op ((Opens.map { base := colimit.ι (F ⋙ forget C) j', c := limit.π (pushforwardDiagramToColimit F).leftOp (op j') }.base).obj (op { carrier := U, is_open' := hU }).unop))) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }) = (Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op.obj (op { carrier := U, is_open' := hU }))) = NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (pushforwardMap (colimit.ι (F ⋙ forget C) (op j').unop) (F.map f.op.unop).c ≫ (Pushforward.comp (F.obj (op j).unop).presheaf ((F ⋙ forget C).map f.op.unop) (colimit.ι (F ⋙ forget C) (op j').unop)).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f.op.unop ≫ colimit.ι (F ⋙ forget C) (op j').unop = colimit.ι (F ⋙ forget C) (op j).unop) (F.obj (op j).unop).presheaf).hom).op.unop (op { carrier := U, is_open' := hU }) [PROOFSTEP] dsimp [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ (NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (F.map f).c (op { carrier := ↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U, is_open' := (_ : IsOpen (↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U)) })) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }) = (Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op.obj (op { carrier := U, is_open' := hU }))) = NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (pushforwardMap (colimit.ι (F ⋙ forget C) j') (F.map f).c ≫ (Pushforward.comp (F.obj j).presheaf (F.map f).base (colimit.ι (F ⋙ forget C) j')).inv ≫ (pushforwardEq (_ : (F ⋙ forget C).map f ≫ colimit.ι (F ⋙ forget C) j' = colimit.ι (F ⋙ forget C) j) (F.obj j).presheaf).hom) (op { carrier := U, is_open' := hU }) [PROOFSTEP] rw [NatTrans.comp_app, NatTrans.comp_app, pushforwardEq_hom_app, id.def, eqToHom_op, Pushforward.comp_inv_app, id_comp, pushforwardMap_app, ← assoc] [GOAL] case h.w.mk J : Type u' inst✝³ : Category.{v', u'} J C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimitsOfShape J TopCat inst✝ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) F : J ⥤ PresheafedSpace C j j' : J f : j ⟶ j' U : Set ↑↑(((Functor.const J).obj (colimit F)).obj j') hU : IsOpen U ⊢ (NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (F.map f).c (op { carrier := ↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U, is_open' := (_ : IsOpen (↑(colimit.ι (F ⋙ forget C) j') ⁻¹' U)) })) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }) = (Opens.map (colimit.ι (F ⋙ forget C) j ≫ 𝟙 (Limits.colimit (F ⋙ forget C)))).op.obj (op { carrier := U, is_open' := hU }))) = (NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j')) (op { carrier := U, is_open' := hU }) ≫ NatTrans.app (F.map f).c ((Opens.map (colimit.ι (F ⋙ forget C) j')).op.obj (op { carrier := U, is_open' := hU }))) ≫ (F.obj j).presheaf.map (eqToHom (_ : op ((Opens.map ((F.map f).base ≫ colimit.ι (F ⋙ forget C) j')).obj (op { carrier := U, is_open' := hU }).unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j)).obj (op { carrier := U, is_open' := hU }).unop))) [PROOFSTEP] congr 1 [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ ⊢ s.pt.presheaf.obj U ⟶ (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) _* limit (pushforwardDiagramToColimit F).leftOp).obj U [PROOFSTEP] refine' limit.lift _ { pt := s.pt.presheaf.obj U π := { app := fun j => _ naturality := fun j j' f => _ } } ≫ (limitObjIsoLimitCompEvaluation _ _).inv [GOAL] case refine'_1 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ ((Functor.const Jᵒᵖ).obj (s.pt.presheaf.obj U)).obj j ⟶ ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)).obj j [PROOFSTEP] refine' (s.ι.app (unop j)).c.app U ≫ (F.obj (unop j)).presheaf.map (eqToHom _) [GOAL] case refine'_1 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U) [PROOFSTEP] dsimp [GOAL] case refine'_1 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] rw [← Opens.map_comp_obj] [GOAL] case refine'_1 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) [PROOFSTEP] simp [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' ⊢ ((Functor.const Jᵒᵖ).obj (s.pt.presheaf.obj U)).map f ≫ (fun j => NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)))) j' = (fun j => NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)))) j ≫ ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U)).map f [PROOFSTEP] dsimp [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ NatTrans.app (NatTrans.app s.ι j'.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] rw [PresheafedSpace.congr_app (s.w f.unop).symm U] [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ (NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] have w := Functor.congr_obj (congr_arg Opens.map (colimit.ι_desc ((PresheafedSpace.forget C).mapCocone s) (unop j))) (unop U) [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' w : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ (NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] simp only [Opens.map_comp_obj_unop] at w [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' w : (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ (NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] replace w := congr_arg op w [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' w : op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ (NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] have w' := NatTrans.congr (F.map f.unop).c w [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' w : op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) w' : NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) = (F.obj j.unop).presheaf.map (eqToHom w) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)) ≫ ((F.map f.unop).base _* (F.obj j'.unop).presheaf).map (eqToHom (_ : op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ (NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] rw [w'] [GOAL] case refine'_2 J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U : (Opens ↑↑s.pt)ᵒᵖ j j' : Jᵒᵖ f : j ⟶ j' w : op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) w' : NatTrans.app (F.map f.unop).c (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) = (F.obj j.unop).presheaf.map (eqToHom w) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)) ≫ ((F.map f.unop).base _* (F.obj j'.unop).presheaf).map (eqToHom (_ : op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ⊢ 𝟙 (s.pt.presheaf.obj U) ≫ (NatTrans.app (F.map f.unop ≫ NatTrans.app s.ι j.unop).c U ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : (Opens.map (F.map f.unop ≫ NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (NatTrans.app s.ι j'.unop).base).op.obj U))) ≫ (F.obj j'.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j'.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j'.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) = (NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ ((F.obj j.unop).presheaf.map (eqToHom w) ≫ NatTrans.app (F.map f.unop).c (op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop)) ≫ ((F.map f.unop).base _* (F.obj j'.unop).presheaf).map (eqToHom (_ : op ((Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop) = op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))))) ≫ NatTrans.app (Pushforward.comp (F.obj j'.unop).presheaf (F.map f.unop).base (colimit.ι (F ⋙ forget C) j.unop)).inv (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) j.unop = colimit.ι (F ⋙ forget C) j'.unop) (F.obj j'.unop).presheaf).hom (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] simp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V ⊢ s.pt.presheaf.map i ≫ descCApp F s V = descCApp F s U ≫ (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) _* (colimitCocone F).pt.presheaf).map i [PROOFSTEP] dsimp [descCApp] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V ⊢ s.pt.presheaf.map i ≫ limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))) { pt := s.pt.presheaf.obj V, π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c V ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj V = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj V))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))).inv = (limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) { pt := s.pt.presheaf.obj U, π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫ (limit (pushforwardDiagramToColimit F).leftOp).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop).op [PROOFSTEP] refine limit_obj_ext (fun j => ?_) [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ ⊢ (s.pt.presheaf.map i ≫ limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))) { pt := s.pt.presheaf.obj V, π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c V ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj V = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj V))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop))).inv) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)) = ((limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) { pt := s.pt.presheaf.obj U, π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫ (limit (pushforwardDiagramToColimit F).leftOp).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop).op) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)) [PROOFSTEP] simp only [limit.lift_π, NatTrans.naturality, limit.lift_π_assoc, eqToHom_map, assoc, pushforwardObj_map, NatTrans.naturality_assoc, op_map, limitObjIsoLimitCompEvaluation_inv_π_app_assoc, limitObjIsoLimitCompEvaluation_inv_π_app] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ ⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫ ((pushforwardDiagramToColimit F).leftOp.obj j).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop).op [PROOFSTEP] dsimp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ ⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫ (F.obj j.unop).presheaf.map ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op [PROOFSTEP] have w := Functor.congr_hom (congr_arg Opens.map (colimit.ι_desc ((PresheafedSpace.forget C).mapCocone s) (unop j))) i.unop [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ w : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop = eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫ (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫ eqToHom (_ : (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop = (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) ⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫ (F.obj j.unop).presheaf.map ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op [PROOFSTEP] simp only [Opens.map_comp_map] at w [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ w : (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop) = eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫ (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫ eqToHom (_ : (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop = (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) ⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫ (F.obj j.unop).presheaf.map ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op [PROOFSTEP] replace w := congr_arg Quiver.Hom.op w [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ w : ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op = (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫ (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫ eqToHom (_ : (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop = (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)).op ⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫ (F.obj j.unop).presheaf.map ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op [PROOFSTEP] rw [w] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F U V : (Opens ↑↑s.pt)ᵒᵖ i : U ⟶ V j : Jᵒᵖ w : ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).map ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).map i.unop)).op = (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫ (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫ eqToHom (_ : (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop = (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)).op ⊢ NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map ((Opens.map (NatTrans.app s.ι j.unop).base).map i.unop).op ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj V.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop)))) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj V.unop = (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj V.unop) ≫ (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).map i.unop ≫ eqToHom (_ : (Opens.map (NatTrans.app ((forget C).mapCocone s).ι j.unop)).obj U.unop = (Opens.map (colimit.ι (F ⋙ forget C) j.unop ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)).op [PROOFSTEP] simp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J ⊢ NatTrans.app (colimitCocone F).ι j ≫ desc F s = NatTrans.app s.ι j [PROOFSTEP] ext U [GOAL] case w.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J U : (CategoryTheory.forget TopCat).obj ↑(F.obj j) ⊢ ↑(NatTrans.app (colimitCocone F).ι j ≫ desc F s).base U = ↑(NatTrans.app s.ι j).base U [PROOFSTEP] simp [desc] [GOAL] case h.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J U : Opens ↑↑s.pt ⊢ NatTrans.app ((NatTrans.app (colimitCocone F).ι j ≫ desc F s).c ≫ whiskerRight (eqToHom (_ : (Opens.map (NatTrans.app (colimitCocone F).ι j ≫ desc F s).base).op = (Opens.map (NatTrans.app s.ι j).base).op)) (F.obj j).presheaf) (op U) = NatTrans.app (NatTrans.app s.ι j).c (op U) [PROOFSTEP] rw [NatTrans.comp_app, PresheafedSpace.comp_c_app, whiskerRight_app] [GOAL] case h.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J U : Opens ↑↑s.pt ⊢ (NatTrans.app (desc F s).c (op U) ≫ NatTrans.app (NatTrans.app (colimitCocone F).ι j).c (op ((Opens.map (desc F s).base).obj (op U).unop))) ≫ (F.obj j).presheaf.map (NatTrans.app (eqToHom (_ : (Opens.map (NatTrans.app (colimitCocone F).ι j ≫ desc F s).base).op = (Opens.map (NatTrans.app s.ι j).base).op)) (op U)) = NatTrans.app (NatTrans.app s.ι j).c (op U) [PROOFSTEP] dsimp [desc, descCApp] [GOAL] case h.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J U : Opens ↑↑s.pt ⊢ ((limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) { pt := s.pt.presheaf.obj (op U), π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c (op U) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj (op U) = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj (op U)))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))).inv) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp (op j)) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) ≫ (F.obj j).presheaf.map (NatTrans.app (eqToHom (_ : (Opens.map (colimit.ι (F ⋙ forget C) j ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op = (Opens.map (NatTrans.app s.ι j).base).op)) (op U)) = NatTrans.app (NatTrans.app s.ι j).c (op U) [PROOFSTEP] simp only [eqToHom_app, op_obj, Opens.map_comp_obj, eqToHom_map, Functor.leftOp, assoc] [GOAL] case h.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J U : Opens ↑↑s.pt ⊢ limit.lift (CategoryTheory.Functor.mk { obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop, map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop } ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) { pt := s.pt.presheaf.obj (op U), π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c (op U) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj (op U) = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj (op U)))) } ≫ (limitObjIsoLimitCompEvaluation (CategoryTheory.Functor.mk { obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop, map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop }) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))).inv ≫ NatTrans.app (limit.π (CategoryTheory.Functor.mk { obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop, map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop }) (op j)) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U)) ≫ eqToHom (_ : (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) = (F.obj j).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j).base).obj U))) = NatTrans.app (NatTrans.app s.ι j).c (op U) [PROOFSTEP] rw [limitObjIsoLimitCompEvaluation_inv_π_app_assoc] [GOAL] case h.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F j : J U : Opens ↑↑s.pt ⊢ limit.lift (CategoryTheory.Functor.mk { obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop, map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop } ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) { pt := s.pt.presheaf.obj (op U), π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c (op U) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj (op U) = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj (op U)))) } ≫ limit.π (CategoryTheory.Functor.mk { obj := fun X => ((pushforwardDiagramToColimit F).obj X.unop).unop, map := fun {X Y} f => ((pushforwardDiagramToColimit F).map f.unop).unop } ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) (op j) ≫ eqToHom (_ : (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U))) = (F.obj j).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j).base).obj U))) = NatTrans.app (NatTrans.app s.ι j).c (op U) [PROOFSTEP] simp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ m = (fun s => desc F s) s [PROOFSTEP] have t : m.base = colimit.desc (F ⋙ PresheafedSpace.forget C) ((PresheafedSpace.forget C).mapCocone s) := by dsimp ext j rw [colimit.ι_desc, mapCocone_ι_app, ← w j] simp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) [PROOFSTEP] dsimp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j ⊢ m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) [PROOFSTEP] ext j [GOAL] case w.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x✝ : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj j) ⊢ ↑(colimit.ι (F ⋙ forget C) j ≫ m.base) x✝ = ↑(colimit.ι (F ⋙ forget C) j ≫ colimit.desc (F ⋙ forget C) ((forget C).mapCocone s)) x✝ [PROOFSTEP] rw [colimit.ι_desc, mapCocone_ι_app, ← w j] [GOAL] case w.w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j j : J x✝ : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj j) ⊢ ↑(colimit.ι (F ⋙ forget C) j ≫ m.base) x✝ = ↑((forget C).map (NatTrans.app (colimitCocone F).ι j ≫ m)) x✝ [PROOFSTEP] simp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) ⊢ m = (fun s => desc F s) s [PROOFSTEP] ext : 1 [GOAL] case w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) ⊢ m.base = ((fun s => desc F s) s).base [PROOFSTEP] exact t [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) ⊢ m.c ≫ whiskerRight (eqToHom (_ : (Opens.map m.base).op = (Opens.map ((fun s => desc F s) s).base).op)) (colimitCocone F).pt.presheaf = ((fun s => desc F s) s).c [PROOFSTEP] refine NatTrans.ext _ _ (funext fun U => limit_obj_ext fun j => ?_) [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ NatTrans.app (m.c ≫ whiskerRight (eqToHom (_ : (Opens.map m.base).op = (Opens.map ((fun s => desc F s) s).base).op)) (colimitCocone F).pt.presheaf) U ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) ((Opens.map ((fun s => desc F s) s).base).op.obj U) = NatTrans.app ((fun s => desc F s) s).c U ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) ((Opens.map ((fun s => desc F s) s).base).op.obj U) [PROOFSTEP] dsimp only [colimitCocone_pt, colimit_carrier, leftOp_obj, pushforwardDiagramToColimit_obj, comp_obj, forget_obj, unop_op, op_obj, desc, colimit_presheaf, descCApp, mapCocone_pt, pushforwardObj_obj, const_obj_obj, id_eq, evaluation_obj_obj, Eq.ndrec, eq_mpr_eq_cast] [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ NatTrans.app (m.c ≫ whiskerRight (eqToHom (_ : (Opens.map m.base).op = (Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op)) (limit (pushforwardDiagramToColimit F).leftOp)) U ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = (limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) { pt := s.pt.presheaf.obj U, π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] rw [NatTrans.comp_app, whiskerRight_app] [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ (NatTrans.app m.c U ≫ (limit (pushforwardDiagramToColimit F).leftOp).map (NatTrans.app (eqToHom (_ : (Opens.map m.base).op = (Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op)) U)) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = (limit.lift ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑(Limits.colimit (F ⋙ forget C)))ᵒᵖ C).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) { pt := s.pt.presheaf.obj U, π := NatTrans.mk fun j => NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U = (Opens.map (colimit.ι (F ⋙ forget C) j.unop)).op.obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).op.obj U))) } ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))).inv) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) [PROOFSTEP] simp only [pushforwardObj_obj, op_obj, comp_obj, eqToHom_app, eqToHom_map, assoc, limitObjIsoLimitCompEvaluation_inv_π_app, limit.lift_π] [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ NatTrans.app m.c U ≫ eqToHom (_ : (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) = (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = NatTrans.app (NatTrans.app s.ι j.unop).c U ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) [PROOFSTEP] rw [PresheafedSpace.congr_app (w (unop j)).symm U] [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ NatTrans.app m.c U ≫ eqToHom (_ : (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) = (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = (NatTrans.app (NatTrans.app (colimitCocone F).ι j.unop ≫ m).c U ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).op.obj U = (Opens.map (NatTrans.app s.ι j.unop).base).op.obj U))) ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) [PROOFSTEP] dsimp [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ ⊢ NatTrans.app m.c U ≫ eqToHom (_ : (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) = (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = ((NatTrans.app m.c U ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map m.base).obj U.unop))) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).obj U.unop) = op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)))) ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) [PROOFSTEP] have w := congr_arg op (Functor.congr_obj (congr_arg Opens.map t) (unop U)) [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w✝ : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ w : op ((Opens.map m.base).obj U.unop) = op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) ⊢ NatTrans.app m.c U ≫ eqToHom (_ : (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) = (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = ((NatTrans.app m.c U ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map m.base).obj U.unop))) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).obj U.unop) = op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)))) ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) [PROOFSTEP] rw [NatTrans.congr (limit.π (pushforwardDiagramToColimit F).leftOp j) w] [GOAL] case h J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C s : Cocone F m : (colimitCocone F).pt ⟶ s.pt w✝ : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j t : m.base = colimit.desc (F ⋙ forget C) ((forget C).mapCocone s) U : (Opens ↑↑s.pt)ᵒᵖ j : Jᵒᵖ w : op ((Opens.map m.base).obj U.unop) = op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) ⊢ NatTrans.app m.c U ≫ eqToHom (_ : (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map m.base).obj U.unop)) = (limit (pushforwardDiagramToColimit F).leftOp).obj (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop))) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) = ((NatTrans.app m.c U ≫ (limit (pushforwardDiagramToColimit F).leftOp).map (eqToHom w) ≫ NatTrans.app (limit.π (pushforwardDiagramToColimit F).leftOp j) (op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)) ≫ ((pushforwardDiagramToColimit F).leftOp.obj j).map (eqToHom (_ : op ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop) = op ((Opens.map m.base).obj U.unop)))) ≫ (F.obj j.unop).presheaf.map (eqToHom (_ : op ((Opens.map (NatTrans.app (colimitCocone F).ι j.unop ≫ m).base).obj U.unop) = op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)))) ≫ eqToHom (_ : (F.obj j.unop).presheaf.obj (op ((Opens.map (NatTrans.app s.ι j.unop).base).obj U.unop)) = (F.obj j.unop).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forget C) j.unop)).obj ((Opens.map (colimit.desc (F ⋙ forget C) ((forget C).mapCocone s))).obj U.unop)))) [PROOFSTEP] simp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C ⊢ IsColimit ((forget C).mapCocone (colimitCocone F)) [PROOFSTEP] apply IsColimit.ofIsoColimit (colimit.isColimit _) [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C ⊢ colimit.cocone (F ⋙ forget C) ≅ (forget C).mapCocone (colimitCocone F) [PROOFSTEP] fapply Cocones.ext [GOAL] case φ J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C ⊢ (colimit.cocone (F ⋙ forget C)).pt ≅ ((forget C).mapCocone (colimitCocone F)).pt [PROOFSTEP] rfl [GOAL] case w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C ⊢ autoParam (∀ (j : J), NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom = NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j) _auto✝ [PROOFSTEP] intro j [GOAL] case w J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C j : J ⊢ NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom = NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j [PROOFSTEP] simp [GOAL] J✝ : Type u' inst✝⁵ : Category.{v', u'} J✝ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J✝ TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C inst✝ : HasLimits C J : Type v 𝒥 : Category.{v, v} J F : J ⥤ PresheafedSpace C ⊢ IsColimit ((forget C).mapCocone (colimitCocone F)) [PROOFSTEP] apply IsColimit.ofIsoColimit (colimit.isColimit _) [GOAL] J✝ : Type u' inst✝⁵ : Category.{v', u'} J✝ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J✝ TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C inst✝ : HasLimits C J : Type v 𝒥 : Category.{v, v} J F : J ⥤ PresheafedSpace C ⊢ colimit.cocone (F ⋙ forget C) ≅ (forget C).mapCocone (colimitCocone F) [PROOFSTEP] fapply Cocones.ext [GOAL] case φ J✝ : Type u' inst✝⁵ : Category.{v', u'} J✝ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J✝ TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C inst✝ : HasLimits C J : Type v 𝒥 : Category.{v, v} J F : J ⥤ PresheafedSpace C ⊢ (colimit.cocone (F ⋙ forget C)).pt ≅ ((forget C).mapCocone (colimitCocone F)).pt [PROOFSTEP] rfl [GOAL] case w J✝ : Type u' inst✝⁵ : Category.{v', u'} J✝ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J✝ TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C inst✝ : HasLimits C J : Type v 𝒥 : Category.{v, v} J F : J ⥤ PresheafedSpace C ⊢ autoParam (∀ (j : J), NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom = NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j) _auto✝ [PROOFSTEP] intro j [GOAL] case w J✝ : Type u' inst✝⁵ : Category.{v', u'} J✝ C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J✝ TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape J✝ᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape J✝ᵒᵖ C inst✝ : HasLimits C J : Type v 𝒥 : Category.{v, v} J F : J ⥤ PresheafedSpace C j : J ⊢ NatTrans.app (colimit.cocone (F ⋙ forget C)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ forget C)).pt).hom = NatTrans.app ((forget C).mapCocone (colimitCocone F)).ι j [PROOFSTEP] simp [GOAL] J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) ⊢ (Limits.colimit F).presheaf.obj (op U) ≅ limit (componentwiseDiagram F U) [PROOFSTEP] refine' ((sheafIsoOfIso (colimit.isoColimitCocone ⟨_, colimitCoconeIsColimit F⟩).symm).app (op U)).trans _ [GOAL] J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) ⊢ ((colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base _* { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt.presheaf).obj (op U) ≅ limit (componentwiseDiagram F U) [PROOFSTEP] refine' (limitObjIsoLimitCompEvaluation _ _).trans (Limits.lim.mapIso _) [GOAL] J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) ⊢ (pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) ≅ componentwiseDiagram F U [PROOFSTEP] fapply NatIso.ofComponents [GOAL] case app J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) ⊢ (X : Jᵒᵖ) → ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))).obj X ≅ (componentwiseDiagram F U).obj X [PROOFSTEP] intro X [GOAL] case app J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X : Jᵒᵖ ⊢ ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))).obj X ≅ (componentwiseDiagram F U).obj X [PROOFSTEP] refine' (F.obj (unop X)).presheaf.mapIso (eqToIso _) [GOAL] case app J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X : Jᵒᵖ ⊢ (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U) [PROOFSTEP] simp only [Functor.op_obj, unop_op, op_inj_iff, Opens.map_coe, SetLike.ext'_iff, Set.preimage_preimage] [GOAL] case app J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X : Jᵒᵖ ⊢ (fun x => ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base (↑(colimit.ι (F ⋙ forget C) X.unop) x)) ⁻¹' ↑U = ↑(colimit.ι F X.unop).base ⁻¹' ↑U [PROOFSTEP] refine congr_arg (Set.preimage . U.1) (funext fun x => ?_) [GOAL] case app J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X : Jᵒᵖ x : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj X.unop) ⊢ ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base (↑(colimit.ι (F ⋙ forget C) X.unop) x) = ↑(colimit.ι F X.unop).base x [PROOFSTEP] erw [← comp_app] [GOAL] case app J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X : Jᵒᵖ x : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj X.unop) ⊢ ↑(colimit.ι (F ⋙ forget C) X.unop ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base) x = ↑(colimit.ι F X.unop).base x [PROOFSTEP] congr [GOAL] case app.e_a J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X : Jᵒᵖ x : (CategoryTheory.forget TopCat).obj ((F ⋙ forget C).obj X.unop) ⊢ colimit.ι (F ⋙ forget C) X.unop ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base = (colimit.ι F X.unop).base [PROOFSTEP] exact ι_preservesColimitsIso_inv (forget C) F (unop X) [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) ⊢ autoParam (∀ {X Y : Jᵒᵖ} (f : X ⟶ Y), ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))).map f ≫ ((F.obj Y.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U)))).hom = ((F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫ (componentwiseDiagram F U).map f) _auto✝ [PROOFSTEP] intro X Y f [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X Y : Jᵒᵖ f : X ⟶ Y ⊢ ((pushforwardDiagramToColimit F).leftOp ⋙ (evaluation (Opens ↑↑{ cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.pt)ᵒᵖ C).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))).map f ≫ ((F.obj Y.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U)))).hom = ((F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫ (componentwiseDiagram F U).map f [PROOFSTEP] change ((F.map f.unop).c.app _ ≫ _ ≫ _) ≫ (F.obj (unop Y)).presheaf.map _ = _ ≫ _ [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X Y : Jᵒᵖ f : X ⟶ Y ⊢ (NatTrans.app (F.map f.unop).c ((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ NatTrans.app (Pushforward.comp (F.obj Y.unop).presheaf ((F ⋙ forget C).map f.unop) (colimit.ι (F ⋙ forget C) X.unop)).inv ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop) (F.obj Y.unop).presheaf).hom ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ (F.obj Y.unop).presheaf.map (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom = ((F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫ (componentwiseDiagram F U).map f [PROOFSTEP] rw [TopCat.Presheaf.Pushforward.comp_inv_app] [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X Y : Jᵒᵖ f : X ⟶ Y ⊢ (NatTrans.app (F.map f.unop).c ((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ 𝟙 ((colimit.ι (F ⋙ forget C) X.unop _* ((F ⋙ forget C).map f.unop _* (F.obj Y.unop).presheaf)).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop) (F.obj Y.unop).presheaf).hom ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ (F.obj Y.unop).presheaf.map (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom = ((F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫ (componentwiseDiagram F U).map f [PROOFSTEP] erw [Category.id_comp] [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X Y : Jᵒᵖ f : X ⟶ Y ⊢ (NatTrans.app (F.map f.unop).c ((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop) (F.obj Y.unop).presheaf).hom ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ (F.obj Y.unop).presheaf.map (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom = ((F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫ (componentwiseDiagram F U).map f [PROOFSTEP] rw [Category.assoc] [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X Y : Jᵒᵖ f : X ⟶ Y ⊢ NatTrans.app (F.map f.unop).c ((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ NatTrans.app (pushforwardEq (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop) (F.obj Y.unop).presheaf).hom ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) ≫ (F.obj Y.unop).presheaf.map (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom = ((F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).hom ≫ (componentwiseDiagram F U).map f [PROOFSTEP] erw [← (F.obj (unop Y)).presheaf.map_comp, (F.map f.unop).c.naturality_assoc, ← (F.obj (unop Y)).presheaf.map_comp] [GOAL] case naturality J : Type u' inst✝⁵ : Category.{v', u'} J C : Type u inst✝⁴ : Category.{v, u} C inst✝³ : HasColimitsOfShape J TopCat inst✝² : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝¹ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C inst✝ : HasColimit F U : Opens ↑↑(Limits.colimit F) X Y : Jᵒᵖ f : X ⟶ Y ⊢ NatTrans.app (F.map f.unop).c ((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ (F.obj Y.unop).presheaf.map (NatTrans.app (NatIso.op (Opens.mapIso ((F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop) (colimit.ι (F ⋙ forget C) Y.unop) (_ : (F ⋙ forget C).map f.unop ≫ colimit.ι (F ⋙ forget C) X.unop = colimit.ι (F ⋙ forget C) Y.unop)).symm).hom ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) ≫ (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) Y.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U))).hom) = NatTrans.app (F.map f.unop).c ((Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))) ≫ (F.obj Y.unop).presheaf.map ((Opens.map (F.map f.unop).base).op.map (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U))).hom ≫ eqToHom (_ : (Opens.map (F.map f.unop).base).op.obj (op ((Opens.map (colimit.ι F X.unop).base).obj U)) = op ((Opens.map (colimit.ι F Y.unop).base).obj U))) [PROOFSTEP] rfl [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ (colimitPresheafObjIsoComponentwiseLimit F U).inv ≫ NatTrans.app (colimit.ι F j).c (op U) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] delta colimitPresheafObjIsoComponentwiseLimit [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ ((sheafIsoOfIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).app (op U) ≪≫ limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) ≪≫ Limits.lim.mapIso (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U))))).inv ≫ NatTrans.app (colimit.ι F j).c (op U) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] rw [Iso.trans_inv, Iso.trans_inv, Iso.app_inv, sheafIsoOfIso_inv, pushforwardToOfIso_app, congr_app (Iso.symm_inv _)] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ (((Limits.lim.mapIso (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U))))).inv ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U))).inv) ≫ (NatTrans.app (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.c (op ((Opens.map ((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv).obj (op U).unop)) ≫ (Limits.colimit F).presheaf.map (eqToHom (_ : (Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base).op.obj (op ((Opens.map ((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv).obj (op U).unop)) = (Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.inv.base).op.obj (op ((Opens.map ((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv).obj (op U).unop))))) ≫ (Limits.colimit F).presheaf.map (eqToHom (_ : op { carrier := ↑((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.hom ⁻¹' ↑(op { carrier := ↑((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.hom ⁻¹' ↑(op { carrier := ↑((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑((forget C).mapIso (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm).symm.inv ⁻¹' ↑(op U).unop)) }).unop)) } = op U))) ≫ NatTrans.app (colimit.ι F j).c (op U) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] dsimp [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ ((limMap (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))).inv) ≫ (NatTrans.app (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.c (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) ≫ (Limits.colimit F).presheaf.map (𝟙 (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))))) ≫ (Limits.colimit F).presheaf.map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U))) ≫ NatTrans.app (colimit.ι F j).c (op U) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] rw [map_id, comp_id, assoc, assoc, assoc, NatTrans.naturality] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ limMap (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))).inv ≫ NatTrans.app (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.c (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) ≫ NatTrans.app (colimit.ι F j).c (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base).obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] erw [← comp_c_app_assoc] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ limMap (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))).inv ≫ NatTrans.app (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).c (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] rw [congr_app (colimit.isoColimitCocone_ι_hom _ _), assoc] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ limMap (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv ≫ (limitObjIsoLimitCompEvaluation (pushforwardDiagramToColimit F).leftOp (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))).inv ≫ NatTrans.app (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).c (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] erw [limitObjIsoLimitCompEvaluation_inv_π_app_assoc, limMap_π_assoc] -- Porting note : `convert` doesn't work due to meta variable, so change to a `suffices` block [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ limit.π (componentwiseDiagram F U) (op j) ≫ NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] set f := _ [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : ?m.311389 := ?m.311390 ⊢ limit.π (componentwiseDiagram F U) (op j) ≫ NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] change _ ≫ f = _ [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) := NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) ⊢ limit.π (componentwiseDiagram F U) (op j) ≫ f = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] suffices f_eq : f = 𝟙 _ by rw [f_eq, comp_id] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) := NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) f_eq : f = 𝟙 ((componentwiseDiagram F U).obj (op j)) ⊢ limit.π (componentwiseDiagram F U) (op j) ≫ f = limit.π (componentwiseDiagram F U) (op j) [PROOFSTEP] rw [f_eq, comp_id] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) := NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) ⊢ f = 𝟙 ((componentwiseDiagram F U).obj (op j)) [PROOFSTEP] erw [← (F.obj j).presheaf.map_id] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) := NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) ⊢ f = (F.obj j).presheaf.map (𝟙 (op ((Opens.map (colimit.ι F (op j).unop).base).obj U))) [PROOFSTEP] change (F.obj j).presheaf.map _ ≫ _ = _ [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) := NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) ⊢ (F.obj j).presheaf.map (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) (op j).unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F (op j).unop).base).obj U))).inv ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) = (F.obj j).presheaf.map (𝟙 (op ((Opens.map (colimit.ι F (op j).unop).base).obj U))) [PROOFSTEP] erw [← (F.obj j).presheaf.map_comp, ← (F.obj j).presheaf.map_comp] [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J f : (componentwiseDiagram F U).obj (op j) ⟶ (F.obj j).presheaf.obj (op ((Opens.map (colimit.ι F j).base).obj U)) := NatTrans.app (NatIso.ofComponents fun X => (F.obj X.unop).presheaf.mapIso (eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) X.unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F X.unop).base).obj U)))).inv (op j) ≫ (F.obj j).presheaf.map (eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)))) ≫ ((colimit.ι F j).base _* (F.obj j).presheaf).map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U)) ⊢ (F.obj j).presheaf.map ((eqToIso (_ : (Opens.map (colimit.ι (F ⋙ forget C) (op j).unop)).op.obj ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).symm.hom.base).op.obj (op U)) = op ((Opens.map (colimit.ι F (op j).unop).base).obj U))).inv ≫ eqToHom (_ : (Opens.map (NatTrans.app { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }.cocone.ι j).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U)) = (Opens.map (colimit.ι F j ≫ (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom).base).op.obj (op ((Opens.map (colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base).obj U))) ≫ (Opens.map (colimit.ι F j).base).op.map (eqToHom (_ : op { carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).hom.base ⁻¹' ↑{ carrier := ↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(colimit.isoColimitCocone { cocone := colimitCocone F, isColimit := colimitCoconeIsColimit F }).inv.base ⁻¹' ↑U)) })) } = op U))) = (F.obj j).presheaf.map (𝟙 (op ((Opens.map (colimit.ι F (op j).unop).base).obj U))) [PROOFSTEP] congr 1 [GOAL] J : Type u' inst✝⁴ : Category.{v', u'} J C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimitsOfShape J TopCat inst✝¹ : ∀ (X : TopCat), HasLimitsOfShape Jᵒᵖ (Presheaf C X) inst✝ : HasLimitsOfShape Jᵒᵖ C F : J ⥤ PresheafedSpace C U : Opens ↑↑(Limits.colimit F) j : J ⊢ (colimitPresheafObjIsoComponentwiseLimit F U).hom ≫ limit.π (componentwiseDiagram F U) (op j) = NatTrans.app (colimit.ι F j).c (op U) [PROOFSTEP] rw [← Iso.eq_inv_comp, colimitPresheafObjIsoComponentwiseLimit_inv_ι_app]
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PresheafedSpace.HasColimits", "llama_tokens": 95293}
[GOAL] R : CommRingCatᵒᵖ ⊢ { obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map (𝟙 R) = 𝟙 ({ obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.obj R) [PROOFSTEP] dsimp [GOAL] R : CommRingCatᵒᵖ ⊢ topMap (𝟙 R.unop) = 𝟙 (topObj R.unop) [PROOFSTEP] rw [Spec.topMap_id] [GOAL] R S T : CommRingCatᵒᵖ f : R ⟶ S g : S ⟶ T ⊢ { obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map (f ≫ g) = { obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map f ≫ { obj := fun R => topObj R.unop, map := fun {R S} f => topMap f.unop }.map g [PROOFSTEP] dsimp [GOAL] R S T : CommRingCatᵒᵖ f : R ⟶ S g : S ⟶ T ⊢ topMap (g.unop ≫ f.unop) = topMap f.unop ≫ topMap g.unop [PROOFSTEP] rw [Spec.topMap_comp] [GOAL] R : CommRingCat ⊢ (sheafedSpaceMap (𝟙 R)).c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map (sheafedSpaceMap (𝟙 R)).base).op = (TopologicalSpace.Opens.map (𝟙 (sheafedSpaceObj R)).base).op)) (sheafedSpaceObj R).toPresheafedSpace.presheaf = (𝟙 (sheafedSpaceObj R)).c [PROOFSTEP] ext U [GOAL] case w.w R : CommRingCat U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑(NatTrans.app ((sheafedSpaceMap (𝟙 R)).c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map (sheafedSpaceMap (𝟙 R)).base).op = (TopologicalSpace.Opens.map (𝟙 (sheafedSpaceObj R)).base).op)) (sheafedSpaceObj R).toPresheafedSpace.presheaf) (op U)) x✝ = ↑(NatTrans.app (𝟙 (sheafedSpaceObj R)).c (op U)) x✝ [PROOFSTEP] dsimp [GOAL] case w.w R : CommRingCat U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑(NatTrans.app ((sheafedSpaceMap (𝟙 R)).c ≫ whiskerRight (𝟙 (TopologicalSpace.Opens.map (topMap (𝟙 R))).op) (structureSheaf ↑R).val) (op U)) x✝ = ↑(NatTrans.app (𝟙 (sheafedSpaceObj R)).c (op U)) x✝ [PROOFSTEP] erw [NatTrans.comp_app, sheafedSpaceMap_c_app, PresheafedSpace.id_c_app, comap_id] [GOAL] case w.w R : CommRingCat U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑(eqToHom (_ : (structureSheaf ↑R).val.obj (op (op U).unop) = (structureSheaf ↑R).val.obj (op ((TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop))) ≫ NatTrans.app (whiskerRight (𝟙 (TopologicalSpace.Opens.map (topMap (𝟙 R))).op) (structureSheaf ↑R).val) (op U)) x✝ = ↑((sheafedSpaceObj R).toPresheafedSpace.presheaf.map (𝟙 (op U))) x✝ case w.w.hUV R : CommRingCat U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U)) ⊢ (op U).unop = (TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop [PROOFSTEP] swap [GOAL] case w.w.hUV R : CommRingCat U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U)) ⊢ (op U).unop = (TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop [PROOFSTEP] rw [Spec.topMap_id, TopologicalSpace.Opens.map_id_obj_unop] [GOAL] case w.w R : CommRingCat U : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑(eqToHom (_ : (structureSheaf ↑R).val.obj (op (op U).unop) = (structureSheaf ↑R).val.obj (op ((TopologicalSpace.Opens.map (topMap (𝟙 R))).obj (op U).unop))) ≫ NatTrans.app (whiskerRight (𝟙 (TopologicalSpace.Opens.map (topMap (𝟙 R))).op) (structureSheaf ↑R).val) (op U)) x✝ = ↑((sheafedSpaceObj R).toPresheafedSpace.presheaf.map (𝟙 (op U))) x✝ [PROOFSTEP] simp [eqToHom_map] [GOAL] R S T : CommRingCat f : R ⟶ S g : S ⟶ T ⊢ (sheafedSpaceMap (f ≫ g)).c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map (sheafedSpaceMap (f ≫ g)).base).op = (TopologicalSpace.Opens.map (sheafedSpaceMap g ≫ sheafedSpaceMap f).base).op)) (sheafedSpaceObj T).toPresheafedSpace.presheaf = (sheafedSpaceMap g ≫ sheafedSpaceMap f).c [PROOFSTEP] ext -- Porting note : was one liner -- `dsimp, rw category_theory.functor.map_id, rw category.comp_id, erw comap_comp f g, refl` [GOAL] case w.w R S T : CommRingCat f : R ⟶ S g : S ⟶ T U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝)) ⊢ ↑(NatTrans.app ((sheafedSpaceMap (f ≫ g)).c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map (sheafedSpaceMap (f ≫ g)).base).op = (TopologicalSpace.Opens.map (sheafedSpaceMap g ≫ sheafedSpaceMap f).base).op)) (sheafedSpaceObj T).toPresheafedSpace.presheaf) (op U✝)) x✝ = ↑(NatTrans.app (sheafedSpaceMap g ≫ sheafedSpaceMap f).c (op U✝)) x✝ [PROOFSTEP] rw [NatTrans.comp_app, sheafedSpaceMap_c_app, whiskerRight_app, eqToHom_refl] [GOAL] case w.w R S T : CommRingCat f : R ⟶ S g : S ⟶ T U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝)) ⊢ ↑(comap (f ≫ g) (op U✝).unop ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop) (_ : ∀ (x : ↑(PrimeSpectrum.Top ↑T)), x ∈ ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop).carrier → x ∈ ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop).carrier) ≫ (sheafedSpaceObj T).toPresheafedSpace.presheaf.map (NatTrans.app (𝟙 (TopologicalSpace.Opens.map (sheafedSpaceMap (f ≫ g)).base).op) (op U✝))) x✝ = ↑(NatTrans.app (sheafedSpaceMap g ≫ sheafedSpaceMap f).c (op U✝)) x✝ [PROOFSTEP] erw [(sheafedSpaceObj T).presheaf.map_id, Category.comp_id, comap_comp] [GOAL] case w.w R S T : CommRingCat f : R ⟶ S g : S ⟶ T U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝)) ⊢ ↑(RingHom.comp (comap g ?w.w.V ((TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop) ?w.w.hVW) (comap f (op U✝).unop ?w.w.V ?w.w.hUV)) x✝ = ↑(NatTrans.app (sheafedSpaceMap g ≫ sheafedSpaceMap f).c (op U✝)) x✝ case w.w.V R S T : CommRingCat f : R ⟶ S g : S ⟶ T U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝)) ⊢ TopologicalSpace.Opens ↑(PrimeSpectrum.Top ↑S) case w.w.hUV R S T : CommRingCat f : R ⟶ S g : S ⟶ T U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝)) ⊢ ∀ (p : ↑(PrimeSpectrum.Top ↑S)), p ∈ ?w.w.V → ↑(PrimeSpectrum.comap f) p ∈ (op U✝).unop case w.w.hVW R S T : CommRingCat f : R ⟶ S g : S ⟶ T U✝ : TopologicalSpace.Opens ↑↑(sheafedSpaceObj R).toPresheafedSpace x✝ : (forget CommRingCat).obj ((sheafedSpaceObj R).toPresheafedSpace.presheaf.obj (op U✝)) ⊢ ∀ (p : ↑(PrimeSpectrum.Top ↑T)), p ∈ (TopologicalSpace.Opens.map (topMap (f ≫ g))).obj (op U✝).unop → ↑(PrimeSpectrum.comap g) p ∈ ?w.w.V [PROOFSTEP] rfl [GOAL] R : CommRingCatᵒᵖ ⊢ { obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map (𝟙 R) = 𝟙 ({ obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.obj R) [PROOFSTEP] dsimp [GOAL] R : CommRingCatᵒᵖ ⊢ sheafedSpaceMap (𝟙 R.unop) = 𝟙 (sheafedSpaceObj R.unop) [PROOFSTEP] rw [Spec.sheafedSpaceMap_id] [GOAL] X✝ Y✝ Z✝ : CommRingCatᵒᵖ f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map (f ≫ g) = { obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map f ≫ { obj := fun R => sheafedSpaceObj R.unop, map := fun {X Y} f => sheafedSpaceMap f.unop }.map g [PROOFSTEP] dsimp [GOAL] X✝ Y✝ Z✝ : CommRingCatᵒᵖ f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ sheafedSpaceMap (g.unop ≫ f.unop) = sheafedSpaceMap f.unop ≫ sheafedSpaceMap g.unop [PROOFSTEP] rw [Spec.sheafedSpaceMap_comp] [GOAL] X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base r : ↑R U : TopologicalSpace.Opens (PrimeSpectrum ↑R) := PrimeSpectrum.basicOpen r ⊢ (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U) [PROOFSTEP] rw [w] [GOAL] X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) ⊢ α = β [PROOFSTEP] ext : 1 [GOAL] case w X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) ⊢ α.base = β.base [PROOFSTEP] exact w [GOAL] case h X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) ⊢ α.c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf = β.c [PROOFSTEP] apply ((TopCat.Sheaf.pushforward β.base).obj X.sheaf).hom_ext _ PrimeSpectrum.isBasis_basic_opens [GOAL] case h X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) ⊢ ∀ (i : ↑R), NatTrans.app (α.c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen i)) = NatTrans.app β.c (op (PrimeSpectrum.basicOpen i)) [PROOFSTEP] intro r [GOAL] case h X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) r : ↑R ⊢ NatTrans.app (α.c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen r)) = NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) [PROOFSTEP] apply (StructureSheaf.to_basicOpen_epi R r).1 -- Porting note : was a one-liner `simpa using h r` [GOAL] case h.a X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base h : ∀ (r : ↑R), let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) r : ↑R ⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app (α.c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen r)) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) [PROOFSTEP] specialize h r [GOAL] case h.a X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base r : ↑R h : let U := PrimeSpectrum.basicOpen r; (toOpen (↑R) U ≫ NatTrans.app α.c (op U)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op U) = (TopologicalSpace.Opens.map β.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.c (op U) ⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app (α.c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen r)) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) [PROOFSTEP] simp only [sheafedSpaceObj_carrier, Functor.op_obj, unop_op, TopCat.Presheaf.pushforwardObj_obj, sheafedSpaceObj_presheaf, Category.assoc] at h [GOAL] case h.a X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base r : ↑R h : toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) = (TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) ⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app (α.c ≫ whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen r)) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) [PROOFSTEP] rw [NatTrans.comp_app, ← h] [GOAL] case h.a X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base r : ↑R h : toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) = (TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) ⊢ toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen r)) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) = (TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) [PROOFSTEP] congr [GOAL] case h.a.e_a.e_a X : RingedSpace R : CommRingCat α β : X ⟶ sheafedSpaceObj R w : α.base = β.base r : ↑R h : toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app α.c (op (PrimeSpectrum.basicOpen r)) ≫ X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) = (TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) = toOpen (↑R) (PrimeSpectrum.basicOpen r) ≫ NatTrans.app β.c (op (PrimeSpectrum.basicOpen r)) ⊢ NatTrans.app (whiskerRight (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op = (TopologicalSpace.Opens.map β.base).op)) X.presheaf) (op (PrimeSpectrum.basicOpen r)) = X.presheaf.map (eqToHom (_ : (TopologicalSpace.Opens.map α.base).op.obj (op (PrimeSpectrum.basicOpen r)) = (TopologicalSpace.Opens.map β.base).op.obj (op (PrimeSpectrum.basicOpen r)))) [PROOFSTEP] simp [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑S ⊢ toStalk (↑R) (↑(PrimeSpectrum.comap f) p) ≫ PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p = f ≫ toStalk (↑S) p [PROOFSTEP] erw [← toOpen_germ S ⊤ ⟨p, trivial⟩, ← toOpen_germ R ⊤ ⟨PrimeSpectrum.comap f p, trivial⟩, Category.assoc, PresheafedSpace.stalkMap_germ (Spec.sheafedSpaceMap f) ⊤ ⟨p, trivial⟩, Spec.sheafedSpaceMap_c_app, toOpen_comp_comap_assoc] [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑S ⊢ CommRingCat.ofHom f ≫ toOpen (↑S) (↑(TopologicalSpace.Opens.comap (PrimeSpectrum.comap f)) ⊤) ≫ TopCat.Presheaf.germ (Spec.sheafedSpaceObj S).toPresheafedSpace.presheaf { val := p, property := trivial } = f ≫ toOpen ↑S ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑S)) { val := p, property := trivial } [PROOFSTEP] rfl [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑S x : ↑R ⊢ ↑(((stalkIso (↑R) (↑(PrimeSpectrum.comap f) p)).inv ≫ PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p) ≫ (stalkIso (↑S) p).hom) (↑(algebraMap (↑R) (Localization.AtPrime (↑(PrimeSpectrum.comap f) p).asIdeal)) x) = ↑(algebraMap ((fun x => ↑S) x) (Localization.AtPrime p.asIdeal)) (↑f x) [PROOFSTEP] rw [stalkIso_hom, stalkIso_inv, comp_apply, comp_apply, localizationToStalk_of] [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑S x : ↑R ⊢ ↑(stalkToFiberRingHom (↑S) p) (↑(PresheafedSpace.stalkMap (Spec.sheafedSpaceMap f) p) (↑(toStalk (↑R) (↑(PrimeSpectrum.comap f) p)) x)) = ↑(algebraMap ((fun x => ↑S) x) (Localization.AtPrime p.asIdeal)) (↑f x) [PROOFSTEP] erw [stalkMap_toStalk_apply f p x, stalkToFiberRingHom_toStalk] [GOAL] R S : CommRingCat f : R ⟶ S p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) ha : IsUnit (↑(PresheafedSpace.stalkMap (sheafedSpaceMap f) p) a) ⊢ IsUnit a [PROOFSTEP] erw [← localRingHom_comp_stalkIso_apply] at ha [GOAL] R S : CommRingCat f : R ⟶ S p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) ha : IsUnit (↑(localizationToStalk (↑S) p) (↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) p).asIdeal p.asIdeal f (_ : (↑(PrimeSpectrum.comap f) p).asIdeal = (↑(PrimeSpectrum.comap f) p).asIdeal)) (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a))) ⊢ IsUnit a [PROOFSTEP] replace ha := (stalkIso S p).hom.isUnit_map ha [GOAL] R S : CommRingCat f : R ⟶ S p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) ha : IsUnit (↑(stalkIso (↑S) p).hom (↑(localizationToStalk (↑S) p) (↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) p).asIdeal p.asIdeal f (_ : (↑(PrimeSpectrum.comap f) p).asIdeal = (↑(PrimeSpectrum.comap f) p).asIdeal)) (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)))) ⊢ IsUnit a [PROOFSTEP] rw [← comp_apply, show localizationToStalk S p = (stalkIso S p).inv from rfl, Iso.inv_hom_id, id_apply] at ha [GOAL] R S : CommRingCat f : R ⟶ S p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) ha : IsUnit (↑(Localization.localRingHom (↑(PrimeSpectrum.comap f) p).asIdeal p.asIdeal f (_ : (↑(PrimeSpectrum.comap f) p).asIdeal = (↑(PrimeSpectrum.comap f) p).asIdeal)) (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a)) ⊢ IsUnit a [PROOFSTEP] replace ha := IsLocalRingHom.map_nonunit (R := Localization.AtPrime (PrimeSpectrum.comap f p).asIdeal) _ ha [GOAL] R S : CommRingCat f : R ⟶ S p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) ha : IsUnit (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a) ⊢ IsUnit a [PROOFSTEP] convert RingHom.isUnit_map (stalkIso R (PrimeSpectrum.comap f p)).inv ha [GOAL] case h.e'_3.h R S : CommRingCat f : R ⟶ S p : ↑↑(locallyRingedSpaceObj S).toSheafedSpace.toPresheafedSpace a : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) ha : IsUnit (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a) e_1✝ : ↑(PresheafedSpace.stalk (locallyRingedSpaceObj R).toSheafedSpace.toPresheafedSpace (↑(sheafedSpaceMap f).base p)) = (fun x => ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑R)) (↑(PrimeSpectrum.comap f) p))) (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a) ⊢ a = ↑(stalkIso (↑R) (↑(PrimeSpectrum.comap f) p)).inv (↑(stalkToFiberRingHom (↑R) (↑(PrimeSpectrum.comap f) p)) a) [PROOFSTEP] erw [← comp_apply, show stalkToFiberRingHom R _ = (stalkIso _ _).hom from rfl, Iso.hom_inv_id, id_apply] [GOAL] R : CommRingCat ⊢ (locallyRingedSpaceMap (𝟙 R)).val = (𝟙 (locallyRingedSpaceObj R)).val [PROOFSTEP] rw [Spec.locallyRingedSpaceMap_val, Spec.sheafedSpaceMap_id] [GOAL] R : CommRingCat ⊢ 𝟙 (sheafedSpaceObj R) = (𝟙 (locallyRingedSpaceObj R)).val [PROOFSTEP] rfl [GOAL] R S T : CommRingCat f : R ⟶ S g : S ⟶ T ⊢ (locallyRingedSpaceMap (f ≫ g)).val = (locallyRingedSpaceMap g ≫ locallyRingedSpaceMap f).val [PROOFSTEP] rw [Spec.locallyRingedSpaceMap_val, Spec.sheafedSpaceMap_comp] [GOAL] R S T : CommRingCat f : R ⟶ S g : S ⟶ T ⊢ sheafedSpaceMap g ≫ sheafedSpaceMap f = (locallyRingedSpaceMap g ≫ locallyRingedSpaceMap f).val [PROOFSTEP] rfl [GOAL] R : CommRingCatᵒᵖ ⊢ { obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map (𝟙 R) = 𝟙 ({ obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.obj R) [PROOFSTEP] dsimp [GOAL] R : CommRingCatᵒᵖ ⊢ locallyRingedSpaceMap (𝟙 R.unop) = 𝟙 (locallyRingedSpaceObj R.unop) [PROOFSTEP] rw [Spec.locallyRingedSpaceMap_id] [GOAL] X✝ Y✝ Z✝ : CommRingCatᵒᵖ f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map (f ≫ g) = { obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map f ≫ { obj := fun R => locallyRingedSpaceObj R.unop, map := fun {X Y} f => locallyRingedSpaceMap f.unop }.map g [PROOFSTEP] dsimp [GOAL] X✝ Y✝ Z✝ : CommRingCatᵒᵖ f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ locallyRingedSpaceMap (g.unop ≫ f.unop) = locallyRingedSpaceMap f.unop ≫ locallyRingedSpaceMap g.unop [PROOFSTEP] rw [Spec.locallyRingedSpaceMap_comp] [GOAL] R : CommRingCat ⊢ IsIso (toSpecΓ R) [PROOFSTEP] cases R [GOAL] case mk α✝ : Type ?u.412830 str✝ : CommRing α✝ ⊢ IsIso (toSpecΓ (Bundled.mk α✝)) [PROOFSTEP] apply StructureSheaf.isIso_to_global [GOAL] R S : CommRingCat f : R ⟶ S ⊢ f ≫ toSpecΓ S = toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op [PROOFSTEP] refine RingHom.ext fun x => Subtype.ext <| funext fun x' => ?_ [GOAL] R S : CommRingCat f : R ⟶ S x : ↑R x' : { x // x ∈ (op ⊤).unop } ⊢ ↑(↑(f ≫ toSpecΓ S) x) x' = ↑(↑(toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op) x) x' [PROOFSTEP] symm [GOAL] R S : CommRingCat f : R ⟶ S x : ↑R x' : { x // x ∈ (op ⊤).unop } ⊢ ↑(↑(toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op) x) x' = ↑(↑(f ≫ toSpecΓ S) x) x' [PROOFSTEP] apply Localization.localRingHom_to_map [GOAL] X Y : CommRingCat f : X ⟶ Y ⊢ (𝟭 CommRingCat).map f ≫ ((fun R => asIso (toSpecΓ R)) Y).hom = ((fun R => asIso (toSpecΓ R)) X).hom ≫ (Spec.toLocallyRingedSpace.rightOp ⋙ Γ).map f [PROOFSTEP] exact Spec_Γ_naturality (R := X) (S := Y) f [GOAL] R : CommRingCat M : Submonoid ↑R x : PrimeSpectrum (Localization M) ⊢ IsIso (PresheafedSpace.stalkMap (Spec.toPresheafedSpace.map (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op) x) [PROOFSTEP] erw [← localRingHom_comp_stalkIso] -- Porting note: replaced `apply (config := { instances := false })`. -- See https://github.com/leanprover/lean4/issues/2273 [GOAL] R : CommRingCat M : Submonoid ↑R x : PrimeSpectrum (Localization M) ⊢ IsIso ((stalkIso (↑(op (CommRingCat.of ↑R)).unop) (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x)).hom ≫ Localization.localRingHom (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal x.asIdeal (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop (_ : (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal = (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal) ≫ (stalkIso (↑(op (CommRingCat.of (Localization M))).unop) x).inv) [PROOFSTEP] refine @IsIso.comp_isIso _ _ _ _ _ _ _ _ (?_) [GOAL] R : CommRingCat M : Submonoid ↑R x : PrimeSpectrum (Localization M) ⊢ IsIso (Localization.localRingHom (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal x.asIdeal (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop (_ : (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal = (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal) ≫ (stalkIso (↑(op (CommRingCat.of (Localization M))).unop) x).inv) [PROOFSTEP] refine @IsIso.comp_isIso _ _ _ _ _ _ _ (?_) _ /- I do not know why this is defeq to the goal, but I'm happy to accept that it is. -/ [GOAL] R : CommRingCat M : Submonoid ↑R x : PrimeSpectrum (Localization M) ⊢ IsIso (Localization.localRingHom (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal x.asIdeal (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop (_ : (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal = (↑(PrimeSpectrum.comap (CommRingCat.ofHom (algebraMap (↑R) (Localization M))).op.unop) x).asIdeal)) [PROOFSTEP] show IsIso (IsLocalization.localizationLocalizationAtPrimeIsoLocalization M x.asIdeal).toRingEquiv.toCommRingCatIso.hom [GOAL] R : CommRingCat M : Submonoid ↑R x : PrimeSpectrum (Localization M) ⊢ IsIso (RingEquiv.toCommRingCatIso (AlgEquiv.toRingEquiv (IsLocalization.localizationLocalizationAtPrimeIsoLocalization M x.asIdeal))).hom [PROOFSTEP] infer_instance [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R ⊢ f ≫ toPushforwardStalk f p = toStalk (↑R) p ≫ (TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap f).c [PROOFSTEP] rw [StructureSheaf.toStalk] [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R ⊢ f ≫ toPushforwardStalk f p = (toOpen ↑R ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑R)) { val := p, property := True.intro }) ≫ (TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap f).c [PROOFSTEP] erw [Category.assoc] [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R ⊢ f ≫ toPushforwardStalk f p = toOpen ↑R ⊤ ≫ TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (structureSheaf ↑R)) { val := p, property := True.intro } ≫ (TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap f).c [PROOFSTEP] rw [TopCat.Presheaf.stalkFunctor_map_germ] [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R ⊢ f ≫ toPushforwardStalk f p = toOpen ↑R ⊤ ≫ NatTrans.app (Spec.sheafedSpaceMap f).c (op ⊤) ≫ TopCat.Presheaf.germ ((Spec.sheafedSpaceMap f).base _* (Spec.sheafedSpaceObj S).toPresheafedSpace.presheaf) { val := p, property := True.intro } [PROOFSTEP] exact Spec_Γ_naturality_assoc f _ [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] obtain ⟨U, hp, s, e⟩ := TopCat.Presheaf.germ_exist (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf S).val) _ y [GOAL] case intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hp }) s = y ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] obtain ⟨_, ⟨r, rfl⟩, hpr : p ∈ PrimeSpectrum.basicOpen r, hrU : PrimeSpectrum.basicOpen r ≤ U⟩ := PrimeSpectrum.isTopologicalBasis_basic_opens.exists_subset_of_mem_open (show p ∈ U from hp) U.2 [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hp }) s = y r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] change PrimeSpectrum.basicOpen r ≤ U at hrU [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hp }) s = y r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] replace e := ((Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE hrU) ⟨p, hpr⟩ _).trans e [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s) = y ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] set s' := (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).map (homOfLE hrU).op s with h [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) := ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] replace e : ((Spec.topMap (algebraMap R S) _* (structureSheaf S).val).germ ⟨p, hpr⟩) s' = y [GOAL] case e R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) := ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y [PROOFSTEP] rw [h] [GOAL] case e R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) := ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s) = y [PROOFSTEP] exact e [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) := ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] clear_value s' [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) U : TopologicalSpace.Opens ↑(Spec.topObj R) hp : p ∈ U s : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op U)) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r hrU : PrimeSpectrum.basicOpen r ≤ U s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) h : s' = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) s e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] clear! U [GOAL] case intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] obtain ⟨⟨s, ⟨_, n, rfl⟩⟩, hsn⟩ := @IsLocalization.surj _ _ _ _ _ _ (StructureSheaf.IsLocalization.to_basicOpen S <| algebraMap R S r) s' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] refine' ⟨⟨s, ⟨r, hpr⟩ ^ n⟩, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ (s, { val := r, property := hpr } ^ n).snd • y = ↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst [PROOFSTEP] rw [Submonoid.smul_def, Algebra.smul_def, algebraMap_pushforward_stalk, toPushforwardStalk, comp_apply, comp_apply] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd)) * y = ↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst [PROOFSTEP] iterate 2 erw [← (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE le_top) ⟨p, hpr⟩] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd)) * y = ↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst [PROOFSTEP] erw [← (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE le_top) ⟨p, hpr⟩] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) * y = ↑(toPushforwardStalkAlgHom R S p) (s, { val := r, property := hpr } ^ n).fst [PROOFSTEP] erw [← (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).germ_res_apply (homOfLE le_top) ⟨p, hpr⟩] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) * y = ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] rw [← e] -- Porting note : without this `change`, Lean doesn't know how to rewrite `map_mul` [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) * ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] let f := TopCat.Presheaf.germ (Spec.topMap (algebraMap R S) _* (structureSheaf S).val) ⟨p, hpr⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f✝ : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶ TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } := TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr } ⊢ ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) * ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] change f _ * f _ = f _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f✝ : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶ TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } := TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr } ⊢ ↑f (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) * ↑f s' = ↑f (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] rw [← map_mul, mul_comm] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f✝ : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) ↑(s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).snd = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (s, { val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) }).fst f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶ TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } := TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr } ⊢ ↑f (s' * ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) = ↑f (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] dsimp only [Subtype.coe_mk] at hsn [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f✝ : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (↑(algebraMap ↑R ↑S) r ^ n) = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) s f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶ TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } := TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr } ⊢ ↑f (s' * ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) = ↑f (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] rw [← map_pow (algebraMap R S)] at hsn [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro R S : CommRingCat f✝ : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p) r : ↑R hpr : p ∈ PrimeSpectrum.basicOpen r s' : (forget CommRingCat).obj ((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r))) e : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr }) s' = y s : ↑S n : ℕ hsn : s' * ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) (↑(algebraMap ↑R ↑S) (r ^ n)) = ↑(algebraMap ↑S ↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) s f : (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).obj (op (PrimeSpectrum.basicOpen r)) ⟶ TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) ↑{ val := p, property := hpr } := TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := hpr } ⊢ ↑f (s' * ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (↑(algebraMap ↑R ↑S) ↑(s, { val := r, property := hpr } ^ n).snd))) = ↑f (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE (_ : PrimeSpectrum.basicOpen r ≤ ⊤)).op) (↑(toOpen ↑S ⊤) (s, { val := r, property := hpr } ^ n).fst)) [PROOFSTEP] congr 1 [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S ⊢ IsLocalizedModule (Ideal.primeCompl p.asIdeal) (AlgHom.toLinearMap (toPushforwardStalkAlgHom R S p)) [PROOFSTEP] apply IsLocalizedModule.mkOfAlgebra [GOAL] case h₁ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S ⊢ ∀ (x : ↑R), x ∈ Ideal.primeCompl p.asIdeal → IsUnit (↑(algebraMap ↑R ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)) x) [PROOFSTEP] intro x hx [GOAL] case h₁ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑R hx : x ∈ Ideal.primeCompl p.asIdeal ⊢ IsUnit (↑(algebraMap ↑R ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)) x) [PROOFSTEP] rw [algebraMap_pushforward_stalk, toPushforwardStalk_comp] [GOAL] case h₁ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑R hx : x ∈ Ideal.primeCompl p.asIdeal ⊢ IsUnit (↑(toStalk (↑R) p ≫ (TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap (algebraMap ↑R ↑S)).c) x) [PROOFSTEP] change IsUnit ((TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap (algebraMap ↑R ↑S)).c _) [GOAL] case h₁ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑R hx : x ∈ Ideal.primeCompl p.asIdeal ⊢ IsUnit (↑((TopCat.Presheaf.stalkFunctor CommRingCat p).map (Spec.sheafedSpaceMap (algebraMap ↑R ↑S)).c) (↑(toStalk (↑R) p) x)) [PROOFSTEP] exact (IsLocalization.map_units ((structureSheaf R).presheaf.stalk p) ⟨x, hx⟩).map _ [GOAL] case h₂ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S ⊢ ∀ (y : ↑(TopCat.Presheaf.stalk (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) p)), ∃ x, x.snd • y = ↑(toPushforwardStalkAlgHom R S p) x.fst [PROOFSTEP] apply isLocalizedModule_toPushforwardStalkAlgHom_aux [GOAL] case h₃ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S ⊢ ∀ (x : ↑S), ↑(toPushforwardStalkAlgHom R S p) x = 0 → ∃ m, m • x = 0 [PROOFSTEP] intro x hx [GOAL] case h₃ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : ↑(toPushforwardStalkAlgHom R S p) x = 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] rw [toPushforwardStalkAlgHom_apply, ← (toPushforwardStalk (algebraMap R S) p).map_zero, toPushforwardStalk] at hx [GOAL] case h₃ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = ↑(toOpen ↑S ⊤ ≫ TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] change _ = (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) (⟨p, trivial⟩ : (⊤ : TopologicalSpace.Opens (PrimeSpectrum R))) (toOpen S ⊤ 0)) at hx [GOAL] case h₃ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) 0) ⊢ ∃ m, m • x = 0 [PROOFSTEP] rw [map_zero] at hx [GOAL] case h₃ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = ↑(TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] change (forget CommRingCat).map _ _ = (forget _).map _ _ at hx [GOAL] case h₃ R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] obtain ⟨U, hpU, i₁, i₂, e⟩ := TopCat.Presheaf.germ_eq _ _ _ _ _ _ hx [GOAL] case h₃.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ e : ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x) = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] obtain ⟨_, ⟨r, rfl⟩, hpr, hrU⟩ := PrimeSpectrum.isTopologicalBasis_basic_opens.exists_subset_of_mem_open (show p ∈ U.1 from hpU) U.2 [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ e : ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x) = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0 r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : (fun r => ↑(PrimeSpectrum.basicOpen r)) r ⊆ U.carrier ⊢ ∃ m, m • x = 0 [PROOFSTEP] change PrimeSpectrum.basicOpen r ≤ U at hrU [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ e : ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x) = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0 r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U ⊢ ∃ m, m • x = 0 [PROOFSTEP] apply_fun (Spec.topMap (algebraMap R S) _* (structureSheaf S).1).map (homOfLE hrU).op at e [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₁.op) (↑(toOpen ↑S ⊤) x)) = ↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map (homOfLE hrU).op) (↑((Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val).map i₂.op) 0) ⊢ ∃ m, m • x = 0 [PROOFSTEP] simp only [TopCat.Presheaf.pushforwardObj_map, Functor.op_map, map_zero, ← comp_apply, toOpen_res] at e [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) ⊢ ∃ m, m • x = 0 [PROOFSTEP] have : toOpen S (PrimeSpectrum.basicOpen <| algebraMap R S r) x = 0 := by refine' Eq.trans _ e; rfl [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) ⊢ ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 [PROOFSTEP] refine' Eq.trans _ e [GOAL] R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) ⊢ ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) [PROOFSTEP] rfl [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] have := (@IsLocalization.mk'_one _ _ _ _ _ _ (StructureSheaf.IsLocalization.to_basicOpen S <| algebraMap R S r) x).trans this [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 this : IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] obtain ⟨⟨_, n, rfl⟩, e⟩ := (IsLocalization.mk'_eq_zero_iff _ _).mp this [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e✝ : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 this : IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } * x = 0 ⊢ ∃ m, m • x = 0 [PROOFSTEP] refine' ⟨⟨r, hpr⟩ ^ n, _⟩ [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e✝ : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 this : IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } * x = 0 ⊢ { val := r, property := hpr } ^ n • x = 0 [PROOFSTEP] rw [Submonoid.smul_def, Algebra.smul_def] -- Porting note : manually rewrite `Submonoid.coe_pow` [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e✝ : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 this : IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } * x = 0 ⊢ ↑(algebraMap ↑R ↑S) ↑({ val := r, property := hpr } ^ n) * x = 0 [PROOFSTEP] change (algebraMap R S) (r ^ n) * x = 0 [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e✝ : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 this : IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } * x = 0 ⊢ ↑(algebraMap ↑R ↑S) (r ^ n) * x = 0 [PROOFSTEP] rw [map_pow] [GOAL] case h₃.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro R S : CommRingCat f : R ⟶ S p : PrimeSpectrum ↑R inst✝ : Algebra ↑R ↑S x : ↑S hx : (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) (↑(toOpen ↑S ⊤) x) = (forget CommRingCat).map (TopCat.Presheaf.germ (Spec.topMap (algebraMap ↑R ↑S) _* (structureSheaf ↑S).val) { val := p, property := trivial }) 0 U : TopologicalSpace.Opens ↑(Spec.topObj R) hpU : p ∈ U i₁ : U ⟶ ⊤ i₂ : U ⟶ ⊤ r : ↑R hpr : p ∈ (fun r => ↑(PrimeSpectrum.basicOpen r)) r hrU : PrimeSpectrum.basicOpen r ≤ U e✝ : ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₁.op.unop).op) (↑(toOpen ↑S ⊤) x)) = ↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map (homOfLE hrU).op.unop).op) (↑((structureSheaf ↑S).val.map ((TopologicalSpace.Opens.map (Spec.topMap (algebraMap ↑R ↑S))).map i₂.op.unop).op) 0) this✝ : ↑(toOpen (↑S) (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))) x = 0 this : IsLocalization.mk' (↑((structureSheaf ↑S).val.obj (op (PrimeSpectrum.basicOpen (↑(algebraMap ↑R ↑S) r))))) x 1 = 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) y = (fun x x_1 => x ^ x_1) (↑(algebraMap ↑R ↑S) r) n) } * x = 0 ⊢ ↑(algebraMap ↑R ↑S) r ^ n * x = 0 [PROOFSTEP] exact e
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Spec", "llama_tokens": 38961}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β s : Set α x : β h : IsLUB (↑f '' s) x ⊢ ∀ {x y : α}, ↑f x ≤ ↑f y ↔ x ≤ y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β s : Set α x : β h : IsLUB s (↑(symm f) x) ⊢ ∀ {x y : β}, ↑(symm f) x ≤ ↑(symm f) y ↔ x ≤ y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β s : Set α x : α ⊢ IsLUB (↑f '' s) (↑f x) ↔ IsLUB s x [PROOFSTEP] rw [isLUB_image, f.symm_apply_apply] [GOAL] α : Type u_2 β : Type u_1 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β s : Set β x : α ⊢ IsLUB (↑f ⁻¹' s) x ↔ IsLUB s (↑f x) [PROOFSTEP] rw [← f.symm_symm, ← image_eq_preimage, isLUB_image] [GOAL] α : Type u_2 β : Type u_1 inst✝¹ : Preorder α inst✝ : Preorder β f : α ≃o β s : Set β x : β ⊢ IsLUB (↑f ⁻¹' s) (↑(symm f) x) ↔ IsLUB s x [PROOFSTEP] rw [isLUB_preimage, f.apply_symm_apply]
{"mathlib_filename": "Mathlib.Order.Bounds.OrderIso", "llama_tokens": 562}
[GOAL] P : Type u_1 inst✝ : Preorder P IF : PrimePair P ⊢ IsProper IF.I [PROOFSTEP] cases' IF.F.nonempty with w h [GOAL] case intro P : Type u_1 inst✝ : Preorder P IF : PrimePair P w : P h : w ∈ ↑IF.F ⊢ IsProper IF.I [PROOFSTEP] apply isProper_of_not_mem (_ : w ∉ IF.I) [GOAL] P : Type u_1 inst✝ : Preorder P IF : PrimePair P w : P h : w ∈ ↑IF.F ⊢ ¬w ∈ IF.I [PROOFSTEP] rwa [← IF.compl_I_eq_F] at h [GOAL] P : Type u_1 inst✝ : Preorder P IF : PrimePair P src✝ : IsProper IF.I := I_isProper IF ⊢ IsPFilter (↑IF.I)ᶜ [PROOFSTEP] rw [IF.compl_I_eq_F] [GOAL] P : Type u_1 inst✝ : Preorder P IF : PrimePair P src✝ : IsProper IF.I := I_isProper IF ⊢ IsPFilter ↑IF.F [PROOFSTEP] exact IF.F.isPFilter [GOAL] P : Type u_1 inst✝ : SemilatticeInf P x✝ y✝ : P I : Ideal P hI : IsPrime I x y : P ⊢ x ⊓ y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] contrapose! [GOAL] P : Type u_1 inst✝ : SemilatticeInf P x✝ y✝ : P I : Ideal P hI : IsPrime I x y : P ⊢ ¬x ∈ I ∧ ¬y ∈ I → ¬x ⊓ y ∈ I [PROOFSTEP] let F := hI.compl_filter.toPFilter [GOAL] P : Type u_1 inst✝ : SemilatticeInf P x✝ y✝ : P I : Ideal P hI : IsPrime I x y : P F : PFilter P := IsPFilter.toPFilter (_ : IsPFilter (↑I)ᶜ) ⊢ ¬x ∈ I ∧ ¬y ∈ I → ¬x ⊓ y ∈ I [PROOFSTEP] show x ∈ F ∧ y ∈ F → x ⊓ y ∈ F [GOAL] P : Type u_1 inst✝ : SemilatticeInf P x✝ y✝ : P I : Ideal P hI : IsPrime I x y : P F : PFilter P := IsPFilter.toPFilter (_ : IsPFilter (↑I)ᶜ) ⊢ x ∈ F ∧ y ∈ F → x ⊓ y ∈ F [PROOFSTEP] exact fun h => inf_mem h.1 h.2 [GOAL] P : Type u_1 inst✝¹ : SemilatticeInf P x y : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I ⊢ IsPrime I [PROOFSTEP] rw [IsPrime_iff] [GOAL] P : Type u_1 inst✝¹ : SemilatticeInf P x y : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I ⊢ IsProper I ∧ IsPFilter (↑I)ᶜ [PROOFSTEP] use‹_› [GOAL] case right P : Type u_1 inst✝¹ : SemilatticeInf P x y : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I ⊢ IsPFilter (↑I)ᶜ [PROOFSTEP] refine .of_def ?_ ?_ ?_ [GOAL] case right.refine_1 P : Type u_1 inst✝¹ : SemilatticeInf P x y : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I ⊢ Set.Nonempty (↑I)ᶜ [PROOFSTEP] exact Set.nonempty_compl.2 (I.IsProper_iff.1 ‹_›) [GOAL] case right.refine_2 P : Type u_1 inst✝¹ : SemilatticeInf P x y : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I ⊢ DirectedOn (fun x x_1 => x ≥ x_1) (↑I)ᶜ [PROOFSTEP] intro x hx y hy [GOAL] case right.refine_2 P : Type u_1 inst✝¹ : SemilatticeInf P x✝ y✝ : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I x : P hx : x ∈ (↑I)ᶜ y : P hy : y ∈ (↑I)ᶜ ⊢ ∃ z, z ∈ (↑I)ᶜ ∧ (fun x x_1 => x ≥ x_1) x z ∧ (fun x x_1 => x ≥ x_1) y z [PROOFSTEP] exact ⟨x ⊓ y, fun h => (hI h).elim hx hy, inf_le_left, inf_le_right⟩ [GOAL] case right.refine_3 P : Type u_1 inst✝¹ : SemilatticeInf P x y : P I : Ideal P inst✝ : IsProper I hI : ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I ⊢ ∀ {x y : P}, x ≤ y → x ∈ (↑I)ᶜ → y ∈ (↑I)ᶜ [PROOFSTEP] exact @mem_compl_of_ge _ _ _ [GOAL] P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I ⊢ IsPrime I [PROOFSTEP] rw [isPrime_iff_mem_or_mem] [GOAL] P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I ⊢ ∀ {x y : P}, x ⊓ y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] intro x y [GOAL] P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P ⊢ x ⊓ y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] contrapose! [GOAL] P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P ⊢ ¬x ∈ I ∧ ¬y ∈ I → ¬x ⊓ y ∈ I [PROOFSTEP] rintro ⟨hx, hynI⟩ hxy [GOAL] case intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I ⊢ False [PROOFSTEP] apply hynI [GOAL] case intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I ⊢ y ∈ I [PROOFSTEP] let J := I ⊔ principal x [GOAL] case intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x ⊢ y ∈ I [PROOFSTEP] have hJuniv : (J : Set P) = Set.univ := IsMaximal.maximal_proper (lt_sup_principal_of_not_mem ‹_›) [GOAL] case intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ ⊢ y ∈ I [PROOFSTEP] have hyJ : y ∈ ↑J := Set.eq_univ_iff_forall.mp hJuniv y [GOAL] case intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ hyJ : y ∈ ↑J ⊢ y ∈ I [PROOFSTEP] rw [coe_sup_eq] at hyJ [GOAL] case intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ hyJ : y ∈ {x_1 | ∃ i, i ∈ I ∧ ∃ j, j ∈ principal x ∧ x_1 = i ⊔ j} ⊢ y ∈ I [PROOFSTEP] rcases hyJ with ⟨a, ha, b, hb, hy⟩ [GOAL] case intro.intro.intro.intro.intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ a : P ha : a ∈ I b : P hb : b ∈ principal x hy : y = a ⊔ b ⊢ y ∈ I [PROOFSTEP] rw [hy] [GOAL] case intro.intro.intro.intro.intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ a : P ha : a ∈ I b : P hb : b ∈ principal x hy : y = a ⊔ b ⊢ a ⊔ b ∈ I [PROOFSTEP] refine' sup_mem ha (I.lower (le_inf hb _) hxy) [GOAL] case intro.intro.intro.intro.intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ a : P ha : a ∈ I b : P hb : b ∈ principal x hy : y = a ⊔ b ⊢ b ≤ y [PROOFSTEP] rw [hy] [GOAL] case intro.intro.intro.intro.intro P : Type u_1 inst✝¹ : DistribLattice P I : Ideal P inst✝ : IsMaximal I x y : P hx : ¬x ∈ I hynI : ¬y ∈ I hxy : x ⊓ y ∈ I J : Ideal P := I ⊔ principal x hJuniv : ↑J = Set.univ a : P ha : a ∈ I b : P hb : b ∈ principal x hy : y = a ⊔ b ⊢ b ≤ a ⊔ b [PROOFSTEP] exact le_sup_right [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsPrime I ⊢ x ∈ I ∨ xᶜ ∈ I [PROOFSTEP] apply hI.mem_or_mem [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsPrime I ⊢ x ⊓ xᶜ ∈ I [PROOFSTEP] rw [inf_compl_eq_bot] [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsPrime I ⊢ ⊥ ∈ I [PROOFSTEP] exact I.bot_mem [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x : P I : Ideal P inst✝ : IsProper I h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I ⊢ IsPrime I [PROOFSTEP] simp only [isPrime_iff_mem_or_mem, or_iff_not_imp_left] [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x : P I : Ideal P inst✝ : IsProper I h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I ⊢ ∀ {x y : P}, x ⊓ y ∈ I → ¬x ∈ I → y ∈ I [PROOFSTEP] intro x y hxy hxI [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsProper I h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I x y : P hxy : x ⊓ y ∈ I hxI : ¬x ∈ I ⊢ y ∈ I [PROOFSTEP] have hxcI : xᶜ ∈ I := h.resolve_left hxI [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsProper I h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I x y : P hxy : x ⊓ y ∈ I hxI : ¬x ∈ I hxcI : xᶜ ∈ I ⊢ y ∈ I [PROOFSTEP] have ass : x ⊓ y ⊔ y ⊓ xᶜ ∈ I := sup_mem hxy (I.lower inf_le_right hxcI) [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsProper I h : ∀ {x : P}, x ∈ I ∨ xᶜ ∈ I x y : P hxy : x ⊓ y ∈ I hxI : ¬x ∈ I hxcI : xᶜ ∈ I ass : x ⊓ y ⊔ y ⊓ xᶜ ∈ I ⊢ y ∈ I [PROOFSTEP] rwa [inf_comm, sup_inf_inf_compl] at ass [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x : P I : Ideal P inst✝ : IsPrime I ⊢ IsMaximal I [PROOFSTEP] simp only [IsMaximal_iff, Set.eq_univ_iff_forall, IsPrime.toIsProper, true_and] [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x : P I : Ideal P inst✝ : IsPrime I ⊢ ∀ ⦃J : Ideal P⦄, I < J → ∀ (x : P), x ∈ ↑J [PROOFSTEP] intro J hIJ x [GOAL] P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsPrime I J : Ideal P hIJ : I < J x : P ⊢ x ∈ ↑J [PROOFSTEP] rcases Set.exists_of_ssubset hIJ with ⟨y, hyJ, hyI⟩ [GOAL] case intro.intro P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsPrime I J : Ideal P hIJ : I < J x y : P hyJ : y ∈ ↑J hyI : ¬y ∈ ↑I ⊢ x ∈ ↑J [PROOFSTEP] suffices ass : x ⊓ y ⊔ x ⊓ yᶜ ∈ J [GOAL] case intro.intro P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsPrime I J : Ideal P hIJ : I < J x y : P hyJ : y ∈ ↑J hyI : ¬y ∈ ↑I ass : x ⊓ y ⊔ x ⊓ yᶜ ∈ J ⊢ x ∈ ↑J [PROOFSTEP] rwa [sup_inf_inf_compl] at ass [GOAL] case ass P : Type u_1 inst✝¹ : BooleanAlgebra P x✝ : P I : Ideal P inst✝ : IsPrime I J : Ideal P hIJ : I < J x y : P hyJ : y ∈ ↑J hyI : ¬y ∈ ↑I ⊢ x ⊓ y ⊔ x ⊓ yᶜ ∈ J [PROOFSTEP] exact sup_mem (J.lower inf_le_right hyJ) (hIJ.le <| I.lower inf_le_right <| IsPrime.mem_compl_of_not_mem ‹_› hyI) [GOAL] P : Type u_1 inst✝ : Preorder P IF : Ideal.PrimePair P ⊢ IsIdeal (↑IF.F)ᶜ [PROOFSTEP] rw [IF.compl_F_eq_I] [GOAL] P : Type u_1 inst✝ : Preorder P IF : Ideal.PrimePair P ⊢ IsIdeal ↑IF.I [PROOFSTEP] exact IF.I.isIdeal
{"mathlib_filename": "Mathlib.Order.PrimeIdeal", "llama_tokens": 5405}
[GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f hz : z ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ ∃ c N acd, f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] rw [← submodule_span_eq, Finsupp.span_eq_range_total, LinearMap.mem_range] at hz [GOAL] R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f hz : ∃ y, ↑(Finsupp.total (↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) (Away f) (Away f) Subtype.val) y = z ⊢ ∃ c N acd, f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] rcases hz with ⟨c, eq1⟩ [GOAL] case intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ↑(Finsupp.total (↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) (Away f) (Away f) Subtype.val) c = z ⊢ ∃ c N acd, f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] rw [Finsupp.total_apply, Finsupp.sum] at eq1 [GOAL] case intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z ⊢ ∃ c N acd, f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] obtain ⟨⟨_, N, rfl⟩, hN⟩ := IsLocalization.exist_integer_multiples_of_finset (Submonoid.powers f) (c.support.image c) [GOAL] case intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z N : ℕ hN : ∀ (a : Away f), a ∈ image (↑c) c.support → IsLocalization.IsInteger A (↑{ val := (fun x x_1 => x ^ x_1) f N, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } • a) ⊢ ∃ c N acd, f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] choose acd hacd using hN [GOAL] case intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z N : ℕ acd : (a : Away f) → a ∈ image (↑c) c.support → A hacd : ∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support), ↑(algebraMap A (Away f)) (acd a a_1) = ↑{ val := (fun x x_1 => x ^ x_1) f N, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } • a ⊢ ∃ c N acd, f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] refine' ⟨c, N, acd, _⟩ [GOAL] case intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z N : ℕ acd : (a : Away f) → a ∈ image (↑c) c.support → A hacd : ∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support), ↑(algebraMap A (Away f)) (acd a a_1) = ↑{ val := (fun x x_1 => x ^ x_1) f N, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } • a ⊢ f ^ N • z = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] rw [← eq1, smul_sum, map_sum, ← sum_attach] [GOAL] case intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z N : ℕ acd : (a : Away f) → a ∈ image (↑c) c.support → A hacd : ∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support), ↑(algebraMap A (Away f)) (acd a a_1) = ↑{ val := (fun x x_1 => x ^ x_1) f N, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } • a ⊢ ∑ x_1 in attach c.support, f ^ N • ↑c ↑x_1 • ↑↑x_1 = ∑ x_1 in attach c.support, ↑(algebraMap A (Away f)) (acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] congr 1 [GOAL] case intro.intro.mk.intro.e_f R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z N : ℕ acd : (a : Away f) → a ∈ image (↑c) c.support → A hacd : ∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support), ↑(algebraMap A (Away f)) (acd a a_1) = ↑{ val := (fun x x_1 => x ^ x_1) f N, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } • a ⊢ (fun x_1 => f ^ N • ↑c ↑x_1 • ↑↑x_1) = fun x_1 => ↑(algebraMap A (Away f)) (acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] ext i [GOAL] case intro.intro.mk.intro.e_f.h R : Type u_1 A : Type u_2 inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A 𝒜 : ℕ → Submodule R A inst✝¹ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) inst✝ : DecidableEq (Away f) z : Away f c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f eq1 : ∑ a in c.support, ↑c a • ↑a = z N : ℕ acd : (a : Away f) → a ∈ image (↑c) c.support → A hacd : ∀ (a : Away f) (a_1 : a ∈ image (↑c) c.support), ↑(algebraMap A (Away f)) (acd a a_1) = ↑{ val := (fun x x_1 => x ^ x_1) f N, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f N) } • a i : { x_1 // x_1 ∈ c.support } ⊢ f ^ N • ↑c ↑i • ↑↑i = ↑(algebraMap A (Away f)) (acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) [PROOFSTEP] rw [_root_.map_mul, hacd, (Classical.choose_spec i.1.2).2, smul_eq_mul, smul_mul_assoc] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) ⊢ Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] by_contra rid [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) rid : ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) ⊢ False [PROOFSTEP] rw [Set.not_disjoint_iff] at rid [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) rid : ∃ x_1, x_1 ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ∧ x_1 ∈ ↑(Submonoid.powers f) ⊢ False [PROOFSTEP] choose g hg using rid [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) g : A hg : g ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ∧ g ∈ ↑(Submonoid.powers f) ⊢ False [PROOFSTEP] obtain ⟨hg1, ⟨k, rfl⟩⟩ := hg [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : (fun x x_1 => x ^ x_1) f k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ⊢ False [PROOFSTEP] by_cases k_ineq : 0 < k [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : (fun x x_1 => x ^ x_1) f k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) k_ineq : 0 < k ⊢ False [PROOFSTEP] erw [x.1.isPrime.pow_mem_iff_mem _ k_ineq] at hg1 [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : f ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal k_ineq : 0 < k ⊢ False [PROOFSTEP] exact x.2 hg1 [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : (fun x x_1 => x ^ x_1) f k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) k_ineq : ¬0 < k ⊢ False [PROOFSTEP] dsimp at hg1 [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : f ^ k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) k_ineq : ¬0 < k ⊢ False [PROOFSTEP] erw [show k = 0 by linarith, pow_zero, ← Ideal.eq_top_iff_one] at hg1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : f ^ k ∈ ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) k_ineq : ¬0 < k ⊢ k = 0 [PROOFSTEP] linarith [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal = ⊤ k_ineq : ¬0 < k ⊢ False [PROOFSTEP] apply x.1.isPrime.1 [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) k : ℕ hg1 : HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal = ⊤ k_ineq : ¬0 < k ⊢ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal = ⊤ [PROOFSTEP] exact hg1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) ⊢ carrier x ≠ ⊤ [PROOFSTEP] have eq_top := disjoint x [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) ⊢ carrier x ≠ ⊤ [PROOFSTEP] classical contrapose! eq_top obtain ⟨c, N, acd, eq1⟩ := MemCarrier.clear_denominator x ((Ideal.eq_top_iff_one _).mp eq_top) rw [Algebra.smul_def, HomogeneousLocalization.one_val, mul_one] at eq1 change Localization.mk (f ^ N) 1 = Localization.mk _ 1 at eq1 simp only [mk_eq_mk', IsLocalization.eq] at eq1 rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩ dsimp at eq1 erw [one_mul, one_mul] at eq1 change f ^ _ * f ^ _ = f ^ _ * _ at eq1 rw [Set.not_disjoint_iff_nonempty_inter] refine' ⟨f ^ M * f ^ N, eq1.symm ▸ mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _), ⟨M + N, by dsimp; rw [pow_add]⟩⟩ generalize_proofs h₁ h₂ exact (Classical.choose_spec h₂).1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) ⊢ carrier x ≠ ⊤ [PROOFSTEP] contrapose! eq_top [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] obtain ⟨c, N, acd, eq1⟩ := MemCarrier.clear_denominator x ((Ideal.eq_top_iff_one _).mp eq_top) [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : f ^ N • HomogeneousLocalization.val 1 = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] rw [Algebra.smul_def, HomogeneousLocalization.one_val, mul_one] at eq1 [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : ↑(algebraMap A (Localization (Submonoid.powers f))) (f ^ N) = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] change Localization.mk (f ^ N) 1 = Localization.mk _ 1 at eq1 [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : Localization.mk (f ^ N) 1 = Localization.mk (↑(algebraMap A A) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) 1 ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] simp only [mk_eq_mk', IsLocalization.eq] at eq1 [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : ∃ c_1, ↑c_1 * (↑1 * f ^ N) = ↑c_1 * (↑1 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩ [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑1 * f ^ N) = ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑1 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] dsimp at eq1 [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (1 * f ^ N) = f ^ M * (1 * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] erw [one_mul, one_mul] at eq1 [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] change f ^ _ * f ^ _ = f ^ _ * _ at eq1 [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ ¬Disjoint ↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ↑(Submonoid.powers f) [PROOFSTEP] rw [Set.not_disjoint_iff_nonempty_inter] [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ Set.Nonempty (↑(HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal) ∩ ↑(Submonoid.powers f)) [PROOFSTEP] refine' ⟨f ^ M * f ^ N, eq1.symm ▸ mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _), ⟨M + N, by dsimp; rw [pow_add]⟩⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ (fun x x_1 => x ^ x_1) f (M + N) = f ^ M * f ^ N [PROOFSTEP] dsimp [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ f ^ (M + N) = f ^ M * f ^ N [PROOFSTEP] rw [pow_add] [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) i : { x_1 // x_1 ∈ c.support } x✝ : i ∈ attach c.support ⊢ Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] generalize_proofs h₁ h₂ [GOAL] case intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) eq_top : carrier x = ⊤ c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * f ^ N = f ^ M * ∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) i : { x_1 // x_1 ∈ c.support } x✝ : i ∈ attach c.support h₁ : AddSubmonoidClass (Submodule R A) A h₂ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal ⊢ Exists.choose h₂ ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] exact (Classical.choose_spec h₂).1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : x1 * x2 ∈ carrier x ⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x [PROOFSTEP] classical rw [mem_carrier_iff] at hx12 let J := span ((algebraMap A (Away f) : A → (Away f)) '' x.val.asHomogeneousIdeal) suffices h : ∀ x y : Localization.Away f, x * y ∈ J → x ∈ J ∨ y ∈ J · rw [HomogeneousLocalization.mul_val] at hx12 ; exact h x1.val x2.val hx12 clear x1 x2 hx12 intro x1 x2 hx12 induction' x1 using Localization.induction_on with data_x1 induction' x2 using Localization.induction_on with data_x2 rcases data_x1, data_x2 with ⟨⟨a1, _, ⟨n1, rfl⟩⟩, ⟨a2, _, ⟨n2, rfl⟩⟩⟩ rcases MemCarrier.clear_denominator' x hx12 with ⟨c, N, acd, eq1⟩ simp only [Algebra.smul_def] at eq1 change Localization.mk (f ^ N) 1 * (Localization.mk _ _ * Localization.mk _ _) = Localization.mk _ _ at eq1 simp only [Localization.mk_mul, one_mul] at eq1 simp only [mk_eq_mk', IsLocalization.eq] at eq1 rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩ rw [Submonoid.coe_one, one_mul] at eq1 change f ^ _ * (_ * _) = f ^ _ * (f ^ _ * f ^ _ * _) at eq1 have that : a1 * a2 * f ^ N * f ^ M ∈ x.val.asHomogeneousIdeal.toIdeal := ?_ rcases x.1.isPrime.mem_or_mem (show a1 * a2 * f ^ N * f ^ M ∈ _ from that) with (h1 | rid2) rcases x.1.isPrime.mem_or_mem h1 with (h1 | rid1) rcases x.1.isPrime.mem_or_mem h1 with (h1 | h2) · left; simp only [show (Localization.mk a1 ⟨f ^ n1, _⟩ : Away f) = Localization.mk a1 1 * Localization.mk 1 (⟨f ^ n1, ⟨n1, rfl⟩⟩ : Submonoid.powers f) by rw [Localization.mk_mul, mul_one, one_mul]] exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h1, rfl⟩) · right; simp only [show (mk a2 ⟨f ^ n2, _⟩ : Away f) = mk a2 1 * Localization.mk 1 (⟨f ^ n2, ⟨n2, rfl⟩⟩ : Submonoid.powers f) by rw [Localization.mk_mul, mul_one, one_mul]] exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h2, rfl⟩) · exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem N rid1)) · exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem M rid2)) · rw [← mul_comm (f ^ M), ← mul_comm (f ^ N), eq1] refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _)) generalize_proofs h₁ h₂; exact (Classical.choose_spec h₂).1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : x1 * x2 ∈ carrier x ⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x [PROOFSTEP] rw [mem_carrier_iff] at hx12 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x [PROOFSTEP] let J := span ((algebraMap A (Away f) : A → (Away f)) '' x.val.asHomogeneousIdeal) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x [PROOFSTEP] suffices h : ∀ x y : Localization.Away f, x * y ∈ J → x ∈ J ∨ y ∈ J [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) h : ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J ⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x [PROOFSTEP] rw [HomogeneousLocalization.mul_val] at hx12 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : HomogeneousLocalization.val x1 * HomogeneousLocalization.val x2 ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) h : ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J ⊢ x1 ∈ carrier x ∨ x2 ∈ carrier x [PROOFSTEP] exact h x1.val x2.val hx12 [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace x1 x2 : ↑(CommRingCat.of (A⁰_ f)) hx12 : HomogeneousLocalization.val (x1 * x2) ∈ span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J [PROOFSTEP] clear x1 x2 hx12 [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ⊢ ∀ (x y : Away f), x * y ∈ J → x ∈ J ∨ y ∈ J [PROOFSTEP] intro x1 x2 hx12 [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12 : x1 * x2 ∈ J ⊢ x1 ∈ J ∨ x2 ∈ J [PROOFSTEP] induction' x1 using Localization.induction_on with data_x1 [GOAL] case h.H R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝ : x1 * x2 ∈ J data_x1 : A × { x // x ∈ Submonoid.powers f } hx12 : Localization.mk data_x1.fst data_x1.snd * x2 ∈ J ⊢ Localization.mk data_x1.fst data_x1.snd ∈ J ∨ x2 ∈ J [PROOFSTEP] induction' x2 using Localization.induction_on with data_x2 [GOAL] case h.H.H R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J data_x1 : A × { x // x ∈ Submonoid.powers f } hx12✝¹ : Localization.mk data_x1.fst data_x1.snd * x2 ∈ J data_x2 : A × { x // x ∈ Submonoid.powers f } hx12✝ : x1 * Localization.mk data_x2.fst data_x2.snd ∈ J hx12 : Localization.mk data_x1.fst data_x1.snd * Localization.mk data_x2.fst data_x2.snd ∈ J ⊢ Localization.mk data_x1.fst data_x1.snd ∈ J ∨ Localization.mk data_x2.fst data_x2.snd ∈ J [PROOFSTEP] rcases data_x1, data_x2 with ⟨⟨a1, _, ⟨n1, rfl⟩⟩, ⟨a2, _, ⟨n2, rfl⟩⟩⟩ [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] rcases MemCarrier.clear_denominator' x hx12 with ⟨c, N, acd, eq1⟩ [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : f ^ N • (Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd) = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] simp only [Algebra.smul_def] at eq1 [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : ↑(algebraMap A (Away f)) (f ^ N) * (Localization.mk a1 { val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } * Localization.mk a2 { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) = ↑(algebraMap A (Away f)) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal)) ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] change Localization.mk (f ^ N) 1 * (Localization.mk _ _ * Localization.mk _ _) = Localization.mk _ _ at eq1 [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : Localization.mk (f ^ N) 1 * (Localization.mk a1 { val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } * Localization.mk a2 { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) = Localization.mk (↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) 1 ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] simp only [Localization.mk_mul, one_mul] at eq1 [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : Localization.mk (f ^ N * (a1 * a2)) ({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } * { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) = Localization.mk (↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) 1 ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] simp only [mk_eq_mk', IsLocalization.eq] at eq1 [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A eq1 : ∃ c_1, ↑c_1 * (↑1 * (f ^ N * (a1 * a2))) = ↑c_1 * (↑({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } * { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩ [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑1 * (f ^ N * (a1 * a2))) = ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } * { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] rw [Submonoid.coe_one, one_mul] at eq1 [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (f ^ N * (a1 * a2)) = ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑({ val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) } * { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }) * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] change f ^ _ * (_ * _) = f ^ _ * (f ^ _ * f ^ _ * _) at eq1 [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] have that : a1 * a2 * f ^ N * f ^ M ∈ x.val.asHomogeneousIdeal.toIdeal := ?_ [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] rcases x.1.isPrime.mem_or_mem (show a1 * a2 * f ^ N * f ^ M ∈ _ from that) with (h1 | rid2) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal rid2 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] rcases x.1.isPrime.mem_or_mem h1 with (h1 | rid1) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal rid1 : f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal rid2 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] rcases x.1.isPrime.mem_or_mem h1 with (h1 | h2) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] left [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inl.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J [PROOFSTEP] simp only [show (Localization.mk a1 ⟨f ^ n1, _⟩ : Away f) = Localization.mk a1 1 * Localization.mk 1 (⟨f ^ n1, ⟨n1, rfl⟩⟩ : Submonoid.powers f) by rw [Localization.mk_mul, mul_one, one_mul]] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk a1 { val := f ^ n1, property := ?m.499245 } = Localization.mk a1 1 * Localization.mk 1 { val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n1) } [PROOFSTEP] rw [Localization.mk_mul, mul_one, one_mul] [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inl.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝¹ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk a1 1 * Localization.mk 1 { val := f ^ n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n1) } ∈ span ((fun a => ↑(algebraMap A (Away f)) a) '' ↑(↑x).asHomogeneousIdeal) [PROOFSTEP] exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h1, rfl⟩) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] right [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inr.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] simp only [show (mk a2 ⟨f ^ n2, _⟩ : Away f) = mk a2 1 * Localization.mk 1 (⟨f ^ n2, ⟨n2, rfl⟩⟩ : Submonoid.powers f) by rw [Localization.mk_mul, mul_one, one_mul]] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk a2 { val := f ^ n2, property := ?m.654160 } = Localization.mk a2 1 * Localization.mk 1 { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n2) } [PROOFSTEP] rw [Localization.mk_mul, mul_one, one_mul] [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inl.inr.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1✝ : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h2 : a2 ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk a2 1 * Localization.mk 1 { val := f ^ n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ n2) } ∈ span ((fun a => ↑(algebraMap A (Away f)) a) '' ↑(↑x).asHomogeneousIdeal) [PROOFSTEP] exact Ideal.mul_mem_right _ _ (Ideal.subset_span ⟨_, h2, rfl⟩) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inl.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal h1 : a1 * a2 * f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal rid1 : f ^ N ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem N rid1)) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_2.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) that : a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal rid2 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal ⊢ Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd ∈ J ∨ Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J [PROOFSTEP] exact False.elim (x.2 (x.1.isPrime.mem_of_pow_mem M rid2)) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ a1 * a2 * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] rw [← mul_comm (f ^ M), ← mul_comm (f ^ N), eq1] [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ⊢ f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _)) [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝¹ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) i : { x_1 // x_1 ∈ c.support } x✝ : i ∈ attach c.support ⊢ Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] generalize_proofs h₁ h₂ [GOAL] case h.H.H.mk.mk.intro.mk.mk.intro.intro.intro.intro.intro.mk.intro.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x✝¹ : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) x : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace J : Ideal (Away f) := span (↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) x1 x2 : Away f hx12✝² : x1 * x2 ∈ J a1 : A n1 : ℕ hx12✝¹ : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * x2 ∈ J a2 : A n2 : ℕ hx12✝ : x1 * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J hx12 : Localization.mk (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).fst (a1, { val := (fun x x_1 => x ^ x_1) f n1, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n1) }).snd * Localization.mk (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).fst (a2, { val := (fun x x_1 => x ^ x_1) f n2, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n2) }).snd ∈ J c : ↑(↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y : Away f) → y ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * (a1 * a2)) = f ^ M * (f ^ n1 * f ^ n2 * ↑(algebraMap A A) (∑ x_1 in attach c.support, acd (↑c ↑x_1) (_ : ↑c ↑x_1 ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x_1 ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal))) i : { x_1 // x_1 ∈ c.support } x✝ : i ∈ attach c.support h₁ : AddSubmonoidClass (Submodule R A) A h₂ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑x).asHomogeneousIdeal ⊢ Exists.choose h₂ ∈ HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal [PROOFSTEP] exact (Classical.choose_spec h₂).1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f ⊢ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) = {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] classical ext1 y constructor <;> intro hy · refine' ⟨y.2, _⟩ rw [Set.mem_preimage, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen] at hy rw [ProjectiveSpectrum.mem_coe_basicOpen] intro a_mem_y apply hy rw [toFun, mem_carrier_iff, HomogeneousLocalization.val_mk'', Subtype.coe_mk] dsimp; rcases b_mem2 with ⟨k, hk⟩ dsimp at hk simp only [show (mk a ⟨b, ⟨k, hk⟩⟩ : Away f) = Localization.mk 1 (⟨f ^ k, ⟨_, rfl⟩⟩ : Submonoid.powers f) * mk a 1 by rw [mk_mul, one_mul, mul_one]; congr; rw [hk]] exact Ideal.mul_mem_left _ _ (Ideal.subset_span ⟨_, a_mem_y, rfl⟩) · change y.1 ∈ ProjectiveSpectrum.basicOpen 𝒜 f ⊓ ProjectiveSpectrum.basicOpen 𝒜 a at hy rcases hy with ⟨hy1, hy2⟩ rw [ProjectiveSpectrum.mem_coe_basicOpen] at hy1 hy2 rw [Set.mem_preimage, toFun, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen] intro rid; dsimp at rid rcases MemCarrier.clear_denominator _ rid with ⟨c, N, acd, eq1⟩ rw [Algebra.smul_def] at eq1 change Localization.mk (f ^ N) 1 * Localization.mk _ _ = Localization.mk _ _ at eq1 rw [mk_mul, one_mul, mk_eq_mk', IsLocalization.eq] at eq1 rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩ rw [Submonoid.coe_one, one_mul] at eq1 simp only [Subtype.coe_mk] at eq1 have : a * f ^ N * f ^ M ∈ y.val.asHomogeneousIdeal.toIdeal := by rw [mul_comm _ (f ^ N), mul_comm _ (f ^ M), eq1] refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _)) generalize_proofs h₁ h₂; exact (Classical.choose_spec h₂).1 rcases y.1.isPrime.mem_or_mem this with (H1 | H3) rcases y.1.isPrime.mem_or_mem H1 with (H1 | H2) · exact hy2 H1 · exact y.2 (y.1.isPrime.mem_of_pow_mem N H2) · exact y.2 (y.1.isPrime.mem_of_pow_mem M H3) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f ⊢ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) = {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] ext1 y [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace ⊢ y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) ↔ y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace ⊢ y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) → y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] intro hy [GOAL] case h.mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace ⊢ y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} → y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) [PROOFSTEP] intro hy [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) ⊢ y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] refine' ⟨y.2, _⟩ [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) ⊢ ↑y ∈ ↑(pbo a) [PROOFSTEP] rw [Set.mem_preimage, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen] at hy [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal ⊢ ↑y ∈ ↑(pbo a) [PROOFSTEP] rw [ProjectiveSpectrum.mem_coe_basicOpen] [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal ⊢ ¬a ∈ (↑y).asHomogeneousIdeal [PROOFSTEP] intro a_mem_y [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal a_mem_y : a ∈ (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] apply hy [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal a_mem_y : a ∈ (↑y).asHomogeneousIdeal ⊢ Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal [PROOFSTEP] rw [toFun, mem_carrier_iff, HomogeneousLocalization.val_mk'', Subtype.coe_mk] [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal a_mem_y : a ∈ (↑y).asHomogeneousIdeal ⊢ Localization.mk a { val := ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den, property := (_ : ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den ∈ Submonoid.powers f) } ∈ span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) [PROOFSTEP] dsimp [GOAL] case h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ (toFun f y).asIdeal a_mem_y : a ∈ (↑y).asHomogeneousIdeal ⊢ Localization.mk a { val := b, property := b_mem2 } ∈ span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) [PROOFSTEP] rcases b_mem2 with ⟨k, hk⟩ [GOAL] case h.mp.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k✝ : ℕ a_mem : a ∈ 𝒜 k✝ b_mem1 : b ∈ 𝒜 k✝ y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace a_mem_y : a ∈ (↑y).asHomogeneousIdeal k : ℕ hk : (fun x x_1 => x ^ x_1) f k = b hy : ¬Quotient.mk'' { deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ (toFun f y).asIdeal ⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) [PROOFSTEP] dsimp at hk [GOAL] case h.mp.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k✝ : ℕ a_mem : a ∈ 𝒜 k✝ b_mem1 : b ∈ 𝒜 k✝ y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace a_mem_y : a ∈ (↑y).asHomogeneousIdeal k : ℕ hk : f ^ k = b hy : ¬Quotient.mk'' { deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ (toFun f y).asIdeal ⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) [PROOFSTEP] simp only [show (mk a ⟨b, ⟨k, hk⟩⟩ : Away f) = Localization.mk 1 (⟨f ^ k, ⟨_, rfl⟩⟩ : Submonoid.powers f) * mk a 1 by rw [mk_mul, one_mul, mul_one]; congr; rw [hk]] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k✝ : ℕ a_mem : a ∈ 𝒜 k✝ b_mem1 : b ∈ 𝒜 k✝ y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace a_mem_y : a ∈ (↑y).asHomogeneousIdeal k : ℕ hk : f ^ k = b hy : ¬Quotient.mk'' { deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ (toFun f y).asIdeal ⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } = Localization.mk 1 { val := f ^ k, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ k) } * Localization.mk a 1 [PROOFSTEP] rw [mk_mul, one_mul, mul_one] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k✝ : ℕ a_mem : a ∈ 𝒜 k✝ b_mem1 : b ∈ 𝒜 k✝ y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace a_mem_y : a ∈ (↑y).asHomogeneousIdeal k : ℕ hk : f ^ k = b hy : ¬Quotient.mk'' { deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ (toFun f y).asIdeal ⊢ Localization.mk a { val := b, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } = Localization.mk a { val := f ^ k, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ k) } [PROOFSTEP] congr [GOAL] case e_y.e_val R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k✝ : ℕ a_mem : a ∈ 𝒜 k✝ b_mem1 : b ∈ 𝒜 k✝ y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace a_mem_y : a ∈ (↑y).asHomogeneousIdeal k : ℕ hk : f ^ k = b hy : ¬Quotient.mk'' { deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ (toFun f y).asIdeal ⊢ b = f ^ k [PROOFSTEP] rw [hk] [GOAL] case h.mp.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k✝ : ℕ a_mem : a ∈ 𝒜 k✝ b_mem1 : b ∈ 𝒜 k✝ y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace a_mem_y : a ∈ (↑y).asHomogeneousIdeal k : ℕ hk : f ^ k = b hy : ¬Quotient.mk'' { deg := k✝, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = b) } ∈ (toFun f y).asIdeal ⊢ Localization.mk 1 { val := f ^ k, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ k) } * Localization.mk a 1 ∈ span (↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) [PROOFSTEP] exact Ideal.mul_mem_left _ _ (Ideal.subset_span ⟨_, a_mem_y, rfl⟩) [GOAL] case h.mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : y ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} ⊢ y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) [PROOFSTEP] change y.1 ∈ ProjectiveSpectrum.basicOpen 𝒜 f ⊓ ProjectiveSpectrum.basicOpen 𝒜 a at hy [GOAL] case h.mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy : ↑y ∈ (pbo f) ⊓ pbo a ⊢ y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) [PROOFSTEP] rcases hy with ⟨hy1, hy2⟩ [GOAL] case h.mpr.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ↑y ∈ ↑(pbo f) hy2 : ↑y ∈ ↑(pbo a) ⊢ y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) [PROOFSTEP] rw [ProjectiveSpectrum.mem_coe_basicOpen] at hy1 hy2 [GOAL] case h.mpr.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal ⊢ y ∈ toFun f ⁻¹' ↑(sbo Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) [PROOFSTEP] rw [Set.mem_preimage, toFun, SetLike.mem_coe, PrimeSpectrum.mem_basicOpen] [GOAL] case h.mpr.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal ⊢ ¬Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ { asIdeal := carrier y, IsPrime := (_ : IsPrime (carrier y)) }.asIdeal [PROOFSTEP] intro rid [GOAL] case h.mpr.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ { asIdeal := carrier y, IsPrime := (_ : IsPrime (carrier y)) }.asIdeal ⊢ False [PROOFSTEP] dsimp at rid [GOAL] case h.mpr.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y ⊢ False [PROOFSTEP] rcases MemCarrier.clear_denominator _ rid with ⟨c, N, acd, eq1⟩ [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A eq1 : f ^ N • HomogeneousLocalization.val (Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)) ⊢ False [PROOFSTEP] rw [Algebra.smul_def] at eq1 [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A eq1 : ↑(algebraMap A (Localization (Submonoid.powers f))) (f ^ N) * HomogeneousLocalization.val (Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }) = ↑(algebraMap A (Away f)) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal)) ⊢ False [PROOFSTEP] change Localization.mk (f ^ N) 1 * Localization.mk _ _ = Localization.mk _ _ at eq1 [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A eq1 : Localization.mk (f ^ N) 1 * Localization.mk ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.num { val := ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den, property := (_ : ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den ∈ Submonoid.powers f) } = Localization.mk (↑(algebraMap A A) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) 1 ⊢ False [PROOFSTEP] rw [mk_mul, one_mul, mk_eq_mk', IsLocalization.eq] at eq1 [GOAL] case h.mpr.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A eq1 : ∃ c_1, ↑c_1 * (↑1 * (f ^ N * ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.num)) = ↑c_1 * (↑{ val := ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den, property := (_ : ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den ∈ Submonoid.powers f) } * ↑(algebraMap A A) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ⊢ False [PROOFSTEP] rcases eq1 with ⟨⟨_, ⟨M, rfl⟩⟩, eq1⟩ [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑1 * (f ^ N * ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.num)) = ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑{ val := ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den, property := (_ : ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den ∈ Submonoid.powers f) } * ↑(algebraMap A A) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ⊢ False [PROOFSTEP] rw [Submonoid.coe_one, one_mul] at eq1 [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (f ^ N * ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.num) = ↑{ val := (fun x x_1 => x ^ x_1) f M, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f M) } * (↑{ val := ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den, property := (_ : ↑{ deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 }.den ∈ Submonoid.powers f) } * ↑(algebraMap A A) (∑ i in attach c.support, acd (↑c ↑i) (_ : ↑c ↑i ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ⊢ False [PROOFSTEP] simp only [Subtype.coe_mk] at eq1 [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ⊢ False [PROOFSTEP] have : a * f ^ N * f ^ M ∈ y.val.asHomogeneousIdeal.toIdeal := by rw [mul_comm _ (f ^ N), mul_comm _ (f ^ M), eq1] refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _)) generalize_proofs h₁ h₂; exact (Classical.choose_spec h₂).1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ⊢ a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal [PROOFSTEP] rw [mul_comm _ (f ^ N), mul_comm _ (f ^ M), eq1] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ⊢ f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal [PROOFSTEP] refine' mul_mem_left _ _ (mul_mem_left _ _ (sum_mem _ fun i _ => mul_mem_left _ _ _)) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) i : { x // x ∈ c.support } x✝ : i ∈ attach c.support ⊢ Exists.choose (_ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal [PROOFSTEP] generalize_proofs h₁ h₂ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) i : { x // x ∈ c.support } x✝ : i ∈ attach c.support h₁ : AddSubmonoidClass (Submodule R A) A h₂ : ↑↑i ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal ⊢ Exists.choose h₂ ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal [PROOFSTEP] exact (Classical.choose_spec h₂).1 [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] rcases y.1.isPrime.mem_or_mem this with (H1 | H3) [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H1 : a * f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False case h.mpr.intro.intro.intro.intro.intro.mk.intro.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H3 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] rcases y.1.isPrime.mem_or_mem H1 with (H1 | H2) [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro.inl.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H1✝ : a * f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H1 : a ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] exact hy2 H1 [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro.inl.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H1 : a * f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H2 : f ^ N ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] exact y.2 (y.1.isPrime.mem_of_pow_mem N H2) [GOAL] case h.mpr.intro.intro.intro.intro.intro.mk.intro.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m x : ↑(LocallyRingedSpace.toTopCat (LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f))))) a b : A k : ℕ a_mem : a ∈ 𝒜 k b_mem1 : b ∈ 𝒜 k b_mem2 : b ∈ Submonoid.powers f y : ↑↑(LocallyRingedSpace.restrict Proj (_ : OpenEmbedding ↑(Opens.inclusion (pbo f)))).toSheafedSpace.toPresheafedSpace hy1 : ¬f ∈ (↑y).asHomogeneousIdeal hy2 : ¬a ∈ (↑y).asHomogeneousIdeal rid : Quotient.mk'' { deg := k, num := { val := a, property := a_mem }, den := { val := b, property := b_mem1 }, den_mem := b_mem2 } ∈ carrier y c : ↑(↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal) →₀ Away f N : ℕ acd : (y_1 : Away f) → y_1 ∈ image (↑c) c.support → A M : ℕ eq1 : f ^ M * (f ^ N * a) = f ^ M * (b * ↑(algebraMap A A) (∑ x in attach c.support, acd (↑c ↑x) (_ : ↑c ↑x ∈ image (↑c) c.support) * Exists.choose (_ : ↑↑x ∈ ↑(algebraMap A (Away f)) '' ↑(↑y).asHomogeneousIdeal))) this : a * f ^ N * f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal H3 : f ^ M ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] exact y.2 (y.1.isPrime.mem_of_pow_mem M H3) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A ⊢ Continuous (ToSpec.toFun f) [PROOFSTEP] apply IsTopologicalBasis.continuous PrimeSpectrum.isTopologicalBasis_basic_opens [GOAL] case hf R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A ⊢ ∀ (s : Set (PrimeSpectrum ↑(CommRingCat.of (A⁰_ f)))), (s ∈ Set.range fun r => ↑(sbo r)) → IsOpen (ToSpec.toFun f ⁻¹' s) [PROOFSTEP] rintro _ ⟨⟨k, ⟨a, ha⟩, ⟨b, hb1⟩, ⟨k', hb2⟩⟩, rfl⟩ [GOAL] case hf.intro.mk.mk.mk.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } ⊢ IsOpen (ToSpec.toFun f ⁻¹' (fun r => ↑(sbo r)) (Quot.mk Setoid.r { deg := k, num := { val := a, property := ha }, den := { val := b, property := hb1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := b, property := hb1 }) })) [PROOFSTEP] dsimp [GOAL] case hf.intro.mk.mk.mk.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } ⊢ IsOpen (ToSpec.toFun f ⁻¹' ↑(sbo Quot.mk Setoid.r { deg := k, num := { val := a, property := ha }, den := { val := b, property := hb1 }, den_mem := (_ : ∃ y, f ^ y = b) })) [PROOFSTEP] erw [ToSpec.preimage_eq f a b k ha hb1 ⟨k', hb2⟩] [GOAL] case hf.intro.mk.mk.mk.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } ⊢ IsOpen {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] refine' isOpen_induced_iff.mpr ⟨(pbo f).1 ⊓ (pbo a).1, IsOpen.inter (pbo f).2 (pbo a).2, _⟩ [GOAL] case hf.intro.mk.mk.mk.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } ⊢ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) = {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] ext z [GOAL] case hf.intro.mk.mk.mk.mk.intro.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } z : ↑((Opens.toTopCat Proj.T).obj (pbo f)) ⊢ z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) ↔ z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] constructor [GOAL] case hf.intro.mk.mk.mk.mk.intro.h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } z : ↑((Opens.toTopCat Proj.T).obj (pbo f)) ⊢ z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) → z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] intro hz [GOAL] case hf.intro.mk.mk.mk.mk.intro.h.mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } z : ↑((Opens.toTopCat Proj.T).obj (pbo f)) hz : z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) ⊢ z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} [PROOFSTEP] simpa [Set.mem_preimage] [GOAL] case hf.intro.mk.mk.mk.mk.intro.h.mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } z : ↑((Opens.toTopCat Proj.T).obj (pbo f)) ⊢ z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} → z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) [PROOFSTEP] intro hz [GOAL] case hf.intro.mk.mk.mk.mk.intro.h.mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A w✝ : ↑(CommRingCat.of (A⁰_ f)) k : ℕ a : A ha : a ∈ 𝒜 k b : A hb1 : b ∈ 𝒜 k k' : ℕ hb2 : (fun x x_1 => x ^ x_1) f k' = ↑{ val := b, property := hb1 } z : ↑((Opens.toTopCat Proj.T).obj (pbo f)) hz : z ∈ {x | ↑x ∈ (pbo f) ⊓ pbo a} ⊢ z ∈ Subtype.val ⁻¹' ((pbo f).carrier ⊓ (pbo a).carrier) [PROOFSTEP] simpa only [Set.inf_eq_inter, Set.mem_inter_iff, Set.mem_preimage] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ ⊢ ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ ⊢ f ^ i ∈ 𝒜 (m * i) [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ ⊢ f ^ i ∈ 𝒜 (i * m) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ ⊢ ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ ⊢ f ^ i ∈ 𝒜 (m * i) [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ ⊢ f ^ i ∈ 𝒜 (i * m) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A ⊢ (∀ (i : ℕ), Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal) ↔ ∀ (i : ℕ), Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal} [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A ⊢ (∀ (i : ℕ), Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal) → ∀ (i : ℕ), Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal} [PROOFSTEP] intro h i [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A ⊢ (∀ (i : ℕ), Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal}) → ∀ (i : ℕ), Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] intro h i [GOAL] case mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A h : ∀ (i : ℕ), Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal i : ℕ ⊢ Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal} [PROOFSTEP] specialize h i [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A h : ∀ (i : ℕ), Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal} i : ℕ ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] specialize h i [GOAL] case mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ h : Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal ⊢ Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal} [PROOFSTEP] rw [Set.mem_image] [GOAL] case mp R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ h : Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal ⊢ ∃ x, x ∈ {s | s ∈ q.asIdeal} ∧ ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } [PROOFSTEP] refine' ⟨_, h, rfl⟩ [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ h : Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ∈ ↑(algebraMap (A⁰_ f) (Away f)) '' {s | s ∈ q.asIdeal} ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] rw [Set.mem_image] at h [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ h : ∃ x, x ∈ {s | s ∈ q.asIdeal} ∧ ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] rcases h with ⟨x, h, hx⟩ [GOAL] case mpr.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ x : A⁰_ f h : x ∈ {s | s ∈ q.asIdeal} hx : ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] change x ∈ q.asIdeal at h [GOAL] case mpr.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ x : A⁰_ f hx : ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } h : x ∈ q.asIdeal ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] convert h [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ x : A⁰_ f hx : ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } h : x ∈ q.asIdeal e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } = x [PROOFSTEP] rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk''] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ x : A⁰_ f hx : ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } h : x ∈ q.asIdeal e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num { val := ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } = HomogeneousLocalization.val x [PROOFSTEP] dsimp only [Subtype.coe_mk] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ x : A⁰_ f hx : ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } h : x ∈ q.asIdeal e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, f ^ y = f ^ i) } = HomogeneousLocalization.val x [PROOFSTEP] rw [← hx] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a : A i : ℕ x : A⁰_ f hx : ↑(algebraMap (A⁰_ f) (Away f)) x = Localization.mk (↑(proj 𝒜 i) a ^ m) { val := f ^ i, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ i) } h : x ∈ q.asIdeal e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ ↑(algebraMap (A⁰_ f) (Away f)) x = HomogeneousLocalization.val x [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q ⊢ a + b ∈ carrier f_deg q [PROOFSTEP] refine' fun i => (q.2.mem_or_mem _).elim id id [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] change (Quotient.mk'' ⟨_, _, _, _⟩ : A⁰_ f) ∈ q.1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ ⊢ Quotient.mk'' { deg := { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg + { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg, num := { val := ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num ∈ 𝒜 ({ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg + { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) }, den := { val := ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ 𝒜 ({ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg + { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) }, den_mem := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } ∈ q.asIdeal [PROOFSTEP] dsimp only [Subtype.coe_mk] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ ⊢ Quotient.mk'' { deg := m * i + m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m * ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num ∈ 𝒜 ({ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg + { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) }, den := { val := f ^ i * f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ 𝒜 ({ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg + { deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.deg)) }, den_mem := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den * ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) (a + b) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (a + b)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } ∈ q.asIdeal [PROOFSTEP] simp_rw [← pow_add, map_add, add_pow, mul_comm, ← nsmul_eq_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ ⊢ Quotient.mk'' { deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) } ∈ q.asIdeal [PROOFSTEP] let g : ℕ → A⁰_ f := fun j => (m + m).choose j • if h2 : m + m < j then (0 : A⁰_ f) else -- Porting note: inlining `l`, `r` causes a "can't synth HMul A⁰_ f A⁰_ f ?" errorif h1 : j ≤ m then letI l : A⁰_ f := Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i a ^ j * proj 𝒜 i b ^ (m - j), ?_⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩ letI r : A⁰_ f := Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i b ^ m, by mem_tac⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩ l * r else letI l : A⁰_ f := Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i a ^ m, by mem_tac⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩ letI r : A⁰_ f := Quotient.mk'' ⟨m * i, ⟨proj 𝒜 i a ^ (j - m) * proj 𝒜 i b ^ (m + m - j), ?_⟩, ⟨_, by rw [mul_comm]; mem_tac⟩, ⟨i, rfl⟩⟩ l * r [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ f ^ i ∈ 𝒜 (m * i) [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ f ^ i ∈ 𝒜 (i * m) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := ?m.1574888 }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑(proj 𝒜 i) b ^ m ∈ 𝒜 (m * i) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := ?m.1574888 }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ f ^ i ∈ 𝒜 (m * i) [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := ?m.1574888 }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ f ^ i ∈ 𝒜 (i * m) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ f ^ i ∈ 𝒜 (m * i) [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ f ^ i ∈ 𝒜 (i * m) [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ f ^ i ∈ 𝒜 (m * i) [PROOFSTEP] rw [mul_comm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ f ^ i ∈ 𝒜 (i * m) [PROOFSTEP] mem_tac [GOAL] case refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : let l := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(proj 𝒜 i) a ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }; ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ Quotient.mk'' { deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) } ∈ q.asIdeal case refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i) case refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i) [PROOFSTEP] rotate_left [GOAL] case refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i) [PROOFSTEP] rw [(_ : m * i = _)] -- Porting note: it seems unification with mul_mem is more fiddly reducing value of mem_tac [GOAL] case refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 ?m.1610121 [PROOFSTEP] apply GradedMonoid.toGradedMul.mul_mem (i := j • i) (j := (m - j) • i) [GOAL] case refine_1.a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(proj 𝒜 i) a ^ j ∈ 𝒜 (j • i) [PROOFSTEP] mem_tac_aux [GOAL] case refine_1.a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 ((m - j) • i) [PROOFSTEP] mem_tac_aux [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ m * i = j • i + (m - j) • i [PROOFSTEP] rw [← add_smul, Nat.add_sub_of_le h1] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : j ≤ m ⊢ m * i = m • i [PROOFSTEP] rfl [GOAL] case refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i) [PROOFSTEP] rw [(_ : m * i = _)] [GOAL] case refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 ?m.1612661 [PROOFSTEP] apply GradedMonoid.toGradedMul.mul_mem (i := (j - m) • i) (j := (m + m - j) • i) [GOAL] case refine_2.a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑(proj 𝒜 i) a ^ (j - m) ∈ 𝒜 ((j - m) • i) [PROOFSTEP] mem_tac_aux [GOAL] case refine_2.a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 ((m + m - j) • i) [PROOFSTEP] mem_tac_aux [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ m * i = (j - m) • i + (m + m - j) • i [PROOFSTEP] rw [← add_smul] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ m * i = (j - m + (m + m - j)) • i [PROOFSTEP] congr [GOAL] case e_a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ m = j - m + (m + m - j) [PROOFSTEP] zify [le_of_not_lt h2, le_of_not_le h1] [GOAL] case e_a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑m = ↑j - ↑m + (↑m + ↑m - ↑j) [PROOFSTEP] abel [GOAL] case e_a R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i j : ℕ h2 : ¬m + m < j h1 : ¬j ≤ m l : A⁰_ f := Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ↑m = ↑j - ↑m + (↑m + ↑m - ↑j) [PROOFSTEP] abel [GOAL] case refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ Quotient.mk'' { deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) } ∈ q.asIdeal [PROOFSTEP] convert_to ∑ i in range (m + m + 1), g i ∈ q.1 [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Quotient.mk'' { deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) } = ∑ i in range (m + m + 1), g i case refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ∑ i in range (m + m + 1), g i ∈ q.asIdeal [PROOFSTEP] swap [GOAL] case refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ⊢ ∑ i in range (m + m + 1), g i ∈ q.asIdeal [PROOFSTEP] refine' q.1.sum_mem fun j _ => nsmul_mem _ _ [GOAL] case refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } j : ℕ x✝ : j ∈ range (m + m + 1) ⊢ (if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }) ∈ q.asIdeal [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } j : ℕ x✝ : j ∈ range (m + m + 1) h✝ : m + m < j ⊢ 0 ∈ q.asIdeal case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } j : ℕ x✝ : j ∈ range (m + m + 1) h✝¹ : ¬m + m < j h✝ : j ≤ m ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } j : ℕ x✝ : j ∈ range (m + m + 1) h✝¹ : ¬m + m < j h✝ : ¬j ≤ m ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] exacts [q.1.zero_mem, q.1.mul_mem_left _ (hb i), q.1.mul_mem_right _ (ha i)] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Quotient.mk'' { deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) } = ∑ i in range (m + m + 1), g i [PROOFSTEP] rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk''] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk ↑{ deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) }.num { val := ↑{ deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) }.den, property := (_ : ↑{ deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) }.den ∈ Submonoid.powers f) } = HomogeneousLocalization.val (∑ i in range (m + m + 1), g i) [PROOFSTEP] change _ = (algebraMap (HomogeneousLocalization.Away 𝒜 f) (Localization.Away f)) _ [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk ↑{ deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) }.num { val := ↑{ deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) }.den, property := (_ : ↑{ deg := m * i + m * i, num := { val := ∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x)))) }, den := { val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) }, den_mem := (_ : ↑{ val := f ^ (i + i), property := (_ : (fun x => x ∈ 𝒜 (m * i + m * i)) (f ^ (i + i))) } ∈ Submonoid.powers f) }.den ∈ Submonoid.powers f) } = ↑(algebraMap (A⁰_ f) (Away f)) (∑ i in range (m + m + 1), g i) [PROOFSTEP] dsimp only [Subtype.coe_mk] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk (∑ x in range (m + m + 1), Nat.choose (m + m) x • (↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m + m - x))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = ↑(algebraMap (A⁰_ f) (Away f)) (∑ i_1 in range (m + m + 1), Nat.choose (m + m) i_1 • if h2 : m + m < i_1 then 0 else if h1 : i_1 ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ i_1 * ↑(proj 𝒜 i) b ^ (m - i_1), property := (_ : ↑(proj 𝒜 i) a ^ i_1 * ↑(proj 𝒜 i) b ^ (m - i_1) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (i_1 - m) * ↑(proj 𝒜 i) b ^ (m + m - i_1), property := (_ : ↑(proj 𝒜 i) a ^ (i_1 - m) * ↑(proj 𝒜 i) b ^ (m + m - i_1) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] rw [map_sum, mk_sum] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ ∑ i_1 in range (m + m + 1), Localization.mk (Nat.choose (m + m) i_1 • (↑(proj 𝒜 i) a ^ i_1 * ↑(proj 𝒜 i) b ^ (m + m - i_1))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = ∑ x in range (m + m + 1), ↑(algebraMap (A⁰_ f) (Away f)) (Nat.choose (m + m) x • if h2 : m + m < x then 0 else if h1 : x ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m - x), property := (_ : ↑(proj 𝒜 i) a ^ x * ↑(proj 𝒜 i) b ^ (m - x) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (x - m) * ↑(proj 𝒜 i) b ^ (m + m - x), property := (_ : ↑(proj 𝒜 i) a ^ (x - m) * ↑(proj 𝒜 i) b ^ (m + m - x) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] apply Finset.sum_congr rfl fun j hj => _ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ ∀ (j : ℕ), j ∈ range (m + m + 1) → Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = ↑(algebraMap (A⁰_ f) (Away f)) (Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] intro j hj [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = ↑(algebraMap (A⁰_ f) (Away f)) (Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] change _ = HomogeneousLocalization.val _ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = HomogeneousLocalization.val (Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] rw [HomogeneousLocalization.smul_val] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • HomogeneousLocalization.val (if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] split_ifs with h2 h1 [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : m + m < j ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • HomogeneousLocalization.val 0 [PROOFSTEP] exact ((Finset.mem_range.1 hj).not_le h2).elim [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • HomogeneousLocalization.val (Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • HomogeneousLocalization.val (Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] all_goals simp only [HomogeneousLocalization.mul_val, HomogeneousLocalization.zero_val, HomogeneousLocalization.val_mk'', Subtype.coe_mk, mk_mul, ← smul_mk]; congr 2 [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • HomogeneousLocalization.val (Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] simp only [HomogeneousLocalization.mul_val, HomogeneousLocalization.zero_val, HomogeneousLocalization.val_mk'', Subtype.coe_mk, mk_mul, ← smul_mk] [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ Nat.choose (m + m) j • Localization.mk (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • Localization.mk (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) * ↑(proj 𝒜 i) b ^ m) ({ val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } * { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) }) [PROOFSTEP] congr 2 [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ Localization.mk (Nat.choose (m + m) j • (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j))) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • HomogeneousLocalization.val (Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }) [PROOFSTEP] simp only [HomogeneousLocalization.mul_val, HomogeneousLocalization.zero_val, HomogeneousLocalization.val_mk'', Subtype.coe_mk, mk_mul, ← smul_mk] [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ Nat.choose (m + m) j • Localization.mk (↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j)) { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = Nat.choose (m + m) j • Localization.mk (↑(proj 𝒜 i) a ^ m * (↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j))) ({ val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } * { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) }) [PROOFSTEP] congr 2 [GOAL] case pos.e_a.e_x R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j) = ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) * ↑(proj 𝒜 i) b ^ m [PROOFSTEP] dsimp [GOAL] case pos.e_a.e_x R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ ↑(↑(↑(decompose 𝒜) a) i) ^ j * ↑(↑(↑(decompose 𝒜) b) i) ^ (m + m - j) = ↑(↑(↑(decompose 𝒜) a) i) ^ j * ↑(↑(↑(decompose 𝒜) b) i) ^ (m - j) * ↑(↑(↑(decompose 𝒜) b) i) ^ m [PROOFSTEP] rw [mul_assoc, ← pow_add, add_comm (m - j), Nat.add_sub_assoc h1] [GOAL] case pos.e_a.e_y R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } * { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } [PROOFSTEP] simp_rw [pow_add] [GOAL] case pos.e_a.e_y R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : j ≤ m ⊢ { val := f ^ i * f ^ i, property := (_ : (fun x => x ∈ Submonoid.powers f) (f ^ i * f ^ i)) } = { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } * { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } [PROOFSTEP] rfl [GOAL] case neg.e_a.e_x R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m + m - j) = ↑(proj 𝒜 i) a ^ m * (↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j)) [PROOFSTEP] dsimp [GOAL] case neg.e_a.e_x R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ ↑(↑(↑(decompose 𝒜) a) i) ^ j * ↑(↑(↑(decompose 𝒜) b) i) ^ (m + m - j) = ↑(↑(↑(decompose 𝒜) a) i) ^ m * (↑(↑(↑(decompose 𝒜) a) i) ^ (j - m) * ↑(↑(↑(decompose 𝒜) b) i) ^ (m + m - j)) [PROOFSTEP] rw [← mul_assoc, ← pow_add, Nat.add_sub_of_le (le_of_not_le h1)] [GOAL] case neg.e_a.e_y R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ { val := f ^ (i + i), property := (_ : ↑{ val := f ^ (i + i), property := (_ : f ^ (i + i) ∈ 𝒜 (m * i + m * i)) } ∈ Submonoid.powers f) } = { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } * { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } [PROOFSTEP] simp_rw [pow_add] [GOAL] case neg.e_a.e_y R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace a b : A ha : a ∈ carrier f_deg q hb : b ∈ carrier f_deg q i : ℕ g : ℕ → A⁰_ f := fun j => Nat.choose (m + m) j • if h2 : m + m < j then 0 else if h1 : j ≤ m then Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j), property := (_ : ↑(proj 𝒜 i) a ^ j * ↑(proj 𝒜 i) b ^ (m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) b ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) b) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } else Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } * Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f j : ℕ hj : j ∈ range (m + m + 1) h2 : ¬m + m < j h1 : ¬j ≤ m ⊢ { val := f ^ i * f ^ i, property := (_ : (fun x => x ∈ Submonoid.powers f) (f ^ i * f ^ i)) } = { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) a) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } * { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j), property := (_ : ↑(proj 𝒜 i) a ^ (j - m) * ↑(proj 𝒜 i) b ^ (m + m - j) ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, f ^ y = f ^ i) }.den ∈ Submonoid.powers f) } [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) 0 ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] convert Submodule.zero_mem q.1 using 1 [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) 0 ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } = 0 [PROOFSTEP] rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Localization.mk ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) 0 ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num { val := ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) 0 ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) 0 ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } = 0 [PROOFSTEP] simp_rw [map_zero, zero_pow hm] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Localization.mk 0 { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := ↑(proj 𝒜 i) 0 ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) 0) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } = 0 [PROOFSTEP] convert Localization.mk_zero (S := Submonoid.powers f) _ using 1 [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace c x : A hx : x ∈ carrier f_deg q ⊢ c • x ∈ carrier f_deg q [PROOFSTEP] revert c [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ ∀ (c : A), c • x ∈ carrier f_deg q [PROOFSTEP] refine' DirectSum.Decomposition.inductionOn 𝒜 _ _ _ [GOAL] case refine'_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ 0 • x ∈ carrier f_deg q [PROOFSTEP] rw [zero_smul] [GOAL] case refine'_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ 0 ∈ carrier f_deg q [PROOFSTEP] exact carrier.zero_mem f_deg hm _ [GOAL] case refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ ∀ {i : ℕ} (m_1 : { x // x ∈ 𝒜 i }), ↑m_1 • x ∈ carrier f_deg q [PROOFSTEP] rintro n ⟨a, ha⟩ i [GOAL] case refine'_2.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) (↑{ val := a, property := ha } • x) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (↑{ val := a, property := ha } • x)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] simp_rw [proj_apply, smul_eq_mul, coe_decompose_mul_of_left_mem 𝒜 i ha] -- Porting note: having trouble with Mul instance [GOAL] case refine'_2.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ Quotient.mk'' { deg := m * i, num := { val := (if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * i)) ((if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] let product : A⁰_ f := Mul.mul (Quotient.mk'' ⟨_, ⟨a ^ m, pow_mem_graded m ha⟩, ⟨_, ?_⟩, ⟨n, rfl⟩⟩ : A⁰_ f) (Quotient.mk'' ⟨_, ⟨proj 𝒜 (i - n) x ^ m, by mem_tac⟩, ⟨_, ?_⟩, ⟨i - n, rfl⟩⟩ : A⁰_ f) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 ?m.1735966 [PROOFSTEP] mem_tac [GOAL] case refine'_2.mk.refine_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) ⊢ Quotient.mk'' { deg := m * i, num := { val := (if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * i)) ((if n ≤ i then a * ↑(↑(↑(decompose 𝒜) x) (i - n)) else 0) ^ m)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i ⊢ Quotient.mk'' { deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * i)) ((a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] convert_to product ∈ q.1 [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Quotient.mk'' { deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * i)) ((a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } = product [PROOFSTEP] dsimp [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Quotient.mk'' { deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } = Mul.mul (Quotient.mk'' { deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }) (Quotient.mk'' { deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }) [PROOFSTEP] erw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.mul_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.val_mk''] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk ↑{ deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.num { val := ↑{ deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den, property := (_ : ↑{ deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } = Localization.mk ↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.num { val := ↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den, property := (_ : ↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈ Submonoid.powers f) } * Localization.mk ↑{ deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.num { val := ↑{ deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den, property := (_ : ↑{ deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈ Submonoid.powers f) } case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) [PROOFSTEP] simp_rw [mul_pow] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk (a ^ m * ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m) { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } = Localization.mk (a ^ m) { val := f ^ n, property := (_ : ↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈ Submonoid.powers f) } * Localization.mk (↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m) { val := f ^ (i - n), property := (_ : ↑{ deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈ Submonoid.powers f) } case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) [PROOFSTEP] rw [Localization.mk_mul] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ Localization.mk (a ^ m * ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m) { val := f ^ i, property := (_ : ↑{ deg := m * i, num := { val := (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m, property := (_ : (a * ↑(↑(↑(decompose 𝒜) x) (i - n))) ^ m ∈ 𝒜 (m * i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) }.den ∈ Submonoid.powers f) } = Localization.mk (a ^ m * ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m) ({ val := f ^ n, property := (_ : ↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈ Submonoid.powers f) } * { val := f ^ (i - n), property := (_ : ↑{ deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈ Submonoid.powers f) }) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) [PROOFSTEP] congr [GOAL] case h.e'_4.h.e_y.e_val R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := ?refine'_2.mk.refine_1 }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }) }) h : n ≤ i e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = A⁰_ f ⊢ f ^ i = ↑{ val := f ^ n, property := (_ : ↑{ deg := m * n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := ?refine'_2.mk.refine_1 }, den_mem := (_ : ∃ y, f ^ y = f ^ n) }.den ∈ Submonoid.powers f) } * ↑{ val := f ^ (i - n), property := (_ : ↑{ deg := m * (i - n), num := { val := ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m, property := (_ : ↑(↑(↑(decompose 𝒜) x) (i - n)) ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := ?refine'_2.mk.refine_2 }, den_mem := (_ : ∃ y, f ^ y = f ^ (i - n)) }.den ∈ Submonoid.powers f) } case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) [PROOFSTEP] erw [← pow_add, Nat.add_sub_of_le h] [GOAL] case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 (m • n) [PROOFSTEP] rw [(_ : m • n = _)] [GOAL] case refine'_2.mk.refine_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ n ∈ 𝒜 ?m.1761702 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ ℕ R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ m • n = ?m.1761702 [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ m • n = n • m [PROOFSTEP] simp only [smul_eq_mul, mul_comm] [GOAL] case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 (m • (i - n)) [PROOFSTEP] rw [(_ : m • (i - n) = _)] [GOAL] case refine'_2.mk.refine_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ f ^ (i - n) ∈ 𝒜 ?m.1764150 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ ℕ R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ m • (i - n) = ?m.1764150 [PROOFSTEP] mem_tac [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ ⊢ m • (i - n) = (i - n) • m [PROOFSTEP] simp only [smul_eq_mul, mul_comm] [GOAL] case pos R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) }) h : n ≤ i ⊢ product ∈ q.asIdeal [PROOFSTEP] apply Ideal.mul_mem_left (α := A⁰_ f) _ _ (hx _) [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) }) h : ¬n ≤ i ⊢ Quotient.mk'' { deg := m * i, num := { val := 0 ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * i)) (0 ^ m)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] simp_rw [zero_pow hm] [GOAL] case neg R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) }) h : ¬n ≤ i ⊢ Quotient.mk'' { deg := m * i, num := { val := 0, property := (_ : (fun x => x ∈ 𝒜 (m * i)) 0) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] convert carrier.zero_mem f_deg hm q i [GOAL] case h.e'_4.h.e'_3.h.e'_10.h.e'_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q n : ℕ a : A ha : a ∈ 𝒜 n i : ℕ product : A⁰_ f := Mul.mul (Quotient.mk'' { deg := m • n, num := { val := a ^ m, property := (_ : a ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m • n)) }) }) (Quotient.mk'' { deg := m • (i - n), num := { val := ↑(proj 𝒜 (i - n)) x ^ m, property := (_ : ↑(proj 𝒜 (i - n)) x ^ m ∈ 𝒜 (m • (i - n))) }, den := { val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (i - n), property := (_ : f ^ (i - n) ∈ 𝒜 (m • (i - n))) }) }) h : ¬n ≤ i ⊢ 0 = ↑(proj 𝒜 i) 0 ^ m [PROOFSTEP] rw [map_zero, zero_pow hm] [GOAL] case refine'_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ ∀ (m_1 m' : A), m_1 • x ∈ carrier f_deg q → m' • x ∈ carrier f_deg q → (m_1 + m') • x ∈ carrier f_deg q [PROOFSTEP] simp_rw [add_smul] [GOAL] case refine'_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x : A hx : x ∈ carrier f_deg q ⊢ ∀ (m_1 m' : A), m_1 • x ∈ carrier f_deg q → m' • x ∈ carrier f_deg q → m_1 • x + m' • x ∈ carrier f_deg q [PROOFSTEP] exact fun _ _ => carrier.add_mem f_deg q [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ a : A ha : a ∈ asIdeal f_deg hm q j : ℕ h : i = j ⊢ Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) ↑(↑(↑(decompose 𝒜) a) i) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) ↑(↑(↑(decompose 𝒜) a) i)) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] simpa only [proj_apply, decompose_coe, of_eq_same] using ha _ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ a : A ha : a ∈ asIdeal f_deg hm q j : ℕ h : ¬i = j ⊢ Quotient.mk'' { deg := m * j, num := { val := ↑(proj 𝒜 j) ↑(↑(↑(decompose 𝒜) a) i) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply j) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) ↑(↑(↑(decompose 𝒜) a) i)) ^ m ∈ 𝒜 (m • j)) }, den := { val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) }) } ∈ q.asIdeal [PROOFSTEP] simp only [proj_apply, decompose_of_mem_ne 𝒜 (Submodule.coe_mem (decompose 𝒜 a i)) h, zero_pow hm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ a : A ha : a ∈ asIdeal f_deg hm q j : ℕ h : ¬i = j ⊢ Quotient.mk'' { deg := m * j, num := { val := 0, property := (_ : (fun x => x ∈ 𝒜 (m * j)) 0) }, den := { val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ j, property := (_ : f ^ j ∈ 𝒜 (m * j)) }) } ∈ q.asIdeal [PROOFSTEP] convert carrier.zero_mem f_deg hm q j [GOAL] case h.e'_4.h.e'_3.h.e'_10.h.e'_3 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace i : ℕ a : A ha : a ∈ asIdeal f_deg hm q j : ℕ h : ¬i = j ⊢ 0 = ↑(proj 𝒜 j) 0 ^ m [PROOFSTEP] rw [map_zero, zero_pow hm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace rid : f ∈ asIdeal f_deg hm q ⊢ 1 ∈ q.asIdeal [PROOFSTEP] convert rid m [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace rid : f ∈ asIdeal f_deg hm q e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ 1 = Quotient.mk'' { deg := m * m, num := { val := ↑(proj 𝒜 m) f ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈ 𝒜 (m • m)) }, den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) } [PROOFSTEP] rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.one_val, HomogeneousLocalization.val_mk''] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace rid : f ∈ asIdeal f_deg hm q e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ 1 = Localization.mk ↑{ deg := m * m, num := { val := ↑(proj 𝒜 m) f ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈ 𝒜 (m • m)) }, den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }.num { val := ↑{ deg := m * m, num := { val := ↑(proj 𝒜 m) f ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈ 𝒜 (m • m)) }, den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }.den, property := (_ : ↑{ deg := m * m, num := { val := ↑(proj 𝒜 m) f ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply m) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) f) ^ m ∈ 𝒜 (m • m)) }, den := { val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) }.den ∈ Submonoid.powers f) } [PROOFSTEP] dsimp [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace rid : f ∈ asIdeal f_deg hm q e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ 1 = Localization.mk (↑(↑(↑(decompose 𝒜) f) m) ^ m) { val := f ^ m, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) } [PROOFSTEP] simp_rw [decompose_of_mem_same _ f_deg] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace rid : f ∈ asIdeal f_deg hm q e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ 1 = Localization.mk (f ^ m) { val := f ^ m, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ m, property := (_ : f ^ m ∈ 𝒜 (m * m)) }) } [PROOFSTEP] simp only [mk_eq_monoidOf_mk', Submonoid.LocalizationMap.mk'_self] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ (∀ (i : ℕ), Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal) ∨ ∀ (i : ℕ), Quotient.mk'' { deg := m * i, num := { val := ↑(proj 𝒜 i) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply i) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • i)) }, den := { val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ i, property := (_ : f ^ i ∈ 𝒜 (m * i)) }) } ∈ q.asIdeal [PROOFSTEP] rw [← and_forall_ne nx, and_iff_left, ← and_forall_ne ny, and_iff_left] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ Quotient.mk'' { deg := m * nx, num := { val := ↑(proj 𝒜 nx) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • nx)) }, den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } ∈ q.asIdeal ∨ Quotient.mk'' { deg := m * ny, num := { val := ↑(proj 𝒜 ny) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • ny)) }, den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } ∈ q.asIdeal [PROOFSTEP] apply q.2.mem_or_mem [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ Quotient.mk'' { deg := m * nx, num := { val := ↑(proj 𝒜 nx) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • nx)) }, den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } * Quotient.mk'' { deg := m * ny, num := { val := ↑(proj 𝒜 ny) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • ny)) }, den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } ∈ q.asIdeal [PROOFSTEP] convert hxy (nx + ny) using 1 [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ Quotient.mk'' { deg := m * nx, num := { val := ↑(proj 𝒜 nx) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • nx)) }, den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } * Quotient.mk'' { deg := m * ny, num := { val := ↑(proj 𝒜 ny) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • ny)) }, den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } = Quotient.mk'' { deg := m * (nx + ny), num := { val := ↑(proj 𝒜 (nx + ny)) (x * y) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply (nx + ny)) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (x * y)) ^ m ∈ 𝒜 (m • (nx + ny))) }, den := { val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) }) } [PROOFSTEP] dsimp [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ Quotient.mk'' { deg := m * nx, num := { val := ↑(↑(↑(decompose 𝒜) x) nx) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply nx) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • nx)) }, den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } * Quotient.mk'' { deg := m * ny, num := { val := ↑(↑(↑(decompose 𝒜) y) ny) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply ny) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • ny)) }, den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } = Quotient.mk'' { deg := m * (nx + ny), num := { val := ↑(↑(↑(decompose 𝒜) (x * y)) (nx + ny)) ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply (nx + ny)) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) (x * y)) ^ m ∈ 𝒜 (m • (nx + ny))) }, den := { val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ (nx + ny), property := (_ : f ^ (nx + ny) ∈ 𝒜 (m * (nx + ny))) }) } [PROOFSTEP] simp_rw [decompose_of_mem_same 𝒜 hnx, decompose_of_mem_same 𝒜 hny, decompose_of_mem_same 𝒜 (SetLike.GradedMonoid.toGradedMul.mul_mem hnx hny), mul_pow, pow_add] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ Quotient.mk'' { deg := m * nx, num := { val := x ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * nx)) (x ^ m)) }, den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) } * Quotient.mk'' { deg := m * ny, num := { val := y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * ny)) (y ^ m)) }, den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) } = Quotient.mk'' { deg := m * (nx + ny), num := { val := x ^ m * y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (x ^ m * y ^ m)) }, den := { val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) }, den_mem := (_ : ↑{ val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) } ∈ Submonoid.powers f) } [PROOFSTEP] simp only [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.mul_val, mk_mul] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny e_1✝ : ↑(CommRingCat.of (A⁰_ f)) = Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) ⊢ Localization.mk (x ^ m * y ^ m) ({ val := f ^ nx, property := (_ : ↑{ deg := m * nx, num := { val := x ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * nx)) (x ^ m)) }, den := { val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ nx, property := (_ : f ^ nx ∈ 𝒜 (m * nx)) }) }.den ∈ Submonoid.powers f) } * { val := f ^ ny, property := (_ : ↑{ deg := m * ny, num := { val := y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * ny)) (y ^ m)) }, den := { val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ ny, property := (_ : f ^ ny ∈ 𝒜 (m * ny)) }) }.den ∈ Submonoid.powers f) }) = Localization.mk (x ^ m * y ^ m) { val := f ^ nx * f ^ ny, property := (_ : ↑{ deg := m * (nx + ny), num := { val := x ^ m * y ^ m, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (x ^ m * y ^ m)) }, den := { val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) }, den_mem := (_ : ↑{ val := f ^ nx * f ^ ny, property := (_ : (fun x => x ∈ 𝒜 (m * (nx + ny))) (f ^ nx * f ^ ny)) } ∈ Submonoid.powers f) }.den ∈ Submonoid.powers f) } [PROOFSTEP] simp only [Submonoid.mk_mul_mk, mk_eq_monoidOf_mk'] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ ∀ (b : ℕ), b ≠ ny → Quotient.mk'' { deg := m * b, num := { val := ↑(proj 𝒜 b) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • b)) }, den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈ q.asIdeal R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ ∀ (b : ℕ), b ≠ nx → Quotient.mk'' { deg := m * b, num := { val := ↑(proj 𝒜 b) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • b)) }, den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈ q.asIdeal [PROOFSTEP] all_goals intro n hn; convert q.1.zero_mem using 1 rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val]; simp_rw [proj_apply] convert mk_zero (S := Submonoid.powers f) _ rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm] · first | exact hnx | exact hny [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ ∀ (b : ℕ), b ≠ ny → Quotient.mk'' { deg := m * b, num := { val := ↑(proj 𝒜 b) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • b)) }, den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈ q.asIdeal [PROOFSTEP] intro n hn [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny ⊢ Quotient.mk'' { deg := m * n, num := { val := ↑(proj 𝒜 n) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } ∈ q.asIdeal [PROOFSTEP] convert q.1.zero_mem using 1 [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Quotient.mk'' { deg := m * n, num := { val := ↑(proj 𝒜 n) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } = 0 [PROOFSTEP] rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Localization.mk ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.num { val := ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den, property := (_ : ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈ Submonoid.powers f) } = 0 [PROOFSTEP] simp_rw [proj_apply] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Localization.mk (↑(↑(↑(decompose 𝒜) y) n) ^ m) { val := f ^ n, property := (_ : ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) y ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) y) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈ Submonoid.powers f) } = 0 [PROOFSTEP] convert mk_zero (S := Submonoid.powers f) _ [GOAL] case h.e'_2.h.e'_4 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ ↑(↑(↑(decompose 𝒜) y) n) ^ m = 0 [PROOFSTEP] rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ y ∈ 𝒜 ny [PROOFSTEP] first | exact hnx | exact hny [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ y ∈ 𝒜 ny [PROOFSTEP] exact hnx [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ ny e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ y ∈ 𝒜 ny [PROOFSTEP] exact hny [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny ⊢ ∀ (b : ℕ), b ≠ nx → Quotient.mk'' { deg := m * b, num := { val := ↑(proj 𝒜 b) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply b) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • b)) }, den := { val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ b, property := (_ : f ^ b ∈ 𝒜 (m * b)) }) } ∈ q.asIdeal [PROOFSTEP] intro n hn [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx ⊢ Quotient.mk'' { deg := m * n, num := { val := ↑(proj 𝒜 n) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } ∈ q.asIdeal [PROOFSTEP] convert q.1.zero_mem using 1 [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Quotient.mk'' { deg := m * n, num := { val := ↑(proj 𝒜 n) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) } = 0 [PROOFSTEP] rw [HomogeneousLocalization.ext_iff_val, HomogeneousLocalization.val_mk'', HomogeneousLocalization.zero_val] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Localization.mk ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.num { val := ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den, property := (_ : ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈ Submonoid.powers f) } = 0 [PROOFSTEP] simp_rw [proj_apply] [GOAL] case h.e'_4.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ Localization.mk (↑(↑(↑(decompose 𝒜) x) n) ^ m) { val := f ^ n, property := (_ : ↑{ deg := m * n, num := { val := ↑(proj 𝒜 n) x ^ m, property := (_ : ↑(↑(LinearMap.comp (DFinsupp.lapply n) (AlgHom.toLinearMap ↑(decomposeAlgEquiv 𝒜))) x) ^ m ∈ 𝒜 (m • n)) }, den := { val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }, den_mem := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = ↑{ val := f ^ n, property := (_ : f ^ n ∈ 𝒜 (m * n)) }) }.den ∈ Submonoid.powers f) } = 0 [PROOFSTEP] convert mk_zero (S := Submonoid.powers f) _ [GOAL] case h.e'_2.h.e'_4 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ ↑(↑(↑(decompose 𝒜) x) n) ^ m = 0 [PROOFSTEP] rw [decompose_of_mem_ne 𝒜 _ hn.symm, zero_pow hm] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ x ∈ 𝒜 nx [PROOFSTEP] first | exact hnx | exact hny [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A m : ℕ f_deg : f ∈ 𝒜 m hm : 0 < m q : ↑↑(Spec A⁰_ f).toSheafedSpace.toPresheafedSpace x y : A x✝¹ : Homogeneous 𝒜 x x✝ : Homogeneous 𝒜 y hxy : x * y ∈ asIdeal f_deg hm q nx : ℕ hnx : x ∈ 𝒜 nx ny : ℕ hny : y ∈ 𝒜 ny n : ℕ hn : n ≠ nx e_1✝ : Quotient (Setoid.ker (HomogeneousLocalization.NumDenSameDeg.embedding 𝒜 (Submonoid.powers f))) = ↑(CommRingCat.of (A⁰_ f)) ⊢ x ∈ 𝒜 nx [PROOFSTEP] exact hnx
{"mathlib_filename": "Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme", "llama_tokens": 221168}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝³ : Lattice α inst✝² : OrderBot α s t : Finset ι f : ι → α i : ι inst✝¹ : DecidableEq ι inst✝ : DecidableEq α ⊢ Decidable (SupIndep s f) [PROOFSTEP] refine @Finset.decidableForallOfDecidableSubsets _ _ _ (?_) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝³ : Lattice α inst✝² : OrderBot α s t : Finset ι f : ι → α i : ι inst✝¹ : DecidableEq ι inst✝ : DecidableEq α ⊢ (t : Finset ι) → t ⊆ s → Decidable (∀ ⦃i : ι⦄, i ∈ s → ¬i ∈ t → Disjoint (f i) (sup t f)) [PROOFSTEP] rintro t - [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝³ : Lattice α inst✝² : OrderBot α s t✝ : Finset ι f : ι → α i : ι inst✝¹ : DecidableEq ι inst✝ : DecidableEq α t : Finset ι ⊢ Decidable (∀ ⦃i : ι⦄, i ∈ s → ¬i ∈ t → Disjoint (f i) (sup t f)) [PROOFSTEP] refine @Finset.decidableDforallFinset _ _ _ (?_) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝³ : Lattice α inst✝² : OrderBot α s t✝ : Finset ι f : ι → α i : ι inst✝¹ : DecidableEq ι inst✝ : DecidableEq α t : Finset ι ⊢ (a : ι) → a ∈ s → Decidable (¬a ∈ t → Disjoint (f a) (sup t f)) [PROOFSTEP] rintro i - [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝³ : Lattice α inst✝² : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι inst✝¹ : DecidableEq ι inst✝ : DecidableEq α t : Finset ι i : ι ⊢ Decidable (¬i ∈ t → Disjoint (f i) (sup t f)) [PROOFSTEP] have : Decidable (Disjoint (f i) (sup t f)) := decidable_of_iff' (_ = ⊥) disjoint_iff [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝³ : Lattice α inst✝² : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι inst✝¹ : DecidableEq ι inst✝ : DecidableEq α t : Finset ι i : ι this : Decidable (Disjoint (f i) (sup t f)) ⊢ Decidable (¬i ∈ t → Disjoint (f i) (sup t f)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t : Finset ι f✝ : ι → α i✝ i : ι f : ι → α s : Finset ι hs : s ⊆ {i} j : ι hji : j ∈ {i} hj : ¬j ∈ s ⊢ Disjoint (f j) (sup s f) [PROOFSTEP] rw [eq_empty_of_ssubset_singleton ⟨hs, fun h => hj (h hji)⟩, sup_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t : Finset ι f✝ : ι → α i✝ i : ι f : ι → α s : Finset ι hs : s ⊆ {i} j : ι hji : j ∈ {i} hj : ¬j ∈ s ⊢ Disjoint (f j) ⊥ [PROOFSTEP] exact disjoint_bot_right [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f : ι → α i : ι hs : SupIndep s f hts : t ⊆ s hi : i ∈ s hf : ∀ (i : ι), f i ≠ ⊥ ⊢ f i ≤ sup t f ↔ i ∈ t [PROOFSTEP] refine' ⟨fun h => _, le_sup⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f : ι → α i : ι hs : SupIndep s f hts : t ⊆ s hi : i ∈ s hf : ∀ (i : ι), f i ≠ ⊥ h : f i ≤ sup t f ⊢ i ∈ t [PROOFSTEP] by_contra hit [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f : ι → α i : ι hs : SupIndep s f hts : t ⊆ s hi : i ∈ s hf : ∀ (i : ι), f i ≠ ⊥ h : f i ≤ sup t f hit : ¬i ∈ t ⊢ False [PROOFSTEP] exact hf i (disjoint_self.1 <| (hs hts hi hit).mono_right h) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t : Finset ι f : ι → α i : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) ⊢ SupIndep (Finset.image g s) f [PROOFSTEP] intro t ht i hi hit [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι hi : i ∈ Finset.image g s hit : ¬i ∈ t ⊢ Disjoint (f i) (sup t f) [PROOFSTEP] rw [mem_image] at hi [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι hi : ∃ a, a ∈ s ∧ g a = i hit : ¬i ∈ t ⊢ Disjoint (f i) (sup t f) [PROOFSTEP] obtain ⟨i, hi, rfl⟩ := hi [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t ⊢ Disjoint (f (g i)) (sup t f) [PROOFSTEP] haveI : DecidableEq ι' := Classical.decEq _ [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t this : DecidableEq ι' ⊢ Disjoint (f (g i)) (sup t f) [PROOFSTEP] suffices hts : t ⊆ (s.erase i).image g [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t this : DecidableEq ι' hts : t ⊆ Finset.image g (erase s i) ⊢ Disjoint (f (g i)) (sup t f) [PROOFSTEP] refine' (supIndep_iff_disjoint_erase.1 hs i hi).mono_right ((sup_mono hts).trans _) [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t this : DecidableEq ι' hts : t ⊆ Finset.image g (erase s i) ⊢ sup (Finset.image g (erase s i)) f ≤ sup (erase s i) (f ∘ g) [PROOFSTEP] rw [sup_image] [GOAL] case hts α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t this : DecidableEq ι' ⊢ t ⊆ Finset.image g (erase s i) [PROOFSTEP] rintro j hjt [GOAL] case hts α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t this : DecidableEq ι' j : ι hjt : j ∈ t ⊢ j ∈ Finset.image g (erase s i) [PROOFSTEP] obtain ⟨j, hj, rfl⟩ := mem_image.1 (ht hjt) [GOAL] case hts.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι s : Finset ι' g : ι' → ι hs : SupIndep s (f ∘ g) t : Finset ι ht : t ⊆ Finset.image g s i : ι' hi : i ∈ s hit : ¬g i ∈ t this : DecidableEq ι' j : ι' hj : j ∈ s hjt : g j ∈ t ⊢ g j ∈ Finset.image g (erase s i) [PROOFSTEP] exact mem_image_of_mem _ (mem_erase.2 ⟨ne_of_apply_ne g (ne_of_mem_of_not_mem hjt hit), hj⟩) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t : Finset ι f : ι → α i : ι s : Finset ι' g : ι' ↪ ι ⊢ SupIndep (map g s) f ↔ SupIndep s (f ∘ ↑g) [PROOFSTEP] refine' ⟨fun hs t ht i hi hit => _, fun hs => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι s : Finset ι' g : ι' ↪ ι hs : SupIndep (map g s) f t : Finset ι' ht : t ⊆ s i : ι' hi : i ∈ s hit : ¬i ∈ t ⊢ Disjoint ((f ∘ ↑g) i) (sup t (f ∘ ↑g)) [PROOFSTEP] rw [← sup_map] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι s : Finset ι' g : ι' ↪ ι hs : SupIndep (map g s) f t : Finset ι' ht : t ⊆ s i : ι' hi : i ∈ s hit : ¬i ∈ t ⊢ Disjoint ((f ∘ ↑g) i) (sup (map g t) f) [PROOFSTEP] exact hs (map_subset_map.2 ht) ((mem_map' _).2 hi) (by rwa [mem_map']) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t✝ : Finset ι f : ι → α i✝ : ι s : Finset ι' g : ι' ↪ ι hs : SupIndep (map g s) f t : Finset ι' ht : t ⊆ s i : ι' hi : i ∈ s hit : ¬i ∈ t ⊢ ¬↑g i ∈ map g t [PROOFSTEP] rwa [mem_map'] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t : Finset ι f : ι → α i : ι s : Finset ι' g : ι' ↪ ι hs : SupIndep s (f ∘ ↑g) ⊢ SupIndep (map g s) f [PROOFSTEP] classical rw [map_eq_image] exact hs.image [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t : Finset ι f : ι → α i : ι s : Finset ι' g : ι' ↪ ι hs : SupIndep s (f ∘ ↑g) ⊢ SupIndep (map g s) f [PROOFSTEP] rw [map_eq_image] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s✝ t : Finset ι f : ι → α i : ι s : Finset ι' g : ι' ↪ ι hs : SupIndep s (f ∘ ↑g) ⊢ SupIndep (image (↑g) s) f [PROOFSTEP] exact hs.image [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i j : ι hij : i ≠ j h : SupIndep {i, j} f ⊢ i ∈ ↑{i, j} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i j : ι hij : i ≠ j h : SupIndep {i, j} f ⊢ j ∈ ↑{i, j} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i j : ι hij : i ≠ j h : Disjoint (f i) (f j) ⊢ SupIndep {i, j} f [PROOFSTEP] rw [supIndep_iff_disjoint_erase] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i j : ι hij : i ≠ j h : Disjoint (f i) (f j) ⊢ ∀ (i_1 : ι), i_1 ∈ {i, j} → Disjoint (f i_1) (sup (erase {i, j} i_1) f) [PROOFSTEP] intro k hk [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i j : ι hij : i ≠ j h : Disjoint (f i) (f j) k : ι hk : k ∈ {i, j} ⊢ Disjoint (f k) (sup (erase {i, j} k) f) [PROOFSTEP] rw [Finset.mem_insert, Finset.mem_singleton] at hk [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i j : ι hij : i ≠ j h : Disjoint (f i) (f j) k : ι hk : k = i ∨ k = j ⊢ Disjoint (f k) (sup (erase {i, j} k) f) [PROOFSTEP] obtain rfl | rfl := hk [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i : ι inst✝ : DecidableEq ι j k : ι hij : k ≠ j h : Disjoint (f k) (f j) ⊢ Disjoint (f k) (sup (erase {k, j} k) f) [PROOFSTEP] convert h using 1 [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i : ι inst✝ : DecidableEq ι j k : ι hij : k ≠ j h : Disjoint (f k) (f j) ⊢ sup (erase {k, j} k) f = f j [PROOFSTEP] rw [Finset.erase_insert, Finset.sup_singleton] [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i : ι inst✝ : DecidableEq ι j k : ι hij : k ≠ j h : Disjoint (f k) (f j) ⊢ ¬k ∈ {j} [PROOFSTEP] simpa using hij [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i k : ι hij : i ≠ k h : Disjoint (f i) (f k) ⊢ Disjoint (f k) (sup (erase {i, k} k) f) [PROOFSTEP] convert h.symm using 1 [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i k : ι hij : i ≠ k h : Disjoint (f i) (f k) ⊢ sup (erase {i, k} k) f = f i [PROOFSTEP] have : ({ i, k } : Finset ι).erase k = { i } := by ext rw [mem_erase, mem_insert, mem_singleton, mem_singleton, and_or_left, Ne.def, not_and_self_iff, or_false_iff, and_iff_right_of_imp] rintro rfl exact hij [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i k : ι hij : i ≠ k h : Disjoint (f i) (f k) ⊢ erase {i, k} k = {i} [PROOFSTEP] ext [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i k : ι hij : i ≠ k h : Disjoint (f i) (f k) a✝ : ι ⊢ a✝ ∈ erase {i, k} k ↔ a✝ ∈ {i} [PROOFSTEP] rw [mem_erase, mem_insert, mem_singleton, mem_singleton, and_or_left, Ne.def, not_and_self_iff, or_false_iff, and_iff_right_of_imp] [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i k : ι hij : i ≠ k h : Disjoint (f i) (f k) a✝ : ι ⊢ a✝ = i → ¬a✝ = k [PROOFSTEP] rintro rfl [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i : ι inst✝ : DecidableEq ι k a✝ : ι hij : a✝ ≠ k h : Disjoint (f a✝) (f k) ⊢ ¬a✝ = k [PROOFSTEP] exact hij [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : Lattice α inst✝¹ : OrderBot α s t : Finset ι f : ι → α i✝ : ι inst✝ : DecidableEq ι i k : ι hij : i ≠ k h : Disjoint (f i) (f k) this : erase {i, k} k = {i} ⊢ sup (erase {i, k} k) f = f i [PROOFSTEP] rw [this, Finset.sup_singleton] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f✝ : ι → α i : ι f : Bool → α ⊢ true ≠ false [PROOFSTEP] simp only [Ne.def, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f✝ : ι → α i : ι f : Fin 2 → α ⊢ 0 ≠ 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f : ι → α i : ι hs : SupIndep s f ⊢ SupIndep (Finset.attach s) fun a => f ↑a [PROOFSTEP] intro t _ i _ hi [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t ⊢ Disjoint ((fun a => f ↑a) i) (sup t fun a => f ↑a) [PROOFSTEP] classical have : (fun (a : { x // x ∈ s }) => f ↑a) = f ∘ (fun a : { x // x ∈ s } => ↑a) := rfl rw [this, ← Finset.sup_image] refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _ rw [mem_image] at hi' obtain ⟨j, hj, hji⟩ := hi' rwa [Subtype.ext hji] at hj [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t ⊢ Disjoint ((fun a => f ↑a) i) (sup t fun a => f ↑a) [PROOFSTEP] have : (fun (a : { x // x ∈ s }) => f ↑a) = f ∘ (fun a : { x // x ∈ s } => ↑a) := rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t this : (fun a => f ↑a) = f ∘ fun a => ↑a ⊢ Disjoint ((fun a => f ↑a) i) (sup t fun a => f ↑a) [PROOFSTEP] rw [this, ← Finset.sup_image] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t this : (fun a => f ↑a) = f ∘ fun a => ↑a ⊢ Disjoint ((f ∘ fun a => ↑a) i) (sup (Finset.image (fun a => ↑a) t) f) [PROOFSTEP] refine' hs (image_subset_iff.2 fun (j : { x // x ∈ s }) _ => j.2) i.2 fun hi' => hi _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t this : (fun a => f ↑a) = f ∘ fun a => ↑a hi' : (fun a => ↑a) i ∈ Finset.image (fun j => ↑j) t ⊢ i ∈ t [PROOFSTEP] rw [mem_image] at hi' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t this : (fun a => f ↑a) = f ∘ fun a => ↑a hi' : ∃ a, a ∈ t ∧ ↑a = (fun a => ↑a) i ⊢ i ∈ t [PROOFSTEP] obtain ⟨j, hj, hji⟩ := hi' [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι hs : SupIndep s f t : Finset { x // x ∈ s } a✝¹ : t ⊆ Finset.attach s i : { x // x ∈ s } a✝ : i ∈ Finset.attach s hi : ¬i ∈ t this : (fun a => f ↑a) = f ∘ fun a => ↑a j : { x // x ∈ s } hj : j ∈ t hji : ↑j = (fun a => ↑a) i ⊢ i ∈ t [PROOFSTEP] rwa [Subtype.ext hji] at hj [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t : Finset ι f : ι → α i : ι ⊢ (SupIndep (attach s) fun a => f ↑a) ↔ SupIndep s f [PROOFSTEP] refine' ⟨fun h t ht i his hit => _, SupIndep.attach⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι h : SupIndep (attach s) fun a => f ↑a t : Finset ι ht : t ⊆ s i : ι his : i ∈ s hit : ¬i ∈ t ⊢ Disjoint (f i) (sup t f) [PROOFSTEP] classical convert h (filter_subset (fun (i : { x // x ∈ s }) => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi => hit <| by simpa using hi using 1 refine' eq_of_forall_ge_iff _ simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply, Subtype.forall, Subtype.coe_mk] exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι h : SupIndep (attach s) fun a => f ↑a t : Finset ι ht : t ⊆ s i : ι his : i ∈ s hit : ¬i ∈ t ⊢ Disjoint (f i) (sup t f) [PROOFSTEP] convert h (filter_subset (fun (i : { x // x ∈ s }) => (i : ι) ∈ t) _) (mem_attach _ ⟨i, ‹_›⟩) fun hi => hit <| by simpa using hi using 1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι h : SupIndep (attach s) fun a => f ↑a t : Finset ι ht : t ⊆ s i : ι his : i ∈ s hit : ¬i ∈ t hi : { val := i, property := his } ∈ filter (fun i => ↑i ∈ t) (attach s) ⊢ i ∈ t [PROOFSTEP] simpa using hi [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι h : SupIndep (attach s) fun a => f ↑a t : Finset ι ht : t ⊆ s i : ι his : i ∈ s hit : ¬i ∈ t ⊢ sup t f = sup (filter (fun i => ↑i ∈ t) (attach s)) fun a => f ↑a [PROOFSTEP] refine' eq_of_forall_ge_iff _ [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι h : SupIndep (attach s) fun a => f ↑a t : Finset ι ht : t ⊆ s i : ι his : i ∈ s hit : ¬i ∈ t ⊢ ∀ (c : α), sup t f ≤ c ↔ (sup (filter (fun i => ↑i ∈ t) (attach s)) fun a => f ↑a) ≤ c [PROOFSTEP] simp only [Finset.sup_le_iff, mem_filter, mem_attach, true_and_iff, Function.comp_apply, Subtype.forall, Subtype.coe_mk] [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : Lattice α inst✝ : OrderBot α s t✝ : Finset ι f : ι → α i✝ : ι h : SupIndep (attach s) fun a => f ↑a t : Finset ι ht : t ⊆ s i : ι his : i ∈ s hit : ¬i ∈ t ⊢ ∀ (c : α), (∀ (b : ι), b ∈ t → f b ≤ c) ↔ ∀ (a : ι), a ∈ s → a ∈ t → f a ≤ c [PROOFSTEP] exact fun a => forall_congr' fun j => ⟨fun h _ => h, fun h hj => h (ht hj) hj⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : DistribLattice α inst✝¹ : OrderBot α s✝ : Finset ι f✝ : ι → α inst✝ : DecidableEq ι s : Finset ι' g : ι' → Finset ι f : ι → α hs : SupIndep s fun i => Finset.sup (g i) f hg : ∀ (i' : ι'), i' ∈ s → SupIndep (g i') f ⊢ SupIndep (Finset.sup s g) f [PROOFSTEP] simp_rw [supIndep_iff_pairwiseDisjoint] at hs hg ⊢ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : DistribLattice α inst✝¹ : OrderBot α s✝ : Finset ι f✝ : ι → α inst✝ : DecidableEq ι s : Finset ι' g : ι' → Finset ι f : ι → α hs : Set.PairwiseDisjoint ↑s fun i => Finset.sup (g i) f hg : ∀ (i' : ι'), i' ∈ s → Set.PairwiseDisjoint (↑(g i')) f ⊢ Set.PairwiseDisjoint (↑(Finset.sup s g)) f [PROOFSTEP] rw [sup_eq_biUnion, coe_biUnion] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : DistribLattice α inst✝¹ : OrderBot α s✝ : Finset ι f✝ : ι → α inst✝ : DecidableEq ι s : Finset ι' g : ι' → Finset ι f : ι → α hs : Set.PairwiseDisjoint ↑s fun i => Finset.sup (g i) f hg : ∀ (i' : ι'), i' ∈ s → Set.PairwiseDisjoint (↑(g i')) f ⊢ Set.PairwiseDisjoint (⋃ (x : ι') (_ : x ∈ ↑s), ↑(g x)) f [PROOFSTEP] exact hs.biUnion_finset hg [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : DistribLattice α inst✝¹ : OrderBot α s✝ : Finset ι f✝ : ι → α inst✝ : DecidableEq ι s : Finset ι' g : ι' → Finset ι f : ι → α hs : SupIndep s fun i => Finset.sup (g i) f hg : ∀ (i' : ι'), i' ∈ s → SupIndep (g i') f ⊢ SupIndep (Finset.biUnion s g) f [PROOFSTEP] rw [← sup_eq_biUnion] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝² : DistribLattice α inst✝¹ : OrderBot α s✝ : Finset ι f✝ : ι → α inst✝ : DecidableEq ι s : Finset ι' g : ι' → Finset ι f : ι → α hs : SupIndep s fun i => Finset.sup (g i) f hg : ∀ (i' : ι'), i' ∈ s → SupIndep (g i') f ⊢ SupIndep (Finset.sup s g) f [PROOFSTEP] exact hs.sup hg [GOAL] α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } ⊢ SupIndep (Finset.sigma s g) f [PROOFSTEP] rintro t ht ⟨i, b⟩ hi hit [GOAL] case mk α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b } ∈ Finset.sigma s g hit : ¬{ fst := i, snd := b } ∈ t ⊢ Disjoint (f { fst := i, snd := b }) (Finset.sup t f) [PROOFSTEP] rw [Finset.disjoint_sup_right] [GOAL] case mk α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b } ∈ Finset.sigma s g hit : ¬{ fst := i, snd := b } ∈ t ⊢ ∀ ⦃i_1 : (i : ι) × β i⦄, i_1 ∈ t → Disjoint (f { fst := i, snd := b }) (f i_1) [PROOFSTEP] rintro ⟨j, c⟩ hj [GOAL] case mk.mk α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b } ∈ Finset.sigma s g hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hj : { fst := j, snd := c } ∈ t ⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c }) [PROOFSTEP] have hbc := (ne_of_mem_of_not_mem hj hit).symm [GOAL] case mk.mk α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b } ∈ Finset.sigma s g hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hj : { fst := j, snd := c } ∈ t hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } ⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c }) [PROOFSTEP] replace hj := ht hj [GOAL] case mk.mk α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b } ∈ Finset.sigma s g hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c } ∈ Finset.sigma s g ⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c }) [PROOFSTEP] rw [mem_sigma] at hi hj [GOAL] case mk.mk α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst ⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c }) [PROOFSTEP] obtain rfl | hij := eq_or_ne i j [GOAL] case mk.mk.inl α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t c : β i hbc : { fst := i, snd := b } ≠ { fst := i, snd := c } hj : { fst := i, snd := c }.fst ∈ s ∧ { fst := i, snd := c }.snd ∈ g { fst := i, snd := c }.fst ⊢ Disjoint (f { fst := i, snd := b }) (f { fst := i, snd := c }) [PROOFSTEP] exact (hg _ hj.1).pairwiseDisjoint hi.2 hj.2 (sigma_mk_injective.ne_iff.1 hbc) [GOAL] case mk.mk.inr α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst hij : i ≠ j ⊢ Disjoint (f { fst := i, snd := b }) (f { fst := j, snd := c }) [PROOFSTEP] refine' (hs.pairwiseDisjoint hi.1 hj.1 hij).mono _ _ [GOAL] case mk.mk.inr.refine'_1 α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst hij : i ≠ j ⊢ f { fst := i, snd := b } ≤ (fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }) { fst := i, snd := b }.fst [PROOFSTEP] convert le_sup (α := α) hi.2 [GOAL] case h.e'_3 α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst hij : i ≠ j ⊢ f { fst := i, snd := b } = f { fst := { fst := i, snd := b }.fst, snd := { fst := i, snd := b }.snd } [PROOFSTEP] simp [GOAL] case mk.mk.inr.refine'_2 α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst hij : i ≠ j ⊢ f { fst := j, snd := c } ≤ (fun i => Finset.sup (g i) fun b => f { fst := i, snd := b }) { fst := j, snd := c }.fst [PROOFSTEP] convert le_sup (α := α) hj.2 [GOAL] case h.e'_3 α : Type u_1 β✝ : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α β : ι → Type u_5 s : Finset ι g : (i : ι) → Finset (β i) f : Sigma β → α hs : SupIndep s fun i => Finset.sup (g i) fun b => f { fst := i, snd := b } hg : ∀ (i : ι), i ∈ s → SupIndep (g i) fun b => f { fst := i, snd := b } t : Finset ((i : ι) × β i) ht : t ⊆ Finset.sigma s g i : ι b : β i hi : { fst := i, snd := b }.fst ∈ s ∧ { fst := i, snd := b }.snd ∈ g { fst := i, snd := b }.fst hit : ¬{ fst := i, snd := b } ∈ t j : ι c : β j hbc : { fst := i, snd := b } ≠ { fst := j, snd := c } hj : { fst := j, snd := c }.fst ∈ s ∧ { fst := j, snd := c }.snd ∈ g { fst := j, snd := c }.fst hij : i ≠ j ⊢ f { fst := j, snd := c } = f { fst := { fst := j, snd := c }.fst, snd := { fst := j, snd := c }.snd } [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') ⊢ SupIndep (s ×ˢ t) f [PROOFSTEP] rintro u hu ⟨i, i'⟩ hi hiu [GOAL] case mk α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i') ∈ s ×ˢ t hiu : ¬(i, i') ∈ u ⊢ Disjoint (f (i, i')) (Finset.sup u f) [PROOFSTEP] rw [Finset.disjoint_sup_right] [GOAL] case mk α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i') ∈ s ×ˢ t hiu : ¬(i, i') ∈ u ⊢ ∀ ⦃i_1 : ι × ι'⦄, i_1 ∈ u → Disjoint (f (i, i')) (f i_1) [PROOFSTEP] rintro ⟨j, j'⟩ hj [GOAL] case mk.mk α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i') ∈ s ×ˢ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hj : (j, j') ∈ u ⊢ Disjoint (f (i, i')) (f (j, j')) [PROOFSTEP] have hij := (ne_of_mem_of_not_mem hj hiu).symm [GOAL] case mk.mk α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i') ∈ s ×ˢ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hj : (j, j') ∈ u hij : (i, i') ≠ (j, j') ⊢ Disjoint (f (i, i')) (f (j, j')) [PROOFSTEP] replace hj := hu hj [GOAL] case mk.mk α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i') ∈ s ×ˢ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij : (i, i') ≠ (j, j') hj : (j, j') ∈ s ×ˢ t ⊢ Disjoint (f (i, i')) (f (j, j')) [PROOFSTEP] rw [mem_product] at hi hj [GOAL] case mk.mk α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij : (i, i') ≠ (j, j') hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t ⊢ Disjoint (f (i, i')) (f (j, j')) [PROOFSTEP] obtain rfl | hij := eq_or_ne i j [GOAL] case mk.mk.inl α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j' : ι' hij : (i, i') ≠ (i, j') hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t ⊢ Disjoint (f (i, i')) (f (i, j')) [PROOFSTEP] refine' (ht.pairwiseDisjoint hi.2 hj.2 <| (Prod.mk.inj_left _).ne_iff.1 hij).mono _ _ [GOAL] case mk.mk.inl.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j' : ι' hij : (i, i') ≠ (i, j') hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t ⊢ f (i, i') ≤ (fun i' => Finset.sup s fun i => f (i, i')) (i, i').snd [PROOFSTEP] convert le_sup (α := α) hi.1 [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j' : ι' hij : (i, i') ≠ (i, j') hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t ⊢ f (i, i') = f ((i, i').fst, (i, i').snd) [PROOFSTEP] simp [GOAL] case mk.mk.inl.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j' : ι' hij : (i, i') ≠ (i, j') hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t ⊢ f (i, j') ≤ (fun i' => Finset.sup s fun i => f (i, i')) (i, j').snd [PROOFSTEP] convert le_sup (α := α) hj.1 [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j' : ι' hij : (i, i') ≠ (i, j') hj : (i, j').fst ∈ s ∧ (i, j').snd ∈ t ⊢ f (i, j') = f ((i, j').fst, (i, j').snd) [PROOFSTEP] simp [GOAL] case mk.mk.inr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij✝ : (i, i') ≠ (j, j') hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t hij : i ≠ j ⊢ Disjoint (f (i, i')) (f (j, j')) [PROOFSTEP] refine' (hs.pairwiseDisjoint hi.1 hj.1 hij).mono _ _ [GOAL] case mk.mk.inr.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij✝ : (i, i') ≠ (j, j') hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t hij : i ≠ j ⊢ f (i, i') ≤ (fun i => Finset.sup t fun i' => f (i, i')) (i, i').fst [PROOFSTEP] convert le_sup (α := α) hi.2 [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij✝ : (i, i') ≠ (j, j') hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t hij : i ≠ j ⊢ f (i, i') = f ((i, i').fst, (i, i').snd) [PROOFSTEP] simp [GOAL] case mk.mk.inr.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij✝ : (i, i') ≠ (j, j') hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t hij : i ≠ j ⊢ f (j, j') ≤ (fun i => Finset.sup t fun i' => f (i, i')) (j, j').fst [PROOFSTEP] convert le_sup (α := α) hj.2 [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α hs : SupIndep s fun i => Finset.sup t fun i' => f (i, i') ht : SupIndep t fun i' => Finset.sup s fun i => f (i, i') u : Finset (ι × ι') hu : u ⊆ s ×ˢ t i : ι i' : ι' hi : (i, i').fst ∈ s ∧ (i, i').snd ∈ t hiu : ¬(i, i') ∈ u j : ι j' : ι' hij✝ : (i, i') ≠ (j, j') hj : (j, j').fst ∈ s ∧ (j, j').snd ∈ t hij : i ≠ j ⊢ f (j, j') = f ((j, j').fst, (j, j').snd) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α ⊢ SupIndep (Finset.product s t) f ↔ (SupIndep s fun i => sup t fun i' => f (i, i')) ∧ SupIndep t fun i' => sup s fun i => f (i, i') [PROOFSTEP] refine' ⟨_, fun h => h.1.product h.2⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α ⊢ SupIndep (Finset.product s t) f → (SupIndep s fun i => sup t fun i' => f (i, i')) ∧ SupIndep t fun i' => sup s fun i => f (i, i') [PROOFSTEP] simp_rw [supIndep_iff_pairwiseDisjoint] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α ⊢ Set.PairwiseDisjoint (↑(Finset.product s t)) f → (Set.PairwiseDisjoint ↑s fun i => sup t fun i' => f (i, i')) ∧ Set.PairwiseDisjoint ↑t fun i' => sup s fun i => f (i, i') [PROOFSTEP] refine' fun h => ⟨fun i hi j hj hij => _, fun i hi j hj hij => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α h : Set.PairwiseDisjoint (↑(Finset.product s t)) f i : ι hi : i ∈ ↑s j : ι hj : j ∈ ↑s hij : i ≠ j ⊢ (Disjoint on fun i => sup t fun i' => f (i, i')) i j [PROOFSTEP] simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α h : Set.PairwiseDisjoint (↑(Finset.product s t)) f i : ι' hi : i ∈ ↑t j : ι' hj : j ∈ ↑t hij : i ≠ j ⊢ (Disjoint on fun i' => sup s fun i => f (i, i')) i j [PROOFSTEP] simp_rw [Function.onFun, Finset.disjoint_sup_left, Finset.disjoint_sup_right] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α h : Set.PairwiseDisjoint (↑(Finset.product s t)) f i : ι hi : i ∈ ↑s j : ι hj : j ∈ ↑s hij : i ≠ j ⊢ ∀ ⦃i_1 : ι'⦄, i_1 ∈ t → ∀ ⦃i_2 : ι'⦄, i_2 ∈ t → Disjoint (f (i, i_1)) (f (j, i_2)) [PROOFSTEP] intro i' hi' j' hj' [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α h : Set.PairwiseDisjoint (↑(Finset.product s t)) f i : ι' hi : i ∈ ↑t j : ι' hj : j ∈ ↑t hij : i ≠ j ⊢ ∀ ⦃i_1 : ι⦄, i_1 ∈ s → ∀ ⦃i_2 : ι⦄, i_2 ∈ s → Disjoint (f (i_1, i)) (f (i_2, j)) [PROOFSTEP] intro i' hi' j' hj' [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α h : Set.PairwiseDisjoint (↑(Finset.product s t)) f i : ι hi : i ∈ ↑s j : ι hj : j ∈ ↑s hij : i ≠ j i' : ι' hi' : i' ∈ t j' : ι' hj' : j' ∈ t ⊢ Disjoint (f (i, i')) (f (j, j')) [PROOFSTEP] exact h (mk_mem_product hi hi') (mk_mem_product hj hj') (ne_of_apply_ne Prod.fst hij) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : DistribLattice α inst✝ : OrderBot α s✝ : Finset ι f✝ : ι → α s : Finset ι t : Finset ι' f : ι × ι' → α h : Set.PairwiseDisjoint (↑(Finset.product s t)) f i : ι' hi : i ∈ ↑t j : ι' hj : j ∈ ↑t hij : i ≠ j i' : ι hi' : i' ∈ s j' : ι hj' : j' ∈ s ⊢ Disjoint (f (i', i)) (f (j', j)) [PROOFSTEP] exact h (mk_mem_product hi' hi) (mk_mem_product hj' hj) (ne_of_apply_ne Prod.snd hij) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s a b : α hab : a ≠ b ⊢ SetIndependent {a, b} ↔ Disjoint a b [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s a b : α hab : a ≠ b ⊢ SetIndependent {a, b} → Disjoint a b [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s a b : α hab : a ≠ b h : SetIndependent {a, b} ⊢ Disjoint a b [PROOFSTEP] exact h.pairwiseDisjoint (mem_insert _ _) (mem_insert_of_mem _ (mem_singleton _)) hab [GOAL] case mpr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s a b : α hab : a ≠ b ⊢ Disjoint a b → SetIndependent {a, b} [PROOFSTEP] rintro h c ((rfl : c = a) | (rfl : c = b)) [GOAL] case mpr.inl α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s b c : α hab : c ≠ b h : Disjoint c b ⊢ Disjoint c (sSup ({c, b} \ {c})) [PROOFSTEP] convert h using 1 [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s b c : α hab : c ≠ b h : Disjoint c b ⊢ sSup ({c, b} \ {c}) = b [PROOFSTEP] simp [hab, sSup_singleton] [GOAL] case mpr.inr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s a c : α hab : a ≠ c h : Disjoint a c ⊢ Disjoint c (sSup ({a, c} \ {c})) [PROOFSTEP] convert h.symm using 1 [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s a c : α hab : a ≠ c h : Disjoint a c ⊢ sSup ({a, c} \ {c}) = a [PROOFSTEP] simp [hab, sSup_singleton] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s x : α y : Set α hx : x ∈ s hy : y ⊆ s hxy : ¬x ∈ y ⊢ Disjoint x (sSup y) [PROOFSTEP] have := (hs.mono <| insert_subset_iff.mpr ⟨hx, hy⟩) (mem_insert x _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s x : α y : Set α hx : x ∈ s hy : y ⊆ s hxy : ¬x ∈ y this : Disjoint x (sSup (insert x y \ {x})) ⊢ Disjoint x (sSup y) [PROOFSTEP] rw [insert_diff_of_mem _ (mem_singleton _), diff_singleton_eq_self hxy] at this [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s x : α y : Set α hx : x ∈ s hy : y ⊆ s hxy : ¬x ∈ y this : Disjoint x (sSup y) ⊢ Disjoint x (sSup y) [PROOFSTEP] exact this [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : CompleteLattice α✝ s✝ : Set α✝ hs : SetIndependent s✝ α : Type u_5 inst✝ : CompleteLattice α s : Set α ⊢ SetIndependent s ↔ Independent Subtype.val [PROOFSTEP] simp_rw [Independent, SetIndependent, SetCoe.forall, sSup_eq_iSup] [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : CompleteLattice α✝ s✝ : Set α✝ hs : SetIndependent s✝ α : Type u_5 inst✝ : CompleteLattice α s : Set α ⊢ (∀ ⦃a : α⦄, a ∈ s → Disjoint a (⨆ (a_2 : α) (_ : a_2 ∈ s \ {a}), a_2)) ↔ ∀ (x : α) (h : x ∈ s), Disjoint x (⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := x, property := h }), ↑j) [PROOFSTEP] refine' forall₂_congr fun a ha => _ [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : CompleteLattice α✝ s✝ : Set α✝ hs : SetIndependent s✝ α : Type u_5 inst✝ : CompleteLattice α s : Set α a : α ha : a ∈ s ⊢ Disjoint a (⨆ (a_1 : α) (_ : a_1 ∈ s \ {a}), a_1) ↔ Disjoint a (⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := ha }), ↑j) [PROOFSTEP] simp [iSup_subtype, iSup_and] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t ⊢ Independent t ↔ ∀ (i : ι), Disjoint (t i) (sSup (t '' {j | j ≠ i})) [PROOFSTEP] simp_rw [sSup_image] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t ⊢ Independent t ↔ ∀ (i : ι), Disjoint (t i) (⨆ (a : ι) (_ : a ∈ {j | j ≠ i}), t a) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t ⊢ Independent t ↔ ∀ (i : ι), Disjoint (t i) (sSup {a | ∃ j x, t j = a}) [PROOFSTEP] rw [independent_def'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t ⊢ (∀ (i : ι), Disjoint (t i) (sSup (t '' {j | j ≠ i}))) ↔ ∀ (i : ι), Disjoint (t i) (sSup {a | ∃ j x, t j = a}) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 ι'✝ : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t✝ : ι✝ → α ht✝ : Independent t✝ ι : Sort u_5 ι' : Sort u_6 t : ι → α f : ι' → ι ht : Independent t hf : Injective f i : ι' ⊢ ⨆ (j : ι') (_ : j ≠ i), (t ∘ f) j ≤ ⨆ (j : ι) (_ : j ≠ f i), t j [PROOFSTEP] refine' (iSup_mono fun i => _).trans (iSup_comp_le _ f) [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 ι'✝ : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t✝ : ι✝ → α ht✝ : Independent t✝ ι : Sort u_5 ι' : Sort u_6 t : ι → α f : ι' → ι ht : Independent t hf : Injective f i✝ i : ι' ⊢ ⨆ (_ : i ≠ i✝), (t ∘ f) i ≤ ⨆ (_ : f i ≠ f i✝), t (f i) [PROOFSTEP] exact iSup_const_mono hf.ne [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 ι'✝ : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t✝ : ι✝ → α ht✝ : Independent t✝ ι : Sort u_5 ι' : Sort u_6 t : ι → α f : ι' → ι ht : Independent (t ∘ f) hf : Surjective f ⊢ Independent t [PROOFSTEP] intro i [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 ι'✝ : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t✝ : ι✝ → α ht✝ : Independent t✝ ι : Sort u_5 ι' : Sort u_6 t : ι → α f : ι' → ι ht : Independent (t ∘ f) hf : Surjective f i : ι ⊢ Disjoint (t i) (⨆ (j : ι) (_ : j ≠ i), t j) [PROOFSTEP] obtain ⟨i', rfl⟩ := hf i [GOAL] case intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 ι'✝ : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t✝ : ι✝ → α ht✝ : Independent t✝ ι : Sort u_5 ι' : Sort u_6 t : ι → α f : ι' → ι ht : Independent (t ∘ f) hf : Surjective f i' : ι' ⊢ Disjoint (t (f i')) (⨆ (j : ι) (_ : j ≠ f i'), t j) [PROOFSTEP] rw [← hf.iSup_comp] [GOAL] case intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 ι'✝ : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t✝ : ι✝ → α ht✝ : Independent t✝ ι : Sort u_5 ι' : Sort u_6 t : ι → α f : ι' → ι ht : Independent (t ∘ f) hf : Surjective f i' : ι' ⊢ Disjoint (t (f i')) (⨆ (x : ι') (_ : f x ≠ f i'), t (f x)) [PROOFSTEP] exact (ht i').mono_right (biSup_mono fun j' hij => mt (congr_arg f) hij) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t ⊢ SetIndependent (range t) [PROOFSTEP] rw [setIndependent_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t ⊢ Independent Subtype.val [PROOFSTEP] rw [← coe_comp_rangeFactorization t] at ht [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ : Independent t ht : Independent (Subtype.val ∘ rangeFactorization t) ⊢ Independent Subtype.val [PROOFSTEP] exact ht.comp' surjective_onto_range [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ ⊢ Injective t [PROOFSTEP] intro i j h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j ⊢ i = j [PROOFSTEP] by_contra' contra [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : i ≠ j ⊢ False [PROOFSTEP] apply h_ne_bot j [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : i ≠ j ⊢ t j = ⊥ [PROOFSTEP] suffices t j ≤ ⨆ (k) (_ : k ≠ i), t k by replace ht := (ht i).mono_right this rwa [h, disjoint_self] at ht [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : i ≠ j this : t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k ⊢ t j = ⊥ [PROOFSTEP] replace ht := (ht i).mono_right this [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : i ≠ j this : t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k ht : Disjoint (t i) (t j) ⊢ t j = ⊥ [PROOFSTEP] rwa [h, disjoint_self] at ht [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : i ≠ j ⊢ t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k [PROOFSTEP] replace contra : j ≠ i [GOAL] case contra α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : i ≠ j ⊢ j ≠ i [PROOFSTEP] exact Ne.symm contra [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht✝ ht : Independent t h_ne_bot : ∀ (i : ι), t i ≠ ⊥ i j : ι h : t i = t j contra : j ≠ i ⊢ t j ≤ ⨆ (k : ι) (_ : k ≠ i), t k [PROOFSTEP] exact @le_iSup₂ _ _ _ _ (fun x _ => t x) j contra [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t i j : ι hij : i ≠ j huniv : ∀ (k : ι), k = i ∨ k = j ⊢ Independent t ↔ Disjoint (t i) (t j) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t i j : ι hij : i ≠ j huniv : ∀ (k : ι), k = i ∨ k = j ⊢ Independent t → Disjoint (t i) (t j) [PROOFSTEP] exact fun h => h.pairwiseDisjoint hij [GOAL] case mpr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t i j : ι hij : i ≠ j huniv : ∀ (k : ι), k = i ∨ k = j ⊢ Disjoint (t i) (t j) → Independent t [PROOFSTEP] rintro h k [GOAL] case mpr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t i j : ι hij : i ≠ j huniv : ∀ (k : ι), k = i ∨ k = j h : Disjoint (t i) (t j) k : ι ⊢ Disjoint (t k) (⨆ (j : ι) (_ : j ≠ k), t j) [PROOFSTEP] obtain rfl | rfl := huniv k [GOAL] case mpr.inl α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t j k : ι hij : k ≠ j huniv : ∀ (k_1 : ι), k_1 = k ∨ k_1 = j h : Disjoint (t k) (t j) ⊢ Disjoint (t k) (⨆ (j : ι) (_ : j ≠ k), t j) [PROOFSTEP] refine' h.mono_right (iSup_le fun i => iSup_le fun hi => Eq.le _) [GOAL] case mpr.inl α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t j k : ι hij : k ≠ j huniv : ∀ (k_1 : ι), k_1 = k ∨ k_1 = j h : Disjoint (t k) (t j) i : ι hi : i ≠ k ⊢ t i = t j [PROOFSTEP] rw [(huniv i).resolve_left hi] [GOAL] case mpr.inr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t i k : ι hij : i ≠ k huniv : ∀ (k_1 : ι), k_1 = i ∨ k_1 = k h : Disjoint (t i) (t k) ⊢ Disjoint (t k) (⨆ (j : ι) (_ : j ≠ k), t j) [PROOFSTEP] refine' h.symm.mono_right (iSup_le fun j => iSup_le fun hj => Eq.le _) [GOAL] case mpr.inr α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Set α hs : SetIndependent s t : ι → α ht : Independent t i k : ι hij : i ≠ k huniv : ∀ (k_1 : ι), k_1 = i ∨ k_1 = k h : Disjoint (t i) (t k) j : ι hj : j ≠ k ⊢ t j = t i [PROOFSTEP] rw [(huniv j).resolve_right hj] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α ⊢ Independent (f ∘ Subtype.val) ↔ Finset.SupIndep s f [PROOFSTEP] classical rw [Finset.supIndep_iff_disjoint_erase] refine' Subtype.forall.trans (forall₂_congr fun a b => _) rw [Finset.sup_eq_iSup] congr! 1 refine' iSup_subtype.trans _ congr! 1 simp [iSup_and, @iSup_comm _ (_ ∈ s)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α ⊢ Independent (f ∘ Subtype.val) ↔ Finset.SupIndep s f [PROOFSTEP] rw [Finset.supIndep_iff_disjoint_erase] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α ⊢ Independent (f ∘ Subtype.val) ↔ ∀ (i : ι), i ∈ s → Disjoint (f i) (Finset.sup (Finset.erase s i) f) [PROOFSTEP] refine' Subtype.forall.trans (forall₂_congr fun a b => _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α a : ι b : a ∈ s ⊢ Disjoint ((f ∘ Subtype.val) { val := a, property := b }) (⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := b }), (f ∘ Subtype.val) j) ↔ Disjoint (f a) (Finset.sup (Finset.erase s a) f) [PROOFSTEP] rw [Finset.sup_eq_iSup] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α a : ι b : a ∈ s ⊢ Disjoint ((f ∘ Subtype.val) { val := a, property := b }) (⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := b }), (f ∘ Subtype.val) j) ↔ Disjoint (f a) (⨆ (a_1 : ι) (_ : a_1 ∈ Finset.erase s a), f a_1) [PROOFSTEP] congr! 1 [GOAL] case a.h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α a : ι b : a ∈ s ⊢ ⨆ (j : { x // x ∈ s }) (_ : j ≠ { val := a, property := b }), (f ∘ Subtype.val) j = ⨆ (a_1 : ι) (_ : a_1 ∈ Finset.erase s a), f a_1 [PROOFSTEP] refine' iSup_subtype.trans _ [GOAL] case a.h.e'_5 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α a : ι b : a ∈ s ⊢ ⨆ (i : ι) (h : i ∈ s) (_ : { val := i, property := h } ≠ { val := a, property := b }), (f ∘ Subtype.val) { val := i, property := h } = ⨆ (a_1 : ι) (_ : a_1 ∈ Finset.erase s a), f a_1 [PROOFSTEP] congr! 1 [GOAL] case a.h.e'_5.h.e'_4 α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝ : CompleteLattice α s : Finset ι f : ι → α a : ι b : a ∈ s ⊢ (fun i => ⨆ (h : i ∈ s) (_ : { val := i, property := h } ≠ { val := a, property := b }), (f ∘ Subtype.val) { val := i, property := h }) = fun a_1 => ⨆ (_ : a_1 ∈ Finset.erase s a), f a_1 [PROOFSTEP] simp [iSup_and, @iSup_comm _ (_ ∈ s)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : CompleteLattice α inst✝ : Fintype ι f : ι → α ⊢ Independent f ↔ Finset.SupIndep Finset.univ f [PROOFSTEP] classical simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_iSup] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ι' : Type u_4 inst✝¹ : CompleteLattice α inst✝ : Fintype ι f : ι → α ⊢ Independent f ↔ Finset.SupIndep Finset.univ f [PROOFSTEP] simp [Finset.supIndep_iff_disjoint_erase, CompleteLattice.Independent, Finset.sup_eq_iSup]
{"mathlib_filename": "Mathlib.Order.SupIndep", "llama_tokens": 33509}
{"mathlib_filename": "Mathlib.Order.UpperLower.Hom", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice α s✝ t : Set α a✝ b : α s : Finset β hs : Finset.Nonempty s f : β → α a : α ⊢ sup' s hs f ≤ a ↔ sSup (f '' ↑s) ≤ a [PROOFSTEP] simp [csSup_le_iff (s.finite_toSet.image f).bddAbove (hs.to_set.image f)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice α s✝ t : Set α a b : α s : Finset α hs : Finset.Nonempty s ⊢ sup' s hs id = sSup ↑s [PROOFSTEP] rw [hs.sup'_eq_cSup_image, Set.image_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLinearOrder α s✝ t : Set α a b : α s : Finset α h : Finset.Nonempty s ⊢ sSup ↑s ∈ s [PROOFSTEP] rw [h.cSup_eq_max'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLinearOrder α s✝ t : Set α a b : α s : Finset α h : Finset.Nonempty s ⊢ max' s h ∈ s [PROOFSTEP] exact s.max'_mem _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLinearOrder α s t : Set α a b : α h : Set.Nonempty s hs : Set.Finite s ⊢ sSup s ∈ s [PROOFSTEP] lift s to Finset α using hs [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLinearOrder α t : Set α a b : α s : Finset α h : Set.Nonempty ↑s ⊢ sSup ↑s ∈ ↑s [PROOFSTEP] exact Finset.Nonempty.cSup_mem h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β ⊢ sup' s H f = sSup (f '' ↑s) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β ⊢ sup' s H f ≤ sSup (f '' ↑s) [PROOFSTEP] refine' Finset.sup'_le _ _ fun a ha => _ [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β a : α ha : a ∈ s ⊢ f a ≤ sSup (f '' ↑s) [PROOFSTEP] refine' le_csSup ⟨s.sup' H f, _⟩ ⟨a, ha, rfl⟩ [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β a : α ha : a ∈ s ⊢ sup' s H f ∈ upperBounds (f '' ↑s) [PROOFSTEP] rintro i ⟨j, hj, rfl⟩ [GOAL] case a.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β a : α ha : a ∈ s j : α hj : j ∈ ↑s ⊢ f j ≤ sup' s H f [PROOFSTEP] exact Finset.le_sup' _ hj [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β ⊢ sSup (f '' ↑s) ≤ sup' s H f [PROOFSTEP] apply csSup_le ((coe_nonempty.mpr H).image _) [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β ⊢ ∀ (b : β), b ∈ f '' ↑s → b ≤ sup' s H f [PROOFSTEP] rintro _ ⟨a, ha, rfl⟩ [GOAL] case a.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice β s : Finset α H : Finset.Nonempty s f : α → β a : α ha : a ∈ ↑s ⊢ f a ≤ sup' s H f [PROOFSTEP] exact Finset.le_sup' _ ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : ConditionallyCompleteLattice α s : Finset α H : Finset.Nonempty s ⊢ sup' s H id = sSup ↑s [PROOFSTEP] rw [sup'_eq_csSup_image s H, Set.image_id]
{"mathlib_filename": "Mathlib.Order.ConditionallyCompleteLattice.Finset", "llama_tokens": 1637}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : LE α s✝ t✝ s t : NonemptyInterval α h : s.toProd = t.toProd ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : LE α s t✝ t : NonemptyInterval α toProd✝ : α × α fst_le_snd✝ : toProd✝.fst ≤ toProd✝.snd h : { toProd := toProd✝, fst_le_snd := fst_le_snd✝ }.toProd = t.toProd ⊢ { toProd := toProd✝, fst_le_snd := fst_le_snd✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : LE α s t : NonemptyInterval α toProd✝¹ : α × α fst_le_snd✝¹ : toProd✝¹.fst ≤ toProd✝¹.snd toProd✝ : α × α fst_le_snd✝ : toProd✝.fst ≤ toProd✝.snd h : { toProd := toProd✝¹, fst_le_snd := fst_le_snd✝¹ }.toProd = { toProd := toProd✝, fst_le_snd := fst_le_snd✝ }.toProd ⊢ { toProd := toProd✝¹, fst_le_snd := fst_le_snd✝¹ } = { toProd := toProd✝, fst_le_snd := fst_le_snd✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Preorder γ inst✝¹ : Preorder δ s : NonemptyInterval α x : α × α a : α inst✝ : Nonempty α ⊢ Nonempty α [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : NonemptyInterval α x : α × α a b : α ⊢ b ∈ pure a ↔ b = a [PROOFSTEP] rw [← SetLike.mem_coe, coe_pure, mem_singleton_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α →o β s : Interval α ⊢ ↑dual (map f s) = map (↑OrderHom.dual f) (↑dual s) [PROOFSTEP] cases s [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α →o β ⊢ ↑dual (map f none) = map (↑OrderHom.dual f) (↑dual none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α →o β val✝ : NonemptyInterval α ⊢ ↑dual (map f (some val✝)) = map (↑OrderHom.dual f) (↑dual (some val✝)) [PROOFSTEP] exact WithBot.map_comm rfl _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s✝ t : Interval α a b : α s : Interval α ⊢ ↑(↑dual s) = ↑ofDual ⁻¹' ↑s [PROOFSTEP] cases s with | none => rfl | some s₀ => exact NonemptyInterval.coe_dual s₀ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s✝ t : Interval α a b : α s : Interval α ⊢ ↑(↑dual s) = ↑ofDual ⁻¹' ↑s [PROOFSTEP] cases s with | none => rfl | some s₀ => exact NonemptyInterval.coe_dual s₀ [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : Interval α a b : α ⊢ ↑(↑dual none) = ↑ofDual ⁻¹' ↑none [PROOFSTEP] | none => rfl [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : Interval α a b : α ⊢ ↑(↑dual none) = ↑ofDual ⁻¹' ↑none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : Interval α a b : α s₀ : NonemptyInterval α ⊢ ↑(↑dual (some s₀)) = ↑ofDual ⁻¹' ↑(some s₀) [PROOFSTEP] | some s₀ => exact NonemptyInterval.coe_dual s₀ [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : Interval α a b : α s₀ : NonemptyInterval α ⊢ ↑(↑dual (some s₀)) = ↑ofDual ⁻¹' ↑(some s₀) [PROOFSTEP] exact NonemptyInterval.coe_dual s₀ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : Interval α a b : α f : α →o β ⊢ ↑f '' ↑⊥ ⊆ ↑(map f ⊥) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : PartialOrder α inst✝ : PartialOrder β s t : Interval α a b : α ⊢ b ∈ pure a ↔ b = a [PROOFSTEP] rw [← SetLike.mem_coe, coe_pure, mem_singleton_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α ⊢ some s ⊓ some t ≤ some s [PROOFSTEP] change dite _ _ _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α ⊢ (if h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd then some { toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd), fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } else ⊥) ≤ some s [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α h✝ : s.fst ≤ t.snd ∧ t.fst ≤ s.snd ⊢ some { toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd), fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } ≤ some s [PROOFSTEP] exact WithBot.some_le_some.2 ⟨le_sup_left, inf_le_left⟩ [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α h✝ : ¬(s.fst ≤ t.snd ∧ t.fst ≤ s.snd) ⊢ ⊥ ≤ some s [PROOFSTEP] exact bot_le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α ⊢ some s ⊓ some t ≤ some t [PROOFSTEP] change dite _ _ _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α ⊢ (if h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd then some { toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd), fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } else ⊥) ≤ some t [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α h✝ : s.fst ≤ t.snd ∧ t.fst ≤ s.snd ⊢ some { toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd), fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } ≤ some t [PROOFSTEP] exact WithBot.some_le_some.2 ⟨le_sup_right, inf_le_right⟩ [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ : Interval α s t : NonemptyInterval α h✝ : ¬(s.fst ≤ t.snd ∧ t.fst ≤ s.snd) ⊢ ⊥ ≤ some t [PROOFSTEP] exact bot_le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s : NonemptyInterval α t c : Interval α hb : some s ≤ t hc : some s ≤ c ⊢ some s ≤ t ⊓ c [PROOFSTEP] lift t to NonemptyInterval α using ne_bot_of_le_ne_bot WithBot.coe_ne_bot hb [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s : NonemptyInterval α c : Interval α hc : some s ≤ c t : NonemptyInterval α hb : some s ≤ ↑t ⊢ some s ≤ ↑t ⊓ c [PROOFSTEP] lift c to NonemptyInterval α using ne_bot_of_le_ne_bot WithBot.coe_ne_bot hc [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : some s ≤ ↑t c : NonemptyInterval α hc : some s ≤ ↑c ⊢ some s ≤ ↑t ⊓ ↑c [PROOFSTEP] change _ ≤ dite _ _ _ -- Porting note: was `simp only` but that fails to use the second lemma. [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : some s ≤ ↑t c : NonemptyInterval α hc : some s ≤ ↑c ⊢ some s ≤ if h : t.fst ≤ c.snd ∧ c.fst ≤ t.snd then some { toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd), fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) } else ⊥ [PROOFSTEP] rw [WithBot.some_eq_coe, WithBot.coe_le_coe] at hb hc [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ some s ≤ if h : t.fst ≤ c.snd ∧ c.fst ≤ t.snd then some { toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd), fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) } else ⊥ [PROOFSTEP] simp only [WithBot.some_eq_coe, WithBot.coe_le_coe] -- at hb hc ⊢ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ ↑s ≤ if h : t.fst ≤ c.snd ∧ c.fst ≤ t.snd then ↑{ toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd), fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) } else ⊥ [PROOFSTEP] rw [dif_pos, WithBot.coe_le_coe] [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ s ≤ { toProd := (t.fst ⊔ c.fst, t.snd ⊓ c.snd), fst_le_snd := (_ : t.fst ⊔ c.fst ≤ (t.fst ⊔ c.fst, t.snd ⊓ c.snd).snd) } case intro.intro.hc α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd case intro.intro.hc α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] exact ⟨sup_le hb.1 hc.1, le_inf hb.2 hc.2⟩ -- Porting note: had to add the next 6 lines including the changes because -- it seems that lean cannot automatically turn `NonemptyInterval.toDualProd s` -- into `s.toProd` anymore. [GOAL] case intro.intro.hc α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd case intro.intro.hc α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t : NonemptyInterval α hb : s ≤ t c : NonemptyInterval α hc : s ≤ c ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] rcases hb with ⟨hb₁, hb₂⟩ [GOAL] case intro.intro.hc.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t c : NonemptyInterval α hc : s ≤ c hb₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd t).fst hb₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd t).snd ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] rcases hc with ⟨hc₁, hc₂⟩ [GOAL] case intro.intro.hc.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t c : NonemptyInterval α hb₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd t).fst hb₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd t).snd hc₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd c).fst hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] change t.toProd.fst ≤ s.toProd.fst at hb₁ [GOAL] case intro.intro.hc.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t c : NonemptyInterval α hb₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd t).snd hc₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd c).fst hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd hb₁ : t.fst ≤ s.fst ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] change s.toProd.snd ≤ t.toProd.snd at hb₂ [GOAL] case intro.intro.hc.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t c : NonemptyInterval α hc₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd c).fst hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd hb₁ : t.fst ≤ s.fst hb₂ : s.snd ≤ t.snd ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] change c.toProd.fst ≤ s.toProd.fst at hc₁ [GOAL] case intro.intro.hc.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t c : NonemptyInterval α hc₂ : (NonemptyInterval.toDualProd s).snd ≤ (NonemptyInterval.toDualProd c).snd hb₁ : t.fst ≤ s.fst hb₂ : s.snd ≤ t.snd hc₁ : c.fst ≤ s.fst ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] change s.toProd.snd ≤ c.toProd.snd at hc₂ [GOAL] case intro.intro.hc.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝ : SemilatticeSup (Interval α) := semilatticeSup s✝ t✝ c✝ : Interval α s t c : NonemptyInterval α hb₁ : t.fst ≤ s.fst hb₂ : s.snd ≤ t.snd hc₁ : c.fst ≤ s.fst hc₂ : s.snd ≤ c.snd ⊢ t.fst ≤ c.snd ∧ c.fst ≤ t.snd [PROOFSTEP] exact ⟨hb₁.trans <| s.fst_le_snd.trans hc₂, hc₁.trans <| s.fst_le_snd.trans hb₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : Interval α ⊢ ↑(s ⊓ t) = ↑s ∩ ↑t [PROOFSTEP] cases s with | none => rw [WithBot.none_eq_bot, bot_inf_eq] exact (empty_inter _).symm | some s => cases t with | none => rw [WithBot.none_eq_bot, inf_bot_eq] exact (inter_empty _).symm | some t => refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm split_ifs with h · rfl · exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : Interval α ⊢ ↑(s ⊓ t) = ↑s ∩ ↑t [PROOFSTEP] cases s with | none => rw [WithBot.none_eq_bot, bot_inf_eq] exact (empty_inter _).symm | some s => cases t with | none => rw [WithBot.none_eq_bot, inf_bot_eq] exact (inter_empty _).symm | some t => refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm split_ifs with h · rfl · exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 t : Interval α ⊢ ↑(none ⊓ t) = ↑none ∩ ↑t [PROOFSTEP] | none => rw [WithBot.none_eq_bot, bot_inf_eq] exact (empty_inter _).symm [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 t : Interval α ⊢ ↑(none ⊓ t) = ↑none ∩ ↑t [PROOFSTEP] rw [WithBot.none_eq_bot, bot_inf_eq] [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 t : Interval α ⊢ ↑⊥ = ↑⊥ ∩ ↑t [PROOFSTEP] exact (empty_inter _).symm [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 t : Interval α s : NonemptyInterval α ⊢ ↑(some s ⊓ t) = ↑(some s) ∩ ↑t [PROOFSTEP] | some s => cases t with | none => rw [WithBot.none_eq_bot, inf_bot_eq] exact (inter_empty _).symm | some t => refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm split_ifs with h · rfl · exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 t : Interval α s : NonemptyInterval α ⊢ ↑(some s ⊓ t) = ↑(some s) ∩ ↑t [PROOFSTEP] cases t with | none => rw [WithBot.none_eq_bot, inf_bot_eq] exact (inter_empty _).symm | some t => refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm split_ifs with h · rfl · exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 t : Interval α s : NonemptyInterval α ⊢ ↑(some s ⊓ t) = ↑(some s) ∩ ↑t [PROOFSTEP] cases t with | none => rw [WithBot.none_eq_bot, inf_bot_eq] exact (inter_empty _).symm | some t => refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm split_ifs with h · rfl · exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s : NonemptyInterval α ⊢ ↑(some s ⊓ none) = ↑(some s) ∩ ↑none [PROOFSTEP] | none => rw [WithBot.none_eq_bot, inf_bot_eq] exact (inter_empty _).symm [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s : NonemptyInterval α ⊢ ↑(some s ⊓ none) = ↑(some s) ∩ ↑none [PROOFSTEP] rw [WithBot.none_eq_bot, inf_bot_eq] [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s : NonemptyInterval α ⊢ ↑⊥ = ↑(some s) ∩ ↑⊥ [PROOFSTEP] exact (inter_empty _).symm [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : NonemptyInterval α ⊢ ↑(some s ⊓ some t) = ↑(some s) ∩ ↑(some t) [PROOFSTEP] | some t => refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm split_ifs with h · rfl · exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : NonemptyInterval α ⊢ ↑(some s ⊓ some t) = ↑(some s) ∩ ↑(some t) [PROOFSTEP] refine' (_ : setLike.coe (dite (s.toProd.fst ≤ t.toProd.snd ∧ t.toProd.fst ≤ s.toProd.snd) _ _) = _).trans Icc_inter_Icc.symm [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : NonemptyInterval α ⊢ ↑(if h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd then some { toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd), fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) } else ⊥) = Icc (s.fst ⊔ t.fst) (s.snd ⊓ t.snd) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : NonemptyInterval α h : s.fst ≤ t.snd ∧ t.fst ≤ s.snd ⊢ ↑(some { toProd := (s.fst ⊔ t.fst, s.snd ⊓ t.snd), fst_le_snd := (_ : s.fst ⊔ t.fst ≤ (s.fst ⊔ t.fst, s.snd ⊓ t.snd).snd) }) = Icc (s.fst ⊔ t.fst) (s.snd ⊓ t.snd) [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : Lattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 s t : NonemptyInterval α h : ¬(s.fst ≤ t.snd ∧ t.fst ≤ s.snd) ⊢ ↑⊥ = Icc (s.fst ⊔ t.fst) (s.snd ⊓ t.snd) [PROOFSTEP] exact (Icc_eq_empty fun H => h ⟨le_sup_left.trans <| H.trans inf_le_right, le_sup_right.trans <| H.trans inf_le_left⟩).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : Lattice α s t : Interval α ⊢ Disjoint ↑s ↑t ↔ Disjoint s t [PROOFSTEP] classical rw [disjoint_iff_inf_le, disjoint_iff_inf_le, ← coe_subset_coe, coe_inf] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : Lattice α s t : Interval α ⊢ Disjoint ↑s ↑t ↔ Disjoint s t [PROOFSTEP] rw [disjoint_iff_inf_le, disjoint_iff_inf_le, ← coe_subset_coe, coe_inf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : Lattice α s t : Interval α ⊢ ↑s ⊓ ↑t ≤ ⊥ ↔ ↑s ∩ ↑t ⊆ ↑⊥ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝ : Preorder α s : NonemptyInterval α a : α ⊢ ↑s = Interval.pure a ↔ s = pure a [PROOFSTEP] rw [← Interval.coe_inj, coe_pure_interval] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 ⊢ CompleteLattice (Interval α) [PROOFSTEP] classical exact { Interval.lattice, Interval.boundedOrder with sSup := fun S => if h : S ⊆ {⊥} then ⊥ else some ⟨⟨⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩, by obtain ⟨s, hs, ha⟩ := not_subset.1 h lift s to NonemptyInterval α using ha exact iInf₂_le_of_le s hs (le_iSup₂_of_le s hs s.fst_le_snd)⟩ le_sSup := fun s s ha => by dsimp only -- Porting note: added split_ifs with h · exact (h ha).le cases s · exact bot_le · -- Porting note: This case was -- `exact WithBot.some_le_some.2 ⟨iInf₂_le _ ha, le_iSup₂_of_le _ ha le_rfl⟩` -- but there seems to be a defEq-problem at `iInf₂_le` that lean cannot resolve yet. apply WithBot.some_le_some.2 constructor · apply iInf₂_le exact ha · exact le_iSup₂_of_le _ ha le_rfl sSup_le := fun s s ha => by dsimp only -- Porting note: added split_ifs with h · exact bot_le obtain ⟨b, hs, hb⟩ := not_subset.1 h lift s to NonemptyInterval α using ne_bot_of_le_ne_bot hb (ha _ hs) exact WithBot.coe_le_coe.2 ⟨le_iInf₂ fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).1, iSup₂_le fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).2⟩ sInf := fun S => if h : ⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then some ⟨⟨⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩, iSup₂_le fun s hs => le_iInf₂ <| h.2 hs⟩ else ⊥ sInf_le := fun s₁ s ha => by dsimp only -- Porting note: added split_ifs with h · lift s to NonemptyInterval α using ne_of_mem_of_not_mem ha h.1 -- Porting note: Lean failed to figure out the function `f` by itself, -- so I added it through manually let f := fun (s : NonemptyInterval α) (_ : ↑s ∈ s₁) => s.toProd.fst exact WithBot.coe_le_coe.2 ⟨le_iSup₂ (f := f) s ha, iInf₂_le s ha⟩ · exact bot_le le_sInf := by intro S s ha cases s with | none => exact bot_le | some s => dsimp -- Porting note: added split_ifs with h · exact WithBot.some_le_some.2 ⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩ · rw [not_and_or, not_not] at h rcases h with h | h · exact ha _ h · -- Porting note: ungolfed, due to identification problems -- between `toProd` and `toDualProd`. Original mathport output: -- cases h fun t hb c hc => -- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <| -- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 } exfalso apply h intro b hb c hc have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1 repeat rw [NonemptyInterval.toDualProd_apply] at h₁ rw [OrderDual.toDual_le_toDual] at h₁ exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) } [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 ⊢ CompleteLattice (Interval α) [PROOFSTEP] exact { Interval.lattice, Interval.boundedOrder with sSup := fun S => if h : S ⊆ {⊥} then ⊥ else some ⟨⟨⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩, by obtain ⟨s, hs, ha⟩ := not_subset.1 h lift s to NonemptyInterval α using ha exact iInf₂_le_of_le s hs (le_iSup₂_of_le s hs s.fst_le_snd)⟩ le_sSup := fun s s ha => by dsimp only -- Porting note: added split_ifs with h · exact (h ha).le cases s · exact bot_le · -- Porting note: This case was -- `exact WithBot.some_le_some.2 ⟨iInf₂_le _ ha, le_iSup₂_of_le _ ha le_rfl⟩` -- but there seems to be a defEq-problem at `iInf₂_le` that lean cannot resolve yet. apply WithBot.some_le_some.2 constructor · apply iInf₂_le exact ha · exact le_iSup₂_of_le _ ha le_rfl sSup_le := fun s s ha => by dsimp only -- Porting note: added split_ifs with h · exact bot_le obtain ⟨b, hs, hb⟩ := not_subset.1 h lift s to NonemptyInterval α using ne_bot_of_le_ne_bot hb (ha _ hs) exact WithBot.coe_le_coe.2 ⟨le_iInf₂ fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).1, iSup₂_le fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).2⟩ sInf := fun S => if h : ⊥ ∉ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then some ⟨⟨⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd⟩, iSup₂_le fun s hs => le_iInf₂ <| h.2 hs⟩ else ⊥ sInf_le := fun s₁ s ha => by dsimp only -- Porting note: added split_ifs with h · lift s to NonemptyInterval α using ne_of_mem_of_not_mem ha h.1 -- Porting note: Lean failed to figure out the function `f` by itself, -- so I added it through manually let f := fun (s : NonemptyInterval α) (_ : ↑s ∈ s₁) => s.toProd.fst exact WithBot.coe_le_coe.2 ⟨le_iSup₂ (f := f) s ha, iInf₂_le s ha⟩ · exact bot_le le_sInf := by intro S s ha cases s with | none => exact bot_le | some s => dsimp -- Porting note: added split_ifs with h · exact WithBot.some_le_some.2 ⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩ · rw [not_and_or, not_not] at h rcases h with h | h · exact ha _ h · -- Porting note: ungolfed, due to identification problems -- between `toProd` and `toDualProd`. Original mathport output: -- cases h fun t hb c hc => -- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <| -- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 } exfalso apply h intro b hb c hc have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1 repeat rw [NonemptyInterval.toDualProd_apply] at h₁ rw [OrderDual.toDual_le_toDual] at h₁ exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) } [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) h : ¬S ⊆ {⊥} ⊢ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).fst ≤ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd [PROOFSTEP] obtain ⟨s, hs, ha⟩ := not_subset.1 h [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) h : ¬S ⊆ {⊥} s : Interval α hs : s ∈ S ha : ¬s ∈ {⊥} ⊢ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).fst ≤ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd [PROOFSTEP] lift s to NonemptyInterval α using ha [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) h : ¬S ⊆ {⊥} s : NonemptyInterval α hs : ↑s ∈ S ⊢ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).fst ≤ (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd [PROOFSTEP] exact iInf₂_le_of_le s hs (le_iSup₂_of_le s hs s.fst_le_snd) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : s ∈ s✝ ⊢ s ≤ sSup s✝ [PROOFSTEP] dsimp only -- Porting note: added [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : s ∈ s✝ ⊢ s ≤ if h : s✝ ⊆ {⊥} then ⊥ else some { toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd), fst_le_snd := (_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : s ∈ s✝ h : s✝ ⊆ {⊥} ⊢ s ≤ ⊥ [PROOFSTEP] exact (h ha).le [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : s ∈ s✝ h : ¬s✝ ⊆ {⊥} ⊢ s ≤ some { toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd), fst_le_snd := (_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } [PROOFSTEP] cases s [GOAL] case neg.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s : Set (Interval α) h : ¬s ⊆ {⊥} ha : none ∈ s ⊢ none ≤ some { toProd := (⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd), fst_le_snd := (_ : ⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤ ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) } [PROOFSTEP] exact bot_le [GOAL] case neg.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s : Set (Interval α) h : ¬s ⊆ {⊥} val✝ : NonemptyInterval α ha : some val✝ ∈ s ⊢ some val✝ ≤ some { toProd := (⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd), fst_le_snd := (_ : ⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤ ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) } [PROOFSTEP] apply WithBot.some_le_some.2 [GOAL] case neg.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s : Set (Interval α) h : ¬s ⊆ {⊥} val✝ : NonemptyInterval α ha : some val✝ ∈ s ⊢ val✝ ≤ { toProd := (⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd), fst_le_snd := (_ : ⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤ ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) } [PROOFSTEP] constructor [GOAL] case neg.some.left α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s : Set (Interval α) h : ¬s ⊆ {⊥} val✝ : NonemptyInterval α ha : some val✝ ∈ s ⊢ (NonemptyInterval.toDualProd val✝).fst ≤ (NonemptyInterval.toDualProd { toProd := (⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd), fst_le_snd := (_ : ⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤ ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }).fst [PROOFSTEP] apply iInf₂_le [GOAL] case neg.some.left.j α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s : Set (Interval α) h : ¬s ⊆ {⊥} val✝ : NonemptyInterval α ha : some val✝ ∈ s ⊢ ↑val✝ ∈ s [PROOFSTEP] exact ha [GOAL] case neg.some.right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s : Set (Interval α) h : ¬s ⊆ {⊥} val✝ : NonemptyInterval α ha : some val✝ ∈ s ⊢ (NonemptyInterval.toDualProd val✝).snd ≤ (NonemptyInterval.toDualProd { toProd := (⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst, ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd), fst_le_snd := (_ : ⨅ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.fst ≤ ⨆ (s_1 : NonemptyInterval α) (_ : ↑s_1 ∈ s), s_1.snd) }).snd [PROOFSTEP] exact le_iSup₂_of_le _ ha le_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s ⊢ sSup s✝ ≤ s [PROOFSTEP] dsimp only -- Porting note: added [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s ⊢ (if h : s✝ ⊆ {⊥} then ⊥ else some { toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd), fst_le_snd := (_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) }) ≤ s [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s h : s✝ ⊆ {⊥} ⊢ ⊥ ≤ s [PROOFSTEP] exact bot_le [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s h : ¬s✝ ⊆ {⊥} ⊢ some { toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd), fst_le_snd := (_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } ≤ s [PROOFSTEP] obtain ⟨b, hs, hb⟩ := not_subset.1 h [GOAL] case neg.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ s h : ¬s✝ ⊆ {⊥} b : Interval α hs : b ∈ s✝ hb : ¬b ∈ {⊥} ⊢ some { toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd), fst_le_snd := (_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } ≤ s [PROOFSTEP] lift s to NonemptyInterval α using ne_bot_of_le_ne_bot hb (ha _ hs) [GOAL] case neg.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s✝ : Set (Interval α) h : ¬s✝ ⊆ {⊥} b : Interval α hs : b ∈ s✝ hb : ¬b ∈ {⊥} s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ s✝ → b ≤ ↑s ⊢ some { toProd := (⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst, ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd), fst_le_snd := (_ : ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.fst ≤ ⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s✝), s.snd) } ≤ ↑s [PROOFSTEP] exact WithBot.coe_le_coe.2 ⟨le_iInf₂ fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).1, iSup₂_le fun c hc => (WithBot.coe_le_coe.1 <| ha _ hc).2⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s₁ : Set (Interval α) s : Interval α ha : s ∈ s₁ ⊢ sInf s₁ ≤ s [PROOFSTEP] dsimp only -- Porting note: added [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s₁ : Set (Interval α) s : Interval α ha : s ∈ s₁ ⊢ (if h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd then some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } else ⊥) ≤ s [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s₁ : Set (Interval α) s : Interval α ha : s ∈ s₁ h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd ⊢ some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } ≤ s [PROOFSTEP] lift s to NonemptyInterval α using ne_of_mem_of_not_mem ha h.1 -- Porting note: Lean failed to figure out the function `f` by itself, -- so I added it through manually [GOAL] case pos.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s₁ : Set (Interval α) h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd s : NonemptyInterval α ha : ↑s ∈ s₁ ⊢ some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } ≤ ↑s [PROOFSTEP] let f := fun (s : NonemptyInterval α) (_ : ↑s ∈ s₁) => s.toProd.fst [GOAL] case pos.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s₁ : Set (Interval α) h : ¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd s : NonemptyInterval α ha : ↑s ∈ s₁ f : (s : NonemptyInterval α) → ↑s ∈ s₁ → α := fun s x => s.fst ⊢ some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ s₁), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ s₁), s.snd) } ≤ ↑s [PROOFSTEP] exact WithBot.coe_le_coe.2 ⟨le_iSup₂ (f := f) s ha, iInf₂_le s ha⟩ [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder s₁ : Set (Interval α) s : Interval α ha : s ∈ s₁ h : ¬(¬⊥ ∈ s₁ ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ s₁ → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ s₁ → s.fst ≤ t.snd) ⊢ ⊥ ≤ s [PROOFSTEP] exact bot_le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder ⊢ ∀ (s : Set (Interval α)) (a : Interval α), (∀ (b : Interval α), b ∈ s → a ≤ b) → a ≤ sInf s [PROOFSTEP] intro S s ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ S → s ≤ b ⊢ s ≤ sInf S [PROOFSTEP] cases s with | none => exact bot_le | some s => dsimp -- Porting note: added split_ifs with h · exact WithBot.some_le_some.2 ⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩ · rw [not_and_or, not_not] at h rcases h with h | h · exact ha _ h · -- Porting note: ungolfed, due to identification problems -- between `toProd` and `toDualProd`. Original mathport output: -- cases h fun t hb c hc => -- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <| -- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 } exfalso apply h intro b hb c hc have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1 repeat rw [NonemptyInterval.toDualProd_apply] at h₁ rw [OrderDual.toDual_le_toDual] at h₁ exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : Interval α ha : ∀ (b : Interval α), b ∈ S → s ≤ b ⊢ s ≤ sInf S [PROOFSTEP] cases s with | none => exact bot_le | some s => dsimp -- Porting note: added split_ifs with h · exact WithBot.some_le_some.2 ⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩ · rw [not_and_or, not_not] at h rcases h with h | h · exact ha _ h · -- Porting note: ungolfed, due to identification problems -- between `toProd` and `toDualProd`. Original mathport output: -- cases h fun t hb c hc => -- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <| -- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 } exfalso apply h intro b hb c hc have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1 repeat rw [NonemptyInterval.toDualProd_apply] at h₁ rw [OrderDual.toDual_le_toDual] at h₁ exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) ha : ∀ (b : Interval α), b ∈ S → none ≤ b ⊢ none ≤ sInf S [PROOFSTEP] | none => exact bot_le [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) ha : ∀ (b : Interval α), b ∈ S → none ≤ b ⊢ none ≤ sInf S [PROOFSTEP] exact bot_le [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b ⊢ some s ≤ sInf S [PROOFSTEP] | some s => dsimp -- Porting note: added split_ifs with h · exact WithBot.some_le_some.2 ⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩ · rw [not_and_or, not_not] at h rcases h with h | h · exact ha _ h · -- Porting note: ungolfed, due to identification problems -- between `toProd` and `toDualProd`. Original mathport output: -- cases h fun t hb c hc => -- (WithBot.coe_le_coe.1 <| ha _ hb).1.trans <| -- s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2 } exfalso apply h intro b hb c hc have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1 repeat rw [NonemptyInterval.toDualProd_apply] at h₁ rw [OrderDual.toDual_le_toDual] at h₁ exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b ⊢ some s ≤ sInf S [PROOFSTEP] dsimp -- Porting note: added [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b ⊢ some s ≤ if h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd) } else ⊥ [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ some s ≤ some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd) } [PROOFSTEP] exact WithBot.some_le_some.2 ⟨iSup₂_le fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).1, le_iInf₂ fun t hb => (WithBot.coe_le_coe.1 <| ha _ hb).2⟩ [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬(¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd) ⊢ some s ≤ ⊥ [PROOFSTEP] rw [not_and_or, not_not] at h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ⊥ ∈ S ∨ ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ some s ≤ ⊥ [PROOFSTEP] rcases h with h | h [GOAL] case neg.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ⊥ ∈ S ⊢ some s ≤ ⊥ [PROOFSTEP] exact ha _ h [GOAL] case neg.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ some s ≤ ⊥ [PROOFSTEP] exfalso [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ False [PROOFSTEP] apply h [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd [PROOFSTEP] intro b hb c hc [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S ⊢ b.fst ≤ c.snd [PROOFSTEP] have h₁ := (WithBot.coe_le_coe.1 <| ha _ hb).1 [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S h₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd b).fst ⊢ b.fst ≤ c.snd [PROOFSTEP] repeat rw [NonemptyInterval.toDualProd_apply] at h₁ [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S h₁ : (NonemptyInterval.toDualProd s).fst ≤ (NonemptyInterval.toDualProd b).fst ⊢ b.fst ≤ c.snd [PROOFSTEP] rw [NonemptyInterval.toDualProd_apply] at h₁ [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S h₁ : (↑toDual s.fst, s.snd).fst ≤ (NonemptyInterval.toDualProd b).fst ⊢ b.fst ≤ c.snd [PROOFSTEP] rw [NonemptyInterval.toDualProd_apply] at h₁ [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S h₁ : (↑toDual s.fst, s.snd).fst ≤ (↑toDual b.fst, b.snd).fst ⊢ b.fst ≤ c.snd [PROOFSTEP] rw [NonemptyInterval.toDualProd_apply] at h₁ [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S h₁ : (↑toDual s.fst, s.snd).fst ≤ (↑toDual b.fst, b.snd).fst ⊢ b.fst ≤ c.snd [PROOFSTEP] rw [OrderDual.toDual_le_toDual] at h₁ [GOAL] case neg.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 src✝¹ : Lattice (Interval α) := lattice src✝ : BoundedOrder (Interval α) := boundedOrder S : Set (Interval α) s : NonemptyInterval α ha : ∀ (b : Interval α), b ∈ S → some s ≤ b h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd b : NonemptyInterval α hb : ↑b ∈ S c : NonemptyInterval α hc : ↑c ∈ S h₁ : b.fst ≤ s.fst ⊢ b.fst ≤ c.snd [PROOFSTEP] exact h₁.trans (s.fst_le_snd.trans (WithBot.coe_le_coe.1 <| ha _ hc).2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) ⊢ ↑(sInf S) = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] classical -- Porting note: added -- Porting note: this `change` was -- change ↑ (dite _ _ _) = _ change ((dite _ _ _ : Interval α) : Set α) = ⋂ (s : Interval α) (_ : s ∈ S), (s : Set α) split_ifs with h · ext simp [WithBot.some_eq_coe, Interval.forall, h.1, ← forall_and, ← NonemptyInterval.mem_def] simp_rw [not_and_or, Classical.not_not] at h rcases h with h | h · refine' (eq_empty_of_subset_empty _).symm exact iInter₂_subset_of_subset _ h Subset.rfl · refine' (not_nonempty_iff_eq_empty.1 _).symm rintro ⟨x, hx⟩ rw [mem_iInter₂] at hx exact h fun s ha t hb => (hx _ ha).1.trans (hx _ hb).2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) ⊢ ↑(sInf S) = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] change ((dite _ _ _ : Interval α) : Set α) = ⋂ (s : Interval α) (_ : s ∈ S), (s : Set α) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) ⊢ ↑(if h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd then some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd) } else ⊥) = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ ↑(some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd) }) = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] ext [GOAL] case pos.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd x✝ : α ⊢ x✝ ∈ ↑(some { toProd := (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd), fst_le_snd := (_ : ⨆ (i : NonemptyInterval α) (_ : ↑i ∈ S), i.fst ≤ (⨆ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.fst, ⨅ (s : NonemptyInterval α) (_ : ↑s ∈ S), s.snd).snd) }) ↔ x✝ ∈ ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] simp [WithBot.some_eq_coe, Interval.forall, h.1, ← forall_and, ← NonemptyInterval.mem_def] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬(¬⊥ ∈ S ∧ ∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd) ⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] simp_rw [not_and_or, Classical.not_not] at h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ⊥ ∈ S ∨ ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] rcases h with h | h [GOAL] case neg.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ⊥ ∈ S ⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] refine' (eq_empty_of_subset_empty _).symm [GOAL] case neg.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ⊥ ∈ S ⊢ ⋂ (s : Interval α) (_ : s ∈ S), ↑s ⊆ ∅ [PROOFSTEP] exact iInter₂_subset_of_subset _ h Subset.rfl [GOAL] case neg.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ ↑⊥ = ⋂ (s : Interval α) (_ : s ∈ S), ↑s [PROOFSTEP] refine' (not_nonempty_iff_eq_empty.1 _).symm [GOAL] case neg.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd ⊢ ¬Set.Nonempty (⋂ (s : Interval α) (_ : s ∈ S), ↑s) [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case neg.inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd x : α hx : x ∈ ⋂ (s : Interval α) (_ : s ∈ S), ↑s ⊢ False [PROOFSTEP] rw [mem_iInter₂] at hx [GOAL] case neg.inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 S : Set (Interval α) h : ¬∀ ⦃s : NonemptyInterval α⦄, ↑s ∈ S → ∀ ⦃t : NonemptyInterval α⦄, ↑t ∈ S → s.fst ≤ t.snd x : α hx : ∀ (i : Interval α), i ∈ S → x ∈ ↑i ⊢ False [PROOFSTEP] exact h fun s ha t hb => (hx _ ha).1.trans (hx _ hb).2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 f : ι → Interval α ⊢ ↑(⨅ (i : ι), f i) = ⋂ (i : ι), ↑(f i) [PROOFSTEP] simp [iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 κ : ι → Sort u_6 inst✝¹ : CompleteLattice α inst✝ : DecidableRel fun x x_1 => x ≤ x_1 f : (i : ι) → κ i → Interval α ⊢ ↑(⨅ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j) [PROOFSTEP] simp_rw [coe_iInf]
{"mathlib_filename": "Mathlib.Order.Interval", "llama_tokens": 34154}
[GOAL] α : Type u h h' : LE α c : BoundedOrder α top : α ⊢ Top α [PROOFSTEP] infer_instance [GOAL] α : Type u h h' : LE α c : BoundedOrder α top : α eq_top : top = ⊤ bot : α ⊢ Bot α [PROOFSTEP] infer_instance [GOAL] α : Type u h h' : LE α c : BoundedOrder α top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ le_eq : ∀ (x y : α), x ≤ y ↔ x ≤ y x✝ : α ⊢ x✝ ≤ ⊤ [PROOFSTEP] simp [eq_top, le_eq] [GOAL] α : Type u h h' : LE α c : BoundedOrder α top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ le_eq : ∀ (x y : α), x ≤ y ↔ x ≤ y x✝ : α ⊢ ⊥ ≤ x✝ [PROOFSTEP] simp [eq_bot, le_eq] [GOAL] α : Type u c : Lattice α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ Lattice α [PROOFSTEP] refine' { le := le, sup := sup, inf := inf, lt := fun a b ↦ le a b ∧ ¬le b a .. } [GOAL] case refine'_1 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a : α), a ≤ a [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ : α ⊢ a✝ ≤ a✝ [PROOFSTEP] simp [eq_le] [GOAL] case refine'_2 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] intro _ _ _ hab hbc [GOAL] case refine'_2 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hab : a✝ ≤ b✝ hbc : b✝ ≤ c✝ ⊢ a✝ ≤ c✝ [PROOFSTEP] rw [eq_le] at hab hbc ⊢ [GOAL] case refine'_2 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hab : a✝ ≤ b✝ hbc : b✝ ≤ c✝ ⊢ a✝ ≤ c✝ [PROOFSTEP] exact le_trans hab hbc [GOAL] case refine'_3 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] intros [GOAL] case refine'_3 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ < b✝ ↔ a✝ ≤ b✝ ∧ ¬b✝ ≤ a✝ [PROOFSTEP] simp [eq_le] [GOAL] case refine'_4 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ≤ b → b ≤ a → a = b [PROOFSTEP] intro _ _ hab hba [GOAL] case refine'_4 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α hab : a✝ ≤ b✝ hba : b✝ ≤ a✝ ⊢ a✝ = b✝ [PROOFSTEP] simp_rw [eq_le] at hab hba [GOAL] case refine'_4 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α hab : a✝ ≤ b✝ hba : b✝ ≤ a✝ ⊢ a✝ = b✝ [PROOFSTEP] exact le_antisymm hab hba [GOAL] case refine'_5 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ≤ a ⊔ b [PROOFSTEP] intros [GOAL] case refine'_5 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ ≤ a✝ ⊔ b✝ [PROOFSTEP] simp [eq_le, eq_sup] [GOAL] case refine'_6 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), b ≤ a ⊔ b [PROOFSTEP] intros [GOAL] case refine'_6 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ b✝ ≤ a✝ ⊔ b✝ [PROOFSTEP] simp [eq_le, eq_sup] [GOAL] case refine'_7 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1 [PROOFSTEP] intro _ _ _ hac hbc [GOAL] case refine'_7 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ c✝ hbc : b✝ ≤ c✝ ⊢ a✝ ⊔ b✝ ≤ c✝ [PROOFSTEP] simp_rw [eq_le] at hac hbc ⊢ [GOAL] case refine'_7 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ c✝ hbc : b✝ ≤ c✝ ⊢ sup a✝ b✝ ≤ c✝ [PROOFSTEP] simp [eq_sup, hac, hbc] [GOAL] case refine'_8 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ⊓ b ≤ a [PROOFSTEP] intros [GOAL] case refine'_8 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ ⊓ b✝ ≤ a✝ [PROOFSTEP] simp [eq_le, eq_inf] [GOAL] case refine'_9 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ⊓ b ≤ b [PROOFSTEP] intros [GOAL] case refine'_9 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ ⊓ b✝ ≤ b✝ [PROOFSTEP] simp [eq_le, eq_inf] [GOAL] case refine'_10 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1 [PROOFSTEP] intro _ _ _ hac hbc [GOAL] case refine'_10 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ b✝ hbc : a✝ ≤ c✝ ⊢ a✝ ≤ b✝ ⊓ c✝ [PROOFSTEP] simp_rw [eq_le] at hac hbc ⊢ [GOAL] case refine'_10 α : Type u c : Lattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ b✝ hbc : a✝ ≤ c✝ ⊢ a✝ ≤ inf b✝ c✝ [PROOFSTEP] simp [eq_inf, hac, hbc] [GOAL] α : Type u c : DistribLattice α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ DistribLattice α [PROOFSTEP] refine' { le := le, sup := sup, inf := inf, lt := fun a b ↦ le a b ∧ ¬le b a .. } [GOAL] case refine'_1 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a : α), a ≤ a [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ : α ⊢ a✝ ≤ a✝ [PROOFSTEP] simp [eq_le] [GOAL] case refine'_2 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] intro _ _ _ hab hbc [GOAL] case refine'_2 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hab : a✝ ≤ b✝ hbc : b✝ ≤ c✝ ⊢ a✝ ≤ c✝ [PROOFSTEP] rw [eq_le] at hab hbc ⊢ [GOAL] case refine'_2 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hab : a✝ ≤ b✝ hbc : b✝ ≤ c✝ ⊢ a✝ ≤ c✝ [PROOFSTEP] exact le_trans hab hbc [GOAL] case refine'_3 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] intros [GOAL] case refine'_3 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ < b✝ ↔ a✝ ≤ b✝ ∧ ¬b✝ ≤ a✝ [PROOFSTEP] simp [eq_le] [GOAL] case refine'_4 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ≤ b → b ≤ a → a = b [PROOFSTEP] intro _ _ hab hba [GOAL] case refine'_4 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α hab : a✝ ≤ b✝ hba : b✝ ≤ a✝ ⊢ a✝ = b✝ [PROOFSTEP] simp_rw [eq_le] at hab hba [GOAL] case refine'_4 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α hab : a✝ ≤ b✝ hba : b✝ ≤ a✝ ⊢ a✝ = b✝ [PROOFSTEP] exact le_antisymm hab hba [GOAL] case refine'_5 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ≤ a ⊔ b [PROOFSTEP] intros [GOAL] case refine'_5 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ ≤ a✝ ⊔ b✝ [PROOFSTEP] simp [eq_le, eq_sup] [GOAL] case refine'_6 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), b ≤ a ⊔ b [PROOFSTEP] intros [GOAL] case refine'_6 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ b✝ ≤ a✝ ⊔ b✝ [PROOFSTEP] simp [eq_le, eq_sup] [GOAL] case refine'_7 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1 [PROOFSTEP] intro _ _ _ hac hbc [GOAL] case refine'_7 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ c✝ hbc : b✝ ≤ c✝ ⊢ a✝ ⊔ b✝ ≤ c✝ [PROOFSTEP] simp_rw [eq_le] at hac hbc ⊢ [GOAL] case refine'_7 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ c✝ hbc : b✝ ≤ c✝ ⊢ sup a✝ b✝ ≤ c✝ [PROOFSTEP] simp [eq_sup, hac, hbc] [GOAL] case refine'_8 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ⊓ b ≤ a [PROOFSTEP] intros [GOAL] case refine'_8 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ ⊓ b✝ ≤ a✝ [PROOFSTEP] simp [eq_le, eq_inf] [GOAL] case refine'_9 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b : α), a ⊓ b ≤ b [PROOFSTEP] intros [GOAL] case refine'_9 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ : α ⊢ a✝ ⊓ b✝ ≤ b✝ [PROOFSTEP] simp [eq_le, eq_inf] [GOAL] case refine'_10 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1 [PROOFSTEP] intro _ _ _ hac hbc [GOAL] case refine'_10 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ b✝ hbc : a✝ ≤ c✝ ⊢ a✝ ≤ b✝ ⊓ c✝ [PROOFSTEP] simp_rw [eq_le] at hac hbc ⊢ [GOAL] case refine'_10 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf a✝ b✝ c✝ : α hac : a✝ ≤ b✝ hbc : a✝ ≤ c✝ ⊢ a✝ ≤ inf b✝ c✝ [PROOFSTEP] simp [eq_inf, hac, hbc] [GOAL] case refine'_11 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf ⊢ ∀ (x y z : α), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] intros [GOAL] case refine'_11 α : Type u c : DistribLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf x✝ y✝ z✝ : α ⊢ (x✝ ⊔ y✝) ⊓ (x✝ ⊔ z✝) ≤ x✝ ⊔ y✝ ⊓ z✝ [PROOFSTEP] simp [eq_le, eq_inf, eq_sup, le_sup_inf] [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α ⊢ Top α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α ⊢ Bot α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α ⊢ SupSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α ⊢ InfSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ CompleteLattice α [PROOFSTEP] refine' { Lattice.copy (@CompleteLattice.toLattice α c) le eq_le sup eq_sup inf eq_inf with le := le, top := top, bot := bot, sup := sup, inf := inf, sSup := sSup, sInf := sInf .. } [GOAL] case refine'_1 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf ⊢ ∀ (s : Set α) (a : α), a ∈ s → a ≤ SupSet.sSup s [PROOFSTEP] intro _ _ h [GOAL] case refine'_1 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf s✝ : Set α a✝ : α h : a✝ ∈ s✝ ⊢ a✝ ≤ SupSet.sSup s✝ [PROOFSTEP] simp [eq_le, eq_sSup, le_sSup _ _ h] [GOAL] case refine'_2 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf ⊢ ∀ (s : Set α) (a : α), (∀ (b : α), b ∈ s → b ≤ a) → SupSet.sSup s ≤ a [PROOFSTEP] intro _ _ h [GOAL] case refine'_2 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf s✝ : Set α a✝ : α h : ∀ (b : α), b ∈ s✝ → b ≤ a✝ ⊢ SupSet.sSup s✝ ≤ a✝ [PROOFSTEP] simpa [eq_le, eq_sSup] using h [GOAL] case refine'_3 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf ⊢ ∀ (s : Set α) (a : α), a ∈ s → InfSet.sInf s ≤ a [PROOFSTEP] intro _ _ h [GOAL] case refine'_3 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf s✝ : Set α a✝ : α h : a✝ ∈ s✝ ⊢ InfSet.sInf s✝ ≤ a✝ [PROOFSTEP] simp [eq_le, eq_sInf, sInf_le _ _ h] [GOAL] case refine'_4 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf ⊢ ∀ (s : Set α) (a : α), (∀ (b : α), b ∈ s → a ≤ b) → a ≤ InfSet.sInf s [PROOFSTEP] intro _ _ h [GOAL] case refine'_4 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf s✝ : Set α a✝ : α h : ∀ (b : α), b ∈ s✝ → a✝ ≤ b ⊢ a✝ ≤ InfSet.sInf s✝ [PROOFSTEP] simpa [eq_le, eq_sInf] using h [GOAL] case refine'_5 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf ⊢ ∀ (x : α), x ≤ ⊤ [PROOFSTEP] intros [GOAL] case refine'_5 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf x✝ : α ⊢ x✝ ≤ ⊤ [PROOFSTEP] simp [eq_le, eq_top] [GOAL] case refine'_6 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf ⊢ ∀ (x : α), ⊥ ≤ x [PROOFSTEP] intros [GOAL] case refine'_6 α : Type u c : CompleteLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : Lattice α := Lattice.copy toLattice le eq_le sup eq_sup inf eq_inf x✝ : α ⊢ ⊥ ≤ x✝ [PROOFSTEP] simp [eq_le, eq_bot] [GOAL] α : Type u c : Frame α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α ⊢ Top α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α ⊢ Bot α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α ⊢ SupSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α ⊢ InfSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Frame α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : CompleteLattice α := CompleteLattice.copy Frame.toCompleteLattice le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sSup eq_sSup sInf eq_sInf a : α s : Set α ⊢ a ⊓ SupSet.sSup s ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] simp [eq_le, eq_sup, eq_inf, eq_sSup, @Order.Frame.inf_sSup_le_iSup_inf α _ a s] [GOAL] α : Type u c : Coframe α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α ⊢ Top α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α ⊢ Bot α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α ⊢ SupSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α ⊢ InfSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : Coframe α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf src✝ : CompleteLattice α := CompleteLattice.copy Coframe.toCompleteLattice le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sSup eq_sSup sInf eq_sInf a : α s : Set α ⊢ ⨅ (b : α) (_ : b ∈ s), a ⊔ b ≤ a ⊔ InfSet.sInf s [PROOFSTEP] simp [eq_le, eq_sup, eq_inf, eq_sInf, @Order.Coframe.iInf_sup_le_sup_sInf α _ a s] [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop eq_le : le = LE.le top : α ⊢ Top α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α ⊢ Bot α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α ⊢ SupSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : CompleteDistribLattice α le : α → α → Prop eq_le : le = LE.le top : α eq_top : top = ⊤ bot : α eq_bot : bot = ⊥ sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α ⊢ InfSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop ⊢ LE α [PROOFSTEP] infer_instance [GOAL] α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α ⊢ Sup α [PROOFSTEP] infer_instance [GOAL] α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α ⊢ Inf α [PROOFSTEP] infer_instance [GOAL] α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α ⊢ SupSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α ⊢ InfSet α [PROOFSTEP] infer_instance [GOAL] α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ConditionallyCompleteLattice α [PROOFSTEP] refine' { le := le, sup := sup, inf := inf, sSup := sSup, sInf := sInf .. } [GOAL] case refine'_1 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ α → α → Prop [PROOFSTEP] intro a b [GOAL] case refine'_1 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a b : α ⊢ Prop [PROOFSTEP] exact le a b ∧ ¬le b a [GOAL] case refine'_2 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a : α), a ≤ a [PROOFSTEP] intros [GOAL] case refine'_2 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ : α ⊢ a✝ ≤ a✝ [PROOFSTEP] simp [eq_le] [GOAL] case refine'_3 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] intro _ _ _ hab hbc [GOAL] case refine'_3 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ c✝ : α hab : a✝ ≤ b✝ hbc : b✝ ≤ c✝ ⊢ a✝ ≤ c✝ [PROOFSTEP] rw [eq_le] at hab hbc ⊢ [GOAL] case refine'_3 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ c✝ : α hab : a✝ ≤ b✝ hbc : b✝ ≤ c✝ ⊢ a✝ ≤ c✝ [PROOFSTEP] exact le_trans hab hbc [GOAL] case refine'_4 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] intros [GOAL] case refine'_4 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α ⊢ a✝ < b✝ ↔ a✝ ≤ b✝ ∧ ¬b✝ ≤ a✝ [PROOFSTEP] simp [eq_le] [GOAL] case refine'_5 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b : α), a ≤ b → b ≤ a → a = b [PROOFSTEP] intro _ _ hab hba [GOAL] case refine'_5 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α hab : a✝ ≤ b✝ hba : b✝ ≤ a✝ ⊢ a✝ = b✝ [PROOFSTEP] simp_rw [eq_le] at hab hba [GOAL] case refine'_5 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α hab : a✝ ≤ b✝ hba : b✝ ≤ a✝ ⊢ a✝ = b✝ [PROOFSTEP] exact le_antisymm hab hba [GOAL] case refine'_6 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b : α), a ≤ a ⊔ b [PROOFSTEP] intros [GOAL] case refine'_6 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α ⊢ a✝ ≤ a✝ ⊔ b✝ [PROOFSTEP] simp [eq_le, eq_sup] [GOAL] case refine'_7 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b : α), b ≤ a ⊔ b [PROOFSTEP] intros [GOAL] case refine'_7 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α ⊢ b✝ ≤ a✝ ⊔ b✝ [PROOFSTEP] simp [eq_le, eq_sup] [GOAL] case refine'_8 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b c_1 : α), a ≤ c_1 → b ≤ c_1 → a ⊔ b ≤ c_1 [PROOFSTEP] intro _ _ _ hac hbc [GOAL] case refine'_8 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ c✝ : α hac : a✝ ≤ c✝ hbc : b✝ ≤ c✝ ⊢ a✝ ⊔ b✝ ≤ c✝ [PROOFSTEP] simp_rw [eq_le] at hac hbc ⊢ [GOAL] case refine'_8 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ c✝ : α hac : a✝ ≤ c✝ hbc : b✝ ≤ c✝ ⊢ sup a✝ b✝ ≤ c✝ [PROOFSTEP] simp [eq_sup, hac, hbc] [GOAL] case refine'_9 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b : α), a ⊓ b ≤ a [PROOFSTEP] intros [GOAL] case refine'_9 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α ⊢ a✝ ⊓ b✝ ≤ a✝ [PROOFSTEP] simp [eq_le, eq_inf] [GOAL] case refine'_10 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b : α), a ⊓ b ≤ b [PROOFSTEP] intros [GOAL] case refine'_10 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ : α ⊢ a✝ ⊓ b✝ ≤ b✝ [PROOFSTEP] simp [eq_le, eq_inf] [GOAL] case refine'_11 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (a b c_1 : α), a ≤ b → a ≤ c_1 → a ≤ b ⊓ c_1 [PROOFSTEP] intro _ _ _ hac hbc [GOAL] case refine'_11 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ c✝ : α hac : a✝ ≤ b✝ hbc : a✝ ≤ c✝ ⊢ a✝ ≤ b✝ ⊓ c✝ [PROOFSTEP] simp_rw [eq_le] at hac hbc ⊢ [GOAL] case refine'_11 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf a✝ b✝ c✝ : α hac : a✝ ≤ b✝ hbc : a✝ ≤ c✝ ⊢ a✝ ≤ inf b✝ c✝ [PROOFSTEP] simp [eq_inf, hac, hbc] [GOAL] case refine'_12 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (s : Set α) (a : α), BddAbove s → a ∈ s → a ≤ SupSet.sSup s [PROOFSTEP] intro _ _ hb h [GOAL] case refine'_12 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf s✝ : Set α a✝ : α hb : BddAbove s✝ h : a✝ ∈ s✝ ⊢ a✝ ≤ SupSet.sSup s✝ [PROOFSTEP] subst_vars [GOAL] case refine'_12 α : Type u c : ConditionallyCompleteLattice α s✝ : Set α a✝ : α h : a✝ ∈ s✝ hb : BddAbove s✝ ⊢ a✝ ≤ sSup s✝ [PROOFSTEP] exact le_csSup _ _ hb h [GOAL] case refine'_13 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ upperBounds s → SupSet.sSup s ≤ a [PROOFSTEP] intro _ _ hb h [GOAL] case refine'_13 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf s✝ : Set α a✝ : α hb : Set.Nonempty s✝ h : a✝ ∈ upperBounds s✝ ⊢ SupSet.sSup s✝ ≤ a✝ [PROOFSTEP] subst_vars [GOAL] case refine'_13 α : Type u c : ConditionallyCompleteLattice α s✝ : Set α a✝ : α hb : Set.Nonempty s✝ h : a✝ ∈ upperBounds s✝ ⊢ sSup s✝ ≤ a✝ [PROOFSTEP] exact csSup_le _ _ hb h [GOAL] case refine'_14 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (s : Set α) (a : α), BddBelow s → a ∈ s → InfSet.sInf s ≤ a [PROOFSTEP] intro _ _ hb h [GOAL] case refine'_14 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf s✝ : Set α a✝ : α hb : BddBelow s✝ h : a✝ ∈ s✝ ⊢ InfSet.sInf s✝ ≤ a✝ [PROOFSTEP] subst_vars [GOAL] case refine'_14 α : Type u c : ConditionallyCompleteLattice α s✝ : Set α a✝ : α h : a✝ ∈ s✝ hb : BddBelow s✝ ⊢ sInf s✝ ≤ a✝ [PROOFSTEP] exact csInf_le _ _ hb h [GOAL] case refine'_15 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf ⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ lowerBounds s → a ≤ InfSet.sInf s [PROOFSTEP] intro _ _ hb h [GOAL] case refine'_15 α : Type u c : ConditionallyCompleteLattice α le : α → α → Prop eq_le : le = LE.le sup : α → α → α eq_sup : sup = Sup.sup inf : α → α → α eq_inf : inf = Inf.inf sSup : Set α → α eq_sSup : sSup = SupSet.sSup sInf : Set α → α eq_sInf : sInf = InfSet.sInf s✝ : Set α a✝ : α hb : Set.Nonempty s✝ h : a✝ ∈ lowerBounds s✝ ⊢ a✝ ≤ InfSet.sInf s✝ [PROOFSTEP] subst_vars [GOAL] case refine'_15 α : Type u c : ConditionallyCompleteLattice α s✝ : Set α a✝ : α hb : Set.Nonempty s✝ h : a✝ ∈ lowerBounds s✝ ⊢ a✝ ≤ sInf s✝ [PROOFSTEP] exact le_csInf _ _ hb h
{"mathlib_filename": "Mathlib.Order.Copy", "llama_tokens": 20660}
[GOAL] α : Type u_1 inst✝¹ : Preorder α s : Set α inst✝ : LocallyFiniteOrderTop α hs : Set.Finite s ⊢ Set.Finite ↑(upperClosure s) [PROOFSTEP] rw [coe_upperClosure] [GOAL] α : Type u_1 inst✝¹ : Preorder α s : Set α inst✝ : LocallyFiniteOrderTop α hs : Set.Finite s ⊢ Set.Finite (⋃ (a : α) (_ : a ∈ s), Ici a) [PROOFSTEP] exact hs.biUnion fun _ _ => finite_Ici _ [GOAL] α : Type u_1 inst✝¹ : Preorder α s : Set α inst✝ : LocallyFiniteOrderBot α hs : Set.Finite s ⊢ Set.Finite ↑(lowerClosure s) [PROOFSTEP] rw [coe_lowerClosure] [GOAL] α : Type u_1 inst✝¹ : Preorder α s : Set α inst✝ : LocallyFiniteOrderBot α hs : Set.Finite s ⊢ Set.Finite (⋃ (a : α) (_ : a ∈ s), Iic a) [PROOFSTEP] exact hs.biUnion fun _ _ => finite_Iic _
{"mathlib_filename": "Mathlib.Order.UpperLower.LocallyFinite", "llama_tokens": 360}
{"mathlib_filename": "Mathlib.Order.ConditionallyCompleteLattice.Group", "llama_tokens": 0}
[GOAL] α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] by_cases ha_zero : a = 0 [GOAL] case pos α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : a = 0 ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] [GOAL] case pos α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : a = 0 ⊢ limsup (fun x => ⊥) f = ⊥ [PROOFSTEP] exact limsup_const_bot [GOAL] case neg α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] let g := fun x : ℝ≥0∞ => a * x [GOAL] case neg α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ [GOAL] α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x x : ℝ≥0∞ ⊢ (fun x => a⁻¹ * x) (g x) = x [PROOFSTEP] simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top] [GOAL] α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x x : ℝ≥0∞ ⊢ g ((fun x => a⁻¹ * x) x) = x [PROOFSTEP] simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top] [GOAL] case neg α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x hg_bij : Function.Bijective g ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 [GOAL] α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x hg_bij : Function.Bijective g x✝² x✝¹ : ℝ≥0∞ x✝ : x✝² ≤ x✝¹ ⊢ g x✝² ≤ g x✝¹ [PROOFSTEP] rwa [mul_le_mul_left ha_zero ha_top] [GOAL] case neg α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x hg_bij : Function.Bijective g hg_mono : StrictMono g ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 [GOAL] case neg α : Type u_1 f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ha_zero : ¬a = 0 g : ℝ≥0∞ → ℝ≥0∞ := fun x => a * x hg_bij : Function.Bijective g hg_mono : StrictMono g g_iso : ℝ≥0∞ ≃o ℝ≥0∞ := StrictMono.orderIsoOfSurjective g hg_mono (_ : Function.Surjective g) ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] exact (OrderIso.limsup_apply g_iso).symm [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] by_cases ha_top : a ≠ ⊤ [GOAL] case pos α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a ≠ ⊤ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] exact limsup_const_mul_of_ne_top ha_top [GOAL] case neg α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : ¬a ≠ ⊤ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] push_neg at ha_top [GOAL] case neg α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] by_cases hu : u =ᶠ[f] 0 [GOAL] case pos α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : u =ᶠ[f] 0 ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] have hau : (a * u ·) =ᶠ[f] 0 := hu.mono fun x hx => by simp [hx] [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : u =ᶠ[f] 0 x : α hx : u x = OfNat.ofNat 0 x ⊢ (fun x => a * u x) x = OfNat.ofNat 0 x [PROOFSTEP] simp [hx] [GOAL] case pos α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : u =ᶠ[f] 0 hau : (fun x => a * u x) =ᶠ[f] 0 ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] [GOAL] case pos α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : u =ᶠ[f] 0 hau : (fun x => a * u x) =ᶠ[f] 0 ⊢ ⊥ = a * ⊥ [PROOFSTEP] simp [GOAL] case neg α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ¬u =ᶠ[f] 0 ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] have hu_mul : ∃ᶠ x : α in f, ⊤ ≤ ite (u x = 0) (0 : ℝ≥0∞) ⊤ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ¬u =ᶠ[f] 0 ⊢ ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤ [PROOFSTEP] rw [EventuallyEq, not_eventually] at hu [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ∃ᶠ (x : α) in f, ¬u x = OfNat.ofNat 0 x ⊢ ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤ [PROOFSTEP] refine' hu.mono fun x hx => _ [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ∃ᶠ (x : α) in f, ¬u x = OfNat.ofNat 0 x x : α hx : ¬u x = OfNat.ofNat 0 x ⊢ ⊤ ≤ if u x = 0 then 0 else ⊤ [PROOFSTEP] rw [Pi.zero_apply] at hx [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ∃ᶠ (x : α) in f, ¬u x = OfNat.ofNat 0 x x : α hx : ¬u x = 0 ⊢ ⊤ ≤ if u x = 0 then 0 else ⊤ [PROOFSTEP] simp [hx] [GOAL] case neg α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ¬u =ᶠ[f] 0 hu_mul : ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] have h_top_le : (f.limsup fun x : α => ite (u x = 0) (0 : ℝ≥0∞) ⊤) = ⊤ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) [GOAL] case neg α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ¬u =ᶠ[f] 0 hu_mul : ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤ h_top_le : limsup (fun x => if u x = 0 then 0 else ⊤) f = ⊤ ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] have hfu : f.limsup u ≠ 0 := mt limsup_eq_zero_iff.1 hu [GOAL] case neg α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u : α → ℝ≥0∞ a : ℝ≥0∞ ha_top : a = ⊤ hu : ¬u =ᶠ[f] 0 hu_mul : ∃ᶠ (x : α) in f, ⊤ ≤ if u x = 0 then 0 else ⊤ h_top_le : limsup (fun x => if u x = 0 then 0 else ⊤) f = ⊤ hfu : limsup u f ≠ 0 ⊢ limsup (fun x => a * u x) f = a * limsup u f [PROOFSTEP] simp only [ha_top, top_mul', hfu, h_top_le] [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u v : α → ℝ≥0∞ ⊢ limsup (u * v) f ≤ limsup (fun x => limsup u f * v x) f [PROOFSTEP] refine limsup_le_limsup ?_ [GOAL] α : Type u_1 f : Filter α inst✝ : CountableInterFilter f u v : α → ℝ≥0∞ ⊢ u * v ≤ᶠ[f] fun x => limsup u f * v x [PROOFSTEP] filter_upwards [@eventually_le_limsup _ f _ u] with x hx using mul_le_mul' hx le_rfl [GOAL] α : Type u_1 f✝ : Filter α β : Type u_2 inst✝¹ : Countable β f : Filter α inst✝ : CountableInterFilter f g : Filter β u : α → β → ℝ≥0∞ ⊢ ∀ᶠ (a : α) in f, ∀ (b : β), u a b ≤ limsup (fun a' => u a' b) f [PROOFSTEP] rw [eventually_countable_forall] [GOAL] α : Type u_1 f✝ : Filter α β : Type u_2 inst✝¹ : Countable β f : Filter α inst✝ : CountableInterFilter f g : Filter β u : α → β → ℝ≥0∞ ⊢ ∀ (i : β), ∀ᶠ (x : α) in f, u x i ≤ limsup (fun a' => u a' i) f [PROOFSTEP] exact fun b => ENNReal.eventually_le_limsup fun a => u a b
{"mathlib_filename": "Mathlib.Order.Filter.ENNReal", "llama_tokens": 4288}
[GOAL] n : ℕ h : n ≠ 0 d m : ℕ ⊢ ((fun a => a + d) ∘ fun x => n • id x) m ≡ d [MOD n] [PROOFSTEP] simp [Nat.modEq_iff_dvd, ← sub_sub] [GOAL] d n : ℕ h : d < n ⊢ ∃ᶠ (m : ℕ) in atTop, m % n = d [PROOFSTEP] simpa only [Nat.ModEq, mod_eq_of_lt h] using frequently_modEq h.ne_bot d [GOAL] ⊢ ∃ᶠ (m : ℕ) in atTop, Even m [PROOFSTEP] simpa only [even_iff] using frequently_mod_eq zero_lt_two [GOAL] ⊢ ∃ᶠ (m : ℕ) in atTop, Odd m [PROOFSTEP] simpa only [odd_iff] using frequently_mod_eq one_lt_two
{"mathlib_filename": "Mathlib.Order.Filter.ModEq", "llama_tokens": 260}
[GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α ⊢ ¬BddAbove s ↔ ∀ (x : α), ∃ y, y ∈ s ∧ ¬y ≤ x [PROOFSTEP] simp [BddAbove, upperBounds, Set.Nonempty] [GOAL] α✝ : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α✝ inst✝¹ : Preorder β s✝ t : Set α✝ a b : α✝ α : Type u_1 inst✝ : LinearOrder α s : Set α ⊢ ¬BddAbove s ↔ ∀ (x : α), ∃ y, y ∈ s ∧ x < y [PROOFSTEP] simp only [not_bddAbove_iff', not_le] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α h : IsLUB s a ⊢ a ≤ b ↔ b ∈ upperBounds s [PROOFSTEP] rw [h.upperBounds_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α h : IsLUB s a ⊢ a ≤ b ↔ b ∈ Ici a [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α h : IsGLB s a ⊢ b ≤ a ↔ b ∈ lowerBounds s [PROOFSTEP] rw [h.lowerBounds_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α h : IsGLB s a ⊢ b ≤ a ↔ b ∈ Iic a [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s✝ t✝ : Set α a✝ b a : α s t : Set α ⊢ IsLeast (s ∪ t) a ↔ IsLeast s a ∧ a ∈ lowerBounds t ∨ a ∈ lowerBounds s ∧ IsLeast t a [PROOFSTEP] simp [IsLeast, lowerBounds_union, or_and_right, and_comm (a := a ∈ t), and_assoc] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a b : α inst✝ : SemilatticeSup γ s t : Set γ ⊢ BddAbove s → BddAbove t → BddAbove (s ∪ t) [PROOFSTEP] rintro ⟨bs, hs⟩ ⟨bt, ht⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a b : α inst✝ : SemilatticeSup γ s t : Set γ bs : γ hs : bs ∈ upperBounds s bt : γ ht : bt ∈ upperBounds t ⊢ BddAbove (s ∪ t) [PROOFSTEP] use bs ⊔ bt [GOAL] case h α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a b : α inst✝ : SemilatticeSup γ s t : Set γ bs : γ hs : bs ∈ upperBounds s bt : γ ht : bt ∈ upperBounds t ⊢ bs ⊔ bt ∈ upperBounds (s ∪ t) [PROOFSTEP] rw [upperBounds_union] [GOAL] case h α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a b : α inst✝ : SemilatticeSup γ s t : Set γ bs : γ hs : bs ∈ upperBounds s bt : γ ht : bt ∈ upperBounds t ⊢ bs ⊔ bt ∈ upperBounds s ∩ upperBounds t [PROOFSTEP] exact ⟨upperBounds_mono_mem le_sup_left hs, upperBounds_mono_mem le_sup_right ht⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s t : Set γ ha : IsLeast s a hb : IsLeast t b ⊢ min a b ∈ s ∪ t [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s t : Set γ ha : IsLeast s a hb : IsLeast t b h : a ≤ b ⊢ min a b ∈ s ∪ t [PROOFSTEP] simp [h, ha.1, hb.1] [GOAL] case inr α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s t : Set γ ha : IsLeast s a hb : IsLeast t b h : b ≤ a ⊢ min a b ∈ s ∪ t [PROOFSTEP] simp [h, ha.1, hb.1] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s t : Set γ ha : IsGreatest s a hb : IsGreatest t b ⊢ max a b ∈ s ∪ t [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s t : Set γ ha : IsGreatest s a hb : IsGreatest t b h : a ≤ b ⊢ max a b ∈ s ∪ t [PROOFSTEP] simp [h, ha.1, hb.1] [GOAL] case inr α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t✝ : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s t : Set γ ha : IsGreatest s a hb : IsGreatest t b h : b ≤ a ⊢ max a b ∈ s ∪ t [PROOFSTEP] simp [h, ha.1, hb.1] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a b : α inst✝ : SemilatticeSup γ s : Set γ x₀ : γ ⊢ BddAbove s ↔ ∃ x, x₀ ≤ x ∧ ∀ (y : γ), y ∈ s → y ≤ x [PROOFSTEP] rw [bddAbove_def, exists_ge_and_iff_exists] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a b : α inst✝ : SemilatticeSup γ s : Set γ x₀ : γ ⊢ Monotone fun x => ∀ (y : γ), y ∈ s → y ≤ x [PROOFSTEP] exact Monotone.ball fun x _ => monotone_le [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : PartialOrder γ j i : γ hj : IsLUB (Iio i) j ⊢ j = i ∨ Iio i = Iic j [PROOFSTEP] cases' eq_or_lt_of_le (lub_Iio_le i hj) with hj_eq_i hj_lt_i [GOAL] case inl α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : PartialOrder γ j i : γ hj : IsLUB (Iio i) j hj_eq_i : j = i ⊢ j = i ∨ Iio i = Iic j [PROOFSTEP] exact Or.inl hj_eq_i [GOAL] case inr α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : PartialOrder γ j i : γ hj : IsLUB (Iio i) j hj_lt_i : j < i ⊢ j = i ∨ Iio i = Iic j [PROOFSTEP] right [GOAL] case inr.h α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : PartialOrder γ j i : γ hj : IsLUB (Iio i) j hj_lt_i : j < i ⊢ Iio i = Iic j [PROOFSTEP] exact Set.ext fun k => ⟨fun hk_lt => hj.1 hk_lt, fun hk_le_j => lt_of_le_of_lt hk_le_j hj_lt_i⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ ⊢ ∃ j, IsLUB (Iio i) j [PROOFSTEP] by_cases h_exists_lt : ∃ j, j ∈ upperBounds (Iio i) ∧ j < i [GOAL] case pos α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ∃ j, j ∈ upperBounds (Iio i) ∧ j < i ⊢ ∃ j, IsLUB (Iio i) j [PROOFSTEP] obtain ⟨j, hj_ub, hj_lt_i⟩ := h_exists_lt [GOAL] case pos.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i j : γ hj_ub : j ∈ upperBounds (Iio i) hj_lt_i : j < i ⊢ ∃ j, IsLUB (Iio i) j [PROOFSTEP] exact ⟨j, hj_ub, fun k hk_ub => hk_ub hj_lt_i⟩ [GOAL] case neg α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i ⊢ ∃ j, IsLUB (Iio i) j [PROOFSTEP] refine' ⟨i, fun j hj => le_of_lt hj, _⟩ [GOAL] case neg α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i ⊢ i ∈ lowerBounds (upperBounds (Iio i)) [PROOFSTEP] rw [mem_lowerBounds] [GOAL] case neg α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i ⊢ ∀ (x : γ), x ∈ upperBounds (Iio i) → i ≤ x [PROOFSTEP] by_contra h [GOAL] case neg α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i h : ¬∀ (x : γ), x ∈ upperBounds (Iio i) → i ≤ x ⊢ False [PROOFSTEP] refine' h_exists_lt _ [GOAL] case neg α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i h : ¬∀ (x : γ), x ∈ upperBounds (Iio i) → i ≤ x ⊢ ∃ j, j ∈ upperBounds (Iio i) ∧ j < i [PROOFSTEP] push_neg at h [GOAL] case neg α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : LinearOrder γ i : γ h_exists_lt : ¬∃ j, j ∈ upperBounds (Iio i) ∧ j < i h : ∃ x, x ∈ upperBounds (Iio i) ∧ x < i ⊢ ∃ j, j ∈ upperBounds (Iio i) ∧ j < i [PROOFSTEP] exact h [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeSup γ inst✝ : DenselyOrdered γ a b : γ h : a < b x : γ hx : x ∈ lowerBounds (Ioo a b) ⊢ x ≤ a [PROOFSTEP] cases' eq_or_lt_of_le (le_sup_right : a ≤ x ⊔ a) with h₁ h₂ [GOAL] case inl α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeSup γ inst✝ : DenselyOrdered γ a b : γ h : a < b x : γ hx : x ∈ lowerBounds (Ioo a b) h₁ : a = x ⊔ a ⊢ x ≤ a [PROOFSTEP] exact h₁.symm ▸ le_sup_left [GOAL] case inr α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeSup γ inst✝ : DenselyOrdered γ a b : γ h : a < b x : γ hx : x ∈ lowerBounds (Ioo a b) h₂ : a < x ⊔ a ⊢ x ≤ a [PROOFSTEP] obtain ⟨y, lty, ylt⟩ := exists_between h₂ [GOAL] case inr.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeSup γ inst✝ : DenselyOrdered γ a b : γ h : a < b x : γ hx : x ∈ lowerBounds (Ioo a b) h₂ : a < x ⊔ a y : γ lty : a < y ylt : y < x ⊔ a ⊢ x ≤ a [PROOFSTEP] apply (not_lt_of_le (sup_le (hx ⟨lty, ylt.trans_le (sup_le _ h.le)⟩) lty.le) ylt).elim [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeSup γ inst✝ : DenselyOrdered γ a b : γ h : a < b x : γ hx : x ∈ lowerBounds (Ioo a b) h₂ : a < x ⊔ a y : γ lty : a < y ylt : y < x ⊔ a ⊢ x ≤ b [PROOFSTEP] obtain ⟨u, au, ub⟩ := exists_between h [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeSup γ inst✝ : DenselyOrdered γ a b : γ h : a < b x : γ hx : x ∈ lowerBounds (Ioo a b) h₂ : a < x ⊔ a y : γ lty : a < y ylt : y < x ⊔ a u : γ au : a < u ub : u < b ⊢ x ≤ b [PROOFSTEP] apply (hx ⟨au, ub⟩).trans ub.le [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeInf γ inst✝ : DenselyOrdered γ a b : γ hab : a < b ⊢ IsLUB (Ioo a b) b [PROOFSTEP] simpa only [dual_Ioo] using isGLB_Ioo hab.dual [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a✝ b✝ : α inst✝¹ : SemilatticeInf γ inst✝ : DenselyOrdered γ a b : γ hab : a < b ⊢ IsLUB (Ico a b) b [PROOFSTEP] simpa only [dual_Ioc] using isGLB_Ioc hab.dual [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α ⊢ BddBelow s ∧ BddAbove s ↔ ∃ a b, s ⊆ Icc a b [PROOFSTEP] simp [Ici_inter_Iic.symm, subset_inter_iff, bddBelow_iff_subset_Ici, bddAbove_iff_subset_Iic, exists_and_left, exists_and_right] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α ⊢ IsGreatest univ a ↔ IsTop a [PROOFSTEP] simp [IsGreatest, mem_upperBounds, IsTop] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝³ : Preorder α inst✝² : Preorder β s t : Set α a b : α inst✝¹ : PartialOrder γ inst✝ : OrderTop γ ⊢ upperBounds univ = {⊤} [PROOFSTEP] rw [isGreatest_univ.upperBounds_eq, Ici_top] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : NoMaxOrder α ⊢ ¬BddAbove univ [PROOFSTEP] simp [BddAbove] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α ⊢ upperBounds ∅ = univ [PROOFSTEP] simp only [upperBounds, eq_univ_iff_forall, mem_setOf_eq, ball_empty_iff, forall_true_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : Nonempty α ⊢ BddAbove ∅ [PROOFSTEP] simp only [BddAbove, upperBounds_empty, univ_nonempty] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : Nonempty α ⊢ BddBelow ∅ [PROOFSTEP] simp only [BddBelow, lowerBounds_empty, univ_nonempty] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a b : α ⊢ IsGLB ∅ a ↔ IsTop a [PROOFSTEP] simp [IsGLB] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : NoMinOrder α hs : IsLUB s a a' : α ha' : a' < a h : s = ∅ ⊢ a' ∈ upperBounds s [PROOFSTEP] rw [h, upperBounds_empty] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s t : Set α a b : α inst✝ : NoMinOrder α hs : IsLUB s a a' : α ha' : a' < a h : s = ∅ ⊢ a' ∈ univ [PROOFSTEP] exact mem_univ _ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b : α inst✝ : SemilatticeSup γ a : γ s : Set γ ⊢ BddAbove (insert a s) ↔ BddAbove s [PROOFSTEP] simp only [insert_eq, bddAbove_union, bddAbove_singleton, true_and_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b : α inst✝ : SemilatticeInf γ a : γ s : Set γ ⊢ BddBelow (insert a s) ↔ BddBelow s [PROOFSTEP] simp only [insert_eq, bddBelow_union, bddBelow_singleton, true_and_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : SemilatticeSup γ a b : γ s : Set γ hs : IsLUB s b ⊢ IsLUB (insert a s) (a ⊔ b) [PROOFSTEP] rw [insert_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : SemilatticeSup γ a b : γ s : Set γ hs : IsLUB s b ⊢ IsLUB ({a} ∪ s) (a ⊔ b) [PROOFSTEP] exact isLUB_singleton.union hs [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : SemilatticeInf γ a b : γ s : Set γ hs : IsGLB s b ⊢ IsGLB (insert a s) (a ⊓ b) [PROOFSTEP] rw [insert_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : SemilatticeInf γ a b : γ s : Set γ hs : IsGLB s b ⊢ IsGLB ({a} ∪ s) (a ⊓ b) [PROOFSTEP] exact isGLB_singleton.union hs [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s : Set γ hs : IsGreatest s b ⊢ IsGreatest (insert a s) (max a b) [PROOFSTEP] rw [insert_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s : Set γ hs : IsGreatest s b ⊢ IsGreatest ({a} ∪ s) (max a b) [PROOFSTEP] exact isGreatest_singleton.union hs [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s : Set γ hs : IsLeast s b ⊢ IsLeast (insert a s) (min a b) [PROOFSTEP] rw [insert_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β s✝ t : Set α a✝ b✝ : α inst✝ : LinearOrder γ a b : γ s : Set γ hs : IsLeast s b ⊢ IsLeast ({a} ∪ s) (min a b) [PROOFSTEP] exact isLeast_singleton.union hs [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α a✝ b a : α s : Set α ⊢ upperBounds (insert a s) = Ici a ∩ upperBounds s [PROOFSTEP] rw [insert_eq, upperBounds_union, upperBounds_singleton] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α a✝ b a : α s : Set α ⊢ lowerBounds (insert a s) = Iic a ∩ lowerBounds s [PROOFSTEP] rw [insert_eq, lowerBounds_union, lowerBounds_singleton] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝ : LinearOrder α s : Set α a b : α h : IsLUB s a ⊢ b < a ↔ ∃ c, c ∈ s ∧ b < c [PROOFSTEP] simp_rw [← not_le, isLUB_le_iff h, mem_upperBounds, not_forall, not_le, exists_prop] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s t : Set α Hf : MonotoneOn f t a : α Hst✝ Hst : s ⊆ t ⊢ f '' (upperBounds s ∩ t) ⊆ upperBounds (f '' s) [PROOFSTEP] rintro _ ⟨a, ha, rfl⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s t : Set α Hf : MonotoneOn f t a✝ : α Hst✝ Hst : s ⊆ t a : α ha : a ∈ upperBounds s ∩ t ⊢ f a ∈ upperBounds (f '' s) [PROOFSTEP] exact Hf.mem_upperBounds_image Hst ha.1 ha.2 [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β f : α → β Hf : Monotone f a : α s : Set α ⊢ f '' upperBounds s ⊆ upperBounds (f '' s) [PROOFSTEP] rintro _ ⟨a, ha, rfl⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β f : α → β Hf : Monotone f a✝ : α s : Set α a : α ha : a ∈ upperBounds s ⊢ f a ∈ upperBounds (f '' s) [PROOFSTEP] exact Hf.mem_upperBounds_image ha [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ image2 f (upperBounds s) (upperBounds t) ⊆ upperBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α b : β ha : a ∈ upperBounds s hb : b ∈ upperBounds t ⊢ f a b ∈ upperBounds (image2 f s t) [PROOFSTEP] exact mem_upperBounds_image2 h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ image2 f (lowerBounds s) (lowerBounds t) ⊆ lowerBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α b : β ha : a ∈ lowerBounds s hb : b ∈ lowerBounds t ⊢ f a b ∈ lowerBounds (image2 f s t) [PROOFSTEP] exact mem_lowerBounds_image2 h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ BddAbove s → BddAbove t → BddAbove (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α ha : a ∈ upperBounds s b : β hb : b ∈ upperBounds t ⊢ BddAbove (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_upperBounds_image2 h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ BddBelow s → BddBelow t → BddBelow (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α ha : a ∈ lowerBounds s b : β hb : b ∈ lowerBounds t ⊢ BddBelow (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_lowerBounds_image2 h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ image2 f (upperBounds s) (lowerBounds t) ⊆ upperBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α b : β ha : a ∈ upperBounds s hb : b ∈ lowerBounds t ⊢ f a b ∈ upperBounds (image2 f s t) [PROOFSTEP] exact mem_upperBounds_image2_of_mem_upperBounds_of_mem_lowerBounds h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ image2 f (lowerBounds s) (upperBounds t) ⊆ lowerBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α b : β ha : a ∈ lowerBounds s hb : b ∈ upperBounds t ⊢ f a b ∈ lowerBounds (image2 f s t) [PROOFSTEP] exact mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_upperBounds h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ BddAbove s → BddBelow t → BddAbove (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α ha : a ∈ upperBounds s b : β hb : b ∈ lowerBounds t ⊢ BddAbove (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_upperBounds_image2_of_mem_upperBounds_of_mem_lowerBounds h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ BddBelow s → BddAbove t → BddBelow (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Monotone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α ha : a ∈ lowerBounds s b : β hb : b ∈ upperBounds t ⊢ BddBelow (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_upperBounds h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ image2 f (lowerBounds s) (lowerBounds t) ⊆ upperBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α b : β ha : a ∈ lowerBounds s hb : b ∈ lowerBounds t ⊢ f a b ∈ upperBounds (image2 f s t) [PROOFSTEP] exact mem_upperBounds_image2_of_mem_lowerBounds h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ image2 f (upperBounds s) (upperBounds t) ⊆ lowerBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α b : β ha : a ∈ upperBounds s hb : b ∈ upperBounds t ⊢ f a b ∈ lowerBounds (image2 f s t) [PROOFSTEP] exact mem_lowerBounds_image2_of_mem_upperBounds h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ BddBelow s → BddBelow t → BddAbove (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α ha : a ∈ lowerBounds s b : β hb : b ∈ lowerBounds t ⊢ BddAbove (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_upperBounds_image2_of_mem_lowerBounds h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) ⊢ BddAbove s → BddAbove t → BddBelow (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Antitone (f a) a : α ha : a ∈ upperBounds s b : β hb : b ∈ upperBounds t ⊢ BddBelow (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_lowerBounds_image2_of_mem_upperBounds h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ image2 f (lowerBounds s) (upperBounds t) ⊆ upperBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α b : β ha : a ∈ lowerBounds s hb : b ∈ upperBounds t ⊢ f a b ∈ upperBounds (image2 f s t) [PROOFSTEP] exact mem_upperBounds_image2_of_mem_upperBounds_of_mem_upperBounds h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ image2 f (upperBounds s) (lowerBounds t) ⊆ lowerBounds (image2 f s t) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α b : β ha : a ∈ upperBounds s hb : b ∈ lowerBounds t ⊢ f a b ∈ lowerBounds (image2 f s t) [PROOFSTEP] exact mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_lowerBounds h₀ h₁ ha hb [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ BddBelow s → BddAbove t → BddAbove (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α ha : a ∈ lowerBounds s b : β hb : b ∈ upperBounds t ⊢ BddAbove (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_upperBounds_image2_of_mem_upperBounds_of_mem_upperBounds h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a : α b : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) ⊢ BddAbove s → BddBelow t → BddBelow (Set.image2 f s t) [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β → γ s : Set α t : Set β a✝ : α b✝ : β h₀ : ∀ (b : β), Antitone (swap f b) h₁ : ∀ (a : α), Monotone (f a) a : α ha : a ∈ upperBounds s b : β hb : b ∈ lowerBounds t ⊢ BddBelow (Set.image2 f s t) [PROOFSTEP] exact ⟨f a b, mem_lowerBounds_image2_of_mem_lowerBounds_of_mem_lowerBounds h₀ h₁ ha hb⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) F : ι → (a : α) → π a ⊢ BddAbove (range F) ↔ ∀ (a : α), BddAbove (range fun i => F i a) [PROOFSTEP] simp only [bddAbove_pi, ← range_comp] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) F : ι → (a : α) → π a ⊢ (∀ (a : α), BddAbove (range (eval a ∘ F))) ↔ ∀ (a : α), BddAbove (range fun i => F i a) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) s : Set ((a : α) → π a) f : (a : α) → π a ⊢ IsLUB s f ↔ ∀ (a : α), IsLUB (eval a '' s) (f a) [PROOFSTEP] classical refine' ⟨fun H a => ⟨(Function.monotone_eval a).mem_upperBounds_image H.1, fun b hb => _⟩, fun H => ⟨_, _⟩⟩ · suffices h : Function.update f a b ∈ upperBounds s from Function.update_same a b f ▸ H.2 h a refine' fun g hg => le_update_iff.2 ⟨hb <| mem_image_of_mem _ hg, fun i _ => H.1 hg i⟩ · exact fun g hg a => (H a).1 (mem_image_of_mem _ hg) · exact fun g hg a => (H a).2 ((Function.monotone_eval a).mem_upperBounds_image hg) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) s : Set ((a : α) → π a) f : (a : α) → π a ⊢ IsLUB s f ↔ ∀ (a : α), IsLUB (eval a '' s) (f a) [PROOFSTEP] refine' ⟨fun H a => ⟨(Function.monotone_eval a).mem_upperBounds_image H.1, fun b hb => _⟩, fun H => ⟨_, _⟩⟩ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) s : Set ((a : α) → π a) f : (a : α) → π a H : IsLUB s f a : α b : π a hb : b ∈ upperBounds (eval a '' s) ⊢ f a ≤ b [PROOFSTEP] suffices h : Function.update f a b ∈ upperBounds s from Function.update_same a b f ▸ H.2 h a [GOAL] case refine'_1 α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) s : Set ((a : α) → π a) f : (a : α) → π a H : IsLUB s f a : α b : π a hb : b ∈ upperBounds (eval a '' s) ⊢ update f a b ∈ upperBounds s [PROOFSTEP] refine' fun g hg => le_update_iff.2 ⟨hb <| mem_image_of_mem _ hg, fun i _ => H.1 hg i⟩ [GOAL] case refine'_2 α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) s : Set ((a : α) → π a) f : (a : α) → π a H : ∀ (a : α), IsLUB (eval a '' s) (f a) ⊢ f ∈ upperBounds s [PROOFSTEP] exact fun g hg a => (H a).1 (mem_image_of_mem _ hg) [GOAL] case refine'_3 α : Type u β : Type v γ : Type w ι : Sort x π : α → Type u_1 inst✝ : (a : α) → Preorder (π a) s : Set ((a : α) → π a) f : (a : α) → π a H : ∀ (a : α), IsLUB (eval a '' s) (f a) ⊢ f ∈ lowerBounds (upperBounds s) [PROOFSTEP] exact fun g hg a => (H a).2 ((Function.monotone_eval a).mem_upperBounds_image hg) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β ⊢ IsLUB s p ↔ IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd [PROOFSTEP] refine' ⟨fun H => ⟨⟨monotone_fst.mem_upperBounds_image H.1, fun a ha => _⟩, ⟨monotone_snd.mem_upperBounds_image H.1, fun a ha => _⟩⟩, fun H => ⟨_, _⟩⟩ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β H : IsLUB s p a : α ha : a ∈ upperBounds (Prod.fst '' s) ⊢ p.fst ≤ a [PROOFSTEP] suffices h : (a, p.2) ∈ upperBounds s from (H.2 h).1 [GOAL] case refine'_1 α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β H : IsLUB s p a : α ha : a ∈ upperBounds (Prod.fst '' s) ⊢ (a, p.snd) ∈ upperBounds s [PROOFSTEP] exact fun q hq => ⟨ha <| mem_image_of_mem _ hq, (H.1 hq).2⟩ [GOAL] case refine'_2 α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β H : IsLUB s p a : β ha : a ∈ upperBounds (Prod.snd '' s) ⊢ p.snd ≤ a [PROOFSTEP] suffices h : (p.1, a) ∈ upperBounds s from (H.2 h).2 [GOAL] case refine'_2 α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β H : IsLUB s p a : β ha : a ∈ upperBounds (Prod.snd '' s) ⊢ (p.fst, a) ∈ upperBounds s [PROOFSTEP] exact fun q hq => ⟨(H.1 hq).1, ha <| mem_image_of_mem _ hq⟩ [GOAL] case refine'_3 α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β H : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd ⊢ p ∈ upperBounds s [PROOFSTEP] exact fun q hq => ⟨H.1.1 <| mem_image_of_mem _ hq, H.2.1 <| mem_image_of_mem _ hq⟩ [GOAL] case refine'_4 α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : Preorder α inst✝ : Preorder β s : Set (α × β) p : α × β H : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd ⊢ p ∈ lowerBounds (upperBounds s) [PROOFSTEP] exact fun q hq => ⟨H.1.2 <| monotone_fst.mem_upperBounds_image hq, H.2.2 <| monotone_snd.mem_upperBounds_image hq⟩
{"mathlib_filename": "Mathlib.Order.Bounds.Basic", "llama_tokens": 17864}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ univ ∈ {s | Set.Finite sᶜ} [PROOFSTEP] simp only [compl_univ, finite_empty, mem_setOf_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α x✝ y✝ : Set α hs : x✝ ∈ {s | Set.Finite sᶜ} ht : y✝ ∈ {s | Set.Finite sᶜ} ⊢ x✝ ∩ y✝ ∈ {s | Set.Finite sᶜ} [PROOFSTEP] simpa only [compl_inter, mem_setOf_eq] using hs.union ht [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ cofinite = ⊥ ↔ Finite α [PROOFSTEP] simp [← empty_mem_iff_bot, finite_univ_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α p : α → Prop ⊢ (∃ᶠ (x : α) in cofinite, p x) ↔ Set.Infinite {x | p x} [PROOFSTEP] simp only [Filter.Frequently, Filter.Eventually, mem_cofinite, compl_setOf, not_not, Set.Infinite] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ l ≤ cofinite ↔ ∀ (x : α), {x}ᶜ ∈ l [PROOFSTEP] refine' ⟨fun h x => h (finite_singleton x).compl_mem_cofinite, fun h s (hs : sᶜ.Finite) => _⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α h : ∀ (x : α), {x}ᶜ ∈ l s : Set α hs : Set.Finite sᶜ ⊢ s ∈ l [PROOFSTEP] rw [← compl_compl s, ← biUnion_of_singleton sᶜ, compl_iUnion₂, Filter.biInter_mem hs] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α h : ∀ (x : α), {x}ᶜ ∈ l s : Set α hs : Set.Finite sᶜ ⊢ ∀ (i : α), i ∈ sᶜ → {i}ᶜ ∈ l [PROOFSTEP] exact fun x _ => h x [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α s : Set (α × β) ⊢ sᶜ ∈ Filter.coprod cofinite cofinite ↔ sᶜ ∈ cofinite [PROOFSTEP] simp only [compl_mem_coprod, mem_cofinite, compl_compl, finite_image_fst_and_snd_iff] [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 l : Filter α✝ α : ι → Type u_4 inst✝ : Finite ι s : Set ((i : ι) → α i) ⊢ (sᶜ ∈ Filter.coprodᵢ fun i => cofinite) ↔ sᶜ ∈ cofinite [PROOFSTEP] simp only [compl_mem_coprodᵢ, mem_cofinite, compl_compl, forall_finite_image_eval_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ Disjoint cofinite l ↔ ∃ s, s ∈ l ∧ Set.Finite s [PROOFSTEP] simp only [hasBasis_cofinite.disjoint_iff l.basis_sets, id, disjoint_compl_left_iff_subset] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ (∃ i, Set.Finite i ∧ ∃ i', i' ∈ l ∧ i' ⊆ i) ↔ ∃ s, s ∈ l ∧ Set.Finite s [PROOFSTEP] exact ⟨fun ⟨s, hs, t, ht, hts⟩ => ⟨t, ht, hs.subset hts⟩, fun ⟨s, hs, hsf⟩ => ⟨s, hsf, s, hs, Subset.rfl⟩⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : IsCountablyGenerated l h : cofinite ≤ l ⊢ Set.Countable (⋂₀ l.sets)ᶜ [PROOFSTEP] rcases exists_antitone_basis l with ⟨s, hs⟩ [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : IsCountablyGenerated l h : cofinite ≤ l s : ℕ → Set α hs : HasAntitoneBasis l s ⊢ Set.Countable (⋂₀ l.sets)ᶜ [PROOFSTEP] simp only [hs.sInter_sets, iInter_true, compl_iInter] [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : IsCountablyGenerated l h : cofinite ≤ l s : ℕ → Set α hs : HasAntitoneBasis l s ⊢ Set.Countable (⋃ (i : ℕ), (s i)ᶜ) [PROOFSTEP] exact countable_iUnion fun n ↦ Set.Finite.countable <| h <| hs.mem _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l✝ : Filter α f : α → β l : Filter β inst✝ : IsCountablyGenerated l h : Tendsto f cofinite l ⊢ Set.Countable (f ⁻¹' ⋂₀ l.sets)ᶜ [PROOFSTEP] erw [preimage_sInter, ← sInter_comap_sets] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l✝ : Filter α f : α → β l : Filter β inst✝ : IsCountablyGenerated l h : Tendsto f cofinite l ⊢ Set.Countable (⋂₀ (comap f l).sets)ᶜ [PROOFSTEP] exact countable_compl_sInter_sets h.le_comap [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ cofinite = atTop [PROOFSTEP] refine' le_antisymm _ atTop_le_cofinite [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α ⊢ cofinite ≤ atTop [PROOFSTEP] refine' atTop_basis.ge_iff.2 fun N _ => _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α N : ℕ x✝ : True ⊢ Ici N ∈ cofinite [PROOFSTEP] simpa only [mem_cofinite, compl_Ici] using finite_lt_nat N [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 l : Filter α p : ℕ → Prop ⊢ (∃ᶠ (n : ℕ) in atTop, p n) ↔ Set.Infinite {n | p n} [PROOFSTEP] rw [← Nat.cofinite_eq_atTop, frequently_cofinite_iff_infinite] [GOAL] ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] rcases em (∃ y ∈ s, ∃ x, f y < x) with (⟨y, hys, x, hx⟩ | not_all_top) [GOAL] case inl.intro.intro.intro ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] have : {y | ¬x ≤ f y}.Finite := Filter.eventually_cofinite.mp (tendsto_atTop.1 hf x) [GOAL] case inl.intro.intro.intro ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x this : Set.Finite {y | ¬x ≤ f y} ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] simp only [not_le] at this [GOAL] case inl.intro.intro.intro ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x this : Set.Finite {y | f y < x} ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] obtain ⟨a₀, ⟨ha₀ : f a₀ < x, ha₀s⟩, others_bigger⟩ := exists_min_image _ f (this.inter_of_left s) ⟨y, hx, hys⟩ [GOAL] case inl.intro.intro.intro.intro.intro.intro ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x this : Set.Finite {y | f y < x} a₀ : α others_bigger : ∀ (b : α), b ∈ {y | f y < x} ∩ s → f a₀ ≤ f b ha₀ : f a₀ < x ha₀s : a₀ ∈ s ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] refine' ⟨a₀, ha₀s, fun a has => (lt_or_le (f a) x).elim _ (le_trans ha₀.le)⟩ [GOAL] case inl.intro.intro.intro.intro.intro.intro ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop y : α hys : y ∈ s x : β hx : f y < x this : Set.Finite {y | f y < x} a₀ : α others_bigger : ∀ (b : α), b ∈ {y | f y < x} ∩ s → f a₀ ≤ f b ha₀ : f a₀ < x ha₀s : a₀ ∈ s a : α has : a ∈ s ⊢ f a < x → f a₀ ≤ f a [PROOFSTEP] exact fun h => others_bigger a ⟨h, has⟩ [GOAL] case inr ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop not_all_top : ¬∃ y, y ∈ s ∧ ∃ x, f y < x ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] push_neg at not_all_top [GOAL] case inr ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α hs : Set.Nonempty s f : α → β hf : Tendsto f cofinite atTop not_all_top : ∀ (y : α), y ∈ s → ∀ (x : β), x ≤ f y ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] obtain ⟨a₀, ha₀s⟩ := hs [GOAL] case inr.intro ι : Type u_1 α✝ : Type u_2 β✝ : Type u_3 l : Filter α✝ α : Type u_4 β : Type u_5 inst✝ : LinearOrder β s : Set α f : α → β hf : Tendsto f cofinite atTop not_all_top : ∀ (y : α), y ∈ s → ∀ (x : β), x ≤ f y a₀ : α ha₀s : a₀ ∈ s ⊢ ∃ a₀, a₀ ∈ s ∧ ∀ (a : α), a ∈ s → f a₀ ≤ f a [PROOFSTEP] exact ⟨a₀, ha₀s, fun a ha => not_all_top a ha (f a₀)⟩
{"mathlib_filename": "Mathlib.Order.Filter.Cofinite", "llama_tokens": 4158}
[GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One M s t : Set α f g : α → M a : α l : Filter α hf : f =ᶠ[l ⊓ 𝓟 s] g hs : s =ᶠ[l] t x : α hst : x ∈ s ↔ x ∈ t hfg : x ∈ s → f x = g x hxs : x ∈ s ⊢ mulIndicator s f x = mulIndicator t g x [PROOFSTEP] simp only [*, hst.1 hxs, mulIndicator_of_mem] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One M s t : Set α f g : α → M a : α l : Filter α hf : f =ᶠ[l ⊓ 𝓟 s] g hs : s =ᶠ[l] t x : α hst : x ∈ s ↔ x ∈ t hfg : x ∈ s → f x = g x hxs : ¬x ∈ s ⊢ mulIndicator s f x = mulIndicator t g x [PROOFSTEP] simp only [mulIndicator_of_not_mem, hxs, mt hst.2 hxs] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝¹ : Preorder ι inst✝ : One β s : ι → Set α hs : Monotone s f : α → β a : α ⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋃ (i : ι), s i) f a [PROOFSTEP] classical exact hs.piecewise_eventually_eq_iUnion f 1 a [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝¹ : Preorder ι inst✝ : One β s : ι → Set α hs : Monotone s f : α → β a : α ⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋃ (i : ι), s i) f a [PROOFSTEP] exact hs.piecewise_eventually_eq_iUnion f 1 a [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝¹ : Preorder ι inst✝ : One β s : ι → Set α hs : Antitone s f : α → β a : α ⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋂ (i : ι), s i) f a [PROOFSTEP] classical exact hs.piecewise_eventually_eq_iInter f 1 a [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝¹ : Preorder ι inst✝ : One β s : ι → Set α hs : Antitone s f : α → β a : α ⊢ (fun i => mulIndicator (s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋂ (i : ι), s i) f a [PROOFSTEP] exact hs.piecewise_eventually_eq_iInter f 1 a [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝ : One β s : ι → Set α f : α → β a : α ⊢ (fun n => mulIndicator (⋃ (i : ι) (_ : i ∈ n), s i) f a) =ᶠ[atTop] fun x => mulIndicator (iUnion s) f a [PROOFSTEP] rw [iUnion_eq_iUnion_finset s] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝ : One β s : ι → Set α f : α → β a : α ⊢ (fun n => mulIndicator (⋃ (i : ι) (_ : i ∈ n), s i) f a) =ᶠ[atTop] fun x => mulIndicator (⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), s i) f a [PROOFSTEP] apply Monotone.mulIndicator_eventuallyEq_iUnion [GOAL] case hs α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 ι : Type u_5 inst✝ : One β s : ι → Set α f : α → β a : α ⊢ Monotone fun i => ⋃ (i_1 : ι) (_ : i_1 ∈ i), s i_1 [PROOFSTEP] exact fun _ _ ↦ biUnion_subset_biUnion_left [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One β l : Filter α f : α → β s : Set α hf : f =ᶠ[l] 1 ⊢ mulIndicator s 1 =ᶠ[l] 1 [PROOFSTEP] rw [mulIndicator_one'] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One β l : Filter α f : α → β hf : ∀ᶠ (x : α) in l, f x ≠ 1 s t : Set α h : mulIndicator s f =ᶠ[l] mulIndicator t f ⊢ s =ᶠ[l] t [PROOFSTEP] have : ∀ {s : Set α}, Function.mulSupport (s.mulIndicator f) =ᶠ[l] s := fun {s} ↦ by rw [mulSupport_mulIndicator] exact (hf.mono fun x hx ↦ and_iff_left hx).set_eq [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One β l : Filter α f : α → β hf : ∀ᶠ (x : α) in l, f x ≠ 1 s✝ t : Set α h : mulIndicator s✝ f =ᶠ[l] mulIndicator t f s : Set α ⊢ Function.mulSupport (mulIndicator s f) =ᶠ[l] s [PROOFSTEP] rw [mulSupport_mulIndicator] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One β l : Filter α f : α → β hf : ∀ᶠ (x : α) in l, f x ≠ 1 s✝ t : Set α h : mulIndicator s✝ f =ᶠ[l] mulIndicator t f s : Set α ⊢ s ∩ Function.mulSupport f =ᶠ[l] s [PROOFSTEP] exact (hf.mono fun x hx ↦ and_iff_left hx).set_eq [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 E : Type u_4 inst✝ : One β l : Filter α f : α → β hf : ∀ᶠ (x : α) in l, f x ≠ 1 s t : Set α h : mulIndicator s f =ᶠ[l] mulIndicator t f this : ∀ {s : Set α}, Function.mulSupport (mulIndicator s f) =ᶠ[l] s ⊢ s =ᶠ[l] t [PROOFSTEP] exact this.symm.trans <| h.mulSupport.trans this
{"mathlib_filename": "Mathlib.Order.Filter.IndicatorFunction", "llama_tokens": 2213}
[GOAL] α : Type u β : Type v γ : Type w r : Rel α β l : Filter α ⊢ Set.univ ∈ {s | Rel.core r s ∈ l} [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l : Filter α x✝ y✝ : Set β hs : x✝ ∈ {s | Rel.core r s ∈ l} ht : y✝ ∈ {s | Rel.core r s ∈ l} ⊢ x✝ ∩ y✝ ∈ {s | Rel.core r s ∈ l} [PROOFSTEP] simp only [Set.mem_setOf_eq] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l : Filter α x✝ y✝ : Set β hs : x✝ ∈ {s | Rel.core r s ∈ l} ht : y✝ ∈ {s | Rel.core r s ∈ l} ⊢ Rel.core r (x✝ ∩ y✝) ∈ l [PROOFSTEP] convert inter_mem hs ht [GOAL] case h.e'_4 α : Type u β : Type v γ : Type w r : Rel α β l : Filter α x✝ y✝ : Set β hs : x✝ ∈ {s | Rel.core r s ∈ l} ht : y✝ ∈ {s | Rel.core r s ∈ l} ⊢ Rel.core r (x✝ ∩ y✝) = Rel.core r x✝ ∩ Rel.core r y✝ [PROOFSTEP] rw [← Rel.core_inter] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter α ⊢ (rmap s (rmap r l)).sets = (rmap (Rel.comp r s) l).sets [PROOFSTEP] simp [rmap_sets, Set.preimage, Rel.core_comp] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ ⊢ (rcomap r (rcomap s l)).sets = (rcomap (Rel.comp r s) l).sets [PROOFSTEP] ext t [GOAL] case h α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ t ∈ (rcomap r (rcomap s l)).sets ↔ t ∈ (rcomap (Rel.comp r s) l).sets [PROOFSTEP] simp [rcomap_sets, Rel.image, Rel.core_comp] [GOAL] case h α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ (∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t) ↔ ∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t [PROOFSTEP] constructor [GOAL] case h.mp α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ (∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t) → ∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t [PROOFSTEP] rintro ⟨u, ⟨v, vsets, hv⟩, h⟩ [GOAL] case h.mp.intro.intro.intro.intro α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α u : Set β h : Rel.core r u ⊆ t v : Set γ vsets : v ∈ l hv : Rel.core s v ⊆ u ⊢ ∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t [PROOFSTEP] exact ⟨v, vsets, Set.Subset.trans (Rel.core_mono _ hv) h⟩ [GOAL] case h.mpr α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ (∃ x, x ∈ l ∧ Rel.core r (Rel.core s x) ⊆ t) → ∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t [PROOFSTEP] rintro ⟨t, tsets, ht⟩ [GOAL] case h.mpr.intro.intro α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t✝ : Set α t : Set γ tsets : t ∈ l ht : Rel.core r (Rel.core s t) ⊆ t✝ ⊢ ∃ x, (∃ x_1, x_1 ∈ l ∧ Rel.core s x_1 ⊆ x) ∧ Rel.core r x ⊆ t✝ [PROOFSTEP] exact ⟨Rel.core s t, ⟨t, tsets, Set.Subset.rfl⟩, ht⟩ [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ RTendsto r l₁ l₂ ↔ l₁ ≤ rcomap r l₂ [PROOFSTEP] rw [rtendsto_def] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁) ↔ l₁ ≤ rcomap r l₂ [PROOFSTEP] simp_rw [← l₂.mem_sets] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (s : Set β), s ∈ l₂.sets → Rel.core r s ∈ l₁) ↔ l₁ ≤ rcomap r l₂ [PROOFSTEP] simp [Filter.le_def, rcomap, Rel.mem_image] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁) ↔ ∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.core r x_1 ⊆ x → x ∈ l₁ [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁) → ∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.core r x_1 ⊆ x → x ∈ l₁ [PROOFSTEP] exact fun h s t tl₂ => mem_of_superset (h t tl₂) [GOAL] case mpr α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.core r x_1 ⊆ x → x ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → Rel.core r s ∈ l₁ [PROOFSTEP] exact fun h t tl₂ => h _ t tl₂ Set.Subset.rfl [GOAL] α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ t ∈ rcomap' r (rcomap' s l) ↔ t ∈ rcomap' (Rel.comp r s) l [PROOFSTEP] simp only [mem_rcomap', Rel.preimage_comp] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ (∃ t_1, (∃ t, t ∈ l ∧ Rel.preimage s t ⊆ t_1) ∧ Rel.preimage r t_1 ⊆ t) ↔ ∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ (∃ t_1, (∃ t, t ∈ l ∧ Rel.preimage s t ⊆ t_1) ∧ Rel.preimage r t_1 ⊆ t) → ∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t [PROOFSTEP] rintro ⟨u, ⟨v, vsets, hv⟩, h⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α u : Set β h : Rel.preimage r u ⊆ t v : Set γ vsets : v ∈ l hv : Rel.preimage s v ⊆ u ⊢ ∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t [PROOFSTEP] exact ⟨v, vsets, (Rel.preimage_mono _ hv).trans h⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t : Set α ⊢ (∃ t_1, t_1 ∈ l ∧ Rel.preimage r (Rel.preimage s t_1) ⊆ t) → ∃ t_1, (∃ t, t ∈ l ∧ Rel.preimage s t ⊆ t_1) ∧ Rel.preimage r t_1 ⊆ t [PROOFSTEP] rintro ⟨t, tsets, ht⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v γ : Type w r : Rel α β s : Rel β γ l : Filter γ t✝ : Set α t : Set γ tsets : t ∈ l ht : Rel.preimage r (Rel.preimage s t) ⊆ t✝ ⊢ ∃ t, (∃ t_1, t_1 ∈ l ∧ Rel.preimage s t_1 ⊆ t) ∧ Rel.preimage r t ⊆ t✝ [PROOFSTEP] exact ⟨s.preimage t, ⟨t, tsets, Set.Subset.rfl⟩, ht⟩ [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ RTendsto' r l₁ l₂ ↔ ∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁ [PROOFSTEP] unfold RTendsto' rcomap' [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ l₁ ≤ { sets := Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets, univ_sets := (_ : ∃ x, x ∈ l₂.sets ∧ (fun s t => Rel.preimage r s ⊆ t) x Set.univ), sets_of_superset := (_ : ∀ {x y : Set α}, x ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets → x ⊆ y → y ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets), inter_sets := (_ : ∀ {x y : Set α}, x ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets → y ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets → x ∩ y ∈ Rel.image (fun s t => Rel.preimage r s ⊆ t) l₂.sets) } ↔ ∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁ [PROOFSTEP] simp [le_def, Rel.mem_image] [GOAL] α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.preimage r x_1 ⊆ x → x ∈ l₁) ↔ ∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁ [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.preimage r x_1 ⊆ x → x ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁ [PROOFSTEP] exact fun h s hs => h _ _ hs Set.Subset.rfl [GOAL] case mpr α : Type u β : Type v γ : Type w r : Rel α β l₁ : Filter α l₂ : Filter β ⊢ (∀ (s : Set β), s ∈ l₂ → Rel.preimage r s ∈ l₁) → ∀ (x : Set α) (x_1 : Set β), x_1 ∈ l₂ → Rel.preimage r x_1 ⊆ x → x ∈ l₁ [PROOFSTEP] exact fun h s t ht => mem_of_superset (h t ht) [GOAL] α : Type u β : Type v γ : Type w l₁ : Filter α l₂ : Filter β f : α → β ⊢ Tendsto f l₁ l₂ ↔ RTendsto (Function.graph f) l₁ l₂ [PROOFSTEP] simp [tendsto_def, Function.graph, rtendsto_def, Rel.core, Set.preimage] [GOAL] α : Type u β : Type v γ : Type w l₁ : Filter α l₂ : Filter β f : α → β ⊢ Tendsto f l₁ l₂ ↔ RTendsto' (Function.graph f) l₁ l₂ [PROOFSTEP] simp [tendsto_def, Function.graph, rtendsto'_def, Rel.preimage_def, Set.preimage] [GOAL] α : Type u β : Type v γ : Type w l : Filter α s : Set α f : α → β ⊢ pmap (PFun.res f s) l = map f (l ⊓ 𝓟 s) [PROOFSTEP] ext t [GOAL] case a α : Type u β : Type v γ : Type w l : Filter α s : Set α f : α → β t : Set β ⊢ t ∈ pmap (PFun.res f s) l ↔ t ∈ map f (l ⊓ 𝓟 s) [PROOFSTEP] simp only [PFun.core_res, mem_pmap, mem_map, mem_inf_principal, imp_iff_not_or] [GOAL] case a α : Type u β : Type v γ : Type w l : Filter α s : Set α f : α → β t : Set β ⊢ sᶜ ∪ f ⁻¹' t ∈ l ↔ {x | ¬x ∈ s ∨ x ∈ f ⁻¹' t} ∈ l [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w l₁ : Filter α l₂ : Filter β s : Set α f : α → β ⊢ Tendsto f (l₁ ⊓ 𝓟 s) l₂ ↔ PTendsto (PFun.res f s) l₁ l₂ [PROOFSTEP] simp only [Tendsto, PTendsto, pmap_res] [GOAL] α : Type u β : Type v γ : Type w l₁ : Filter α l₂ : Filter β f : α → β ⊢ Tendsto f l₁ l₂ ↔ PTendsto (PFun.res f Set.univ) l₁ l₂ [PROOFSTEP] rw [← tendsto_iff_ptendsto] [GOAL] α : Type u β : Type v γ : Type w l₁ : Filter α l₂ : Filter β f : α → β ⊢ Tendsto f l₁ l₂ ↔ Tendsto f (l₁ ⊓ 𝓟 Set.univ) l₂ [PROOFSTEP] simp [principal_univ] [GOAL] α : Type u β : Type v γ : Type w f : α →. β l₁ : Filter α l₂ : Filter β ⊢ PTendsto' f l₁ l₂ → PTendsto f l₁ l₂ [PROOFSTEP] rw [ptendsto_def, ptendsto'_def] [GOAL] α : Type u β : Type v γ : Type w f : α →. β l₁ : Filter α l₂ : Filter β ⊢ (∀ (s : Set β), s ∈ l₂ → PFun.preimage f s ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁ [PROOFSTEP] exact fun h s sl₂ => mem_of_superset (h s sl₂) (PFun.preimage_subset_core _ _) [GOAL] α : Type u β : Type v γ : Type w f : α →. β l₁ : Filter α l₂ : Filter β h : PFun.Dom f ∈ l₁ ⊢ PTendsto f l₁ l₂ → PTendsto' f l₁ l₂ [PROOFSTEP] rw [ptendsto_def, ptendsto'_def] [GOAL] α : Type u β : Type v γ : Type w f : α →. β l₁ : Filter α l₂ : Filter β h : PFun.Dom f ∈ l₁ ⊢ (∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁) → ∀ (s : Set β), s ∈ l₂ → PFun.preimage f s ∈ l₁ [PROOFSTEP] intro h' s sl₂ [GOAL] α : Type u β : Type v γ : Type w f : α →. β l₁ : Filter α l₂ : Filter β h : PFun.Dom f ∈ l₁ h' : ∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁ s : Set β sl₂ : s ∈ l₂ ⊢ PFun.preimage f s ∈ l₁ [PROOFSTEP] rw [PFun.preimage_eq] [GOAL] α : Type u β : Type v γ : Type w f : α →. β l₁ : Filter α l₂ : Filter β h : PFun.Dom f ∈ l₁ h' : ∀ (s : Set β), s ∈ l₂ → PFun.core f s ∈ l₁ s : Set β sl₂ : s ∈ l₂ ⊢ PFun.core f s ∩ PFun.Dom f ∈ l₁ [PROOFSTEP] exact inter_mem (h' s sl₂) h
{"mathlib_filename": "Mathlib.Order.Filter.Partial", "llama_tokens": 5445}
[GOAL] C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f ⊢ (Iso.refl ↑X).hom _* X.presheaf ≅ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf [PROOFSTEP] symm [GOAL] C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f ⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf ≅ (Iso.refl ↑X).hom _* X.presheaf [PROOFSTEP] fapply NatIso.ofComponents [GOAL] case app C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f ⊢ (X_1 : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ) → (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.obj X_1 ≅ ((Iso.refl ↑X).hom _* X.presheaf).obj X_1 [PROOFSTEP] intro U [GOAL] case app C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ ⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.obj U ≅ ((Iso.refl ↑X).hom _* X.presheaf).obj U [PROOFSTEP] refine' asIso (f.c.app (op (H.openFunctor.obj (unop U)))) ≪≫ X.presheaf.mapIso (eqToIso _) [GOAL] case app C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ ⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U [PROOFSTEP] induction U using Opposite.rec' with | h U => ?_ [GOAL] case app C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ ⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U [PROOFSTEP] induction U using Opposite.rec' with | h U => ?_ [GOAL] case app.h C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)) ⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj (op U).unop)) = op U [PROOFSTEP] cases U [GOAL] case app.h.mk C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)) is_open'✝ : IsOpen carrier✝ ⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) = op { carrier := carrier✝, is_open' := is_open'✝ } [PROOFSTEP] dsimp only [IsOpenMap.functor, Functor.op, Opens.map] [GOAL] case app.h.mk C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)) is_open'✝ : IsOpen carrier✝ ⊢ op { carrier := ↑f.base ⁻¹' ↑(op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)).unop, is_open' := (_ : IsOpen (↑f.base ⁻¹' ↑(op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)).unop)) } = op { carrier := carrier✝, is_open' := is_open'✝ } [PROOFSTEP] congr 2 [GOAL] case app.h.mk.e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)) is_open'✝ : IsOpen carrier✝ ⊢ ↑f.base ⁻¹' ↑(op ((openFunctor H).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)).unop = carrier✝ [PROOFSTEP] erw [Set.preimage_image_eq _ H.base_open.inj] [GOAL] case app.h.mk.e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f carrier✝ : Set ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)) is_open'✝ : IsOpen carrier✝ ⊢ ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop = carrier✝ [PROOFSTEP] rfl [GOAL] case naturality C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f ⊢ autoParam (∀ {X_1 Y_1 : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ} (f_1 : X_1 ⟶ Y_1), (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.map f_1 ≫ (asIso (NatTrans.app f.c (op ((openFunctor H).obj Y_1.unop))) ≪≫ X.presheaf.mapIso (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj Y_1.unop)) = Y_1))).hom = (asIso (NatTrans.app f.c (op ((openFunctor H).obj X_1.unop))) ≪≫ X.presheaf.mapIso (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj X_1.unop)) = X_1))).hom ≫ ((Iso.refl ↑X).hom _* X.presheaf).map f_1) _auto✝ [PROOFSTEP] intro U V i [GOAL] case naturality C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ i : U ⟶ V ⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.map i ≫ (asIso (NatTrans.app f.c (op ((openFunctor H).obj V.unop))) ≪≫ X.presheaf.mapIso (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj V.unop)) = V))).hom = (asIso (NatTrans.app f.c (op ((openFunctor H).obj U.unop))) ≪≫ X.presheaf.mapIso (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U))).hom ≫ ((Iso.refl ↑X).hom _* X.presheaf).map i [PROOFSTEP] simp only [CategoryTheory.eqToIso.hom, TopCat.Presheaf.pushforwardObj_map, Category.assoc, Functor.op_map, Iso.trans_hom, asIso_hom, Functor.mapIso_hom, ← X.presheaf.map_comp] [GOAL] case naturality C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ i : U ⟶ V ⊢ (restrict Y (_ : OpenEmbedding ↑f.base)).presheaf.map i ≫ NatTrans.app f.c (op ((openFunctor H).obj V.unop)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj V.unop)) = V)) = NatTrans.app f.c (op ((openFunctor H).obj U.unop)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U) ≫ ((Opens.map (Iso.refl ↑X).hom).map i.unop).op) [PROOFSTEP] erw [f.c.naturality_assoc, ← X.presheaf.map_comp] [GOAL] case naturality C : Type u_1 inst✝ : Category.{?u.9177, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑(restrict Y (_ : OpenEmbedding ↑f.base)))ᵒᵖ i : U ⟶ V ⊢ NatTrans.app f.c ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).op.obj U) ≫ X.presheaf.map ((Opens.map f.base).op.map ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).op.map i) ≫ eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj V.unop)) = V)) = NatTrans.app f.c (op ((openFunctor H).obj U.unop)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj U.unop)) = U) ≫ ((Opens.map (Iso.refl ↑X).hom).map i.unop).op) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f ⊢ (isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base) = f [PROOFSTEP] refine PresheafedSpace.Hom.ext _ _ rfl <| NatTrans.ext _ _ <| funext fun x => ?_ [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).c ≫ whiskerRight (eqToHom (_ : (Opens.map ((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).op = (Opens.map f.base).op)) X.presheaf) x = NatTrans.app f.c x [PROOFSTEP] simp only [isoRestrict_hom_c_app, NatTrans.comp_app, eqToHom_refl, ofRestrict_c_app, Category.assoc, whiskerRight_id'] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).c ≫ 𝟙 ((Opens.map ((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).op ⋙ X.presheaf)) x = NatTrans.app f.c x [PROOFSTEP] erw [Category.comp_id, comp_c_app, f.c.naturality_assoc, ← X.presheaf.map_comp] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app f.c x ≫ X.presheaf.map ((Opens.map f.base).op.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f.base)).counit x.unop).op ≫ (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj (op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop)).unop)) = op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop))).hom) = NatTrans.app f.c x [PROOFSTEP] trans f.c.app x ≫ X.presheaf.map (𝟙 _) [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app f.c x ≫ X.presheaf.map ((Opens.map f.base).op.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f.base)).counit x.unop).op ≫ (eqToIso (_ : (Opens.map f.base).op.obj (op ((openFunctor H).obj (op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop)).unop)) = op ((Opens.map (ofRestrict Y (_ : OpenEmbedding ↑f.base)).base).obj x.unop))).hom) = NatTrans.app f.c x ≫ X.presheaf.map (𝟙 ((Opens.map f.base).op.obj x)) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app f.c x ≫ X.presheaf.map (𝟙 ((Opens.map f.base).op.obj x)) = NatTrans.app f.c x [PROOFSTEP] erw [X.presheaf.map_id, Category.comp_id] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f ⊢ (isoRestrict H).inv ≫ f = ofRestrict Y (_ : OpenEmbedding ↑f.base) [PROOFSTEP] rw [Iso.inv_comp_eq, isoRestrict_hom_ofRestrict] [GOAL] C : Type u_1 inst✝ : Category.{?u.19958, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H✝ H : IsOpenImmersion f ⊢ Mono f [PROOFSTEP] rw [← H.isoRestrict_hom_ofRestrict] [GOAL] C : Type u_1 inst✝ : Category.{?u.19958, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H✝ H : IsOpenImmersion f ⊢ Mono ((isoRestrict H).hom ≫ ofRestrict Y (_ : OpenEmbedding ↑f.base)) [PROOFSTEP] apply mono_comp [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X ⊢ IsIso (NatTrans.app (f ≫ g).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(f ≫ g).base)).obj U))) [PROOFSTEP] generalize_proofs h [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base ⊢ IsIso (NatTrans.app (f ≫ g).c (op ((IsOpenMap.functor h).obj U))) [PROOFSTEP] dsimp only [AlgebraicGeometry.PresheafedSpace.comp_c_app, unop_op, Functor.op, comp_base, TopCat.Presheaf.pushforwardObj_obj, Opens.map_comp_obj] -- Porting note : was `apply (config := { instances := False }) ...` -- See https://github.com/leanprover/lean4/issues/2273 [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base ⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)) ≫ NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))) [PROOFSTEP] have : IsIso (g.c.app (op <| (h.functor).obj U)) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base ⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) [PROOFSTEP] have : h.functor.obj U = hg.openFunctor.obj (hf.openFunctor.obj U) := by ext1 dsimp only [IsOpenMap.functor_obj_coe] -- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)` rw [comp_base, coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image] [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base ⊢ (IsOpenMap.functor h).obj U = (openFunctor hg).obj ((openFunctor hf).obj U) [PROOFSTEP] ext1 [GOAL] case h C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base ⊢ ↑((IsOpenMap.functor h).obj U) = ↑((openFunctor hg).obj ((openFunctor hf).obj U)) [PROOFSTEP] dsimp only [IsOpenMap.functor_obj_coe] -- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)` [GOAL] case h C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base ⊢ ↑(f ≫ g).base '' ↑U = ↑g.base '' (↑f.base '' ↑U) [PROOFSTEP] rw [comp_base, coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image] [GOAL] case this C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : (IsOpenMap.functor h).obj U = (openFunctor hg).obj ((openFunctor hf).obj U) ⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) [PROOFSTEP] rw [this] [GOAL] case this C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : (IsOpenMap.functor h).obj U = (openFunctor hg).obj ((openFunctor hf).obj U) ⊢ IsIso (NatTrans.app g.c (op ((openFunctor hg).obj ((openFunctor hf).obj U)))) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) ⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)) ≫ NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))) [PROOFSTEP] have : IsIso (f.c.app (op <| (Opens.map g.base).obj ((IsOpenMap.functor h).obj U))) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) ⊢ IsIso (NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))) [PROOFSTEP] have : (Opens.map g.base).obj (h.functor.obj U) = hf.openFunctor.obj U := by ext1 dsimp only [Opens.map_coe, IsOpenMap.functor_obj_coe, comp_base] -- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)` rw [coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image g.base f.base, Set.preimage_image_eq _ hg.base_open.inj] [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) ⊢ (Opens.map g.base).obj ((IsOpenMap.functor h).obj U) = (openFunctor hf).obj U [PROOFSTEP] ext1 [GOAL] case h C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) ⊢ ↑((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)) = ↑((openFunctor hf).obj U) [PROOFSTEP] dsimp only [Opens.map_coe, IsOpenMap.functor_obj_coe, comp_base] -- Porting note : slightly more hand holding here: `g ∘ f` and `fun x => g (f x)` [GOAL] case h C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) ⊢ ↑g.base ⁻¹' (↑(f.base ≫ g.base) '' ↑U) = ↑f.base '' ↑U [PROOFSTEP] rw [coe_comp, show g.base ∘ f.base = fun x => g.base (f.base x) from rfl, ← Set.image_image g.base f.base, Set.preimage_image_eq _ hg.base_open.inj] [GOAL] case this C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this✝ : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) this : (Opens.map g.base).obj ((IsOpenMap.functor h).obj U) = (openFunctor hf).obj U ⊢ IsIso (NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))) [PROOFSTEP] rw [this] [GOAL] case this C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this✝ : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) this : (Opens.map g.base).obj ((IsOpenMap.functor h).obj U) = (openFunctor hf).obj U ⊢ IsIso (NatTrans.app f.c (op ((openFunctor hf).obj U))) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.20909, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ Z : PresheafedSpace C f : X ⟶ Y hf : IsOpenImmersion f g : Y ⟶ Z hg : IsOpenImmersion g U : Opens ↑↑X h : IsOpenMap ↑(f ≫ g).base this✝ : IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U))) this : IsIso (NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))) ⊢ IsIso (NatTrans.app g.c (op ((IsOpenMap.functor h).obj U)) ≫ NatTrans.app f.c (op ((Opens.map g.base).obj ((IsOpenMap.functor h).obj U)))) [PROOFSTEP] apply IsIso.comp_isIso [GOAL] C : Type u_1 inst✝ : Category.{?u.27120, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ op U = (Opens.map f.base).op.obj (op ((openFunctor H).obj U)) [PROOFSTEP] congr [GOAL] case e_x C : Type u_1 inst✝ : Category.{?u.27120, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ U = (Opens.map f.base).obj (op ((openFunctor H).obj U)).unop [PROOFSTEP] ext [GOAL] case e_x.h.h C : Type u_1 inst✝ : Category.{?u.27120, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X x✝ : ↑↑X ⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) [PROOFSTEP] dsimp [openFunctor, IsOpenMap.functor] [GOAL] case e_x.h.h C : Type u_1 inst✝ : Category.{?u.27120, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X x✝ : ↑↑X ⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑f.base ⁻¹' (↑f.base '' ↑U) [PROOFSTEP] rw [Set.preimage_image_eq _ H.base_open.inj] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map i ≫ invApp H V.unop = invApp H U.unop ≫ Y.presheaf.map ((openFunctor H).op.map i) [PROOFSTEP] simp only [invApp, ← Category.assoc] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ (X.presheaf.map i ≫ X.presheaf.map (eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop)))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj V.unop))) = (X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop)))) ≫ Y.presheaf.map ((openFunctor H).op.map i) [PROOFSTEP] rw [IsIso.comp_inv_eq] -- Porting note : `simp` can't pick up `f.c.naturality` -- See https://github.com/leanprover-community/mathlib4/issues/5026 [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map i ≫ X.presheaf.map (eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) = ((X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop)))) ≫ Y.presheaf.map ((openFunctor H).op.map i)) ≫ NatTrans.app f.c (op ((openFunctor H).obj V.unop)) [PROOFSTEP] simp only [Category.assoc, ← X.presheaf.map_comp] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) = X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop))) ≫ Y.presheaf.map ((openFunctor H).op.map i) ≫ NatTrans.app f.c (op ((openFunctor H).obj V.unop)) [PROOFSTEP] erw [f.c.naturality] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) = X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj U.unop))) ≫ NatTrans.app f.c (op ((openFunctor H).obj U.unop)) ≫ (f.base _* X.presheaf).map ((openFunctor H).op.map i) [PROOFSTEP] simp only [IsIso.inv_hom_id_assoc, ← X.presheaf.map_comp] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) = X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop))) ≫ (f.base _* X.presheaf).map ((openFunctor H).op.map i) [PROOFSTEP] erw [← X.presheaf.map_comp] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map (i ≫ eqToHom (_ : op V.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj V.unop)).unop))) = X.presheaf.map (eqToHom (_ : op U.unop = op ((Opens.map f.base).obj (op ((openFunctor H).obj U.unop)).unop)) ≫ (Opens.map f.base).op.map ((openFunctor H).op.map i)) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{?u.34429, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ IsIso (invApp H U) [PROOFSTEP] delta invApp [GOAL] C : Type u_1 inst✝ : Category.{?u.34429, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ IsIso (X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj U)))) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.35411, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ (Opens.map f.base).op.obj (op ((openFunctor H).obj U)) = op U [PROOFSTEP] apply congr_arg (op ·) [GOAL] C : Type u_1 inst✝ : Category.{?u.35411, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ (Opens.map f.base).obj (op ((openFunctor H).obj U)).unop = U [PROOFSTEP] ext [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.35411, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X x✝ : ↑↑X ⊢ x✝ ∈ ↑((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) ↔ x✝ ∈ ↑U [PROOFSTEP] dsimp [openFunctor, IsOpenMap.functor] [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.35411, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X x✝ : ↑↑X ⊢ x✝ ∈ ↑f.base ⁻¹' (↑f.base '' ↑U) ↔ x✝ ∈ ↑U [PROOFSTEP] rw [Set.preimage_image_eq _ H.base_open.inj] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ inv (invApp H U) = NatTrans.app f.c (op ((openFunctor H).obj U)) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) = op U)) [PROOFSTEP] rw [← cancel_epi (H.invApp U), IsIso.hom_inv_id] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ 𝟙 (X.presheaf.obj (op U)) = invApp H U ≫ NatTrans.app f.c (op ((openFunctor H).obj U)) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) = op U)) [PROOFSTEP] delta invApp [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ 𝟙 (X.presheaf.obj (op U)) = (X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj U)))) ≫ NatTrans.app f.c (op ((openFunctor H).obj U)) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) = op U)) [PROOFSTEP] simp [← Functor.map_comp] [GOAL] C : Type u_1 inst✝ : Category.{?u.41014, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ op U = (Opens.map f.base).op.obj (op ((openFunctor H).obj U)) [PROOFSTEP] apply congr_arg (op ·) [GOAL] C : Type u_1 inst✝ : Category.{?u.41014, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ U = (Opens.map f.base).obj (op ((openFunctor H).obj U)).unop [PROOFSTEP] ext [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.41014, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X x✝ : ↑↑X ⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop) [PROOFSTEP] dsimp [openFunctor, IsOpenMap.functor] [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.41014, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X x✝ : ↑↑X ⊢ x✝ ∈ ↑U ↔ x✝ ∈ ↑f.base ⁻¹' (↑f.base '' ↑U) [PROOFSTEP] rw [Set.preimage_image_eq _ H.base_open.inj] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X ⊢ invApp H U ≫ NatTrans.app f.c (op ((openFunctor H).obj U)) = X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.base).obj (op ((openFunctor H).obj U)).unop))) [PROOFSTEP] rw [invApp, Category.assoc, IsIso.inv_hom_id, Category.comp_id] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y ⊢ NatTrans.app f.c (op U) ≫ invApp H ((Opens.map f.base).obj U) = Y.presheaf.map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' U.carrier) ⊆ U.carrier)).op [PROOFSTEP] erw [← Category.assoc] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y ⊢ (NatTrans.app f.c (op U) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj U) = op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop)))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj ((Opens.map f.base).obj U)))) = Y.presheaf.map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' U.carrier) ⊆ U.carrier)).op [PROOFSTEP] rw [IsIso.comp_inv_eq, f.c.naturality] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y ⊢ NatTrans.app f.c (op U) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj U) = op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop))) = NatTrans.app f.c (op U) ≫ (f.base _* X.presheaf).map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' U.carrier) ⊆ U.carrier)).op [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝ : Category.{?u.51099, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ (openFunctor H).obj ((Opens.map f.base).obj U) = U [PROOFSTEP] apply le_antisymm [GOAL] case a C : Type u_1 inst✝ : Category.{?u.51099, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ (openFunctor H).obj ((Opens.map f.base).obj U) ≤ U [PROOFSTEP] exact Set.image_preimage_subset f.base U.1 [GOAL] case a C : Type u_1 inst✝ : Category.{?u.51099, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ U ≤ (openFunctor H).obj ((Opens.map f.base).obj U) [PROOFSTEP] rw [← SetLike.coe_subset_coe] [GOAL] case a C : Type u_1 inst✝ : Category.{?u.51099, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ ↑U ⊆ ↑((openFunctor H).obj ((Opens.map f.base).obj U)) [PROOFSTEP] refine' LE.le.trans_eq _ (@Set.image_preimage_eq_inter_range _ _ f.base U.1).symm [GOAL] case a C : Type u_1 inst✝ : Category.{?u.51099, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ ↑U ≤ U.carrier ∩ Set.range ↑f.base [PROOFSTEP] exact Set.subset_inter_iff.mpr ⟨fun _ h => h, hU⟩ [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ NatTrans.app f.c (op U) ≫ invApp H ((Opens.map f.base).obj U) = Y.presheaf.map (eqToHom (_ : (openFunctor H).obj ((Opens.map f.base).obj U) = U)).op [PROOFSTEP] erw [← Category.assoc] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ (NatTrans.app f.c (op U) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj U) = op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop)))) ≫ inv (NatTrans.app f.c (op ((openFunctor H).obj ((Opens.map f.base).obj U)))) = Y.presheaf.map (eqToHom (_ : (openFunctor H).obj ((Opens.map f.base).obj U) = U)).op [PROOFSTEP] rw [IsIso.comp_inv_eq, f.c.naturality] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ NatTrans.app f.c (op U) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map f.base).obj U) = op ((Opens.map f.base).obj (op ((openFunctor H).obj ((Opens.map f.base).obj U))).unop))) = NatTrans.app f.c (op U) ≫ (f.base _* X.presheaf).map (eqToHom (_ : (openFunctor H).obj ((Opens.map f.base).obj U) = U)).op [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) ⊢ IsIso (NatTrans.app (PresheafedSpace.ofRestrict Y hf).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(PresheafedSpace.ofRestrict Y hf).base)).obj U))) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) ⊢ IsIso (Y.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).op) [PROOFSTEP] have : (Opens.map f).obj (hf.isOpenMap.functor.obj U) = U := by ext1 exact Set.preimage_image_eq _ hf.inj [GOAL] C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) ⊢ (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U [PROOFSTEP] ext1 [GOAL] case h C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) ⊢ ↑((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) = ↑U [PROOFSTEP] exact Set.preimage_image_eq _ hf.inj [GOAL] C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U ⊢ IsIso (Y.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).op) [PROOFSTEP] convert_to IsIso (Y.presheaf.map (𝟙 _)) [GOAL] case h.e'_4 C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U ⊢ Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) [PROOFSTEP] congr [GOAL] case h.e'_5 C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ HEq (Y.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).op) (Y.presheaf.map (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) [PROOFSTEP] congr [GOAL] case h.e'_5.e_8.e_3.h C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) = (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop case h.e'_5.e_8.e_5 C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ HEq (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop) [PROOFSTEP] simp only [unop_op] [GOAL] case h.e'_5.e_8.e_3.h C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) = (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U case h.e'_5.e_8.e_5 C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ HEq (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop) [PROOFSTEP] congr [GOAL] case h.e'_5.e_8.e_5 C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ HEq (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop) [PROOFSTEP] apply Subsingleton.helim [GOAL] case h.e'_5.e_8.e_5.h₂ C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = ((op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop ⟶ (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop) [PROOFSTEP] rw [this] [GOAL] case h.e'_5.e_8.e_5.h₂ C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U e_4✝ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj ((Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)) ⊢ ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U ⟶ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = ((op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop ⟶ (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)).unop) [PROOFSTEP] rfl [GOAL] case convert_2 C : Type u_1 inst✝ : Category.{?u.57948, u_1} C X✝ Y✝ : PresheafedSpace C f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ X : TopCat Y : PresheafedSpace C f : X ⟶ ↑Y hf : OpenEmbedding ↑f U : Opens ↑↑(restrict Y hf) this : (Opens.map f).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U) = U ⊢ IsIso (Y.presheaf.map (𝟙 (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj U)))) [PROOFSTEP] infer_instance [GOAL] C✝ : Type u_1 inst✝¹ : Category.{?u.65491, u_1} C✝ X✝ Y✝ : PresheafedSpace C✝ f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ C : Type u_2 inst✝ : Category.{u_3, u_2} C X : PresheafedSpace C Y : TopCat f : Y ⟶ TopCat.of ↑↑X h : OpenEmbedding ↑f U : Opens ↑↑(restrict X h) ⊢ invApp (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h)) U = 𝟙 ((restrict X h).presheaf.obj (op U)) [PROOFSTEP] delta invApp [GOAL] C✝ : Type u_1 inst✝¹ : Category.{?u.65491, u_1} C✝ X✝ Y✝ : PresheafedSpace C✝ f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ C : Type u_2 inst✝ : Category.{u_3, u_2} C X : PresheafedSpace C Y : TopCat f : Y ⟶ TopCat.of ↑↑X h : OpenEmbedding ↑f U : Opens ↑↑(restrict X h) ⊢ (restrict X h).presheaf.map (eqToHom (_ : op U = op ((Opens.map (PresheafedSpace.ofRestrict X h).base).obj (op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop))) ≫ inv (NatTrans.app (PresheafedSpace.ofRestrict X h).c (op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U))) = 𝟙 ((restrict X h).presheaf.obj (op U)) [PROOFSTEP] rw [IsIso.comp_inv_eq, Category.id_comp] [GOAL] C✝ : Type u_1 inst✝¹ : Category.{?u.65491, u_1} C✝ X✝ Y✝ : PresheafedSpace C✝ f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ C : Type u_2 inst✝ : Category.{u_3, u_2} C X : PresheafedSpace C Y : TopCat f : Y ⟶ TopCat.of ↑↑X h : OpenEmbedding ↑f U : Opens ↑↑(restrict X h) ⊢ (restrict X h).presheaf.map (eqToHom (_ : op U = op ((Opens.map (PresheafedSpace.ofRestrict X h).base).obj (op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop))) = NatTrans.app (PresheafedSpace.ofRestrict X h).c (op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)) [PROOFSTEP] change X.presheaf.map _ = X.presheaf.map _ [GOAL] C✝ : Type u_1 inst✝¹ : Category.{?u.65491, u_1} C✝ X✝ Y✝ : PresheafedSpace C✝ f✝ : X✝ ⟶ Y✝ H : IsOpenImmersion f✝ C : Type u_2 inst✝ : Category.{u_3, u_2} C X : PresheafedSpace C Y : TopCat f : Y ⟶ TopCat.of ↑↑X h : OpenEmbedding ↑f U : Opens ↑↑(restrict X h) ⊢ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑f)).op.map (eqToHom (_ : op U = op ((Opens.map (PresheafedSpace.ofRestrict X h).base).obj (op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop)))) = X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((openFunctor (_ : IsOpenImmersion (PresheafedSpace.ofRestrict X h))).obj U)).unop).op [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base ⊢ IsIso f [PROOFSTEP] have : ∀ (U : (Opens Y)ᵒᵖ), IsIso (f.c.app U) [GOAL] case this C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base ⊢ ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) [PROOFSTEP] intro U [GOAL] case this C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base U : (Opens ↑↑Y)ᵒᵖ ⊢ IsIso (NatTrans.app f.c U) [PROOFSTEP] have : U = op (h.openFunctor.obj ((Opens.map f.base).obj (unop U))) := by induction U using Opposite.rec' with | h U => ?_ cases U dsimp only [Functor.op, Opens.map] congr exact (Set.image_preimage_eq _ ((TopCat.epi_iff_surjective _).mp h')).symm [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base U : (Opens ↑↑Y)ᵒᵖ ⊢ U = op ((openFunctor h).obj ((Opens.map f.base).obj U.unop)) [PROOFSTEP] induction U using Opposite.rec' with | h U => ?_ [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base U : (Opens ↑↑Y)ᵒᵖ ⊢ U = op ((openFunctor h).obj ((Opens.map f.base).obj U.unop)) [PROOFSTEP] induction U using Opposite.rec' with | h U => ?_ [GOAL] case h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base U : Opens ↑↑Y ⊢ op U = op ((openFunctor h).obj ((Opens.map f.base).obj (op U).unop)) [PROOFSTEP] cases U [GOAL] case h.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base carrier✝ : Set ↑↑Y is_open'✝ : IsOpen carrier✝ ⊢ op { carrier := carrier✝, is_open' := is_open'✝ } = op ((openFunctor h).obj ((Opens.map f.base).obj (op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) [PROOFSTEP] dsimp only [Functor.op, Opens.map] [GOAL] case h.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base carrier✝ : Set ↑↑Y is_open'✝ : IsOpen carrier✝ ⊢ op { carrier := carrier✝, is_open' := is_open'✝ } = op ((openFunctor h).obj { carrier := ↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop, is_open' := (_ : IsOpen (↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) }) [PROOFSTEP] congr [GOAL] case h.mk.e_x.e_carrier C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base carrier✝ : Set ↑↑Y is_open'✝ : IsOpen carrier✝ ⊢ carrier✝ = ↑f.base '' ↑{ carrier := ↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop, is_open' := (_ : IsOpen (↑f.base ⁻¹' ↑(op { carrier := carrier✝, is_open' := is_open'✝ }).unop)) } [PROOFSTEP] exact (Set.image_preimage_eq _ ((TopCat.epi_iff_surjective _).mp h')).symm [GOAL] case this C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base U : (Opens ↑↑Y)ᵒᵖ this : U = op ((openFunctor h).obj ((Opens.map f.base).obj U.unop)) ⊢ IsIso (NatTrans.app f.c U) [PROOFSTEP] convert @IsOpenImmersion.c_iso _ _ _ _ _ h ((Opens.map f.base).obj (unop U)) [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) ⊢ IsIso f [PROOFSTEP] have : IsIso f.base [GOAL] case this C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) ⊢ IsIso f.base [PROOFSTEP] let t : X ≃ₜ Y := (Homeomorph.ofEmbedding _ h.base_open.toEmbedding).trans { toFun := Subtype.val invFun := fun x => ⟨x, by rw [Set.range_iff_surjective.mpr ((TopCat.epi_iff_surjective _).mp h')]; trivial⟩ left_inv := fun ⟨_, _⟩ => rfl right_inv := fun _ => rfl } [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) x : ↑↑Y ⊢ x ∈ Set.range ↑f.base [PROOFSTEP] rw [Set.range_iff_surjective.mpr ((TopCat.epi_iff_surjective _).mp h')] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) x : ↑↑Y ⊢ x ∈ Set.univ [PROOFSTEP] trivial [GOAL] case this C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) t : ↑↑X ≃ₜ ↑↑Y := Homeomorph.trans (Homeomorph.ofEmbedding ↑f.base (_ : Embedding ↑f.base)) (Homeomorph.mk { toFun := Subtype.val, invFun := fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }, left_inv := (_ : ∀ (x : ↑(Set.range ↑f.base)), (fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }) ↑x = x), right_inv := (_ : ∀ (x : ↑↑Y), ↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }) x) = ↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑f.base) }) x)) }) ⊢ IsIso f.base [PROOFSTEP] convert IsIso.of_iso (TopCat.isoOfHomeo t) [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this✝ : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) this : IsIso f.base ⊢ IsIso f [PROOFSTEP] have : IsIso f.c := by apply NatIso.isIso_of_isIso_app [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this✝ : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) this : IsIso f.base ⊢ IsIso f.c [PROOFSTEP] apply NatIso.isIso_of_isIso_app [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f✝ : X ⟶ Y H : IsOpenImmersion f✝ f : X ⟶ Y h : IsOpenImmersion f h' : Epi f.base this✝¹ : ∀ (U : (Opens ↑↑Y)ᵒᵖ), IsIso (NatTrans.app f.c U) this✝ : IsIso f.base this : IsIso f.c ⊢ IsIso f [PROOFSTEP] apply isIso_of_components [GOAL] C : Type u_1 inst✝¹ : Category.{?u.92046, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H✝ : IsOpenImmersion f inst✝ : HasColimits C H : IsOpenImmersion f x : ↑↑X ⊢ IsIso (stalkMap f x) [PROOFSTEP] rw [← H.isoRestrict_hom_ofRestrict] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.92046, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H✝ : IsOpenImmersion f inst✝ : HasColimits C H : IsOpenImmersion f x : ↑↑X ⊢ IsIso (stalkMap ((isoRestrict H).hom ≫ PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑f.base)) x) [PROOFSTEP] rw [PresheafedSpace.stalkMap.comp] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.92046, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H✝ : IsOpenImmersion f inst✝ : HasColimits C H : IsOpenImmersion f x : ↑↑X ⊢ IsIso (stalkMap (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑f.base)) (↑(isoRestrict H).hom.base x) ≫ stalkMap (isoRestrict H).hom x) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ ⊢ (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U) [PROOFSTEP] simp only [IsOpenMap.functor, Subtype.mk_eq_mk, unop_op, op_inj_iff, Opens.map, Subtype.coe_mk, Functor.op_obj] [GOAL] C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ ⊢ { carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) }, is_open' := (_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) } = { carrier := ↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }, is_open' := (_ : IsOpen (↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) } [PROOFSTEP] apply LE.le.antisymm [GOAL] case a C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ ⊢ { carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) }, is_open' := (_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) } ≤ { carrier := ↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }, is_open' := (_ : IsOpen (↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) } [PROOFSTEP] rintro _ ⟨_, h₁, h₂⟩ [GOAL] case a.intro.intro C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ a✝ : ↑↑Y w✝ : (CategoryTheory.forget TopCat).obj ↑X h₁ : w✝ ∈ ↑U.unop h₂ : ↑f.base w✝ = ↑g.base a✝ ⊢ a✝ ∈ ↑{ carrier := ↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }, is_open' := (_ : IsOpen (↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) } [PROOFSTEP] use(TopCat.pullbackIsoProdSubtype _ _).inv ⟨⟨_, _⟩, h₂⟩ -- Porting note : need a slight hand holding [GOAL] case h C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ a✝ : ↑↑Y w✝ : (CategoryTheory.forget TopCat).obj ↑X h₁ : w✝ ∈ ↑U.unop h₂ : ↑f.base w✝ = ↑g.base a✝ ⊢ ↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ } ∈ ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) } ∧ ↑pullback.snd (↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ }) = a✝ [PROOFSTEP] change _ ∈ _ ⁻¹' _ ∧ _ [GOAL] case h C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ a✝ : ↑↑Y w✝ : (CategoryTheory.forget TopCat).obj ↑X h₁ : w✝ ∈ ↑U.unop h₂ : ↑f.base w✝ = ↑g.base a✝ ⊢ ↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ } ∈ (fun x => x) ⁻¹' { carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }.carrier ∧ ↑pullback.snd (↑(TopCat.pullbackIsoProdSubtype f.base g.base).inv { val := (w✝, a✝), property := h₂ }) = a✝ [PROOFSTEP] simpa using h₁ [GOAL] case a C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ ⊢ { carrier := ↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) }, is_open' := (_ : IsOpen (↑pullback.snd '' ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) })) } ≤ { carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) }, is_open' := (_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) } [PROOFSTEP] rintro _ ⟨x, h₁, rfl⟩ [GOAL] case a.intro.intro C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑X)ᵒᵖ x : (CategoryTheory.forget TopCat).obj (pullback f.base g.base) h₁ : x ∈ ↑{ carrier := ↑pullback.fst ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.fst ⁻¹' ↑U.unop)) } ⊢ ↑pullback.snd x ∈ ↑{ carrier := ↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) }, is_open' := (_ : IsOpen (↑g.base ⁻¹' ↑{ carrier := ↑f.base '' ↑U.unop, is_open' := (_ : IsOpen (↑f.base '' ↑U.unop)) })) } [PROOFSTEP] exact ⟨_, h₁, ConcreteCategory.congr_hom pullback.condition x⟩ [GOAL] C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z ⊢ ∀ ⦃X_1 Y_1 : (Opens ↑↑X)ᵒᵖ⦄ (f_1 : X_1 ⟶ Y_1), X.presheaf.map f_1 ≫ (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) Y_1 = (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) X_1 ≫ (pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map f_1 [PROOFSTEP] intro U V i [GOAL] C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U V : (Opens ↑↑X)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map i ≫ (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) V = (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) U ≫ (pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i [PROOFSTEP] induction U using Opposite.rec' [GOAL] case h C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z V : (Opens ↑↑X)ᵒᵖ X✝ : Opens ↑↑X i : op X✝ ⟶ V ⊢ X.presheaf.map i ≫ (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) V = (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) (op X✝) ≫ (pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i [PROOFSTEP] induction V using Opposite.rec' [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝¹ X✝ : Opens ↑↑X i : op X✝¹ ⟶ op X✝ ⊢ X.presheaf.map i ≫ (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) (op X✝) = (fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U)))) (op X✝¹) ≫ (pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i [PROOFSTEP] simp only [Quiver.Hom.unop_op, Category.assoc, Functor.op_map, inv_naturality_assoc] -- Porting note : the following lemmas are not picked up by `simp` -- See https://github.com/leanprover-community/mathlib4/issues/5026 [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝¹ X✝ : Opens ↑↑X i : op X✝¹ ⟶ op X✝ ⊢ invApp hf (op X✝¹).unop ≫ Z.presheaf.map ((openFunctor hf).map i.unop).op ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝).unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝)))) = invApp hf (op X✝¹).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝¹)))) ≫ (pullback.fst _* (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf).map i [PROOFSTEP] erw [g.c.naturality_assoc, TopCat.Presheaf.pushforwardObj_map, ← Y.presheaf.map_comp, ← Y.presheaf.map_comp] [GOAL] case h.h C : Type u_1 inst✝ : Category.{?u.93937, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝¹ X✝ : Opens ↑↑X i : op X✝¹ ⟶ op X✝ ⊢ invApp hf (op X✝¹).unop ≫ NatTrans.app g.c (op ((openFunctor hf).obj (op X✝¹).unop)) ≫ Y.presheaf.map ((Opens.map g.base).op.map ((openFunctor hf).map i.unop).op ≫ eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝)))) = invApp hf (op X✝¹).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op X✝¹).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op X✝¹))) ≫ (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map ((Opens.map pullback.fst).op.map i)) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z ⊢ pullbackConeOfLeftFst f g ≫ f = PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g [PROOFSTEP] refine PresheafedSpace.Hom.ext _ _ ?_ <| NatTrans.ext _ _ <| funext fun U => ?_ [GOAL] case refine_1 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z ⊢ (pullbackConeOfLeftFst f g ≫ f).base = (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base [PROOFSTEP] simpa using pullback.condition [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z U : (Opens ↑↑Z)ᵒᵖ ⊢ NatTrans.app ((pullbackConeOfLeftFst f g ≫ f).c ≫ whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftFst f g ≫ f).base).op = (Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op)) (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf) U = NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).c U [PROOFSTEP] induction U using Opposite.rec' [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝ : Opens ↑↑Z ⊢ NatTrans.app ((pullbackConeOfLeftFst f g ≫ f).c ≫ whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftFst f g ≫ f).base).op = (Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op)) (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf) (op X✝) = NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).c (op X✝) [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝ : Opens ↑↑Z ⊢ NatTrans.app (pullbackConeOfLeftFst f g ≫ f).c (op X✝) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftFst f g ≫ f).base).op = (Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op)) (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf) (op X✝) = NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).c (op X✝) [PROOFSTEP] dsimp only [comp_c_app, unop_op, whiskerRight_app, pullbackConeOfLeftFst] -- simp only [ofRestrict_c_app, NatTrans.comp_app] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝ : Opens ↑↑Z ⊢ (NatTrans.app f.c (op X✝) ≫ invApp hf ((Opens.map f.base).obj X✝) ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj X✝))) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op ((Opens.map f.base).obj X✝)).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op ((Opens.map f.base).obj X✝)))))) ≫ (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf.map (NatTrans.app (eqToHom (_ : (Opens.map ({ base := pullback.fst, c := NatTrans.mk fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))) } ≫ f).base).op = (Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op)) (op X✝)) = NatTrans.app g.c (op X✝) ≫ NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)).c (op ((Opens.map g.base).obj X✝)) [PROOFSTEP] simp only [Quiver.Hom.unop_op, TopCat.Presheaf.pushforwardObj_map, app_invApp_assoc, eqToHom_app, eqToHom_unop, Category.assoc, NatTrans.naturality_assoc, Functor.op_map] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝ : Opens ↑↑Z ⊢ NatTrans.app g.c (op X✝) ≫ Y.presheaf.map ((Opens.map g.base).map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' X✝.carrier) ⊆ X✝.carrier)).op.unop).op ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op ((Opens.map f.base).obj X✝)).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op ((Opens.map f.base).obj X✝))))) ≫ (restrict Y (_ : OpenEmbedding ↑pullback.snd)).presheaf.map (eqToHom (_ : (Opens.map ({ base := pullback.fst, c := NatTrans.mk fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))) } ≫ f).base).op.obj (op X✝) = (Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op.obj (op X✝))) = NatTrans.app g.c (op X✝) ≫ NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)).c (op ((Opens.map g.base).obj X✝)) [PROOFSTEP] erw [← Y.presheaf.map_comp, ← Y.presheaf.map_comp] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z X✝ : Opens ↑↑Z ⊢ NatTrans.app g.c (op X✝) ≫ Y.presheaf.map (((Opens.map g.base).map (homOfLE (_ : ↑f.base '' (↑f.base ⁻¹' X✝.carrier) ⊆ X✝.carrier)).op.unop).op ≫ eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op ((Opens.map f.base).obj X✝)).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op ((Opens.map f.base).obj X✝)))) ≫ (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map (eqToHom (_ : (Opens.map ({ base := pullback.fst, c := NatTrans.mk fun U => invApp hf U.unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U.unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj U))) } ≫ f).base).op.obj (op X✝) = (Opens.map (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g).base).op.obj (op X✝)))) = NatTrans.app g.c (op X✝) ≫ NatTrans.app (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)).c (op ((Opens.map g.base).obj X✝)) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ ⊢ (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj U [PROOFSTEP] dsimp only [Opens.map, IsOpenMap.functor, Functor.op] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ ⊢ op { carrier := ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop, is_open' := (_ : IsOpen (↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop)) } = op { carrier := ↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop)) } [PROOFSTEP] congr 2 [GOAL] case e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ ⊢ ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop = ↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop [PROOFSTEP] let s' : PullbackCone f.base g.base := PullbackCone.mk s.fst.base s.snd.base (congr_arg Hom.base s.condition) [GOAL] case e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) ⊢ ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop = ↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop [PROOFSTEP] have : _ = s.snd.base := limit.lift_π s' WalkingCospan.right [GOAL] case e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base ⊢ ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop = ↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop [PROOFSTEP] conv_lhs => erw [← this] dsimp -- Porting note : need a bit more hand holding here about function composition rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl] erw [← Set.preimage_preimage] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base | ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop [PROOFSTEP] erw [← this] dsimp -- Porting note : need a bit more hand holding here about function composition rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl] erw [← Set.preimage_preimage] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base | ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop [PROOFSTEP] erw [← this] dsimp -- Porting note : need a bit more hand holding here about function composition rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl] erw [← Set.preimage_preimage] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base | ↑(PullbackCone.snd s).base ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop [PROOFSTEP] erw [← this] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base | ↑(limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right) ⁻¹' ↑(op { carrier := ↑pullback.snd '' ↑U.unop, is_open' := (_ : IsOpen (↑pullback.snd '' ↑U.unop)) }).unop [PROOFSTEP] dsimp -- Porting note : need a bit more hand holding here about function composition [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base | ↑(limit.lift (cospan f.base g.base) (PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ≫ limit.π (cospan f.base g.base) WalkingCospan.right) ⁻¹' (↑pullback.snd '' ↑U.unop) [PROOFSTEP] rw [coe_comp, show ∀ f g, f ∘ g = fun x => f (g x) from fun _ _ => rfl] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base | (fun x => ↑(limit.π (cospan f.base g.base) WalkingCospan.right) (↑(limit.lift (cospan f.base g.base) (PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))) x)) ⁻¹' (↑pullback.snd '' ↑U.unop) [PROOFSTEP] erw [← Set.preimage_preimage] [GOAL] case e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base ⊢ (fun x => ↑(limit.lift (cospan f.base g.base) (PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))) x) ⁻¹' (↑(limit.π (cospan f.base g.base) WalkingCospan.right) ⁻¹' (↑pullback.snd '' ↑U.unop)) = ↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop [PROOFSTEP] erw [Set.preimage_image_eq _ (TopCat.snd_openEmbedding_of_left_openEmbedding hf.base_open g.base).inj] [GOAL] case e_x.e_carrier C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ s' : PullbackCone f.base g.base := PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) this : limit.lift (cospan f.base g.base) s' ≫ limit.π (cospan f.base g.base) WalkingCospan.right = (PullbackCone.snd s).base ⊢ (fun x => ↑(limit.lift (cospan f.base g.base) (PullbackCone.mk (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))) x) ⁻¹' ↑U.unop = ↑(pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base)) ⁻¹' ↑U.unop [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ i : U ⟶ V ⊢ (pullbackConeOfLeft f g).pt.presheaf.map i ≫ (fun U => NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj U))) V = (fun U => NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj U))) U ≫ (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) _* s.pt.presheaf).map i [PROOFSTEP] erw [s.snd.c.naturality_assoc] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ i : U ⟶ V ⊢ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map i) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj V) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj V)) = (fun U => NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj U))) U ≫ (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) _* s.pt.presheaf).map i [PROOFSTEP] rw [Category.assoc] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ i : U ⟶ V ⊢ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map i) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj V) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj V)) = NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj U)) ≫ (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) _* s.pt.presheaf).map i [PROOFSTEP] erw [← s.pt.presheaf.map_comp, ← s.pt.presheaf.map_comp] [GOAL] C : Type u_1 inst✝ : Category.{?u.123565, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g U V : (Opens ↑↑(pullbackConeOfLeft f g).pt)ᵒᵖ i : U ⟶ V ⊢ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ s.pt.presheaf.map ((Opens.map (PullbackCone.snd s).base).op.map ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.map i) ≫ eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj V) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj V)) = NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj U) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj U) ≫ (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.map i) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s [PROOFSTEP] refine PresheafedSpace.Hom.ext _ _ ?_ <| NatTrans.ext _ _ <| funext fun x => ?_ [GOAL] case refine_1 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base = (PullbackCone.fst s).base [PROOFSTEP] change pullback.lift _ _ _ ≫ pullback.fst = _ [GOAL] case refine_1 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) ≫ pullback.fst = (PullbackCone.fst s).base [PROOFSTEP] simp [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑X)ᵒᵖ ⊢ NatTrans.app ((pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).c ≫ whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) s.pt.presheaf) x = NatTrans.app (PullbackCone.fst s).c x [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑X)ᵒᵖ ⊢ NatTrans.app ((pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).c ≫ whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) s.pt.presheaf) x = NatTrans.app (PullbackCone.fst s).c x [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X ⊢ NatTrans.app ((pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).c ≫ whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) s.pt.presheaf) (op x) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] change ((_ ≫ _) ≫ _ ≫ _) ≫ _ = _ [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X ⊢ ((invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x))))) ≫ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))))) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) s.pt.presheaf) (op x) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x)))) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) s.pt.presheaf) (op x) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] erw [← s.pt.presheaf.map_comp] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] erw [s.snd.c.naturality_assoc] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ NatTrans.app (PullbackCone.snd s).c ((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] have := congr_app s.condition (op (hf.openFunctor.obj x)) [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X this : NatTrans.app (PullbackCone.fst s ≫ f).c (op ((openFunctor hf).obj x)) = NatTrans.app (PullbackCone.snd s ≫ g).c (op ((openFunctor hf).obj x)) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) = (Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x)))) ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ NatTrans.app (PullbackCone.snd s).c ((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] dsimp only [comp_c_app, unop_op] at this [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X this : NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x))) = (NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) = (Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x)))) ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ NatTrans.app (PullbackCone.snd s).c ((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] rw [← IsIso.comp_inv_eq] at this [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X this : (NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x)))) ≫ inv (s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) = (Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) = NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x))) ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ NatTrans.app (PullbackCone.snd s).c ((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] replace this := reassoc_of% this [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X this : ∀ {Z_1 : C} (h : ((PullbackCone.snd s ≫ g).base _* s.pt.presheaf).obj (op ((openFunctor hf).obj x)) ⟶ Z_1), NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x))) ≫ inv (s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) = (Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) ≫ h = NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x))) ≫ h ⊢ invApp hf (op x).unop ≫ NatTrans.app g.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) ≫ NatTrans.app (PullbackCone.snd s).c ((Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop))) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] erw [← this, hf.invApp_app_assoc, s.fst.c.naturality_assoc] [GOAL] case refine_2.h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : Opens ↑↑X this : ∀ {Z_1 : C} (h : ((PullbackCone.snd s ≫ g).base _* s.pt.presheaf).obj (op ((openFunctor hf).obj x)) ⟶ Z_1), NatTrans.app f.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.fst s).c (op ((Opens.map f.base).obj ((openFunctor hf).obj x))) ≫ inv (s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) = (Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) ≫ h = NatTrans.app g.c (op ((openFunctor hf).obj x)) ≫ NatTrans.app (PullbackCone.snd s).c (op ((Opens.map g.base).obj ((openFunctor hf).obj x))) ≫ h ⊢ NatTrans.app (PullbackCone.fst s).c (op (op x).unop) ≫ ((PullbackCone.fst s).base _* s.pt.presheaf).map (eqToHom (_ : op (op x).unop = op ((Opens.map f.base).obj (op ((openFunctor hf).obj (op x).unop)).unop))) ≫ inv (s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s ≫ g).base).op.obj (op ((openFunctor hf).obj x)) = (Opens.map (PullbackCone.fst s ≫ f).base).op.obj (op ((openFunctor hf).obj x))))) ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (eqToHom (_ : (Opens.map g.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj (op x).unop)) = (IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map pullback.fst).op.obj (op x)))) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.fst (pullbackConeOfLeft f g)).base).op.obj (op x))) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.fst s).base).op)) (op x)) = NatTrans.app (PullbackCone.fst s).c (op x) [PROOFSTEP] simp [eqToHom_map] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s [PROOFSTEP] refine PresheafedSpace.Hom.ext _ _ ?_ <| NatTrans.ext _ _ <| funext fun x => ?_ [GOAL] case refine_1 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base = (PullbackCone.snd s).base [PROOFSTEP] change pullback.lift _ _ _ ≫ pullback.snd = _ [GOAL] case refine_1 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base) ≫ pullback.snd = (PullbackCone.snd s).base [PROOFSTEP] simp [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app ((pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).c ≫ whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.snd s).base).op)) s.pt.presheaf) x = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] change (_ ≫ _ ≫ _) ≫ _ = _ [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ (NatTrans.app (PullbackCone.snd (pullbackConeOfLeft f g)).c x ≫ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)))) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.snd s).base).op)) s.pt.presheaf) x = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (PullbackCone.snd (pullbackConeOfLeft f g)).c x ≫ NatTrans.app (PullbackCone.snd s).c ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x))) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.snd s).base).op)) s.pt.presheaf) x = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] erw [s.snd.c.naturality_assoc] [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (PullbackCone.snd s).c x ≫ ((PullbackCone.snd s).base _* s.pt.presheaf).map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑pullback.snd)).counit x.unop).op ≫ s.pt.presheaf.map (eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x))) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.snd s).base).op)) s.pt.presheaf) x = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] erw [← s.pt.presheaf.map_comp, ← s.pt.presheaf.map_comp] [GOAL] case refine_2 C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (PullbackCone.snd s).c x ≫ s.pt.presheaf.map ((Opens.map (PullbackCone.snd s).base).op.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑pullback.snd)).counit x.unop).op ≫ eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.snd s).base).op)) x) = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] trans s.snd.c.app x ≫ s.pt.presheaf.map (𝟙 _) [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (PullbackCone.snd s).c x ≫ s.pt.presheaf.map ((Opens.map (PullbackCone.snd s).base).op.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑pullback.snd)).counit x.unop).op ≫ eqToHom (_ : (Opens.map (PullbackCone.snd s).base).op.obj ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd)).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) = (Opens.map (pullback.lift (PullbackCone.fst s).base (PullbackCone.snd s).base (_ : (PullbackCone.fst s ≫ f).base = (PullbackCone.snd s ≫ g).base))).op.obj ((Opens.map (PullbackCone.snd (pullbackConeOfLeft f g)).base).op.obj x)) ≫ NatTrans.app (eqToHom (_ : (Opens.map (pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g)).base).op = (Opens.map (PullbackCone.snd s).base).op)) x) = NatTrans.app (PullbackCone.snd s).c x ≫ s.pt.presheaf.map (𝟙 ((Opens.map (PullbackCone.snd s).base).op.obj x)) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (PullbackCone.snd s).c x ≫ s.pt.presheaf.map (𝟙 ((Opens.map (PullbackCone.snd s).base).op.obj x)) = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] rw [s.pt.presheaf.map_id] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g x : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app (PullbackCone.snd s).c x ≫ 𝟙 (s.pt.presheaf.obj ((Opens.map (PullbackCone.snd s).base).op.obj x)) = NatTrans.app (PullbackCone.snd s).c x [PROOFSTEP] erw [Category.comp_id] [GOAL] C : Type u_1 inst✝ : Category.{?u.214204, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion (PullbackCone.snd (pullbackConeOfLeft f g)) [PROOFSTEP] erw [CategoryTheory.Limits.PullbackCone.mk_snd] [GOAL] C : Type u_1 inst✝ : Category.{?u.214204, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion (PresheafedSpace.ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsLimit (pullbackConeOfLeft f g) [PROOFSTEP] apply PullbackCone.isLimitAux' [GOAL] case create C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ (s : PullbackCone f g) → { l // l ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = l } [PROOFSTEP] intro s [GOAL] case create C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s✝ s : PullbackCone f g ⊢ { l // l ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = l } [PROOFSTEP] use pullbackConeOfLeftLift f g s [GOAL] case property C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s✝ s : PullbackCone f g ⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧ pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = pullbackConeOfLeftLift f g s [PROOFSTEP] use pullbackConeOfLeftLift_fst f g s [GOAL] case right C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s✝ s : PullbackCone f g ⊢ pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = pullbackConeOfLeftLift f g s [PROOFSTEP] use pullbackConeOfLeftLift_snd f g s [GOAL] case right C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s✝ s : PullbackCone f g ⊢ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = pullbackConeOfLeftLift f g s [PROOFSTEP] intro m _ h₂ [GOAL] case right C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s✝ s : PullbackCone f g m : s.pt ⟶ (pullbackConeOfLeft f g).pt a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ⊢ m = pullbackConeOfLeftLift f g s [PROOFSTEP] rw [← cancel_mono (pullbackConeOfLeft f g).snd] [GOAL] case right C : Type u_1 inst✝ : Category.{?u.215564, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s✝ s : PullbackCone f g m : s.pt ⟶ (pullbackConeOfLeft f g).pt a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ⊢ m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = pullbackConeOfLeftLift f g s ≫ PullbackCone.snd (pullbackConeOfLeft f g) [PROOFSTEP] exact h₂.trans (pullbackConeOfLeftLift_snd f g s).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.220941, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion pullback.snd [PROOFSTEP] delta pullback.snd [GOAL] C : Type u_1 inst✝ : Category.{?u.220941, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.right) [PROOFSTEP] rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right] [GOAL] C : Type u_1 inst✝ : Category.{?u.220941, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion ((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom ≫ NatTrans.app { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }.cone.π WalkingCospan.right) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.222946, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion pullback.fst [PROOFSTEP] rw [← pullbackSymmetry_hom_comp_snd] [GOAL] C : Type u_1 inst✝ : Category.{?u.222946, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsOpenImmersion ((pullbackSymmetry g f).hom ≫ pullback.snd) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝¹ : Category.{?u.224733, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.one) [PROOFSTEP] rw [← limit.w (cospan f g) WalkingCospan.Hom.inl, cospan_map_inl] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.224733, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.left ≫ f) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsLimit ((forget C).mapCone (pullbackConeOfLeft f g)) [PROOFSTEP] apply (IsLimit.postcomposeHomEquiv (diagramIsoCospan _) _).toFun [GOAL] C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ IsLimit ((Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj ((forget C).mapCone (pullbackConeOfLeft f g))) [PROOFSTEP] refine' (IsLimit.equivIsoLimit _).toFun (limit.isLimit (cospan f.base g.base)) [GOAL] C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ limit.cone (cospan f.base g.base) ≅ (Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj ((forget C).mapCone (pullbackConeOfLeft f g)) [PROOFSTEP] fapply Cones.ext [GOAL] case φ C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ (limit.cone (cospan f.base g.base)).pt ≅ ((Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj ((forget C).mapCone (pullbackConeOfLeft f g))).pt [PROOFSTEP] exact Iso.refl _ [GOAL] case w C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ autoParam (∀ (j : WalkingCospan), NatTrans.app (limit.cone (cospan f.base g.base)).π j = (Iso.refl (limit.cone (cospan f.base g.base)).pt).hom ≫ NatTrans.app ((Cones.postcompose (diagramIsoCospan (cospan f g ⋙ forget C)).hom).obj ((forget C).mapCone (pullbackConeOfLeft f g))).π j) _auto✝ [PROOFSTEP] change ∀ j, _ = 𝟙 _ ≫ _ ≫ _ [GOAL] case w C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ ∀ (j : WalkingCospan), NatTrans.app (limit.cone (cospan f.base g.base)).π j = 𝟙 (((Functor.const WalkingCospan).obj (limit.cone (cospan f.base g.base)).pt).obj j) ≫ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π j ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom j [PROOFSTEP] simp_rw [Category.id_comp] [GOAL] case w C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ ∀ (j : WalkingCospan), NatTrans.app (limit.cone (cospan f.base g.base)).π j = NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π j ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom j [PROOFSTEP] rintro (_ | _ | _) [GOAL] case w.none C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app (limit.cone (cospan f.base g.base)).π none = NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π none ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom none [PROOFSTEP] symm [GOAL] case w.some.left C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.left) = NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.left) ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.left) [PROOFSTEP] symm [GOAL] case w.some.right C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.right) = NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.right) ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.right) [PROOFSTEP] symm [GOAL] case w.none C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π none ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom none = NatTrans.app (limit.cone (cospan f.base g.base)).π none [PROOFSTEP] erw [Category.comp_id] [GOAL] case w.none C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π none = NatTrans.app (limit.cone (cospan f.base g.base)).π none [PROOFSTEP] exact limit.w (cospan f.base g.base) WalkingCospan.Hom.inl [GOAL] case w.some.left C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.left) ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.left) = NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.left) [PROOFSTEP] exact Category.comp_id _ [GOAL] case w.some.right C : Type u_1 inst✝ : Category.{?u.226706, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g ⊢ NatTrans.app ((forget C).mapCone (pullbackConeOfLeft f g)).π (some WalkingPair.right) ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget C)).hom (some WalkingPair.right) = NatTrans.app (limit.cone (cospan f.base g.base)).π (some WalkingPair.right) [PROOFSTEP] exact Category.comp_id _ [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base ⊢ IsIso pullback.snd [PROOFSTEP] haveI := TopCat.snd_iso_of_left_embedding_range_subset hf.base_open.toEmbedding g.base H [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd ⊢ IsIso pullback.snd [PROOFSTEP] have : IsIso (pullback.snd : pullback f g ⟶ _).base := by delta pullback.snd rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right] change IsIso (_ ≫ pullback.snd) infer_instance [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd ⊢ IsIso pullback.snd.base [PROOFSTEP] delta pullback.snd [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd ⊢ IsIso (limit.π (cospan f g) WalkingCospan.right).base [PROOFSTEP] rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd ⊢ IsIso ((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom ≫ NatTrans.app { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }.cone.π WalkingCospan.right).base [PROOFSTEP] change IsIso (_ ≫ pullback.snd) [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd ⊢ IsIso ((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom.base ≫ pullback.snd) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this✝ : IsIso pullback.snd this : IsIso pullback.snd.base ⊢ IsIso pullback.snd [PROOFSTEP] apply to_iso [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base ⊢ lift f g H ≫ f = g [PROOFSTEP] letI := pullback_snd_isIso_of_range_subset _ _ H [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd := pullback_snd_isIso_of_range_subset f g H ⊢ lift f g H ≫ f = g [PROOFSTEP] erw [Category.assoc] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd := pullback_snd_isIso_of_range_subset f g H ⊢ inv pullback.snd ≫ pullback.fst ≫ f = g [PROOFSTEP] rw [IsIso.inv_comp_eq] [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base this : IsIso pullback.snd := pullback_snd_isIso_of_range_subset f g H ⊢ pullback.fst ≫ f = pullback.snd ≫ g [PROOFSTEP] exact pullback.condition [GOAL] C : Type u_1 inst✝ : Category.{u_3, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g H : Set.range ↑g.base ⊆ Set.range ↑f.base l : Y ⟶ X hl : l ≫ f = g ⊢ l = lift f g H [PROOFSTEP] rw [← cancel_mono f, hl, lift_fac] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.257204, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g inst✝ : IsOpenImmersion g e : Set.range ↑f.base = Set.range ↑g.base ⊢ lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base) ≫ lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base) = 𝟙 X [PROOFSTEP] rw [← cancel_mono f] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.257204, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g inst✝ : IsOpenImmersion g e : Set.range ↑f.base = Set.range ↑g.base ⊢ (lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base) ≫ lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base)) ≫ f = 𝟙 X ≫ f [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.257204, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g inst✝ : IsOpenImmersion g e : Set.range ↑f.base = Set.range ↑g.base ⊢ lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base) ≫ lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base) = 𝟙 Y [PROOFSTEP] rw [← cancel_mono g] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.257204, u_1} C X Y Z : PresheafedSpace C f : X ⟶ Z hf : IsOpenImmersion f g : Y ⟶ Z s : PullbackCone f g inst✝ : IsOpenImmersion g e : Set.range ↑f.base = Set.range ↑g.base ⊢ (lift f g (_ : Set.range ↑g.base ≤ Set.range ↑f.base) ≫ lift g f (_ : Set.range ↑f.base ≤ Set.range ↑g.base)) ≫ g = 𝟙 Y ≫ g [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝ : Category.{?u.259965, u_1} C X : PresheafedSpace C Y : SheafedSpace C f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f ⊢ TopCat.Presheaf.IsSheaf X.presheaf [PROOFSTEP] apply TopCat.Presheaf.isSheaf_of_iso (sheafIsoOfIso H.isoRestrict.symm).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.259965, u_1} C X : PresheafedSpace C Y : SheafedSpace C f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f ⊢ TopCat.Presheaf.IsSheaf ((isoRestrict H).symm.hom.base _* (restrict Y.toPresheafedSpace (_ : OpenEmbedding ↑f.base)).presheaf) [PROOFSTEP] apply TopCat.Sheaf.pushforward_sheaf_of_sheaf [GOAL] case h C : Type u_1 inst✝ : Category.{?u.259965, u_1} C X : PresheafedSpace C Y : SheafedSpace C f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f ⊢ TopCat.Presheaf.IsSheaf (restrict Y.toPresheafedSpace (_ : OpenEmbedding ↑f.base)).presheaf [PROOFSTEP] exact (Y.restrict H.base_open).IsSheaf [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C X✝ : PresheafedSpace C Y✝ : SheafedSpace C f✝ : X✝ ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ X Y : SheafedSpace C f : X ⟶ Y inst✝ : IsOpenImmersion f ⊢ toSheafedSpace Y f = X [PROOFSTEP] cases X [GOAL] case mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C X : PresheafedSpace C Y✝ : SheafedSpace C f✝ : X ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ Y : SheafedSpace C toPresheafedSpace✝ : PresheafedSpace C IsSheaf✝ : TopCat.Presheaf.IsSheaf toPresheafedSpace✝.presheaf f : { toPresheafedSpace := toPresheafedSpace✝, IsSheaf := IsSheaf✝ } ⟶ Y inst✝ : IsOpenImmersion f ⊢ toSheafedSpace Y f = { toPresheafedSpace := toPresheafedSpace✝, IsSheaf := IsSheaf✝ } [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝¹ : Category.{?u.266836, u_1} C X✝ : PresheafedSpace CommRingCat Y✝ : LocallyRingedSpace f✝ : X✝ ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ X Y : LocallyRingedSpace f : X ⟶ Y inst✝ : LocallyRingedSpace.IsOpenImmersion f ⊢ toLocallyRingedSpace Y f.val = X [PROOFSTEP] cases X [GOAL] case mk C : Type u_1 inst✝¹ : Category.{?u.266836, u_1} C X : PresheafedSpace CommRingCat Y✝ : LocallyRingedSpace f✝ : X ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ Y : LocallyRingedSpace toSheafedSpace✝ : SheafedSpace CommRingCat localRing✝ : ∀ (x : ↑↑toSheafedSpace✝.toPresheafedSpace), LocalRing ↑(TopCat.Presheaf.stalk toSheafedSpace✝.presheaf x) f : { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ } ⟶ Y inst✝ : LocallyRingedSpace.IsOpenImmersion f ⊢ toLocallyRingedSpace Y f.val = { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ } [PROOFSTEP] delta toLocallyRingedSpace [GOAL] case mk C : Type u_1 inst✝¹ : Category.{?u.266836, u_1} C X : PresheafedSpace CommRingCat Y✝ : LocallyRingedSpace f✝ : X ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ Y : LocallyRingedSpace toSheafedSpace✝ : SheafedSpace CommRingCat localRing✝ : ∀ (x : ↑↑toSheafedSpace✝.toPresheafedSpace), LocalRing ↑(TopCat.Presheaf.stalk toSheafedSpace✝.presheaf x) f : { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ } ⟶ Y inst✝ : LocallyRingedSpace.IsOpenImmersion f ⊢ { toSheafedSpace := toSheafedSpace Y.toSheafedSpace f.val, localRing := (_ : ∀ (x : ↑↑(toSheafedSpace Y.toSheafedSpace f.val).toPresheafedSpace), LocalRing ↑(stalk { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ }.toSheafedSpace.toPresheafedSpace x)) } = { toSheafedSpace := toSheafedSpace✝, localRing := localRing✝ } [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ IsIso (NatTrans.app f.c (op U)) [PROOFSTEP] have : U = H.base_open.isOpenMap.functor.obj ((Opens.map f.base).obj U) := by ext1 exact (Set.inter_eq_left_iff_subset.mpr hU).symm.trans Set.image_preimage_eq_inter_range.symm [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ U = (IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj U) [PROOFSTEP] ext1 [GOAL] case h C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base ⊢ ↑U = ↑((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj U)) [PROOFSTEP] exact (Set.inter_eq_left_iff_subset.mpr hU).symm.trans Set.image_preimage_eq_inter_range.symm [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑Y hU : ↑U ⊆ Set.range ↑f.base this : U = (IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj ((Opens.map f.base).obj U) ⊢ IsIso (NatTrans.app f.c (op U)) [PROOFSTEP] convert H.c_iso ((Opens.map f.base).obj U) [GOAL] C : Type u_1 inst✝ : Category.{?u.284183, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Mono f [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.287677, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan f g ⋙ forget) [PROOFSTEP] have : HasLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.287677, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) [PROOFSTEP] change HasLimit (cospan ((forget).map f) ((forget).map g)) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.287677, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan (forget.map f) (forget.map g)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.287677, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : HasLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) ⊢ HasLimit (cospan f g ⋙ forget) [PROOFSTEP] apply hasLimitOfIso (diagramIsoCospan _).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.296338, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan g f ⋙ forget) [PROOFSTEP] have : HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.296338, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) [PROOFSTEP] change HasLimit (cospan ((forget).map g) ((forget).map f)) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.296338, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan (forget.map g) (forget.map f)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.296338, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) ⊢ HasLimit (cospan g f ⋙ forget) [PROOFSTEP] apply hasLimitOfIso (diagramIsoCospan _).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.304278, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ pullback f g = pullback ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr) [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝ : Category.{?u.310614, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ pullback g f = pullback ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr) [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝ : Category.{?u.316346, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g ⋙ forget) (PresheafedSpace.forget C) [PROOFSTEP] have : PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) (PresheafedSpace.forget C) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.316346, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) (PresheafedSpace.forget C) [PROOFSTEP] dsimp [GOAL] case this C : Type u_1 inst✝ : Category.{?u.316346, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) (PresheafedSpace.forget C) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.316346, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) (PresheafedSpace.forget C) ⊢ PreservesLimit (cospan f g ⋙ forget) (PresheafedSpace.forget C) [PROOFSTEP] apply preservesLimitOfIsoDiagram _ (diagramIsoCospan _).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion pullback.snd [PROOFSTEP] delta pullback.snd [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion (limit.π (cospan f g) right) [PROOFSTEP] have : _ = limit.π (cospan f g) right := preservesLimitsIso_hom_π forget (cospan f g) right [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right ⊢ IsOpenImmersion (limit.π (cospan f g) right) [PROOFSTEP] rw [← this] [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right) [PROOFSTEP] have := HasLimit.isoOfNatIso_hom_π (diagramIsoCospan (cospan f g ⋙ forget)) right [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right = limit.π (cospan f g ⋙ forget) right ≫ NatTrans.app (diagramIsoCospan (cospan f g ⋙ forget)).hom right ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right) [PROOFSTEP] erw [Category.comp_id] at this [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right = limit.π (cospan f g ⋙ forget) right ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right) [PROOFSTEP] rw [← this] [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right = limit.π (cospan f g ⋙ forget) right ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ (HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝ : Category.{?u.326095, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan f g)).hom ≫ limit.π (cospan f g ⋙ forget) right = limit.π (cospan f g) right this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) right = limit.π (cospan f g ⋙ forget) right ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan f g)).hom ≫ (HasLimit.isoOfNatIso (diagramIsoCospan (cospan f g ⋙ forget))).hom ≫ limit.π (cospan f g) right) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion pullback.fst [PROOFSTEP] delta pullback.fst [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion (limit.π (cospan g f) left) [PROOFSTEP] have : _ = limit.π (cospan g f) left := preservesLimitsIso_hom_π forget (cospan g f) left [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left ⊢ IsOpenImmersion (limit.π (cospan g f) left) [PROOFSTEP] rw [← this] [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left) [PROOFSTEP] have := HasLimit.isoOfNatIso_hom_π (diagramIsoCospan (cospan g f ⋙ forget)) left [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left = limit.π (cospan g f ⋙ forget) left ≫ NatTrans.app (diagramIsoCospan (cospan g f ⋙ forget)).hom left ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left) [PROOFSTEP] erw [Category.comp_id] at this [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left = limit.π (cospan g f ⋙ forget) left ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left) [PROOFSTEP] rw [← this] [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left = limit.π (cospan g f ⋙ forget) left ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ (HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝ : Category.{?u.332635, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : (preservesLimitIso forget (cospan g f)).hom ≫ limit.π (cospan g f ⋙ forget) left = limit.π (cospan g f) left this : (HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) left = limit.π (cospan g f ⋙ forget) left ⊢ IsOpenImmersion ((preservesLimitIso forget (cospan g f)).hom ≫ (HasLimit.isoOfNatIso (diagramIsoCospan (cospan g f ⋙ forget))).hom ≫ limit.π (cospan g f) left) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝¹ : Category.{?u.338234, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) one) [PROOFSTEP] rw [← limit.w (cospan f g) Hom.inl, cospan_map_inl] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.338234, u_1} C X Y Z : SheafedSpace C f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) left ≫ f) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x) U : Opens ↑↑X.toPresheafedSpace ⊢ IsIso (NatTrans.app f.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U))) [PROOFSTEP] have h := TopCat.Presheaf.app_isIso_of_stalkFunctor_map_iso (show Y.sheaf ⟶ (TopCat.Sheaf.pushforward f.base).obj X.sheaf from ⟨f.c⟩) [GOAL] C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x) U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) ⊢ IsIso (NatTrans.app f.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U))) [PROOFSTEP] refine @h _ ?_ [GOAL] C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x) U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) ⊢ ∀ (x : { x // x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑f.base)).obj U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val) [PROOFSTEP] rintro ⟨_, y, hy, rfl⟩ [GOAL] case mk.intro.intro C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base H : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f x) U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hy : y ∈ ↑U ⊢ IsIso ((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map (let_fun this := { val := f.c }; this).val) [PROOFSTEP] specialize H y [GOAL] case mk.intro.intro C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hy : y ∈ ↑U H : IsIso (PresheafedSpace.stalkMap f y) ⊢ IsIso ((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map (let_fun this := { val := f.c }; this).val) [PROOFSTEP] delta PresheafedSpace.stalkMap at H [GOAL] case mk.intro.intro C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hy : y ∈ ↑U H : IsIso ((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) ⊢ IsIso ((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map (let_fun this := { val := f.c }; this).val) [PROOFSTEP] haveI H' := TopCat.Presheaf.stalkPushforward.stalkPushforward_iso_of_openEmbedding C hf X.presheaf y [GOAL] case mk.intro.intro C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hy : y ∈ ↑U H : IsIso ((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) H' : IsIso (TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) ⊢ IsIso ((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map (let_fun this := { val := f.c }; this).val) [PROOFSTEP] have := @IsIso.comp_isIso _ _ _ _ _ _ _ H (@IsIso.inv_isIso _ _ _ _ _ H') [GOAL] case mk.intro.intro C : Type u_1 inst✝⁶ : Category.{u_2, u_1} C inst✝⁵ : HasLimits C inst✝⁴ : HasColimits C inst✝³ : ConcreteCategory C inst✝² : ReflectsIsomorphisms (CategoryTheory.forget C) inst✝¹ : PreservesLimits (CategoryTheory.forget C) inst✝ : PreservesFilteredColimits (CategoryTheory.forget C) X Y : SheafedSpace C f : X ⟶ Y hf : OpenEmbedding ↑f.base U : Opens ↑↑X.toPresheafedSpace h : ∀ (U : Opens ↑↑Y.toPresheafedSpace) [inst : ∀ (x : { x // x ∈ U }), IsIso ((TopCat.Presheaf.stalkFunctor C ↑x).map (let_fun this := { val := f.c }; this).val)], IsIso (NatTrans.app (let_fun this := { val := f.c }; this).val (op U)) y : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hy : y ∈ ↑U H : IsIso ((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) H' : IsIso (TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) this : IsIso (((TopCat.Presheaf.stalkFunctor C (↑f.base y)).map f.c ≫ TopCat.Presheaf.stalkPushforward C f.base X.presheaf y) ≫ inv (TopCat.Presheaf.stalkPushforward C f.base X.presheaf y)) ⊢ IsIso ((TopCat.Presheaf.stalkFunctor C ↑{ val := ↑f.base y, property := (_ : ∃ a, a ∈ ↑U ∧ ↑f.base a = ↑f.base y) }).map (let_fun this := { val := f.c }; this).val) [PROOFSTEP] rwa [Category.assoc, IsIso.hom_inv_id, Category.comp_id] at this [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι ⊢ OpenEmbedding ↑(colimit.ι F i).base [PROOFSTEP] rw [← show _ = (colimit.ι F i).base from ι_preservesColimitsIso_inv (SheafedSpace.forget C) F i] [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι ⊢ OpenEmbedding ↑(colimit.ι (F ⋙ forget C) i ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] have : _ = _ ≫ colimit.ι (Discrete.functor ((F ⋙ SheafedSpace.forget C).obj ∘ Discrete.mk)) i := HasColimit.isoOfNatIso_ι_hom Discrete.natIsoFunctor i [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι this : colimit.ι (F ⋙ forget C) i ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom = NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i ⊢ OpenEmbedding ↑(colimit.ι (F ⋙ forget C) i ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] rw [← Iso.eq_comp_inv] at this [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι this : colimit.ι (F ⋙ forget C) i = (NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv ⊢ OpenEmbedding ↑(colimit.ι (F ⋙ forget C) i ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] rw [this] [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι this : colimit.ι (F ⋙ forget C) i = (NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv ⊢ OpenEmbedding ↑(((NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] have : colimit.ι _ _ ≫ _ = _ := TopCat.sigmaIsoSigma_hom_ι.{v, v} ((F ⋙ SheafedSpace.forget C).obj ∘ Discrete.mk) i.as [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι this✝ : colimit.ι (F ⋙ forget C) i = (NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv this : colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := i.as } ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom = TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) i.as ⊢ OpenEmbedding ↑(((NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] rw [← Iso.eq_comp_inv] at this [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i : Discrete ι this✝ : colimit.ι (F ⋙ forget C) i = (NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv this : colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := i.as } = TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) i.as ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv ⊢ OpenEmbedding ↑(((NatTrans.app Discrete.natIsoFunctor.hom i ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) i) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] cases i [GOAL] case mk C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F as✝ : ι this✝ : colimit.ι (F ⋙ forget C) { as := as✝ } = (NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv this : colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := { as := as✝ }.as } = TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv ⊢ OpenEmbedding ↑(((NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] rw [this, ← Category.assoc] -- Porting note : `simp_rw` can't use `TopCat.openEmbedding_iff_comp_isIso` and -- `TopCat.openEmbedding_iff_isIso_comp`. -- See https://github.com/leanprover-community/mathlib4/issues/5026 [GOAL] case mk C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F as✝ : ι this✝ : colimit.ι (F ⋙ forget C) { as := as✝ } = (NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv this : colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := { as := as✝ }.as } = TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv ⊢ OpenEmbedding ↑((((NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫ TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as) ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv) ≫ (preservesColimitIso (forget C) F).inv) [PROOFSTEP] erw [TopCat.openEmbedding_iff_comp_isIso, TopCat.openEmbedding_iff_comp_isIso, TopCat.openEmbedding_iff_comp_isIso, TopCat.openEmbedding_iff_isIso_comp] [GOAL] case mk C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F as✝ : ι this✝ : colimit.ι (F ⋙ forget C) { as := as✝ } = (NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫ colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := as✝ }) ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).inv this : colimit.ι (Discrete.functor ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)) { as := { as := as✝ }.as } = TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).inv ⊢ OpenEmbedding ↑(TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) { as := as✝ }.as) [PROOFSTEP] exact openEmbedding_sigmaMk [GOAL] C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace ⊢ (Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = ⊥ [PROOFSTEP] ext x [GOAL] case h.h C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) ⊢ x ∈ ↑((Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) ↔ x ∈ ↑⊥ [PROOFSTEP] apply iff_false_intro [GOAL] case h.h.h C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) ⊢ ¬x ∈ ↑((Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) [PROOFSTEP] rintro ⟨y, hy, eq⟩ [GOAL] case h.h.h.intro.intro C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace hy : y ∈ ↑U eq : ↑(colimit.ι F i).base y = ↑(preservesColimitIso forgetToPresheafedSpace F).inv.base (↑(colimit.ι (F ⋙ forgetToPresheafedSpace) j).base x) ⊢ False [PROOFSTEP] replace eq := ConcreteCategory.congr_arg (preservesColimitIso (SheafedSpace.forget C) F ≪≫ HasColimit.isoOfNatIso Discrete.natIsoFunctor ≪≫ TopCat.sigmaIsoSigma.{v, v} _).hom eq [GOAL] case h.h.h.intro.intro C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace hy : y ∈ ↑U eq : ↑(preservesColimitIso (forget C) F ≪≫ HasColimit.isoOfNatIso Discrete.natIsoFunctor ≪≫ TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom (↑(colimit.ι F i).base y) = ↑(preservesColimitIso (forget C) F ≪≫ HasColimit.isoOfNatIso Discrete.natIsoFunctor ≪≫ TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom (↑(preservesColimitIso forgetToPresheafedSpace F).inv.base (↑(colimit.ι (F ⋙ forgetToPresheafedSpace) j).base x)) ⊢ False [PROOFSTEP] simp_rw [CategoryTheory.Iso.trans_hom, ← TopCat.comp_app, ← PresheafedSpace.comp_base] at eq [GOAL] case h.h.h.intro.intro C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace hy : y ∈ ↑U eq : ↑((preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) (↑(colimit.ι F i).base y) = ↑((preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) (↑(colimit.ι (F ⋙ forgetToPresheafedSpace) j ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base x) ⊢ False [PROOFSTEP] rw [ι_preservesColimitsIso_inv] at eq [GOAL] case h.h.h.intro.intro C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace hy : y ∈ ↑U eq : ↑((preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) (↑(colimit.ι F i).base y) = ↑((preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) (↑(forgetToPresheafedSpace.map (colimit.ι F j)).base x) ⊢ False [PROOFSTEP] erw [← comp_apply, ← comp_apply] at eq [GOAL] case h.h.h.intro.intro C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace hy : y ∈ ↑U eq : ↑((colimit.ι F i).base ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) y = ↑((forgetToPresheafedSpace.map (colimit.ι F j)).base ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) x ⊢ False [PROOFSTEP] change ((SheafedSpace.forget C).map (colimit.ι F i) ≫ _) y = ((SheafedSpace.forget C).map (colimit.ι F j) ≫ _) x at eq [GOAL] case h.h.h.intro.intro C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F i j : Discrete ι h : i ≠ j U : Opens ↑↑(F.obj i).toPresheafedSpace x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) y : (CategoryTheory.forget TopCat).obj ↑(F.obj i).toPresheafedSpace hy : y ∈ ↑U eq : ↑((forget C).map (colimit.ι F i) ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) y = ↑((forget C).map (colimit.ι F j) ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) x ⊢ False [PROOFSTEP] cases i [GOAL] case h.h.h.intro.intro.mk C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F j : Discrete ι x : ↑↑((F ⋙ forgetToPresheafedSpace).obj j) as✝ : ι h : { as := as✝ } ≠ j U : Opens ↑↑(F.obj { as := as✝ }).toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(F.obj { as := as✝ }).toPresheafedSpace hy : y ∈ ↑U eq : ↑((forget C).map (colimit.ι F { as := as✝ }) ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) y = ↑((forget C).map (colimit.ι F j) ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) x ⊢ False [PROOFSTEP] cases j [GOAL] case h.h.h.intro.intro.mk.mk C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F as✝¹ : ι U : Opens ↑↑(F.obj { as := as✝¹ }).toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(F.obj { as := as✝¹ }).toPresheafedSpace hy : y ∈ ↑U as✝ : ι x : ↑↑((F ⋙ forgetToPresheafedSpace).obj { as := as✝ }) h : { as := as✝¹ } ≠ { as := as✝ } eq : ↑((forget C).map (colimit.ι F { as := as✝¹ }) ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) y = ↑((forget C).map (colimit.ι F { as := as✝ }) ≫ (preservesColimitIso (forget C) F).hom ≫ (HasColimit.isoOfNatIso Discrete.natIsoFunctor).hom ≫ (TopCat.sigmaIsoSigma ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk)).hom) x ⊢ False [PROOFSTEP] rw [ι_preservesColimitsIso_hom_assoc, ι_preservesColimitsIso_hom_assoc, HasColimit.isoOfNatIso_ι_hom_assoc, HasColimit.isoOfNatIso_ι_hom_assoc, TopCat.sigmaIsoSigma_hom_ι, TopCat.sigmaIsoSigma_hom_ι] at eq [GOAL] case h.h.h.intro.intro.mk.mk C : Type u_1 inst✝² : Category.{v, u_1} C inst✝¹ : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝ : HasColimit F as✝¹ : ι U : Opens ↑↑(F.obj { as := as✝¹ }).toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(F.obj { as := as✝¹ }).toPresheafedSpace hy : y ∈ ↑U as✝ : ι x : ↑↑((F ⋙ forgetToPresheafedSpace).obj { as := as✝ }) h : { as := as✝¹ } ≠ { as := as✝ } eq : ↑(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝¹ } ≫ TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) as✝¹) y = ↑(NatTrans.app Discrete.natIsoFunctor.hom { as := as✝ } ≫ TopCat.sigmaι ((F ⋙ forget C).toPrefunctor.obj ∘ Discrete.mk) as✝) x ⊢ False [PROOFSTEP] exact h (congr_arg Discrete.mk (congr_arg Sigma.fst eq)) [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace ⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) [PROOFSTEP] have e : colimit.ι F i = _ := (ι_preservesColimitsIso_inv SheafedSpace.forgetToPresheafedSpace F i).symm [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv ⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) [PROOFSTEP] have H : OpenEmbedding (colimit.ι (F ⋙ SheafedSpace.forgetToPresheafedSpace) i ≫ (preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv).base := e ▸ sigma_ι_openEmbedding F i [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base ⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) [PROOFSTEP] suffices IsIso <| (colimit.ι (F ⋙ SheafedSpace.forgetToPresheafedSpace) i ≫ (preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv).c.app <| op (H.isOpenMap.functor.obj U) by -- Porting note : just `convert` is very slow, so helps it a bitconvert this using 2 <;> congr [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) ⊢ IsIso (NatTrans.app (colimit.ι F i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U))) [PROOFSTEP] convert this using 2 [GOAL] case h.e'_3.h.e'_6.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ ⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U) = op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U) [PROOFSTEP] congr [GOAL] case h.e'_4.h.e'_5.h.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ he✝ : CategoryStruct.toQuiver = CategoryStruct.toQuiver ⊢ ((colimit.ι F i).base _* (F.obj i).presheaf).toPrefunctor = ((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _* ((F ⋙ forgetToPresheafedSpace).obj i).presheaf).toPrefunctor [PROOFSTEP] congr [GOAL] case h.e'_4.h.e'_6.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ ⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U) = op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U) [PROOFSTEP] congr [GOAL] case h.e'_5.e'_6.h.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) e_3✝ : (colimit F).toPresheafedSpace.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = (forgetToPresheafedSpace.obj (colimit F)).presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) e_4✝ : ((colimit.ι F i).base _* (F.obj i).presheaf).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = ((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _* ((F ⋙ forgetToPresheafedSpace).obj i).presheaf).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ he✝ : Category.opposite = Category.opposite ⊢ (colimit.ι F i).base _* (F.obj i).presheaf = (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _* ((F ⋙ forgetToPresheafedSpace).obj i).presheaf [PROOFSTEP] congr [GOAL] case h.e'_5.e'_7.h.h.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) e_3✝ : (colimit F).toPresheafedSpace.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = (forgetToPresheafedSpace.obj (colimit F)).presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) e_4✝ : ((colimit.ι F i).base _* (F.obj i).presheaf).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = ((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _* ((F ⋙ forgetToPresheafedSpace).obj i).presheaf).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ he✝² : Category.opposite = Category.opposite he✝¹ : (colimit F).toPresheafedSpace.presheaf = (forgetToPresheafedSpace.obj (colimit F)).presheaf he✝ : (colimit.ι F i).base _* (F.obj i).presheaf = (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _* ((F ⋙ forgetToPresheafedSpace).obj i).presheaf ⊢ HEq (colimit.ι F i).c (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c [PROOFSTEP] congr [GOAL] case h.e'_5.e'_8.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base this : IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) e_3✝ : (colimit F).toPresheafedSpace.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = (forgetToPresheafedSpace.obj (colimit F)).presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) e_4✝ : ((colimit.ι F i).base _* (F.obj i).presheaf).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U)) = ((colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base _* ((F ⋙ forgetToPresheafedSpace).obj i).presheaf).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) e_1✝ : (Opens ↑↑(colimit F).toPresheafedSpace)ᵒᵖ = (Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)))ᵒᵖ ⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι F i).base)).obj U) = op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U) [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base ⊢ IsIso (NatTrans.app (colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U))) [PROOFSTEP] rw [PresheafedSpace.comp_c_app, ← PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π] -- Porting note : this instance created manually to make the `inferInstance` below work [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base ⊢ IsIso (NatTrans.app (preservesColimitIso forgetToPresheafedSpace F).inv.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) ≫ (PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).hom ≫ limit.π (PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)) (op i)) [PROOFSTEP] have inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c := PresheafedSpace.c_isIso_of_iso _ [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c ⊢ IsIso (NatTrans.app (preservesColimitIso forgetToPresheafedSpace F).inv.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) ≫ (PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).hom ≫ limit.π (PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)) (op i)) [PROOFSTEP] rsuffices : IsIso (limit.π (PresheafedSpace.componentwiseDiagram (F ⋙ SheafedSpace.forgetToPresheafedSpace) ((Opens.map (preservesColimitIso SheafedSpace.forgetToPresheafedSpace F).inv.base).obj (unop <| op <| H.isOpenMap.functor.obj U))) (op i)) [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c this✝ : IsIso (limit.π (PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)) (op i)) ⊢ IsIso (NatTrans.app (preservesColimitIso forgetToPresheafedSpace F).inv.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)) ≫ (PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).hom ≫ limit.π (PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)) (op i)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c ⊢ IsIso (limit.π (PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)) (op i)) [PROOFSTEP] apply limit_π_isIso_of_is_strict_terminal [GOAL] case H C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c ⊢ (j : (Discrete ι)ᵒᵖ) → j ≠ op i → IsTerminal ((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).obj j) [PROOFSTEP] intro j hj [GOAL] case H C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c j : (Discrete ι)ᵒᵖ hj : j ≠ op i ⊢ IsTerminal ((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).obj j) [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] case H C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c j : (Discrete ι)ᵒᵖ hj : j ≠ op i ⊢ IsTerminal ((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).obj j) [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] case H.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c j : Discrete ι hj : op j ≠ op i ⊢ IsTerminal ((PresheafedSpace.componentwiseDiagram (F ⋙ forgetToPresheafedSpace) ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base)).obj U)).unop)).obj (op j)) [PROOFSTEP] dsimp [GOAL] case H.h C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c j : Discrete ι hj : op j ≠ op i ⊢ IsTerminal ((F.obj j).presheaf.obj (op ((Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑((colimit.ι (F ⋙ forgetToPresheafedSpace) i).base ≫ (preservesColimitIso forgetToPresheafedSpace F).inv.base))).obj U))))) [PROOFSTEP] convert (F.obj j).sheaf.isTerminalOfEmpty using 3 [GOAL] case h.e'_3.h.e'_6.h.e'_2 C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c j : Discrete ι hj : op j ≠ op i ⊢ (Opens.map (colimit.ι (F ⋙ forgetToPresheafedSpace) j).base).obj ((Opens.map (preservesColimitIso forgetToPresheafedSpace F).inv.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑((colimit.ι (F ⋙ forgetToPresheafedSpace) i).base ≫ (preservesColimitIso forgetToPresheafedSpace F).inv.base))).obj U)) = ⊥ [PROOFSTEP] convert image_preimage_is_empty F i j (fun h => hj (congr_arg op h.symm)) U using 6 [GOAL] case h.e'_2.h.h.e'_6.h.e'_6.h.h.e'_5.h.e'_5.h.e'_3 C : Type u_1 inst✝³ : Category.{v, u_1} C inst✝² : HasLimits C ι : Type v F : Discrete ι ⥤ SheafedSpace C inst✝¹ : HasColimit F i : Discrete ι inst✝ : HasStrictTerminalObjects C U : Opens ↑↑(F.obj i).toPresheafedSpace e : colimit.ι F i = colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv H : OpenEmbedding ↑(colimit.ι (F ⋙ forgetToPresheafedSpace) i ≫ (preservesColimitIso forgetToPresheafedSpace F).inv).base inst1 : IsIso (preservesColimitIso forgetToPresheafedSpace F).inv.c j : Discrete ι hj : op j ≠ op i e_1✝¹ : Opens ↑↑(F.obj j).toPresheafedSpace = Opens ↑↑((F ⋙ forgetToPresheafedSpace).obj j) e_1✝ : Opens ↑↑(colimit F).toPresheafedSpace = Opens ↑↑(forgetToPresheafedSpace.obj (colimit F)) ⊢ (colimit.ι (F ⋙ forgetToPresheafedSpace) i).base ≫ (preservesColimitIso forgetToPresheafedSpace F).inv.base = (colimit.ι F i).base [PROOFSTEP] exact (congr_arg PresheafedSpace.Hom.base e).symm [GOAL] C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ g.val ≫ (inv g).val = 𝟙 Y.toPresheafedSpace ∧ (inv g).val ≫ g.val = 𝟙 Z.toPresheafedSpace [PROOFSTEP] erw [← LocallyRingedSpace.comp_val] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ (g ≫ inv g).val = 𝟙 Y.toPresheafedSpace ∧ (inv g).val ≫ g.val = 𝟙 Z.toPresheafedSpace [PROOFSTEP] rw [IsIso.hom_inv_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace ∧ (inv g).val ≫ g.val = 𝟙 Z.toPresheafedSpace [PROOFSTEP] erw [← LocallyRingedSpace.comp_val] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace ∧ (inv g ≫ g).val = 𝟙 Z.toPresheafedSpace [PROOFSTEP] rw [IsIso.inv_hom_id] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace ∧ (𝟙 Z).val = 𝟙 Z.toPresheafedSpace [PROOFSTEP] constructor [GOAL] case left C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ (𝟙 Y).val = 𝟙 Y.toPresheafedSpace [PROOFSTEP] rfl [GOAL] case right C : Type u_1 inst✝¹ : Category.{?u.431494, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ (𝟙 Z).val = 𝟙 Z.toPresheafedSpace [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{?u.433254, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Mono f.val [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PullbackCone f g [PROOFSTEP] refine' PullbackCone.mk _ (Y.ofRestrict (TopCat.snd_openEmbedding_of_left_openEmbedding H.base_open g.1.base)) _ [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ restrict Y (_ : OpenEmbedding ↑pullback.snd) ⟶ X [PROOFSTEP] use PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.1 g.1 [GOAL] case prop C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x) [PROOFSTEP] intro x [GOAL] case prop C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x) [PROOFSTEP] have := PresheafedSpace.stalkMap.congr_hom _ _ (PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition f.1 g.1) x [GOAL] case prop C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val) x = eqToHom (_ : PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) = PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫ PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val) x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x) [PROOFSTEP] rw [PresheafedSpace.stalkMap.comp, PresheafedSpace.stalkMap.comp] at this [GOAL] case prop C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace this : PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x) ≫ PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x = eqToHom (_ : PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) = PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫ PresheafedSpace.stalkMap g.val (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫ PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x) [PROOFSTEP] rw [← IsIso.eq_inv_comp] at this [GOAL] case prop C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x = inv (PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x)) ≫ eqToHom (_ : PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) = PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫ PresheafedSpace.stalkMap g.val (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫ PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x) [PROOFSTEP] rw [this] [GOAL] case prop C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x = inv (PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x)) ≫ eqToHom (_ : PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) = PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫ PresheafedSpace.stalkMap g.val (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫ PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x ⊢ IsLocalRingHom (inv (PresheafedSpace.stalkMap f.val (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val).base x)) ≫ eqToHom (_ : PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val ≫ f.val).base x) = PresheafedSpace.stalk Z.toPresheafedSpace (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd) ≫ g.val).base x)) ≫ PresheafedSpace.stalkMap g.val (↑(PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)).base x) ≫ PresheafedSpace.stalkMap (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) x) [PROOFSTEP] infer_instance [GOAL] case refine'_2 C : Type u_1 inst✝ : Category.{?u.434441, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) } ≫ f = ofRestrict Y (_ : OpenEmbedding ↑pullback.snd) ≫ g [PROOFSTEP] exact LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition _ _) [GOAL] C : Type u_1 inst✝ : Category.{?u.437291, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PresheafedSpace.IsOpenImmersion (PresheafedSpace.ofRestrict Y.toPresheafedSpace (_ : OpenEmbedding ↑pullback.snd)) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g ⊢ { l // l ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = l } [PROOFSTEP] refine' ⟨LocallyRingedSpace.Hom.mk (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.1 g.1 (PullbackCone.mk _ _ (congr_arg LocallyRingedSpace.Hom.val s.condition))) _, LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst f.1 g.1 _), LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd f.1 g.1 _), _⟩ [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g ⊢ ∀ (x : ↑↑s.pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x) [PROOFSTEP] intro x [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g x : ↑↑s.pt.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x) [PROOFSTEP] have := PresheafedSpace.stalkMap.congr_hom _ _ (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd f.1 g.1 (PullbackCone.mk s.fst.1 s.snd.1 (congr_arg LocallyRingedSpace.Hom.val s.condition))) x [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g x : ↑↑s.pt.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)) x = eqToHom (_ : PresheafedSpace.stalk Y.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base x) = PresheafedSpace.stalk Y.toPresheafedSpace (↑(PullbackCone.snd (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ PresheafedSpace.stalkMap (PullbackCone.snd (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x) [PROOFSTEP] change _ = _ ≫ PresheafedSpace.stalkMap s.snd.1 x at this [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g x : ↑↑s.pt.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)) x = eqToHom (_ : PresheafedSpace.stalk Y.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base x) = PresheafedSpace.stalk Y.toPresheafedSpace (↑(PullbackCone.snd (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ PresheafedSpace.stalkMap (PullbackCone.snd s).val x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x) [PROOFSTEP] rw [PresheafedSpace.stalkMap.comp, ← IsIso.eq_inv_comp] at this [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g x : ↑↑s.pt.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x = inv (PresheafedSpace.stalkMap (PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)) (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ eqToHom (_ : PresheafedSpace.stalk Y.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base x) = PresheafedSpace.stalk Y.toPresheafedSpace (↑(PullbackCone.snd (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ PresheafedSpace.stalkMap (PullbackCone.snd s).val x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x) [PROOFSTEP] rw [this] [GOAL] case refine'_1 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g x : ↑↑s.pt.toPresheafedSpace this : PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x = inv (PresheafedSpace.stalkMap (PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)) (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ eqToHom (_ : PresheafedSpace.stalk Y.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base x) = PresheafedSpace.stalk Y.toPresheafedSpace (↑(PullbackCone.snd (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ PresheafedSpace.stalkMap (PullbackCone.snd s).val x ⊢ IsLocalRingHom (inv (PresheafedSpace.stalkMap (PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)) (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ eqToHom (_ : PresheafedSpace.stalk Y.toPresheafedSpace (↑(PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)) ≫ PullbackCone.snd (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeft f.val g.val)).base x) = PresheafedSpace.stalk Y.toPresheafedSpace (↑(PullbackCone.snd (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))).base x)) ≫ PresheafedSpace.stalkMap (PullbackCone.snd s).val x) [PROOFSTEP] infer_instance [GOAL] case refine'_2 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g ⊢ ∀ {m : s.pt ⟶ (pullbackConeOfLeft f g).pt}, m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s → m = { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)), prop := (_ : ∀ (x : ↑↑s.pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x)) } [PROOFSTEP] intro m _ h₂ [GOAL] case refine'_2 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g m : s.pt ⟶ (pullbackConeOfLeft f g).pt a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ⊢ m = { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)), prop := (_ : ∀ (x : ↑↑s.pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x)) } [PROOFSTEP] rw [← cancel_mono (pullbackConeOfLeft f g).snd] [GOAL] case refine'_2 C : Type u_1 inst✝ : Category.{?u.437921, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f s : PullbackCone f g m : s.pt ⟶ (pullbackConeOfLeft f g).pt a✝ : m ≫ PullbackCone.fst (pullbackConeOfLeft f g) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = PullbackCone.snd s ⊢ m ≫ PullbackCone.snd (pullbackConeOfLeft f g) = { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val)), prop := (_ : ∀ (x : ↑↑s.pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift f.val g.val (PullbackCone.mk (PullbackCone.fst s).val (PullbackCone.snd s).val (_ : (PullbackCone.fst s ≫ f).val = (PullbackCone.snd s ≫ g).val))) x)) } ≫ PullbackCone.snd (pullbackConeOfLeft f g) [PROOFSTEP] exact h₂.trans <| LocallyRingedSpace.Hom.ext _ _ (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd f.1 g.1 <| PullbackCone.mk s.fst.1 s.snd.1 <| congr_arg LocallyRingedSpace.Hom.val s.condition).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.444237, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion pullback.snd [PROOFSTEP] delta pullback.snd [GOAL] C : Type u_1 inst✝ : Category.{?u.444237, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.right) [PROOFSTEP] rw [← limit.isoLimitCone_hom_π ⟨_, pullbackConeOfLeftIsLimit f g⟩ WalkingCospan.right] [GOAL] C : Type u_1 inst✝ : Category.{?u.444237, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion ((limit.isoLimitCone { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }).hom ≫ NatTrans.app { cone := pullbackConeOfLeft f g, isLimit := pullbackConeOfLeftIsLimit f g }.cone.π WalkingCospan.right) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.445666, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion pullback.fst [PROOFSTEP] rw [← pullbackSymmetry_hom_comp_snd] [GOAL] C : Type u_1 inst✝ : Category.{?u.445666, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion ((pullbackSymmetry g f).hom ≫ pullback.snd) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝¹ : Category.{?u.446789, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.one) [PROOFSTEP] rw [← limit.w (cospan f g) WalkingCospan.Hom.inl, cospan_map_inl] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.446789, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) WalkingCospan.left ≫ f) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.447912, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsLimit (forgetToSheafedSpace.mapCone (pullbackConeOfLeft f g)) [PROOFSTEP] apply (isLimitMapConePullbackConeEquiv _ _).symm.toFun [GOAL] C : Type u_1 inst✝ : Category.{?u.447912, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsLimit (PullbackCone.mk (forgetToSheafedSpace.map { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) }) (forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd))) (_ : forgetToSheafedSpace.map { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) } ≫ forgetToSheafedSpace.map f = forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)) ≫ forgetToSheafedSpace.map g)) [PROOFSTEP] apply isLimitOfIsLimitPullbackConeMap SheafedSpace.forgetToPresheafedSpace [GOAL] case l C : Type u_1 inst✝ : Category.{?u.447912, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsLimit (PullbackCone.mk (SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) })) (SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)))) (_ : SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) }) ≫ SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map f) = SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd))) ≫ SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map g))) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftIsLimit f.1 g.1 [GOAL] C : Type u_1 inst✝ : Category.{?u.452018, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsLimit ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).mapCone (pullbackConeOfLeft f g)) [PROOFSTEP] apply (isLimitMapConePullbackConeEquiv _ _).symm.toFun [GOAL] C : Type u_1 inst✝ : Category.{?u.452018, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsLimit (PullbackCone.mk ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) }) ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd))) (_ : (forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map { val := PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val, prop := (_ : ∀ (x : ↑↑(restrict Y (_ : OpenEmbedding ↑pullback.snd)).toSheafedSpace.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f.val g.val) x)) } ≫ (forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map f = (forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map (ofRestrict Y (_ : OpenEmbedding ↑pullback.snd)) ≫ (forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map g)) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftIsLimit f.1 g.1 [GOAL] C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) [PROOFSTEP] change PreservesLimit _ <| (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget _ -- Porting note : was `apply (config := { instances := False }) ...` -- See https://github.com/leanprover/lean4/issues/2273 [GOAL] C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget CommRingCat) [PROOFSTEP] have : PreservesLimit (cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr)) (PresheafedSpace.forget CommRingCat) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr)) (PresheafedSpace.forget CommRingCat) [PROOFSTEP] dsimp [GOAL] case this C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f.val g.val) (PresheafedSpace.forget CommRingCat) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : PreservesLimit (cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr)) (PresheafedSpace.forget CommRingCat) ⊢ PreservesLimit (cospan f g) ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget CommRingCat) [PROOFSTEP] have : PreservesLimit (cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat) [GOAL] case this C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : PreservesLimit (cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr)) (PresheafedSpace.forget CommRingCat) ⊢ PreservesLimit (cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat) [PROOFSTEP] apply preservesLimitOfIsoDiagram _ (diagramIsoCospan _).symm [GOAL] C : Type u_1 inst✝ : Category.{?u.456311, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this✝ : PreservesLimit (cospan ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace).map WalkingCospan.Hom.inr)) (PresheafedSpace.forget CommRingCat) this : PreservesLimit (cospan f g ⋙ forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat) ⊢ PreservesLimit (cospan f g) ((forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) ⋙ PresheafedSpace.forget CommRingCat) [PROOFSTEP] apply Limits.compPreservesLimit [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base ⊢ IsIso pullback.snd [PROOFSTEP] have h1 := @ReflectsIsomorphisms.reflects (F := LocallyRingedSpace.forgetToSheafedSpace) _ _ _ [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base h1 : ∀ {A B : LocallyRingedSpace} (f : A ⟶ B) [inst : IsIso (forgetToSheafedSpace.map f)], IsIso f ⊢ IsIso pullback.snd [PROOFSTEP] refine @h1 _ _ _ ?_ [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base h1 : ∀ {A B : LocallyRingedSpace} (f : A ⟶ B) [inst : IsIso (forgetToSheafedSpace.map f)], IsIso f ⊢ IsIso (forgetToSheafedSpace.map pullback.snd) [PROOFSTEP] clear h1 [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base ⊢ IsIso (forgetToSheafedSpace.map pullback.snd) [PROOFSTEP] have h2 := @ReflectsIsomorphisms.reflects (F := SheafedSpace.forgetToPresheafedSpace (C := CommRingCat)) _ _ _ [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base h2 : ∀ {A B : SheafedSpace CommRingCat} (f : A ⟶ B) [inst : IsIso (SheafedSpace.forgetToPresheafedSpace.map f)], IsIso f ⊢ IsIso (forgetToSheafedSpace.map pullback.snd) [PROOFSTEP] refine @h2 _ _ _ ?_ [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base h2 : ∀ {A B : SheafedSpace CommRingCat} (f : A ⟶ B) [inst : IsIso (SheafedSpace.forgetToPresheafedSpace.map f)], IsIso f ⊢ IsIso (SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map pullback.snd)) [PROOFSTEP] clear h2 [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base ⊢ IsIso (SheafedSpace.forgetToPresheafedSpace.map (forgetToSheafedSpace.map pullback.snd)) [PROOFSTEP] erw [← PreservesPullback.iso_hom_snd (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) f g] -- Porting note : was `inferInstance` [GOAL] C : Type u_1 inst✝ : Category.{?u.478460, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base ⊢ IsIso ((PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace) f g).hom ≫ pullback.snd) [PROOFSTEP] exact @IsIso.comp_isIso _ _ _ _ _ _ _ _ <| PresheafedSpace.IsOpenImmersion.pullback_snd_isIso_of_range_subset _ _ H' [GOAL] C : Type u_1 inst✝ : Category.{?u.483974, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base ⊢ lift f g H' ≫ f = g [PROOFSTEP] haveI := pullback_snd_isIso_of_range_subset f g H' [GOAL] C : Type u_1 inst✝ : Category.{?u.483974, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this : IsIso pullback.snd ⊢ lift f g H' ≫ f = g [PROOFSTEP] erw [Category.assoc] [GOAL] C : Type u_1 inst✝ : Category.{?u.483974, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this : IsIso pullback.snd ⊢ inv pullback.snd ≫ pullback.fst ≫ f = g [PROOFSTEP] rw [IsIso.inv_comp_eq] [GOAL] C : Type u_1 inst✝ : Category.{?u.483974, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this : IsIso pullback.snd ⊢ pullback.fst ≫ f = pullback.snd ≫ g [PROOFSTEP] exact pullback.condition [GOAL] C : Type u_1 inst✝ : Category.{?u.485962, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base l : Y ⟶ X hl : l ≫ f = g ⊢ l = lift f g H' [PROOFSTEP] rw [← cancel_mono f, hl, lift_fac] [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base ⊢ Set.range ↑(lift f g H').val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] have := pullback_snd_isIso_of_range_subset f g H' [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this : IsIso pullback.snd ⊢ Set.range ↑(lift f g H').val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] dsimp only [lift] [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this : IsIso pullback.snd ⊢ Set.range ↑(inv pullback.snd ≫ pullback.fst).val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] have : _ = (pullback.fst : pullback f g ⟶ _).val.base := PreservesPullback.iso_hom_fst (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _) f g [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Set.range ↑(inv pullback.snd ≫ pullback.fst).val.base = ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] rw [LocallyRingedSpace.comp_val, SheafedSpace.comp_base, ← this, ← Category.assoc, coe_comp] [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Set.range (↑pullback.fst ∘ ↑((inv pullback.snd).val.base ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom)) = ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ] -- Porting note : change `rw` to `erw` on this lemma [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Set.range ↑pullback.fst = ↑f.val.base ⁻¹' Set.range ↑g.val.base C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Function.Surjective ↑((inv pullback.snd).val.base ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom) [PROOFSTEP] erw [TopCat.pullback_fst_range] [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ {x | ∃ y, ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x = ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} = ↑f.val.base ⁻¹' Set.range ↑g.val.base C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Function.Surjective ↑((inv pullback.snd).val.base ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom) [PROOFSTEP] ext [GOAL] case h C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X) ⊢ x✝ ∈ {x | ∃ y, ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x = ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} ↔ x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Function.Surjective ↑((inv pullback.snd).val.base ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom) [PROOFSTEP] constructor [GOAL] case h.mp C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X) ⊢ x✝ ∈ {x | ∃ y, ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x = ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} → x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] rintro ⟨y, eq⟩ [GOAL] case h.mp.intro C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X) y : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj Y) eq : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x✝ = ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y ⊢ x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base [PROOFSTEP] exact ⟨y, eq.symm⟩ [GOAL] case h.mpr C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X) ⊢ x✝ ∈ ↑f.val.base ⁻¹' Set.range ↑g.val.base → x✝ ∈ {x | ∃ y, ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x = ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} [PROOFSTEP] rintro ⟨y, eq⟩ [GOAL] case h.mpr.intro C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base x✝ : ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).obj X) y : (forget TopCat).obj ↑Y.toPresheafedSpace eq : ↑g.val.base y = ↑f.val.base x✝ ⊢ x✝ ∈ {x | ∃ y, ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map f) x = ↑((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map g) y} [PROOFSTEP] exact ⟨y, eq.symm⟩ [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Function.Surjective ↑((inv pullback.snd).val.base ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom) [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Epi ((inv pullback.snd).val.base ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom) [PROOFSTEP] rw [show (inv (pullback.snd : pullback f g ⟶ _)).val.base = _ from (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _).map_inv _] [GOAL] C : Type u_1 inst✝ : Category.{?u.486426, u_1} C X Y Z : LocallyRingedSpace f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f H' : Set.range ↑g.val.base ⊆ Set.range ↑f.val.base this✝ : IsIso pullback.snd this : (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom ≫ pullback.fst = pullback.fst.val.base ⊢ Epi (inv ((forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).map pullback.snd) ≫ (PreservesPullback.iso (forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) f g).hom) [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝ : Category.{?u.495051, u_1} C X Y : LocallyRingedSpace f : X ⟶ Y H : IsOpenImmersion f ⊢ X ≅ restrict Y (_ : OpenEmbedding ↑f.val.base) [PROOFSTEP] apply LocallyRingedSpace.isoOfSheafedSpaceIso [GOAL] case f C : Type u_1 inst✝ : Category.{?u.495051, u_1} C X Y : LocallyRingedSpace f : X ⟶ Y H : IsOpenImmersion f ⊢ X.toSheafedSpace ≅ (restrict Y (_ : OpenEmbedding ↑f.val.base)).toSheafedSpace [PROOFSTEP] refine' SheafedSpace.forgetToPresheafedSpace.preimageIso _ [GOAL] case f C : Type u_1 inst✝ : Category.{?u.495051, u_1} C X Y : LocallyRingedSpace f : X ⟶ Y H : IsOpenImmersion f ⊢ SheafedSpace.forgetToPresheafedSpace.obj X.toSheafedSpace ≅ SheafedSpace.forgetToPresheafedSpace.obj (restrict Y (_ : OpenEmbedding ↑f.val.base)).toSheafedSpace [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.isoRestrict H
{"mathlib_filename": "Mathlib.AlgebraicGeometry.OpenImmersion.Basic", "llama_tokens": 118732}
[GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β ⊢ ∀ {x y : Set γ}, x ∈ {s | ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ s} → y ∈ {s | ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ s} → x ∩ y ∈ {s | ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ s} [PROOFSTEP] simp only [exists_prop, Set.mem_setOf_eq, subset_inter_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β ⊢ ∀ {x y : Set γ}, (∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ x) → (∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ y) → ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ x ∧ image2 m u v ⊆ y [PROOFSTEP] rintro _ _ ⟨s₁, s₂, hs₁, hs₂, hs⟩ ⟨t₁, t₂, ht₁, ht₂, ht⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β x✝ y✝ : Set γ s₁ : Set α s₂ : Set β hs₁ : s₁ ∈ f hs₂ : s₂ ∈ g hs : image2 m s₁ s₂ ⊆ x✝ t₁ : Set α t₂ : Set β ht₁ : t₁ ∈ f ht₂ : t₂ ∈ g ht : image2 m t₁ t₂ ⊆ y✝ ⊢ ∃ u v, u ∈ f ∧ v ∈ g ∧ image2 m u v ⊆ x✝ ∧ image2 m u v ⊆ y✝ [PROOFSTEP] exact ⟨s₁ ∩ t₁, s₂ ∩ t₂, inter_sets f hs₁ ht₁, inter_sets g hs₂ ht₂, (image2_subset (inter_subset_left _ _) <| inter_subset_left _ _).trans hs, (image2_subset (inter_subset_right _ _) <| inter_subset_right _ _).trans ht⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β ⊢ map (fun p => m p.fst p.snd) (f ×ˢ g) = map₂ m f g [PROOFSTEP] ext s [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β s : Set γ ⊢ s ∈ map (fun p => m p.fst p.snd) (f ×ˢ g) ↔ s ∈ map₂ m f g [PROOFSTEP] simp [mem_prod_iff, prod_subset_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ f : Filter α g : Filter β ⊢ map₂ Prod.mk f g = f ×ˢ g [PROOFSTEP] simp only [← map_prod_eq_map₂, map_id'] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ map₂ m f g = ⊥ ↔ f = ⊥ ∨ g = ⊥ [PROOFSTEP] simp only [← empty_mem_iff_bot, mem_map₂_iff, subset_empty_iff, image2_eq_empty_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) ↔ ∅ ∈ f ∨ ∅ ∈ g [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ (∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅)) → ∅ ∈ f ∨ ∅ ∈ g [PROOFSTEP] rintro ⟨s, t, hs, ht, rfl | rfl⟩ [GOAL] case mp.intro.intro.intro.intro.inl α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t✝ t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ t : Set β ht : t ∈ g hs : ∅ ∈ f ⊢ ∅ ∈ f ∨ ∅ ∈ g [PROOFSTEP] exact Or.inl hs [GOAL] case mp.intro.intro.intro.intro.inr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ s : Set α hs : s ∈ f ht : ∅ ∈ g ⊢ ∅ ∈ f ∨ ∅ ∈ g [PROOFSTEP] exact Or.inr ht [GOAL] case mpr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ ∅ ∈ f ∨ ∅ ∈ g → ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅) [PROOFSTEP] rintro (h | h) [GOAL] case mpr.inl α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ h : ∅ ∈ f ⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅) [PROOFSTEP] exact ⟨_, _, h, univ_mem, Or.inl rfl⟩ [GOAL] case mpr.inr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ h : ∅ ∈ g ⊢ ∃ s t, s ∈ f ∧ t ∈ g ∧ (s = ∅ ∨ t = ∅) [PROOFSTEP] exact ⟨_, _, univ_mem, h, Or.inr rfl⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ NeBot (map₂ m f g) ↔ NeBot f ∧ NeBot g [PROOFSTEP] simp_rw [neBot_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ map₂ m f g ≠ ⊥ ↔ f ≠ ⊥ ∧ g ≠ ⊥ [PROOFSTEP] exact map₂_eq_bot_iff.not.trans not_or [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ map₂ m (f₁ ⊔ f₂) g = map₂ m f₁ g ⊔ map₂ m f₂ g [PROOFSTEP] ext u [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ ⊢ u ∈ map₂ m (f₁ ⊔ f₂) g ↔ u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g [PROOFSTEP] constructor [GOAL] case a.mp α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ ⊢ u ∈ map₂ m (f₁ ⊔ f₂) g → u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g [PROOFSTEP] rintro ⟨s, t, ⟨h₁, h₂⟩, ht, hu⟩ [GOAL] case a.mp.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁✝ h₂✝ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s : Set α t : Set β h₁ : s ∈ f₁.sets h₂ : s ∈ f₂.sets ht : t ∈ g hu : image2 m s t ⊆ u ⊢ u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g [PROOFSTEP] exact ⟨mem_of_superset (image2_mem_map₂ h₁ ht) hu, mem_of_superset (image2_mem_map₂ h₂ ht) hu⟩ [GOAL] case a.mpr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ ⊢ u ∈ map₂ m f₁ g ⊔ map₂ m f₂ g → u ∈ map₂ m (f₁ ⊔ f₂) g [PROOFSTEP] rintro ⟨⟨s₁, t₁, hs₁, ht₁, hu₁⟩, s₂, t₂, hs₂, ht₂, hu₂⟩ [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s₁ : Set α t₁ : Set β hs₁ : s₁ ∈ f₁ ht₁ : t₁ ∈ g hu₁ : image2 m s₁ t₁ ⊆ u s₂ : Set α t₂ : Set β hs₂ : s₂ ∈ f₂ ht₂ : t₂ ∈ g hu₂ : image2 m s₂ t₂ ⊆ u ⊢ u ∈ map₂ m (f₁ ⊔ f₂) g [PROOFSTEP] refine' ⟨s₁ ∪ s₂, t₁ ∩ t₂, union_mem_sup hs₁ hs₂, inter_mem ht₁ ht₂, _⟩ [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s₁ : Set α t₁ : Set β hs₁ : s₁ ∈ f₁ ht₁ : t₁ ∈ g hu₁ : image2 m s₁ t₁ ⊆ u s₂ : Set α t₂ : Set β hs₂ : s₂ ∈ f₂ ht₂ : t₂ ∈ g hu₂ : image2 m s₂ t₂ ⊆ u ⊢ image2 m (s₁ ∪ s₂) (t₁ ∩ t₂) ⊆ u [PROOFSTEP] rw [image2_union_left] [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s₁ : Set α t₁ : Set β hs₁ : s₁ ∈ f₁ ht₁ : t₁ ∈ g hu₁ : image2 m s₁ t₁ ⊆ u s₂ : Set α t₂ : Set β hs₂ : s₂ ∈ f₂ ht₂ : t₂ ∈ g hu₂ : image2 m s₂ t₂ ⊆ u ⊢ image2 m s₁ (t₁ ∩ t₂) ∪ image2 m s₂ (t₁ ∩ t₂) ⊆ u [PROOFSTEP] exact union_subset ((image2_subset_left <| inter_subset_left _ _).trans hu₁) ((image2_subset_left <| inter_subset_right _ _).trans hu₂) [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ map₂ m f (g₁ ⊔ g₂) = map₂ m f g₁ ⊔ map₂ m f g₂ [PROOFSTEP] ext u [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ ⊢ u ∈ map₂ m f (g₁ ⊔ g₂) ↔ u ∈ map₂ m f g₁ ⊔ map₂ m f g₂ [PROOFSTEP] constructor [GOAL] case a.mp α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ ⊢ u ∈ map₂ m f (g₁ ⊔ g₂) → u ∈ map₂ m f g₁ ⊔ map₂ m f g₂ [PROOFSTEP] rintro ⟨s, t, hs, ⟨h₁, h₂⟩, hu⟩ [GOAL] case a.mp.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁✝ h₂✝ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s : Set α t : Set β hs : s ∈ f hu : image2 m s t ⊆ u h₁ : t ∈ g₁.sets h₂ : t ∈ g₂.sets ⊢ u ∈ map₂ m f g₁ ⊔ map₂ m f g₂ [PROOFSTEP] exact ⟨mem_of_superset (image2_mem_map₂ hs h₁) hu, mem_of_superset (image2_mem_map₂ hs h₂) hu⟩ [GOAL] case a.mpr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ ⊢ u ∈ map₂ m f g₁ ⊔ map₂ m f g₂ → u ∈ map₂ m f (g₁ ⊔ g₂) [PROOFSTEP] rintro ⟨⟨s₁, t₁, hs₁, ht₁, hu₁⟩, s₂, t₂, hs₂, ht₂, hu₂⟩ [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s₁ : Set α t₁ : Set β hs₁ : s₁ ∈ f ht₁ : t₁ ∈ g₁ hu₁ : image2 m s₁ t₁ ⊆ u s₂ : Set α t₂ : Set β hs₂ : s₂ ∈ f ht₂ : t₂ ∈ g₂ hu₂ : image2 m s₂ t₂ ⊆ u ⊢ u ∈ map₂ m f (g₁ ⊔ g₂) [PROOFSTEP] refine' ⟨s₁ ∩ s₂, t₁ ∪ t₂, inter_mem hs₁ hs₂, union_mem_sup ht₁ ht₂, _⟩ [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s₁ : Set α t₁ : Set β hs₁ : s₁ ∈ f ht₁ : t₁ ∈ g₁ hu₁ : image2 m s₁ t₁ ⊆ u s₂ : Set α t₂ : Set β hs₂ : s₂ ∈ f ht₂ : t₂ ∈ g₂ hu₂ : image2 m s₂ t₂ ⊆ u ⊢ image2 m (s₁ ∩ s₂) (t₁ ∪ t₂) ⊆ u [PROOFSTEP] rw [image2_union_right] [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ s₁ : Set α t₁ : Set β hs₁ : s₁ ∈ f ht₁ : t₁ ∈ g₁ hu₁ : image2 m s₁ t₁ ⊆ u s₂ : Set α t₂ : Set β hs₂ : s₂ ∈ f ht₂ : t₂ ∈ g₂ hu₂ : image2 m s₂ t₂ ⊆ u ⊢ image2 m (s₁ ∩ s₂) t₁ ∪ image2 m (s₁ ∩ s₂) t₂ ⊆ u [PROOFSTEP] exact union_subset ((image2_subset_right <| inter_subset_left _ _).trans hu₁) ((image2_subset_right <| inter_subset_right _ _).trans hu₂) [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ h : u ∈ map (fun b => m a b) g ⊢ image2 m {a} ((fun b => m a b) ⁻¹' u) ⊆ u [PROOFSTEP] rw [image2_singleton_left, image_subset_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ u : Set γ h : u ∈ map (fun a => m a b) f ⊢ image2 m ((fun a => m a b) ⁻¹' u) {b} ⊆ u [PROOFSTEP] rw [image2_singleton_right, image_subset_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ ⊢ map₂ m (pure a) (pure b) = pure (m a b) [PROOFSTEP] rw [map₂_pure_right, map_pure] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β ⊢ map₂ m f g = map₂ (fun a b => m b a) g f [PROOFSTEP] ext u [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ ⊢ u ∈ map₂ m f g ↔ u ∈ map₂ (fun a b => m b a) g f [PROOFSTEP] constructor [GOAL] case a.mp α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ ⊢ u ∈ map₂ m f g → u ∈ map₂ (fun a b => m b a) g f [PROOFSTEP] rintro ⟨s, t, hs, ht, hu⟩ [GOAL] case a.mpr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ ⊢ u ∈ map₂ (fun a b => m b a) g f → u ∈ map₂ m f g [PROOFSTEP] rintro ⟨s, t, hs, ht, hu⟩ [GOAL] case a.mp.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ s : Set α t : Set β hs : s ∈ f ht : t ∈ g hu : image2 m s t ⊆ u ⊢ u ∈ map₂ (fun a b => m b a) g f [PROOFSTEP] refine' ⟨t, s, ht, hs, by rwa [image2_swap]⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ s : Set α t : Set β hs : s ∈ f ht : t ∈ g hu : image2 m s t ⊆ u ⊢ image2 (fun a b => m b a) t s ⊆ u [PROOFSTEP] rwa [image2_swap] [GOAL] case a.mpr.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ s : Set β t : Set α hs : s ∈ g ht : t ∈ f hu : image2 (fun a b => m b a) s t ⊆ u ⊢ u ∈ map₂ m f g [PROOFSTEP] refine' ⟨t, s, ht, hs, by rwa [image2_swap]⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → β → γ f : Filter α g : Filter β u : Set γ s : Set β t : Set α hs : s ∈ g ht : t ∈ f hu : image2 (fun a b => m b a) s t ⊆ u ⊢ image2 m t s ⊆ u [PROOFSTEP] rwa [image2_swap] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ h : NeBot g ⊢ map₂ (fun x x_1 => x) f g = f [PROOFSTEP] ext u [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ h : NeBot g u : Set α ⊢ u ∈ map₂ (fun x x_1 => x) f g ↔ u ∈ f [PROOFSTEP] refine' ⟨_, fun hu => ⟨_, _, hu, univ_mem, (image2_left <| h.nonempty_of_mem univ_mem).subset⟩⟩ [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ h : NeBot g u : Set α ⊢ u ∈ map₂ (fun x x_1 => x) f g → u ∈ f [PROOFSTEP] rintro ⟨s, t, hs, ht, hu⟩ [GOAL] case a.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ h : NeBot g u s : Set α t : Set β hs : s ∈ f ht : t ∈ g hu : image2 (fun x x_1 => x) s t ⊆ u ⊢ u ∈ f [PROOFSTEP] rw [image2_left (h.nonempty_of_mem ht)] at hu [GOAL] case a.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ h : NeBot g u s : Set α t : Set β hs : s ∈ f ht : t ∈ g hu : s ⊆ u ⊢ u ∈ f [PROOFSTEP] exact mem_of_superset hs hu [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ h : NeBot f ⊢ map₂ (fun x y => y) f g = g [PROOFSTEP] rw [map₂_swap, map₂_left h] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ → δ f : Filter α g : Filter β h : Filter γ ⊢ ∀ {x y : Set δ}, x ∈ {s | ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ s} → y ∈ {s | ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ s} → x ∩ y ∈ {s | ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ s} [PROOFSTEP] simp only [exists_prop, mem_setOf_eq, subset_inter_iff] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ → δ f : Filter α g : Filter β h : Filter γ ⊢ ∀ {x y : Set δ}, (∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ x) → (∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ y) → ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ x ∧ image3 m u v w ⊆ y [PROOFSTEP] rintro _ _ ⟨s₁, s₂, s₃, hs₁, hs₂, hs₃, hs⟩ ⟨t₁, t₂, t₃, ht₁, ht₂, ht₃, ht⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ → δ f : Filter α g : Filter β h : Filter γ x✝ y✝ : Set δ s₁ : Set α s₂ : Set β s₃ : Set γ hs₁ : s₁ ∈ f hs₂ : s₂ ∈ g hs₃ : s₃ ∈ h hs : image3 m s₁ s₂ s₃ ⊆ x✝ t₁ : Set α t₂ : Set β t₃ : Set γ ht₁ : t₁ ∈ f ht₂ : t₂ ∈ g ht₃ : t₃ ∈ h ht : image3 m t₁ t₂ t₃ ⊆ y✝ ⊢ ∃ u v w, u ∈ f ∧ v ∈ g ∧ w ∈ h ∧ image3 m u v w ⊆ x✝ ∧ image3 m u v w ⊆ y✝ [PROOFSTEP] exact ⟨s₁ ∩ t₁, s₂ ∩ t₂, s₃ ∩ t₃, inter_mem hs₁ ht₁, inter_mem hs₂ ht₂, inter_mem hs₃ ht₃, (image3_mono (inter_subset_left _ _) (inter_subset_left _ _) <| inter_subset_left _ _).trans hs, (image3_mono (inter_subset_right _ _) (inter_subset_right _ _) <| inter_subset_right _ _).trans ht⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ ⊢ map₂ m (map₂ n f g) h = map₃ (fun a b c => m (n a b) c) f g h [PROOFSTEP] ext w [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε ⊢ w ∈ map₂ m (map₂ n f g) h ↔ w ∈ map₃ (fun a b c => m (n a b) c) f g h [PROOFSTEP] constructor [GOAL] case a.mp α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε ⊢ w ∈ map₂ m (map₂ n f g) h → w ∈ map₃ (fun a b c => m (n a b) c) f g h [PROOFSTEP] rintro ⟨s, t, ⟨u, v, hu, hv, hs⟩, ht, hw⟩ [GOAL] case a.mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε s : Set δ t : Set γ u : Set α v : Set β hu : u ∈ f hv : v ∈ g hs : image2 n u v ⊆ s ht : t ∈ h hw : image2 m s t ⊆ w ⊢ w ∈ map₃ (fun a b c => m (n a b) c) f g h [PROOFSTEP] refine' ⟨u, v, t, hu, hv, ht, _⟩ [GOAL] case a.mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε s : Set δ t : Set γ u : Set α v : Set β hu : u ∈ f hv : v ∈ g hs : image2 n u v ⊆ s ht : t ∈ h hw : image2 m s t ⊆ w ⊢ image3 (fun a b c => m (n a b) c) u v t ⊆ w [PROOFSTEP] rw [← image2_image2_left] [GOAL] case a.mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε s : Set δ t : Set γ u : Set α v : Set β hu : u ∈ f hv : v ∈ g hs : image2 n u v ⊆ s ht : t ∈ h hw : image2 m s t ⊆ w ⊢ image2 m (image2 (fun a b => n a b) u v) t ⊆ w [PROOFSTEP] exact (image2_subset_right hs).trans hw [GOAL] case a.mpr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε ⊢ w ∈ map₃ (fun a b c => m (n a b) c) f g h → w ∈ map₂ m (map₂ n f g) h [PROOFSTEP] rintro ⟨s, t, u, hs, ht, hu, hw⟩ [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε s : Set α t : Set β u : Set γ hs : s ∈ f ht : t ∈ g hu : u ∈ h hw : image3 (fun a b c => m (n a b) c) s t u ⊆ w ⊢ w ∈ map₂ m (map₂ n f g) h [PROOFSTEP] exact ⟨_, u, image2_mem_map₂ hs ht, hu, by rwa [image2_image2_left]⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ w : Set ε s : Set α t : Set β u : Set γ hs : s ∈ f ht : t ∈ g hu : u ∈ h hw : image3 (fun a b c => m (n a b) c) s t u ⊆ w ⊢ image2 m (image2 n s t) u ⊆ w [PROOFSTEP] rwa [image2_image2_left] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ ⊢ map₂ m f (map₂ n g h) = map₃ (fun a b c => m a (n b c)) f g h [PROOFSTEP] ext w [GOAL] case a α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε ⊢ w ∈ map₂ m f (map₂ n g h) ↔ w ∈ map₃ (fun a b c => m a (n b c)) f g h [PROOFSTEP] constructor [GOAL] case a.mp α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε ⊢ w ∈ map₂ m f (map₂ n g h) → w ∈ map₃ (fun a b c => m a (n b c)) f g h [PROOFSTEP] rintro ⟨s, t, hs, ⟨u, v, hu, hv, ht⟩, hw⟩ [GOAL] case a.mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε s : Set α t : Set δ hs : s ∈ f hw : image2 m s t ⊆ w u : Set β v : Set γ hu : u ∈ g hv : v ∈ h ht : image2 n u v ⊆ t ⊢ w ∈ map₃ (fun a b c => m a (n b c)) f g h [PROOFSTEP] refine' ⟨s, u, v, hs, hu, hv, _⟩ [GOAL] case a.mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε s : Set α t : Set δ hs : s ∈ f hw : image2 m s t ⊆ w u : Set β v : Set γ hu : u ∈ g hv : v ∈ h ht : image2 n u v ⊆ t ⊢ image3 (fun a b c => m a (n b c)) s u v ⊆ w [PROOFSTEP] rw [← image2_image2_right] [GOAL] case a.mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε s : Set α t : Set δ hs : s ∈ f hw : image2 m s t ⊆ w u : Set β v : Set γ hu : u ∈ g hv : v ∈ h ht : image2 n u v ⊆ t ⊢ image2 (fun a => m a) s (image2 (fun b c => n b c) u v) ⊆ w [PROOFSTEP] exact (image2_subset_left ht).trans hw [GOAL] case a.mpr α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε ⊢ w ∈ map₃ (fun a b c => m a (n b c)) f g h → w ∈ map₂ m f (map₂ n g h) [PROOFSTEP] rintro ⟨s, t, u, hs, ht, hu, hw⟩ [GOAL] case a.mpr.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε s : Set α t : Set β u : Set γ hs : s ∈ f ht : t ∈ g hu : u ∈ h hw : image3 (fun a b c => m a (n b c)) s t u ⊆ w ⊢ w ∈ map₂ m f (map₂ n g h) [PROOFSTEP] exact ⟨s, _, hs, image2_mem_map₂ ht hu, by rwa [image2_image2_right]⟩ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t✝ t₁ t₂ : Set β u✝ : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ w : Set ε s : Set α t : Set β u : Set γ hs : s ∈ f ht : t ∈ g hu : u ∈ h hw : image3 (fun a b c => m a (n b c)) s t u ⊆ w ⊢ image2 m s (image2 n t u) ⊆ w [PROOFSTEP] rwa [image2_image2_right] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ n : γ → δ ⊢ map n (map₂ m f g) = map₂ (fun a b => n (m a b)) f g [PROOFSTEP] rw [← map_prod_eq_map₂, ← map_prod_eq_map₂, map_map] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → β → γ n : γ → δ ⊢ map (n ∘ fun p => m p.fst p.snd) (f ×ˢ g) = map (fun p => n (m p.fst p.snd)) (f ×ˢ g) [PROOFSTEP] rfl [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : γ → β → δ n : α → γ ⊢ map₂ m (map n f) g = map₂ (fun a b => m (n a) b) f g [PROOFSTEP] rw [← map_prod_eq_map₂, ← map_prod_eq_map₂, ← @map_id _ g, prod_map_map_eq, map_map, map_id] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : γ → β → δ n : α → γ ⊢ map ((fun p => m p.fst p.snd) ∘ fun p => (n p.fst, id p.snd)) (f ×ˢ g) = map (fun p => m (n p.fst) p.snd) (f ×ˢ g) [PROOFSTEP] rfl [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → γ → δ n : β → γ ⊢ map₂ m f (map n g) = map₂ (fun a b => m a (n b)) f g [PROOFSTEP] rw [map₂_swap, map₂_map_left, map₂_swap] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m' : α → ε' → ε n' : β → γ → ε' h : Filter γ h_assoc : ∀ (a : α) (b : β) (c : γ), m (n a b) c = m' a (n' b c) ⊢ map₂ m (map₂ n f g) h = map₂ m' f (map₂ n' g h) [PROOFSTEP] simp only [map₂_map₂_left, map₂_map₂_right, h_assoc] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ n : β → α → γ h_comm : ∀ (a : α) (b : β), m a b = n b a ⊢ map₂ (fun a b => m b a) g f = map₂ n g f [PROOFSTEP] simp_rw [h_comm] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m' : α → γ → δ' n' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c) ⊢ map₂ m f (map₂ n g h) = map₂ n' g (map₂ m' f h) [PROOFSTEP] rw [map₂_swap m', map₂_swap m] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m' : α → γ → δ' n' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' b (m' a c) ⊢ map₂ (fun a b => m b a) (map₂ n g h) f = map₂ n' g (map₂ (fun a b => m' b a) h f) [PROOFSTEP] exact map₂_assoc fun _ _ _ => h_left_comm _ _ _ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m' : α → γ → δ' n' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m' a c) b ⊢ map₂ m (map₂ n f g) h = map₂ n' (map₂ m' f h) g [PROOFSTEP] rw [map₂_swap n, map₂_swap n'] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m' : α → γ → δ' n' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m' a c) b ⊢ map₂ m (map₂ (fun a b => n b a) g f) h = map₂ (fun a b => n' b a) g (map₂ m' f h) [PROOFSTEP] exact map₂_assoc fun _ _ _ => h_right_comm _ _ _ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ n : γ → δ m' : α' → β' → δ n₁ : α → α' n₂ : β → β' h_distrib : ∀ (a : α) (b : β), n (m a b) = m' (n₁ a) (n₂ b) ⊢ map n (map₂ m f g) = map₂ m' (map n₁ f) (map n₂ g) [PROOFSTEP] simp_rw [map_map₂, map₂_map_left, map₂_map_right, h_distrib] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m₁ : α → β → β' m₂ : α → γ → γ' n' : β' → γ' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c) ⊢ map₂ m f (map₂ n g h) ≤ map₂ n' (map₂ m₁ f g) (map₂ m₂ f h) [PROOFSTEP] rintro s ⟨t₁, t₂, ⟨u₁, v, hu₁, hv, ht₁⟩, ⟨u₂, w, hu₂, hw, ht₂⟩, hs⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m₁ : α → β → β' m₂ : α → γ → γ' n' : β' → γ' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c) s : Set ε t₁ : Set β' t₂ : Set γ' u₁ : Set α v : Set β hu₁ : u₁ ∈ f hv : v ∈ g ht₁ : image2 m₁ u₁ v ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s u₂ : Set α w : Set γ hu₂ : u₂ ∈ f hw : w ∈ h ht₂ : image2 m₂ u₂ w ⊆ t₂ ⊢ s ∈ map₂ m f (map₂ n g h) [PROOFSTEP] refine' ⟨u₁ ∩ u₂, _, inter_mem hu₁ hu₂, image2_mem_map₂ hv hw, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m₁ : α → β → β' m₂ : α → γ → γ' n' : β' → γ' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c) s : Set ε t₁ : Set β' t₂ : Set γ' u₁ : Set α v : Set β hu₁ : u₁ ∈ f hv : v ∈ g ht₁ : image2 m₁ u₁ v ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s u₂ : Set α w : Set γ hu₂ : u₂ ∈ f hw : w ∈ h ht₂ : image2 m₂ u₂ w ⊆ t₂ ⊢ image2 m (u₁ ∩ u₂) (image2 n v w) ⊆ s [PROOFSTEP] refine' (image2_distrib_subset_left h_distrib).trans ((image2_subset _ _).trans hs) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m₁ : α → β → β' m₂ : α → γ → γ' n' : β' → γ' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c) s : Set ε t₁ : Set β' t₂ : Set γ' u₁ : Set α v : Set β hu₁ : u₁ ∈ f hv : v ∈ g ht₁ : image2 m₁ u₁ v ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s u₂ : Set α w : Set γ hu₂ : u₂ ∈ f hw : w ∈ h ht₂ : image2 m₂ u₂ w ⊆ t₂ ⊢ image2 (fun a b => m₁ a b) (u₁ ∩ u₂) v ⊆ t₁ [PROOFSTEP] exact (image2_subset_right <| inter_subset_left _ _).trans ht₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u : Set γ v✝ : Set δ a : α b : β c : γ m : α → δ → ε n : β → γ → δ m₁ : α → β → β' m₂ : α → γ → γ' n' : β' → γ' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m a (n b c) = n' (m₁ a b) (m₂ a c) s : Set ε t₁ : Set β' t₂ : Set γ' u₁ : Set α v : Set β hu₁ : u₁ ∈ f hv : v ∈ g ht₁ : image2 m₁ u₁ v ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s u₂ : Set α w : Set γ hu₂ : u₂ ∈ f hw : w ∈ h ht₂ : image2 m₂ u₂ w ⊆ t₂ ⊢ image2 (fun a c => m₂ a c) (u₁ ∩ u₂) w ⊆ t₂ [PROOFSTEP] exact (image2_subset_right <| inter_subset_right _ _).trans ht₂ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m₁ : α → γ → α' m₂ : β → γ → β' n' : α' → β' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c) ⊢ map₂ m (map₂ n f g) h ≤ map₂ n' (map₂ m₁ f h) (map₂ m₂ g h) [PROOFSTEP] rintro s ⟨t₁, t₂, ⟨u, w₁, hu, hw₁, ht₁⟩, ⟨v, w₂, hv, hw₂, ht₂⟩, hs⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m₁ : α → γ → α' m₂ : β → γ → β' n' : α' → β' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c) s : Set ε t₁ : Set α' t₂ : Set β' u : Set α w₁ : Set γ hu : u ∈ f hw₁ : w₁ ∈ h ht₁ : image2 m₁ u w₁ ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s v : Set β w₂ : Set γ hv : v ∈ g hw₂ : w₂ ∈ h ht₂ : image2 m₂ v w₂ ⊆ t₂ ⊢ s ∈ map₂ m (map₂ n f g) h [PROOFSTEP] refine' ⟨_, w₁ ∩ w₂, image2_mem_map₂ hu hv, inter_mem hw₁ hw₂, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m₁ : α → γ → α' m₂ : β → γ → β' n' : α' → β' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c) s : Set ε t₁ : Set α' t₂ : Set β' u : Set α w₁ : Set γ hu : u ∈ f hw₁ : w₁ ∈ h ht₁ : image2 m₁ u w₁ ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s v : Set β w₂ : Set γ hv : v ∈ g hw₂ : w₂ ∈ h ht₂ : image2 m₂ v w₂ ⊆ t₂ ⊢ image2 m (image2 n u v) (w₁ ∩ w₂) ⊆ s [PROOFSTEP] refine' (image2_distrib_subset_right h_distrib).trans ((image2_subset _ _).trans hs) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m₁ : α → γ → α' m₂ : β → γ → β' n' : α' → β' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c) s : Set ε t₁ : Set α' t₂ : Set β' u : Set α w₁ : Set γ hu : u ∈ f hw₁ : w₁ ∈ h ht₁ : image2 m₁ u w₁ ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s v : Set β w₂ : Set γ hv : v ∈ g hw₂ : w₂ ∈ h ht₂ : image2 m₂ v w₂ ⊆ t₂ ⊢ image2 (fun a c => m₁ a c) u (w₁ ∩ w₂) ⊆ t₁ [PROOFSTEP] exact (image2_subset_left <| inter_subset_left _ _).trans ht₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m✝ : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s✝ s₁ s₂ : Set α t t₁✝ t₂✝ : Set β u✝ : Set γ v✝ : Set δ a : α b : β c : γ m : δ → γ → ε n : α → β → δ m₁ : α → γ → α' m₂ : β → γ → β' n' : α' → β' → ε h_distrib : ∀ (a : α) (b : β) (c : γ), m (n a b) c = n' (m₁ a c) (m₂ b c) s : Set ε t₁ : Set α' t₂ : Set β' u : Set α w₁ : Set γ hu : u ∈ f hw₁ : w₁ ∈ h ht₁ : image2 m₁ u w₁ ⊆ t₁ hs : image2 n' t₁ t₂ ⊆ s v : Set β w₂ : Set γ hv : v ∈ g hw₂ : w₂ ∈ h ht₂ : image2 m₂ v w₂ ⊆ t₂ ⊢ image2 (fun b c => m₂ b c) v (w₁ ∩ w₂) ⊆ t₂ [PROOFSTEP] exact (image2_subset_left <| inter_subset_right _ _).trans ht₂ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ n : γ → δ m' : β' → α' → δ n₁ : β → β' n₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), n (m a b) = m' (n₁ b) (n₂ a) ⊢ map n (map₂ m f g) = map₂ m' (map n₁ g) (map n₂ f) [PROOFSTEP] rw [map₂_swap m] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f f₁ f₂ : Filter α g g₁ g₂ : Filter β h h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b : β c : γ n : γ → δ m' : β' → α' → δ n₁ : β → β' n₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), n (m a b) = m' (n₁ b) (n₂ a) ⊢ map n (map₂ (fun a b => m b a) g f) = map₂ m' (map n₁ g) (map n₂ f) [PROOFSTEP] exact map_map₂_distrib fun _ _ => h_antidistrib _ _ [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a✝ : α b : β c : γ f : α → β → β a : α h : ∀ (b : β), f a b = b l : Filter β ⊢ map₂ f (pure a) l = l [PROOFSTEP] rw [map₂_pure_left, show f a = id from funext h, map_id] [GOAL] α : Type u_1 α' : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 δ : Type u_7 δ' : Type u_8 ε : Type u_9 ε' : Type u_10 m : α → β → γ f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β h✝ h₁ h₂ : Filter γ s s₁ s₂ : Set α t t₁ t₂ : Set β u : Set γ v : Set δ a : α b✝ : β c : γ f : α → β → α b : β h : ∀ (a : α), f a b = a l : Filter α ⊢ map₂ f l (pure b) = l [PROOFSTEP] rw [map₂_pure_right, funext h, map_id']
{"mathlib_filename": "Mathlib.Order.Filter.NAry", "llama_tokens": 29215}
[GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atTop, p x ⊢ ∀ᶠ (n : ℕ) in atTop, p ↑n [PROOFSTEP] rw [← Nat.comap_cast_atTop (R := R)] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedSemiring R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atTop, p x ⊢ ∀ᶠ (n : ℕ) in Filter.comap Nat.cast atTop, p ↑n [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R r : R n : ℕ hn : r ≤ ↑n ⊢ r ≤ ↑↑n [PROOFSTEP] exact_mod_cast hn [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R r : R n : ℕ hn : -r ≤ ↑n ⊢ ↑(-↑n) ≤ r [PROOFSTEP] simpa [neg_le] using hn [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R f : α → ℤ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto f l atTop [PROOFSTEP] rw [← @Int.comap_cast_atTop R, tendsto_comap_iff] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R f : α → ℤ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto (Int.cast ∘ f) l atTop [PROOFSTEP] rfl [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R f : α → ℤ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto f l atBot [PROOFSTEP] rw [← @Int.comap_cast_atBot R, tendsto_comap_iff] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R f : α → ℤ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto (Int.cast ∘ f) l atBot [PROOFSTEP] rfl [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atTop, p x ⊢ ∀ᶠ (n : ℤ) in atTop, p ↑n [PROOFSTEP] rw [← Int.comap_cast_atTop (R := R)] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atTop, p x ⊢ ∀ᶠ (n : ℤ) in Filter.comap Int.cast atTop, p ↑n [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atBot, p x ⊢ ∀ᶠ (n : ℤ) in atBot, p ↑n [PROOFSTEP] rw [← Int.comap_cast_atBot (R := R)] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : StrictOrderedRing R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atBot, p x ⊢ ∀ᶠ (n : ℤ) in Filter.comap Int.cast atBot, p ↑n [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R r : R n : ℕ hn : r ≤ ↑n ⊢ r ≤ ↑↑n [PROOFSTEP] simpa [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R r : R n : ℕ hn : -r ≤ ↑n ⊢ ↑(-↑n) ≤ r [PROOFSTEP] simpa [neg_le] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R f : α → ℚ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto f l atTop [PROOFSTEP] rw [← @Rat.comap_cast_atTop R, tendsto_comap_iff] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R f : α → ℚ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto (Rat.cast ∘ f) l atTop [PROOFSTEP] rfl [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R f : α → ℚ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto f l atBot [PROOFSTEP] rw [← @Rat.comap_cast_atBot R, tendsto_comap_iff] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R f : α → ℚ l : Filter α ⊢ Tendsto (fun n => ↑(f n)) l atBot ↔ Tendsto (Rat.cast ∘ f) l atBot [PROOFSTEP] rfl [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atTop, p x ⊢ ∀ᶠ (n : ℚ) in atTop, p ↑n [PROOFSTEP] rw [← Rat.comap_cast_atTop (R := R)] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atTop, p x ⊢ ∀ᶠ (n : ℚ) in Filter.comap Rat.cast atTop, p ↑n [PROOFSTEP] exact h.comap _ [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atBot, p x ⊢ ∀ᶠ (n : ℚ) in atBot, p ↑n [PROOFSTEP] rw [← Rat.comap_cast_atBot (R := R)] [GOAL] α : Type u_1 R : Type u_2 inst✝¹ : LinearOrderedField R inst✝ : Archimedean R p : R → Prop h : ∀ᶠ (x : R) in atBot, p x ⊢ ∀ᶠ (n : ℚ) in Filter.comap Rat.cast atBot, p ↑n [PROOFSTEP] exact h.comap _ -- porting note: new lemma [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => r * f x) l atTop [PROOFSTEP] refine' tendsto_atTop.2 fun b => _ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R ⊢ ∀ᶠ (a : α) in l, b ≤ r * f a [PROOFSTEP] obtain ⟨n : ℕ, hn : 1 ≤ n • r⟩ := Archimedean.arch 1 hr [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r ⊢ ∀ᶠ (a : α) in l, b ≤ r * f a [PROOFSTEP] rw [nsmul_eq_mul'] at hn [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n ⊢ ∀ᶠ (a : α) in l, b ≤ r * f a [PROOFSTEP] filter_upwards [tendsto_atTop.1 hf (n * max b 0)] with x hx [GOAL] case h α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ b ≤ r * f x [PROOFSTEP] calc b ≤ 1 * max b 0 := by { rw [one_mul] exact le_max_left _ _ } _ ≤ r * n * max b 0 := by gcongr _ = r * (n * max b 0) := by rw [mul_assoc] _ ≤ r * f x := by gcongr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ b ≤ 1 * max b 0 [PROOFSTEP] { rw [one_mul] exact le_max_left _ _ } [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ b ≤ 1 * max b 0 [PROOFSTEP] rw [one_mul] [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ b ≤ max b 0 [PROOFSTEP] exact le_max_left _ _ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ 1 * max b 0 ≤ r * ↑n * max b 0 [PROOFSTEP] gcongr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ r * ↑n * max b 0 = r * (↑n * max b 0) [PROOFSTEP] rw [mul_assoc] [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ r * ↑n x : α hx : ↑n * max b 0 ≤ f x ⊢ r * (↑n * max b 0) ≤ r * f x [PROOFSTEP] gcongr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x * r) l atTop [PROOFSTEP] refine' tendsto_atTop.2 fun b => _ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R ⊢ ∀ᶠ (a : α) in l, b ≤ f a * r [PROOFSTEP] obtain ⟨n : ℕ, hn : 1 ≤ n • r⟩ := Archimedean.arch 1 hr [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r ⊢ ∀ᶠ (a : α) in l, b ≤ f a * r [PROOFSTEP] have hn' : 1 ≤ (n : R) * r := by rwa [nsmul_eq_mul] at hn [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r ⊢ 1 ≤ ↑n * r [PROOFSTEP] rwa [nsmul_eq_mul] at hn [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r ⊢ ∀ᶠ (a : α) in l, b ≤ f a * r [PROOFSTEP] filter_upwards [tendsto_atTop.1 hf (max b 0 * n)] with x hx [GOAL] case h α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ b ≤ f x * r [PROOFSTEP] calc b ≤ max b 0 * 1 := by { rw [mul_one] exact le_max_left _ _ } _ ≤ max b 0 * (n * r) := by gcongr _ = max b 0 * n * r := by rw [mul_assoc] _ ≤ f x * r := by gcongr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ b ≤ max b 0 * 1 [PROOFSTEP] { rw [mul_one] exact le_max_left _ _ } [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ b ≤ max b 0 * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ b ≤ max b 0 [PROOFSTEP] exact le_max_left _ _ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ max b 0 * 1 ≤ max b 0 * (↑n * r) [PROOFSTEP] gcongr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ max b 0 * (↑n * r) = max b 0 * ↑n * r [PROOFSTEP] rw [mul_assoc] [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedSemiring R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atTop b : R n : ℕ hn : 1 ≤ n • r hn' : 1 ≤ ↑n * r x : α hx : max b 0 * ↑n ≤ f x ⊢ max b 0 * ↑n * r ≤ f x * r [PROOFSTEP] gcongr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedRing R inst✝ : Archimedean R hr : r < 0 hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x * r) l atBot [PROOFSTEP] simpa only [tendsto_neg_atTop_iff, mul_neg] using hf.atTop_mul_const' (neg_pos.mpr hr) [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedRing R inst✝ : Archimedean R hr : 0 < r hf : Tendsto f l atBot ⊢ Tendsto (fun x => f x * r) l atBot [PROOFSTEP] simp only [← tendsto_neg_atTop_iff, ← neg_mul] at hf ⊢ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedRing R inst✝ : Archimedean R hr : 0 < r hf : Tendsto (fun x => -f x) l atTop ⊢ Tendsto (fun x => -f x * r) l atTop [PROOFSTEP] exact hf.atTop_mul_const' hr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f : α → R r : R inst✝¹ : LinearOrderedRing R inst✝ : Archimedean R hr : r < 0 hf : Tendsto f l atBot ⊢ Tendsto (fun x => f x * r) l atTop [PROOFSTEP] simpa only [mul_neg, tendsto_neg_atBot_iff] using hf.atBot_mul_const' (neg_pos.2 hr) [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x • r) l atTop [PROOFSTEP] refine' tendsto_atTop.mpr fun s => _ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop s : R ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r [PROOFSTEP] obtain ⟨n : ℕ, hn : s ≤ n • r⟩ := Archimedean.arch s hr [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop s : R n : ℕ hn : s ≤ n • r ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r [PROOFSTEP] exact (tendsto_atTop.mp hf n).mono fun a ha => hn.trans (nsmul_le_nsmul hr.le ha) [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℕ hr : r < 0 hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x • r) l atBot [PROOFSTEP] simpa using hf.atTop_nsmul_const (neg_pos.2 hr) [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x • r) l atTop [PROOFSTEP] refine' tendsto_atTop.mpr fun s => _ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto f l atTop s : R ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r [PROOFSTEP] obtain ⟨n : ℕ, hn : s ≤ n • r⟩ := Archimedean.arch s hr [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto f l atTop s : R n : ℕ hn : s ≤ n • r ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r [PROOFSTEP] replace hn : s ≤ (n : ℤ) • r [GOAL] case hn α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto f l atTop s : R n : ℕ hn : s ≤ n • r ⊢ s ≤ ↑n • r [PROOFSTEP] simpa [GOAL] case intro α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto f l atTop s : R n : ℕ hn : s ≤ ↑n • r ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r [PROOFSTEP] exact (tendsto_atTop.mp hf n).mono fun a ha => hn.trans (zsmul_le_zsmul hr.le ha) [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : r < 0 hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x • r) l atBot [PROOFSTEP] simpa using hf.atTop_zsmul_const (neg_pos.2 hr) [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto f l atBot ⊢ Tendsto (fun x => f x • r) l atBot [PROOFSTEP] simp only [← tendsto_neg_atTop_iff, ← neg_zsmul] at hf ⊢ [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : 0 < r hf : Tendsto (fun x => -f x) l atTop ⊢ Tendsto (fun x => -f x • r) l atTop [PROOFSTEP] exact hf.atTop_zsmul_const hr [GOAL] α : Type u_1 R : Type u_2 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedAddCommGroup R inst✝ : Archimedean R f : α → ℤ hr : r < 0 hf : Tendsto f l atBot ⊢ Tendsto (fun x => f x • r) l atTop [PROOFSTEP] simpa using hf.atBot_zsmul_const (neg_pos.2 hr)
{"mathlib_filename": "Mathlib.Order.Filter.Archimedean", "llama_tokens": 8357}
[GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace β inst✝¹ : AddZeroClass β inst✝ : ContinuousAdd β l : Filter α f g : α → β hf : ZeroAtFilter l f hg : ZeroAtFilter l g ⊢ ZeroAtFilter l (f + g) [PROOFSTEP] simpa using hf.add hg [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace β inst✝¹ : AddGroup β inst✝ : ContinuousNeg β l : Filter α f : α → β hf : ZeroAtFilter l f ⊢ ZeroAtFilter l (-f) [PROOFSTEP] simpa using hf.neg [GOAL] α : Type u_1 β : Type u_2 𝕜 : Type u_3 inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMulWithZero 𝕜 β inst✝ : ContinuousSMul 𝕜 β l : Filter α f : α → β c : 𝕜 hf : ZeroAtFilter l f ⊢ ZeroAtFilter l (c • f) [PROOFSTEP] simpa using hf.const_smul c [GOAL] α : Type u_1 β : Type u_2 inst✝ : NormedAddCommGroup β l : Filter α f : α → β hf : ZeroAtFilter l f ⊢ BoundedAtFilter l f [PROOFSTEP] rw [ZeroAtFilter, ← Asymptotics.isLittleO_const_iff (one_ne_zero' ℝ)] at hf [GOAL] α : Type u_1 β : Type u_2 inst✝ : NormedAddCommGroup β l : Filter α f : α → β hf : f =o[l] fun _x => 1 ⊢ BoundedAtFilter l f [PROOFSTEP] exact hf.isBigO [GOAL] α : Type u_1 β : Type u_2 inst✝ : NormedAddCommGroup β l : Filter α f g : α → β hf : BoundedAtFilter l f hg : BoundedAtFilter l g ⊢ BoundedAtFilter l (f + g) [PROOFSTEP] simpa using hf.add hg [GOAL] α : Type u_1 β : Type u_2 inst✝ : NormedField β l : Filter α f g : α → β hf : BoundedAtFilter l f hg : BoundedAtFilter l g ⊢ BoundedAtFilter l (f * g) [PROOFSTEP] refine' (hf.mul hg).trans _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : NormedField β l : Filter α f g : α → β hf : BoundedAtFilter l f hg : BoundedAtFilter l g ⊢ (fun x => OfNat.ofNat 1 x * OfNat.ofNat 1 x) =O[l] 1 [PROOFSTEP] convert Asymptotics.isBigO_refl (E := ℝ) _ l [GOAL] case h.e'_8.h α : Type u_1 β : Type u_2 inst✝ : NormedField β l : Filter α f g : α → β hf : BoundedAtFilter l f hg : BoundedAtFilter l g x✝ : α ⊢ OfNat.ofNat 1 x✝ = OfNat.ofNat 1 x✝ * OfNat.ofNat 1 x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : NormedField β l : Filter α ⊢ Subalgebra β (α → β) [PROOFSTEP] refine' Submodule.toSubalgebra (boundedFilterSubmodule l) _ fun f g hf hg ↦ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝ : NormedField β l : Filter α ⊢ 1 ∈ boundedFilterSubmodule l [PROOFSTEP] exact const_boundedAtFilter l (1 : β) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝ : NormedField β l : Filter α f g : α → β hf : f ∈ boundedFilterSubmodule l hg : g ∈ boundedFilterSubmodule l ⊢ f * g ∈ boundedFilterSubmodule l [PROOFSTEP] simpa only [Pi.one_apply, mul_one, norm_mul] using hf.mul hg
{"mathlib_filename": "Mathlib.Order.Filter.ZeroAndBoundedAtFilter", "llama_tokens": 1283}
[GOAL] α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t ⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] rcases exists_nonempty_countable_separating α hp t with ⟨S, hSne, hSc, hS⟩ [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t S : Set (Set α) hSne : Set.Nonempty S hSc : Set.Countable S hS : (∀ (s : Set α), s ∈ S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] rcases hSc.exists_eq_range hSne with ⟨S, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t S : ℕ → Set α hSne : Set.Nonempty (range S) hSc : Set.Countable (range S) hS : (∀ (s : Set α), s ∈ range S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ range S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] use S [GOAL] case h α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t S : ℕ → Set α hSne : Set.Nonempty (range S) hSc : Set.Countable (range S) hS : (∀ (s : Set α), s ∈ range S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ range S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] simpa only [forall_range_iff] using hS [GOAL] α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U ⊢ HasCountableSeparatingOn α p t [PROOFSTEP] rcases h.1 with ⟨S, hSc, hSq, hS⟩ [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ HasCountableSeparatingOn α p t [PROOFSTEP] choose! V hpV hV using fun s hs ↦ hpq s (hSq s hs) [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s ⊢ HasCountableSeparatingOn α p t [PROOFSTEP] refine ⟨⟨V '' S, hSc.image _, ball_image_iff.2 hpV, fun x hx y hy h ↦ ?_⟩⟩ [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h✝ : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s x : α hx : x ∈ t y : α hy : y ∈ t h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s) ⊢ x = y [PROOFSTEP] refine congr_arg Subtype.val (hS ⟨x, hx⟩ trivial ⟨y, hy⟩ trivial fun U hU ↦ ?_) [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h✝ : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s x : α hx : x ∈ t y : α hy : y ∈ t h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s) U : Set ↑t hU : U ∈ S ⊢ { val := x, property := hx } ∈ U ↔ { val := y, property := hy } ∈ U [PROOFSTEP] rw [← hV U hU] [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h✝ : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s x : α hx : x ∈ t y : α hy : y ∈ t h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s) U : Set ↑t hU : U ∈ S ⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' V U ↔ { val := y, property := hy } ∈ Subtype.val ⁻¹' V U [PROOFSTEP] exact h _ (mem_image_of_mem _ hU) [GOAL] α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l ⊢ ∃ t, t ⊆ s ∧ Set.Subsingleton t ∧ t ∈ l [PROOFSTEP] rcases h.1 with ⟨S, hSc, hSp, hS⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ ∃ t, t ⊆ s ∧ Set.Subsingleton t ∧ t ∈ l [PROOFSTEP] refine ⟨s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U ∈ S) (_ : Uᶜ ∈ l), Uᶜ, ?_, ?_, ?_⟩ [GOAL] case intro.intro.intro.refine_1 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ⊆ s [PROOFSTEP] exact fun _ h ↦ h.1.1 [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ Set.Subsingleton (s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ) [PROOFSTEP] intro x hx y hy [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x : α hx : x ∈ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ y : α hy : y ∈ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ⊢ x = y [PROOFSTEP] simp only [mem_sInter, mem_inter_iff, mem_iInter, mem_compl_iff] at hx hy [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i ⊢ x = y [PROOFSTEP] refine hS x hx.1.1 y hy.1.1 (fun s hsS ↦ ?_) [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] cases hl s (hSp s hsS) with | inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] | inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S x✝ : s ∈ l ∨ sᶜ ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] cases hl s (hSp s hsS) with | inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] | inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_2.inl α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : s ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] | inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] [GOAL] case intro.intro.intro.refine_2.inl α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : s ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] [GOAL] case intro.intro.intro.refine_2.inr α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : sᶜ ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] | inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_2.inr α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : sᶜ ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_3 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ∈ l [PROOFSTEP] exact inter_mem (inter_mem hs ((countable_sInter_mem (hSc.mono (inter_subset_left _ _))).2 fun _ h ↦ h.2)) ((countable_bInter_mem hSc).2 fun U hU ↦ iInter_mem.2 id) [GOAL] α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] rcases exists_subset_subsingleton_mem_of_forall_separating p hs hl with ⟨t, hts, ht, htl⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l t : Set α hts : t ⊆ s ht : Set.Subsingleton t htl : t ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] rcases ht.eq_empty_or_singleton with rfl | ⟨x, rfl⟩ [GOAL] case intro.intro.intro.inl α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l hts : ∅ ⊆ s ht : Set.Subsingleton ∅ htl : ∅ ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] exact hne.imp fun a ha ↦ ⟨ha, mem_of_superset htl (empty_subset _)⟩ [GOAL] case intro.intro.intro.inr.intro α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l x : α hts : {x} ⊆ s ht : Set.Subsingleton {x} htl : {x} ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] exact ⟨x, hts rfl, htl⟩ [GOAL] α : Type u_1 β : Sort ?u.7319 l : Filter α inst✝² : CountableInterFilter l f g : α → β inst✝¹ : Nonempty α p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l ⊢ ∃ a, {a} ∈ l [PROOFSTEP] rcases s.eq_empty_or_nonempty with rfl | hne [GOAL] case inl α : Type u_1 β : Sort ?u.7319 l : Filter α inst✝² : CountableInterFilter l f g : α → β inst✝¹ : Nonempty α p : Set α → Prop hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l inst✝ : HasCountableSeparatingOn α p ∅ hs : ∅ ∈ l ⊢ ∃ a, {a} ∈ l [PROOFSTEP] exact ‹Nonempty α›.elim fun a ↦ ⟨a, mem_of_superset hs (empty_subset _)⟩ [GOAL] case inr α : Type u_1 β : Sort ?u.7319 l : Filter α inst✝² : CountableInterFilter l f g : α → β inst✝¹ : Nonempty α p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l hne : Set.Nonempty s ⊢ ∃ a, {a} ∈ l [PROOFSTEP] exact (exists_mem_singleton_mem_of_mem_of_nonempty_of_forall_separating p hs hne hl).imp fun _ ↦ And.right [GOAL] α : Type u_2 β : Type u_1 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set β → Prop s : Set β h' : HasCountableSeparatingOn β p s hf : ∀ᶠ (x : α) in l, f x ∈ s hg : ∀ᶠ (x : α) in l, g x ∈ s h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U ⊢ f =ᶠ[l] g [PROOFSTEP] rcases h'.1 with ⟨S, hSc, hSp, hS⟩ [GOAL] case intro.intro.intro α : Type u_2 β : Type u_1 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set β → Prop s : Set β h' : HasCountableSeparatingOn β p s hf : ∀ᶠ (x : α) in l, f x ∈ s hg : ∀ᶠ (x : α) in l, g x ∈ s h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U S : Set (Set β) hSc : Set.Countable S hSp : ∀ (s : Set β), s ∈ S → p s hS : ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → (∀ (s : Set β), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ f =ᶠ[l] g [PROOFSTEP] have H : ∀ᶠ x in l, ∀ s ∈ S, f x ∈ s ↔ g x ∈ s := (eventually_countable_ball hSc).2 fun s hs ↦ (h _ (hSp _ hs)) [GOAL] case intro.intro.intro α : Type u_2 β : Type u_1 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set β → Prop s : Set β h' : HasCountableSeparatingOn β p s hf : ∀ᶠ (x : α) in l, f x ∈ s hg : ∀ᶠ (x : α) in l, g x ∈ s h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U S : Set (Set β) hSc : Set.Countable S hSp : ∀ (s : Set β), s ∈ S → p s hS : ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → (∀ (s : Set β), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y H : ∀ᶠ (x : α) in l, ∀ (s : Set β), s ∈ S → (f x ∈ s ↔ g x ∈ s) ⊢ f =ᶠ[l] g [PROOFSTEP] filter_upwards [H, hf, hg] with x hx hxf hxg using hS _ hxf _ hxg hx
{"mathlib_filename": "Mathlib.Order.Filter.CountableSeparatingOn", "llama_tokens": 9931}
[GOAL] α : Type u_1 β : Type u_2 l : Filter α f : α → β ⊢ EventuallyConst f l ↔ ∃ x, Tendsto f l (pure x) [PROOFSTEP] simp_rw [EventuallyConst, EventuallyEq, tendsto_pure] [GOAL] α : Type u_1 β : Sort ?u.805 l : Filter α f : α → β p : α → Prop ⊢ EventuallyConst p l ↔ (p =ᶠ[l] fun x => False) ∨ p =ᶠ[l] fun x => True [PROOFSTEP] simp only [EventuallyConst, Prop.exists_iff] [GOAL] α : Type u_1 β : Sort ?u.958 l : Filter α f : α → β p : α → Prop ⊢ EventuallyConst p l ↔ (∀ᶠ (x : α) in l, p x) ∨ ∀ᶠ (x : α) in l, ¬p x [PROOFSTEP] simp [eventuallyConst_pred', or_comm, EventuallyEq] [GOAL] α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : Nonempty β ⊢ EventuallyConst f ⊥ [PROOFSTEP] simp [EventuallyConst, EventuallyEq] [GOAL] α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : Subsingleton α inst✝ : Nonempty β ⊢ EventuallyConst f l [PROOFSTEP] rcases isEmpty_or_nonempty α with h | h [GOAL] case inl α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : Subsingleton α inst✝ : Nonempty β h : IsEmpty α ⊢ EventuallyConst f l [PROOFSTEP] simp only [l.filter_eq_bot_of_isEmpty, EventuallyConst.bot] [GOAL] case inr α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : Subsingleton α inst✝ : Nonempty β h : Nonempty α ⊢ EventuallyConst f l [PROOFSTEP] inhabit α [GOAL] case inr α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : Subsingleton α inst✝ : Nonempty β h : Nonempty α inhabited_h : Inhabited α ⊢ EventuallyConst f l [PROOFSTEP] refine ⟨f default, eventually_of_forall fun x ↦ congr_arg f <| Subsingleton.elim _ _⟩ [GOAL] α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 h : EventuallyConst (mulIndicator s fun x => c) l ⊢ EventuallyConst s l [PROOFSTEP] rw [eventuallyConst_set] [GOAL] α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 h : EventuallyConst (mulIndicator s fun x => c) l ⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s [PROOFSTEP] rcases h with ⟨d, hd⟩ [GOAL] case intro α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 d : β hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => d ⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s [PROOFSTEP] rcases eq_or_ne d 1 with rfl | hd₁ [GOAL] case intro.inl α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => 1 ⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s [PROOFSTEP] refine .inr <| hd.mono fun x hx ↦ ?_ [GOAL] case intro.inl α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => 1 x : α hx : mulIndicator s (fun x => c) x = (fun x => 1) x ⊢ ¬x ∈ s [PROOFSTEP] simpa only [mulIndicator_apply_eq_one, hc] using hx [GOAL] case intro.inr α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 d : β hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => d hd₁ : d ≠ 1 ⊢ (∀ᶠ (x : α) in l, x ∈ s) ∨ ∀ᶠ (x : α) in l, ¬x ∈ s [PROOFSTEP] refine .inl <| hd.mono fun x hx ↦ ?_ [GOAL] case intro.inr α : Type u_2 β : Type u_1 l : Filter α f : α → β inst✝ : One β s : Set α c : β hc : c ≠ 1 d : β hd : (mulIndicator s fun x => c) =ᶠ[l] fun x => d hd₁ : d ≠ 1 x : α hx : mulIndicator s (fun x => c) x = (fun x => d) x ⊢ x ∈ s [PROOFSTEP] simpa [hc] using ne_of_eq_of_ne hx hd₁ [GOAL] α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : SemilatticeSup α inst✝ : Nonempty α ⊢ EventuallyConst f atTop ↔ ∃ i, ∀ (j : α), i ≤ j → f j = f i [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : SemilatticeSup α inst✝ : Nonempty α ⊢ EventuallyConst f atTop → ∃ i, ∀ (j : α), i ≤ j → f j = f i [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case mp.intro α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : SemilatticeSup α inst✝ : Nonempty α c : β hc : f =ᶠ[atTop] fun x => c ⊢ ∃ i, ∀ (j : α), i ≤ j → f j = f i [PROOFSTEP] rcases eventually_atTop.1 hc with ⟨i, hi⟩ [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : SemilatticeSup α inst✝ : Nonempty α c : β hc : f =ᶠ[atTop] fun x => c i : α hi : ∀ (b : α), b ≥ i → f b = (fun x => c) b ⊢ ∃ i, ∀ (j : α), i ≤ j → f j = f i [PROOFSTEP] exact ⟨i, fun j hj ↦ (hi j hj).trans (hi i le_rfl).symm⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : SemilatticeSup α inst✝ : Nonempty α ⊢ (∃ i, ∀ (j : α), i ≤ j → f j = f i) → EventuallyConst f atTop [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 l : Filter α f : α → β inst✝¹ : SemilatticeSup α inst✝ : Nonempty α i : α hi : ∀ (j : α), i ≤ j → f j = f i ⊢ EventuallyConst f atTop [PROOFSTEP] exact ⟨f i, eventually_atTop.2 ⟨i, hi⟩⟩ [GOAL] α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α ⊢ EventuallyConst f atTop ↔ ∃ n, ∀ (m : ℕ), n ≤ m → f (m + 1) = f m [PROOFSTEP] rw [eventuallyConst_atTop] [GOAL] α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α ⊢ (∃ i, ∀ (j : ℕ), i ≤ j → f j = f i) ↔ ∃ n, ∀ (m : ℕ), n ≤ m → f (m + 1) = f m [PROOFSTEP] refine exists_congr fun n ↦ ⟨fun h m hm ↦ ?_, fun h m hm ↦ ?_⟩ [GOAL] case refine_1 α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (j : ℕ), n ≤ j → f j = f n m : ℕ hm : n ≤ m ⊢ f (m + 1) = f m [PROOFSTEP] exact (h (m + 1) (hm.trans m.le_succ)).trans (h m hm).symm [GOAL] case refine_2 α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m : ℕ hm : n ≤ m ⊢ f m = f n [PROOFSTEP] induction m, hm using Nat.le_induction with | base => rfl | succ m hm ihm => exact (h m hm).trans ihm [GOAL] case refine_2 α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m : ℕ hm : n ≤ m ⊢ f m = f n [PROOFSTEP] induction m, hm using Nat.le_induction with | base => rfl | succ m hm ihm => exact (h m hm).trans ihm [GOAL] case refine_2.base α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m : ℕ ⊢ f n = f n [PROOFSTEP] | base => rfl [GOAL] case refine_2.base α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m : ℕ ⊢ f n = f n [PROOFSTEP] rfl [GOAL] case refine_2.succ α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m✝ m : ℕ hm : n ≤ m ihm : f m = f n ⊢ f (m + 1) = f n [PROOFSTEP] | succ m hm ihm => exact (h m hm).trans ihm [GOAL] case refine_2.succ α : Type u_1 β : Sort ?u.10621 l : Filter α f✝ : α → β f : ℕ → α n : ℕ h : ∀ (m : ℕ), n ≤ m → f (m + 1) = f m m✝ m : ℕ hm : n ≤ m ihm : f m = f n ⊢ f (m + 1) = f n [PROOFSTEP] exact (h m hm).trans ihm
{"mathlib_filename": "Mathlib.Order.Filter.EventuallyConst", "llama_tokens": 3678}
[GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β s : Set α l : Filter α a : α t✝ : Set α l' : Filter α t : Set δ g : δ → α b : δ hf : IsMinOn f s a hg : MapsTo g t s ha : g b = a y : δ hy : y ∈ t ⊢ y ∈ {x | (fun x => (f ∘ g) b ≤ (f ∘ g) x) x} [PROOFSTEP] simpa only [ha, (· ∘ ·)] using hf (hg hy) [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝ : OrderedAddCommGroup β f g : α → β a : α s : Set α l : Filter α hf : IsMinFilter f l a hg : IsMaxFilter g l a ⊢ IsMinFilter (fun x => f x - g x) l a [PROOFSTEP] simpa only [sub_eq_add_neg] using hf.add hg.neg [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝ : OrderedAddCommGroup β f g : α → β a : α s : Set α l : Filter α hf : IsMaxFilter f l a hg : IsMinFilter g l a ⊢ IsMaxFilter (fun x => f x - g x) l a [PROOFSTEP] simpa only [sub_eq_add_neg] using hf.add hg.neg [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝ : OrderedAddCommGroup β f g : α → β a : α s : Set α l : Filter α hf : IsMinOn f s a hg : IsMaxOn g s a ⊢ IsMinOn (fun x => f x - g x) s a [PROOFSTEP] simpa only [sub_eq_add_neg] using hf.add hg.neg [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝ : OrderedAddCommGroup β f g : α → β a : α s : Set α l : Filter α hf : IsMaxOn f s a hg : IsMinOn g s a ⊢ IsMaxOn (fun x => f x - g x) s a [PROOFSTEP] simpa only [sub_eq_add_neg] using hf.add hg.neg [GOAL] α✝ : Type u β✝ : Type v γ : Type w δ : Type x α : Type u_1 β : Type u_2 inst✝ : Preorder β f g : α → β a : α l : Filter α hle : g ≤ᶠ[l] f hfga : f a = g a h : IsMaxFilter f l a ⊢ IsMaxFilter g l a [PROOFSTEP] refine' hle.mp (h.mono fun x hf hgf => _) [GOAL] α✝ : Type u β✝ : Type v γ : Type w δ : Type x α : Type u_1 β : Type u_2 inst✝ : Preorder β f g : α → β a : α l : Filter α hle : g ≤ᶠ[l] f hfga : f a = g a h : IsMaxFilter f l a x : α hf : f x ≤ f a hgf : g x ≤ f x ⊢ g x ≤ g a [PROOFSTEP] rw [← hfga] [GOAL] α✝ : Type u β✝ : Type v γ : Type w δ : Type x α : Type u_1 β : Type u_2 inst✝ : Preorder β f g : α → β a : α l : Filter α hle : g ≤ᶠ[l] f hfga : f a = g a h : IsMaxFilter f l a x : α hf : f x ≤ f a hgf : g x ≤ f x ⊢ g x ≤ f a [PROOFSTEP] exact le_trans hgf hf [GOAL] α✝ : Type u β✝ : Type v γ : Type w δ : Type x α : Type u_1 β : Type u_2 inst✝ : Preorder β f g : α → β a : α l : Filter α h : IsExtrFilter f l a heq : f =ᶠ[l] g hfga : f a = g a ⊢ IsExtrFilter g l a [PROOFSTEP] rw [IsExtrFilter] at * [GOAL] α✝ : Type u β✝ : Type v γ : Type w δ : Type x α : Type u_1 β : Type u_2 inst✝ : Preorder β f g : α → β a : α l : Filter α h : IsMinFilter f l a ∨ IsMaxFilter f l a heq : f =ᶠ[l] g hfga : f a = g a ⊢ IsMinFilter g l a ∨ IsMaxFilter g l a [PROOFSTEP] rwa [← heq.isMaxFilter_iff hfga, ← heq.isMinFilter_iff hfga]
{"mathlib_filename": "Mathlib.Order.Filter.Extr", "llama_tokens": 1448}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : LE α inst✝ : LE β s t : Set α h : IsUpperSet sᶜ ⊢ IsLowerSet s [PROOFSTEP] convert h.compl [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : LE α inst✝ : LE β s t : Set α h : IsUpperSet sᶜ ⊢ s = sᶜᶜ [PROOFSTEP] rw [compl_compl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : LE α inst✝ : LE β s t : Set α h : IsLowerSet sᶜ ⊢ IsUpperSet s [PROOFSTEP] convert h.compl [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : LE α inst✝ : LE β s t : Set α h : IsLowerSet sᶜ ⊢ s = sᶜᶜ [PROOFSTEP] rw [compl_compl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α ⊢ IsUpperSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Ici a ⊆ s [PROOFSTEP] simp [IsUpperSet, subset_def, @forall_swap (_ ∈ s)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α ⊢ IsLowerSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Iic a ⊆ s [PROOFSTEP] simp [IsLowerSet, subset_def, @forall_swap (_ ∈ s)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α hs : IsUpperSet s f : α ≃o β ⊢ IsUpperSet (↑f '' s) [PROOFSTEP] change IsUpperSet ((f : α ≃ β) '' s) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α hs : IsUpperSet s f : α ≃o β ⊢ IsUpperSet (↑↑f '' s) [PROOFSTEP] rw [Set.image_equiv_eq_preimage_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α hs : IsUpperSet s f : α ≃o β ⊢ IsUpperSet (↑(↑f).symm ⁻¹' s) [PROOFSTEP] exact hs.preimage f.symm.monotone [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α hs : IsLowerSet s f : α ≃o β ⊢ IsLowerSet (↑f '' s) [PROOFSTEP] change IsLowerSet ((f : α ≃ β) '' s) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α hs : IsLowerSet s f : α ≃o β ⊢ IsLowerSet (↑↑f '' s) [PROOFSTEP] rw [Set.image_equiv_eq_preimage_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α p : α → Prop a : α hs : IsLowerSet s f : α ≃o β ⊢ IsLowerSet (↑(↑f).symm ⁻¹' s) [PROOFSTEP] exact hs.preimage f.symm.monotone [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β s : Set α p : α → Prop a : α inst✝ : NoMaxOrder α hs : IsUpperSet s ⊢ Set.Nonempty s → ¬BddAbove s [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β s : Set α p : α → Prop a✝ : α inst✝ : NoMaxOrder α hs : IsUpperSet s a : α ha : a ∈ s b : α hb : b ∈ upperBounds s ⊢ False [PROOFSTEP] obtain ⟨c, hc⟩ := exists_gt b [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β s : Set α p : α → Prop a✝ : α inst✝ : NoMaxOrder α hs : IsUpperSet s a : α ha : a ∈ s b : α hb : b ∈ upperBounds s c : α hc : b < c ⊢ False [PROOFSTEP] exact hc.not_le (hb <| hs ((hb ha).trans hc.le) ha) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β s : Set α p : α → Prop a : α inst✝ : NoMinOrder α hs : IsLowerSet s ⊢ Set.Nonempty s → ¬BddBelow s [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β s : Set α p : α → Prop a✝ : α inst✝ : NoMinOrder α hs : IsLowerSet s a : α ha : a ∈ s b : α hb : b ∈ lowerBounds s ⊢ False [PROOFSTEP] obtain ⟨c, hc⟩ := exists_lt b [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β s : Set α p : α → Prop a✝ : α inst✝ : NoMinOrder α hs : IsLowerSet s a : α ha : a ∈ s b : α hb : b ∈ lowerBounds s c : α hc : c < b ⊢ False [PROOFSTEP] exact hc.not_le (hb <| hs (hc.le.trans <| hb ha) ha) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : PartialOrder α s : Set α a : α ⊢ (∀ ⦃b : α⦄, a ≤ b → a ∈ s → b ∈ s) ↔ ∀ ⦃b : α⦄, a < b → a ∈ s → b ∈ s [PROOFSTEP] simp [le_iff_eq_or_lt, or_imp, forall_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : PartialOrder α s : Set α a : α ⊢ (∀ ⦃b : α⦄, b ≤ a → a ∈ s → b ∈ s) ↔ ∀ ⦃b : α⦄, b < a → a ∈ s → b ∈ s [PROOFSTEP] simp [le_iff_eq_or_lt, or_imp, forall_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : PartialOrder α s : Set α ⊢ IsUpperSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Ioi a ⊆ s [PROOFSTEP] simp [isUpperSet_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : PartialOrder α s : Set α ⊢ IsLowerSet s ↔ ∀ ⦃a : α⦄, a ∈ s → Iio a ⊆ s [PROOFSTEP] simp [isLowerSet_iff_forall_lt, subset_def, @forall_swap (_ ∈ s)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α h : s.carrier = t.carrier ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α t : UpperSet α carrier✝ : Set α upper'✝ : IsUpperSet carrier✝ h : { carrier := carrier✝, upper' := upper'✝ }.carrier = t.carrier ⊢ { carrier := carrier✝, upper' := upper'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α carrier✝¹ : Set α upper'✝¹ : IsUpperSet carrier✝¹ carrier✝ : Set α upper'✝ : IsUpperSet carrier✝ h : { carrier := carrier✝¹, upper' := upper'✝¹ }.carrier = { carrier := carrier✝, upper' := upper'✝ }.carrier ⊢ { carrier := carrier✝¹, upper' := upper'✝¹ } = { carrier := carrier✝, upper' := upper'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α h : s.carrier = t.carrier ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α t : LowerSet α carrier✝ : Set α lower'✝ : IsLowerSet carrier✝ h : { carrier := carrier✝, lower' := lower'✝ }.carrier = t.carrier ⊢ { carrier := carrier✝, lower' := lower'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α carrier✝¹ : Set α lower'✝¹ : IsLowerSet carrier✝¹ carrier✝ : Set α lower'✝ : IsLowerSet carrier✝ h : { carrier := carrier✝¹, lower' := lower'✝¹ }.carrier = { carrier := carrier✝, lower' := lower'✝ }.carrier ⊢ { carrier := carrier✝¹, lower' := lower'✝¹ } = { carrier := carrier✝, lower' := lower'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α ⊢ ↑s = univ ↔ s = ⊥ [PROOFSTEP] simp [SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α ⊢ ↑s = ∅ ↔ s = ⊤ [PROOFSTEP] simp [SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : ι → UpperSet α ⊢ ↑(⨆ (i : ι), f i) = ⋂ (i : ι), ↑(f i) [PROOFSTEP] simp [iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : ι → UpperSet α ⊢ ↑(⨅ (i : ι), f i) = ⋃ (i : ι), ↑(f i) [PROOFSTEP] simp [iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : (i : ι) → κ i → UpperSet α ⊢ ↑(⨆ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j) [PROOFSTEP] simp_rw [coe_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : (i : ι) → κ i → UpperSet α ⊢ ↑(⨅ (i : ι) (j : κ i), f i j) = ⋃ (i : ι) (j : κ i), ↑(f i j) [PROOFSTEP] simp_rw [coe_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α ⊢ (∃ i j, a ∈ ↑i) ↔ ∃ s, s ∈ S ∧ a ∈ s [PROOFSTEP] simp only [exists_prop, SetLike.mem_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : ι → UpperSet α ⊢ a ∈ ⨆ (i : ι), f i ↔ ∀ (i : ι), a ∈ f i [PROOFSTEP] rw [← SetLike.mem_coe, coe_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : ι → UpperSet α ⊢ a ∈ ⋂ (i : ι), ↑(f i) ↔ ∀ (i : ι), a ∈ f i [PROOFSTEP] exact mem_iInter [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : ι → UpperSet α ⊢ a ∈ ⨅ (i : ι), f i ↔ ∃ i, a ∈ f i [PROOFSTEP] rw [← SetLike.mem_coe, coe_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : ι → UpperSet α ⊢ a ∈ ⋃ (i : ι), ↑(f i) ↔ ∃ i, a ∈ f i [PROOFSTEP] exact mem_iUnion [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : (i : ι) → κ i → UpperSet α ⊢ a ∈ ⨆ (i : ι) (j : κ i), f i j ↔ ∀ (i : ι) (j : κ i), a ∈ f i j [PROOFSTEP] simp_rw [mem_iSup_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α f : (i : ι) → κ i → UpperSet α ⊢ a ∈ ⨅ (i : ι) (j : κ i), f i j ↔ ∃ i j, a ∈ f i j [PROOFSTEP] simp_rw [mem_iInf_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (UpperSet α) s t : UpperSet α a : α ⊢ Codisjoint ↑s ↑t ↔ Disjoint s t [PROOFSTEP] simp [disjoint_iff, codisjoint_iff, SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α ⊢ ↑s = univ ↔ s = ⊤ [PROOFSTEP] simp [SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α ⊢ ↑s = ∅ ↔ s = ⊥ [PROOFSTEP] simp [SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : ι → LowerSet α ⊢ ↑(⨆ (i : ι), f i) = ⋃ (i : ι), ↑(f i) [PROOFSTEP] simp_rw [iSup, coe_sSup, mem_range, iUnion_exists, iUnion_iUnion_eq'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : ι → LowerSet α ⊢ ↑(⨅ (i : ι), f i) = ⋂ (i : ι), ↑(f i) [PROOFSTEP] simp_rw [iInf, coe_sInf, mem_range, iInter_exists, iInter_iInter_eq'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : (i : ι) → κ i → LowerSet α ⊢ ↑(⨆ (i : ι) (j : κ i), f i j) = ⋃ (i : ι) (j : κ i), ↑(f i j) [PROOFSTEP] simp_rw [coe_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : (i : ι) → κ i → LowerSet α ⊢ ↑(⨅ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j) [PROOFSTEP] simp_rw [coe_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α ⊢ (∃ i j, a ∈ ↑i) ↔ ∃ s, s ∈ S ∧ a ∈ s [PROOFSTEP] simp only [exists_prop, SetLike.mem_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : ι → LowerSet α ⊢ a ∈ ⨆ (i : ι), f i ↔ ∃ i, a ∈ f i [PROOFSTEP] rw [← SetLike.mem_coe, coe_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : ι → LowerSet α ⊢ a ∈ ⋃ (i : ι), ↑(f i) ↔ ∃ i, a ∈ f i [PROOFSTEP] exact mem_iUnion [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : ι → LowerSet α ⊢ a ∈ ⨅ (i : ι), f i ↔ ∀ (i : ι), a ∈ f i [PROOFSTEP] rw [← SetLike.mem_coe, coe_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : ι → LowerSet α ⊢ a ∈ ⋂ (i : ι), ↑(f i) ↔ ∀ (i : ι), a ∈ f i [PROOFSTEP] exact mem_iInter [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : (i : ι) → κ i → LowerSet α ⊢ a ∈ ⨆ (i : ι) (j : κ i), f i j ↔ ∃ i j, a ∈ f i j [PROOFSTEP] simp_rw [mem_iSup_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α f : (i : ι) → κ i → LowerSet α ⊢ a ∈ ⨅ (i : ι) (j : κ i), f i j ↔ ∀ (i : ι) (j : κ i), a ∈ f i j [PROOFSTEP] simp_rw [mem_iInf_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α S : Set (LowerSet α) s t : LowerSet α a : α ⊢ Disjoint ↑s ↑t ↔ Disjoint s t [PROOFSTEP] simp [disjoint_iff, SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α a : α S : Set (UpperSet α) ⊢ ↑(compl (sSup S)) = ↑(⨆ (s : UpperSet α) (_ : s ∈ S), compl s) [PROOFSTEP] simp only [coe_compl, coe_sSup, compl_iInter₂, LowerSet.coe_iSup₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α a : α S : Set (UpperSet α) ⊢ ↑(compl (sInf S)) = ↑(⨅ (s : UpperSet α) (_ : s ∈ S), compl s) [PROOFSTEP] simp only [coe_compl, coe_sInf, compl_iUnion₂, LowerSet.coe_iInf₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α a : α f : ι → UpperSet α ⊢ ↑(compl (⨆ (i : ι), f i)) = ↑(⨆ (i : ι), compl (f i)) [PROOFSTEP] simp only [coe_compl, coe_iSup, compl_iInter, LowerSet.coe_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α a : α f : ι → UpperSet α ⊢ ↑(compl (⨅ (i : ι), f i)) = ↑(⨅ (i : ι), compl (f i)) [PROOFSTEP] simp only [coe_compl, coe_iInf, compl_iUnion, LowerSet.coe_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α a : α f : (i : ι) → κ i → UpperSet α ⊢ compl (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), compl (f i j) [PROOFSTEP] simp_rw [UpperSet.compl_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : UpperSet α a : α f : (i : ι) → κ i → UpperSet α ⊢ compl (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), compl (f i j) [PROOFSTEP] simp_rw [UpperSet.compl_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α a : α S : Set (LowerSet α) ⊢ ↑(compl (sSup S)) = ↑(⨆ (s : LowerSet α) (_ : s ∈ S), compl s) [PROOFSTEP] simp only [coe_compl, coe_sSup, compl_iUnion₂, UpperSet.coe_iSup₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α a : α S : Set (LowerSet α) ⊢ ↑(compl (sInf S)) = ↑(⨅ (s : LowerSet α) (_ : s ∈ S), compl s) [PROOFSTEP] simp only [coe_compl, coe_sInf, compl_iInter₂, UpperSet.coe_iInf₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α a : α f : ι → LowerSet α ⊢ ↑(compl (⨆ (i : ι), f i)) = ↑(⨆ (i : ι), compl (f i)) [PROOFSTEP] simp only [coe_compl, coe_iSup, compl_iUnion, UpperSet.coe_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α a : α f : ι → LowerSet α ⊢ ↑(compl (⨅ (i : ι), f i)) = ↑(⨅ (i : ι), compl (f i)) [PROOFSTEP] simp only [coe_compl, coe_iInf, compl_iInter, UpperSet.coe_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α a : α f : (i : ι) → κ i → LowerSet α ⊢ compl (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), compl (f i j) [PROOFSTEP] simp_rw [LowerSet.compl_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : LE α s t : LowerSet α a : α f : (i : ι) → κ i → LowerSet α ⊢ compl (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), compl (f i j) [PROOFSTEP] simp_rw [LowerSet.compl_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s✝ t : UpperSet α a : α b : β f : α ≃o β s : UpperSet β ⊢ ↑(↑(OrderIso.symm (map f)) s) = ↑(↑(map (OrderIso.symm f)) s) [PROOFSTEP] convert Set.preimage_equiv_eq_image_symm s f.toEquiv [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α ≃o β s t : UpperSet α a : α b : β ⊢ b ∈ ↑(map f) s ↔ ↑(OrderIso.symm f) b ∈ s [PROOFSTEP] rw [← f.symm_symm, ← symm_map, f.symm_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α ≃o β s t : UpperSet α a : α b : β ⊢ b ∈ ↑(OrderIso.symm (map (OrderIso.symm f))) s ↔ ↑(OrderIso.symm f) b ∈ s [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α ≃o β s t : UpperSet α a : α b : β ⊢ map (OrderIso.refl α) = OrderIso.refl (UpperSet α) [PROOFSTEP] ext [GOAL] case h.h.a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α ≃o β s t : UpperSet α a : α b : β x✝¹ : UpperSet α x✝ : α ⊢ x✝ ∈ ↑(↑(map (OrderIso.refl α)) x✝¹) ↔ x✝ ∈ ↑(↑(OrderIso.refl (UpperSet α)) x✝¹) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s t : UpperSet α a : α b : β g : β ≃o γ f : α ≃o β ⊢ ↑(map g) (↑(map f) s) = ↑(map (OrderIso.trans f g)) s [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s t : UpperSet α a : α b : β g : β ≃o γ f : α ≃o β x✝ : γ ⊢ x✝ ∈ ↑(↑(map g) (↑(map f) s)) ↔ x✝ ∈ ↑(↑(map (OrderIso.trans f g)) s) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s✝ t : LowerSet α a : α b : β f : α ≃o β s : LowerSet β ⊢ ↑(↑(OrderIso.symm (map f)) s) = ↑(↑(map (OrderIso.symm f)) s) [PROOFSTEP] convert Set.preimage_equiv_eq_image_symm s f.toEquiv [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s t : LowerSet α a : α b✝ : β f : α ≃o β b : β ⊢ b ∈ ↑(map f) s ↔ ↑(OrderIso.symm f) b ∈ s [PROOFSTEP] rw [← f.symm_symm, ← symm_map, f.symm_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s t : LowerSet α a : α b✝ : β f : α ≃o β b : β ⊢ b ∈ ↑(OrderIso.symm (map (OrderIso.symm f))) s ↔ ↑(OrderIso.symm f) b ∈ s [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α ≃o β s t : LowerSet α a : α b : β ⊢ map (OrderIso.refl α) = OrderIso.refl (LowerSet α) [PROOFSTEP] ext [GOAL] case h.h.a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f : α ≃o β s t : LowerSet α a : α b : β x✝¹ : LowerSet α x✝ : α ⊢ x✝ ∈ ↑(↑(map (OrderIso.refl α)) x✝¹) ↔ x✝ ∈ ↑(↑(OrderIso.refl (LowerSet α)) x✝¹) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s t : LowerSet α a : α b : β g : β ≃o γ f : α ≃o β ⊢ ↑(map g) (↑(map f) s) = ↑(map (OrderIso.trans f g)) s [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ f✝ : α ≃o β s t : LowerSet α a : α b : β g : β ≃o γ f : α ≃o β x✝ : γ ⊢ x✝ ∈ ↑(↑(map g) (↑(map f) s)) ↔ x✝ ∈ ↑(↑(map (OrderIso.trans f g)) s) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : UpperSet α a✝ b : α f : α ≃o β a : α ⊢ ↑(map f) (Ici a) = Ici (↑f a) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : UpperSet α a✝ b : α f : α ≃o β a : α x✝ : β ⊢ x✝ ∈ ↑(↑(map f) (Ici a)) ↔ x✝ ∈ ↑(Ici (↑f a)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : UpperSet α a✝ b : α f : α ≃o β a : α ⊢ ↑(map f) (Ioi a) = Ioi (↑f a) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : UpperSet α a✝ b : α f : α ≃o β a : α x✝ : β ⊢ x✝ ∈ ↑(↑(map f) (Ioi a)) ↔ x✝ ∈ ↑(Ioi (↑f a)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : CompleteLattice α S : Set α c : α ⊢ c ∈ Ici (sSup S) ↔ c ∈ ⨆ (a : α) (_ : a ∈ S), Ici a [PROOFSTEP] simp only [mem_Ici_iff, mem_iSup_iff, sSup_le_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : CompleteLattice α f : ι → α c : α ⊢ c ∈ Ici (⨆ (i : ι), f i) ↔ c ∈ ⨆ (i : ι), Ici (f i) [PROOFSTEP] simp only [mem_Ici_iff, mem_iSup_iff, iSup_le_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : CompleteLattice α f : (i : ι) → κ i → α ⊢ Ici (⨆ (i : ι) (j : κ i), f i j) = ⨆ (i : ι) (j : κ i), Ici (f i j) [PROOFSTEP] simp_rw [Ici_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : LowerSet α a✝ b : α f : α ≃o β a : α ⊢ ↑(map f) (Iic a) = Iic (↑f a) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : LowerSet α a✝ b : α f : α ≃o β a : α x✝ : β ⊢ x✝ ∈ ↑(↑(map f) (Iic a)) ↔ x✝ ∈ ↑(Iic (↑f a)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : LowerSet α a✝ b : α f : α ≃o β a : α ⊢ ↑(map f) (Iio a) = Iio (↑f a) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : LowerSet α a✝ b : α f : α ≃o β a : α x✝ : β ⊢ x✝ ∈ ↑(↑(map f) (Iio a)) ↔ x✝ ∈ ↑(Iio (↑f a)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : CompleteLattice α S : Set α c : α ⊢ c ∈ Iic (sInf S) ↔ c ∈ ⨅ (a : α) (_ : a ∈ S), Iic a [PROOFSTEP] simp only [mem_Iic_iff, mem_iInf₂_iff, le_sInf_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : CompleteLattice α f : ι → α c : α ⊢ c ∈ Iic (⨅ (i : ι), f i) ↔ c ∈ ⨅ (i : ι), Iic (f i) [PROOFSTEP] simp only [mem_Iic_iff, mem_iInf_iff, le_iInf_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝ : CompleteLattice α f : (i : ι) → κ i → α ⊢ Iic (⨅ (i : ι) (j : κ i), f i j) = ⨅ (i : ι) (j : κ i), Iic (f i j) [PROOFSTEP] simp_rw [Iic_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α ⊢ ↑(upperClosure s) = ⋃ (a : α) (_ : a ∈ s), Ici a [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α x✝ : α ⊢ x✝ ∈ ↑(upperClosure s) ↔ x✝ ∈ ⋃ (a : α) (_ : a ∈ s), Ici a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α ⊢ ↑(lowerClosure s) = ⋃ (a : α) (_ : a ∈ s), Iic a [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α x✝ : α ⊢ x✝ ∈ ↑(lowerClosure s) ↔ x✝ ∈ ⋃ (a : α) (_ : a ∈ s), Iic a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α f : α ≃o β ⊢ upperClosure (↑f '' s) = ↑(UpperSet.map f) (upperClosure s) [PROOFSTEP] rw [← f.symm_symm, ← UpperSet.symm_map, f.symm_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α f : α ≃o β ⊢ upperClosure (↑f '' s) = ↑(OrderIso.symm (UpperSet.map (OrderIso.symm f))) (upperClosure s) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α f : α ≃o β x✝ : β ⊢ x✝ ∈ ↑(upperClosure (↑f '' s)) ↔ x✝ ∈ ↑(↑(OrderIso.symm (UpperSet.map (OrderIso.symm f))) (upperClosure s)) [PROOFSTEP] simp [-UpperSet.symm_map, UpperSet.map, OrderIso.symm, ← f.le_symm_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α f : α ≃o β ⊢ lowerClosure (↑f '' s) = ↑(LowerSet.map f) (lowerClosure s) [PROOFSTEP] rw [← f.symm_symm, ← LowerSet.symm_map, f.symm_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α f : α ≃o β ⊢ lowerClosure (↑f '' s) = ↑(OrderIso.symm (LowerSet.map (OrderIso.symm f))) (lowerClosure s) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α f : α ≃o β x✝ : β ⊢ x✝ ∈ ↑(lowerClosure (↑f '' s)) ↔ x✝ ∈ ↑(↑(OrderIso.symm (LowerSet.map (OrderIso.symm f))) (lowerClosure s)) [PROOFSTEP] simp [-LowerSet.symm_map, LowerSet.map, OrderIso.symm, ← f.symm_apply_le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α ⊢ ⨅ (a : α) (_ : a ∈ s), Ici a = upperClosure s [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α x✝ : α ⊢ x✝ ∈ ↑(⨅ (a : α) (_ : a ∈ s), Ici a) ↔ x✝ ∈ ↑(upperClosure s) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α ⊢ ⨆ (a : α) (_ : a ∈ s), Iic a = lowerClosure s [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s✝ t : Set α x : α s : Set α x✝ : α ⊢ x✝ ∈ ↑(⨆ (a : α) (_ : a ∈ s), Iic a) ↔ x✝ ∈ ↑(lowerClosure s) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x a : α ⊢ upperClosure {a} = UpperSet.Ici a [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x a x✝ : α ⊢ x✝ ∈ ↑(upperClosure {a}) ↔ x✝ ∈ ↑(UpperSet.Ici a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x a : α ⊢ lowerClosure {a} = LowerSet.Iic a [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x a x✝ : α ⊢ x✝ ∈ ↑(lowerClosure {a}) ↔ x✝ ∈ ↑(LowerSet.Iic a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α S : Set (Set α) ⊢ upperClosure (⋃₀ S) = ⨅ (s : Set α) (_ : s ∈ S), upperClosure s [PROOFSTEP] simp_rw [sUnion_eq_biUnion, upperClosure_iUnion] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α S : Set (Set α) ⊢ lowerClosure (⋃₀ S) = ⨆ (s : Set α) (_ : s ∈ S), lowerClosure s [PROOFSTEP] simp_rw [sUnion_eq_biUnion, lowerClosure_iUnion] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α ⊢ OrdConnected s ↔ ↑(upperClosure s) ∩ ↑(lowerClosure s) = s [PROOFSTEP] refine' ⟨Set.OrdConnected.upperClosure_inter_lowerClosure, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α h : ↑(upperClosure s) ∩ ↑(lowerClosure s) = s ⊢ OrdConnected s [PROOFSTEP] rw [← h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α h : ↑(upperClosure s) ∩ ↑(lowerClosure s) = s ⊢ OrdConnected (↑(upperClosure s) ∩ ↑(lowerClosure s)) [PROOFSTEP] exact (UpperSet.upper _).ordConnected.inter (LowerSet.lower _).ordConnected [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α ⊢ BddAbove ↑(lowerClosure s) ↔ BddAbove s [PROOFSTEP] simp_rw [BddAbove, upperBounds_lowerClosure] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α x : α ⊢ BddBelow ↑(upperClosure s) ↔ BddBelow s [PROOFSTEP] simp_rw [BddBelow, lowerBounds_upperClosure] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : UpperSet α t t₁ t₂ : UpperSet β x : α × β ⊢ ↑s₂ ⊆ ↑s₁ ∧ ↑t₂ ⊆ ↑t₁ ∨ ↑s₂ = ∅ ∨ ↑t₂ = ∅ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₂ = ⊤ ∨ t₂ = ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : UpperSet α t t₁ t₂ : UpperSet β x : α × β ⊢ s ×ˢ t = ⊤ ↔ s = ⊤ ∨ t = ⊤ [PROOFSTEP] simp_rw [SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : UpperSet α t t₁ t₂ : UpperSet β x : α × β ⊢ ↑(s ×ˢ t) = ↑⊤ ↔ ↑s = ↑⊤ ∨ ↑t = ↑⊤ [PROOFSTEP] exact prod_eq_empty_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : UpperSet α t t₁ t₂ : UpperSet β x : α × β ⊢ Codisjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) ↔ Codisjoint s₁ s₂ ∨ Codisjoint t₁ t₂ [PROOFSTEP] simp_rw [codisjoint_iff, prod_sup_prod, prod_eq_top] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : LowerSet α t t₁ t₂ : LowerSet β x : α × β ⊢ ↑s₁ ⊆ ↑s₂ ∧ ↑t₁ ⊆ ↑t₂ ∨ ↑s₁ = ∅ ∨ ↑t₁ = ∅ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₁ = ⊥ ∨ t₁ = ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : LowerSet α t t₁ t₂ : LowerSet β x : α × β ⊢ s ×ˢ t = ⊥ ↔ s = ⊥ ∨ t = ⊥ [PROOFSTEP] simp_rw [SetLike.ext'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : LowerSet α t t₁ t₂ : LowerSet β x : α × β ⊢ ↑(s ×ˢ t) = ↑⊥ ↔ ↑s = ↑⊥ ∨ ↑t = ↑⊥ [PROOFSTEP] exact prod_eq_empty_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s s₁ s₂ : LowerSet α t t₁ t₂ : LowerSet β x : α × β ⊢ Disjoint (s₁ ×ˢ t₁) (s₂ ×ˢ t₂) ↔ Disjoint s₁ s₂ ∨ Disjoint t₁ t₂ [PROOFSTEP] simp_rw [disjoint_iff, prod_inf_prod, prod_eq_bot] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α t : Set β ⊢ upperClosure (s ×ˢ t) = upperClosure s ×ˢ upperClosure t [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α t : Set β x✝ : α × β ⊢ x✝ ∈ ↑(upperClosure (s ×ˢ t)) ↔ x✝ ∈ ↑(upperClosure s ×ˢ upperClosure t) [PROOFSTEP] simp [Prod.le_def, @and_and_and_comm _ (_ ∈ t)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α t : Set β ⊢ lowerClosure (s ×ˢ t) = lowerClosure s ×ˢ lowerClosure t [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 κ : ι → Sort u_5 inst✝¹ : Preorder α inst✝ : Preorder β s : Set α t : Set β x✝ : α × β ⊢ x✝ ∈ ↑(lowerClosure (s ×ˢ t)) ↔ x✝ ∈ ↑(lowerClosure s ×ˢ lowerClosure t) [PROOFSTEP] simp [Prod.le_def, @and_and_and_comm _ (_ ∈ t)]
{"mathlib_filename": "Mathlib.Order.UpperLower.Basic", "llama_tokens": 18816}
[GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝¹ : IsEmpty ι inst✝ : InfSet α f : ι → WithTop α ⊢ ⨅ (i : ι), f i = ⊤ [PROOFSTEP] rw [iInf, range_eq_empty, WithTop.sInf_empty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : InfSet α s : Set α hs : Set.Nonempty s ⊢ ↑(sInf s) = sInf ((fun a => ↑a) '' s) [PROOFSTEP] obtain ⟨x, hx⟩ := hs [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : InfSet α s : Set α x : α hx : x ∈ s ⊢ ↑(sInf s) = sInf ((fun a => ↑a) '' s) [PROOFSTEP] change _ = ite _ _ _ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : InfSet α s : Set α x : α hx : x ∈ s ⊢ ↑(sInf s) = if (fun a => ↑a) '' s ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s))) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : InfSet α s : Set α x : α hx : x ∈ s h : (fun a => ↑a) '' s ⊆ {⊤} ⊢ ↑(sInf s) = ⊤ [PROOFSTEP] cases h (mem_image_of_mem _ hx) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : InfSet α s : Set α x : α hx : x ∈ s h : ¬(fun a => ↑a) '' s ⊆ {⊤} ⊢ ↑(sInf s) = ↑(sInf ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s))) [PROOFSTEP] rw [preimage_image_eq] [GOAL] case neg.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : InfSet α s : Set α x : α hx : x ∈ s h : ¬(fun a => ↑a) '' s ⊆ {⊤} ⊢ Injective fun a => ↑a [PROOFSTEP] exact Option.some_injective _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Nonempty ι inst✝ : InfSet α f : ι → α ⊢ ↑(⨅ (i : ι), f i) = ⨅ (i : ι), ↑(f i) [PROOFSTEP] rw [iInf, iInf, WithTop.coe_sInf' (range_nonempty f), ← range_comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Nonempty ι inst✝ : InfSet α f : ι → α ⊢ sInf (range ((fun a => ↑a) ∘ f)) = sInf (range fun i => ↑(f i)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : SupSet α s : Set α hs : BddAbove s ⊢ ↑(sSup s) = sSup ((fun a => ↑a) '' s) [PROOFSTEP] change _ = ite _ _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : SupSet α s : Set α hs : BddAbove s ⊢ ↑(sSup s) = if ⊤ ∈ (fun a => ↑a) '' s then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s)) then ↑(sSup ((fun a => ↑a) ⁻¹' ((fun a => ↑a) '' s))) else ⊤ [PROOFSTEP] rw [if_neg, preimage_image_eq, if_pos hs] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : SupSet α s : Set α hs : BddAbove s ⊢ Injective fun a => ↑a [PROOFSTEP] exact Option.some_injective _ [GOAL] case hnc α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : SupSet α s : Set α hs : BddAbove s ⊢ ¬⊤ ∈ (fun a => ↑a) '' s [PROOFSTEP] rintro ⟨x, _, ⟨⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : SupSet α f : ι → α h : BddAbove (range f) ⊢ ↑(⨆ (i : ι), f i) = ⨆ (i : ι), ↑(f i) [PROOFSTEP] rw [iSup, iSup, WithTop.coe_sSup' h, ← range_comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : SupSet α f : ι → α h : BddAbove (range f) ⊢ sSup (range ((fun a => ↑a) ∘ f)) = sSup (range fun i => ↑(f i)) [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α ⊢ min a b = if a ≤ b then a else b [PROOFSTEP] by_cases hab : a = b [GOAL] case pos α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : a = b ⊢ min a b = if a ≤ b then a else b [PROOFSTEP] simp [hab] [GOAL] case neg α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : ¬a = b ⊢ min a b = if a ≤ b then a else b [PROOFSTEP] rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂) [GOAL] case neg.inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : ¬a = b h₁ : a ≤ b ⊢ min a b = if a ≤ b then a else b [PROOFSTEP] simp [h₁] [GOAL] case neg.inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : ¬a = b h₂ : b ≤ a ⊢ min a b = if a ≤ b then a else b [PROOFSTEP] simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α ⊢ max a b = if a ≤ b then b else a [PROOFSTEP] by_cases hab : a = b [GOAL] case pos α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : a = b ⊢ max a b = if a ≤ b then b else a [PROOFSTEP] simp [hab] [GOAL] case neg α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : ¬a = b ⊢ max a b = if a ≤ b then b else a [PROOFSTEP] rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂) [GOAL] case neg.inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : ¬a = b h₁ : a ≤ b ⊢ max a b = if a ≤ b then b else a [PROOFSTEP] simp [h₁] [GOAL] case neg.inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLinearOrder α src✝ : ConditionallyCompleteLinearOrder α := inst✝ a b : α hab : ¬a = b h₂ : b ≤ a ⊢ max a b = if a ≤ b then b else a [PROOFSTEP] simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ ⊢ ∀ (s : Set α) (a : α), BddAbove s → a ∈ s → a ≤ sSup s [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : BddAbove s✝ a✝ : a✝² ∈ s✝ ⊢ a✝² ≤ sSup s✝ [PROOFSTEP] apply le_sSup [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : BddAbove s✝ a✝ : a✝² ∈ s✝ ⊢ a✝² ∈ s✝ [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ ⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ upperBounds s → sSup s ≤ a [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : Set.Nonempty s✝ a✝ : a✝² ∈ upperBounds s✝ ⊢ sSup s✝ ≤ a✝² [PROOFSTEP] apply sSup_le [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : Set.Nonempty s✝ a✝ : a✝² ∈ upperBounds s✝ ⊢ ∀ (b : α), b ∈ s✝ → b ≤ a✝² [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ ⊢ ∀ (s : Set α) (a : α), BddBelow s → a ∈ s → sInf s ≤ a [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : BddBelow s✝ a✝ : a✝² ∈ s✝ ⊢ sInf s✝ ≤ a✝² [PROOFSTEP] apply sInf_le [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : BddBelow s✝ a✝ : a✝² ∈ s✝ ⊢ a✝² ∈ s✝ [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ ⊢ ∀ (s : Set α) (a : α), Set.Nonempty s → a ∈ lowerBounds s → a ≤ sInf s [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : Set.Nonempty s✝ a✝ : a✝² ∈ lowerBounds s✝ ⊢ a✝² ≤ sInf s✝ [PROOFSTEP] apply le_sInf [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : CompleteLattice α src✝ : CompleteLattice α := inst✝ s✝ : Set α a✝² : α a✝¹ : Set.Nonempty s✝ a✝ : a✝² ∈ lowerBounds s✝ ⊢ ∀ (b : α), b ∈ s✝ → a✝² ≤ b [PROOFSTEP] assumption [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α hs : BddAbove s has : a ∈ s ⊢ a ≤ sSup s [PROOFSTEP] have h's : (upperBounds s).Nonempty := hs [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α hs : BddAbove s has : a ∈ s h's : Set.Nonempty (upperBounds s) ⊢ a ≤ sSup s [PROOFSTEP] simp only [h's, dif_pos] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α hs : BddAbove s has : a ∈ s h's : Set.Nonempty (upperBounds s) ⊢ a ≤ WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) (upperBounds s) (_ : Set.Nonempty (upperBounds s)) [PROOFSTEP] exact h.wf.min_mem _ h's has [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α x✝ : Set.Nonempty s has : a ∈ upperBounds s ⊢ sSup s ≤ a [PROOFSTEP] have h's : (upperBounds s).Nonempty := ⟨a, has⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α x✝ : Set.Nonempty s has : a ∈ upperBounds s h's : Set.Nonempty (upperBounds s) ⊢ sSup s ≤ a [PROOFSTEP] simp only [h's, dif_pos] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α x✝ : Set.Nonempty s has : a ∈ upperBounds s h's : Set.Nonempty (upperBounds s) ⊢ WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) (upperBounds s) (_ : Set.Nonempty (upperBounds s)) ≤ a [PROOFSTEP] simpa using h.wf.not_lt_min _ h's has [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α x✝ : BddBelow s has : a ∈ s ⊢ sInf s ≤ a [PROOFSTEP] have s_ne : s.Nonempty := ⟨a, has⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α x✝ : BddBelow s has : a ∈ s s_ne : Set.Nonempty s ⊢ sInf s ≤ a [PROOFSTEP] simpa [s_ne] using not_lt.1 (h.wf.not_lt_min s s_ne has) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α hs : Set.Nonempty s has : a ∈ lowerBounds s ⊢ a ≤ sInf s [PROOFSTEP] simp only [hs, dif_pos] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α a : α hs : Set.Nonempty s has : a ∈ lowerBounds s ⊢ a ≤ WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) s (_ : Set.Nonempty s) [PROOFSTEP] exact has (h.wf.min_mem s hs) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice ⊢ ∀ (s : Set α), ¬BddAbove s → sSup s = sSup univ [PROOFSTEP] intro s H [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α H : ¬BddAbove s ⊢ sSup s = sSup univ [PROOFSTEP] have A : ¬(BddAbove (univ : Set α)) := by contrapose! H; exact H.mono (subset_univ _) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α H : ¬BddAbove s ⊢ ¬BddAbove univ [PROOFSTEP] contrapose! H [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α H : BddAbove univ ⊢ BddAbove s [PROOFSTEP] exact H.mono (subset_univ _) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α H : ¬BddAbove s A : ¬BddAbove univ ⊢ sSup s = sSup univ [PROOFSTEP] have B : ¬((upperBounds s).Nonempty) := H [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α H : ¬BddAbove s A : ¬BddAbove univ B : ¬Set.Nonempty (upperBounds s) ⊢ sSup s = sSup univ [PROOFSTEP] have C : ¬((upperBounds (univ : Set α)).Nonempty) := A [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice s : Set α H : ¬BddAbove s A : ¬BddAbove univ B : ¬Set.Nonempty (upperBounds s) C : ¬Set.Nonempty (upperBounds univ) ⊢ sSup s = sSup univ [PROOFSTEP] simp [sSup, B, C] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 i₁ : LinearOrder α i₂ : OrderBot α h : IsWellOrder α fun x x_1 => x < x_1 src✝ : Lattice α := LinearOrder.toLattice ⊢ sSup ∅ = ⊥ [PROOFSTEP] simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLattice α s✝ t : Set α a b : α f : β → α s : Set β H : BddAbove (f '' s) Hne : Set.Nonempty s ⊢ IsLUB (f '' s) (⨆ (i : ↑s), f ↑i) [PROOFSTEP] rw [← sSup_image'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLattice α s✝ t : Set α a b : α f : β → α s : Set β H : BddAbove (f '' s) Hne : Set.Nonempty s ⊢ IsLUB (f '' s) (sSup (f '' s)) [PROOFSTEP] exact isLUB_csSup (Hne.image _) H [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α s t : Set α a b : α inst✝¹ : NoMaxOrder α inst✝ : DenselyOrdered α w : α hw : a < w ⊢ ∃ a_1, a_1 ∈ Ioi a ∧ a_1 < w [PROOFSTEP] simpa using exists_between hw [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α s t : Set α a b : α inst✝¹ : NoMinOrder α inst✝ : DenselyOrdered α w : α hw : w < a ⊢ ∃ a_1, a_1 ∈ Iio a ∧ w < a_1 [PROOFSTEP] simpa [and_comm] using exists_between hw [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α inst✝ : Nonempty ι f : ι → α c : α H : ∀ (x : ι), f x ≤ c ⊢ ∀ (b : α), b ∈ range f → b ≤ c [PROOFSTEP] rwa [forall_range_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLattice α s t : Set α a b : α f g : ι → α B : BddAbove (range g) H : ∀ (x : ι), f x ≤ g x ⊢ iSup f ≤ iSup g [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLattice α s t : Set α a b : α f g : ι → α B : BddAbove (range g) H : ∀ (x : ι), f x ≤ g x h✝ : IsEmpty ι ⊢ iSup f ≤ iSup g [PROOFSTEP] rw [iSup_of_empty', iSup_of_empty'] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLattice α s t : Set α a b : α f g : ι → α B : BddAbove (range g) H : ∀ (x : ι), f x ≤ g x h✝ : Nonempty ι ⊢ iSup f ≤ iSup g [PROOFSTEP] exact ciSup_le fun x => le_ciSup_of_le B x (H x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLattice α s t : Set α a✝ b : α hι : Nonempty ι a : α ⊢ ⨆ (x : ι), a = a [PROOFSTEP] rw [iSup, range_const, csSup_singleton] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s✝ t : Set α a b : α inst✝ : Unique ι s : ι → α ⊢ ⨆ (i : ι), s i = s default [PROOFSTEP] have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s✝ t : Set α a b : α inst✝ : Unique ι s : ι → α this : ∀ (i : ι), s i = s default ⊢ ⨆ (i : ι), s i = s default [PROOFSTEP] simp only [this, ciSup_const] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α inst✝ : Nonempty ι f : ι → α h₁ : ∀ (i : ι), b ≤ f i h₂ : ∀ (w : α), b < w → ∃ i, f i < w ⊢ ⨅ (i : ι), f i = b [PROOFSTEP] exact @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_› [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α inst✝ : SemilatticeSup β f g : β → α hf : Monotone f hg : Antitone g h : f ≤ g ⊢ ⨆ (n : β), f n ∈ ⋂ (n : β), Icc (f n) (g n) [PROOFSTEP] refine' mem_iInter.2 fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α inst✝ : SemilatticeSup β f g : β → α hf : Monotone f hg : Antitone g h : f ≤ g n : β ⊢ ⨆ (n : β), f n ∈ Icc (f n) (g n) [PROOFSTEP] haveI : Nonempty β := ⟨n⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α inst✝ : SemilatticeSup β f g : β → α hf : Monotone f hg : Antitone g h : f ≤ g n : β this : Nonempty β ⊢ ⨆ (n : β), f n ∈ Icc (f n) (g n) [PROOFSTEP] have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α inst✝ : SemilatticeSup β f g : β → α hf : Monotone f hg : Antitone g h : f ≤ g n : β this✝ : Nonempty β this : ∀ (m : β), f m ≤ g n ⊢ ⨆ (n : β), f n ∈ Icc (f n) (g n) [PROOFSTEP] exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Type u_5 α : ι → Type u_6 inst✝ : (i : ι) → ConditionallyCompleteLattice (α i) src✝² : Lattice ((i : ι) → α i) := lattice src✝¹ : SupSet ((i : ι) → α i) := supSet src✝ : InfSet ((i : ι) → α i) := infSet s : Set ((i : ι) → α i) f : (i : ι) → α i hs : Set.Nonempty s hf : f ∈ upperBounds s i : ι ⊢ Set.Nonempty (range fun f => ↑f i) [PROOFSTEP] haveI := hs.to_subtype [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Type u_5 α : ι → Type u_6 inst✝ : (i : ι) → ConditionallyCompleteLattice (α i) src✝² : Lattice ((i : ι) → α i) := lattice src✝¹ : SupSet ((i : ι) → α i) := supSet src✝ : InfSet ((i : ι) → α i) := infSet s : Set ((i : ι) → α i) f : (i : ι) → α i hs : Set.Nonempty s hf : f ∈ upperBounds s i : ι this : Nonempty ↑s ⊢ Set.Nonempty (range fun f => ↑f i) [PROOFSTEP] apply range_nonempty [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Type u_5 α : ι → Type u_6 inst✝ : (i : ι) → ConditionallyCompleteLattice (α i) src✝² : Lattice ((i : ι) → α i) := lattice src✝¹ : SupSet ((i : ι) → α i) := supSet src✝ : InfSet ((i : ι) → α i) := infSet s : Set ((i : ι) → α i) f : (i : ι) → α i hs : Set.Nonempty s hf : f ∈ lowerBounds s i : ι ⊢ Set.Nonempty (range fun f => ↑f i) [PROOFSTEP] haveI := hs.to_subtype [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Type u_5 α : ι → Type u_6 inst✝ : (i : ι) → ConditionallyCompleteLattice (α i) src✝² : Lattice ((i : ι) → α i) := lattice src✝¹ : SupSet ((i : ι) → α i) := supSet src✝ : InfSet ((i : ι) → α i) := infSet s : Set ((i : ι) → α i) f : (i : ι) → α i hs : Set.Nonempty s hf : f ∈ lowerBounds s i : ι this : Nonempty ↑s ⊢ Set.Nonempty (range fun f => ↑f i) [PROOFSTEP] apply range_nonempty [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s t : Set α a b : α hs : Set.Nonempty s hb : b < sSup s ⊢ ∃ a, a ∈ s ∧ b < a [PROOFSTEP] contrapose! hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s t : Set α a b : α hs : Set.Nonempty s hb : ∀ (a : α), a ∈ s → a ≤ b ⊢ sSup s ≤ b [PROOFSTEP] exact csSup_le hs hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x ⊢ sSup s = sSup t [PROOFSTEP] rcases eq_empty_or_nonempty s with rfl | s_ne [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s t✝ : Set α a b : α t : Set α hs : ∀ (x : α), x ∈ ∅ → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ ∅ ∧ y ≤ x ⊢ sSup ∅ = sSup t [PROOFSTEP] have : t = ∅ := eq_empty_of_forall_not_mem (fun y yt ↦ by simpa using ht y yt) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s t✝ : Set α a b : α t : Set α hs : ∀ (x : α), x ∈ ∅ → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ ∅ ∧ y ≤ x y : α yt : y ∈ t ⊢ False [PROOFSTEP] simpa using ht y yt [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s t✝ : Set α a b : α t : Set α hs : ∀ (x : α), x ∈ ∅ → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ ∅ ∧ y ≤ x this : t = ∅ ⊢ sSup ∅ = sSup t [PROOFSTEP] rw [this] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s ⊢ sSup s = sSup t [PROOFSTEP] rcases eq_empty_or_nonempty t with rfl | t_ne [GOAL] case inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t : Set α a b : α s : Set α s_ne : Set.Nonempty s hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ ∅ ∧ x ≤ y ht : ∀ (y : α), y ∈ ∅ → ∃ x, x ∈ s ∧ y ≤ x ⊢ sSup s = sSup ∅ [PROOFSTEP] have : s = ∅ := eq_empty_of_forall_not_mem (fun x xs ↦ by simpa using hs x xs) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t : Set α a b : α s : Set α s_ne : Set.Nonempty s hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ ∅ ∧ x ≤ y ht : ∀ (y : α), y ∈ ∅ → ∃ x, x ∈ s ∧ y ≤ x x : α xs : x ∈ s ⊢ False [PROOFSTEP] simpa using hs x xs [GOAL] case inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t : Set α a b : α s : Set α s_ne : Set.Nonempty s hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ ∅ ∧ x ≤ y ht : ∀ (y : α), y ∈ ∅ → ∃ x, x ∈ s ∧ y ≤ x this : s = ∅ ⊢ sSup s = sSup ∅ [PROOFSTEP] rw [this] [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t ⊢ sSup s = sSup t [PROOFSTEP] by_cases B : BddAbove s ∨ BddAbove t [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t ⊢ sSup s = sSup t [PROOFSTEP] have Bs : BddAbove s := by rcases B with hB | ⟨b, hb⟩ · exact hB · refine ⟨b, fun x hx ↦ ?_⟩ rcases hs x hx with ⟨y, hy, hxy⟩ exact hxy.trans (hb hy) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t ⊢ BddAbove s [PROOFSTEP] rcases B with hB | ⟨b, hb⟩ [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t hB : BddAbove s ⊢ BddAbove s [PROOFSTEP] exact hB [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b✝ : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t b : α hb : b ∈ upperBounds t ⊢ BddAbove s [PROOFSTEP] refine ⟨b, fun x hx ↦ ?_⟩ [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b✝ : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t b : α hb : b ∈ upperBounds t x : α hx : x ∈ s ⊢ x ≤ b [PROOFSTEP] rcases hs x hx with ⟨y, hy, hxy⟩ [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b✝ : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t b : α hb : b ∈ upperBounds t x : α hx : x ∈ s y : α hy : y ∈ t hxy : x ≤ y ⊢ x ≤ b [PROOFSTEP] exact hxy.trans (hb hy) [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s ⊢ sSup s = sSup t [PROOFSTEP] have Bt : BddAbove t := by rcases B with ⟨b, hb⟩ | hB · refine ⟨b, fun y hy ↦ ?_⟩ rcases ht y hy with ⟨x, hx, hyx⟩ exact hyx.trans (hb hx) · exact hB [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s ⊢ BddAbove t [PROOFSTEP] rcases B with ⟨b, hb⟩ | hB [GOAL] case inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b✝ : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t Bs : BddAbove s b : α hb : b ∈ upperBounds s ⊢ BddAbove t [PROOFSTEP] refine ⟨b, fun y hy ↦ ?_⟩ [GOAL] case inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b✝ : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t Bs : BddAbove s b : α hb : b ∈ upperBounds s y : α hy : y ∈ t ⊢ y ≤ b [PROOFSTEP] rcases ht y hy with ⟨x, hx, hyx⟩ [GOAL] case inl.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b✝ : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t Bs : BddAbove s b : α hb : b ∈ upperBounds s y : α hy : y ∈ t x : α hx : x ∈ s hyx : y ≤ x ⊢ y ≤ b [PROOFSTEP] exact hyx.trans (hb hx) [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t Bs : BddAbove s hB : BddAbove t ⊢ BddAbove t [PROOFSTEP] exact hB [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t ⊢ sSup s = sSup t [PROOFSTEP] apply le_antisymm [GOAL] case pos.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t ⊢ sSup s ≤ sSup t [PROOFSTEP] apply csSup_le s_ne (fun x hx ↦ ?_) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t x : α hx : x ∈ s ⊢ x ≤ sSup t [PROOFSTEP] rcases hs x hx with ⟨y, yt, hxy⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t x : α hx : x ∈ s y : α yt : y ∈ t hxy : x ≤ y ⊢ x ≤ sSup t [PROOFSTEP] exact hxy.trans (le_csSup Bt yt) [GOAL] case pos.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t ⊢ sSup t ≤ sSup s [PROOFSTEP] apply csSup_le t_ne (fun y hy ↦ ?_) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t y : α hy : y ∈ t ⊢ y ≤ sSup s [PROOFSTEP] rcases ht y hy with ⟨x, xs, hyx⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : BddAbove s ∨ BddAbove t Bs : BddAbove s Bt : BddAbove t y : α hy : y ∈ t x : α xs : x ∈ s hyx : y ≤ x ⊢ y ≤ sSup s [PROOFSTEP] exact hyx.trans (le_csSup Bs xs) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrder α s✝ t✝ : Set α a b : α s t : Set α hs : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ x ≤ y ht : ∀ (y : α), y ∈ t → ∃ x, x ∈ s ∧ y ≤ x s_ne : Set.Nonempty s t_ne : Set.Nonempty t B : ¬(BddAbove s ∨ BddAbove t) ⊢ sSup s = sSup t [PROOFSTEP] simp [csSup_of_not_bddAbove, (not_or.1 B).1, (not_or.1 B).2] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrder α s t : Set α a b : α inst✝ : IsWellOrder α fun x x_1 => x < x_1 hs : Set.Nonempty s ⊢ IsLeast s (sInf s) [PROOFSTEP] rw [sInf_eq_argmin_on hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrder α s t : Set α a b : α inst✝ : IsWellOrder α fun x x_1 => x < x_1 hs : Set.Nonempty s ⊢ IsLeast s (argminOn id (_ : WellFounded fun x x_1 => x < x_1) s hs) [PROOFSTEP] exact ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α inst✝ : IsEmpty ι f : ι → α ⊢ ⨆ (i : ι), f i = ⊥ [PROOFSTEP] rw [iSup_of_empty', csSup_empty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set α hs : BddAbove s ⊢ IsLUB s (sSup s) [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hne) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α hs : BddAbove ∅ ⊢ IsLUB ∅ (sSup ∅) [PROOFSTEP] simp only [csSup_empty, isLUB_empty] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set α hs : BddAbove s hne : Set.Nonempty s ⊢ IsLUB s (sSup s) [PROOFSTEP] exact isLUB_csSup hne hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : ι → α a : α h : BddAbove (range s) ⊢ a ≤ iSup s ↔ ∀ (b : α), (∀ (i : ι), s i ≤ b) → a ≤ b [PROOFSTEP] simp [iSup, h, le_csSup_iff', upperBounds] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set α a : α h : a < sSup s ⊢ ∃ b, b ∈ s ∧ a < b [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set α a : α h : ∀ (b : α), b ∈ s → b ≤ a ⊢ sSup s ≤ a [PROOFSTEP] exact csSup_le' h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α a : α h : a < ⨆ (i : ι), f i ⊢ ∃ i, a < f i [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α a : α h : ∀ (i : ι), f i ≤ a ⊢ ⨆ (i : ι), f i ≤ a [PROOFSTEP] exact ciSup_le' h [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s ⊢ IsLUB s (sSup s) [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s ⊢ sSup s ∈ upperBounds s [PROOFSTEP] show ite _ _ _ ∈ _ [GOAL] case left α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s ⊢ (if ⊤ ∈ s then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' s) then ↑(sSup ((fun a => ↑a) ⁻¹' s)) else ⊤) ∈ upperBounds s [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ⊤ ∈ s ⊢ ⊤ ∈ upperBounds s [PROOFSTEP] intro _ _ [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ⊤ ∈ s a✝¹ : WithTop β a✝ : a✝¹ ∈ s ⊢ a✝¹ ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) ⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ∈ upperBounds s [PROOFSTEP] rintro (⟨⟩ | a) ha [GOAL] case pos.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) ha : none ∈ s ⊢ none ≤ ↑(sSup ((fun a => ↑a) ⁻¹' s)) [PROOFSTEP] contradiction [GOAL] case pos.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) a : β ha : Option.some a ∈ s ⊢ Option.some a ≤ ↑(sSup ((fun a => ↑a) ⁻¹' s)) [PROOFSTEP] apply some_le_some.2 [GOAL] case pos.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) a : β ha : Option.some a ∈ s ⊢ a ≤ sSup ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] exact le_csSup h₂ ha [GOAL] case neg α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) ⊢ ⊤ ∈ upperBounds s [PROOFSTEP] intro _ _ [GOAL] case neg α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) a✝¹ : WithTop β a✝ : a✝¹ ∈ s ⊢ a✝¹ ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case right α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s ⊢ sSup s ∈ lowerBounds (upperBounds s) [PROOFSTEP] show ite _ _ _ ∈ _ [GOAL] case right α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s ⊢ (if ⊤ ∈ s then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' s) then ↑(sSup ((fun a => ↑a) ⁻¹' s)) else ⊤) ∈ lowerBounds (upperBounds s) [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ⊤ ∈ s ⊢ ⊤ ∈ lowerBounds (upperBounds s) [PROOFSTEP] rintro (⟨⟩ | a) ha [GOAL] case pos.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ⊤ ∈ s ha : none ∈ upperBounds s ⊢ ⊤ ≤ none [PROOFSTEP] exact le_rfl [GOAL] case pos.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ⊤ ∈ s a : β ha : Option.some a ∈ upperBounds s ⊢ ⊤ ≤ Option.some a [PROOFSTEP] exact False.elim (not_top_le_coe a (ha h₁)) [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) ⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ∈ lowerBounds (upperBounds s) [PROOFSTEP] rintro (⟨⟩ | b) hb [GOAL] case pos.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) hb : none ∈ upperBounds s ⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ≤ none [PROOFSTEP] exact le_top [GOAL] case pos.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ ↑(sSup ((fun a => ↑a) ⁻¹' s)) ≤ Option.some b [PROOFSTEP] refine' some_le_some.2 (csSup_le _ _) [GOAL] case pos.some.refine'_1 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] rcases hs with ⟨⟨⟩ | b, hb⟩ [GOAL] case pos.some.refine'_1.intro.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb✝ : Option.some b ∈ upperBounds s hb : none ∈ s ⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] exact absurd hb h₁ [GOAL] case pos.some.refine'_1.intro.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) b✝ : β hb✝ : Option.some b✝ ∈ upperBounds s b : β hb : Option.some b ∈ s ⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] exact ⟨b, hb⟩ [GOAL] case pos.some.refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ ∀ (b_1 : β), b_1 ∈ (fun a => ↑a) ⁻¹' s → b_1 ≤ b [PROOFSTEP] intro a ha [GOAL] case pos.some.refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s a : β ha : a ∈ (fun a => ↑a) ⁻¹' s ⊢ a ≤ b [PROOFSTEP] exact some_le_some.1 (hb ha) [GOAL] case neg α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) ⊢ ⊤ ∈ lowerBounds (upperBounds s) [PROOFSTEP] rintro (⟨⟩ | b) hb [GOAL] case neg.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) hb : none ∈ upperBounds s ⊢ ⊤ ≤ none [PROOFSTEP] exact le_rfl [GOAL] case neg.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ ⊤ ≤ Option.some b [PROOFSTEP] exfalso [GOAL] case neg.some.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ False [PROOFSTEP] apply h₂ [GOAL] case neg.some.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ BddAbove ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] use b [GOAL] case h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s ⊢ b ∈ upperBounds ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] intro a ha [GOAL] case h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : Set.Nonempty s h₁ : ¬⊤ ∈ s h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' s) b : β hb : Option.some b ∈ upperBounds s a : β ha : a ∈ (fun a => ↑a) ⁻¹' s ⊢ a ≤ b [PROOFSTEP] exact some_le_some.1 (hb ha) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) ⊢ IsLUB s (sSup s) [PROOFSTEP] cases' s.eq_empty_or_nonempty with hs hs [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ ⊢ IsLUB s (sSup s) [PROOFSTEP] rw [hs] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ ⊢ IsLUB ∅ (sSup ∅) [PROOFSTEP] dsimp only [sSup] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ ⊢ IsLUB ∅ (if ⊤ ∈ ∅ then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' ∅) then ↑(sSup ((fun a => ↑a) ⁻¹' ∅)) else ⊤) [PROOFSTEP] show IsLUB ∅ _ [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ ⊢ IsLUB ∅ (if ⊤ ∈ ∅ then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' ∅) then ↑(sSup ((fun a => ↑a) ⁻¹' ∅)) else ⊤) [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ⊤ ∈ ∅ ⊢ IsLUB ∅ ⊤ [PROOFSTEP] cases h₁ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ¬⊤ ∈ ∅ h₂ : BddAbove ((fun a => ↑a) ⁻¹' ∅) ⊢ IsLUB ∅ ↑(sSup ((fun a => ↑a) ⁻¹' ∅)) [PROOFSTEP] rw [preimage_empty, csSup_empty] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ¬⊤ ∈ ∅ h₂ : BddAbove ((fun a => ↑a) ⁻¹' ∅) ⊢ IsLUB ∅ ↑⊥ [PROOFSTEP] exact isLUB_empty [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ¬⊤ ∈ ∅ h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅) ⊢ IsLUB ∅ ⊤ [PROOFSTEP] exfalso [GOAL] case neg.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ¬⊤ ∈ ∅ h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅) ⊢ False [PROOFSTEP] apply h₂ [GOAL] case neg.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ¬⊤ ∈ ∅ h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅) ⊢ BddAbove ((fun a => ↑a) ⁻¹' ∅) [PROOFSTEP] use⊥ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : s = ∅ h₁ : ¬⊤ ∈ ∅ h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' ∅) ⊢ ⊥ ∈ upperBounds ((fun a => ↑a) ⁻¹' ∅) [PROOFSTEP] rintro a ⟨⟩ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : Set.Nonempty s ⊢ IsLUB s (sSup s) [PROOFSTEP] exact isLUB_sSup' hs [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s ⊢ IsGLB s (sInf s) [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s ⊢ sInf s ∈ lowerBounds s [PROOFSTEP] show ite _ _ _ ∈ _ [GOAL] case left α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s ⊢ (if s ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' s))) ∈ lowerBounds s [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : s ⊆ {⊤} ⊢ ⊤ ∈ lowerBounds s [PROOFSTEP] intro a ha [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : s ⊆ {⊤} a : WithTop β ha : a ∈ s ⊢ ⊤ ≤ a [PROOFSTEP] exact top_le_iff.2 (Set.mem_singleton_iff.1 (h ha)) [GOAL] case neg α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ∈ lowerBounds s [PROOFSTEP] rintro (⟨⟩ | a) ha [GOAL] case neg.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ha : none ∈ s ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ≤ none [PROOFSTEP] exact le_top [GOAL] case neg.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ≤ Option.some a [PROOFSTEP] refine' some_le_some.2 (csInf_le _ ha) [GOAL] case neg.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s ⊢ BddBelow ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] rcases hs with ⟨⟨⟩ | b, hb⟩ [GOAL] case neg.some.intro.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s ⊢ BddBelow ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] exfalso [GOAL] case neg.some.intro.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s ⊢ False [PROOFSTEP] apply h [GOAL] case neg.some.intro.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s ⊢ s ⊆ {⊤} [PROOFSTEP] intro c hc [GOAL] case neg.some.intro.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s c : WithTop β hc : c ∈ s ⊢ c ∈ {⊤} [PROOFSTEP] rw [mem_singleton_iff, ← top_le_iff] [GOAL] case neg.some.intro.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s hb : none ∈ lowerBounds s c : WithTop β hc : c ∈ s ⊢ ⊤ ≤ c [PROOFSTEP] exact hb hc [GOAL] case neg.some.intro.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s b : β hb : Option.some b ∈ lowerBounds s ⊢ BddBelow ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] use b [GOAL] case h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s b : β hb : Option.some b ∈ lowerBounds s ⊢ b ∈ lowerBounds ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] intro c hc [GOAL] case h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ s b : β hb : Option.some b ∈ lowerBounds s c : β hc : c ∈ (fun a => ↑a) ⁻¹' s ⊢ b ≤ c [PROOFSTEP] exact some_le_some.1 (hb hc) [GOAL] case right α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s ⊢ sInf s ∈ upperBounds (lowerBounds s) [PROOFSTEP] show ite _ _ _ ∈ _ [GOAL] case right α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s ⊢ (if s ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' s))) ∈ upperBounds (lowerBounds s) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : s ⊆ {⊤} ⊢ ⊤ ∈ upperBounds (lowerBounds s) [PROOFSTEP] intro _ _ [GOAL] case pos α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : s ⊆ {⊤} a✝¹ : WithTop β a✝ : a✝¹ ∈ lowerBounds s ⊢ a✝¹ ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case neg α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' s)) ∈ upperBounds (lowerBounds s) [PROOFSTEP] rintro (⟨⟩ | a) ha [GOAL] case neg.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ha : none ∈ lowerBounds s ⊢ none ≤ ↑(sInf ((fun a => ↑a) ⁻¹' s)) [PROOFSTEP] exfalso [GOAL] case neg.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ha : none ∈ lowerBounds s ⊢ False [PROOFSTEP] apply h [GOAL] case neg.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ha : none ∈ lowerBounds s ⊢ s ⊆ {⊤} [PROOFSTEP] intro b hb [GOAL] case neg.none.h α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} ha : none ∈ lowerBounds s b : WithTop β hb : b ∈ s ⊢ b ∈ {⊤} [PROOFSTEP] exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb)) [GOAL] case neg.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ lowerBounds s ⊢ Option.some a ≤ ↑(sInf ((fun a => ↑a) ⁻¹' s)) [PROOFSTEP] refine' some_le_some.2 (le_csInf _ _) [GOAL] case neg.some.refine'_1 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ lowerBounds s ⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] classical contrapose! h rintro (⟨⟩ | a) ha · exact mem_singleton ⊤ · exact (h ⟨a, ha⟩).elim [GOAL] case neg.some.refine'_1 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ lowerBounds s ⊢ Set.Nonempty ((fun a => ↑a) ⁻¹' s) [PROOFSTEP] contrapose! h [GOAL] case neg.some.refine'_1 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s a : β ha : Option.some a ∈ lowerBounds s h : ¬Set.Nonempty ((fun a => ↑a) ⁻¹' s) ⊢ s ⊆ {⊤} [PROOFSTEP] rintro (⟨⟩ | a) ha [GOAL] case neg.some.refine'_1.none α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s a : β ha✝ : Option.some a ∈ lowerBounds s h : ¬Set.Nonempty ((fun a => ↑a) ⁻¹' s) ha : none ∈ s ⊢ none ∈ {⊤} [PROOFSTEP] exact mem_singleton ⊤ [GOAL] case neg.some.refine'_1.some α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s a✝ : β ha✝ : Option.some a✝ ∈ lowerBounds s h : ¬Set.Nonempty ((fun a => ↑a) ⁻¹' s) a : β ha : Option.some a ∈ s ⊢ Option.some a ∈ {⊤} [PROOFSTEP] exact (h ⟨a, ha⟩).elim [GOAL] case neg.some.refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ lowerBounds s ⊢ ∀ (b : β), b ∈ (fun a => ↑a) ⁻¹' s → a ≤ b [PROOFSTEP] intro b hb [GOAL] case neg.some.refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ lowerBounds s b : β hb : b ∈ (fun a => ↑a) ⁻¹' s ⊢ a ≤ b [PROOFSTEP] rw [← some_le_some] [GOAL] case neg.some.refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLinearOrderBot α β : Type u_5 inst✝ : ConditionallyCompleteLattice β s : Set (WithTop β) hs : BddBelow s h : ¬s ⊆ {⊤} a : β ha : Option.some a ∈ lowerBounds s b : β hb : b ∈ (fun a => ↑a) ⁻¹' s ⊢ Option.some a ≤ Option.some b [PROOFSTEP] exact ha hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) ⊢ IsGLB s (sInf s) [PROOFSTEP] by_cases hs : BddBelow s [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : BddBelow s ⊢ IsGLB s (sInf s) [PROOFSTEP] exact isGLB_sInf' hs [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : ¬BddBelow s ⊢ IsGLB s (sInf s) [PROOFSTEP] exfalso [GOAL] case neg.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : ¬BddBelow s ⊢ False [PROOFSTEP] apply hs [GOAL] case neg.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : ¬BddBelow s ⊢ BddBelow s [PROOFSTEP] use⊥ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : ¬BddBelow s ⊢ ⊥ ∈ lowerBounds s [PROOFSTEP] intro _ _ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set (WithTop α) hs : ¬BddBelow s a✝¹ : WithTop α a✝ : a✝¹ ∈ s ⊢ ⊥ ≤ a✝¹ [PROOFSTEP] exact bot_le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set α hb : BddAbove s ⊢ ↑(sSup s) = ⨆ (a : α) (_ : a ∈ s), ↑a [PROOFSTEP] rw [coe_sSup' hb, sSup_image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝ : ConditionallyCompleteLinearOrderBot α s : Set α hs : Set.Nonempty s ⊢ ↑(sInf s) = ⨅ (a : α) (_ : a ∈ s), ↑a [PROOFSTEP] rw [coe_sInf' hs, sInf_image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : ConditionallyCompleteLattice β f : α → β h_mono : Monotone f s : Set α c : α hcs : c ∈ s h_bdd : BddBelow s ⊢ sInf (f '' s) ≤ f c [PROOFSTEP] let f' : αᵒᵈ → βᵒᵈ := f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : ConditionallyCompleteLattice β f : α → β h_mono : Monotone f s : Set α c : α hcs : c ∈ s h_bdd : BddBelow s f' : αᵒᵈ → βᵒᵈ := f ⊢ sInf (f '' s) ≤ f c [PROOFSTEP] exact @le_csSup_image αᵒᵈ βᵒᵈ _ _ _ (show Monotone f' from fun x y hxy => h_mono hxy) _ _ hcs h_bdd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : ConditionallyCompleteLattice β f : α → β h_mono : Monotone f s : Set α hs : Set.Nonempty s B : α hB : B ∈ lowerBounds s ⊢ f B ≤ sInf (f '' s) [PROOFSTEP] let f' : αᵒᵈ → βᵒᵈ := f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : Preorder α inst✝ : ConditionallyCompleteLattice β f : α → β h_mono : Monotone f s : Set α hs : Set.Nonempty s B : α hB : B ∈ lowerBounds s f' : αᵒᵈ → βᵒᵈ := f ⊢ f B ≤ sInf (f '' s) [PROOFSTEP] exact @csSup_image_le αᵒᵈ βᵒᵈ _ _ _ (show Monotone f' from fun x y hxy => h_mono hxy) _ hs _ hB [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι l : α → β u : β → α gc : GaloisConnection l u s : Set α hne : Set.Nonempty s hbdd : BddAbove s ⊢ l (sSup s) = sSup (l '' s) [PROOFSTEP] rw [gc.l_csSup hne hbdd, sSup_image'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι l : α → β u : β → α gc : GaloisConnection l u f : ι → α hf : BddAbove (range f) ⊢ l (⨆ (i : ι), f i) = ⨆ (i : ι), l (f i) [PROOFSTEP] rw [iSup, gc.l_csSup (range_nonempty _) hf, iSup_range'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι l : α → β u : β → α gc : GaloisConnection l u s : Set γ f : γ → α hf : BddAbove (f '' s) hne : Set.Nonempty s ⊢ l (⨆ (i : ↑s), f ↑i) = ⨆ (i : ↑s), l (f ↑i) [PROOFSTEP] haveI := hne.to_subtype [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι l : α → β u : β → α gc : GaloisConnection l u s : Set γ f : γ → α hf : BddAbove (f '' s) hne : Set.Nonempty s this : Nonempty ↑s ⊢ l (⨆ (i : ↑s), f ↑i) = ⨆ (i : ↑s), l (f ↑i) [PROOFSTEP] rw [image_eq_range] at hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι l : α → β u : β → α gc : GaloisConnection l u s : Set γ f : γ → α hf : BddAbove (range fun x => f ↑x) hne : Set.Nonempty s this : Nonempty ↑s ⊢ l (⨆ (i : ↑s), f ↑i) = ⨆ (i : ↑s), l (f ↑i) [PROOFSTEP] exact gc.l_ciSup hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : α → β → γ s : Set α t : Set β l u : α → β → γ l₁ u₁ : β → γ → α l₂ u₂ : α → γ → β h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b) h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a) hs₀ : Set.Nonempty s hs₁ : BddAbove s ht₀ : Set.Nonempty t ht₁ : BddAbove t ⊢ sSup (image2 l s t) = l (sSup s) (sSup t) [PROOFSTEP] refine' eq_of_forall_ge_iff fun c => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : α → β → γ s : Set α t : Set β l u : α → β → γ l₁ u₁ : β → γ → α l₂ u₂ : α → γ → β h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b) h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a) hs₀ : Set.Nonempty s hs₁ : BddAbove s ht₀ : Set.Nonempty t ht₁ : BddAbove t c : γ ⊢ sSup (image2 l s t) ≤ c ↔ l (sSup s) (sSup t) ≤ c [PROOFSTEP] rw [csSup_le_iff (hs₁.image2 (fun _ => (h₁ _).monotone_l) (fun _ => (h₂ _).monotone_l) ht₁) (hs₀.image2 ht₀), forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csSup_le_iff ht₁ ht₀] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : ConditionallyCompleteLattice γ f : α → β → γ s : Set α t : Set β l u : α → β → γ l₁ u₁ : β → γ → α l₂ u₂ : α → γ → β h₁ : ∀ (b : β), GaloisConnection (swap l b) (u₁ b) h₂ : ∀ (a : α), GaloisConnection (l a) (u₂ a) hs₀ : Set.Nonempty s hs₁ : BddAbove s ht₀ : Set.Nonempty t ht₁ : BddAbove t c : γ ⊢ (∀ (i₂ : β), i₂ ∈ t → ∀ (i₁ : α), i₁ ∈ s → l i₁ i₂ ≤ c) ↔ ∀ (b : β), b ∈ t → b ≤ u₂ (sSup s) c [PROOFSTEP] simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csSup_le_iff hs₁ hs₀] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a ⊢ sSup S ≤ a [PROOFSTEP] cases' S.eq_empty_or_nonempty with h h [GOAL] case inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ ⊢ sSup S ≤ a [PROOFSTEP] show ite _ _ _ ≤ a [GOAL] case inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ ⊢ (if ⊤ ∈ S then ⊤ else if BddAbove ((fun a => ↑a) ⁻¹' S) then ↑(sSup ((fun a => ↑a) ⁻¹' S)) else ⊤) ≤ a [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ⊤ ∈ S ⊢ ⊤ ≤ a [PROOFSTEP] rw [h] at h₁ [GOAL] case pos α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ⊤ ∈ ∅ ⊢ ⊤ ≤ a [PROOFSTEP] cases h₁ [GOAL] case pos α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ ↑(sSup ((fun a => ↑a) ⁻¹' S)) ≤ a [PROOFSTEP] convert @bot_le _ _ _ a [GOAL] case h.e'_3 α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ ↑(sSup ((fun a => ↑a) ⁻¹' S)) = ⊥ [PROOFSTEP] apply congr_arg [GOAL] case h.e'_3.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ sSup ((fun a => ↑a) ⁻¹' S) = ⊥ [PROOFSTEP] simp only [h, preimage_empty, WithBot.csSup_empty] [GOAL] case neg α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ ⊤ ≤ a [PROOFSTEP] exfalso [GOAL] case neg.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ False [PROOFSTEP] apply h₂ [GOAL] case neg.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ BddAbove ((fun a => ↑a) ⁻¹' S) [PROOFSTEP] use⊥ [GOAL] case h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ ⊥ ∈ upperBounds ((fun a => ↑a) ⁻¹' S) [PROOFSTEP] rw [h] [GOAL] case h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : S = ∅ h₁ : ¬⊤ ∈ S h₂ : ¬BddAbove ((fun a => ↑a) ⁻¹' S) ⊢ ⊥ ∈ upperBounds ((fun a => ↑a) ⁻¹' ∅) [PROOFSTEP] rintro b ⟨⟩ [GOAL] case inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) ha : ∀ (b : WithTop (WithBot α)), b ∈ S → b ≤ a h : Set.Nonempty S ⊢ sSup S ≤ a [PROOFSTEP] refine' (WithTop.isLUB_sSup' h).2 ha [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) haS : a ∈ S ⊢ (if S ⊆ {⊤} then ⊤ else ↑(sInf ((fun a => ↑a) ⁻¹' S))) ≤ a [PROOFSTEP] split_ifs with h₁ [GOAL] case pos α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) haS : a ∈ S h₁ : S ⊆ {⊤} ⊢ ⊤ ≤ a [PROOFSTEP] cases' a with a [GOAL] case pos.none α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : S ⊆ {⊤} haS : none ∈ S ⊢ ⊤ ≤ none case pos.some α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : S ⊆ {⊤} a : WithBot α haS : Option.some a ∈ S ⊢ ⊤ ≤ Option.some a [PROOFSTEP] exact le_rfl [GOAL] case pos.some α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : S ⊆ {⊤} a : WithBot α haS : Option.some a ∈ S ⊢ ⊤ ≤ Option.some a [PROOFSTEP] cases h₁ haS [GOAL] case neg α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) a : WithTop (WithBot α) haS : a ∈ S h₁ : ¬S ⊆ {⊤} ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' S)) ≤ a [PROOFSTEP] cases a [GOAL] case neg.none α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : ¬S ⊆ {⊤} haS : none ∈ S ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' S)) ≤ none [PROOFSTEP] exact le_top [GOAL] case neg.some α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : ¬S ⊆ {⊤} val✝ : WithBot α haS : Option.some val✝ ∈ S ⊢ ↑(sInf ((fun a => ↑a) ⁻¹' S)) ≤ Option.some val✝ [PROOFSTEP] apply WithTop.some_le_some.2 [GOAL] case neg.some α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : ¬S ⊆ {⊤} val✝ : WithBot α haS : Option.some val✝ ∈ S ⊢ sInf ((fun a => ↑a) ⁻¹' S) ≤ val✝ [PROOFSTEP] refine' csInf_le _ haS [GOAL] case neg.some α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : ¬S ⊆ {⊤} val✝ : WithBot α haS : Option.some val✝ ∈ S ⊢ BddBelow ((fun a => ↑a) ⁻¹' S) [PROOFSTEP] use⊥ [GOAL] case h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : ¬S ⊆ {⊤} val✝ : WithBot α haS : Option.some val✝ ∈ S ⊢ ⊥ ∈ lowerBounds ((fun a => ↑a) ⁻¹' S) [PROOFSTEP] intro b _ [GOAL] case h α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 α : Type u_5 inst✝ : ConditionallyCompleteLattice α src✝³ : InfSet (WithTop (WithBot α)) := instInfSet src✝² : SupSet (WithTop (WithBot α)) := instSupSet src✝¹ : BoundedOrder (WithTop (WithBot α)) := boundedOrder src✝ : Lattice (WithTop (WithBot α)) := lattice S : Set (WithTop (WithBot α)) h₁ : ¬S ⊆ {⊤} val✝ : WithBot α haS : Option.some val✝ ∈ S b : WithBot α a✝ : b ∈ (fun a => ↑a) ⁻¹' S ⊢ ⊥ ≤ b [PROOFSTEP] exact bot_le [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α ⊢ ⨆ (x : ι), ↑(f x) = ⊤ ↔ ¬BddAbove (range f) [PROOFSTEP] rw [iSup_eq_top, not_bddAbove_iff] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α ⊢ (∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)) ↔ ∀ (x : α), ∃ y, y ∈ range f ∧ x < y [PROOFSTEP] refine' ⟨fun hf r => _, fun hf a ha => _⟩ [GOAL] case refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α hf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i) r : α ⊢ ∃ y, y ∈ range f ∧ r < y [PROOFSTEP] rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩ [GOAL] case refine'_1.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α hf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i) r : α i : ι hi : ↑r < ↑(f i) ⊢ ∃ y, y ∈ range f ∧ r < y [PROOFSTEP] exact ⟨f i, ⟨i, rfl⟩, WithTop.coe_lt_coe.mp hi⟩ [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α hf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y a : WithTop α ha : a < ⊤ ⊢ ∃ i, a < ↑(f i) [PROOFSTEP] rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩ [GOAL] case refine'_2.intro.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α hf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y a : WithTop α ha : a < ⊤ i : ι hi : untop a (_ : a ≠ ⊤) < f i ⊢ ∃ i, a < ↑(f i) [PROOFSTEP] exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι : Sort u_5 α : Type u_6 inst✝ : ConditionallyCompleteLinearOrderBot α f : ι → α hf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y a : WithTop α ha : a < ⊤ i : ι hi : untop a (_ : a ≠ ⊤) < f i ⊢ a < ↑(f i) [PROOFSTEP] simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi
{"mathlib_filename": "Mathlib.Order.ConditionallyCompleteLattice.Basic", "llama_tokens": 41089}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : Filter α g : Filter β ⊢ Set.univ ∈ {s | ∀ᶠ (a : α) in f, ∀ᶠ (b : β) in g, (a, b) ∈ s} [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_univ, eventually_true]
{"mathlib_filename": "Mathlib.Order.Filter.Curry", "llama_tokens": 115}
[GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s : (i : ι) → i ∈ S → Set α ⊢ ⋂ (i : ι) (hi : i ∈ S), s i hi ∈ l ↔ ∀ (i : ι) (hi : i ∈ S), s i hi ∈ l [PROOFSTEP] rw [biInter_eq_iInter] [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s : (i : ι) → i ∈ S → Set α ⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ∈ l ↔ ∀ (i : ι) (hi : i ∈ S), s i hi ∈ l [PROOFSTEP] haveI := hS.toEncodable [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s : (i : ι) → i ∈ S → Set α this : Encodable ↑S ⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ∈ l ↔ ∀ (i : ι) (hi : i ∈ S), s i hi ∈ l [PROOFSTEP] exact countable_iInter_mem.trans Subtype.forall [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l inst✝ : Countable ι p : α → ι → Prop ⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), p x i) ↔ ∀ (i : ι), ∀ᶠ (x : α) in l, p x i [PROOFSTEP] simpa only [Filter.Eventually, setOf_forall] using @countable_iInter_mem _ _ l _ _ fun i => {x | p x i} [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S p : α → (i : ι) → i ∈ S → Prop ⊢ (∀ᶠ (x : α) in l, ∀ (i : ι) (hi : i ∈ S), p x i hi) ↔ ∀ (i : ι) (hi : i ∈ S), ∀ᶠ (x : α) in l, p x i hi [PROOFSTEP] simpa only [Filter.Eventually, setOf_forall] using @countable_bInter_mem _ l _ _ _ hS fun i hi => {x | p x i hi} [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s t : (i : ι) → i ∈ S → Set α h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi ⊢ ⋃ (i : ι) (h : i ∈ S), s i h ≤ᶠ[l] ⋃ (i : ι) (h : i ∈ S), t i h [PROOFSTEP] simp only [biUnion_eq_iUnion] [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s t : (i : ι) → i ∈ S → Set α h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi ⊢ ⋃ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋃ (x : ↑S), t ↑x (_ : ↑x ∈ S) [PROOFSTEP] haveI := hS.toEncodable [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s t : (i : ι) → i ∈ S → Set α h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi this : Encodable ↑S ⊢ ⋃ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋃ (x : ↑S), t ↑x (_ : ↑x ∈ S) [PROOFSTEP] exact EventuallyLE.countable_iUnion fun i => h i i.2 [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s t : (i : ι) → i ∈ S → Set α h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi ⊢ ⋂ (i : ι) (h : i ∈ S), s i h ≤ᶠ[l] ⋂ (i : ι) (h : i ∈ S), t i h [PROOFSTEP] simp only [biInter_eq_iInter] [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s t : (i : ι) → i ∈ S → Set α h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi ⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋂ (x : ↑S), t ↑x (_ : ↑x ∈ S) [PROOFSTEP] haveI := hS.toEncodable [GOAL] ι✝ : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ι : Type u_4 S : Set ι hS : Set.Countable S s t : (i : ι) → i ∈ S → Set α h : ∀ (i : ι) (hi : i ∈ S), s i hi ≤ᶠ[l] t i hi this : Encodable ↑S ⊢ ⋂ (x : ↑S), s ↑x (_ : ↑x ∈ S) ≤ᶠ[l] ⋂ (x : ↑S), t ↑x (_ : ↑x ∈ S) [PROOFSTEP] exact EventuallyLE.countable_iInter fun i => h i i.2 [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ⊢ CountableInterFilter ⊥ [PROOFSTEP] rw [← principal_empty] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ⊢ CountableInterFilter (𝓟 ∅) [PROOFSTEP] apply countableInterFilter_principal [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ⊢ CountableInterFilter ⊤ [PROOFSTEP] rw [← principal_univ] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l ⊢ CountableInterFilter (𝓟 univ) [PROOFSTEP] apply countableInterFilter_principal [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter β inst✝ : CountableInterFilter l f : α → β ⊢ CountableInterFilter (comap f l) [PROOFSTEP] refine' ⟨fun S hSc hS => _⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter β inst✝ : CountableInterFilter l f : α → β S : Set (Set α) hSc : Set.Countable S hS : ∀ (s : Set α), s ∈ S → s ∈ comap f l ⊢ ⋂₀ S ∈ comap f l [PROOFSTEP] choose! t htl ht using hS [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter β inst✝ : CountableInterFilter l f : α → β S : Set (Set α) hSc : Set.Countable S t : Set α → Set β htl : ∀ (s : Set α), s ∈ S → t s ∈ l ht : ∀ (s : Set α), s ∈ S → f ⁻¹' t s ⊆ s ⊢ ⋂₀ S ∈ comap f l [PROOFSTEP] have : (⋂ s ∈ S, t s) ∈ l := (countable_bInter_mem hSc).2 htl [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter β inst✝ : CountableInterFilter l f : α → β S : Set (Set α) hSc : Set.Countable S t : Set α → Set β htl : ∀ (s : Set α), s ∈ S → t s ∈ l ht : ∀ (s : Set α), s ∈ S → f ⁻¹' t s ⊆ s this : ⋂ (s : Set α) (_ : s ∈ S), t s ∈ l ⊢ ⋂₀ S ∈ comap f l [PROOFSTEP] refine' ⟨_, this, _⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter β inst✝ : CountableInterFilter l f : α → β S : Set (Set α) hSc : Set.Countable S t : Set α → Set β htl : ∀ (s : Set α), s ∈ S → t s ∈ l ht : ∀ (s : Set α), s ∈ S → f ⁻¹' t s ⊆ s this : ⋂ (s : Set α) (_ : s ∈ S), t s ∈ l ⊢ f ⁻¹' ⋂ (s : Set α) (_ : s ∈ S), t s ⊆ ⋂₀ S [PROOFSTEP] simpa [preimage_iInter] using iInter₂_mono ht [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter α inst✝ : CountableInterFilter l f : α → β ⊢ CountableInterFilter (map f l) [PROOFSTEP] refine' ⟨fun S hSc hS => _⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter α inst✝ : CountableInterFilter l f : α → β S : Set (Set β) hSc : Set.Countable S hS : ∀ (s : Set β), s ∈ S → s ∈ map f l ⊢ ⋂₀ S ∈ map f l [PROOFSTEP] simp only [mem_map, sInter_eq_biInter, preimage_iInter₂] at hS ⊢ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l✝ : Filter α inst✝¹ : CountableInterFilter l✝ l : Filter α inst✝ : CountableInterFilter l f : α → β S : Set (Set β) hSc : Set.Countable S hS : ∀ (s : Set β), s ∈ S → f ⁻¹' s ∈ l ⊢ ⋂ (i : Set β) (_ : i ∈ S), f ⁻¹' i ∈ l [PROOFSTEP] exact (countable_bInter_mem hSc).2 hS [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ ⊢ CountableInterFilter (l₁ ⊓ l₂) [PROOFSTEP] refine' ⟨fun S hSc hS => _⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊓ l₂ ⊢ ⋂₀ S ∈ l₁ ⊓ l₂ [PROOFSTEP] choose s hs t ht hst using hS [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s : (s : Set α) → s ∈ S → Set α hs : ∀ (s_1 : Set α) (a : s_1 ∈ S), s s_1 a ∈ l₁ t : (s : Set α) → s ∈ S → Set α ht : ∀ (s : Set α) (a : s ∈ S), t s a ∈ l₂ hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a ⊢ ⋂₀ S ∈ l₁ ⊓ l₂ [PROOFSTEP] replace hs : (⋂ i ∈ S, s i ‹_›) ∈ l₁ := (countable_bInter_mem hSc).2 hs [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s t : (s : Set α) → s ∈ S → Set α ht : ∀ (s : Set α) (a : s ∈ S), t s a ∈ l₂ hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁ ⊢ ⋂₀ S ∈ l₁ ⊓ l₂ [PROOFSTEP] replace ht : (⋂ i ∈ S, t i ‹_›) ∈ l₂ := (countable_bInter_mem hSc).2 ht [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s t : (s : Set α) → s ∈ S → Set α hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁ ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂ ⊢ ⋂₀ S ∈ l₁ ⊓ l₂ [PROOFSTEP] refine' mem_of_superset (inter_mem_inf hs ht) (subset_sInter fun i hi => _) [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s t : (s : Set α) → s ∈ S → Set α hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁ ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂ i : Set α hi : i ∈ S ⊢ (⋂ (i : Set α) (h : i ∈ S), s i h) ∩ ⋂ (i : Set α) (h : i ∈ S), t i h ⊆ i [PROOFSTEP] rw [hst i hi] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s t : (s : Set α) → s ∈ S → Set α hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁ ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂ i : Set α hi : i ∈ S ⊢ (⋂ (i : Set α) (h : i ∈ S), s i h) ∩ ⋂ (i : Set α) (h : i ∈ S), t i h ⊆ s i hi ∩ t i hi [PROOFSTEP] apply inter_subset_inter [GOAL] case h₁ ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s t : (s : Set α) → s ∈ S → Set α hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁ ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂ i : Set α hi : i ∈ S ⊢ ⋂ (i : Set α) (h : i ∈ S), s i h ⊆ s i hi [PROOFSTEP] exact iInter_subset_of_subset i (iInter_subset _ _) [GOAL] case h₂ ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S s t : (s : Set α) → s ∈ S → Set α hst : ∀ (s_1 : Set α) (a : s_1 ∈ S), s_1 = s s_1 a ∩ t s_1 a hs : ⋂ (i : Set α) (h : i ∈ S), s i h ∈ l₁ ht : ⋂ (i : Set α) (h : i ∈ S), t i h ∈ l₂ i : Set α hi : i ∈ S ⊢ ⋂ (i : Set α) (h : i ∈ S), t i h ⊆ t i hi [PROOFSTEP] exact iInter_subset_of_subset i (iInter_subset _ _) [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ ⊢ CountableInterFilter (l₁ ⊔ l₂) [PROOFSTEP] refine' ⟨fun S hSc hS => ⟨_, _⟩⟩ [GOAL] case refine'_1 ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂ ⊢ ⋂₀ S ∈ l₁.sets [PROOFSTEP] refine' (countable_sInter_mem hSc).2 fun s hs => _ [GOAL] case refine'_2 ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂ ⊢ ⋂₀ S ∈ l₂.sets [PROOFSTEP] refine' (countable_sInter_mem hSc).2 fun s hs => _ [GOAL] case refine'_1 ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂ s : Set α hs : s ∈ S ⊢ s ∈ l₁ case refine'_2 ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝² : CountableInterFilter l l₁ l₂ : Filter α inst✝¹ : CountableInterFilter l₁ inst✝ : CountableInterFilter l₂ S : Set (Set α) hSc : Set.Countable S hS : ∀ (s : Set α), s ∈ S → s ∈ l₁ ⊔ l₂ s : Set α hs : s ∈ S ⊢ s ∈ l₂ [PROOFSTEP] exacts [(hS s hs).1, (hS s hs).2] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) ⊢ CountableInterFilter (countableGenerate g) [PROOFSTEP] delta countableGenerate [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) ⊢ CountableInterFilter (ofCountableInter (CountableGenerateSets g) (_ : ∀ (x : Set (Set α)), Set.Countable x → (∀ (s : Set α), s ∈ x → CountableGenerateSets g s) → CountableGenerateSets g (⋂₀ x)) (_ : ∀ (x x_1 : Set α), CountableGenerateSets g x → x ⊆ x_1 → CountableGenerateSets g x_1)) [PROOFSTEP] infer_instance [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α ⊢ s ∈ countableGenerate g ↔ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s [PROOFSTEP] constructor [GOAL] case mp ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α ⊢ s ∈ countableGenerate g → ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s [PROOFSTEP] intro h [GOAL] case mpr ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α ⊢ (∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s) → s ∈ countableGenerate g [PROOFSTEP] intro h [GOAL] case mp ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α h : s ∈ countableGenerate g ⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s [PROOFSTEP] induction' h with s hs s t _ st ih S Sct _ ih [GOAL] case mp.basic ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s✝ s : Set α hs : s ∈ g ⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s [PROOFSTEP] exact ⟨{ s }, by simp [hs, subset_refl]⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s✝ s : Set α hs : s ∈ g ⊢ {s} ⊆ g ∧ Set.Countable {s} ∧ ⋂₀ {s} ⊆ s [PROOFSTEP] simp [hs, subset_refl] [GOAL] case mp.univ ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α ⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ univ [PROOFSTEP] exact ⟨∅, by simp⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α ⊢ ∅ ⊆ g ∧ Set.Countable ∅ ∧ ⋂₀ ∅ ⊆ univ [PROOFSTEP] simp [GOAL] case mp.superset ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s✝ s t : Set α a✝ : CountableGenerateSets g s st : s ⊆ t ih : ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s ⊢ ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ t [PROOFSTEP] refine' Exists.imp (fun S => _) ih [GOAL] case mp.superset ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s✝ s t : Set α a✝ : CountableGenerateSets g s st : s ⊆ t ih : ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s S : Set (Set α) ⊢ S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s → S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ t [PROOFSTEP] tauto [GOAL] case mp.sInter ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s ih : ∀ (s : Set α), s ∈ S → ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s ⊢ ∃ S_1, S_1 ⊆ g ∧ Set.Countable S_1 ∧ ⋂₀ S_1 ⊆ ⋂₀ S [PROOFSTEP] choose T Tg Tct hT using ih [GOAL] case mp.sInter ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s T : (s : Set α) → s ∈ S → Set (Set α) Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a) hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s ⊢ ∃ S_1, S_1 ⊆ g ∧ Set.Countable S_1 ∧ ⋂₀ S_1 ⊆ ⋂₀ S [PROOFSTEP] refine' ⟨⋃ (s) (H : s ∈ S), T s H, by simpa, Sct.biUnion Tct, _⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s T : (s : Set α) → s ∈ S → Set (Set α) Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a) hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s ⊢ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ g [PROOFSTEP] simpa [GOAL] case mp.sInter ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s T : (s : Set α) → s ∈ S → Set (Set α) Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a) hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s ⊢ ⋂₀ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ ⋂₀ S [PROOFSTEP] apply subset_sInter [GOAL] case mp.sInter.h ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s T : (s : Set α) → s ∈ S → Set (Set α) Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a) hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s ⊢ ∀ (t' : Set α), t' ∈ S → ⋂₀ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ t' [PROOFSTEP] intro s H [GOAL] case mp.sInter.h ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s✝ : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s T : (s : Set α) → s ∈ S → Set (Set α) Tg : ∀ (s : Set α) (a : s ∈ S), T s a ⊆ g Tct : ∀ (s : Set α) (a : s ∈ S), Set.Countable (T s a) hT : ∀ (s : Set α) (a : s ∈ S), ⋂₀ T s a ⊆ s s : Set α H : s ∈ S ⊢ ⋂₀ ⋃ (s : Set α) (H : s ∈ S), T s H ⊆ s [PROOFSTEP] refine' subset_trans (sInter_subset_sInter (subset_iUnion₂ s H)) (hT s H) [GOAL] case mpr ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α h : ∃ S, S ⊆ g ∧ Set.Countable S ∧ ⋂₀ S ⊆ s ⊢ s ∈ countableGenerate g [PROOFSTEP] rcases h with ⟨S, Sg, Sct, hS⟩ [GOAL] case mpr.intro.intro.intro ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sg : S ⊆ g Sct : Set.Countable S hS : ⋂₀ S ⊆ s ⊢ s ∈ countableGenerate g [PROOFSTEP] refine' mem_of_superset ((countable_sInter_mem Sct).mpr _) hS [GOAL] case mpr.intro.intro.intro ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s : Set α S : Set (Set α) Sg : S ⊆ g Sct : Set.Countable S hS : ⋂₀ S ⊆ s ⊢ ∀ (s : Set α), s ∈ S → s ∈ countableGenerate g [PROOFSTEP] intro s H [GOAL] case mpr.intro.intro.intro ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) s✝ : Set α S : Set (Set α) Sg : S ⊆ g Sct : Set.Countable S hS : ⋂₀ S ⊆ s✝ s : Set α H : s ∈ S ⊢ s ∈ countableGenerate g [PROOFSTEP] exact CountableGenerateSets.basic (Sg H) [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f ⊢ f ≤ countableGenerate g ↔ g ⊆ f.sets [PROOFSTEP] constructor [GOAL] case mp ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f ⊢ f ≤ countableGenerate g → g ⊆ f.sets [PROOFSTEP] intro h [GOAL] case mpr ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f ⊢ g ⊆ f.sets → f ≤ countableGenerate g [PROOFSTEP] intro h [GOAL] case mp ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : f ≤ countableGenerate g ⊢ g ⊆ f.sets [PROOFSTEP] exact subset_trans (fun s => CountableGenerateSets.basic) h [GOAL] case mpr ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : g ⊆ f.sets ⊢ f ≤ countableGenerate g [PROOFSTEP] intro s hs [GOAL] case mpr ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : g ⊆ f.sets s : Set α hs : s ∈ countableGenerate g ⊢ s ∈ f [PROOFSTEP] induction' hs with s hs s t _ st ih S Sct _ ih [GOAL] case mpr.basic ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : g ⊆ f.sets s✝ s : Set α hs : s ∈ g ⊢ s ∈ f [PROOFSTEP] exact h hs [GOAL] case mpr.univ ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : g ⊆ f.sets s : Set α ⊢ univ ∈ f [PROOFSTEP] exact univ_mem [GOAL] case mpr.superset ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : g ⊆ f.sets s✝ s t : Set α a✝ : CountableGenerateSets g s st : s ⊆ t ih : s ∈ f ⊢ t ∈ f [PROOFSTEP] exact mem_of_superset ih st [GOAL] case mpr.sInter ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝¹ : CountableInterFilter l g : Set (Set α) f : Filter α inst✝ : CountableInterFilter f h : g ⊆ f.sets s : Set α S : Set (Set α) Sct : Set.Countable S a✝ : ∀ (s : Set α), s ∈ S → CountableGenerateSets g s ih : ∀ (s : Set α), s ∈ S → s ∈ f ⊢ ⋂₀ S ∈ f [PROOFSTEP] exact (countable_sInter_mem Sct).mpr ih [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) ⊢ IsGreatest {f | CountableInterFilter f ∧ g ⊆ f.sets} (countableGenerate g) [PROOFSTEP] refine' ⟨⟨inferInstance, fun s => CountableGenerateSets.basic⟩, _⟩ [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) ⊢ countableGenerate g ∈ upperBounds {f | CountableInterFilter f ∧ g ⊆ f.sets} [PROOFSTEP] rintro f ⟨fct, hf⟩ [GOAL] case intro ι : Sort u_1 α : Type u_2 β : Type u_3 l : Filter α inst✝ : CountableInterFilter l g : Set (Set α) f : Filter α fct : CountableInterFilter f hf : g ⊆ f.sets ⊢ f ≤ countableGenerate g [PROOFSTEP] rwa [@le_countableGenerate_iff_of_countableInterFilter _ _ _ fct]
{"mathlib_filename": "Mathlib.Order.Filter.CountableInter", "llama_tokens": 11770}
[GOAL] α : Type u β : Type v γ : Type u_1 f✝ g✝ : Ultrafilter α s t : Set α p q : α → Prop f : Filter α h₁ : NeBot f h₂ : ∀ (g : Filter α), NeBot g → g ≤ f → f ≤ g g : Filter α neBot'✝ : NeBot g le_of_le✝ : ∀ (g_1 : Filter α), NeBot g_1 → g_1 ≤ g → g ≤ g_1 x✝ : ↑{ toFilter := f, neBot' := h₁, le_of_le := h₂ } = ↑{ toFilter := g, neBot' := neBot'✝, le_of_le := le_of_le✝ } ⊢ { toFilter := f, neBot' := h₁, le_of_le := h₂ } = { toFilter := g, neBot' := neBot'✝, le_of_le := le_of_le✝ } [PROOFSTEP] congr [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g✝ : Ultrafilter α s t : Set α p q : α → Prop f : Ultrafilter α g : Filter α hg : NeBot (g ⊓ ↑f) ⊢ NeBot (↑f ⊓ g) [PROOFSTEP] rwa [inf_comm] [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g✝ : Ultrafilter α s t : Set α p q : α → Prop f : Ultrafilter α g : Filter α ⊢ Disjoint (↑f) g ↔ ¬↑f ≤ g [PROOFSTEP] rw [← inf_neBot_iff, neBot_iff, Ne.def, not_not, disjoint_iff] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop hsc : ¬sᶜ ∈ f h : ↑f ⊓ 𝓟 s = ⊥ ⊢ ↑f ⊓ 𝓟 sᶜᶜ = ⊥ [PROOFSTEP] rwa [compl_compl] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop ⊢ sᶜ ∈ f ↔ ¬s ∈ f [PROOFSTEP] rw [← compl_not_mem_iff, compl_compl] [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g : Ultrafilter α s t : Set α p q : α → Prop f : Filter α h : ∀ (s : Set α), ¬sᶜ ∈ f ↔ s ∈ f hf : f = ⊥ ⊢ False [PROOFSTEP] simp [hf] at h [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g✝ : Ultrafilter α s t : Set α p q : α → Prop u : Ultrafilter α f g : Filter α ⊢ ¬↑u ≤ f ⊔ g ↔ ¬(↑u ≤ f ∨ ↑u ≤ g) [PROOFSTEP] simp only [← disjoint_iff_not_le, not_or, disjoint_sup_right] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop ⊢ s ∪ t ∈ f ↔ s ∈ f ∨ t ∈ f [PROOFSTEP] simp only [← mem_coe, ← le_principal_iff, ← sup_principal, le_sup_iff] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop ⊢ (∀ᶠ (x : α) in ↑f, p x → q x) ↔ (∀ᶠ (x : α) in ↑f, p x) → ∀ᶠ (x : α) in ↑f, q x [PROOFSTEP] simp only [imp_iff_not_or, eventually_or, eventually_not] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s✝ t : Set α p q : α → Prop s : Set (Set α) hs : Set.Finite s ⊢ ⋃₀ ∅ ∈ f ↔ ∃ t, t ∈ ∅ ∧ t ∈ f [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s✝¹ t : Set α p q : α → Prop s : Set (Set α) hs : Set.Finite s a✝ : Set α s✝ : Set (Set α) x✝¹ : ¬a✝ ∈ s✝ x✝ : Set.Finite s✝ his : ⋃₀ s✝ ∈ f ↔ ∃ t, t ∈ s✝ ∧ t ∈ f ⊢ ⋃₀ insert a✝ s✝ ∈ f ↔ ∃ t, t ∈ insert a✝ s✝ ∧ t ∈ f [PROOFSTEP] simp [union_mem_iff, his, or_and_right, exists_or] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s✝ t : Set α p q : α → Prop is : Set β s : β → Set α his : Set.Finite is ⊢ ⋃ (i : β) (_ : i ∈ is), s i ∈ f ↔ ∃ i, i ∈ is ∧ s i ∈ f [PROOFSTEP] simp only [← sUnion_image, finite_sUnion_mem_iff (his.image s), bex_image_iff] [GOAL] α : Type u β : Type v γ : Type u_1 f g✝ : Ultrafilter α s t : Set α p q : α → Prop m : α → β u : Ultrafilter β inj : Injective m large : range m ∈ u g : Filter α hg : NeBot g hgu : g ≤ Filter.comap m ↑u ⊢ Filter.comap m ↑u ≤ g [PROOFSTEP] simp only [← u.unique (map_le_iff_le_comap.2 hgu), comap_map inj, le_rfl] [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g : Ultrafilter α s t : Set α p q : α → Prop f : Ultrafilter α h₀ : optParam (Injective id) (_ : Injective id) ⊢ range id ∈ f [PROOFSTEP] rw [range_id] [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g : Ultrafilter α s t : Set α p q : α → Prop f : Ultrafilter α h₀ : optParam (Injective id) (_ : Injective id) ⊢ univ ∈ f [PROOFSTEP] exact univ_mem [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g : Ultrafilter α s t : Set α p q : α → Prop f : Ultrafilter γ m : α → β n : β → γ inj₀ : Injective n large₀ : range n ∈ f inj₁ : Injective m large₁ : range m ∈ comap f inj₀ large₀ inj₂ : optParam (Injective (n ∘ m)) (_ : Injective (n ∘ m)) ⊢ range (n ∘ m) ∈ f [PROOFSTEP] rw [range_comp] [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g : Ultrafilter α s t : Set α p q : α → Prop f : Ultrafilter γ m : α → β n : β → γ inj₀ : Injective n large₀ : range n ∈ f inj₁ : Injective m large₁ : range m ∈ comap f inj₀ large₀ inj₂ : optParam (Injective (n ∘ m)) (_ : Injective (n ∘ m)) ⊢ n '' range m ∈ f [PROOFSTEP] exact image_mem_of_mem_comap large₀ large₁ [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s✝ t : Set α p q : α → Prop α✝ : Type ?u.19487 a : α✝ s : Set α✝ ⊢ ¬sᶜ ∈ pure a ↔ s ∈ pure a [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop m : α → β a : α inj : Injective m large : range m ∈ pure (m a) ⊢ 𝓟 (m ⁻¹' {m a}) = ↑(pure a) [PROOFSTEP] rw [coe_pure, ← principal_singleton, ← image_singleton, preimage_image_eq _ inj] [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop h : Set.Finite s h' : s ∈ f ⊢ ∃ x, x ∈ s ∧ f = pure x [PROOFSTEP] rw [← biUnion_of_singleton s] at h' [GOAL] α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop h : Set.Finite s h' : ⋃ (x : α) (_ : x ∈ s), {x} ∈ f ⊢ ∃ x, x ∈ s ∧ f = pure x [PROOFSTEP] rcases(Ultrafilter.finite_biUnion_mem_iff h).mp h' with ⟨a, has, haf⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type u_1 f g : Ultrafilter α s t : Set α p q : α → Prop h : Set.Finite s h' : ⋃ (x : α) (_ : x ∈ s), {x} ∈ f a : α has : a ∈ s haf : {a} ∈ f ⊢ ∃ x, x ∈ s ∧ f = pure x [PROOFSTEP] exact ⟨a, has, eq_of_le (Filter.le_pure_iff.2 haf)⟩ [GOAL] α : Type u β : Type v γ : Type u_1 f✝ g : Ultrafilter α s✝ t : Set α p q : α → Prop f : Ultrafilter α m : α → Ultrafilter β s : Set β ⊢ (¬sᶜ ∈ Filter.bind ↑f fun x => ↑(m x)) ↔ s ∈ Filter.bind ↑f fun x => ↑(m x) [PROOFSTEP] simp only [mem_bind', mem_coe, ← compl_mem_iff_not_mem, compl_setOf, compl_compl] [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α ⊢ s ∈ f ↔ ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g [PROOFSTEP] refine' ⟨fun hf g hg => hg hf, fun H => by_contra fun hf => _⟩ [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g hf : ¬s ∈ f ⊢ False [PROOFSTEP] set g : Filter (sᶜ : Set α) := comap (↑) f [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g hf : ¬s ∈ f g : Filter ↑sᶜ := comap Subtype.val f ⊢ False [PROOFSTEP] haveI : NeBot g := comap_neBot_iff_compl_range.2 (by simpa [compl_setOf]) [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g hf : ¬s ∈ f g : Filter ↑sᶜ := comap Subtype.val f ⊢ ¬(range Subtype.val)ᶜ ∈ f [PROOFSTEP] simpa [compl_setOf] [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α H : ∀ (g : Ultrafilter α), ↑g ≤ f → s ∈ g hf : ¬s ∈ f g : Filter ↑sᶜ := comap Subtype.val f this : NeBot g ⊢ False [PROOFSTEP] simpa using H ((of g).map (↑)) (map_le_iff_le_comap.mpr (of_le g)) [GOAL] α : Type u β : Type v γ : Type u_1 f✝ : Filter α s : Set α a : α f f' : Filter α ⊢ ⨆ (g : Ultrafilter α) (_ : ↑g ≤ f), ↑g ≤ f' ↔ f ≤ f' [PROOFSTEP] simp only [iSup_le_iff, ← le_iff_ultrafilter] [GOAL] α : Type u β : Type v γ : Type u_1 f✝ : Filter α s : Set α a : α f : α → β l₁ : Filter α l₂ : Filter β ⊢ Tendsto f l₁ l₂ ↔ ∀ (g : Ultrafilter α), ↑g ≤ l₁ → Tendsto f (↑g) l₂ [PROOFSTEP] simpa only [tendsto_iff_comap] using le_iff_ultrafilter [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α g : Filter α p : Filter α → Prop hp : Monotone p ⊢ (∀ (f : Filter α), NeBot f → f ≤ g → p f) ↔ ∀ (f : Ultrafilter α), ↑f ≤ g → p ↑f [PROOFSTEP] refine' ⟨fun H f hf => H f f.neBot hf, _⟩ [GOAL] α : Type u β : Type v γ : Type u_1 f : Filter α s : Set α a : α g : Filter α p : Filter α → Prop hp : Monotone p ⊢ (∀ (f : Ultrafilter α), ↑f ≤ g → p ↑f) → ∀ (f : Filter α), NeBot f → f ≤ g → p f [PROOFSTEP] intro H f hf hfg [GOAL] α : Type u β : Type v γ : Type u_1 f✝ : Filter α s : Set α a : α g : Filter α p : Filter α → Prop hp : Monotone p H : ∀ (f : Ultrafilter α), ↑f ≤ g → p ↑f f : Filter α hf : NeBot f hfg : f ≤ g ⊢ p f [PROOFSTEP] exact hp (of_le f) (H _ ((of_le f).trans hfg)) [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g ⊢ s ∈ ofComapInfPrincipal h [PROOFSTEP] let f := Filter.comap m g ⊓ 𝓟 s [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s ⊢ s ∈ ofComapInfPrincipal h [PROOFSTEP] haveI : f.NeBot := comap_inf_principal_neBot_of_image_mem h [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s this : NeBot f ⊢ s ∈ ofComapInfPrincipal h [PROOFSTEP] have : s ∈ f := mem_inf_of_right (mem_principal_self s) [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s this✝ : NeBot f this : s ∈ f ⊢ s ∈ ofComapInfPrincipal h [PROOFSTEP] exact le_def.mp (of_le _) s this [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g ⊢ map m (ofComapInfPrincipal h) = g [PROOFSTEP] let f := Filter.comap m g ⊓ 𝓟 s [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s ⊢ map m (ofComapInfPrincipal h) = g [PROOFSTEP] haveI : f.NeBot := comap_inf_principal_neBot_of_image_mem h [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s this : NeBot f ⊢ map m (ofComapInfPrincipal h) = g [PROOFSTEP] apply eq_of_le [GOAL] case h α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s this : NeBot f ⊢ ↑(map m (ofComapInfPrincipal h)) ≤ ↑g [PROOFSTEP] calc Filter.map m (of f) ≤ Filter.map m f := map_mono (of_le _) _ ≤ (Filter.map m <| Filter.comap m g) ⊓ Filter.map m (𝓟 s) := map_inf_le _ = (Filter.map m <| Filter.comap m g) ⊓ (𝓟 <| m '' s) := by rw [map_principal] _ ≤ ↑g ⊓ (𝓟 <| m '' s) := (inf_le_inf_right _ map_comap_le) _ = ↑g := inf_of_le_left (le_principal_iff.mpr h) [GOAL] α : Type u β : Type v γ : Type u_1 m : α → β s : Set α g : Ultrafilter β h : m '' s ∈ g f : Filter α := Filter.comap m ↑g ⊓ 𝓟 s this : NeBot f ⊢ Filter.map m (Filter.comap m ↑g) ⊓ Filter.map m (𝓟 s) = Filter.map m (Filter.comap m ↑g) ⊓ 𝓟 (m '' s) [PROOFSTEP] rw [map_principal]
{"mathlib_filename": "Mathlib.Order.Filter.Ultrafilter", "llama_tokens": 5558}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c ⊢ StrictMonoOn f (s ∪ t) [PROOFSTEP] have A : ∀ x, x ∈ s ∪ t → x ≤ c → x ∈ s := by intro x hx hxc cases hx · assumption rcases eq_or_lt_of_le hxc with (rfl | h'x) · exact hs.1 exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c ⊢ ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s [PROOFSTEP] intro x hx hxc [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c x : α hx : x ∈ s ∪ t hxc : x ≤ c ⊢ x ∈ s [PROOFSTEP] cases hx [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ s ⊢ x ∈ s [PROOFSTEP] assumption [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ t ⊢ x ∈ s [PROOFSTEP] rcases eq_or_lt_of_le hxc with (rfl | h'x) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t x : α h✝ : x ∈ t hs : IsGreatest s x ht : IsLeast t x hxc : x ≤ x ⊢ x ∈ s [PROOFSTEP] exact hs.1 [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ t h'x : x < c ⊢ x ∈ s [PROOFSTEP] exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ t h'x : x < c ⊢ x ∈ t [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s ⊢ StrictMonoOn f (s ∪ t) [PROOFSTEP] have B : ∀ x, x ∈ s ∪ t → c ≤ x → x ∈ t := by intro x hx hxc match hx with | Or.inr hx => exact hx | Or.inl hx => rcases eq_or_lt_of_le hxc with (rfl | h'x) · exact ht.1 exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s ⊢ ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t [PROOFSTEP] intro x hx hxc [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx : x ∈ s ∪ t hxc : c ≤ x ⊢ x ∈ t [PROOFSTEP] match hx with | Or.inr hx => exact hx | Or.inl hx => rcases eq_or_lt_of_le hxc with (rfl | h'x) · exact ht.1 exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx✝ : x ∈ s ∪ t hxc : c ≤ x hx : x ∈ t ⊢ x ∈ t [PROOFSTEP] exact hx [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx✝ : x ∈ s ∪ t hxc : c ≤ x hx : x ∈ s ⊢ x ∈ t [PROOFSTEP] rcases eq_or_lt_of_le hxc with (rfl | h'x) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s hx✝ : c ∈ s ∪ t hxc : c ≤ c hx : c ∈ s ⊢ c ∈ t [PROOFSTEP] exact ht.1 [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx✝ : x ∈ s ∪ t hxc : c ≤ x hx : x ∈ s h'x : c < x ⊢ x ∈ t [PROOFSTEP] exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t ⊢ StrictMonoOn f (s ∪ t) [PROOFSTEP] intro x hx y hy hxy [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y ⊢ f x < f y [PROOFSTEP] rcases lt_or_le x c with (hxc | hcx) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hxc : x < c ⊢ f x < f y [PROOFSTEP] have xs : x ∈ s := A _ hx hxc.le [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hxc : x < c xs : x ∈ s ⊢ f x < f y [PROOFSTEP] rcases lt_or_le y c with (hyc | hcy) [GOAL] case inl.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hxc : x < c xs : x ∈ s hyc : y < c ⊢ f x < f y [PROOFSTEP] exact h₁ xs (A _ hy hyc.le) hxy [GOAL] case inl.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hxc : x < c xs : x ∈ s hcy : c ≤ y ⊢ f x < f y [PROOFSTEP] exact (h₁ xs hs.1 hxc).trans_le (h₂.monotoneOn ht.1 (B _ hy hcy) hcy) [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hcx : c ≤ x ⊢ f x < f y [PROOFSTEP] have xt : x ∈ t := B _ hx hcx [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hcx : c ≤ x xt : x ∈ t ⊢ f x < f y [PROOFSTEP] have yt : y ∈ t := B _ hy (hcx.trans hxy.le) [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : StrictMonoOn f s h₂ : StrictMonoOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x < y hcx : c ≤ x xt : x ∈ t yt : y ∈ t ⊢ f x < f y [PROOFSTEP] exact h₂ xt yt hxy [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β h₁ : StrictMonoOn f (Iic a) h₂ : StrictMonoOn f (Ici a) ⊢ StrictMono f [PROOFSTEP] rw [← strictMonoOn_univ, ← @Iic_union_Ici _ _ a] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β h₁ : StrictMonoOn f (Iic a) h₂ : StrictMonoOn f (Ici a) ⊢ StrictMonoOn f (Iic a ∪ Ici a) [PROOFSTEP] exact StrictMonoOn.union h₁ h₂ isGreatest_Iic isLeast_Ici [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c ⊢ MonotoneOn f (s ∪ t) [PROOFSTEP] have A : ∀ x, x ∈ s ∪ t → x ≤ c → x ∈ s := by intro x hx hxc cases hx · assumption rcases eq_or_lt_of_le hxc with (rfl | h'x) · exact hs.1 exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c ⊢ ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s [PROOFSTEP] intro x hx hxc [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c x : α hx : x ∈ s ∪ t hxc : x ≤ c ⊢ x ∈ s [PROOFSTEP] cases hx [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ s ⊢ x ∈ s [PROOFSTEP] assumption [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ t ⊢ x ∈ s [PROOFSTEP] rcases eq_or_lt_of_le hxc with (rfl | h'x) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α h₁ : MonotoneOn f s h₂ : MonotoneOn f t x : α h✝ : x ∈ t hs : IsGreatest s x ht : IsLeast t x hxc : x ≤ x ⊢ x ∈ s [PROOFSTEP] exact hs.1 [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ t h'x : x < c ⊢ x ∈ s [PROOFSTEP] exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c x : α hxc : x ≤ c h✝ : x ∈ t h'x : x < c ⊢ x ∈ t [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s ⊢ MonotoneOn f (s ∪ t) [PROOFSTEP] have B : ∀ x, x ∈ s ∪ t → c ≤ x → x ∈ t := by intro x hx hxc match hx with | Or.inr hx => exact hx | Or.inl hx => rcases eq_or_lt_of_le hxc with (rfl | h'x) · exact ht.1 exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s ⊢ ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t [PROOFSTEP] intro x hx hxc [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx : x ∈ s ∪ t hxc : c ≤ x ⊢ x ∈ t [PROOFSTEP] match hx with | Or.inr hx => exact hx | Or.inl hx => rcases eq_or_lt_of_le hxc with (rfl | h'x) · exact ht.1 exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx✝ : x ∈ s ∪ t hxc : c ≤ x hx : x ∈ t ⊢ x ∈ t [PROOFSTEP] exact hx [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx✝ : x ∈ s ∪ t hxc : c ≤ x hx : x ∈ s ⊢ x ∈ t [PROOFSTEP] rcases eq_or_lt_of_le hxc with (rfl | h'x) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s hx✝ : c ∈ s ∪ t hxc : c ≤ c hx : c ∈ s ⊢ c ∈ t [PROOFSTEP] exact ht.1 [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s x : α hx✝ : x ∈ s ∪ t hxc : c ≤ x hx : x ∈ s h'x : c < x ⊢ x ∈ t [PROOFSTEP] exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t ⊢ MonotoneOn f (s ∪ t) [PROOFSTEP] intro x hx y hy hxy [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y ⊢ f x ≤ f y [PROOFSTEP] rcases lt_or_le x c with (hxc | hcx) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hxc : x < c ⊢ f x ≤ f y [PROOFSTEP] have xs : x ∈ s := A _ hx hxc.le [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hxc : x < c xs : x ∈ s ⊢ f x ≤ f y [PROOFSTEP] rcases lt_or_le y c with (hyc | hcy) [GOAL] case inl.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hxc : x < c xs : x ∈ s hyc : y < c ⊢ f x ≤ f y [PROOFSTEP] exact h₁ xs (A _ hy hyc.le) hxy [GOAL] case inl.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hxc : x < c xs : x ∈ s hcy : c ≤ y ⊢ f x ≤ f y [PROOFSTEP] exact (h₁ xs hs.1 hxc.le).trans (h₂ ht.1 (B _ hy hcy) hcy) [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hcx : c ≤ x ⊢ f x ≤ f y [PROOFSTEP] have xt : x ∈ t := B _ hx hcx [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hcx : c ≤ x xt : x ∈ t ⊢ f x ≤ f y [PROOFSTEP] have yt : y ∈ t := B _ hy (hcx.trans hxy) [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β s t : Set α c : α h₁ : MonotoneOn f s h₂ : MonotoneOn f t hs : IsGreatest s c ht : IsLeast t c A : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s B : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t x : α hx : x ∈ s ∪ t y : α hy : y ∈ s ∪ t hxy : x ≤ y hcx : c ≤ x xt : x ∈ t yt : y ∈ t ⊢ f x ≤ f y [PROOFSTEP] exact h₂ xt yt hxy [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β h₁ : MonotoneOn f (Iic a) h₂ : MonotoneOn f (Ici a) ⊢ Monotone f [PROOFSTEP] rw [← monotoneOn_univ, ← @Iic_union_Ici _ _ a] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : Preorder β a : α f : α → β h₁ : MonotoneOn f (Iic a) h₂ : MonotoneOn f (Ici a) ⊢ MonotoneOn f (Iic a ∪ Ici a) [PROOFSTEP] exact MonotoneOn.union_right h₁ h₂ isGreatest_Iic isLeast_Ici
{"mathlib_filename": "Mathlib.Order.Monotone.Union", "llama_tokens": 10126}
[GOAL] G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : StrictMonoOn f (Ici 0) ⊢ StrictMono f [PROOFSTEP] refine' StrictMonoOn.Iic_union_Ici (fun x hx y hy hxy => neg_lt_neg_iff.1 _) h₂ [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : StrictMonoOn f (Ici 0) x : G hx : x ∈ Iic 0 y : G hy : y ∈ Iic 0 hxy : x < y ⊢ -f y < -f x [PROOFSTEP] rw [← h₁, ← h₁] [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : StrictMonoOn f (Ici 0) x : G hx : x ∈ Iic 0 y : G hy : y ∈ Iic 0 hxy : x < y ⊢ f (-y) < f (-x) [PROOFSTEP] exact h₂ (neg_nonneg.2 hy) (neg_nonneg.2 hx) (neg_lt_neg hxy) [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : MonotoneOn f (Ici 0) ⊢ Monotone f [PROOFSTEP] refine' MonotoneOn.Iic_union_Ici (fun x hx y hy hxy => neg_le_neg_iff.1 _) h₂ [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : MonotoneOn f (Ici 0) x : G hx : x ∈ Iic 0 y : G hy : y ∈ Iic 0 hxy : x ≤ y ⊢ -f y ≤ -f x [PROOFSTEP] rw [← h₁, ← h₁] [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : OrderedAddCommGroup H f : G → H h₁ : ∀ (x : G), f (-x) = -f x h₂ : MonotoneOn f (Ici 0) x : G hx : x ∈ Iic 0 y : G hy : y ∈ Iic 0 hxy : x ≤ y ⊢ f (-y) ≤ f (-x) [PROOFSTEP] exact h₂ (neg_nonneg.2 hy) (neg_nonneg.2 hx) (neg_le_neg hxy)
{"mathlib_filename": "Mathlib.Order.Monotone.Odd", "llama_tokens": 927}
{"mathlib_filename": "Mathlib.Order.Monotone.Monovary", "llama_tokens": 0}
[GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : GroupWithZero β src✝¹ : DivInvMonoid (Germ (↑φ) β) := divInvMonoid src✝ : MonoidWithZero (Germ (↑φ) β) := monoidWithZero ⊢ ((fun x x_1 => x ∘ x_1) Inv.inv fun x => 0) =ᶠ[↑φ] fun x => 0 [PROOFSTEP] simp only [Function.comp, inv_zero] [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : GroupWithZero β src✝¹ : DivInvMonoid (Germ (↑φ) β) := divInvMonoid src✝ : MonoidWithZero (Germ (↑φ) β) := monoidWithZero ⊢ (fun x => 0) =ᶠ[↑φ] fun x => 0 [PROOFSTEP] exact EventuallyEq.refl _ fun _ => 0 [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : Preorder β f g : α → β ⊢ ↑f < ↑g ↔ ∀* (x : α), f x < g x [PROOFSTEP] simp only [lt_iff_le_not_le, eventually_and, coe_le, eventually_not, EventuallyLE] [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : Preorder β ⊢ (fun x x_1 => x < x_1) = LiftRel fun x x_1 => x < x_1 [PROOFSTEP] ext ⟨f⟩ ⟨g⟩ [GOAL] case h.mk.h.mk.a α : Type u β : Type v φ : Ultrafilter α inst✝ : Preorder β x✝¹ : Germ (↑φ) β f : α → β x✝ : Germ (↑φ) β g : α → β ⊢ Quot.mk Setoid.r f < Quot.mk Setoid.r g ↔ LiftRel (fun x x_1 => x < x_1) (Quot.mk Setoid.r f) (Quot.mk Setoid.r g) [PROOFSTEP] exact coe_lt [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : Germ (↑φ) β a b : α → β ⊢ max ↑a ↑b = map₂ max ↑a ↑b [PROOFSTEP] cases' le_total (a : β*) b with h h [GOAL] case inl α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑a ≤ ↑b ⊢ max ↑a ↑b = map₂ max ↑a ↑b [PROOFSTEP] rw [max_eq_right h, map₂_coe, coe_eq] [GOAL] case inl α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑a ≤ ↑b ⊢ b =ᶠ[↑φ] fun x => max (a x) (b x) [PROOFSTEP] exact h.mono fun i hi => (max_eq_right hi).symm [GOAL] case inr α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑b ≤ ↑a ⊢ max ↑a ↑b = map₂ max ↑a ↑b [PROOFSTEP] rw [max_eq_left h, map₂_coe, coe_eq] [GOAL] case inr α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑b ≤ ↑a ⊢ a =ᶠ[↑φ] fun x => max (a x) (b x) [PROOFSTEP] exact h.mono fun i hi => (max_eq_left hi).symm [GOAL] α : Type u β : Type v φ : Ultrafilter α K : LinearOrder β x y : Germ (↑φ) β a b : α → β ⊢ min ↑a ↑b = map₂ min ↑a ↑b [PROOFSTEP] cases' le_total (a : β*) b with h h [GOAL] case inl α : Type u β : Type v φ : Ultrafilter α K : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑a ≤ ↑b ⊢ min ↑a ↑b = map₂ min ↑a ↑b [PROOFSTEP] rw [min_eq_left h, map₂_coe, coe_eq] [GOAL] case inl α : Type u β : Type v φ : Ultrafilter α K : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑a ≤ ↑b ⊢ a =ᶠ[↑φ] fun x => min (a x) (b x) [PROOFSTEP] exact h.mono fun i hi => (min_eq_left hi).symm [GOAL] case inr α : Type u β : Type v φ : Ultrafilter α K : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑b ≤ ↑a ⊢ min ↑a ↑b = map₂ min ↑a ↑b [PROOFSTEP] rw [min_eq_right h, map₂_coe, coe_eq] [GOAL] case inr α : Type u β : Type v φ : Ultrafilter α K : LinearOrder β x y : Germ (↑φ) β a b : α → β h : ↑b ≤ ↑a ⊢ b =ᶠ[↑φ] fun x => min (a x) (b x) [PROOFSTEP] exact h.mono fun i hi => (min_eq_right hi).symm [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : β ⊢ ↑(max x y) = max ↑x ↑y [PROOFSTEP] rw [max_def, map₂_const] [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrder β x y : β ⊢ ↑(min x y) = min ↑x ↑y [PROOFSTEP] rw [min_def, map₂_const] [GOAL] α : Type u β : Type v φ : Ultrafilter α inst✝ : LinearOrderedAddCommGroup β x : β ⊢ ↑|x| = |↑x| [PROOFSTEP] rw [abs_def, map_const]
{"mathlib_filename": "Mathlib.Order.Filter.FilterProduct", "llama_tokens": 1923}
[GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α h : ∀ (i : α), i ∈ Ico n m → r i (succ i) hnm : n ≤ m ⊢ ReflTransGen r n m [PROOFSTEP] revert h [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α hnm : n ≤ m ⊢ (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m [PROOFSTEP] refine' Succ.rec _ _ hnm [GOAL] case refine'_1 α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α hnm : n ≤ m ⊢ (∀ (i : α), i ∈ Ico n n → r i (succ i)) → ReflTransGen r n n [PROOFSTEP] intro _ [GOAL] case refine'_1 α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α hnm : n ≤ m h✝ : ∀ (i : α), i ∈ Ico n n → r i (succ i) ⊢ ReflTransGen r n n [PROOFSTEP] exact ReflTransGen.refl [GOAL] case refine'_2 α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α hnm : n ≤ m ⊢ ∀ (n_1 : α), n ≤ n_1 → ((∀ (i : α), i ∈ Ico n n_1 → r i (succ i)) → ReflTransGen r n n_1) → (∀ (i : α), i ∈ Ico n (succ n_1) → r i (succ i)) → ReflTransGen r n (succ n_1) [PROOFSTEP] intro m hnm ih h [GOAL] case refine'_2 α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m✝ : α hnm✝ : n ≤ m✝ m : α hnm : n ≤ m ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i) ⊢ ReflTransGen r n (succ m) [PROOFSTEP] have : ReflTransGen r n m := ih fun i hi => h i ⟨hi.1, hi.2.trans_le <| le_succ m⟩ [GOAL] case refine'_2 α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m✝ : α hnm✝ : n ≤ m✝ m : α hnm : n ≤ m ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i) this : ReflTransGen r n m ⊢ ReflTransGen r n (succ m) [PROOFSTEP] cases' (le_succ m).eq_or_lt with hm hm [GOAL] case refine'_2.inl α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m✝ : α hnm✝ : n ≤ m✝ m : α hnm : n ≤ m ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i) this : ReflTransGen r n m hm : m = succ m ⊢ ReflTransGen r n (succ m) [PROOFSTEP] rwa [← hm] [GOAL] case refine'_2.inr α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m✝ : α hnm✝ : n ≤ m✝ m : α hnm : n ≤ m ih : (∀ (i : α), i ∈ Ico n m → r i (succ i)) → ReflTransGen r n m h : ∀ (i : α), i ∈ Ico n (succ m) → r i (succ i) this : ReflTransGen r n m hm : m < succ m ⊢ ReflTransGen r n (succ m) [PROOFSTEP] exact this.tail (h m ⟨hnm, hm⟩) [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α h : ∀ (i : α), i ∈ Ico m n → r (succ i) i hmn : m ≤ n ⊢ ReflTransGen r n m [PROOFSTEP] rw [← reflTransGen_swap] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α h : ∀ (i : α), i ∈ Ico m n → r (succ i) i hmn : m ≤ n ⊢ ReflTransGen (swap r) m n [PROOFSTEP] exact reflTransGen_of_succ_of_le (swap r) h hmn [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α hr : Reflexive r h1 : ∀ (i : α), i ∈ Ico n m → r i (succ i) h2 : ∀ (i : α), i ∈ Ico m n → r (succ i) i ⊢ TransGen r n m [PROOFSTEP] rcases eq_or_ne m n with (rfl | hmn) [GOAL] case inl α : Type u_1 inst✝² : LinearOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop m : α hr : Reflexive r h1 : ∀ (i : α), i ∈ Ico m m → r i (succ i) h2 : ∀ (i : α), i ∈ Ico m m → r (succ i) i ⊢ TransGen r m m [PROOFSTEP] exact TransGen.single (hr m) [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α r : α → α → Prop n m : α hr : Reflexive r h1 : ∀ (i : α), i ∈ Ico n m → r i (succ i) h2 : ∀ (i : α), i ∈ Ico m n → r (succ i) i hmn : m ≠ n ⊢ TransGen r n m [PROOFSTEP] exact transGen_of_succ_of_ne r h1 h2 hmn.symm
{"mathlib_filename": "Mathlib.Order.SuccPred.Relation", "llama_tokens": 2242}
[GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α s t : Set α Ixx : α → α → Set α ⊢ Tendsto (fun p => Ixx p.fst p.snd) (𝓟 s ×ˢ 𝓟 s) (smallSets (𝓟 t)) ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → Ixx x y ⊆ t [PROOFSTEP] simp only [smallSets_principal, prod_principal_principal, tendsto_principal_principal, forall_prod_set, mem_powerset_iff, mem_principal] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α l₁ l₁' l₂ l₂' : Filter α Ixx : α → α → Set α h : TendstoIxxClass Ixx l₁ l₂ h' : TendstoIxxClass Ixx l₁' l₂' ⊢ Tendsto (fun p => Ixx p.fst p.snd) ((l₁ ⊓ l₁') ×ˢ (l₁ ⊓ l₁')) (smallSets (l₂ ⊓ l₂')) [PROOFSTEP] simpa only [prod_inf_prod, smallSets_inf] using h.1.inf h'.1 [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a : α ⊢ TendstoIxxClass Icc (pure a) (pure a) [PROOFSTEP] rw [← principal_singleton] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a : α ⊢ TendstoIxxClass Icc (𝓟 {a}) (𝓟 {a}) [PROOFSTEP] exact tendstoIxxClass_principal.2 ordConnected_singleton.out [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a : α ⊢ Tendsto (fun p => Ico p.fst p.snd) (pure a ×ˢ pure a) (smallSets ⊥) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a : α ⊢ Tendsto (fun p => Ioc p.fst p.snd) (pure a ×ˢ pure a) (smallSets ⊥) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a : α ⊢ Tendsto (fun p => Ioo p.fst p.snd) (pure a ×ˢ pure a) (smallSets ⊥) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l ⊢ TendstoIxxClass uIcc l l [PROOFSTEP] refine' ⟨fun s hs => mem_map.2 <| mem_prod_self_iff.2 _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l ⊢ ∃ t, t ∈ l ∧ t ×ˢ t ⊆ (fun p => [[p.fst, p.snd]]) ⁻¹' s [PROOFSTEP] obtain ⟨t, htl, hts⟩ : ∃ t ∈ l, ∀ p ∈ (t : Set α) ×ˢ t, Icc (p : α × α).1 p.2 ∈ s [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l ⊢ ∃ t, t ∈ l ∧ ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s ⊢ ∃ t, t ∈ l ∧ t ×ˢ t ⊆ (fun p => [[p.fst, p.snd]]) ⁻¹' s [PROOFSTEP] exact mem_prod_self_iff.1 (mem_map.1 (tendsto_fst.Icc tendsto_snd hs)) [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s ⊢ ∃ t, t ∈ l ∧ t ×ˢ t ⊆ (fun p => [[p.fst, p.snd]]) ⁻¹' s [PROOFSTEP] refine' ⟨t, htl, fun p hp => _⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s p : α × α hp : p ∈ t ×ˢ t ⊢ p ∈ (fun p => [[p.fst, p.snd]]) ⁻¹' s [PROOFSTEP] cases' le_total p.1 p.2 with h h [GOAL] case intro.intro.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s p : α × α hp : p ∈ t ×ˢ t h : p.fst ≤ p.snd ⊢ p ∈ (fun p => [[p.fst, p.snd]]) ⁻¹' s [PROOFSTEP] rw [mem_preimage, uIcc_of_le h] [GOAL] case intro.intro.inl α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s p : α × α hp : p ∈ t ×ˢ t h : p.fst ≤ p.snd ⊢ Icc p.fst p.snd ∈ s [PROOFSTEP] exact hts p hp [GOAL] case intro.intro.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s p : α × α hp : p ∈ t ×ˢ t h : p.snd ≤ p.fst ⊢ p ∈ (fun p => [[p.fst, p.snd]]) ⁻¹' s [PROOFSTEP] rw [mem_preimage, uIcc_of_ge h] [GOAL] case intro.intro.inr α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α l : Filter α inst✝ : TendstoIxxClass Icc l l s : Set (Set α) hs : s ∈ smallSets l t : Set α htl : t ∈ l hts : ∀ (p : α × α), p ∈ t ×ˢ t → Icc p.fst p.snd ∈ s p : α × α hp : p ∈ t ×ˢ t h : p.snd ≤ p.fst ⊢ Icc p.snd p.fst ∈ s [PROOFSTEP] exact hts ⟨p.2, p.1⟩ ⟨hp.2, hp.1⟩
{"mathlib_filename": "Mathlib.Order.Filter.Interval", "llama_tokens": 2484}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ f ×ˢ g ↔ ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ s [PROOFSTEP] simp only [SProd.sprod, Filter.prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ comap Prod.fst f ⊓ comap Prod.snd g ↔ ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ prod t₁ t₂ ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ comap Prod.fst f ⊓ comap Prod.snd g → ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ prod t₁ t₂ ⊆ s [PROOFSTEP] rintro ⟨t₁, ⟨s₁, hs₁, hts₁⟩, t₂, ⟨s₂, hs₂, hts₂⟩, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β t₁ : Set (α × β) s₁ : Set α hs₁ : s₁ ∈ f hts₁ : Prod.fst ⁻¹' s₁ ⊆ t₁ t₂ : Set (α × β) s₂ : Set β hs₂ : s₂ ∈ g hts₂ : Prod.snd ⁻¹' s₂ ⊆ t₂ ⊢ ∃ t₁_1, t₁_1 ∈ f ∧ ∃ t₂_1, t₂_1 ∈ g ∧ prod t₁_1 t₂_1 ⊆ t₁ ∩ t₂ [PROOFSTEP] exact ⟨s₁, hs₁, s₂, hs₂, fun p ⟨h, h'⟩ => ⟨hts₁ h, hts₂ h'⟩⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ prod t₁ t₂ ⊆ s) → s ∈ comap Prod.fst f ⊓ comap Prod.snd g [PROOFSTEP] rintro ⟨t₁, ht₁, t₂, ht₂, h⟩ [GOAL] case mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β t₁ : Set α ht₁ : t₁ ∈ f t₂ : Set β ht₂ : t₂ ∈ g h : prod t₁ t₂ ⊆ s ⊢ s ∈ comap Prod.fst f ⊓ comap Prod.snd g [PROOFSTEP] exact mem_inf_of_inter (preimage_mem_comap ht₁) (preimage_mem_comap ht₂) h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) t : Set β ⊢ s ∈ f ×ˢ 𝓟 t ↔ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s} ∈ f [PROOFSTEP] rw [← @exists_mem_subset_iff _ f, mem_prod_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) t : Set β ⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ 𝓟 t ∧ t₁ ×ˢ t₂ ⊆ s) ↔ ∃ t_1, t_1 ∈ f ∧ t_1 ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s} [PROOFSTEP] refine' exists_congr fun u => Iff.rfl.and ⟨_, fun h => ⟨t, mem_principal_self t, _⟩⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) t : Set β u : Set α ⊢ (∃ t₂, t₂ ∈ 𝓟 t ∧ u ×ˢ t₂ ⊆ s) → u ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s} [PROOFSTEP] rintro ⟨v, v_in, hv⟩ a a_in b b_in [GOAL] case refine'_1.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) t : Set β u : Set α v : Set β v_in : v ∈ 𝓟 t hv : u ×ˢ v ⊆ s a : α a_in : a ∈ u b : β b_in : b ∈ t ⊢ (a, b) ∈ s [PROOFSTEP] exact hv (mk_mem_prod a_in <| v_in b_in) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) t : Set β u : Set α h : u ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s} ⊢ u ×ˢ t ⊆ s [PROOFSTEP] rintro ⟨x, y⟩ ⟨hx, hy⟩ [GOAL] case refine'_2.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) t : Set β u : Set α h : u ⊆ {a | ∀ (b : β), b ∈ t → (a, b) ∈ s} x : α y : β hx : (x, y).fst ∈ u hy : (x, y).snd ∈ t ⊢ (x, y) ∈ s [PROOFSTEP] exact h hx y hy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) ⊢ s ∈ f ×ˢ ⊤ ↔ {a | ∀ (b : β), (a, b) ∈ s} ∈ f [PROOFSTEP] rw [← principal_univ, mem_prod_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α s : Set (α × β) ⊢ {a | ∀ (b : β), b ∈ univ → (a, b) ∈ s} ∈ f ↔ {a | ∀ (b : β), (a, b) ∈ s} ∈ f [PROOFSTEP] simp only [mem_univ, forall_true_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f : Filter α g : Filter β p : α × β → Prop s : Set β ⊢ (∀ᶠ (x : α × β) in f ×ˢ 𝓟 s, p x) ↔ ∀ᶠ (x : α) in f, ∀ (y : β), y ∈ s → p (x, y) [PROOFSTEP] rw [eventually_iff, eventually_iff, mem_prod_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f : Filter α g : Filter β p : α × β → Prop s : Set β ⊢ {a | ∀ (b : β), b ∈ s → (a, b) ∈ {x | p x}} ∈ f ↔ {x | ∀ (y : β), y ∈ s → p (x, y)} ∈ f [PROOFSTEP] simp only [mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : α → β × γ b : Filter β c : Filter γ ⊢ comap f (b ×ˢ c) = comap (Prod.fst ∘ f) b ⊓ comap (Prod.snd ∘ f) c [PROOFSTEP] erw [comap_inf, Filter.comap_comap, Filter.comap_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α ⊢ f ×ˢ ⊤ = comap Prod.fst f [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α ⊢ Filter.prod f ⊤ = comap Prod.fst f [PROOFSTEP] rw [Filter.prod, comap_top, inf_top_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g✝ : Filter β f₁ f₂ : Filter α g : Filter β ⊢ (f₁ ⊔ f₂) ×ˢ g = f₁ ×ˢ g ⊔ f₂ ×ˢ g [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g✝ : Filter β f₁ f₂ : Filter α g : Filter β ⊢ Filter.prod (f₁ ⊔ f₂) g = Filter.prod f₁ g ⊔ Filter.prod f₂ g [PROOFSTEP] rw [Filter.prod, comap_sup, inf_sup_right, ← Filter.prod, ← Filter.prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α g₁ g₂ : Filter β ⊢ f ×ˢ (g₁ ⊔ g₂) = f ×ˢ g₁ ⊔ f ×ˢ g₂ [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α g₁ g₂ : Filter β ⊢ Filter.prod f (g₁ ⊔ g₂) = Filter.prod f g₁ ⊔ Filter.prod f g₂ [PROOFSTEP] rw [Filter.prod, comap_sup, inf_sup_left, ← Filter.prod, ← Filter.prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β p : α × β → Prop f : Filter α g : Filter β ⊢ (∀ᶠ (x : α × β) in f ×ˢ g, p x) ↔ ∃ pa, (∀ᶠ (x : α) in f, pa x) ∧ ∃ pb, (∀ᶠ (y : β) in g, pb y) ∧ ∀ {x : α}, pa x → ∀ {y : β}, pb y → p (x, y) [PROOFSTEP] simpa only [Set.prod_subset_iff] using @mem_prod_iff α β p f g [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β la : Filter α lb : Filter β p : α × β → Prop h : ∀ᶠ (x : α × β) in la ×ˢ lb, p x ⊢ ∀ᶠ (x : α) in la, ∀ᶠ (y : β) in lb, p (x, y) [PROOFSTEP] rcases eventually_prod_iff.1 h with ⟨pa, ha, pb, hb, h⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β la : Filter α lb : Filter β p : α × β → Prop h✝ : ∀ᶠ (x : α × β) in la ×ˢ lb, p x pa : α → Prop ha : ∀ᶠ (x : α) in la, pa x pb : β → Prop hb : ∀ᶠ (y : β) in lb, pb y h : ∀ {x : α}, pa x → ∀ {y : β}, pb y → p (x, y) ⊢ ∀ᶠ (x : α) in la, ∀ᶠ (y : β) in lb, p (x, y) [PROOFSTEP] exact ha.mono fun a ha => hb.mono fun b hb => h ha hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α p : α × α → Prop h : ∀ᶠ (i : α × α) in f ×ˢ f, p i ⊢ ∀ᶠ (i : α) in f, p (i, i) [PROOFSTEP] obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g : Filter β f : Filter α p : α × α → Prop h : ∀ᶠ (i : α × α) in f ×ˢ f, p i t : α → Prop ht : ∀ᶠ (x : α) in f, t x s : α → Prop hs : ∀ᶠ (y : α) in f, s y hst : ∀ {x : α}, t x → ∀ {y : α}, s y → p (x, y) ⊢ ∀ᶠ (i : α) in f, p (i, i) [PROOFSTEP] apply (ht.and hs).mono fun x hx => hst hx.1 hx.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : (α × α) × γ → Prop ⊢ (∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x) → ∀ᶠ (x : α × γ) in f ×ˢ g, p ((x.fst, x.fst), x.snd) [PROOFSTEP] intro h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : (α × α) × γ → Prop h : ∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x ⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p ((x.fst, x.fst), x.snd) [PROOFSTEP] obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : (α × α) × γ → Prop h : ∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x t : α × α → Prop ht : ∀ᶠ (x : α × α) in f ×ˢ f, t x s : γ → Prop hs : ∀ᶠ (y : γ) in g, s y hst : ∀ {x : α × α}, t x → ∀ {y : γ}, s y → p (x, y) ⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p ((x.fst, x.fst), x.snd) [PROOFSTEP] refine' (ht.diag_of_prod.prod_mk hs).mono fun x hx => by simp only [hst hx.1 hx.2, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : (α × α) × γ → Prop h : ∀ᶠ (x : (α × α) × γ) in (f ×ˢ f) ×ˢ g, p x t : α × α → Prop ht : ∀ᶠ (x : α × α) in f ×ˢ f, t x s : γ → Prop hs : ∀ᶠ (y : γ) in g, s y hst : ∀ {x : α × α}, t x → ∀ {y : γ}, s y → p (x, y) x : α × γ hx : t (x.fst, x.fst) ∧ s x.snd ⊢ p ((x.fst, x.fst), x.snd) [PROOFSTEP] simp only [hst hx.1 hx.2, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : α × γ × γ → Prop ⊢ (∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x) → ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.fst, x.snd, x.snd) [PROOFSTEP] intro h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : α × γ × γ → Prop h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x ⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.fst, x.snd, x.snd) [PROOFSTEP] obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : α × γ × γ → Prop h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x t : α → Prop ht : ∀ᶠ (x : α) in f, t x s : γ × γ → Prop hs : ∀ᶠ (y : γ × γ) in g ×ˢ g, s y hst : ∀ {x : α}, t x → ∀ {y : γ × γ}, s y → p (x, y) ⊢ ∀ᶠ (x : α × γ) in f ×ˢ g, p (x.fst, x.snd, x.snd) [PROOFSTEP] refine' (ht.prod_mk hs.diag_of_prod).mono fun x hx => by simp only [hst hx.1 hx.2, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter γ p : α × γ × γ → Prop h : ∀ᶠ (x : α × γ × γ) in f ×ˢ g ×ˢ g, p x t : α → Prop ht : ∀ᶠ (x : α) in f, t x s : γ × γ → Prop hs : ∀ᶠ (y : γ × γ) in g ×ˢ g, s y hst : ∀ {x : α}, t x → ∀ {y : γ × γ}, s y → p (x, y) x : α × γ hx : t x.fst ∧ s (x.snd, x.snd) ⊢ p (x.fst, x.snd, x.snd) [PROOFSTEP] simp only [hst hx.1 hx.2, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β inst✝ : Nonempty ι f : ι → Filter α g : Filter β ⊢ (⨅ (i : ι), f i) ×ˢ g = ⨅ (i : ι), f i ×ˢ g [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β inst✝ : Nonempty ι f : ι → Filter α g : Filter β ⊢ Filter.prod (⨅ (i : ι), f i) g = ⨅ (i : ι), Filter.prod (f i) g [PROOFSTEP] rw [Filter.prod, comap_iInf, iInf_inf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β inst✝ : Nonempty ι f : ι → Filter α g : Filter β ⊢ ⨅ (x : ι), comap Prod.fst (f x) ⊓ comap Prod.snd g = ⨅ (i : ι), Filter.prod (f i) g [PROOFSTEP] simp only [Filter.prod, eq_self_iff_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β inst✝ : Nonempty ι f : Filter α g : ι → Filter β ⊢ f ×ˢ ⨅ (i : ι), g i = ⨅ (i : ι), f ×ˢ g i [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β inst✝ : Nonempty ι f : Filter α g : ι → Filter β ⊢ Filter.prod f (⨅ (i : ι), g i) = ⨅ (i : ι), Filter.prod f (g i) [PROOFSTEP] rw [Filter.prod, comap_iInf, inf_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β inst✝ : Nonempty ι f : Filter α g : ι → Filter β ⊢ ⨅ (x : ι), comap Prod.fst f ⊓ comap Prod.snd (g x) = ⨅ (i : ι), Filter.prod f (g i) [PROOFSTEP] simp only [Filter.prod, eq_self_iff_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : β₁ → α₁ m₂ : β₂ → α₂ ⊢ comap m₁ f₁ ×ˢ comap m₂ f₂ = comap (fun p => (m₁ p.fst, m₂ p.snd)) (f₁ ×ˢ f₂) [PROOFSTEP] simp only [SProd.sprod, Filter.prod, comap_comap, comap_inf, (· ∘ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β ⊢ f ×ˢ g = comap Prod.swap (g ×ˢ f) [PROOFSTEP] simp only [SProd.sprod, Filter.prod, comap_comap, (· ∘ ·), inf_comm, Prod.swap, comap_inf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β ⊢ f ×ˢ g = map (fun p => (p.snd, p.fst)) (g ×ˢ f) [PROOFSTEP] rw [prod_comm', ← map_swap_eq_comap_swap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β ⊢ Prod.swap <$> (g ×ˢ f) = map (fun p => (p.snd, p.fst)) (g ×ˢ f) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ f ×ˢ g ↔ ∃ t, t ∈ f ∧ ∀ᶠ (y : β) in g, ∀ (x : α), x ∈ t → (x, y) ∈ s [PROOFSTEP] simp only [mem_prod_iff, prod_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ ∀ (x : α), x ∈ t₁ → ∀ (y : β), y ∈ t₂ → (x, y) ∈ s) ↔ ∃ t, t ∈ f ∧ ∀ᶠ (y : β) in g, ∀ (x : α), x ∈ t → (x, y) ∈ s [PROOFSTEP] refine exists_congr fun _ => Iff.rfl.and <| Iff.trans ?_ exists_mem_subset_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β x✝ : Set α ⊢ (∃ t₂, t₂ ∈ g ∧ ∀ (x : α), x ∈ x✝ → ∀ (y : β), y ∈ t₂ → (x, y) ∈ s) ↔ ∃ t, t ∈ g ∧ t ⊆ {x | (fun y => ∀ (x : α), x ∈ x✝ → (x, y) ∈ s) x} [PROOFSTEP] exact exists_congr fun _ => Iff.rfl.and forall₂_swap [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ f ×ˢ g ↔ ∃ t, t ∈ g ∧ ∀ᶠ (x : α) in f, ∀ (y : β), y ∈ t → (x, y) ∈ s [PROOFSTEP] rw [prod_comm, mem_map, mem_prod_iff_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ (∃ t, t ∈ g ∧ ∀ᶠ (y : α) in f, ∀ (x : β), x ∈ t → (x, y) ∈ (fun p => (p.snd, p.fst)) ⁻¹' s) ↔ ∃ t, t ∈ g ∧ ∀ᶠ (x : α) in f, ∀ (y : β), y ∈ t → (x, y) ∈ s [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β inst✝ : NeBot g ⊢ map Prod.fst (f ×ˢ g) = f [PROOFSTEP] ext s [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β inst✝ : NeBot g s : Set α ⊢ s ∈ map Prod.fst (f ×ˢ g) ↔ s ∈ f [PROOFSTEP] simp only [mem_map, mem_prod_iff_left, mem_preimage, eventually_const, ← subset_def, exists_mem_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β inst✝ : NeBot f ⊢ map Prod.snd (f ×ˢ g) = g [PROOFSTEP] rw [prod_comm, map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β inst✝ : NeBot f ⊢ map (Prod.snd ∘ fun p => (p.snd, p.fst)) (g ×ˢ f) = g [PROOFSTEP] apply map_fst_prod [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β f₁ f₂ : Filter α g₁ g₂ : Filter β inst✝¹ : NeBot f₁ inst✝ : NeBot g₁ ⊢ f₁ ×ˢ g₁ = f₂ ×ˢ g₂ ↔ f₁ = f₂ ∧ g₁ = g₂ [PROOFSTEP] refine' ⟨fun h => _, fun h => h.1 ▸ h.2 ▸ rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β f₁ f₂ : Filter α g₁ g₂ : Filter β inst✝¹ : NeBot f₁ inst✝ : NeBot g₁ h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂ ⊢ f₁ = f₂ ∧ g₁ = g₂ [PROOFSTEP] have hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂ := prod_le_prod.1 h.le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β f₁ f₂ : Filter α g₁ g₂ : Filter β inst✝¹ : NeBot f₁ inst✝ : NeBot g₁ h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂ hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂ ⊢ f₁ = f₂ ∧ g₁ = g₂ [PROOFSTEP] haveI := neBot_of_le hle.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β f₁ f₂ : Filter α g₁ g₂ : Filter β inst✝¹ : NeBot f₁ inst✝ : NeBot g₁ h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂ hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂ this : NeBot f₂ ⊢ f₁ = f₂ ∧ g₁ = g₂ [PROOFSTEP] haveI := neBot_of_le hle.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β f₁ f₂ : Filter α g₁ g₂ : Filter β inst✝¹ : NeBot f₁ inst✝ : NeBot g₁ h : f₁ ×ˢ g₁ = f₂ ×ˢ g₂ hle : f₁ ≤ f₂ ∧ g₁ ≤ g₂ this✝ : NeBot f₂ this : NeBot g₂ ⊢ f₁ = f₂ ∧ g₁ = g₂ [PROOFSTEP] exact ⟨hle.1.antisymm <| (prod_le_prod.1 h.ge).1, hle.2.antisymm <| (prod_le_prod.1 h.ge).2⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β p : α × β → Prop ⊢ (∀ᶠ (x : α × β) in f ×ˢ g, p x) ↔ ∀ᶠ (y : β × α) in g ×ˢ f, p (Prod.swap y) [PROOFSTEP] rw [prod_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β p : α × β → Prop ⊢ (∀ᶠ (x : α × β) in map (fun p => (p.snd, p.fst)) (g ×ˢ f), p x) ↔ ∀ᶠ (y : β × α) in g ×ˢ f, p (Prod.swap y) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β h : Filter γ ⊢ map (↑(Equiv.prodAssoc α β γ)) ((f ×ˢ g) ×ˢ h) = f ×ˢ g ×ˢ h [PROOFSTEP] simp_rw [← comap_equiv_symm, SProd.sprod, Filter.prod, comap_inf, comap_comap, inf_assoc, (· ∘ ·), Equiv.prodAssoc_symm_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β h : Filter γ ⊢ map (↑(Equiv.prodAssoc α β γ).symm) (f ×ˢ g ×ˢ h) = (f ×ˢ g) ×ˢ h [PROOFSTEP] simp_rw [map_equiv_symm, SProd.sprod, Filter.prod, comap_inf, comap_comap, inf_assoc, Function.comp, Equiv.prodAssoc_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β h : Filter γ k : Filter δ ⊢ map (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ((f ×ˢ g) ×ˢ h ×ˢ k) = (f ×ˢ h) ×ˢ g ×ˢ k [PROOFSTEP] simp_rw [map_swap4_eq_comap, SProd.sprod, Filter.prod, comap_inf, comap_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β h : Filter γ k : Filter δ ⊢ comap ((Prod.fst ∘ Prod.fst) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) f ⊓ comap ((Prod.snd ∘ Prod.fst) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) g ⊓ (comap ((Prod.fst ∘ Prod.snd) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) h ⊓ comap ((Prod.snd ∘ Prod.snd) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) k) = comap (Prod.fst ∘ Prod.fst) f ⊓ comap (Prod.snd ∘ Prod.fst) h ⊓ (comap (Prod.fst ∘ Prod.snd) g ⊓ comap (Prod.snd ∘ Prod.snd) k) [PROOFSTEP] ac_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ s : Set (β₁ × β₂) hs : (fun p => (m₁ p.fst, m₂ p.snd)) ⁻¹' s ∈ f₁ ×ˢ f₂ s₁ : Set α₁ hs₁ : s₁ ∈ f₁ s₂ : Set α₂ hs₂ : s₂ ∈ f₂ h : s₁ ×ˢ s₂ ⊆ (fun p => (m₁ p.fst, m₂ p.snd)) ⁻¹' s ⊢ (m₁ '' s₁) ×ˢ (m₂ '' s₂) ⊆ s [PROOFSTEP] rwa [prod_image_image_eq, image_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : α → β F : Filter α G : Filter γ ⊢ map f F ×ˢ G = map (Prod.map f id) (F ×ˢ G) [PROOFSTEP] rw [← prod_map_map_eq', map_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : β → γ F : Filter α G : Filter β ⊢ F ×ˢ map f G = map (Prod.map id f) (F ×ˢ G) [PROOFSTEP] rw [← prod_map_map_eq', map_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ✝ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β δ : Type u_6 f : α → γ g : β → δ a : Filter α b : Filter β c : Filter γ d : Filter δ hf : Tendsto f a c hg : Tendsto g b d ⊢ Tendsto (Prod.map f g) (a ×ˢ b) (c ×ˢ d) [PROOFSTEP] erw [Tendsto, ← prod_map_map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ✝ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β δ : Type u_6 f : α → γ g : β → δ a : Filter α b : Filter β c : Filter γ d : Filter δ hf : Tendsto f a c hg : Tendsto g b d ⊢ map f a ×ˢ map g b ≤ c ×ˢ d [PROOFSTEP] exact Filter.prod_mono hf hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β m : α × β → γ f : Filter α g : Filter β ⊢ map m (f ×ˢ g) = seq (map (fun a b => m (a, b)) f) g [PROOFSTEP] simp [Filter.ext_iff, mem_prod_iff, mem_map_seq_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β m : α × β → γ f : Filter α g : Filter β ⊢ ∀ (s : Set γ), (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s) ↔ ∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s [PROOFSTEP] intro s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β m : α × β → γ f : Filter α g : Filter β s : Set γ ⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s) ↔ ∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β m : α × β → γ f : Filter α g : Filter β s : Set γ ⊢ (∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s) → ∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β m : α × β → γ f : Filter α g : Filter β s : Set γ ⊢ (∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s) → ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s [PROOFSTEP] exact fun ⟨t, ht, s, hs, h⟩ => ⟨s, hs, t, ht, fun x hx y hy => @h ⟨x, y⟩ ⟨hx, hy⟩⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β m : α × β → γ f : Filter α g : Filter β s : Set γ ⊢ (∃ t, t ∈ g ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), x_1 ∈ x → ∀ (y : β), y ∈ t → m (x_1, y) ∈ s) → ∃ t₁, t₁ ∈ f ∧ ∃ t₂, t₂ ∈ g ∧ t₁ ×ˢ t₂ ⊆ m ⁻¹' s [PROOFSTEP] exact fun ⟨s, hs, t, ht, h⟩ => ⟨t, ht, s, hs, fun ⟨x, y⟩ ⟨hx, hy⟩ => h x hx y hy⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β ⊢ f ×ˢ g = seq (map Prod.mk f) g [PROOFSTEP] have h := f.map_prod id g [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β h : map id (f ×ˢ g) = seq (map (fun a b => id (a, b)) f) g ⊢ f ×ˢ g = seq (map Prod.mk f) g [PROOFSTEP] rwa [map_id] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β f₁ f₂ : Filter α g₁ g₂ : Filter β ⊢ f₁ ×ˢ g₁ ⊓ f₂ ×ˢ g₂ = (f₁ ⊓ f₂) ×ˢ (g₁ ⊓ g₂) [PROOFSTEP] simp only [SProd.sprod, Filter.prod, comap_inf, inf_comm, inf_assoc, inf_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g✝ : Filter β f₁ f₂ : Filter α g : Filter β ⊢ (f₁ ⊓ f₂) ×ˢ g = f₁ ×ˢ g ⊓ f₂ ×ˢ g [PROOFSTEP] rw [prod_inf_prod, inf_idem] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α g₁ g₂ : Filter β ⊢ f ×ˢ (g₁ ⊓ g₂) = f ×ˢ g₁ ⊓ f ×ˢ g₂ [PROOFSTEP] rw [prod_inf_prod, inf_idem] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f : Filter α g : Filter β s : Set α t : Set β ⊢ 𝓟 s ×ˢ 𝓟 t = 𝓟 (s ×ˢ t) [PROOFSTEP] simp only [SProd.sprod, Filter.prod, comap_principal, principal_eq_iff_eq, comap_principal, inf_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t✝ : Set β f : Filter α g : Filter β s : Set α t : Set β ⊢ Prod.fst ⁻¹' s ∩ Prod.snd ⁻¹' t = prod s t [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β a : α f : Filter β ⊢ pure a ×ˢ f = map (Prod.mk a) f [PROOFSTEP] rw [prod_eq, map_pure, pure_seq_eq_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : α → β → γ a : α B : Filter β ⊢ map (Function.uncurry f) (pure a ×ˢ B) = map (f a) B [PROOFSTEP] rw [Filter.pure_prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : α → β → γ a : α B : Filter β ⊢ map (Function.uncurry f) (map (Prod.mk a) B) = map (f a) B [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α b : β ⊢ f ×ˢ pure b = map (fun a => (a, b)) f [PROOFSTEP] rw [prod_eq, seq_pure, map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : Filter α b : β ⊢ map ((fun g => g b) ∘ Prod.mk) f = map (fun a => (a, b)) f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f : Filter α g : Filter β a : α b : β ⊢ pure a ×ˢ pure b = pure (a, b) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β ⊢ f ×ˢ g = ⊥ ↔ f = ⊥ ∨ g = ⊥ [PROOFSTEP] simp_rw [← empty_mem_iff_bot, mem_prod_iff, subset_empty_iff, prod_eq_empty_iff, ← exists_prop, Subtype.exists', exists_or, exists_const, Subtype.exists, exists_prop, exists_eq_right] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β ⊢ NeBot (f ×ˢ g) ↔ NeBot f ∧ NeBot g [PROOFSTEP] simp only [neBot_iff, Ne, prod_eq_bot, not_or] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g : Filter β f : α × β → γ x : Filter α y : Filter β z : Filter γ ⊢ Tendsto f (x ×ˢ y) z ↔ ∀ (W : Set γ), W ∈ z → ∃ U, U ∈ x ∧ ∃ V, V ∈ y ∧ ∀ (x : α) (y : β), x ∈ U → y ∈ V → f (x, y) ∈ W [PROOFSTEP] simp only [tendsto_def, mem_prod_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter (α × β) g : Filter α g' : Filter β ⊢ f ≤ g ×ˢ g' ↔ Tendsto Prod.fst f g ∧ Tendsto Prod.snd f g' [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter (α × β) g : Filter α g' : Filter β ⊢ f ≤ Filter.prod g g' ↔ Tendsto Prod.fst f g ∧ Tendsto Prod.snd f g' [PROOFSTEP] unfold Filter.prod [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter (α × β) g : Filter α g' : Filter β ⊢ f ≤ comap Prod.fst g ⊓ comap Prod.snd g' ↔ Tendsto Prod.fst f g ∧ Tendsto Prod.snd f g' [PROOFSTEP] simp only [le_inf_iff, ← map_le_iff_le_comap, Tendsto] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β g' : Filter γ s : α → β × γ ⊢ Tendsto s f (g ×ˢ g') ↔ Tendsto (fun n => (s n).fst) f g ∧ Tendsto (fun n => (s n).snd) f g' [PROOFSTEP] dsimp only [SProd.sprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β g' : Filter γ s : α → β × γ ⊢ Tendsto s f (Filter.prod g g') ↔ Tendsto (fun n => (s n).fst) f g ∧ Tendsto (fun n => (s n).snd) f g' [PROOFSTEP] unfold Filter.prod [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 s✝ : Set α t : Set β f✝ : Filter α g✝ : Filter β f : Filter α g : Filter β g' : Filter γ s : α → β × γ ⊢ Tendsto s f (comap Prod.fst g ⊓ comap Prod.snd g') ↔ Tendsto (fun n => (s n).fst) f g ∧ Tendsto (fun n => (s n).snd) f g' [PROOFSTEP] simp only [tendsto_inf, tendsto_comap_iff, (· ∘ ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f✝ : Filter α g✝ : Filter β s : Set (α × β) f : Filter α g : Filter β ⊢ s ∈ Filter.coprod f g ↔ (∃ t₁, t₁ ∈ f ∧ Prod.fst ⁻¹' t₁ ⊆ s) ∧ ∃ t₂, t₂ ∈ g ∧ Prod.snd ⁻¹' t₂ ⊆ s [PROOFSTEP] simp [Filter.coprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g l : Filter β ⊢ Filter.coprod ⊥ l = comap Prod.snd l [PROOFSTEP] simp [Filter.coprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β l : Filter α ⊢ Filter.coprod l ⊥ = comap Prod.fst l [PROOFSTEP] simp [Filter.coprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β ⊢ Filter.coprod ⊥ ⊥ = ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β s : Set (α × β) la : Filter α lb : Filter β ⊢ sᶜ ∈ Filter.coprod la lb ↔ (Prod.fst '' s)ᶜ ∈ la ∧ (Prod.snd '' s)ᶜ ∈ lb [PROOFSTEP] simp only [Filter.coprod, mem_sup, compl_mem_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β ⊢ NeBot (Filter.coprod f g) ↔ NeBot f ∧ Nonempty β ∨ Nonempty α ∧ NeBot g [PROOFSTEP] simp [Filter.coprod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β s : Set α t : Set β ⊢ Filter.coprod (𝓟 s) (𝓟 t) = 𝓟 (sᶜ ×ˢ tᶜ)ᶜ [PROOFSTEP] rw [Filter.coprod, comap_principal, comap_principal, sup_principal, Set.prod_eq, compl_inter, preimage_compl, preimage_compl, compl_compl, compl_compl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ ⊢ map (Prod.map m₁ m₂) (Filter.coprod f₁ f₂) ≤ Filter.coprod (map m₁ f₁) (map m₂ f₂) [PROOFSTEP] intro s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ s : Set (β₁ × β₂) ⊢ s ∈ Filter.coprod (map m₁ f₁) (map m₂ f₂) → s ∈ map (Prod.map m₁ m₂) (Filter.coprod f₁ f₂) [PROOFSTEP] simp only [mem_map, mem_coprod_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ s : Set (β₁ × β₂) ⊢ ((∃ t₁, m₁ ⁻¹' t₁ ∈ f₁ ∧ Prod.fst ⁻¹' t₁ ⊆ s) ∧ ∃ t₂, m₂ ⁻¹' t₂ ∈ f₂ ∧ Prod.snd ⁻¹' t₂ ⊆ s) → (∃ t₁, t₁ ∈ f₁ ∧ Prod.fst ⁻¹' t₁ ⊆ Prod.map m₁ m₂ ⁻¹' s) ∧ ∃ t₂, t₂ ∈ f₂ ∧ Prod.snd ⁻¹' t₂ ⊆ Prod.map m₁ m₂ ⁻¹' s [PROOFSTEP] rintro ⟨⟨u₁, hu₁, h₁⟩, u₂, hu₂, h₂⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ s : Set (β₁ × β₂) u₁ : Set β₁ hu₁ : m₁ ⁻¹' u₁ ∈ f₁ h₁ : Prod.fst ⁻¹' u₁ ⊆ s u₂ : Set β₂ hu₂ : m₂ ⁻¹' u₂ ∈ f₂ h₂ : Prod.snd ⁻¹' u₂ ⊆ s ⊢ (∃ t₁, t₁ ∈ f₁ ∧ Prod.fst ⁻¹' t₁ ⊆ Prod.map m₁ m₂ ⁻¹' s) ∧ ∃ t₂, t₂ ∈ f₂ ∧ Prod.snd ⁻¹' t₂ ⊆ Prod.map m₁ m₂ ⁻¹' s [PROOFSTEP] refine' ⟨⟨m₁ ⁻¹' u₁, hu₁, fun _ hx => h₁ _⟩, ⟨m₂ ⁻¹' u₂, hu₂, fun _ hx => h₂ _⟩⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ s : Set (β₁ × β₂) u₁ : Set β₁ hu₁ : m₁ ⁻¹' u₁ ∈ f₁ h₁ : Prod.fst ⁻¹' u₁ ⊆ s u₂ : Set β₂ hu₂ : m₂ ⁻¹' u₂ ∈ f₂ h₂ : Prod.snd ⁻¹' u₂ ⊆ s x✝ : α₁ × α₂ hx : x✝ ∈ Prod.fst ⁻¹' (m₁ ⁻¹' u₁) ⊢ Prod.map m₁ m₂ x✝ ∈ Prod.fst ⁻¹' u₁ [PROOFSTEP] convert hx [GOAL] case intro.intro.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ι : Sort u_5 f : Filter α g : Filter β α₁ : Type u α₂ : Type v β₁ : Type w β₂ : Type x f₁ : Filter α₁ f₂ : Filter α₂ m₁ : α₁ → β₁ m₂ : α₂ → β₂ s : Set (β₁ × β₂) u₁ : Set β₁ hu₁ : m₁ ⁻¹' u₁ ∈ f₁ h₁ : Prod.fst ⁻¹' u₁ ⊆ s u₂ : Set β₂ hu₂ : m₂ ⁻¹' u₂ ∈ f₂ h₂ : Prod.snd ⁻¹' u₂ ⊆ s x✝ : α₁ × α₂ hx : x✝ ∈ Prod.snd ⁻¹' (m₂ ⁻¹' u₂) ⊢ Prod.map m₁ m₂ x✝ ∈ Prod.snd ⁻¹' u₂ [PROOFSTEP] convert hx [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι ⊢ Filter.coprod (map (fun x => b) (𝓟 {a})) (map id (𝓟 {i})) = 𝓟 ({b} ×ˢ univ ∪ univ ×ˢ {i}) [PROOFSTEP] simp only [map_principal, Filter.coprod, comap_principal, sup_principal, image_singleton, image_id, prod_univ, univ_prod, id] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι ⊢ map (Prod.map (fun x => b) id) (Filter.coprod (𝓟 {a}) (𝓟 {i})) = 𝓟 ({b} ×ˢ univ) [PROOFSTEP] rw [principal_coprod_principal, map_principal] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι ⊢ 𝓟 (Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ) = 𝓟 ({b} ×ˢ univ) [PROOFSTEP] congr [GOAL] case e_s α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι ⊢ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ = {b} ×ˢ univ [PROOFSTEP] ext ⟨b', i'⟩ [GOAL] case e_s.h.mk α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι b' : β i' : ι ⊢ (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ ↔ (b', i') ∈ {b} ×ˢ univ [PROOFSTEP] constructor [GOAL] case e_s.h.mk.mp α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι b' : β i' : ι ⊢ (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ → (b', i') ∈ {b} ×ˢ univ [PROOFSTEP] rintro ⟨⟨a'', i''⟩, _, h₂, h₃⟩ [GOAL] case e_s.h.mk.mp.intro.mk.intro.refl α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι a'' : α i'' : ι left✝ : (a'', i'') ∈ ({a}ᶜ ×ˢ {i}ᶜ)ᶜ ⊢ ((fun x => b) a'', id i'') ∈ {b} ×ˢ univ [PROOFSTEP] simp [GOAL] case e_s.h.mk.mpr α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι b' : β i' : ι ⊢ (b', i') ∈ {b} ×ˢ univ → (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ [PROOFSTEP] rintro ⟨h₁, _⟩ [GOAL] case e_s.h.mk.mpr.intro α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι b' : β i' : ι h₁ : (b', i').fst ∈ {b} right✝ : (b', i').snd ∈ univ ⊢ (b', i') ∈ Prod.map (fun x => b) id '' ({a}ᶜ ×ˢ {i}ᶜ)ᶜ [PROOFSTEP] use(a, i') [GOAL] case h α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 ι✝ : Sort u_5 f : Filter α✝ g : Filter β✝ α : Type u_6 β : Type u_7 ι : Type u_8 a : α b : β i : ι b' : β i' : ι h₁ : (b', i').fst ∈ {b} right✝ : (b', i').snd ∈ univ ⊢ (a, i') ∈ ({a}ᶜ ×ˢ {i}ᶜ)ᶜ ∧ Prod.map (fun x => b) id (a, i') = (b', i') [PROOFSTEP] simpa using h₁.symm
{"mathlib_filename": "Mathlib.Order.Filter.Prod", "llama_tokens": 22131}
[GOAL] α : Type u_1 inst✝ : LT α a : α ⊢ ¬IsSuccLimit a ↔ ∃ b, b ⋖ a [PROOFSTEP] simp [IsSuccLimit] [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : SuccOrder α h : IsSuccLimit (succ a) ⊢ IsMax a [PROOFSTEP] by_contra H [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : SuccOrder α h : IsSuccLimit (succ a) H : ¬IsMax a ⊢ False [PROOFSTEP] exact h a (covby_succ_of_not_isMax H) [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : SuccOrder α ha : ¬IsMax a ⊢ ¬IsSuccLimit (succ a) [PROOFSTEP] contrapose! ha [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : SuccOrder α ha : IsSuccLimit (succ a) ⊢ IsMax a [PROOFSTEP] exact ha.isMax [GOAL] α : Type u_1 inst✝² : Preorder α a : α inst✝¹ : SuccOrder α inst✝ : NoMaxOrder α h : IsSuccLimit a b : α ⊢ succ b ≠ a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : NoMaxOrder α b : α h : IsSuccLimit (succ b) ⊢ False [PROOFSTEP] exact not_isMax _ h.isMax [GOAL] α : Type u_1 inst✝³ : Preorder α a : α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : NoMaxOrder α h : IsSuccLimit a b : α hb : b ≤ a ⊢ a ≤ b [PROOFSTEP] rcases hb.exists_succ_iterate with ⟨_ | n, rfl⟩ [GOAL] case intro.zero α : Type u_1 inst✝³ : Preorder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : NoMaxOrder α b : α h : IsSuccLimit (succ^[Nat.zero] b) hb : b ≤ succ^[Nat.zero] b ⊢ succ^[Nat.zero] b ≤ b [PROOFSTEP] exact le_rfl [GOAL] case intro.succ α : Type u_1 inst✝³ : Preorder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : NoMaxOrder α b : α n : ℕ h : IsSuccLimit (succ^[Nat.succ n] b) hb : b ≤ succ^[Nat.succ n] b ⊢ succ^[Nat.succ n] b ≤ b [PROOFSTEP] rw [iterate_succ_apply'] at h [GOAL] case intro.succ α : Type u_1 inst✝³ : Preorder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : NoMaxOrder α b : α n : ℕ h : IsSuccLimit (succ (succ^[n] b)) hb : b ≤ succ^[Nat.succ n] b ⊢ succ^[Nat.succ n] b ≤ b [PROOFSTEP] exact (not_isSuccLimit_succ _ h).elim [GOAL] α : Type u_1 inst✝⁴ : Preorder α a : α inst✝³ : SuccOrder α inst✝² : IsSuccArchimedean α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α ⊢ ¬IsSuccLimit a [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 ⊢ ¬IsSuccLimit a ↔ ∃ b, ¬IsMax b ∧ succ b = a [PROOFSTEP] rw [not_isSuccLimit_iff_exists_covby] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 ⊢ (∃ b, b ⋖ a) ↔ ∃ b, ¬IsMax b ∧ succ b = a [PROOFSTEP] refine' exists_congr fun b => ⟨fun hba => ⟨hba.lt.not_isMax, (Covby.succ_eq hba)⟩, _⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 b : α ⊢ ¬IsMax b ∧ succ b = a → b ⋖ a [PROOFSTEP] rintro ⟨h, rfl⟩ [GOAL] case intro α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α b✝ : α C : α → Sort u_2 b : α h : ¬IsMax b ⊢ b ⋖ succ b [PROOFSTEP] exact covby_succ_of_not_isMax h [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 h : ¬IsSuccLimit a ⊢ a ∈ range succ [PROOFSTEP] cases' not_isSuccLimit_iff.1 h with b hb [GOAL] case intro α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 h : ¬IsSuccLimit a b : α hb : ¬IsMax b ∧ succ b = a ⊢ a ∈ range succ [PROOFSTEP] exact ⟨b, hb.2⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hb : IsSuccLimit b ha : a < b ⊢ succ a < b [PROOFSTEP] by_cases h : IsMax a [GOAL] case pos α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hb : IsSuccLimit b ha : a < b h : IsMax a ⊢ succ a < b [PROOFSTEP] rwa [h.succ_eq] [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hb : IsSuccLimit b ha : a < b h : ¬IsMax a ⊢ succ a < b [PROOFSTEP] rw [lt_iff_le_and_ne, succ_le_iff_of_not_isMax h] [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hb : IsSuccLimit b ha : a < b h : ¬IsMax a ⊢ a < b ∧ succ a ≠ b [PROOFSTEP] refine' ⟨ha, fun hab => _⟩ [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hb : IsSuccLimit b ha : a < b h : ¬IsMax a hab : succ a = b ⊢ False [PROOFSTEP] subst hab [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a : α C : α → Sort u_2 h : ¬IsMax a hb : IsSuccLimit (succ a) ha : a < succ a ⊢ False [PROOFSTEP] exact (h hb.isMax).elim [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 b : α hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a ⊢ C b [PROOFSTEP] by_cases hb : IsSuccLimit b [GOAL] case pos α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 b : α hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a hb : IsSuccLimit b ⊢ C b [PROOFSTEP] exact hl b hb [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 b : α hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a hb : ¬IsSuccLimit b ⊢ C b [PROOFSTEP] have H := Classical.choose_spec (not_isSuccLimit_iff.1 hb) [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 b : α hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a hb : ¬IsSuccLimit b H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) = b ⊢ C b [PROOFSTEP] rw [← H.2] [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 b : α hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a hb : ¬IsSuccLimit b H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b)) = b ⊢ C (succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = b))) [PROOFSTEP] exact hs _ H.1 [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a hb : IsSuccLimit b ⊢ isSuccLimitRecOn b hs hl = hl b hb [PROOFSTEP] classical exact dif_pos hb [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a hb : IsSuccLimit b ⊢ isSuccLimitRecOn b hs hl = hl b hb [PROOFSTEP] exact dif_pos hb [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b ⊢ isSuccLimitRecOn (succ b) hs hl = hs b hb [PROOFSTEP] have hb' := not_isSuccLimit_succ_of_not_isMax hb [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) ⊢ isSuccLimitRecOn (succ b) hs hl = hs b hb [PROOFSTEP] have H := Classical.choose_spec (not_isSuccLimit_iff.1 hb') [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ isSuccLimitRecOn (succ b) hs hl = hs b hb [PROOFSTEP] rw [isSuccLimitRecOn] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ (if hb : IsSuccLimit (succ b) then hl (succ b) hb else let_fun H := (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b); Eq.mpr (_ : C (succ b) = C (succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)))) (hs (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))))) = hs b hb [PROOFSTEP] simp only [cast_eq_iff_heq, hb', not_false_iff, eq_mpr_eq_cast, dif_neg] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ HEq (hs (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)))) (hs b hb) [PROOFSTEP] congr 1 [GOAL] case e_1 α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b) = b [PROOFSTEP] first | exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right | exact proof_irrel_heq H.left hb [GOAL] case e_1 α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b) = b [PROOFSTEP] exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right [GOAL] case e_2 α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ HEq (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))) hb [PROOFSTEP] first | exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right | exact proof_irrel_heq H.left hb [GOAL] case e_2 α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ HEq (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))) hb [PROOFSTEP] exact (succ_eq_succ_iff_of_not_isMax H.left hb).mp H.right [GOAL] case e_2 α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b✝ : α C : α → Sort u_2 hs : (a : α) → ¬IsMax a → C (succ a) hl : (a : α) → IsSuccLimit a → C a b : α hb : ¬IsMax b hb' : ¬IsSuccLimit (succ b) H : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) ∧ succ (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b)) = succ b ⊢ HEq (_ : ¬IsMax (Classical.choose (_ : ∃ b_1, ¬IsMax b_1 ∧ succ b_1 = succ b))) hb [PROOFSTEP] exact proof_irrel_heq H.left hb [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b : α C : α → Sort u_2 inst✝ : NoMaxOrder α ⊢ ¬IsSuccLimit a ↔ a ∈ range succ [PROOFSTEP] simp_rw [isSuccLimit_iff_succ_ne, not_forall, not_ne_iff] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b : α C : α → Sort u_2 inst✝ : NoMaxOrder α ⊢ (∃ x, succ x = a) ↔ a ∈ range succ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b✝ : α C : α → Sort u_2 inst✝ : IsSuccArchimedean α h : IsSuccLimit a b : α hb : b ≤ a ⊢ a ≤ b [PROOFSTEP] revert h [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b✝ : α C : α → Sort u_2 inst✝ : IsSuccArchimedean α b : α hb : b ≤ a ⊢ IsSuccLimit a → a ≤ b [PROOFSTEP] refine' Succ.rec (fun _ => le_rfl) (fun c _ H hc => _) hb [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b✝ : α C : α → Sort u_2 inst✝ : IsSuccArchimedean α b : α hb : b ≤ a c : α x✝ : b ≤ c H : IsSuccLimit c → c ≤ b hc : IsSuccLimit (succ c) ⊢ succ c ≤ b [PROOFSTEP] have := hc.isMax.succ_eq [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b✝ : α C : α → Sort u_2 inst✝ : IsSuccArchimedean α b : α hb : b ≤ a c : α x✝ : b ≤ c H : IsSuccLimit c → c ≤ b hc : IsSuccLimit (succ c) this : succ c = c ⊢ succ c ≤ b [PROOFSTEP] rw [this] at hc ⊢ [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b✝ : α C : α → Sort u_2 inst✝ : IsSuccArchimedean α b : α hb : b ≤ a c : α x✝ : b ≤ c H : IsSuccLimit c → c ≤ b hc : IsSuccLimit c this : succ c = c ⊢ c ≤ b [PROOFSTEP] exact H hc [GOAL] α : Type u_1 inst✝³ : PartialOrder α inst✝² : SuccOrder α a b : α C : α → Sort u_2 inst✝¹ : IsSuccArchimedean α inst✝ : NoMinOrder α ⊢ ¬IsSuccLimit a [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LT α a✝ a : α ⊢ ¬IsPredLimit a ↔ ∃ b, a ⋖ b [PROOFSTEP] simp [IsPredLimit] [GOAL] α : Type u_1 inst✝ : LT α a : α ⊢ IsSuccLimit (↑toDual a) ↔ IsPredLimit a [PROOFSTEP] simp [IsSuccLimit, IsPredLimit] [GOAL] α : Type u_1 inst✝ : LT α a : α ⊢ IsPredLimit (↑toDual a) ↔ IsSuccLimit a [PROOFSTEP] simp [IsSuccLimit, IsPredLimit] [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : PredOrder α h : IsPredLimit (pred a) ⊢ IsMin a [PROOFSTEP] by_contra H [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : PredOrder α h : IsPredLimit (pred a) H : ¬IsMin a ⊢ False [PROOFSTEP] exact h a (pred_covby_of_not_isMin H) [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : PredOrder α ha : ¬IsMin a ⊢ ¬IsPredLimit (pred a) [PROOFSTEP] contrapose! ha [GOAL] α : Type u_1 inst✝¹ : Preorder α a : α inst✝ : PredOrder α ha : IsPredLimit (pred a) ⊢ IsMin a [PROOFSTEP] exact ha.isMin [GOAL] α : Type u_1 inst✝² : Preorder α a : α inst✝¹ : PredOrder α inst✝ : NoMinOrder α h : IsPredLimit a b : α ⊢ pred b ≠ a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : PredOrder α inst✝ : NoMinOrder α b : α h : IsPredLimit (pred b) ⊢ False [PROOFSTEP] exact not_isMin _ h.isMin [GOAL] α : Type u_1 inst✝⁴ : Preorder α a : α inst✝³ : PredOrder α inst✝² : IsPredArchimedean α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α ⊢ ¬IsPredLimit a [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α C : α → Sort u_2 ⊢ ¬IsPredLimit a ↔ ∃ b, ¬IsMin b ∧ pred b = a [PROOFSTEP] rw [← isSuccLimit_toDual_iff] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α C : α → Sort u_2 ⊢ ¬IsSuccLimit (↑toDual a) ↔ ∃ b, ¬IsMin b ∧ pred b = a [PROOFSTEP] exact not_isSuccLimit_iff [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α C : α → Sort u_2 h : ¬IsPredLimit a ⊢ a ∈ range pred [PROOFSTEP] cases' not_isPredLimit_iff.1 h with b hb [GOAL] case intro α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b✝ : α C : α → Sort u_2 h : ¬IsPredLimit a b : α hb : ¬IsMin b ∧ pred b = a ⊢ a ∈ range pred [PROOFSTEP] exact ⟨b, hb.2⟩ [GOAL] α : Type u_1 inst✝³ : PartialOrder α inst✝² : PredOrder α a b : α C : α → Sort u_2 inst✝¹ : IsPredArchimedean α inst✝ : NoMaxOrder α ⊢ ¬IsPredLimit a [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Order.SuccPred.Limit", "llama_tokens": 8241}
[GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ Monotone (↑toDual ∘ f ∘ ↑ofDual) ↔ Monotone f [PROOFSTEP] rw [monotone_toDual_comp_iff, antitone_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ Antitone (↑toDual ∘ f ∘ ↑ofDual) ↔ Antitone f [PROOFSTEP] rw [antitone_toDual_comp_iff, monotone_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ MonotoneOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ MonotoneOn f s [PROOFSTEP] rw [monotoneOn_toDual_comp_iff, antitoneOn_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ AntitoneOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ AntitoneOn f s [PROOFSTEP] rw [antitoneOn_toDual_comp_iff, monotoneOn_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ StrictMono (↑toDual ∘ f ∘ ↑ofDual) ↔ StrictMono f [PROOFSTEP] rw [strictMono_toDual_comp_iff, strictAnti_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ StrictAnti (↑toDual ∘ f ∘ ↑ofDual) ↔ StrictAnti f [PROOFSTEP] rw [strictAnti_toDual_comp_iff, strictMono_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ StrictMonoOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ StrictMonoOn f s [PROOFSTEP] rw [strictMonoOn_toDual_comp_iff, strictAntiOn_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β f : α → β s : Set α ⊢ StrictAntiOn (↑toDual ∘ f ∘ ↑ofDual) s ↔ StrictAntiOn f s [PROOFSTEP] rw [strictAntiOn_toDual_comp_iff, strictMonoOn_comp_ofDual_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : LinearOrder α f : α → β h : ∀ (x y : α), x < y → f x ≠ f y ⊢ Injective f [PROOFSTEP] intro x y hf [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : LinearOrder α f : α → β h : ∀ (x y : α), x < y → f x ≠ f y x y : α hf : f x = f y ⊢ x = y [PROOFSTEP] rcases lt_trichotomy x y with (hxy | rfl | hxy) [GOAL] case inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : LinearOrder α f : α → β h : ∀ (x y : α), x < y → f x ≠ f y x y : α hf : f x = f y hxy : x < y ⊢ x = y [PROOFSTEP] exact absurd hf <| h _ _ hxy [GOAL] case inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : LinearOrder α f : α → β h : ∀ (x y : α), x < y → f x ≠ f y x : α hf : f x = f x ⊢ x = x [PROOFSTEP] rfl [GOAL] case inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : LinearOrder α f : α → β h : ∀ (x y : α), x < y → f x ≠ f y x y : α hf : f x = f y hxy : y < x ⊢ x = y [PROOFSTEP] exact absurd hf.symm <| h _ _ hxy [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y ⊢ StrictMono fun x => if p x then f x else g x [PROOFSTEP] intro x y h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y x y : α h : x < y ⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y [PROOFSTEP] by_cases hy : p y [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y x y : α h : x < y hy : p y ⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y [PROOFSTEP] have hx : p x := hp h hy [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y x y : α h : x < y hy : p y hx : p x ⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y [PROOFSTEP] simpa [hx, hy] using hf h [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y x y : α h : x < y hy : ¬p y ⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y [PROOFSTEP] by_cases hx : p x [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y x y : α h : x < y hy : ¬p y hx : p x ⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y [PROOFSTEP] simpa [hx, hy] using hfg hx hy h [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝² : Preorder α inst✝¹ : Preorder β f g : α → β a : α hf : StrictMono f hg : StrictMono g p : α → Prop inst✝ : DecidablePred p hp : ∀ ⦃x y : α⦄, x < y → p y → p x hfg : ∀ ⦃x y : α⦄, p x → ¬p y → x < y → f x < g y x y : α h : x < y hy : ¬p y hx : ¬p x ⊢ (fun x => if p x then f x else g x) x < (fun x => if p x then f x else g x) y [PROOFSTEP] simpa [hx, hy] using hg h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β s : Set α hf : StrictMonoOn f s a b : α ha : a ∈ s hb : b ∈ s ⊢ a = b → f a = f b [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β s : Set α hf : StrictMonoOn f s a : α ha hb : a ∈ s ⊢ f a = f a [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β s : Set α hf : StrictMonoOn f s a b : α ha : a ∈ s hb : b ∈ s ⊢ f a < f b ↔ a < b [PROOFSTEP] rw [lt_iff_le_not_le, lt_iff_le_not_le, hf.le_iff_le ha hb, hf.le_iff_le hb ha] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ ¬Monotone f ∧ ¬Antitone f ↔ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] simp_rw [Monotone, Antitone, not_forall, not_le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ ((∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1) ↔ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] refine' Iff.symm ⟨_, _⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ (∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)) → (∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1 case refine'_2 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ ((∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1) → ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] { rintro ⟨a, b, c, hab, hbc, ⟨hfab, hfcb⟩ | ⟨hfba, hfbc⟩⟩ exacts [⟨⟨_, _, hbc, hfcb⟩, _, _, hab, hfab⟩, ⟨⟨_, _, hab, hfba⟩, _, _, hbc, hfbc⟩] } [GOAL] case refine'_1 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ (∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)) → (∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1 [PROOFSTEP] rintro ⟨a, b, c, hab, hbc, ⟨hfab, hfcb⟩ | ⟨hfba, hfbc⟩⟩ [GOAL] case refine'_1.intro.intro.intro.intro.intro.inl.intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b c : α hab : a ≤ b hbc : b ≤ c hfab : f a < f b hfcb : f c < f b ⊢ (∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1 case refine'_1.intro.intro.intro.intro.intro.inr.intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b c : α hab : a ≤ b hbc : b ≤ c hfba : f b < f a hfbc : f b < f c ⊢ (∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1 [PROOFSTEP] exacts [⟨⟨_, _, hbc, hfcb⟩, _, _, hab, hfab⟩, ⟨⟨_, _, hab, hfba⟩, _, _, hbc, hfbc⟩] [GOAL] case refine'_2 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ ((∃ x x_1 h, f x_1 < f x) ∧ ∃ x x_1 h, f x < f x_1) → ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] rintro ⟨⟨a, b, hab, hfba⟩, c, d, hcd, hfcd⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hda | had := le_total d a [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] { obtain hfad | hfda := le_total (f a) (f d) {exact ⟨c, d, b, hcd, hda.trans hab, Or.inl ⟨hfcd, hfba.trans_le hfad⟩⟩ } {exact ⟨c, a, b, hcd.trans hda, hab, Or.inl ⟨hfcd.trans_le hfda, hfba⟩⟩ } } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hfad | hfda := le_total (f a) (f d) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a hfad : f a ≤ f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a hfda : f d ≤ f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨c, d, b, hcd, hda.trans hab, Or.inl ⟨hfcd, hfba.trans_le hfad⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a hfad : f a ≤ f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨c, d, b, hcd, hda.trans hab, Or.inl ⟨hfcd, hfba.trans_le hfad⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a hfda : f d ≤ f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨c, a, b, hcd.trans hda, hab, Or.inl ⟨hfcd.trans_le hfda, hfba⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d hda : d ≤ a hfda : f d ≤ f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨c, a, b, hcd.trans hda, hab, Or.inl ⟨hfcd.trans_le hfda, hfba⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hac | hca := le_total a c [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] { obtain hfdb | hfbd := le_or_lt (f d) (f b) {exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfcd.trans $ hfdb.trans_lt hfba, hfcd⟩⟩ } obtain hfca | hfac := lt_or_le (f c) (f a) {exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfca, hfcd⟩⟩ } obtain hbd | hdb := le_total b d {exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩ } {exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩ } } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hfdb | hfbd := le_or_lt (f d) (f b) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfdb : f d ≤ f b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfcd.trans $ hfdb.trans_lt hfba, hfcd⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfdb : f d ≤ f b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfcd.trans $ hfdb.trans_lt hfba, hfcd⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hfca | hfac := lt_or_le (f c) (f a) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfca : f c < f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfca, hfcd⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfca : f c < f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨a, c, d, hac, hcd, Or.inr ⟨hfca, hfcd⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hbd | hdb := le_total b d [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c hbd : b ≤ d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c hdb : d ≤ b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c hbd : b ≤ d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c hdb : d ≤ b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inl.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hac : a ≤ c hfbd : f b < f d hfac : f a ≤ f c hdb : d ≤ b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] { obtain hfdb | hfbd := le_or_lt (f d) (f b) {exact ⟨c, a, b, hca, hab, Or.inl ⟨hfcd.trans $ hfdb.trans_lt hfba, hfba⟩⟩ } obtain hfca | hfac := lt_or_le (f c) (f a) {exact ⟨c, a, b, hca, hab, Or.inl ⟨hfca, hfba⟩⟩ } obtain hbd | hdb := le_total b d {exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩ } {exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩ } } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hfdb | hfbd := le_or_lt (f d) (f b) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfdb : f d ≤ f b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨c, a, b, hca, hab, Or.inl ⟨hfcd.trans $ hfdb.trans_lt hfba, hfba⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfdb : f d ≤ f b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨c, a, b, hca, hab, Or.inl ⟨hfcd.trans $ hfdb.trans_lt hfba, hfba⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hfca | hfac := lt_or_le (f c) (f a) [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfca : f c < f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨c, a, b, hca, hab, Or.inl ⟨hfca, hfba⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfca : f c < f a ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨c, a, b, hca, hab, Or.inl ⟨hfca, hfba⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] obtain hbd | hdb := le_total b d [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c hbd : b ≤ d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c hdb : d ≤ b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c hbd : b ≤ d ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨a, b, d, hab, hbd, Or.inr ⟨hfba, hfbd⟩⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c hdb : d ≤ b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] {exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩ } [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.inr.inr.inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α hab : a ≤ b hfba : f b < f a c d : α hcd : c ≤ d hfcd : f c < f d had : a ≤ d hca : c ≤ a hfbd : f b < f d hfac : f a ≤ f c hdb : d ≤ b ⊢ ∃ a b c, a ≤ b ∧ b ≤ c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] exact ⟨a, d, b, had, hdb, Or.inl ⟨hfac.trans_lt hfcd, hfbd⟩⟩ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ ¬Monotone f ∧ ¬Antitone f ↔ ∃ a b c, a < b ∧ b < c ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] simp_rw [not_monotone_not_antitone_iff_exists_le_le, ← and_assoc] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y : α ⊢ (∃ a b c, (a ≤ b ∧ b ≤ c) ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c)) ↔ ∃ a b c, (a < b ∧ b < c) ∧ (f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c) [PROOFSTEP] refine' exists₃_congr (fun a b c ↦ and_congr_left $ fun h ↦ (Ne.le_iff_lt _).and $ Ne.le_iff_lt _) [GOAL] case refine'_1 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b c : α h : f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c ⊢ a ≠ b [PROOFSTEP] rintro rfl [GOAL] case refine'_1 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a c : α h : f a < f a ∧ f c < f a ∨ f a < f a ∧ f a < f c ⊢ False [PROOFSTEP] simp at h [GOAL] case refine'_2 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b c : α h : f a < f b ∧ f c < f b ∨ f b < f a ∧ f b < f c ⊢ b ≠ c [PROOFSTEP] rintro rfl [GOAL] case refine'_2 ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α x y a b : α h : f a < f b ∧ f b < f b ∨ f b < f a ∧ f b < f b ⊢ False [PROOFSTEP] simp at h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℕ → β a : ℕ h : ∀ (n : ℕ), a ≤ n → r (f n) (f (n + 1)) b c : ℕ hab : a ≤ b hbc : b < c ⊢ r (f b) (f c) [PROOFSTEP] induction' hbc with k b_lt_k r_b_k [GOAL] case refl ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℕ → β a : ℕ h : ∀ (n : ℕ), a ≤ n → r (f n) (f (n + 1)) b c : ℕ hab : a ≤ b ⊢ r (f b) (f (succ b)) case step ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℕ → β a : ℕ h : ∀ (n : ℕ), a ≤ n → r (f n) (f (n + 1)) b c : ℕ hab : a ≤ b k : ℕ b_lt_k : Nat.le (succ b) k r_b_k : r (f b) (f k) ⊢ r (f b) (f (succ k)) [PROOFSTEP] exacts [h _ hab, _root_.trans r_b_k (h _ (hab.trans_lt b_lt_k).le)] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : NoMaxOrder α a : α ⊢ ∃ f, StrictMono f ∧ f 0 = a [PROOFSTEP] choose g hg using fun x : α ↦ exists_gt x [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝¹ : Preorder α inst✝ : NoMaxOrder α a : α g : α → α hg : ∀ (x : α), x < g x ⊢ ∃ f, StrictMono f ∧ f 0 = a [PROOFSTEP] exact ⟨fun n ↦ Nat.recOn n a fun _ ↦ g, strictMono_nat_of_lt_succ fun n ↦ hg _, rfl⟩ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a b : ℤ hab : a < b ⊢ r (f a) (f b) [PROOFSTEP] rcases lt.dest hab with ⟨n, rfl⟩ [GOAL] case intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a : ℤ n : ℕ hab : a < a + ↑(Nat.succ n) ⊢ r (f a) (f (a + ↑(Nat.succ n))) [PROOFSTEP] clear hab [GOAL] case intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a : ℤ n : ℕ ⊢ r (f a) (f (a + ↑(Nat.succ n))) [PROOFSTEP] induction' n with n ihn [GOAL] case intro.zero ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a : ℤ ⊢ r (f a) (f (a + ↑(Nat.succ Nat.zero))) [PROOFSTEP] rw [Int.ofNat_one] [GOAL] case intro.zero ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a : ℤ ⊢ r (f a) (f (a + 1)) [PROOFSTEP] apply h [GOAL] case intro.succ ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a : ℤ n : ℕ ihn : r (f a) (f (a + ↑(Nat.succ n))) ⊢ r (f a) (f (a + ↑(Nat.succ (Nat.succ n)))) [PROOFSTEP] rw [Int.ofNat_succ, ← Int.add_assoc] [GOAL] case intro.succ ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r✝ : α → α → Prop inst✝¹ : Preorder α r : β → β → Prop inst✝ : IsTrans β r f : ℤ → β h : ∀ (n : ℤ), r (f n) (f (n + 1)) a : ℤ n : ℕ ihn : r (f a) (f (a + ↑(Nat.succ n))) ⊢ r (f a) (f (a + ↑(n + 1) + 1)) [PROOFSTEP] exact _root_.trans ihn (h _) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α ⊢ ∃ f, StrictMono f [PROOFSTEP] inhabit α [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α ⊢ ∃ f, StrictMono f [PROOFSTEP] rcases Nat.exists_strictMono' (default : α) with ⟨f, hf, hf₀⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default ⊢ ∃ f, StrictMono f [PROOFSTEP] rcases Nat.exists_strictAnti' (default : α) with ⟨g, hg, hg₀⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default ⊢ ∃ f, StrictMono f [PROOFSTEP] refine' ⟨fun n ↦ Int.casesOn n f fun n ↦ g (n + 1), strictMono_int_of_lt_succ _⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default ⊢ ∀ (n : ℤ), (Int.casesOn n f fun n => g (n + 1)) < Int.casesOn (n + 1) f fun n => g (n + 1) [PROOFSTEP] rintro (n | _ | n) [GOAL] case intro.intro.intro.intro.ofNat ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default n : ℕ ⊢ (Int.casesOn (ofNat n) f fun n => g (n + 1)) < Int.casesOn (ofNat n + 1) f fun n => g (n + 1) [PROOFSTEP] exact hf n.lt_succ_self [GOAL] case intro.intro.intro.intro.negSucc.zero ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default ⊢ (Int.casesOn -[Nat.zero+1] f fun n => g (n + 1)) < Int.casesOn (-[Nat.zero+1] + 1) f fun n => g (n + 1) [PROOFSTEP] show g 1 < f 0 [GOAL] case intro.intro.intro.intro.negSucc.zero ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default ⊢ g 1 < f 0 [PROOFSTEP] rw [hf₀, ← hg₀] [GOAL] case intro.intro.intro.intro.negSucc.zero ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default ⊢ g 1 < g 0 [PROOFSTEP] exact hg Nat.zero_lt_one [GOAL] case intro.intro.intro.intro.negSucc.succ ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝⁴ inst✝³ : Preorder α inst✝² : Nonempty α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α inhabited_h : Inhabited α f : ℕ → α hf : StrictMono f hf₀ : f 0 = default g : ℕ → α hg : StrictAnti g hg₀ : g 0 = default n : ℕ ⊢ (Int.casesOn -[Nat.succ n+1] f fun n => g (n + 1)) < Int.casesOn (-[Nat.succ n+1] + 1) f fun n => g (n + 1) [PROOFSTEP] exact hg (Nat.lt_succ_self _) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℕ → α hf : Monotone f n : ℕ x : α h1 : f n < x h2 : x < f (n + 1) a : ℕ ⊢ f a ≠ x [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℕ → α hf : Monotone f n a : ℕ h1 : f n < f a h2 : f a < f (n + 1) ⊢ False [PROOFSTEP] exact (hf.reflect_lt h1).not_le (Nat.le_of_lt_succ <| hf.reflect_lt h2) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℕ → α hf : Antitone f n : ℕ x : α h1 : f (n + 1) < x h2 : x < f n a : ℕ ⊢ f a ≠ x [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℕ → α hf : Antitone f n a : ℕ h1 : f (n + 1) < f a h2 : f a < f n ⊢ False [PROOFSTEP] exact (hf.reflect_lt h2).not_le (Nat.le_of_lt_succ <| hf.reflect_lt h1) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℤ → α hf : Monotone f n : ℤ x : α h1 : f n < x h2 : x < f (n + 1) a : ℤ ⊢ f a ≠ x [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℤ → α hf : Monotone f n a : ℤ h1 : f n < f a h2 : f a < f (n + 1) ⊢ False [PROOFSTEP] exact (hf.reflect_lt h1).not_le (Int.le_of_lt_add_one <| hf.reflect_lt h2) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℤ → α hf : Antitone f n : ℤ x : α h1 : f (n + 1) < x h2 : x < f n a : ℤ ⊢ f a ≠ x [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝ : Preorder α f : ℤ → α hf : Antitone f n a : ℤ h1 : f (n + 1) < f a h2 : f a < f n ⊢ False [PROOFSTEP] exact (hf.reflect_lt h2).not_le (Int.le_of_lt_add_one <| hf.reflect_lt h1) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α → γ g : β → δ hf : StrictMono f hg : StrictMono g a b : α × β ⊢ a < b → Prod.map f g a < Prod.map f g b [PROOFSTEP] simp only [Prod.lt_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α → γ g : β → δ hf : StrictMono f hg : StrictMono g a b : α × β ⊢ a.fst < b.fst ∧ a.snd ≤ b.snd ∨ a.fst ≤ b.fst ∧ a.snd < b.snd → (Prod.map f g a).fst < (Prod.map f g b).fst ∧ (Prod.map f g a).snd ≤ (Prod.map f g b).snd ∨ (Prod.map f g a).fst ≤ (Prod.map f g b).fst ∧ (Prod.map f g a).snd < (Prod.map f g b).snd [PROOFSTEP] exact Or.imp (And.imp hf.imp hg.monotone.imp) (And.imp hf.monotone.imp hg.imp) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α → γ g : β → δ hf : StrictAnti f hg : StrictAnti g a b : α × β ⊢ a < b → Prod.map f g b < Prod.map f g a [PROOFSTEP] simp only [Prod.lt_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w δ : Type u_2 π : ι → Type u_3 r : α → α → Prop inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α → γ g : β → δ hf : StrictAnti f hg : StrictAnti g a b : α × β ⊢ a.fst < b.fst ∧ a.snd ≤ b.snd ∨ a.fst ≤ b.fst ∧ a.snd < b.snd → (Prod.map f g b).fst < (Prod.map f g a).fst ∧ (Prod.map f g b).snd ≤ (Prod.map f g a).snd ∨ (Prod.map f g b).fst ≤ (Prod.map f g a).fst ∧ (Prod.map f g b).snd < (Prod.map f g a).snd [PROOFSTEP] exact Or.imp (And.imp hf.imp hg.antitone.imp) (And.imp hf.antitone.imp hg.imp)
{"mathlib_filename": "Mathlib.Order.Monotone.Basic", "llama_tokens": 24452}
[GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) β : Type u_3 m : β → (i : ι) → α i l : Filter β ⊢ Tendsto m l (pi f) ↔ ∀ (i : ι), Tendsto (fun x => m x i) l (f i) [PROOFSTEP] simp only [pi, tendsto_iInf, tendsto_comap_iff] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) β : Type u_3 m : β → (i : ι) → α i l : Filter β ⊢ (∀ (i : ι), Tendsto (eval i ∘ m) l (f i)) ↔ ∀ (i : ι), Tendsto (fun x => m x i) l (f i) [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) I : Set ι hI : Set.Finite I h : ∀ (i : ι), i ∈ I → s i ∈ f i ⊢ Set.pi I s ∈ pi f [PROOFSTEP] rw [pi_def, biInter_eq_iInter] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) I : Set ι hI : Set.Finite I h : ∀ (i : ι), i ∈ I → s i ∈ f i ⊢ ⋂ (x : ↑I), eval ↑x ⁻¹' s ↑x ∈ pi f [PROOFSTEP] refine' mem_iInf_of_iInter hI (fun i => _) Subset.rfl [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) I : Set ι hI : Set.Finite I h : ∀ (i : ι), i ∈ I → s i ∈ f i i : ↑I ⊢ eval ↑i ⁻¹' s ↑i ∈ comap (eval ↑i) (f ↑i) [PROOFSTEP] exact preimage_mem_comap (h i i.2) [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) ⊢ s ∈ pi f ↔ ∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ s [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) ⊢ s ∈ pi f → ∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ s [PROOFSTEP] simp only [pi, mem_iInf', mem_comap, pi_def] [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) ⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ι), ∃ t, t ∈ f i ∧ eval i ⁻¹' t ⊆ V i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ s = ⋂ (i : ι) (_ : i ∈ I), V i ∧ s = ⋂ (i : ι), V i) → ∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ (a : ι) (_ : a ∈ I), eval a ⁻¹' t a ⊆ s [PROOFSTEP] rintro ⟨I, If, V, hVf, -, rfl, -⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) I : Set ι If : Set.Finite I V : ι → Set ((i : ι) → α i) hVf : ∀ (i : ι), ∃ t, t ∈ f i ∧ eval i ⁻¹' t ⊆ V i ⊢ ∃ I_1, Set.Finite I_1 ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ (a : ι) (_ : a ∈ I_1), eval a ⁻¹' t a ⊆ ⋂ (i : ι) (_ : i ∈ I), V i [PROOFSTEP] choose t htf htV using hVf [GOAL] case mp.intro.intro.intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) I : Set ι If : Set.Finite I V : ι → Set ((i : ι) → α i) t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i htV : ∀ (i : ι), eval i ⁻¹' t i ⊆ V i ⊢ ∃ I_1, Set.Finite I_1 ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ ⋂ (a : ι) (_ : a ∈ I_1), eval a ⁻¹' t a ⊆ ⋂ (i : ι) (_ : i ∈ I), V i [PROOFSTEP] exact ⟨I, If, t, htf, iInter₂_mono fun i _ => htV i⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) ⊢ (∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ s) → s ∈ pi f [PROOFSTEP] rintro ⟨I, If, t, htf, hts⟩ [GOAL] case mpr.intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) I : Set ι If : Set.Finite I t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I t ⊆ s ⊢ s ∈ pi f [PROOFSTEP] exact mem_of_superset (pi_mem_pi If fun i _ => htf i) hts [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I ⊢ s i ∈ f i [PROOFSTEP] rcases mem_pi.1 h with ⟨I', -, t, htf, hts⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s ⊢ s i ∈ f i [PROOFSTEP] refine' mem_of_superset (htf i) fun x hx => _ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s x : α i hx : x ∈ t i ⊢ x ∈ s i [PROOFSTEP] have : ∀ i, (t i).Nonempty := fun i => nonempty_of_mem (htf i) [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s x : α i hx : x ∈ t i this : ∀ (i : ι), Set.Nonempty (t i) ⊢ x ∈ s i [PROOFSTEP] choose g hg using this [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s x : α i hx : x ∈ t i g : (i : ι) → α i hg : ∀ (i : ι), g i ∈ t i ⊢ x ∈ s i [PROOFSTEP] have : update g i x ∈ I'.pi t := fun j _ => by rcases eq_or_ne j i with (rfl | hne) <;> simp [*] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s x : α i hx : x ∈ t i g : (i : ι) → α i hg : ∀ (i : ι), g i ∈ t i j : ι x✝ : j ∈ I' ⊢ update g i x j ∈ t j [PROOFSTEP] rcases eq_or_ne j i with (rfl | hne) [GOAL] case inl ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s g : (i : ι) → α i hg : ∀ (i : ι), g i ∈ t i j : ι x✝ : j ∈ I' hi : j ∈ I x : α j hx : x ∈ t j ⊢ update g j x j ∈ t j [PROOFSTEP] simp [*] [GOAL] case inr ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s x : α i hx : x ∈ t i g : (i : ι) → α i hg : ∀ (i : ι), g i ∈ t i j : ι x✝ : j ∈ I' hne : j ≠ i ⊢ update g i x j ∈ t j [PROOFSTEP] simp [*] [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι h : Set.pi I s ∈ pi f i : ι hi : i ∈ I I' : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I' t ⊆ Set.pi I s x : α i hx : x ∈ t i g : (i : ι) → α i hg : ∀ (i : ι), g i ∈ t i this : update g i x ∈ Set.pi I' t ⊢ x ∈ s i [PROOFSTEP] simpa using hts this i hi [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) ι' : ι → Type s : (i : ι) → ι' i → Set (α i) p : (i : ι) → ι' i → Prop h : ∀ (i : ι), HasBasis (f i) (p i) (s i) ⊢ HasBasis (pi f) (fun If => Set.Finite If.fst ∧ ∀ (i : ι), i ∈ If.fst → p i (Prod.snd If i)) fun If => Set.pi If.fst fun i => s i (Prod.snd If i) [PROOFSTEP] simpa [Set.pi_def] using hasBasis_iInf' fun i => (h i).comap (eval i : (∀ j, α j) → α i) [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ pi f ⊓ 𝓟 (Set.pi univ s) = ⊥ ↔ ∃ i, f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ pi f ⊓ 𝓟 (Set.pi univ s) = ⊥ → ∃ i, f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] simp only [inf_principal_eq_bot, mem_pi] [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ (∃ I, Set.Finite I ∧ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ Set.pi I t ⊆ (Set.pi univ s)ᶜ) → ∃ i, (s i)ᶜ ∈ f i [PROOFSTEP] contrapose! [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ (∀ (i : ι), ¬(s i)ᶜ ∈ f i) → ∀ (I : Set ι), Set.Finite I → ∀ (t : (i : ι) → Set (α i)), (∀ (i : ι), t i ∈ f i) → ¬Set.pi I t ⊆ (Set.pi univ s)ᶜ [PROOFSTEP] rintro (hsf : ∀ i, ∃ᶠ x in f i, x ∈ s i) I - t htf hts [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) hsf : ∀ (i : ι), ∃ᶠ (x : α i) in f i, x ∈ s i I : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I t ⊆ (Set.pi univ s)ᶜ ⊢ False [PROOFSTEP] have : ∀ i, (s i ∩ t i).Nonempty := fun i => ((hsf i).and_eventually (htf i)).exists [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) hsf : ∀ (i : ι), ∃ᶠ (x : α i) in f i, x ∈ s i I : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I t ⊆ (Set.pi univ s)ᶜ this : ∀ (i : ι), Set.Nonempty (s i ∩ t i) ⊢ False [PROOFSTEP] choose x hxs hxt using this [GOAL] case mp ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) hsf : ∀ (i : ι), ∃ᶠ (x : α i) in f i, x ∈ s i I : Set ι t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hts : Set.pi I t ⊆ (Set.pi univ s)ᶜ x : (i : ι) → α i hxs : ∀ (i : ι), x i ∈ s i hxt : ∀ (i : ι), x i ∈ t i ⊢ False [PROOFSTEP] exact hts (fun i _ => hxt i) (mem_univ_pi.2 hxs) [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ (∃ i, f i ⊓ 𝓟 (s i) = ⊥) → pi f ⊓ 𝓟 (Set.pi univ s) = ⊥ [PROOFSTEP] simp only [inf_principal_eq_bot] [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ (∃ i, (s i)ᶜ ∈ f i) → (Set.pi univ s)ᶜ ∈ pi f [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case mpr.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) i : ι hi : (s i)ᶜ ∈ f i ⊢ (Set.pi univ s)ᶜ ∈ pi f [PROOFSTEP] filter_upwards [mem_pi_of_mem i hi] with x using mt fun h => h i trivial [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι ⊢ pi f ⊓ 𝓟 (Set.pi I s) = ⊥ ↔ ∃ i, i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] rw [← univ_pi_piecewise_univ I, pi_inf_principal_univ_pi_eq_bot] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι ⊢ (∃ i, f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥) ↔ ∃ i, i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] refine' exists_congr fun i => _ [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι i : ι ⊢ f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥ ↔ i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] by_cases hi : i ∈ I [GOAL] case pos ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι i : ι hi : i ∈ I ⊢ f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥ ↔ i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] simp [hi, NeBot.ne'] [GOAL] case neg ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι i : ι hi : ¬i ∈ I ⊢ f i ⊓ 𝓟 (piecewise I s (fun x => univ) i) = ⊥ ↔ i ∈ I ∧ f i ⊓ 𝓟 (s i) = ⊥ [PROOFSTEP] simp [hi, NeBot.ne'] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ NeBot (pi f ⊓ 𝓟 (Set.pi univ s)) ↔ ∀ (i : ι), NeBot (f i ⊓ 𝓟 (s i)) [PROOFSTEP] simp [neBot_iff] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f i) I : Set ι ⊢ NeBot (pi f ⊓ 𝓟 (Set.pi I s)) ↔ ∀ (i : ι), i ∈ I → NeBot (f i ⊓ 𝓟 (s i)) [PROOFSTEP] simp [neBot_iff] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ pi f = ⊥ ↔ ∃ i, f i = ⊥ [PROOFSTEP] simpa using @pi_inf_principal_univ_pi_eq_bot ι α f fun _ => univ [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ NeBot (pi f) ↔ ∀ (i : ι), NeBot (f i) [PROOFSTEP] simp [neBot_iff] [GOAL] ι : Type u_1 α : ι → Type u_2 f✝ f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) f : (i : ι) → Filter (α i) inst✝ : ∀ (i : ι), NeBot (f i) i : ι ⊢ map (eval i) (pi f) = f i [PROOFSTEP] refine' le_antisymm (tendsto_eval_pi f i) fun s hs => _ [GOAL] ι : Type u_1 α : ι → Type u_2 f✝ f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) f : (i : ι) → Filter (α i) inst✝ : ∀ (i : ι), NeBot (f i) i : ι s : Set (α i) hs : s ∈ map (eval i) (pi f) ⊢ s ∈ f i [PROOFSTEP] rcases mem_pi.1 (mem_map.1 hs) with ⟨I, hIf, t, htf, hI⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f✝ f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) f : (i : ι) → Filter (α i) inst✝ : ∀ (i : ι), NeBot (f i) i : ι s : Set (α i) hs : s ∈ map (eval i) (pi f) I : Set ι hIf : Set.Finite I t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hI : Set.pi I t ⊆ eval i ⁻¹' s ⊢ s ∈ f i [PROOFSTEP] rw [← image_subset_iff] at hI [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f✝ f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) f : (i : ι) → Filter (α i) inst✝ : ∀ (i : ι), NeBot (f i) i : ι s : Set (α i) hs : s ∈ map (eval i) (pi f) I : Set ι hIf : Set.Finite I t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hI : eval i '' Set.pi I t ⊆ s ⊢ s ∈ f i [PROOFSTEP] refine' mem_of_superset (htf i) ((subset_eval_image_pi _ _).trans hI) [GOAL] case intro.intro.intro.intro ι : Type u_1 α : ι → Type u_2 f✝ f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) f : (i : ι) → Filter (α i) inst✝ : ∀ (i : ι), NeBot (f i) i : ι s : Set (α i) hs : s ∈ map (eval i) (pi f) I : Set ι hIf : Set.Finite I t : (i : ι) → Set (α i) htf : ∀ (i : ι), t i ∈ f i hI : eval i '' Set.pi I t ⊆ s ⊢ Set.Nonempty (Set.pi I t) [PROOFSTEP] exact nonempty_of_mem (pi_mem_pi hIf fun i _ => htf i) [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f₁ i) ⊢ pi f₁ = pi f₂ ↔ f₁ = f₂ [PROOFSTEP] refine' ⟨fun h => _, congr_arg pi⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f₁ i) h : pi f₁ = pi f₂ ⊢ f₁ = f₂ [PROOFSTEP] have hle : f₁ ≤ f₂ := pi_le_pi.1 h.le [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f₁ i) h : pi f₁ = pi f₂ hle : f₁ ≤ f₂ ⊢ f₁ = f₂ [PROOFSTEP] haveI : ∀ i, NeBot (f₂ i) := fun i => neBot_of_le (hle i) [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), NeBot (f₁ i) h : pi f₁ = pi f₂ hle : f₁ ≤ f₂ this : ∀ (i : ι), NeBot (f₂ i) ⊢ f₁ = f₂ [PROOFSTEP] exact hle.antisymm (pi_le_pi.1 h.ge) [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) ⊢ s ∈ Filter.coprodᵢ f ↔ ∀ (i : ι), ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ s [PROOFSTEP] simp [Filter.coprodᵢ] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) s : Set ((i : ι) → α i) ⊢ sᶜ ∈ Filter.coprodᵢ f ↔ ∀ (i : ι), (eval i '' s)ᶜ ∈ f i [PROOFSTEP] simp only [Filter.coprodᵢ, mem_iSup, compl_mem_comap] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ NeBot (Filter.coprodᵢ f) ↔ (∀ (i : ι), Nonempty (α i)) ∧ ∃ d, NeBot (f d) [PROOFSTEP] simp only [Filter.coprodᵢ, iSup_neBot, ← exists_and_left, ← comap_eval_neBot_iff'] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), Nonempty (α i) ⊢ NeBot (Filter.coprodᵢ f) ↔ ∃ d, NeBot (f d) [PROOFSTEP] simp [coprodᵢ_neBot_iff', *] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) ⊢ Filter.coprodᵢ f = ⊥ ↔ (∃ i, IsEmpty (α i)) ∨ f = ⊥ [PROOFSTEP] simpa only [not_neBot, not_and_or, funext_iff, not_forall, not_exists, not_nonempty_iff] using coprodᵢ_neBot_iff'.not [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) inst✝ : ∀ (i : ι), Nonempty (α i) ⊢ Filter.coprodᵢ f = ⊥ ↔ f = ⊥ [PROOFSTEP] simpa [funext_iff] using coprodᵢ_neBot_iff.not [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) β : ι → Type u_3 m : (i : ι) → α i → β i ⊢ map (fun k i => m i (k i)) (Filter.coprodᵢ f) ≤ Filter.coprodᵢ fun i => map (m i) (f i) [PROOFSTEP] simp only [le_def, mem_map, mem_coprodᵢ_iff] [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) β : ι → Type u_3 m : (i : ι) → α i → β i ⊢ ∀ (x : Set ((i : ι) → β i)), (∀ (i : ι), ∃ t₁, m i ⁻¹' t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ x) → ∀ (i : ι), ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ (fun k i => m i (k i)) ⁻¹' x [PROOFSTEP] intro s h i [GOAL] ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) β : ι → Type u_3 m : (i : ι) → α i → β i s : Set ((i : ι) → β i) h : ∀ (i : ι), ∃ t₁, m i ⁻¹' t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ s i : ι ⊢ ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ (fun k i => m i (k i)) ⁻¹' s [PROOFSTEP] obtain ⟨t, H, hH⟩ := h i [GOAL] case intro.intro ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s✝ : (i : ι) → Set (α i) β : ι → Type u_3 m : (i : ι) → α i → β i s : Set ((i : ι) → β i) h : ∀ (i : ι), ∃ t₁, m i ⁻¹' t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ s i : ι t : Set (β i) H : m i ⁻¹' t ∈ f i hH : eval i ⁻¹' t ⊆ s ⊢ ∃ t₁, t₁ ∈ f i ∧ eval i ⁻¹' t₁ ⊆ (fun k i => m i (k i)) ⁻¹' s [PROOFSTEP] exact ⟨{x : α i | m i x ∈ t}, H, fun x hx => hH hx⟩
{"mathlib_filename": "Mathlib.Order.Filter.Pi", "llama_tokens": 10667}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : One α f : Filter α s : Set α inst✝¹ : One β inst✝ : OneHomClass F α β φ : F ⊢ map (↑φ) 1 = 1 [PROOFSTEP] rw [Filter.map_one', map_one, pure_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : InvolutiveInv α f g : Filter α s : Set α hs : s ∈ f ⊢ s⁻¹ ∈ f⁻¹ [PROOFSTEP] rwa [mem_inv, inv_preimage, inv_inv] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : InvolutiveInv α f✝ g : Filter α s : Set α src✝ : Inv (Filter α) := instInv f : Filter α ⊢ map (Inv.inv ∘ Inv.inv) f = f [PROOFSTEP] rw [inv_involutive.comp_self, map_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : InvolutiveInv α f g : Filter α s : Set α ⊢ f⁻¹ ≤ g ↔ f ≤ g⁻¹ [PROOFSTEP] rw [← Filter.inv_le_inv_iff, inv_inv] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n : ℕ hs : s ∈ f ⊢ s ^ 0 ∈ f ^ 0 [PROOFSTEP] rw [pow_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n : ℕ hs : s ∈ f ⊢ 1 ∈ f ^ 0 [PROOFSTEP] exact one_mem_one [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n✝ : ℕ hs : s ∈ f n : ℕ ⊢ s ^ (n + 1) ∈ f ^ (n + 1) [PROOFSTEP] rw [pow_succ] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n✝ : ℕ hs : s ∈ f n : ℕ ⊢ s * s ^ n ∈ f ^ (n + 1) [PROOFSTEP] exact mul_mem_mul hs (pow_mem_pow hs n) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n✝ n : ℕ hn : n ≠ 0 ⊢ ⊥ ^ n = ⊥ [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt <| Nat.pos_of_ne_zero hn), pow_succ, bot_mul] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n : ℕ hf : 1 ≤ f ⊢ f * ⊤ = ⊤ [PROOFSTEP] refine' top_le_iff.1 fun s => _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s✝ : Set α a : α m n : ℕ hf : 1 ≤ f s : Set α ⊢ s ∈ f * ⊤ → s ∈ ⊤ [PROOFSTEP] simp only [mem_mul, mem_top, exists_and_left, exists_eq_left] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s✝ : Set α a : α m n : ℕ hf : 1 ≤ f s : Set α ⊢ (∃ t₁, t₁ ∈ f ∧ t₁ * univ ⊆ s) → s = univ [PROOFSTEP] rintro ⟨t, ht, hs⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s✝ : Set α a : α m n : ℕ hf : 1 ≤ f s t : Set α ht : t ∈ f hs : t * univ ⊆ s ⊢ s = univ [PROOFSTEP] rwa [mul_univ_of_one_mem (mem_one.1 <| hf ht), univ_subset_iff] at hs [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n : ℕ hf : 1 ≤ f ⊢ ⊤ * f = ⊤ [PROOFSTEP] refine' top_le_iff.1 fun s => _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s✝ : Set α a : α m n : ℕ hf : 1 ≤ f s : Set α ⊢ s ∈ ⊤ * f → s ∈ ⊤ [PROOFSTEP] simp only [mem_mul, mem_top, exists_and_left, exists_eq_left] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s✝ : Set α a : α m n : ℕ hf : 1 ≤ f s : Set α ⊢ (∃ x, x ∈ f ∧ univ * x ⊆ s) → s = univ [PROOFSTEP] rintro ⟨t, ht, hs⟩ [GOAL] case intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s✝ : Set α a : α m n : ℕ hf : 1 ≤ f s t : Set α ht : t ∈ f hs : univ * t ⊆ s ⊢ s = univ [PROOFSTEP] rwa [univ_mul_of_one_mem (mem_one.1 <| hf ht), univ_subset_iff] at hs [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : Monoid α f g : Filter α s : Set α a : α m n✝ n : ℕ x✝ : n + 2 ≠ 0 ⊢ ⊤ ^ (n + 2) = ⊤ [PROOFSTEP] rw [pow_succ, top_pow n.succ_ne_zero, top_mul_top] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α ⊢ f * g = 1 ↔ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 [PROOFSTEP] refine' ⟨fun hfg => _, _⟩ [GOAL] case refine'_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg : f * g = 1 ⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 [PROOFSTEP] obtain ⟨t₁, t₂, h₁, h₂, h⟩ : (1 : Set α) ∈ f * g := hfg.symm.subst one_mem_one [GOAL] case refine'_1.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg : f * g = 1 t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ g h : t₁ * t₂ ⊆ 1 ⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 [PROOFSTEP] have hfg : (f * g).NeBot := hfg.symm.subst one_neBot [GOAL] case refine'_1.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg✝ : f * g = 1 t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ g h : t₁ * t₂ ⊆ 1 hfg : NeBot (f * g) ⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 [PROOFSTEP] rw [(hfg.nonempty_of_mem <| mul_mem_mul h₁ h₂).subset_one_iff, Set.mul_eq_one_iff] at h [GOAL] case refine'_1.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg✝ : f * g = 1 t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ g h : ∃ a b, t₁ = {a} ∧ t₂ = {b} ∧ a * b = 1 hfg : NeBot (f * g) ⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 [PROOFSTEP] obtain ⟨a, b, rfl, rfl, h⟩ := h [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg✝ : f * g = 1 hfg : NeBot (f * g) a b : α h₁ : {a} ∈ f h : a * b = 1 h₂ : {b} ∈ g ⊢ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 [PROOFSTEP] refine' ⟨a, b, _, _, h⟩ [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg✝ : f * g = 1 hfg : NeBot (f * g) a b : α h₁ : {a} ∈ f h : a * b = 1 h₂ : {b} ∈ g ⊢ f = pure a [PROOFSTEP] rwa [← hfg.of_mul_left.le_pure_iff, le_pure_iff] [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α hfg✝ : f * g = 1 hfg : NeBot (f * g) a b : α h₁ : {a} ∈ f h : a * b = 1 h₂ : {b} ∈ g ⊢ g = pure b [PROOFSTEP] rwa [← hfg.of_mul_right.le_pure_iff, le_pure_iff] [GOAL] case refine'_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α ⊢ (∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1) → f * g = 1 [PROOFSTEP] rintro ⟨a, b, rfl, rfl, h⟩ [GOAL] case refine'_2.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α a b : α h : a * b = 1 ⊢ pure a * pure b = 1 [PROOFSTEP] rw [pure_mul_pure, h, pure_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α src✝³ : Monoid (Filter α) := Filter.monoid src✝² : InvolutiveInv (Filter α) := Filter.instInvolutiveInv src✝¹ : Div (Filter α) := Filter.instDiv src✝ : Pow (Filter α) ℤ := Filter.instZPow s t : Filter α h : s * t = 1 ⊢ s⁻¹ = t [PROOFSTEP] obtain ⟨a, b, rfl, rfl, hab⟩ := Filter.mul_eq_one_iff.1 h [GOAL] case intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α src✝³ : Monoid (Filter α) := Filter.monoid src✝² : InvolutiveInv (Filter α) := Filter.instInvolutiveInv src✝¹ : Div (Filter α) := Filter.instDiv src✝ : Pow (Filter α) ℤ := Filter.instZPow a b : α hab : a * b = 1 h : pure a * pure b = 1 ⊢ (pure a)⁻¹ = pure b [PROOFSTEP] rw [inv_pure, inv_eq_of_mul_eq_one_right hab] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α ⊢ IsUnit f ↔ ∃ a, f = pure a ∧ IsUnit a [PROOFSTEP] constructor [GOAL] case mp F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α ⊢ IsUnit f → ∃ a, f = pure a ∧ IsUnit a [PROOFSTEP] rintro ⟨u, rfl⟩ [GOAL] case mp.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α g : Filter α u : (Filter α)ˣ ⊢ ∃ a, ↑u = pure a ∧ IsUnit a [PROOFSTEP] obtain ⟨a, b, ha, hb, h⟩ := Filter.mul_eq_one_iff.1 u.mul_inv [GOAL] case mp.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α g : Filter α u : (Filter α)ˣ a b : α ha : ↑u = pure a hb : ↑u⁻¹ = pure b h : a * b = 1 ⊢ ∃ a, ↑u = pure a ∧ IsUnit a [PROOFSTEP] refine' ⟨a, ha, ⟨a, b, h, pure_injective _⟩, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α g : Filter α u : (Filter α)ˣ a b : α ha : ↑u = pure a hb : ↑u⁻¹ = pure b h : a * b = 1 ⊢ pure (b * a) = pure 1 [PROOFSTEP] rw [← pure_mul_pure, ← ha, ← hb] [GOAL] case mp.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α g : Filter α u : (Filter α)ˣ a b : α ha : ↑u = pure a hb : ↑u⁻¹ = pure b h : a * b = 1 ⊢ ↑u⁻¹ * ↑u = pure 1 [PROOFSTEP] exact u.inv_mul [GOAL] case mpr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α f g : Filter α ⊢ (∃ a, f = pure a ∧ IsUnit a) → IsUnit f [PROOFSTEP] rintro ⟨a, rfl, ha⟩ [GOAL] case mpr.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝ : DivisionMonoid α g : Filter α a : α ha : IsUnit a ⊢ IsUnit (pure a) [PROOFSTEP] exact ha.filter [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β ⊢ 1 ≤ f / g ↔ ¬Disjoint f g [PROOFSTEP] refine' ⟨fun h hfg => _, _⟩ [GOAL] case refine'_1 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : 1 ≤ f / g hfg : Disjoint f g ⊢ False [PROOFSTEP] obtain ⟨s, hs, t, ht, hst⟩ := hfg.le_bot (mem_bot : ∅ ∈ ⊥) [GOAL] case refine'_1.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : 1 ≤ f / g hfg : Disjoint f g s : Set α hs : s ∈ f t : Set α ht : t ∈ g hst : ∅ = s ∩ t ⊢ False [PROOFSTEP] exact Set.one_mem_div_iff.1 (h <| div_mem_div hs ht) (disjoint_iff.2 hst.symm) [GOAL] case refine'_2 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β ⊢ ¬Disjoint f g → 1 ≤ f / g [PROOFSTEP] rintro h s ⟨t₁, t₂, h₁, h₂, hs⟩ [GOAL] case refine'_2.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : ¬Disjoint f g s t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ g hs : t₁ / t₂ ⊆ s ⊢ s ∈ 1 [PROOFSTEP] exact hs (Set.one_mem_div_iff.2 fun ht => h <| disjoint_of_disjoint_of_mem ht h₁ h₂) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : NeBot f ⊢ 1 ≤ f / f [PROOFSTEP] rintro s ⟨t₁, t₂, h₁, h₂, hs⟩ [GOAL] case intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : NeBot f s t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ f hs : t₁ / t₂ ⊆ s ⊢ s ∈ 1 [PROOFSTEP] obtain ⟨a, ha₁, ha₂⟩ := Set.not_disjoint_iff.1 (h.not_disjoint h₁ h₂) [GOAL] case intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : NeBot f s t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ f hs : t₁ / t₂ ⊆ s a : α ha₁ : a ∈ t₁ ha₂ : a ∈ t₂ ⊢ s ∈ 1 [PROOFSTEP] rw [mem_one, ← div_self' a] [GOAL] case intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β h : NeBot f s t₁ t₂ : Set α h₁ : t₁ ∈ f h₂ : t₂ ∈ f hs : t₁ / t₂ ⊆ s a : α ha₁ : a ∈ t₁ ha₂ : a ∈ t₂ ⊢ a / a ∈ s [PROOFSTEP] exact hs (Set.div_mem_div ha₁ ha₂) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Group α inst✝¹ : DivisionMonoid β inst✝ : MonoidHomClass F α β m : F f g f₁ g₁ : Filter α f₂ g₂ : Filter β ⊢ IsUnit f ↔ ∃ a, f = pure a [PROOFSTEP] simp only [isUnit_iff, Group.isUnit, and_true_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝³ : SMul α β inst✝² : SMul α γ inst✝¹ : SMul β γ inst✝ : IsScalarTower α β γ a : α b : β f : Filter γ ⊢ (a • b) • f = a • b • f [PROOFSTEP] simp only [← map_smul, map_map, smul_assoc] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝³ : SMul α β inst✝² : SMul α γ inst✝¹ : SMul β γ inst✝ : IsScalarTower α β γ a : α b : β f : Filter γ ⊢ map (fun b_1 => a • b • b_1) f = map ((fun b => a • b) ∘ fun b_1 => b • b_1) f [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝³ : SMul α β inst✝² : SMul α γ inst✝¹ : SMul β γ inst✝ : IsScalarTower α β γ a : α f : Filter β g : Filter γ ⊢ (a • f) • g = a • f • g [PROOFSTEP] refine' (map_map₂_distrib_left fun _ _ => _).symm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝³ : SMul α β inst✝² : SMul α γ inst✝¹ : SMul β γ inst✝ : IsScalarTower α β γ a : α f : Filter β g : Filter γ x✝¹ : β x✝ : γ ⊢ (fun x x_1 => x • x_1) a (x✝¹ • x✝) = (fun x x_1 => x • x_1) a x✝¹ • x✝ [PROOFSTEP] exact (smul_assoc a _ _).symm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝¹ : Monoid α inst✝ : MulAction α β f : Filter β ⊢ map (fun b => 1 • b) f = f [PROOFSTEP] simp_rw [one_smul, map_id'] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝¹ : Monoid α inst✝ : MulAction α β f : Filter β ⊢ 1 • f = f [PROOFSTEP] simp only [← map_smul, one_smul, map_id'] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝¹ : Monoid α inst✝ : MulAction α β a b : α f : Filter β ⊢ (a * b) • f = a • b • f [PROOFSTEP] simp only [← map_smul, map_map, Function.comp, ← mul_smul] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Monoid α inst✝¹ : AddMonoid β inst✝ : DistribMulAction α β x✝ : α ⊢ pure ((fun x x_1 => x • x_1) x✝ 0) = 0 [PROOFSTEP] dsimp only [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Monoid α inst✝¹ : AddMonoid β inst✝ : DistribMulAction α β x✝ : α ⊢ pure (x✝ • 0) = 0 [PROOFSTEP] rw [smul_zero, pure_zero] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Monoid α inst✝¹ : Monoid β inst✝ : MulDistribMulAction α β x✝ : α ⊢ {x✝ • 1} = 1 [PROOFSTEP] rw [smul_one, singleton_one] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β ⊢ 0 • g ≤ 0 [PROOFSTEP] refine' fun s hs => mem_smul_filter.2 _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β s : Set β hs : s ∈ 0 ⊢ (fun x x_1 => x • x_1) 0 ⁻¹' s ∈ g [PROOFSTEP] convert @univ_mem _ g [GOAL] case h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β s : Set β hs : s ∈ 0 ⊢ (fun x x_1 => x • x_1) 0 ⁻¹' s = univ [PROOFSTEP] refine' eq_univ_iff_forall.2 fun a => _ [GOAL] case h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β s : Set β hs : s ∈ 0 a : β ⊢ a ∈ (fun x x_1 => x • x_1) 0 ⁻¹' s [PROOFSTEP] dsimp only [GOAL] case h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β s : Set β hs : s ∈ 0 a : β ⊢ a ∈ (fun x => 0 • x) ⁻¹' s [PROOFSTEP] rwa [mem_preimage, zero_smul] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β hg : NeBot g s : Set β hs : s ∈ g ⊢ (fun x x_1 => x • x_1) 0 '' s ∈ 0 [PROOFSTEP] simp_rw [zero_smul, (hg.nonempty_of_mem hs).image_const] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ε : Type u_6 inst✝² : Zero α inst✝¹ : Zero β inst✝ : SMulWithZero α β f : Filter α g : Filter β hg : NeBot g s : Set β hs : s ∈ g ⊢ {0} ∈ 0 [PROOFSTEP] exact zero_mem_zero
{"mathlib_filename": "Mathlib.Order.Filter.Pointwise", "llama_tokens": 9853}
[GOAL] α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α ⊢ ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n) [PROOFSTEP] cases' le_total n m with hnm hmn [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hnm : n ≤ m ⊢ ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n) [PROOFSTEP] rw [Ico_eq_empty_of_le hnm, Ioc_eq_empty_of_le (hf hnm), biUnion_empty] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n ⊢ ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n) [PROOFSTEP] refine' Succ.rec _ _ hmn [GOAL] case inr.refine'_1 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n ⊢ ⋃ (i : α) (_ : i ∈ Ico m m), Ioc (f i) (f (succ i)) = Ioc (f m) (f m) [PROOFSTEP] simp only [Ioc_self, Ico_self, biUnion_empty] [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n ⊢ ∀ (n : α), m ≤ n → ⋃ (i : α) (_ : i ∈ Ico m n), Ioc (f i) (f (succ i)) = Ioc (f m) (f n) → ⋃ (i : α) (_ : i ∈ Ico m (succ n)), Ioc (f i) (f (succ i)) = Ioc (f m) (f (succ n)) [PROOFSTEP] intro k hmk ihk [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n k : α hmk : m ≤ k ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k) ⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) = Ioc (f m) (f (succ k)) [PROOFSTEP] rw [← Ioc_union_Ioc_eq_Ioc (hf hmk) (hf <| le_succ _), union_comm, ← ihk] [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n k : α hmk : m ≤ k ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k) ⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) = Ioc (f k) (f (succ k)) ∪ ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) [PROOFSTEP] by_cases hk : IsMax k [GOAL] case pos α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n k : α hmk : m ≤ k ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k) hk : IsMax k ⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) = Ioc (f k) (f (succ k)) ∪ ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) [PROOFSTEP] rw [hk.succ_eq, Ioc_self, empty_union] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝³ : LinearOrder α inst✝² : SuccOrder α inst✝¹ : IsSuccArchimedean α inst✝ : LinearOrder β f : α → β hf : Monotone f m n : α hmn : m ≤ n k : α hmk : m ≤ k ihk : ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) = Ioc (f m) (f k) hk : ¬IsMax k ⊢ ⋃ (i : α) (_ : i ∈ Ico m (succ k)), Ioc (f i) (f (succ i)) = Ioc (f k) (f (succ k)) ∪ ⋃ (i : α) (_ : i ∈ Ico m k), Ioc (f i) (f (succ i)) [PROOFSTEP] rw [Ico_succ_right_eq_insert_of_not_isMax hmk hk, biUnion_insert] [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : Preorder β f : α → β hf : Monotone f ⊢ Pairwise (Disjoint on fun n => Ioc (f (pred n)) (f n)) [PROOFSTEP] simpa only [(· ∘ ·), dual_Ico] using hf.dual.pairwise_disjoint_on_Ico_succ [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : Preorder β f : α → β hf : Monotone f ⊢ Pairwise (Disjoint on fun n => Ico (f (pred n)) (f n)) [PROOFSTEP] simpa only [(· ∘ ·), dual_Ioc] using hf.dual.pairwise_disjoint_on_Ioc_succ [GOAL] α : Type u_1 β : Type u_2 inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : Preorder β f : α → β hf : Monotone f ⊢ Pairwise (Disjoint on fun n => Ioo (f (pred n)) (f n)) [PROOFSTEP] simpa only [(· ∘ ·), dual_Ioo] using hf.dual.pairwise_disjoint_on_Ioo_succ
{"mathlib_filename": "Mathlib.Order.SuccPred.IntervalSucc", "llama_tokens": 2378}
[GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ∂ ⊤ = ⊥ [PROOFSTEP] rw [boundary, hnot_top, inf_bot_eq] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b a : α ⊢ ∂ (¬¬a) = ∂ (¬a) [PROOFSTEP] simp_rw [boundary, hnot_hnot_hnot, inf_comm] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b a : α ⊢ ¬∂ a = ⊤ [PROOFSTEP] rw [boundary, hnot_inf_distrib, sup_hnot_self] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ a b : α ⊢ ∂ (a ⊓ b) = ∂ a ⊓ b ⊔ a ⊓ ∂ b [PROOFSTEP] unfold boundary [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ a b : α ⊢ a ⊓ b ⊓ ¬(a ⊓ b) = a ⊓ ¬a ⊓ b ⊔ a ⊓ (b ⊓ ¬b) [PROOFSTEP] rw [hnot_inf_distrib, inf_sup_left, inf_right_comm, ← inf_assoc] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ∂ (a ⊔ b) ≤ ∂ a ⊔ ∂ b [PROOFSTEP] rw [boundary, inf_sup_right] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬(a ⊔ b) ⊔ b ⊓ ¬(a ⊔ b) ≤ ∂ a ⊔ ∂ b [PROOFSTEP] exact sup_le_sup (inf_le_inf_left _ <| hnot_anti le_sup_left) (inf_le_inf_left _ <| hnot_anti le_sup_right) [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ⊢ (a ∧ b ∨ ¬(a ∧ b)) ∧ ((a ∨ b) ∨ ¬(a ∨ b)) → a ∨ ¬a [PROOFSTEP] rintro ⟨⟨ha, _⟩ | hnab, (ha | hb) | hnab⟩ [GOAL] case intro.inl.intro.inl.inl α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ha✝ : a right✝ : b ha : a ⊢ a ∨ ¬a [PROOFSTEP] try exact Or.inl ha [GOAL] case intro.inl.intro.inl.inl α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ha✝ : a right✝ : b ha : a ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inl ha [GOAL] case intro.inl.intro.inl.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ha : a right✝ hb : b ⊢ a ∨ ¬a [PROOFSTEP] try exact Or.inl ha [GOAL] case intro.inl.intro.inl.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ha : a right✝ hb : b ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inl ha [GOAL] case intro.inl.intro.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ha : a right✝ : b hnab : ¬(a ∨ b) ⊢ a ∨ ¬a [PROOFSTEP] try exact Or.inl ha [GOAL] case intro.inl.intro.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop ha : a right✝ : b hnab : ¬(a ∨ b) ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inl ha [GOAL] case intro.inr.inl.inl α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab : ¬(a ∧ b) ha : a ⊢ a ∨ ¬a [PROOFSTEP] try exact Or.inl ha [GOAL] case intro.inr.inl.inl α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab : ¬(a ∧ b) ha : a ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inl ha [GOAL] case intro.inr.inl.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab : ¬(a ∧ b) hb : b ⊢ a ∨ ¬a [PROOFSTEP] try exact Or.inl ha [GOAL] case intro.inr.inl.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab : ¬(a ∧ b) hb : b ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inl ha [GOAL] case intro.inr.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab✝ : ¬(a ∧ b) hnab : ¬(a ∨ b) ⊢ a ∨ ¬a [PROOFSTEP] try exact Or.inl ha [GOAL] case intro.inr.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab✝ : ¬(a ∧ b) hnab : ¬(a ∨ b) ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inl ha [GOAL] case intro.inr.inl.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab : ¬(a ∧ b) hb : b ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inr fun ha => hnab ⟨ha, hb⟩ [GOAL] case intro.inr.inr α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b✝ : α a b : Prop hnab✝ : ¬(a ∧ b) hnab : ¬(a ∨ b) ⊢ a ∨ ¬a [PROOFSTEP] exact Or.inr fun ha => hnab <| Or.inl ha [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ∂ a ≤ ∂ (a ⊔ b) ⊔ ∂ (a ⊓ b) [PROOFSTEP] simp only [boundary, sup_inf_left, sup_inf_right, sup_right_idem, le_inf_iff, sup_assoc, @sup_comm _ _ _ a] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ((a ⊓ ¬a ≤ a ⊔ (a ⊔ b) ∧ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b)) ∧ a ⊓ ¬a ≤ a ⊔ b ∧ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b) ∧ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b)) ∧ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b) [PROOFSTEP] refine ⟨⟨⟨?_, ?_⟩, ⟨?_, ?_⟩⟩, ?_, ?_⟩ [GOAL] case refine_1 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ (a ⊔ b) [PROOFSTEP] try {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_1 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ (a ⊔ b) [PROOFSTEP] {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_1 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ (a ⊔ b) [PROOFSTEP] exact le_sup_of_le_left inf_le_left [GOAL] case refine_2 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b) [PROOFSTEP] try {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_2 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b) [PROOFSTEP] {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_2 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ ¬(a ⊔ b) [PROOFSTEP] exact le_sup_of_le_left inf_le_left [GOAL] case refine_3 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ b [PROOFSTEP] try {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_3 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ b [PROOFSTEP] {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_3 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ b [PROOFSTEP] exact le_sup_of_le_left inf_le_left [GOAL] case refine_4 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b [PROOFSTEP] try {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_4 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b [PROOFSTEP] {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_4 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b [PROOFSTEP] exact le_sup_of_le_left inf_le_left [GOAL] case refine_5 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b)) [PROOFSTEP] try {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_5 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b)) [PROOFSTEP] {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_5 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ a ⊔ (b ⊔ ¬(a ⊓ b)) [PROOFSTEP] exact le_sup_of_le_left inf_le_left [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b) [PROOFSTEP] try {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b) [PROOFSTEP] {exact le_sup_of_le_left inf_le_left } [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b) [PROOFSTEP] exact le_sup_of_le_left inf_le_left [GOAL] case refine_4 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ b [PROOFSTEP] refine inf_le_of_right_le ?_ [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ a ⊓ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b) [PROOFSTEP] refine inf_le_of_right_le ?_ [GOAL] case refine_4 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ¬a ≤ ¬(a ⊔ b) ⊔ b [PROOFSTEP] rw [hnot_le_iff_codisjoint_right, codisjoint_left_comm] [GOAL] case refine_4 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ Codisjoint (¬(a ⊔ b)) (a ⊔ b) [PROOFSTEP] exact codisjoint_hnot_left [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ¬a ≤ ¬(a ⊔ b) ⊔ ¬(a ⊓ b) [PROOFSTEP] refine le_sup_of_le_right ?_ [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ¬a ≤ ¬(a ⊓ b) [PROOFSTEP] rw [hnot_le_iff_codisjoint_right] [GOAL] case refine_6 α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ Codisjoint a (¬(a ⊓ b)) [PROOFSTEP] exact codisjoint_hnot_right.mono_right (hnot_anti inf_le_left) [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ∂ b ≤ ∂ (a ⊔ b) ⊔ ∂ (a ⊓ b) [PROOFSTEP] rw [@sup_comm _ _ a, inf_comm] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ ∂ b ≤ ∂ (b ⊔ a) ⊔ ∂ (b ⊓ a) [PROOFSTEP] exact boundary_le_boundary_sup_sup_boundary_inf_left [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b a : α ⊢ ∂ ∂ a = ∂ a [PROOFSTEP] rw [boundary, hnot_boundary, inf_top_eq] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b a : α ⊢ ¬¬a ⊔ ∂ a = a [PROOFSTEP] rw [boundary, sup_inf_left, hnot_sup_self, inf_top_eq, sup_eq_right] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a✝ b a : α ⊢ ¬¬a ≤ a [PROOFSTEP] exact hnot_hnot_le [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α h : ¬a = ⊤ ⊢ ∂ a = a [PROOFSTEP] rw [boundary, h, inf_top_eq] [GOAL] α : Type u_1 inst✝ : CoheytingAlgebra α a b : α ⊢ (∃ b, ∂ b = a) → ¬a = ⊤ [PROOFSTEP] rintro ⟨b, rfl⟩ [GOAL] case intro α : Type u_1 inst✝ : CoheytingAlgebra α b✝ b : α ⊢ ¬∂ b = ⊤ [PROOFSTEP] exact hnot_boundary _
{"mathlib_filename": "Mathlib.Order.Heyting.Boundary", "llama_tokens": 5392}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g✝ g₁ g₂ g : Set α → Filter β ⊢ Filter.lift ⊤ g = g univ [PROOFSTEP] simp [Filter.lift] [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Sort u_6 p : ι → Prop s✝ : ι → Set α f : Filter α hf : HasBasis f p s✝ β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i) gm : Monotone g s : Set γ ⊢ s ∈ Filter.lift f g ↔ ∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ s [PROOFSTEP] refine' (mem_biInf_of_directed _ ⟨univ, univ_sets _⟩).trans _ [GOAL] case refine'_1 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Sort u_6 p : ι → Prop s✝ : ι → Set α f : Filter α hf : HasBasis f p s✝ β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i) gm : Monotone g s : Set γ ⊢ DirectedOn ((fun s => g s) ⁻¹'o fun x x_1 => x ≥ x_1) f.sets [PROOFSTEP] intro t₁ ht₁ t₂ ht₂ [GOAL] case refine'_1 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Sort u_6 p : ι → Prop s✝ : ι → Set α f : Filter α hf : HasBasis f p s✝ β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i) gm : Monotone g s : Set γ t₁ : Set α ht₁ : t₁ ∈ f.sets t₂ : Set α ht₂ : t₂ ∈ f.sets ⊢ ∃ z, z ∈ f.sets ∧ ((fun s => g s) ⁻¹'o fun x x_1 => x ≥ x_1) t₁ z ∧ ((fun s => g s) ⁻¹'o fun x x_1 => x ≥ x_1) t₂ z [PROOFSTEP] exact ⟨t₁ ∩ t₂, inter_mem ht₁ ht₂, gm <| inter_subset_left _ _, gm <| inter_subset_right _ _⟩ [GOAL] case refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Sort u_6 p : ι → Prop s✝ : ι → Set α f : Filter α hf : HasBasis f p s✝ β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i) gm : Monotone g s : Set γ ⊢ (∃ i, i ∈ f.sets ∧ s ∈ g i) ↔ ∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ s [PROOFSTEP] simp only [← (hg _).mem_iff] [GOAL] case refine'_2 α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Sort u_6 p : ι → Prop s✝ : ι → Set α f : Filter α hf : HasBasis f p s✝ β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s✝ i)) (pg i) (sg i) gm : Monotone g s : Set γ ⊢ (∃ i, i ∈ f.sets ∧ s ∈ g i) ↔ ∃ i, p i ∧ s ∈ g (s✝ i) [PROOFSTEP] exact hf.exists_iff fun t₁ t₂ ht H => gm ht H [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Type u_6 p : ι → Prop s : ι → Set α f : Filter α hf : HasBasis f p s β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s i)) (pg i) (sg i) gm : Monotone g ⊢ HasBasis (Filter.lift f g) (fun i => p i.fst ∧ pg i.fst i.snd) fun i => sg i.fst i.snd [PROOFSTEP] refine' ⟨fun t => (hf.mem_lift_iff hg gm).trans _⟩ [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β✝ ι : Type u_6 p : ι → Prop s : ι → Set α f : Filter α hf : HasBasis f p s β : ι → Type u_5 pg : (i : ι) → β i → Prop sg : (i : ι) → β i → Set γ g : Set α → Filter γ hg : ∀ (i : ι), HasBasis (g (s i)) (pg i) (sg i) gm : Monotone g t : Set γ ⊢ (∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ t) ↔ ∃ i, (p i.fst ∧ pg i.fst i.snd) ∧ sg i.fst i.snd ⊆ t [PROOFSTEP] simp [Sigma.exists, and_assoc, exists_and_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β hg : Monotone g s : Set β ⊢ (∃ i, i ∈ f ∧ ∃ x, x ∈ g i ∧ id x ⊆ s) ↔ ∃ t, t ∈ f ∧ s ∈ g t [PROOFSTEP] simp only [id, exists_mem_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β hg : Monotone g ⊢ ⋂₀ {s | s ∈ Filter.lift f g} = ⋂ (s : Set α) (_ : s ∈ f), ⋂₀ {t | t ∈ g s} [PROOFSTEP] simp only [sInter_eq_biInter, mem_setOf_eq, Filter.mem_sets, mem_lift_sets hg, iInter_exists, iInter_and, @iInter_comm _ (Set β)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β m : γ → β l : Filter γ ⊢ Tendsto m l (Filter.lift f g) ↔ ∀ (s : Set α), s ∈ f → Tendsto m l (g s) [PROOFSTEP] simp only [Filter.lift, tendsto_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β m : β → γ hg : Monotone g this : Monotone (map m ∘ g) s : Set γ ⊢ s ∈ map m (Filter.lift f g) ↔ s ∈ Filter.lift f (map m ∘ g) [PROOFSTEP] simp only [mem_lift_sets hg, mem_lift_sets this, exists_prop, mem_map, Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β m : γ → β ⊢ comap m (Filter.lift f g) = Filter.lift f (comap m ∘ g) [PROOFSTEP] simp only [Filter.lift, comap_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β m : γ → β ⊢ ⨅ (i : Set α) (_ : i ∈ f), comap m (g i) = ⨅ (s : Set α) (_ : s ∈ f), (comap m ∘ g) s [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β hm : Monotone g ⊢ NeBot (Filter.lift f g) ↔ ∀ (s : Set α), s ∈ f → NeBot (g s) [PROOFSTEP] simp only [neBot_iff, Ne.def, ← empty_mem_iff_bot, mem_lift_sets hm, not_exists, not_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β f : Filter α g h : Set α → Filter β ⊢ (Filter.lift f fun x => g x ⊓ h x) = Filter.lift f g ⊓ Filter.lift f h [PROOFSTEP] simp only [Filter.lift, iInf_inf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g g₁ g₂ : Set α → Filter β f : Filter α s : Set α hs : s ∈ f ⊢ f ≤ 𝓟 s [PROOFSTEP] simp only [hs, le_principal_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t ⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] refine' lift_iInf_le.antisymm fun s => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β ⊢ s ∈ Filter.lift (iInf f) g → s ∈ ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] have H : ∀ t ∈ iInf f, ⨅ i, (f i).lift g ≤ g t := by intro t ht refine' iInf_sets_induct ht _ fun hs ht => _ · inhabit ι exact iInf₂_le_of_le default univ (iInf_le _ univ_mem) · rw [hg] exact le_inf (iInf₂_le_of_le _ _ <| iInf_le _ hs) ht [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β ⊢ ∀ (t : Set α), t ∈ iInf f → ⨅ (i : ι), Filter.lift (f i) g ≤ g t [PROOFSTEP] intro t ht [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β t : Set α ht : t ∈ iInf f ⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g t [PROOFSTEP] refine' iInf_sets_induct ht _ fun hs ht => _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β t : Set α ht : t ∈ iInf f ⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g univ [PROOFSTEP] inhabit ι [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β t : Set α ht : t ∈ iInf f inhabited_h : Inhabited ι ⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g univ [PROOFSTEP] exact iInf₂_le_of_le default univ (iInf_le _ univ_mem) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β t : Set α ht✝ : t ∈ iInf f i✝ : ι s₁✝ s₂✝ : Set α hs : s₁✝ ∈ f i✝ ht : ⨅ (i : ι), Filter.lift (f i) g ≤ g s₂✝ ⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g (s₁✝ ∩ s₂✝) [PROOFSTEP] rw [hg] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β t : Set α ht✝ : t ∈ iInf f i✝ : ι s₁✝ s₂✝ : Set α hs : s₁✝ ∈ f i✝ ht : ⨅ (i : ι), Filter.lift (f i) g ≤ g s₂✝ ⊢ ⨅ (i : ι), Filter.lift (f i) g ≤ g s₁✝ ⊓ g s₂✝ [PROOFSTEP] exact le_inf (iInf₂_le_of_le _ _ <| iInf_le _ hs) ht [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β H : ∀ (t : Set α), t ∈ iInf f → ⨅ (i : ι), Filter.lift (f i) g ≤ g t ⊢ s ∈ Filter.lift (iInf f) g → s ∈ ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] simp only [mem_lift_sets (Monotone.of_map_inf hg), exists_imp, and_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t s : Set β H : ∀ (t : Set α), t ∈ iInf f → ⨅ (i : ι), Filter.lift (f i) g ≤ g t ⊢ ∀ (x : Set α), x ∈ iInf f → s ∈ g x → s ∈ ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] exact fun t ht hs => H t ht hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hf : Directed (fun x x_1 => x ≥ x_1) f hg : Monotone g s : Set β ⊢ s ∈ Filter.lift (iInf f) g → s ∈ ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] simp only [mem_lift_sets hg, exists_imp, and_imp, mem_iInf_of_directed hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Filter β hf : Directed (fun x x_1 => x ≥ x_1) f hg : Monotone g s : Set β ⊢ ∀ (x : Set α) (x_1 : ι), x ∈ f x_1 → s ∈ g x → s ∈ ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] exact fun t i ht hs => mem_iInf_of_mem i <| mem_lift ht hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t hg' : g univ = ⊤ ⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t hg' : g univ = ⊤ h✝ : IsEmpty ι ⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] simp [iInf_of_empty, hg'] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Set α → Filter β f : ι → Filter α g : Set α → Filter β hg : ∀ (s t : Set α), g (s ∩ t) = g s ⊓ g t hg' : g univ = ⊤ h✝ : Nonempty ι ⊢ Filter.lift (iInf f) g = ⨅ (i : ι), Filter.lift (f i) g [PROOFSTEP] exact lift_iInf hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β m : γ → β l : Filter γ ⊢ Tendsto m l (Filter.lift' f h) ↔ ∀ (s : Set α), s ∈ f → ∀ᶠ (a : γ) in l, m a ∈ h s [PROOFSTEP] simp only [Filter.lift', tendsto_lift, tendsto_principal, comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β ι : Sort u_5 p : ι → Prop s : ι → Set α hf : HasBasis f p s hh : Monotone h t : Set β ⊢ (∃ i, p i ∧ ∃ x, True ∧ h (s i) ⊆ t) ↔ ∃ i, p i ∧ (h ∘ s) i ⊆ t [PROOFSTEP] simp only [exists_const, true_and, comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β m : β → γ hh : Monotone h ⊢ Filter.lift f (map m ∘ 𝓟 ∘ h) = Filter.lift' f (image m ∘ h) [PROOFSTEP] simp only [comp, Filter.lift', map_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β m : γ → β ⊢ comap m (Filter.lift' f h) = Filter.lift' f (preimage m ∘ h) [PROOFSTEP] simp only [Filter.lift', comap_lift_eq, (· ∘ ·), comap_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β a : α hh : Monotone h ⊢ Filter.lift' (pure a) h = 𝓟 (h {a}) [PROOFSTEP] rw [← principal_singleton, lift'_principal hh] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β hh : Monotone h ⊢ Filter.lift' ⊥ h = 𝓟 (h ∅) [PROOFSTEP] rw [← principal_empty, lift'_principal hh] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h✝ h₁ h₂ g : Set α → Set β h : Set β → Filter γ hg : Monotone g hh : Monotone h ⊢ (Filter.lift f fun s => Filter.lift (𝓟 (g s)) h) = Filter.lift f fun s => h (g s) [PROOFSTEP] simp only [lift_principal, hh, eq_self_iff_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h✝ h₁ h₂ h : Set α → Set β s : Set β ⊢ Filter.lift' f h ⊓ 𝓟 s = Filter.lift' f fun t => h t ∩ s [PROOFSTEP] simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, iInf_subtype', ← iInf_inf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β hh : Monotone h ⊢ (∀ (s : Set α), s ∈ f → NeBot (𝓟 (h s))) ↔ ∀ (s : Set α), s ∈ f → Set.Nonempty (h s) [PROOFSTEP] simp only [principal_neBot_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β inst✝ : Nonempty ι f : ι → Filter α g : Set α → Set β hg : ∀ (s t : Set α), g (s ∩ t) = g s ∩ g t s t : Set α ⊢ (𝓟 ∘ g) (s ∩ t) = (𝓟 ∘ g) s ⊓ (𝓟 ∘ g) t [PROOFSTEP] simp only [inf_principal, comp, hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f : ι → Filter α g : Set α → Set β hg : ∀ {s t : Set α}, g (s ∩ t) = g s ∩ g t hg' : g univ = univ s t : Set α ⊢ (𝓟 ∘ g) (s ∩ t) = (𝓟 ∘ g) s ⊓ (𝓟 ∘ g) t [PROOFSTEP] simp only [inf_principal, comp, hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f : ι → Filter α g : Set α → Set β hg : ∀ {s t : Set α}, g (s ∩ t) = g s ∩ g t hg' : g univ = univ ⊢ (𝓟 ∘ g) univ = ⊤ [PROOFSTEP] rw [Function.comp_apply, hg', principal_univ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f g : Filter α s : Set α → Set β hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂ ⊢ Filter.lift' (f ⊓ g) s = Filter.lift' f s ⊓ Filter.lift' g s [PROOFSTEP] rw [inf_eq_iInf, inf_eq_iInf, lift'_iInf hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f g : Filter α s : Set α → Set β hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂ ⊢ ⨅ (i : Bool), Filter.lift' (bif i then f else g) s = ⨅ (b : Bool), bif b then Filter.lift' f s else Filter.lift' g s [PROOFSTEP] refine iInf_congr ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f g : Filter α s : Set α → Set β hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂ ⊢ ∀ (i : Bool), Filter.lift' (bif i then f else g) s = bif i then Filter.lift' f s else Filter.lift' g s [PROOFSTEP] rintro (_ | _) [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f g : Filter α s : Set α → Set β hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂ ⊢ Filter.lift' (bif false then f else g) s = bif false then Filter.lift' f s else Filter.lift' g s [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f₁ f₂ : Filter α h h₁ h₂ : Set α → Set β f g : Filter α s : Set α → Set β hs : ∀ (t₁ t₂ : Set α), s (t₁ ∩ t₂) = s t₁ ∩ s t₂ ⊢ Filter.lift' (bif true then f else g) s = bif true then Filter.lift' f s else Filter.lift' g s [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ f : Filter α g : Filter β ⊢ f ×ˢ g = Filter.lift f fun s => Filter.lift' g fun t => s ×ˢ t [PROOFSTEP] simpa only [Filter.lift', Filter.lift, (f.basis_sets.prod g.basis_sets).eq_biInf, iInf_prod, iInf_and] using iInf_congr fun i => iInf_comm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f✝ : Filter α f : α × α → β x : Filter α y : Filter β ⊢ Tendsto f (x ×ˢ x) y ↔ ∀ (W : Set β), W ∈ y → ∃ U, U ∈ x ∧ ∀ (x x' : α), x ∈ U → x' ∈ U → f (x, x') ∈ W [PROOFSTEP] simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ ⊢ Filter.lift f₁ g₁ ×ˢ Filter.lift f₂ g₂ = Filter.lift f₁ fun s => Filter.lift f₂ fun t => g₁ s ×ˢ g₂ t [PROOFSTEP] simp only [prod_def, lift_assoc hg₁] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ ⊢ (Filter.lift f₁ fun s => Filter.lift (g₁ s) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = Filter.lift f₁ fun s => Filter.lift f₂ fun t => Filter.lift (g₁ s) fun s => Filter.lift' (g₂ t) fun t => s ×ˢ t [PROOFSTEP] apply congr_arg [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ ⊢ (fun s => Filter.lift (g₁ s) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = fun s => Filter.lift f₂ fun t => Filter.lift (g₁ s) fun s => Filter.lift' (g₂ t) fun t => s ×ˢ t [PROOFSTEP] funext x [GOAL] case h.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ x : Set α₁ ⊢ (Filter.lift (g₁ x) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = Filter.lift f₂ fun t => Filter.lift (g₁ x) fun s => Filter.lift' (g₂ t) fun t => s ×ˢ t [PROOFSTEP] rw [lift_comm] [GOAL] case h.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ x : Set α₁ ⊢ (Filter.lift (g₁ x) fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = Filter.lift (g₁ x) fun t => Filter.lift f₂ fun s => Filter.lift' (g₂ s) fun t_1 => t ×ˢ t_1 [PROOFSTEP] apply congr_arg [GOAL] case h.h.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ x : Set α₁ ⊢ (fun s => Filter.lift' (Filter.lift f₂ g₂) fun t => s ×ˢ t) = fun t => Filter.lift f₂ fun s => Filter.lift' (g₂ s) fun t_1 => t ×ˢ t_1 [PROOFSTEP] funext y [GOAL] case h.h.h.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Filter β₁ g₂ : Set α₂ → Filter β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ x : Set α₁ y : Set β₁ ⊢ (Filter.lift' (Filter.lift f₂ g₂) fun t => y ×ˢ t) = Filter.lift f₂ fun s => Filter.lift' (g₂ s) fun t => y ×ˢ t [PROOFSTEP] apply lift'_lift_assoc hg₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Set β₁ g₂ : Set α₂ → Set β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ ⊢ (Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s) ×ˢ 𝓟 (g₂ t)) = Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s ×ˢ g₂ t) [PROOFSTEP] {simp only [prod_principal_principal] } [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 f : Filter α α₁ : Type u_5 α₂ : Type u_6 β₁ : Type u_7 β₂ : Type u_8 f₁ : Filter α₁ f₂ : Filter α₂ g₁ : Set α₁ → Set β₁ g₂ : Set α₂ → Set β₂ hg₁ : Monotone g₁ hg₂ : Monotone g₂ ⊢ (Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s) ×ˢ 𝓟 (g₂ t)) = Filter.lift f₁ fun s => Filter.lift f₂ fun t => 𝓟 (g₁ s ×ˢ g₂ t) [PROOFSTEP] simp only [prod_principal_principal]
{"mathlib_filename": "Mathlib.Order.Filter.Lift", "llama_tokens": 11513}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a b : α h : MonotoneOn f s hl : BddBelow (f '' s) hu : BddAbove (f '' s) ⊢ ∃ g, Monotone g ∧ EqOn f g s [PROOFSTEP] classical /- The extension is defined by `f x = f a` for `x ≤ a`, and `f x` is the supremum of the values of `f` to the left of `x` for `x ≥ a`. -/ rcases hl with ⟨a, ha⟩ have hu' : ∀ x, BddAbove (f '' (Iic x ∩ s)) := fun x => hu.mono (image_subset _ (inter_subset_right _ _)) let g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) have hgs : EqOn f g s := by intro x hx simp only [] have : IsGreatest (Iic x ∩ s) x := ⟨⟨right_mem_Iic, hx⟩, fun y hy => hy.1⟩ rw [if_neg this.nonempty.not_disjoint, ((h.mono <| inter_subset_right _ _).map_isGreatest this).csSup_eq] refine' ⟨g, fun x y hxy => _, hgs⟩ by_cases hx : Disjoint (Iic x) s <;> by_cases hy : Disjoint (Iic y) s <;> simp only [if_pos, if_neg, not_false_iff, *, refl] · rcases not_disjoint_iff_nonempty_inter.1 hy with ⟨z, hz⟩ exact le_csSup_of_le (hu' _) (mem_image_of_mem _ hz) (ha <| mem_image_of_mem _ hz.2) · exact (hx <| hy.mono_left <| Iic_subset_Iic.2 hxy).elim · rw [not_disjoint_iff_nonempty_inter] at hx hy refine' csSup_le_csSup (hu' _) (hx.image _) (image_subset _ _) exact inter_subset_inter_left _ (Iic_subset_Iic.2 hxy) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a b : α h : MonotoneOn f s hl : BddBelow (f '' s) hu : BddAbove (f '' s) ⊢ ∃ g, Monotone g ∧ EqOn f g s [PROOFSTEP] rcases hl with ⟨a, ha⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) ⊢ ∃ g, Monotone g ∧ EqOn f g s [PROOFSTEP] have hu' : ∀ x, BddAbove (f '' (Iic x ∩ s)) := fun x => hu.mono (image_subset _ (inter_subset_right _ _)) [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) ⊢ ∃ g, Monotone g ∧ EqOn f g s [PROOFSTEP] let g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) ⊢ ∃ g, Monotone g ∧ EqOn f g s [PROOFSTEP] have hgs : EqOn f g s := by intro x hx simp only [] have : IsGreatest (Iic x ∩ s) x := ⟨⟨right_mem_Iic, hx⟩, fun y hy => hy.1⟩ rw [if_neg this.nonempty.not_disjoint, ((h.mono <| inter_subset_right _ _).map_isGreatest this).csSup_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) ⊢ EqOn f g s [PROOFSTEP] intro x hx [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) x : α hx : x ∈ s ⊢ f x = g x [PROOFSTEP] simp only [] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) x : α hx : x ∈ s ⊢ f x = if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) [PROOFSTEP] have : IsGreatest (Iic x ∩ s) x := ⟨⟨right_mem_Iic, hx⟩, fun y hy => hy.1⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) x : α hx : x ∈ s this : IsGreatest (Iic x ∩ s) x ⊢ f x = if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) [PROOFSTEP] rw [if_neg this.nonempty.not_disjoint, ((h.mono <| inter_subset_right _ _).map_isGreatest this).csSup_eq] [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s ⊢ ∃ g, Monotone g ∧ EqOn f g s [PROOFSTEP] refine' ⟨g, fun x y hxy => _, hgs⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y ⊢ g x ≤ g y [PROOFSTEP] by_cases hx : Disjoint (Iic x) s [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Disjoint (Iic x) s ⊢ g x ≤ g y [PROOFSTEP] by_cases hy : Disjoint (Iic y) s [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : ¬Disjoint (Iic x) s ⊢ g x ≤ g y [PROOFSTEP] by_cases hy : Disjoint (Iic y) s [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Disjoint (Iic x) s hy : Disjoint (Iic y) s ⊢ g x ≤ g y [PROOFSTEP] simp only [if_pos, if_neg, not_false_iff, *, refl] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Disjoint (Iic x) s hy : ¬Disjoint (Iic y) s ⊢ g x ≤ g y [PROOFSTEP] simp only [if_pos, if_neg, not_false_iff, *, refl] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : ¬Disjoint (Iic x) s hy : Disjoint (Iic y) s ⊢ g x ≤ g y [PROOFSTEP] simp only [if_pos, if_neg, not_false_iff, *, refl] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : ¬Disjoint (Iic x) s hy : ¬Disjoint (Iic y) s ⊢ g x ≤ g y [PROOFSTEP] simp only [if_pos, if_neg, not_false_iff, *, refl] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Disjoint (Iic x) s hy : ¬Disjoint (Iic y) s ⊢ a ≤ sSup (f '' (Iic y ∩ s)) [PROOFSTEP] rcases not_disjoint_iff_nonempty_inter.1 hy with ⟨z, hz⟩ [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Disjoint (Iic x) s hy : ¬Disjoint (Iic y) s z : α hz : z ∈ Iic y ∩ s ⊢ a ≤ sSup (f '' (Iic y ∩ s)) [PROOFSTEP] exact le_csSup_of_le (hu' _) (mem_image_of_mem _ hz) (ha <| mem_image_of_mem _ hz.2) [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : ¬Disjoint (Iic x) s hy : Disjoint (Iic y) s ⊢ sSup (f '' (Iic x ∩ s)) ≤ a [PROOFSTEP] exact (hx <| hy.mono_left <| Iic_subset_Iic.2 hxy).elim [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : ¬Disjoint (Iic x) s hy : ¬Disjoint (Iic y) s ⊢ sSup (f '' (Iic x ∩ s)) ≤ sSup (f '' (Iic y ∩ s)) [PROOFSTEP] rw [not_disjoint_iff_nonempty_inter] at hx hy [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Set.Nonempty (Iic x ∩ s) hy : Set.Nonempty (Iic y ∩ s) ⊢ sSup (f '' (Iic x ∩ s)) ≤ sSup (f '' (Iic y ∩ s)) [PROOFSTEP] refine' csSup_le_csSup (hu' _) (hx.image _) (image_subset _ _) [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : ConditionallyCompleteLinearOrder β f : α → β s : Set α a✝ b : α h : MonotoneOn f s hu : BddAbove (f '' s) a : β ha : a ∈ lowerBounds (f '' s) hu' : ∀ (x : α), BddAbove (f '' (Iic x ∩ s)) g : α → β := fun x => if Disjoint (Iic x) s then a else sSup (f '' (Iic x ∩ s)) hgs : EqOn f g s x y : α hxy : x ≤ y hx : Set.Nonempty (Iic x ∩ s) hy : Set.Nonempty (Iic y ∩ s) ⊢ Iic x ∩ s ⊆ Iic y ∩ s [PROOFSTEP] exact inter_subset_inter_left _ (Iic_subset_Iic.2 hxy)
{"mathlib_filename": "Mathlib.Order.Monotone.Extension", "llama_tokens": 5912}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ⊢ ∀ {x y : Set ℕ}, x ∈ range Ici → y ∈ range Ici → ∃ z, z ∈ range Ici ∧ z ⊆ x ∩ y [PROOFSTEP] rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 n m : ℕ ⊢ ∃ z, z ∈ range Ici ∧ z ⊆ Ici n ∩ Ici m [PROOFSTEP] exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 p : ι → Prop s : ι → Set α h : IsBasis p s ⊢ ∀ {x y : Set α}, x ∈ {t | ∃ i, p i ∧ s i = t} → y ∈ {t | ∃ i, p i ∧ s i = t} → ∃ z, z ∈ {t | ∃ i, p i ∧ s i = t} ∧ z ⊆ x ∩ y [PROOFSTEP] rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 p : ι → Prop s : ι → Set α h : IsBasis p s i : ι hi : p i j : ι hj : p j ⊢ ∃ z, z ∈ {t | ∃ i, p i ∧ s i = t} ∧ z ⊆ s i ∩ s j [PROOFSTEP] rcases h.inter hi hj with ⟨k, hk, hk'⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 p : ι → Prop s : ι → Set α h : IsBasis p s i : ι hi : p i j : ι hj : p j k : ι hk : p k hk' : s k ⊆ s i ∩ s j ⊢ ∃ z, z ∈ {t | ∃ i, p i ∧ s i = t} ∧ z ⊆ s i ∩ s j [PROOFSTEP] exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α ⊢ FilterBasis.filter B = ⨅ (s : ↑B.sets), 𝓟 ↑s [PROOFSTEP] have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α ⊢ Directed (fun x x_1 => x ≥ x_1) fun s => 𝓟 ↑s [PROOFSTEP] rintro ⟨U, U_in⟩ ⟨V, V_in⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α U : Set α U_in : U ∈ B.sets V : Set α V_in : V ∈ B.sets ⊢ ∃ z, (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := U, property := U_in }) ((fun s => 𝓟 ↑s) z) ∧ (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := V, property := V_in }) ((fun s => 𝓟 ↑s) z) [PROOFSTEP] rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ [GOAL] case mk.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α U : Set α U_in : U ∈ B.sets V : Set α V_in : V ∈ B.sets W : Set α W_in : W ∈ B.sets W_sub : W ⊆ U ∩ V ⊢ ∃ z, (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := U, property := U_in }) ((fun s => 𝓟 ↑s) z) ∧ (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := V, property := V_in }) ((fun s => 𝓟 ↑s) z) [PROOFSTEP] use⟨W, W_in⟩ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α U : Set α U_in : U ∈ B.sets V : Set α V_in : V ∈ B.sets W : Set α W_in : W ∈ B.sets W_sub : W ⊆ U ∩ V ⊢ (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := U, property := U_in }) ((fun s => 𝓟 ↑s) { val := W, property := W_in }) ∧ (fun x x_1 => x ≥ x_1) ((fun s => 𝓟 ↑s) { val := V, property := V_in }) ((fun s => 𝓟 ↑s) { val := W, property := W_in }) [PROOFSTEP] simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α U : Set α U_in : U ∈ B.sets V : Set α V_in : V ∈ B.sets W : Set α W_in : W ∈ B.sets W_sub : W ⊆ U ∩ V ⊢ W ⊆ U ∧ W ⊆ V [PROOFSTEP] exact subset_inter_iff.mp W_sub [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α this : Directed (fun x x_1 => x ≥ x_1) fun s => 𝓟 ↑s ⊢ FilterBasis.filter B = ⨅ (s : ↑B.sets), 𝓟 ↑s [PROOFSTEP] ext U [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α this : Directed (fun x x_1 => x ≥ x_1) fun s => 𝓟 ↑s U : Set α ⊢ U ∈ FilterBasis.filter B ↔ U ∈ ⨅ (s : ↑B.sets), 𝓟 ↑s [PROOFSTEP] simp [mem_filter_iff, mem_iInf_of_directed this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α ⊢ generate B.sets = FilterBasis.filter B [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α ⊢ generate B.sets ≤ FilterBasis.filter B [PROOFSTEP] intro U U_in [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α U : Set α U_in : U ∈ FilterBasis.filter B ⊢ U ∈ generate B.sets [PROOFSTEP] rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ [GOAL] case a.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α U : Set α U_in : U ∈ FilterBasis.filter B V : Set α V_in : V ∈ B h : V ⊆ U ⊢ U ∈ generate B.sets [PROOFSTEP] exact GenerateSets.superset (GenerateSets.basic V_in) h [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α ⊢ FilterBasis.filter B ≤ generate B.sets [PROOFSTEP] rw [le_generate_iff] [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 B : FilterBasis α ⊢ B.sets ⊆ (FilterBasis.filter B).sets [PROOFSTEP] apply mem_filter_of_mem [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 p : ι → Prop s : ι → Set α h : IsBasis p s U : Set α ⊢ U ∈ IsBasis.filter h ↔ ∃ i, p i ∧ s i ⊆ U [PROOFSTEP] simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 p : ι → Prop s : ι → Set α h : IsBasis p s ⊢ IsBasis.filter h = generate {U | ∃ i, p i ∧ s i = U} [PROOFSTEP] erw [h.filterBasis.generate] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 p : ι → Prop s : ι → Set α h : IsBasis p s ⊢ IsBasis.filter h = FilterBasis.filter (IsBasis.filterBasis h) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : Set (Set α) U : Set α ⊢ U ∈ generate s ↔ ∃ i, (Set.Finite i ∧ i ⊆ s) ∧ ⋂₀ i ⊆ U [PROOFSTEP] simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : Set (Set α) ⊢ ∀ {x y : Set α}, x ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} → y ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} → ∃ z, z ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} ∧ z ⊆ x ∩ y [PROOFSTEP] rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s a : Set (Set α) fina : Set.Finite a suba : a ⊆ s b : Set (Set α) finb : Set.Finite b subb : b ⊆ s ⊢ ∃ z, z ∈ sInter '' {t | Set.Finite t ∧ t ⊆ s} ∧ z ⊆ ⋂₀ a ∩ ⋂₀ b [PROOFSTEP] exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p s ⊢ l = l' [PROOFSTEP] ext t [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p s t : Set α ⊢ t ∈ l ↔ t ∈ l' [PROOFSTEP] rw [hl.mem_iff, hl'.mem_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : IsBasis p s t : Set α ⊢ t ∈ IsBasis.filter h ↔ ∃ i, p i ∧ s i ⊆ t [PROOFSTEP] simp only [h.mem_filter_iff, exists_prop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s i✝ j✝ : ι hi : p i✝ hj : p j✝ ⊢ ∃ k, p k ∧ s k ⊆ s i✝ ∩ s j✝ [PROOFSTEP] simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s ⊢ IsBasis.filter (_ : IsBasis p s) = l [PROOFSTEP] ext U [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s U : Set α ⊢ U ∈ IsBasis.filter (_ : IsBasis p s) ↔ U ∈ l [PROOFSTEP] simp [h.mem_iff, IsBasis.mem_filter_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s ⊢ l = generate {U | ∃ i, p i ∧ s i = U} [PROOFSTEP] rw [← h.isBasis.filter_eq_generate, h.filter_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : Set (Set α) ⊢ generate s = generate (sInter '' {t | Set.Finite t ∧ t ⊆ s}) [PROOFSTEP] rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : Set (Set α) ⊢ IsBasis.filter (_ : IsBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t) = FilterBasis.filter (FilterBasis.ofSets s) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : Set (Set α) ⊢ FilterBasis.filter (FilterBasis.ofSets s) = generate s [PROOFSTEP] rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → s' i' ∈ l ⊢ HasBasis l p' s' [PROOFSTEP] refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → s' i' ∈ l t : Set α ht : t ∈ l ⊢ ∃ i, p' i ∧ s' i ⊆ t [PROOFSTEP] rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → s' i' ∈ l t : Set α ht✝ : t ∈ l i : ι hi : p i ht : s i ⊆ t ⊢ ∃ i, p' i ∧ s' i ⊆ t [PROOFSTEP] rcases h i hi with ⟨i', hi', hs's⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i'✝ : ι' hl : HasBasis l p s h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → s' i' ∈ l t : Set α ht✝ : t ∈ l i : ι hi : p i ht : s i ⊆ t i' : ι' hi' : p' i' hs's : s' i' ⊆ s i ⊢ ∃ i, p' i ∧ s' i ⊆ t [PROOFSTEP] exact ⟨i', hi', hs's.trans ht⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s q : α → Prop ⊢ (∀ᶠ (x : α) in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x : α⦄, x ∈ s i → q x [PROOFSTEP] simpa using hl.mem_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s q : α → Prop ⊢ (∃ᶠ (x : α) in l, q x) ↔ ∀ (i : ι), p i → ∃ x, x ∈ s i ∧ q x [PROOFSTEP] simp only [Filter.Frequently, hl.eventually_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s q : α → Prop ⊢ (¬∃ i, p i ∧ ∀ ⦃x : α⦄, x ∈ s i → ¬q x) ↔ ∀ (i : ι), p i → ∃ x, x ∈ s i ∧ q x [PROOFSTEP] push_neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s q : α → Prop ⊢ (∀ (i : ι), p i → Exists fun ⦃x⦄ => x ∈ s i ∧ q x) ↔ ∀ (i : ι), p i → ∃ x, x ∈ s i ∧ q x [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s ⊢ (∀ {i : ι}, p i → Set.Nonempty (s i)) ↔ ¬∃ i, p i ∧ s i = ∅ [PROOFSTEP] simp only [not_exists, not_and, nonempty_iff_ne_empty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : Set (Set α) ⊢ (∀ {i : Set (Set α)}, Set.Finite i ∧ i ⊆ s → Set.Nonempty (⋂₀ i)) ↔ ∀ (t : Set (Set α)), t ⊆ s → Set.Finite t → Set.Nonempty (⋂₀ t) [PROOFSTEP] simp only [← and_imp, and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' l : Filter α P : Set α → Prop ⊢ HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ (t : Set α), t ∈ l → ∃ r, r ∈ l ∧ P r ∧ r ⊆ t [PROOFSTEP] simp only [hasBasis_iff, id, and_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' l : Filter α P : Set α → Prop ⊢ (∀ (t : Set α), t ∈ l ↔ ∃ i, i ∈ l ∧ P i ∧ i ⊆ t) ↔ ∀ (t : Set α), t ∈ l → ∃ r, r ∈ l ∧ P r ∧ r ⊆ t [PROOFSTEP] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s q : ι → Prop hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i ⊢ HasBasis l (fun i => p i ∧ q i) s [PROOFSTEP] refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s q : ι → Prop hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i t : Set α ht : t ∈ l ⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t [PROOFSTEP] rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s q : ι → Prop hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i t : Set α ht : t ∈ l i : ι hpi : p i hti : s i ⊆ t ⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t [PROOFSTEP] rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s q : ι → Prop hq : ∀ (i : ι), p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i t : Set α ht : t ∈ l i : ι hpi : p i hti : s i ⊆ t j : ι hpj : p j hqj : q j hji : s j ⊆ s i ⊢ ∃ i, (p i ∧ q i) ∧ s i ⊆ t [PROOFSTEP] exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p✝ : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' p : Set α → Prop h : HasBasis l (fun s => s ∈ l ∧ p s) id V : Set α hV : V ∈ l ⊢ HasBasis l (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id [PROOFSTEP] simpa only [and_assoc] using h.restrict_subset hV [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s ⊢ l ≤ l' ↔ ∀ (t : Set α), t ∈ l' → ∃ i, p i ∧ s i ⊆ t [PROOFSTEP] simp only [le_def, hl.mem_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ l ≤ l' ↔ ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' [PROOFSTEP] simp only [hl'.ge_iff, hl.mem_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' ⊢ l = l' [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' ⊢ l ≤ l' [PROOFSTEP] rw [hl.le_basis_iff hl'] [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' ⊢ ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' [PROOFSTEP] simpa using h' [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' ⊢ l' ≤ l [PROOFSTEP] rw [hl'.le_basis_iff hl] [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' h : ∀ (i : ι), p i → ∃ i', p' i' ∧ s' i' ⊆ s i h' : ∀ (i' : ι'), p' i' → ∃ i, p i ∧ s i ⊆ s' i' ⊢ ∀ (i' : ι), p i' → ∃ i, p' i ∧ s' i ⊆ s i' [PROOFSTEP] simpa using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ ∀ (t : Set α), t ∈ l ⊓ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t [PROOFSTEP] intro t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ t ∈ l ⊓ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ t ∈ l ⊓ l' → ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t [PROOFSTEP] simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ (∃ t₁, (∃ i, p i ∧ s i ⊆ t₁) ∧ ∃ t₂, (∃ i, p' i ∧ s' i ⊆ t₂) ∧ t = t₁ ∩ t₂) → ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t [PROOFSTEP] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i'✝ : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α i : ι hi : p i ht : s i ⊆ t t' : Set α i' : ι' hi' : p' i' ht' : s' i' ⊆ t' ⊢ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t ∩ t' [PROOFSTEP] exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ (∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∩ s' i.snd ⊆ t) → t ∈ l ⊓ l' [PROOFSTEP] rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ [GOAL] case mpr.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i'✝ : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α i : ι i' : ι' H : s { fst := i, snd := i' }.fst ∩ s' { fst := i, snd := i' }.snd ⊆ t hi : p { fst := i, snd := i' }.fst hi' : p' { fst := i, snd := i' }.snd ⊢ t ∈ l ⊓ l' [PROOFSTEP] exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) ⊢ ∀ (t : Set α), t ∈ ⨅ (i : ι), l i ↔ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t [PROOFSTEP] intro t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ t ∈ ⨅ (i : ι), l i ↔ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ t ∈ ⨅ (i : ι), l i → ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t [PROOFSTEP] simp only [mem_iInf', (hl _).mem_iff] [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ι), ∃ i_1, p i i_1 ∧ s i i_1 ⊆ V i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ t = ⋂ (i : ι) (_ : i ∈ I), V i ∧ t = ⋂ (i : ι), V i) → ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t [PROOFSTEP] rintro ⟨I, hI, V, hV, -, rfl, -⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) I : Set ι hI : Set.Finite I V : ι → Set α hV : ∀ (i : ι), ∃ i_1, p i i_1 ∧ s i i_1 ⊆ V i ⊢ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ ⋂ (i : ι) (_ : i ∈ I), V i [PROOFSTEP] choose u hu using hV [GOAL] case mp.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) I : Set ι hI : Set.Finite I V : ι → Set α u : (i : ι) → ι' i hu : ∀ (i : ι), p i (u i) ∧ s i (u i) ⊆ V i ⊢ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ ⋂ (i : ι) (_ : i ∈ I), V i [PROOFSTEP] exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ (∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ι), i_1 ∈ i.fst → p i_1 (Prod.snd i i_1)) ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i.fst), s i_1 (Prod.snd i i_1) ⊆ t) → t ∈ ⨅ (i : ι), l i [PROOFSTEP] rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ [GOAL] case mpr.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ι) → ι' i hsub : ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ⊆ t hI₁ : Set.Finite (I, f).fst hI₂ : ∀ (i : ι), i ∈ (I, f).fst → p i (Prod.snd (I, f) i) ⊢ t ∈ ⨅ (i : ι), l i [PROOFSTEP] refine' mem_of_superset _ hsub [GOAL] case mpr.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ι) → ι' i hsub : ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ⊆ t hI₁ : Set.Finite (I, f).fst hI₂ : ∀ (i : ι), i ∈ (I, f).fst → p i (Prod.snd (I, f) i) ⊢ ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ∈ ⨅ (i : ι), l i [PROOFSTEP] exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) ⊢ HasBasis (⨅ (i : ι), l i) (fun If => Set.Finite If.fst ∧ ∀ (i : ↑If.fst), p (↑i) (Sigma.snd If i)) fun If => ⋂ (i : ↑If.fst), s (↑i) (Sigma.snd If i) [PROOFSTEP] refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ht : t ∈ ⨅ (i : ι), l i ⊢ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ (i_1 : ↑i.fst), s (↑i_1) (Sigma.snd i i_1) ⊆ t [PROOFSTEP] rcases(hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ [GOAL] case refine'_1.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ht : t ∈ ⨅ (i : ι), l i I : Set ι f : (i : ι) → ι' i hsub : ⋂ (i : ι) (_ : i ∈ (I, f).fst), s i (Prod.snd (I, f) i) ⊆ t hI : Set.Finite (I, f).fst hf : ∀ (i : ι), i ∈ (I, f).fst → p i (Prod.snd (I, f) i) ⊢ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ (i_1 : ↑i.fst), s (↑i_1) (Sigma.snd i i_1) ⊆ t [PROOFSTEP] exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ (∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ (i_1 : ↑i.fst), s (↑i_1) (Sigma.snd i i_1) ⊆ t) → t ∈ ⨅ (i : ι), l i [PROOFSTEP] rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ [GOAL] case refine'_2.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ↑I) → ι' ↑i hsub : ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t hI : Set.Finite { fst := I, snd := f }.fst hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i) ⊢ t ∈ ⨅ (i : ι), l i [PROOFSTEP] refine' mem_of_superset _ hsub [GOAL] case refine'_2.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ↑I) → ι' ↑i hsub : ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t hI : Set.Finite { fst := I, snd := f }.fst hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i) ⊢ ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ∈ ⨅ (i : ι), l i [PROOFSTEP] cases hI.nonempty_fintype [GOAL] case refine'_2.intro.mk.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ↑I) → ι' ↑i hsub : ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t hI : Set.Finite { fst := I, snd := f }.fst hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i) val✝ : Fintype ↑{ fst := I, snd := f }.fst ⊢ ⋂ (i : ↑{ fst := I, snd := f }.fst), s (↑i) (Sigma.snd { fst := I, snd := f } i) ∈ ⨅ (i : ι), l i [PROOFSTEP] exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l ⊢ HasBasis (⨅ (i : ι), l i) (fun ii' => p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd [PROOFSTEP] refine' ⟨fun t => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ t ∈ ⨅ (i : ι), l i ↔ ∃ i, p i.fst i.snd ∧ s i.fst i.snd ⊆ t [PROOFSTEP] rw [mem_iInf_of_directed h, Sigma.exists] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ (∃ i, t ∈ l i) ↔ ∃ a b, p { fst := a, snd := b }.fst { fst := a, snd := b }.snd ∧ s { fst := a, snd := b }.fst { fst := a, snd := b }.snd ⊆ t [PROOFSTEP] exact exists_congr fun i => (hl i).mem_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l ⊢ HasBasis (⨅ (i : ι), l i) (fun ii' => p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd [PROOFSTEP] refine' ⟨fun t => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ t ∈ ⨅ (i : ι), l i ↔ ∃ i, p i.fst i.snd ∧ s i.fst i.snd ⊆ t [PROOFSTEP] rw [mem_iInf_of_directed h, Prod.exists] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ (∃ i, t ∈ l i) ↔ ∃ a b, p (a, b).fst (a, b).snd ∧ s (a, b).fst (a, b).snd ⊆ t [PROOFSTEP] exact exists_congr fun i => (hl i).mem_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom ⊢ HasBasis (⨅ (i : ι) (_ : i ∈ dom), l i) (fun ii' => ii'.fst ∈ dom ∧ p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd [PROOFSTEP] refine' ⟨fun t => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ t ∈ ⨅ (i : ι) (_ : i ∈ dom), l i ↔ ∃ i, (i.fst ∈ dom ∧ p i.fst i.snd) ∧ s i.fst i.snd ⊆ t [PROOFSTEP] rw [mem_biInf_of_directed h hdom, Sigma.exists] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ (∃ i, i ∈ dom ∧ t ∈ l i) ↔ ∃ a b, ({ fst := a, snd := b }.fst ∈ dom ∧ p { fst := a, snd := b }.fst { fst := a, snd := b }.snd) ∧ s { fst := a, snd := b }.fst { fst := a, snd := b }.snd ⊆ t [PROOFSTEP] refine' exists_congr fun i => ⟨_, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ i ∈ dom ∧ t ∈ l i → ∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t [PROOFSTEP] rintro ⟨hi, hti⟩ [GOAL] case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i ⊢ ∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t [PROOFSTEP] rcases(hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ [GOAL] case refine'_1.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i b : ι' i hb : p i b hbt : s i b ⊆ t ⊢ ∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t [PROOFSTEP] exact ⟨b, ⟨hi, hb⟩, hbt⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ (∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t) → i ∈ dom ∧ t ∈ l i [PROOFSTEP] rintro ⟨b, ⟨hi, hb⟩, hibt⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι b : ι' i hibt : s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t hi : { fst := i, snd := b }.fst ∈ dom hb : p { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊢ i ∈ dom ∧ t ∈ l i [PROOFSTEP] exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom ⊢ HasBasis (⨅ (i : ι) (_ : i ∈ dom), l i) (fun ii' => ii'.fst ∈ dom ∧ p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd [PROOFSTEP] refine' ⟨fun t => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ t ∈ ⨅ (i : ι) (_ : i ∈ dom), l i ↔ ∃ i, (i.fst ∈ dom ∧ p i.fst i.snd) ∧ s i.fst i.snd ⊆ t [PROOFSTEP] rw [mem_biInf_of_directed h hdom, Prod.exists] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ (∃ i, i ∈ dom ∧ t ∈ l i) ↔ ∃ a b, ((a, b).fst ∈ dom ∧ p (a, b).fst (a, b).snd) ∧ s (a, b).fst (a, b).snd ⊆ t [PROOFSTEP] refine' exists_congr fun i => ⟨_, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ i ∈ dom ∧ t ∈ l i → ∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t [PROOFSTEP] rintro ⟨hi, hti⟩ [GOAL] case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i ⊢ ∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t [PROOFSTEP] rcases(hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ [GOAL] case refine'_1.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i b : ι' hb : p i b hbt : s i b ⊆ t ⊢ ∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t [PROOFSTEP] exact ⟨b, ⟨hi, hb⟩, hbt⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ (∃ b, ((i, b).fst ∈ dom ∧ p (i, b).fst (i, b).snd) ∧ s (i, b).fst (i, b).snd ⊆ t) → i ∈ dom ∧ t ∈ l i [PROOFSTEP] rintro ⟨b, ⟨hi, hb⟩, hibt⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), i ∈ dom → HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι b : ι' hibt : s (i, b).fst (i, b).snd ⊆ t hi : (i, b).fst ∈ dom hb : p (i, b).fst (i, b).snd ⊢ i ∈ dom ∧ t ∈ l i [PROOFSTEP] exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' t U : Set α ⊢ U ∈ 𝓟 t ↔ ∃ i, True ∧ t ⊆ U [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' x : α ⊢ HasBasis (pure x) (fun x => True) fun x_1 => {x} [PROOFSTEP] simp only [← principal_singleton, hasBasis_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ ∀ (t : Set α), t ∈ l ⊔ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∪ s' i.snd ⊆ t [PROOFSTEP] intro t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ t ∈ l ⊔ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∪ s' i.snd ⊆ t [PROOFSTEP] simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ (∃ x x_1, (p x ∧ s x ⊆ t) ∧ p' x_1 ∧ s' x_1 ⊆ t) ↔ ∃ a b, (p a ∧ p' b) ∧ s a ⊆ t ∧ s' b ⊆ t [PROOFSTEP] simp only [and_assoc, and_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Sort u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ t ∈ ⨆ (i : ι), l i ↔ ∃ i, (∀ (i_1 : ι), p i_1 (i i_1)) ∧ ⋃ (i_1 : ι), s i_1 (i i_1) ⊆ t [PROOFSTEP] simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s t u : Set α ⊢ u ∈ l ⊔ 𝓟 t ↔ ∃ i, p i ∧ s i ∪ t ⊆ u [PROOFSTEP] simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s x : α ⊢ HasBasis (l ⊔ pure x) p fun i => s i ∪ {x} [PROOFSTEP] simp only [← principal_singleton, hl.sup_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s'✝ : ι' → Set α i' : ι' hl : HasBasis l p s s' t : Set α ⊢ t ∈ l ⊓ 𝓟 s' ↔ ∃ i, p i ∧ s i ∩ s' ⊆ t [PROOFSTEP] simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s'✝ : ι' → Set α i' : ι' hl : HasBasis l p s s' : Set α ⊢ HasBasis (𝓟 s' ⊓ l) p fun i => s' ∩ s i [PROOFSTEP] simpa only [inf_comm, inter_comm] using hl.inf_principal s' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ (∀ {i : PProd ι ι'}, p i.fst ∧ p' i.snd → Set.Nonempty (s i.fst ∩ s' i.snd)) ↔ ∀ ⦃i : ι⦄, p i → ∀ ⦃i' : ι'⦄, p' i' → Set.Nonempty (s i ∩ s' i') [PROOFSTEP] simp [@forall_swap _ ι'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ ¬Disjoint l l' ↔ ¬∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') [PROOFSTEP] simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_7 inst✝ : Finite I l : I → Filter α ι : I → Sort u_6 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α hd : Pairwise (Disjoint on l) h : ∀ (i : I), HasBasis (l i) (p i) (s i) ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) [PROOFSTEP] rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_7 inst✝ : Finite I l : I → Filter α ι : I → Sort u_6 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α hd✝ : Pairwise (Disjoint on l) h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : Pairwise (Disjoint on t) ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) [PROOFSTEP] choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_7 inst✝ : Finite I l : I → Filter α ι : I → Sort u_6 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α hd✝ : Pairwise (Disjoint on l) h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : Pairwise (Disjoint on t) ind : (i : I) → ι i hp : ∀ (i : I), p i (ind i) ht : ∀ (i : I), s i (ind i) ⊆ t i ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) [PROOFSTEP] exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd : PairwiseDisjoint S l hS : Set.Finite S h : ∀ (i : I), HasBasis (l i) (p i) (s i) ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i) [PROOFSTEP] rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd✝ : PairwiseDisjoint S l hS : Set.Finite S h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : PairwiseDisjoint S t ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i) [PROOFSTEP] choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd✝ : PairwiseDisjoint S l hS : Set.Finite S h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : PairwiseDisjoint S t ind : (i : I) → ι i hp : ∀ (i : I), p i (ind i) ht : ∀ (i : I), s i (ind i) ⊆ t i ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i) [PROOFSTEP] exact ⟨ind, hp, hd.mono ht⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ [PROOFSTEP] refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ (∀ (U : Set α), U ∈ f → Set.Nonempty (U ∩ sᶜ)) ↔ ¬s ∈ f [PROOFSTEP] exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α h : ∀ (U : Set α), U ∈ f → Set.Nonempty (U ∩ sᶜ) hs : s ∈ f ⊢ False [PROOFSTEP] simpa [Set.not_nonempty_empty] using h s hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ Disjoint f (𝓟 s) ↔ sᶜ ∈ f [PROOFSTEP] rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ Disjoint (𝓟 s) f ↔ sᶜ ∈ f [PROOFSTEP] rw [disjoint_comm, disjoint_principal_right] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s t : Set α ⊢ Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t [PROOFSTEP] rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' x y : α ⊢ Disjoint (pure x) (pure y) ↔ x ≠ y [PROOFSTEP] simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' l₁ l₂ : Filter α ⊢ (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ [PROOFSTEP] simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s ⊢ Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' [PROOFSTEP] simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in f, p x) → ∃ᶠ (x : α) in g, p x [PROOFSTEP] simp only [inf_neBot_iff, frequently_iff, and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ (∀ ⦃s : Set α⦄, s ∈ f → ∀ ⦃s' : Set α⦄, s' ∈ g → Set.Nonempty (s ∩ s')) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in f, p x) → ∀ {U : Set α}, U ∈ g → ∃ x, p x ∧ x ∈ U [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in g, p x) → ∃ᶠ (x : α) in f, p x [PROOFSTEP] rw [inf_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ NeBot (g ⊓ f) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in g, p x) → ∃ᶠ (x : α) in f, p x [PROOFSTEP] exact inf_neBot_iff_frequently_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s x✝ : Set α ⊢ x✝ ∈ l ↔ ∃ i, p i ∧ x✝ ∈ 𝓟 (s i) [PROOFSTEP] simp only [h.mem_iff, mem_principal, exists_prop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l (fun x => True) s ⊢ l = ⨅ (i : ι), 𝓟 (s i) [PROOFSTEP] simpa only [iInf_true] using h.eq_biInf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : ι → Set α h : Directed (fun x x_1 => x ≥ x_1) s inst✝ : Nonempty ι t : Set α ⊢ t ∈ ⨅ (i : ι), 𝓟 (s i) ↔ ∃ i, True ∧ s i ⊆ t [PROOFSTEP] simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' ι : Type u_6 s : ι → Set α ⊢ HasBasis (⨅ (i : ι), 𝓟 (s i)) (fun t => Set.Finite t) fun t => ⋂ (i : ι) (_ : i ∈ t), s i [PROOFSTEP] refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' ι : Type u_6 s : ι → Set α U : Set α ⊢ (∃ t, U ∈ ⨅ (i : ι) (_ : i ∈ t), 𝓟 (s i)) ↔ ∃ i, Set.Finite i ∧ ⋂ (i_1 : ι) (_ : i_1 ∈ i), s i_1 ⊆ U [PROOFSTEP] simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : DirectedOn (s ⁻¹'o fun x x_1 => x ≥ x_1) S ne : Set.Nonempty S t : Set α ⊢ t ∈ ⨅ (i : β) (_ : i ∈ S), 𝓟 (s i) ↔ ∃ i, i ∈ S ∧ s i ⊆ t [PROOFSTEP] refine' mem_biInf_of_directed _ ne [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : DirectedOn (s ⁻¹'o fun x x_1 => x ≥ x_1) S ne : Set.Nonempty S t : Set α ⊢ DirectedOn ((fun i => 𝓟 (s i)) ⁻¹'o fun x x_1 => x ≥ x_1) S [PROOFSTEP] rw [directedOn_iff_directed, ← directed_comp] at h ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : Directed (fun x x_1 => x ≥ x_1) (s ∘ Subtype.val) ne : Set.Nonempty S t : Set α ⊢ Directed (fun x x_1 => x ≥ x_1) ((fun i => 𝓟 (s i)) ∘ Subtype.val) [PROOFSTEP] refine' h.mono_comp _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : Directed (fun x x_1 => x ≥ x_1) (s ∘ Subtype.val) ne : Set.Nonempty S t : Set α ⊢ ∀ ⦃x y : Set α⦄, x ≥ y → 𝓟 x ≥ 𝓟 y [PROOFSTEP] exact fun _ _ => principal_mono.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : α → β hl : HasBasis l p s t : Set β ⊢ t ∈ Filter.map f l ↔ ∃ i, p i ∧ f '' s i ⊆ t [PROOFSTEP] simp only [mem_map, image_subset_iff, hl.mem_iff, preimage] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β ⊢ t ∈ Filter.comap f l ↔ ∃ i, p i ∧ f ⁻¹' s i ⊆ t [PROOFSTEP] simp only [mem_comap', hl.mem_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β ⊢ (∃ i, p i ∧ s i ⊆ {y | ∀ ⦃x : β⦄, f x = y → x ∈ t}) ↔ ∃ i, p i ∧ f ⁻¹' s i ⊆ t [PROOFSTEP] refine exists_congr (fun i => Iff.rfl.and ?_) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β i : ι ⊢ s i ⊆ {y | ∀ ⦃x : β⦄, f x = y → x ∈ t} ↔ f ⁻¹' s i ⊆ t [PROOFSTEP] exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β i : ι h : f ⁻¹' s i ⊆ t y : α hy : y ∈ s i x : β hx : f x = y ⊢ x ∈ f ⁻¹' s i [PROOFSTEP] rwa [mem_preimage, hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s x : α ⊢ (∀ (t : Set α), t ∈ l → x ∈ t) ↔ ∀ (i : ι), p i → x ∈ s i [PROOFSTEP] simp only [h.mem_iff, exists_imp, and_imp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s x : α ⊢ (∀ (t : Set α) (x_1 : ι), p x_1 → s x_1 ⊆ t → x ∈ t) ↔ ∀ (i : ι), p i → x ∈ s i [PROOFSTEP] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s ⊢ ⋂₀ l.sets = ⋂ (i : ι) (_ : p i), s i [PROOFSTEP] rw [sInter_eq_biInter] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s ⊢ ⋂ (i : Set α) (_ : i ∈ l.sets), i = ⋂ (i : ι) (_ : p i), s i [PROOFSTEP] exact h.biInter_mem monotone_id [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hla : HasBasis la pa sa ⊢ Tendsto f la lb ↔ ∀ (t : Set β), t ∈ lb → ∃ i, pa i ∧ MapsTo f (sa i) t [PROOFSTEP] simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hla : HasBasis la pa sa ⊢ (∀ (t : Set β), t ∈ lb → ∃ i, pa i ∧ sa i ⊆ f ⁻¹' t) ↔ ∀ (t : Set β), t ∈ lb → ∃ i, pa i ∧ MapsTo f (sa i) t [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hlb : HasBasis lb pb sb ⊢ Tendsto f la lb ↔ ∀ (i : ι'), pb i → ∀ᶠ (x : α) in la, f x ∈ sb i [PROOFSTEP] simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hla : HasBasis la pa sa hlb : HasBasis lb pb sb ⊢ Tendsto f la lb ↔ ∀ (ib : ι'), pb ib → ∃ ia, pa ia ∧ ∀ (x : α), x ∈ sa ia → f x ∈ sb ib [PROOFSTEP] simp [hlb.tendsto_right_iff, hla.eventually_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j ⊢ HasBasis (la ×ˢ lb) p fun i => sa i ×ˢ sb i [PROOFSTEP] simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j ⊢ ∀ (t : Set (α × β)), (∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t) ↔ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t [PROOFSTEP] refine' fun t => ⟨_, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) ⊢ (∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t) → ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t [PROOFSTEP] rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ [GOAL] case refine'_1.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) i j : ι hsub : sa i ×ˢ sb j ⊆ t hi : p { fst := i, snd := j }.fst hj : p { fst := i, snd := j }.snd ⊢ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t [PROOFSTEP] rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ [GOAL] case refine'_1.intro.mk.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) i j : ι hsub : sa i ×ˢ sb j ⊆ t hi : p { fst := i, snd := j }.fst hj : p { fst := i, snd := j }.snd k : ι hk : p k ki : sa k ⊆ sa { fst := i, snd := j }.fst kj : sb k ⊆ sb { fst := i, snd := j }.snd ⊢ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t [PROOFSTEP] exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) ⊢ (∃ i, p i ∧ sa i ×ˢ sb i ⊆ t) → ∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t [PROOFSTEP] rintro ⟨i, hi, h⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) i : ι hi : p i h : sa i ×ˢ sb i ⊆ t ⊢ ∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t [PROOFSTEP] exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hl : HasBasis la pa sa i j : ι hi : pa i hj : pa j ⊢ ∃ k, pa k ∧ sa k ⊆ sa i ∧ sa k ⊆ sa j [PROOFSTEP] simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 π : α → Type u_6 π' : β → Type u_7 f : α → β hf : Function.Injective f g : (a : α) → π a → π' (f a) a : α l : Filter (π' (f a)) ⊢ map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) [PROOFSTEP] refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 π : α → Type u_6 π' : β → Type u_7 f : α → β hf : Function.Injective f g : (a : α) → π a → π' (f a) a : α l : Filter (π' (f a)) ⊢ HasBasis (comap (Sigma.map f g) (map (Sigma.mk (f a)) l)) (fun s => s ∈ l) fun i => Sigma.mk a '' (g a ⁻¹' id i) [PROOFSTEP] convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g) [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 π : α → Type u_6 π' : β → Type u_7 f : α → β hf : Function.Injective f g : (a : α) → π a → π' (f a) a : α l : Filter (π' (f a)) x✝ : Set (π' (f a)) ⊢ Sigma.mk a '' (g a ⁻¹' id x✝) = Sigma.map f g ⁻¹' (Sigma.mk (f a) '' id x✝) [PROOFSTEP] apply image_sigmaMk_preimage_sigmaMap hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ∃ t, Antitone t ∧ ⨅ (i : ℕ), 𝓟 (s i) = ⨅ (i : ℕ), 𝓟 (t i) [PROOFSTEP] use fun n => ⋂ m ≤ n, s m [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ (Antitone fun n => ⋂ (m : ℕ) (_ : m ≤ n), s m) ∧ ⨅ (i : ℕ), 𝓟 (s i) = ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ Antitone fun n => ⋂ (m : ℕ) (_ : m ≤ n), s m [PROOFSTEP] exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl [GOAL] case h.right α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ⨅ (i : ℕ), 𝓟 (s i) = ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) [PROOFSTEP] apply le_antisymm [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ⨅ (i : ℕ), 𝓟 (s i) ≤ ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) [PROOFSTEP] rw [le_iInf_iff] [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) ≤ ⨅ (i : ℕ), 𝓟 (s i) [PROOFSTEP] rw [le_iInf_iff] [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ∀ (i : ℕ), ⨅ (i : ℕ), 𝓟 (s i) ≤ 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) [PROOFSTEP] intro i [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ∀ (i : ℕ), ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) ≤ 𝓟 (s i) [PROOFSTEP] intro i [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α i : ℕ ⊢ ⨅ (i : ℕ), 𝓟 (s i) ≤ 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) [PROOFSTEP] rw [le_principal_iff] [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α i : ℕ ⊢ ⋂ (m : ℕ) (_ : m ≤ i), s m ∈ ⨅ (i : ℕ), 𝓟 (s i) [PROOFSTEP] refine' (biInter_mem (finite_le_nat _)).2 fun j _ => _ [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α i j : ℕ x✝ : j ∈ {i_1 | i_1 ≤ i} ⊢ s j ∈ ⨅ (i : ℕ), 𝓟 (s i) [PROOFSTEP] exact mem_iInf_of_mem j (mem_principal_self _) [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α i : ℕ ⊢ ⨅ (i : ℕ), 𝓟 (⋂ (m : ℕ) (_ : m ≤ i), s m) ≤ 𝓟 (s i) [PROOFSTEP] refine iInf_le_of_le i (principal_mono.2 <| iInter₂_subset i ?_) [GOAL] case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α i : ℕ ⊢ i ≤ i [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : CompleteLattice α B : Set ι Bcbl : Set.Countable B f : ι → α i₀ : ι h : f i₀ = ⊤ ⊢ ∃ x, ⨅ (t : ι) (_ : t ∈ B), f t = ⨅ (i : ℕ), f (x i) [PROOFSTEP] cases' B.eq_empty_or_nonempty with hB Bnonempty [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : CompleteLattice α B : Set ι Bcbl : Set.Countable B f : ι → α i₀ : ι h : f i₀ = ⊤ hB : B = ∅ ⊢ ∃ x, ⨅ (t : ι) (_ : t ∈ B), f t = ⨅ (i : ℕ), f (x i) [PROOFSTEP] rw [hB, iInf_emptyset] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : CompleteLattice α B : Set ι Bcbl : Set.Countable B f : ι → α i₀ : ι h : f i₀ = ⊤ hB : B = ∅ ⊢ ∃ x, ⊤ = ⨅ (i : ℕ), f (x i) [PROOFSTEP] use fun _ => i₀ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : CompleteLattice α B : Set ι Bcbl : Set.Countable B f : ι → α i₀ : ι h : f i₀ = ⊤ hB : B = ∅ ⊢ ⊤ = ⨅ (i : ℕ), f i₀ [PROOFSTEP] simp [h] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : CompleteLattice α B : Set ι Bcbl : Set.Countable B f : ι → α i₀ : ι h : f i₀ = ⊤ Bnonempty : Set.Nonempty B ⊢ ∃ x, ⨅ (t : ι) (_ : t ∈ B), f t = ⨅ (i : ℕ), f (x i) [PROOFSTEP] exact countable_biInf_eq_iInf_seq Bcbl Bnonempty f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : Preorder ι l : Filter α s : ι → Set α hs : HasAntitoneBasis l s t : Set α ⊢ (∃ i, True ∧ s i ⊆ t) ↔ ∃ i, s i ⊆ t [PROOFSTEP] simp only [exists_prop, true_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s ⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i) [PROOFSTEP] obtain ⟨x', hx'⟩ : ∃ x : ℕ → Set α, f = ⨅ i, 𝓟 (x i) := by rcases h with ⟨s, hsc, rfl⟩ rw [generate_eq_biInf] exact countable_biInf_principal_eq_seq_iInf hsc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s ⊢ ∃ x, f = ⨅ (i : ℕ), 𝓟 (x i) [PROOFSTEP] rcases h with ⟨s, hsc, rfl⟩ [GOAL] case mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 p : ι' → Prop s✝ : ι' → Set α s : Set (Set α) hsc : Set.Countable s hs : HasBasis (generate s) p s✝ ⊢ ∃ x, generate s = ⨅ (i : ℕ), 𝓟 (x i) [PROOFSTEP] rw [generate_eq_biInf] [GOAL] case mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 p : ι' → Prop s✝ : ι' → Set α s : Set (Set α) hsc : Set.Countable s hs : HasBasis (generate s) p s✝ ⊢ ∃ x, ⨅ (s_1 : Set α) (_ : s_1 ∈ s), 𝓟 s_1 = ⨅ (i : ℕ), 𝓟 (x i) [PROOFSTEP] exact countable_biInf_principal_eq_seq_iInf hsc [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) ⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i) [PROOFSTEP] have : ∀ i, x' i ∈ f := fun i => hx'.symm ▸ (iInf_le (fun i => 𝓟 (x' i)) i) (mem_principal_self _) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f ⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i) [PROOFSTEP] let x : ℕ → { i : ι' // p i } := fun n => Nat.recOn n (hs.index _ <| this 0) fun n xn => hs.index _ <| inter_mem (this <| n + 1) (hs.mem_of_mem xn.2) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) ⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i) [PROOFSTEP] have x_mono : Antitone fun i => s (x i).1 := antitone_nat_of_succ_le fun i => (hs.set_index_subset _).trans (inter_subset_right _ _) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) ⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i) [PROOFSTEP] have x_subset : ∀ i, s (x i).1 ⊆ x' i := by rintro (_ | i) exacts [hs.set_index_subset _, (hs.set_index_subset _).trans (inter_subset_left _ _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) ⊢ ∀ (i : ℕ), s ↑(x i) ⊆ x' i [PROOFSTEP] rintro (_ | i) [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) ⊢ s ↑(x Nat.zero) ⊆ x' Nat.zero case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) i : ℕ ⊢ s ↑(x (Nat.succ i)) ⊆ x' (Nat.succ i) [PROOFSTEP] exacts [hs.set_index_subset _, (hs.set_index_subset _).trans (inter_subset_left _ _)] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i ⊢ ∃ x, (∀ (i : ℕ), p (x i)) ∧ HasAntitoneBasis f fun i => s (x i) [PROOFSTEP] refine' ⟨fun i => (x i).1, fun i => (x i).2, _⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i ⊢ HasAntitoneBasis f fun i => s ((fun i => ↑(x i)) i) [PROOFSTEP] have : (⨅ i, 𝓟 (s (x i).1)).HasAntitoneBasis fun i => s (x i).1 := ⟨hasBasis_iInf_principal (directed_of_sup x_mono), x_mono⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this✝ : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i) ⊢ HasAntitoneBasis f fun i => s ((fun i => ↑(x i)) i) [PROOFSTEP] convert this [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this✝ : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i) ⊢ f = ⨅ (i : ℕ), 𝓟 (s ↑(x i)) [PROOFSTEP] exact le_antisymm (le_iInf fun i => le_principal_iff.2 <| by cases i <;> apply hs.set_index_mem) (hx'.symm ▸ le_iInf fun i => le_principal_iff.2 <| this.1.mem_iff.2 ⟨i, trivial, x_subset i⟩) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this✝ : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i) i : ℕ ⊢ s ↑(x i) ∈ f [PROOFSTEP] cases i [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this✝ : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i) ⊢ s ↑(x Nat.zero) ∈ f [PROOFSTEP] apply hs.set_index_mem [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f p : ι' → Prop s : ι' → Set α hs : HasBasis f p s x' : ℕ → Set α hx' : f = ⨅ (i : ℕ), 𝓟 (x' i) this✝ : ∀ (i : ℕ), x' i ∈ f x : ℕ → { i // p i } := fun n => Nat.recOn n (index hs (x' 0) (_ : x' 0 ∈ f)) fun n xn => index hs (x' (n + 1) ∩ s ↑xn) (_ : x' (n + 1) ∩ s ↑xn ∈ f) x_mono : Antitone fun i => s ↑(x i) x_subset : ∀ (i : ℕ), s ↑(x i) ⊆ x' i this : HasAntitoneBasis (⨅ (i : ℕ), 𝓟 (s ↑(x i))) fun i => s ↑(x i) n✝ : ℕ ⊢ s ↑(x (Nat.succ n✝)) ∈ f [PROOFSTEP] apply hs.set_index_mem [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α inst✝ : IsCountablyGenerated f x : ℕ → Set α hx : HasAntitoneBasis f x ⊢ ∀ {s : Set α}, s ∈ f ↔ ∃ i, x i ⊆ s [PROOFSTEP] simp [hx.1.mem_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f g : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : IsCountablyGenerated g ⊢ IsCountablyGenerated (f ⊓ g) [PROOFSTEP] rcases f.exists_antitone_basis with ⟨s, hs⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f g : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : IsCountablyGenerated g s : ℕ → Set α hs : HasAntitoneBasis f s ⊢ IsCountablyGenerated (f ⊓ g) [PROOFSTEP] rcases g.exists_antitone_basis with ⟨t, ht⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f g : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : IsCountablyGenerated g s : ℕ → Set α hs : HasAntitoneBasis f s t : ℕ → Set α ht : HasAntitoneBasis g t ⊢ IsCountablyGenerated (f ⊓ g) [PROOFSTEP] exact HasCountableBasis.isCountablyGenerated ⟨hs.1.inf ht.1, Set.to_countable _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f g : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : IsCountablyGenerated g ⊢ IsCountablyGenerated (f ⊔ g) [PROOFSTEP] rcases f.exists_antitone_basis with ⟨s, hs⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f g : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : IsCountablyGenerated g s : ℕ → Set α hs : HasAntitoneBasis f s ⊢ IsCountablyGenerated (f ⊔ g) [PROOFSTEP] rcases g.exists_antitone_basis with ⟨t, ht⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f g : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : IsCountablyGenerated g s : ℕ → Set α hs : HasAntitoneBasis f s t : ℕ → Set α ht : HasAntitoneBasis g t ⊢ IsCountablyGenerated (f ⊔ g) [PROOFSTEP] exact HasCountableBasis.isCountablyGenerated ⟨hs.1.sup ht.1, Set.to_countable _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : Countable β x : β → Set α ⊢ IsCountablyGenerated (⨅ (i : β), 𝓟 (x i)) [PROOFSTEP] use range x, countable_range x [GOAL] case right α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 inst✝ : Countable β x : β → Set α ⊢ ⨅ (i : β), 𝓟 (x i) = generate (range x) [PROOFSTEP] rw [generate_eq_biInf, iInf_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : ∃ x, f = ⨅ (i : ℕ), 𝓟 (x i) ⊢ IsCountablyGenerated f [PROOFSTEP] rcases h with ⟨x, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 x : ℕ → Set α ⊢ IsCountablyGenerated (⨅ (i : ℕ), 𝓟 (x i)) [PROOFSTEP] apply isCountablyGenerated_seq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α ⊢ IsCountablyGenerated f ↔ ∃ x, HasAntitoneBasis f x [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α ⊢ IsCountablyGenerated f → ∃ x, HasAntitoneBasis f x [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α h : IsCountablyGenerated f ⊢ ∃ x, HasAntitoneBasis f x [PROOFSTEP] exact f.exists_antitone_basis [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α ⊢ (∃ x, HasAntitoneBasis f x) → IsCountablyGenerated f [PROOFSTEP] rintro ⟨x, h⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α x : ℕ → Set α h : HasAntitoneBasis f x ⊢ IsCountablyGenerated f [PROOFSTEP] rw [h.1.eq_iInf] [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 f : Filter α x : ℕ → Set α h : HasAntitoneBasis f x ⊢ IsCountablyGenerated (⨅ (i : ℕ), 𝓟 (x i)) [PROOFSTEP] exact isCountablyGenerated_seq x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 a : α ⊢ IsCountablyGenerated (pure a) [PROOFSTEP] rw [← principal_singleton] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 a : α ⊢ IsCountablyGenerated (𝓟 {a}) [PROOFSTEP] exact isCountablyGenerated_principal _ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f i) ⊢ IsCountablyGenerated (⨅ (i : ι), f i) [PROOFSTEP] choose s hs using fun i => exists_antitone_basis (f i) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f i) s : ι → ℕ → Set α hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i) ⊢ IsCountablyGenerated (⨅ (i : ι), f i) [PROOFSTEP] rw [← PLift.down_surjective.iInf_comp] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f i) s : ι → ℕ → Set α hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i) ⊢ IsCountablyGenerated (⨅ (x : PLift ι), f x.down) [PROOFSTEP] refine' HasCountableBasis.isCountablyGenerated ⟨hasBasis_iInf fun n => (hs _).1, _⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f i) s : ι → ℕ → Set α hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i) ⊢ Set.Countable {If | Set.Finite If.fst ∧ (↑If.fst → True)} [PROOFSTEP] refine' (countable_range <| Sigma.map ((↑) : Finset (PLift ι) → Set (PLift ι)) fun _ => id).mono _ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f i) s : ι → ℕ → Set α hs : ∀ (i : ι), HasAntitoneBasis (f i) (s i) ⊢ {If | Set.Finite If.fst ∧ (↑If.fst → True)} ⊆ range (Sigma.map Finset.toSet fun x => id) [PROOFSTEP] rintro ⟨I, f⟩ ⟨hI, -⟩ [GOAL] case mk.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f✝ : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f✝ i) s : ι → ℕ → Set α hs : ∀ (i : ι), HasAntitoneBasis (f✝ i) (s i) I : Set (PLift ι) f : ↑I → ℕ hI : Set.Finite { fst := I, snd := f }.fst ⊢ { fst := I, snd := f } ∈ range (Sigma.map Finset.toSet fun x => id) [PROOFSTEP] lift I to Finset (PLift ι) using hI [GOAL] case mk.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι' : Sort u_5 ι : Sort u α : Type v inst✝¹ : Countable ι f✝ : ι → Filter α inst✝ : ∀ (i : ι), IsCountablyGenerated (f✝ i) s : ι → ℕ → Set α hs : ∀ (i : ι), HasAntitoneBasis (f✝ i) (s i) I : Finset (PLift ι) f : ↑↑I → ℕ ⊢ { fst := ↑I, snd := f } ∈ range (Sigma.map Finset.toSet fun x => id) [PROOFSTEP] exact ⟨⟨I, f⟩, rfl⟩
{"mathlib_filename": "Mathlib.Order.Filter.Bases", "llama_tokens": 52216}
[GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a b : α ⊢ IsRegular ⊥ [PROOFSTEP] rw [IsRegular, compl_bot, compl_top] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a b : α ⊢ IsRegular ⊤ [PROOFSTEP] rw [IsRegular, compl_top, compl_bot] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a b : α ha : IsRegular a hb : IsRegular b ⊢ IsRegular (a ⊓ b) [PROOFSTEP] rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a b : α ha : IsRegular a hb : IsRegular b ⊢ IsRegular (a ⇨ b) [PROOFSTEP] rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a b : α ha : IsRegular a ⊢ Disjoint aᶜ b ↔ b ≤ a [PROOFSTEP] rw [← le_compl_iff_disjoint_left, ha.eq] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a b : α hb : IsRegular b ⊢ Disjoint a bᶜ ↔ a ≤ b [PROOFSTEP] rw [← le_compl_iff_disjoint_right, hb.eq] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b : α h : ∀ (a : α), IsRegular (a ⊔ aᶜ) a : α ⊢ a ⊔ aᶜ = ⊤ [PROOFSTEP] erw [← (h a), compl_sup, inf_compl_eq_bot, compl_bot] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b c : Regular α ⊢ ↑((a ⊔ b) ⊓ (a ⊔ c)) ≤ ↑(a ⊔ b ⊓ c) [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b c : Regular α ⊢ (↑a ⊔ ↑b)ᶜᶜ ⊓ (↑a ⊔ ↑c)ᶜᶜ ≤ (↑a ⊔ ↑b ⊓ ↑c)ᶜᶜ [PROOFSTEP] rw [sup_inf_left, compl_compl_inf_distrib] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a : Regular α ⊢ ↑⊤ ≤ ↑(a ⊔ aᶜ) [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a : Regular α ⊢ ⊤ ≤ (↑a ⊔ (↑a)ᶜ)ᶜᶜ [PROOFSTEP] rw [compl_sup, inf_compl_eq_bot, compl_bot] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b : Regular α ⊢ ↑(a ⇨ b) = ↑(b ⊔ aᶜ) [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b : Regular α ⊢ ↑a ⇨ ↑b = (↑b ⊔ (↑a)ᶜ)ᶜᶜ [PROOFSTEP] rw [compl_sup, a.prop.eq] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b : Regular α ⊢ ↑a ⇨ ↑b = ((↑b)ᶜ ⊓ ↑a)ᶜ [PROOFSTEP] refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _ [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b : Regular α c : α ⊢ c ⊓ ↑a ≤ ↑b ↔ c ≤ ((↑b)ᶜ ⊓ ↑a)ᶜ [PROOFSTEP] rw [le_compl_iff_disjoint_right, disjoint_left_comm] [GOAL] α : Type u_1 inst✝ : HeytingAlgebra α a✝ b✝ : α src✝³ : Lattice (Regular α) := lattice src✝² : BoundedOrder (Regular α) := boundedOrder src✝¹ : HImp (Regular α) := himp src✝ : HasCompl (Regular α) := hasCompl a b : Regular α c : α ⊢ c ⊓ ↑a ≤ ↑b ↔ Disjoint (↑b)ᶜ (c ⊓ ↑a) [PROOFSTEP] rw [b.prop.disjoint_compl_left_iff]
{"mathlib_filename": "Mathlib.Order.Heyting.Regular", "llama_tokens": 2056}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α ι : Sort u_3 inst✝ : CompleteLattice β f : ι → α →o β ⊢ ↑(⨅ (i : ι), f i) = ⨅ (i : ι), ↑(f i) [PROOFSTEP] funext x [GOAL] case h α : Type u_1 β : Type u_2 inst✝¹ : Preorder α ι : Sort u_3 inst✝ : CompleteLattice β f : ι → α →o β x : α ⊢ ↑(⨅ (i : ι), f i) x = iInf (fun i => ↑(f i)) x [PROOFSTEP] simp [iInf_apply] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α ι : Sort u_3 inst✝ : CompleteLattice β f : ι → α →o β ⊢ ↑(⨆ (i : ι), f i) = ⨆ (i : ι), ↑(f i) [PROOFSTEP] funext x [GOAL] case h α : Type u_1 β : Type u_2 inst✝¹ : Preorder α ι : Sort u_3 inst✝ : CompleteLattice β f : ι → α →o β x : α ⊢ ↑(⨆ (i : ι), f i) x = iSup (fun i => ↑(f i)) x [PROOFSTEP] simp [iSup_apply] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : CompleteLattice β src✝² : Lattice (α →o β) := lattice src✝¹ : OrderTop (α →o β) := orderTop src✝ : OrderBot (α →o β) := orderBot s : Set (α →o β) f : α →o β hf : f ∈ s x : α ⊢ toFun f x ≤ ⨆ (_ : f ∈ s), ↑f x [PROOFSTEP] apply le_iSup _ hf [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α ⊢ (∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂) ↔ ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ [PROOFSTEP] constructor [GOAL] case mp α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α ⊢ (∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂) → ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ [PROOFSTEP] intro h [GOAL] case mpr α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α ⊢ (∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂) → ∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂ [PROOFSTEP] intro h [GOAL] case mp α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂ ⊢ ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ [PROOFSTEP] exact h 1 0 [GOAL] case mpr α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ ⊢ ∀ (n₁ n₂ : ℕ) (a₁ a₂ : α), (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂ [PROOFSTEP] intro n₁ n₂ a₁ a₂ [GOAL] case mpr α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α ⊢ (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂ [PROOFSTEP] have h' : ∀ n a₁ a₂, f^[n] (a₁ ⊔ a₂) ≤ f^[n] a₁ ⊔ a₂ := by intro n induction' n with n ih <;> intro a₁ a₂ · rfl · calc f^[n + 1] (a₁ ⊔ a₂) = f^[n] (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _ _ ≤ f^[n] (f a₁ ⊔ a₂) := (f.mono.iterate n (h a₁ a₂)) _ ≤ f^[n] (f a₁) ⊔ a₂ := (ih _ _) _ = f^[n + 1] a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α ⊢ ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ [PROOFSTEP] intro n [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α n : ℕ ⊢ ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ [PROOFSTEP] induction' n with n ih [GOAL] case zero α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α ⊢ ∀ (a₁ a₂ : α), (↑f)^[Nat.zero] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.zero] a₁ ⊔ a₂ [PROOFSTEP] intro a₁ a₂ [GOAL] case succ α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α n : ℕ ih : ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ ⊢ ∀ (a₁ a₂ : α), (↑f)^[Nat.succ n] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.succ n] a₁ ⊔ a₂ [PROOFSTEP] intro a₁ a₂ [GOAL] case zero α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁✝ a₂✝ a₁ a₂ : α ⊢ (↑f)^[Nat.zero] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.zero] a₁ ⊔ a₂ [PROOFSTEP] rfl [GOAL] case succ α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁✝ a₂✝ : α n : ℕ ih : ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ a₁ a₂ : α ⊢ (↑f)^[Nat.succ n] (a₁ ⊔ a₂) ≤ (↑f)^[Nat.succ n] a₁ ⊔ a₂ [PROOFSTEP] calc f^[n + 1] (a₁ ⊔ a₂) = f^[n] (f (a₁ ⊔ a₂)) := Function.iterate_succ_apply f n _ _ ≤ f^[n] (f a₁ ⊔ a₂) := (f.mono.iterate n (h a₁ a₂)) _ ≤ f^[n] (f a₁) ⊔ a₂ := (ih _ _) _ = f^[n + 1] a₁ ⊔ a₂ := by rw [← Function.iterate_succ_apply] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁✝ a₂✝ : α n : ℕ ih : ∀ (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ a₁ a₂ : α ⊢ (↑f)^[n] (↑f a₁) ⊔ a₂ = (↑f)^[n + 1] a₁ ⊔ a₂ [PROOFSTEP] rw [← Function.iterate_succ_apply] [GOAL] case mpr α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α h' : ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ ⊢ (↑f)^[n₁ + n₂] (a₁ ⊔ a₂) ≤ (↑f)^[n₁] a₁ ⊔ (↑f)^[n₂] a₂ [PROOFSTEP] calc f^[n₁ + n₂] (a₁ ⊔ a₂) = f^[n₁] (f^[n₂] (a₁ ⊔ a₂)) := Function.iterate_add_apply f n₁ n₂ _ _ = f^[n₁] (f^[n₂] (a₂ ⊔ a₁)) := by rw [sup_comm] _ ≤ f^[n₁] (f^[n₂] a₂ ⊔ a₁) := (f.mono.iterate n₁ (h' n₂ _ _)) _ = f^[n₁] (a₁ ⊔ f^[n₂] a₂) := by rw [sup_comm] _ ≤ f^[n₁] a₁ ⊔ f^[n₂] a₂ := h' n₁ a₁ _ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α h' : ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ ⊢ (↑f)^[n₁] ((↑f)^[n₂] (a₁ ⊔ a₂)) = (↑f)^[n₁] ((↑f)^[n₂] (a₂ ⊔ a₁)) [PROOFSTEP] rw [sup_comm] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : Preorder α✝ α : Type u_3 inst✝ : SemilatticeSup α f : α →o α h : ∀ (a₁ a₂ : α), ↑f (a₁ ⊔ a₂) ≤ ↑f a₁ ⊔ a₂ n₁ n₂ : ℕ a₁ a₂ : α h' : ∀ (n : ℕ) (a₁ a₂ : α), (↑f)^[n] (a₁ ⊔ a₂) ≤ (↑f)^[n] a₁ ⊔ a₂ ⊢ (↑f)^[n₁] ((↑f)^[n₂] a₂ ⊔ a₁) = (↑f)^[n₁] (a₁ ⊔ (↑f)^[n₂] a₂) [PROOFSTEP] rw [sup_comm]
{"mathlib_filename": "Mathlib.Order.Hom.Order", "llama_tokens": 4424}
[GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α ⊢ ∀ (a : αᵒᵈ), (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) a ≤ a [PROOFSTEP] simp only [comp, OrderDual.forall, ofDual_toDual, toDual_le_toDual, SuccOrder.le_succ, implies_true] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a✝ : αᵒᵈ h : a✝ ≤ (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) a✝ ⊢ IsMin a✝ [PROOFSTEP] apply SuccOrder.max_of_succ_le h [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α ⊢ ∀ {a b : αᵒᵈ}, a < b → a ≤ (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) b [PROOFSTEP] intro a b h [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : αᵒᵈ h : a < b ⊢ a ≤ (↑toDual ∘ SuccOrder.succ ∘ ↑ofDual) b [PROOFSTEP] exact SuccOrder.succ_le_of_lt h [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α ⊢ ∀ (a : αᵒᵈ), a ≤ (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a [PROOFSTEP] simp only [comp, OrderDual.forall, ofDual_toDual, toDual_le_toDual, PredOrder.pred_le, implies_true] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a✝ : αᵒᵈ h : (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a✝ ≤ a✝ ⊢ IsMax a✝ [PROOFSTEP] apply PredOrder.min_of_le_pred h [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α ⊢ ∀ {a b : αᵒᵈ}, a < b → (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a ≤ b [PROOFSTEP] intro a b h [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : αᵒᵈ h : a < b ⊢ (↑toDual ∘ PredOrder.pred ∘ ↑ofDual) a ≤ b [PROOFSTEP] exact PredOrder.le_pred_of_lt h [GOAL] α : Type u_1 inst✝ : LinearOrder α succ : α → α hn : ∀ {a : α}, ¬IsMax a → ∀ (b : α), a < b ↔ succ a ≤ b hm : ∀ (a : α), IsMax a → succ a = a a : α h : ¬IsMax a ⊢ a < succ a [PROOFSTEP] simpa using (hn h a).not [GOAL] α : Type u_1 inst✝ : LinearOrder α succ : α → α hn : ∀ {a : α}, ¬IsMax a → ∀ (b : α), a < b ↔ succ a ≤ b hm : ∀ (a : α), IsMax a → succ a = a a : α h : ¬IsMax a ⊢ ¬succ a ≤ a [PROOFSTEP] simpa using (hn h a).not [GOAL] α : Type u_1 inst✝ : LinearOrder α succ : α → α hn : ∀ {a : α}, ¬IsMax a → ∀ (b : α), a < b ↔ succ a ≤ b hm : ∀ (a : α), IsMax a → succ a = a a b : α hab : a < succ b h : ¬IsMax b ⊢ a ≤ b [PROOFSTEP] simpa [hab] using (hn h a).not [GOAL] α✝ : Type u_1 inst✝¹ : LinearOrder α✝ α : Type ?u.4579 inst✝ : LinearOrder α pred : α → α hn : ∀ {a : α}, ¬IsMin a → ∀ (b : α), b ≤ pred a ↔ b < a hm : ∀ (a : α), IsMin a → pred a = a a : α h : ¬IsMin a ⊢ pred a < a [PROOFSTEP] simpa using (hn h a).not [GOAL] α✝ : Type u_1 inst✝¹ : LinearOrder α✝ α : Type ?u.4579 inst✝ : LinearOrder α pred : α → α hn : ∀ {a : α}, ¬IsMin a → ∀ (b : α), b ≤ pred a ↔ b < a hm : ∀ (a : α), IsMin a → pred a = a a : α h : ¬IsMin a ⊢ ¬a ≤ pred a [PROOFSTEP] simpa using (hn h a).not [GOAL] α✝ : Type u_1 inst✝¹ : LinearOrder α✝ α : Type ?u.4579 inst✝ : LinearOrder α pred : α → α hn : ∀ {a : α}, ¬IsMin a → ∀ (b : α), b ≤ pred a ↔ b < a hm : ∀ (a : α), IsMin a → pred a = a a b : α hab : pred a < b h : ¬IsMin a ⊢ a ≤ b [PROOFSTEP] simpa [hab] using (hn h b).not [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α ha : ¬IsMax a hb : ¬IsMax b ⊢ succ a < succ b ↔ a < b [PROOFSTEP] rw [lt_succ_iff_of_not_isMax hb, succ_le_iff_of_not_isMax ha] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α ha : ¬IsMax a hb : ¬IsMax b ⊢ succ a ≤ succ b ↔ a ≤ b [PROOFSTEP] rw [succ_le_iff_of_not_isMax ha, lt_succ_iff_of_not_isMax hb] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α h : a ≤ b ⊢ succ a ≤ succ b [PROOFSTEP] by_cases hb : IsMax b [GOAL] case pos α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α h : a ≤ b hb : IsMax b ⊢ succ a ≤ succ b [PROOFSTEP] by_cases hba : b ≤ a [GOAL] case pos α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α h : a ≤ b hb : IsMax b hba : b ≤ a ⊢ succ a ≤ succ b [PROOFSTEP] exact (hb <| hba.trans <| le_succ _).trans (le_succ _) [GOAL] case neg α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α h : a ≤ b hb : IsMax b hba : ¬b ≤ a ⊢ succ a ≤ succ b [PROOFSTEP] exact succ_le_of_lt ((h.lt_of_not_le hba).trans_le <| le_succ b) [GOAL] case neg α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α h : a ≤ b hb : ¬IsMax b ⊢ succ a ≤ succ b [PROOFSTEP] rwa [succ_le_iff_of_not_isMax fun ha => hb <| ha.mono h, lt_succ_iff_of_not_isMax hb] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α k : ℕ x : α ⊢ x ≤ succ^[k] x [PROOFSTEP] conv_lhs => rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α k : ℕ x : α | x [PROOFSTEP] rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α k : ℕ x : α | x [PROOFSTEP] rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α k : ℕ x : α | x [PROOFSTEP] rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α k : ℕ x : α ⊢ x = id^[k] x [PROOFSTEP] simp only [Function.iterate_id, id.def] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α k : ℕ x : α ⊢ id^[k] x ≤ succ^[k] x [PROOFSTEP] exact Monotone.le_iterate_of_le succ_mono le_succ k x [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_lt : n < m ⊢ IsMax (succ^[n] a) [PROOFSTEP] refine' max_of_succ_le (le_trans _ h_eq.symm.le) [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_lt : n < m ⊢ succ (succ^[n] a) ≤ succ^[m] a [PROOFSTEP] have : succ (succ^[n] a) = succ^[n + 1] a := by rw [Function.iterate_succ', comp] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_lt : n < m ⊢ succ (succ^[n] a) = succ^[n + 1] a [PROOFSTEP] rw [Function.iterate_succ', comp] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_lt : n < m this : succ (succ^[n] a) = succ^[n + 1] a ⊢ succ (succ^[n] a) ≤ succ^[m] a [PROOFSTEP] rw [this] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_lt : n < m this : succ (succ^[n] a) = succ^[n + 1] a ⊢ succ^[n + 1] a ≤ succ^[m] a [PROOFSTEP] have h_le : n + 1 ≤ m := Nat.succ_le_of_lt h_lt [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_lt : n < m this : succ (succ^[n] a) = succ^[n + 1] a h_le : n + 1 ≤ m ⊢ succ^[n + 1] a ≤ succ^[m] a [PROOFSTEP] exact Monotone.monotone_iterate_of_le_map succ_mono (le_succ a) h_le [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_ne : n ≠ m ⊢ IsMax (succ^[n] a) [PROOFSTEP] cases' le_total n m with h h [GOAL] case inl α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_ne : n ≠ m h : n ≤ m ⊢ IsMax (succ^[n] a) [PROOFSTEP] exact isMax_iterate_succ_of_eq_of_lt h_eq (lt_of_le_of_ne h h_ne) [GOAL] case inr α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_ne : n ≠ m h : m ≤ n ⊢ IsMax (succ^[n] a) [PROOFSTEP] rw [h_eq] [GOAL] case inr α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α n m : ℕ h_eq : succ^[n] a = succ^[m] a h_ne : n ≠ m h : m ≤ n ⊢ IsMax (succ^[m] a) [PROOFSTEP] exact isMax_iterate_succ_of_eq_of_lt h_eq.symm (lt_of_le_of_ne h h_ne.symm) [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α hb : ¬IsMax b ⊢ Ico a (succ b) = Icc a b [PROOFSTEP] rw [← Ici_inter_Iio, Iio_succ_of_not_isMax hb, Ici_inter_Iic] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α hb : ¬IsMax b ⊢ Ioo a (succ b) = Ioc a b [PROOFSTEP] rw [← Ioi_inter_Iio, Iio_succ_of_not_isMax hb, Ioi_inter_Iic] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α ha : ¬IsMax a ⊢ Icc (succ a) b = Ioc a b [PROOFSTEP] rw [← Ici_inter_Iic, Ici_succ_of_not_isMax ha, Ioi_inter_Iic] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : SuccOrder α a b : α ha : ¬IsMax a ⊢ Ico (succ a) b = Ioo a b [PROOFSTEP] rw [← Ici_inter_Iio, Ici_succ_of_not_isMax ha, Ioi_inter_Iio] [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α a b : α inst✝ : NoMaxOrder α ⊢ succ a ≤ succ b ↔ a ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α a b : α inst✝ : NoMaxOrder α ⊢ succ a < succ b ↔ a < b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α ha : ¬IsMax a hb : ¬IsMax b ⊢ succ a = succ b ↔ a = b [PROOFSTEP] rw [eq_iff_le_not_lt, eq_iff_le_not_lt, succ_le_succ_iff_of_not_isMax ha hb, succ_lt_succ_iff_of_not_isMax ha hb] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α ⊢ a ≤ b ∧ b ≤ succ a ↔ b = a ∨ b = succ a [PROOFSTEP] refine' ⟨fun h => or_iff_not_imp_left.2 fun hba : b ≠ a => h.2.antisymm (succ_le_of_lt <| h.1.lt_of_ne <| hba.symm), _⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α ⊢ b = a ∨ b = succ a → a ≤ b ∧ b ≤ succ a [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α b : α ⊢ b ≤ b ∧ b ≤ succ b [PROOFSTEP] exact ⟨le_rfl, le_succ b⟩ [GOAL] case inr α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a : α ⊢ a ≤ succ a ∧ succ a ≤ succ a [PROOFSTEP] exact ⟨le_succ a, le_rfl⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α h : a ⩿ b ⊢ b ≤ succ a [PROOFSTEP] obtain h | rfl := h.covby_or_eq [GOAL] case inl α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α h✝ : a ⩿ b h : a ⋖ b ⊢ b ≤ succ a [PROOFSTEP] exact (Covby.succ_eq h).ge [GOAL] case inr α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a : α h : a ⩿ a ⊢ a ≤ succ a [PROOFSTEP] exact le_succ _ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α ⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b [PROOFSTEP] by_cases hb : IsMax b [GOAL] case pos α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α hb : IsMax b ⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b [PROOFSTEP] rw [hb.succ_eq, or_iff_right_of_imp le_of_eq] [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α hb : ¬IsMax b ⊢ a ≤ succ b ↔ a = succ b ∨ a ≤ b [PROOFSTEP] rw [← lt_succ_iff_of_not_isMax hb, le_iff_eq_or_lt] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α h : a ≤ succ b ⊢ Icc a (succ b) = insert (succ b) (Icc a b) [PROOFSTEP] simp_rw [← Ici_inter_Iic, Iic_succ, inter_insert_of_mem (mem_Ici.2 h)] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α h : a < succ b ⊢ Ioc a (succ b) = insert (succ b) (Ioc a b) [PROOFSTEP] simp_rw [← Ioi_inter_Iic, Iic_succ, inter_insert_of_mem (mem_Ioi.2 h)] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α h₁ : a ≤ b h₂ : ¬IsMax b ⊢ Ico a (succ b) = insert b (Ico a b) [PROOFSTEP] simp_rw [← Iio_inter_Ici, Iio_succ_eq_insert_of_not_isMax h₂, insert_inter_of_mem (mem_Ici.2 h₁)] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : SuccOrder α a b : α h₁ : a < b h₂ : ¬IsMax b ⊢ Ioo a (succ b) = insert b (Ioo a b) [PROOFSTEP] simp_rw [← Iio_inter_Ioi, Iio_succ_eq_insert_of_not_isMax h₂, insert_inter_of_mem (mem_Ioi.2 h₁)] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b : α inst✝ : NoMaxOrder α ⊢ succ a = b → a ⋖ b [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a : α inst✝ : NoMaxOrder α ⊢ a ⋖ succ a [PROOFSTEP] exact covby_succ _ [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b : α inst✝ : OrderTop α ⊢ succ ⊤ = ⊤ [PROOFSTEP] rw [succ_eq_iff_isMax, isMax_iff_eq_top] [GOAL] α : Type u_1 inst✝³ : PartialOrder α inst✝² : SuccOrder α a b : α inst✝¹ : OrderBot α inst✝ : NoMaxOrder α ⊢ a < succ ⊥ ↔ a = ⊥ [PROOFSTEP] rw [lt_succ_iff, le_bot_iff] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α a b : α inst✝ : OrderBot α ⊢ a ≤ succ ⊥ ↔ a = ⊥ ∨ a = succ ⊥ [PROOFSTEP] rw [le_succ_iff_eq_or_le, le_bot_iff, or_comm] [GOAL] α : Type u_1 inst✝ : PartialOrder α ⊢ ∀ (a b : SuccOrder α), a = b [PROOFSTEP] intro h₀ h₁ [GOAL] α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : SuccOrder α ⊢ h₀ = h₁ [PROOFSTEP] ext a [GOAL] case succ.h α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : SuccOrder α a : α ⊢ SuccOrder.succ a = SuccOrder.succ a [PROOFSTEP] by_cases ha : IsMax a [GOAL] case pos α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : SuccOrder α a : α ha : IsMax a ⊢ SuccOrder.succ a = SuccOrder.succ a [PROOFSTEP] exact (@IsMax.succ_eq _ _ h₀ _ ha).trans ha.succ_eq.symm [GOAL] case neg α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : SuccOrder α a : α ha : ¬IsMax a ⊢ SuccOrder.succ a = SuccOrder.succ a [PROOFSTEP] exact @Covby.succ_eq _ _ h₀ _ _ (covby_succ_of_not_isMax ha) [GOAL] α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : SuccOrder α a : α ⊢ succ a = ⨅ (b : α) (_ : a < b), b [PROOFSTEP] refine' le_antisymm (le_iInf fun b => le_iInf succ_le_of_lt) _ [GOAL] α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : SuccOrder α a : α ⊢ ⨅ (b : α) (_ : a < b), b ≤ succ a [PROOFSTEP] obtain rfl | ha := eq_or_ne a ⊤ [GOAL] case inl α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : SuccOrder α ⊢ ⨅ (b : α) (_ : ⊤ < b), b ≤ succ ⊤ [PROOFSTEP] rw [succ_top] [GOAL] case inl α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : SuccOrder α ⊢ ⨅ (b : α) (_ : ⊤ < b), b ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case inr α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : SuccOrder α a : α ha : a ≠ ⊤ ⊢ ⨅ (b : α) (_ : a < b), b ≤ succ a [PROOFSTEP] exact iInf₂_le _ (lt_succ_iff_ne_top.2 ha) [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α k : ℕ x : α ⊢ pred^[k] x ≤ x [PROOFSTEP] conv_rhs => rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α k : ℕ x : α | x [PROOFSTEP] rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α k : ℕ x : α | x [PROOFSTEP] rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α k : ℕ x : α | x [PROOFSTEP] rw [(by simp only [Function.iterate_id, id.def] : x = id^[k] x)] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α k : ℕ x : α ⊢ x = id^[k] x [PROOFSTEP] simp only [Function.iterate_id, id.def] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α k : ℕ x : α ⊢ pred^[k] x ≤ id^[k] x [PROOFSTEP] exact Monotone.iterate_le_of_le pred_mono pred_le k x [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α ha : ¬IsMin a ⊢ Ioc (pred a) b = Icc a b [PROOFSTEP] rw [← Ioi_inter_Iic, Ioi_pred_of_not_isMin ha, Ici_inter_Iic] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α ha : ¬IsMin a ⊢ Ioo (pred a) b = Ico a b [PROOFSTEP] rw [← Ioi_inter_Iio, Ioi_pred_of_not_isMin ha, Ici_inter_Iio] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α ha : ¬IsMin b ⊢ Icc a (pred b) = Ico a b [PROOFSTEP] rw [← Ici_inter_Iic, Iic_pred_of_not_isMin ha, Ici_inter_Iio] [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : PredOrder α a b : α ha : ¬IsMin b ⊢ Ioc a (pred b) = Ioo a b [PROOFSTEP] rw [← Ioi_inter_Iic, Iic_pred_of_not_isMin ha, Ioi_inter_Iio] [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α ⊢ pred a ≤ pred b ↔ a ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α ⊢ pred a < pred b ↔ a < b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a✝ b✝ a b : α ⊢ pred a ≤ b ∧ b ≤ a ↔ b = a ∨ b = pred a [PROOFSTEP] refine' ⟨fun h => or_iff_not_imp_left.2 fun hba : b ≠ a => (le_pred_of_lt <| h.2.lt_of_ne hba).antisymm h.1, _⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a✝ b✝ a b : α ⊢ b = a ∨ b = pred a → pred a ≤ b ∧ b ≤ a [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b✝ b : α ⊢ pred b ≤ b ∧ b ≤ b [PROOFSTEP] exact ⟨pred_le b, le_rfl⟩ [GOAL] case inr α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a✝ b a : α ⊢ pred a ≤ pred a ∧ pred a ≤ a [PROOFSTEP] exact ⟨le_rfl, pred_le a⟩ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α h : a ⩿ b ⊢ pred b ≤ a [PROOFSTEP] obtain h | rfl := h.covby_or_eq [GOAL] case inl α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α h✝ : a ⩿ b h : a ⋖ b ⊢ pred b ≤ a [PROOFSTEP] exact (Covby.pred_eq h).le [GOAL] case inr α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a : α h : a ⩿ a ⊢ pred a ≤ a [PROOFSTEP] exact pred_le _ [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α ⊢ pred a ≤ b ↔ b = pred a ∨ a ≤ b [PROOFSTEP] by_cases ha : IsMin a [GOAL] case pos α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α ha : IsMin a ⊢ pred a ≤ b ↔ b = pred a ∨ a ≤ b [PROOFSTEP] rw [ha.pred_eq, or_iff_right_of_imp ge_of_eq] [GOAL] case neg α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α ha : ¬IsMin a ⊢ pred a ≤ b ↔ b = pred a ∨ a ≤ b [PROOFSTEP] rw [← pred_lt_iff_of_not_isMin ha, le_iff_eq_or_lt, eq_comm] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α ha : ¬IsMin a ⊢ Ioi (pred a) = insert a (Ioi a) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α ha : ¬IsMin a x : α ⊢ x ∈ Ioi (pred a) ↔ x ∈ insert a (Ioi a) [PROOFSTEP] simp only [insert, mem_setOf, @eq_comm _ x a, mem_Ioi, Set.insert] [GOAL] case h α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α ha : ¬IsMin a x : α ⊢ pred a < x ↔ a = x ∨ a < x [PROOFSTEP] exact pred_lt_iff_eq_or_lt_of_not_isMin ha [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α h : pred a ≤ b ⊢ Icc (pred a) b = insert (pred a) (Icc a b) [PROOFSTEP] simp_rw [← Ici_inter_Iic, Ici_pred, insert_inter_of_mem (mem_Iic.2 h)] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : PredOrder α a b : α h : pred a < b ⊢ Ico (pred a) b = insert (pred a) (Ico a b) [PROOFSTEP] simp_rw [← Ici_inter_Iio, Ici_pred, insert_inter_of_mem (mem_Iio.2 h)] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α ⊢ pred a = pred b ↔ a = b [PROOFSTEP] simp_rw [eq_iff_le_not_lt, pred_le_pred_iff, pred_lt_pred_iff] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α ⊢ pred b = a → a ⋖ b [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α b : α inst✝ : NoMinOrder α ⊢ pred b ⋖ b [PROOFSTEP] exact pred_covby _ [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α h : a ≤ b ⊢ Ioc (pred a) b = insert a (Ioc a b) [PROOFSTEP] simp_rw [← Ioi_inter_Iic, Ioi_pred_eq_insert, insert_inter_of_mem (mem_Iic.2 h)] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : PredOrder α a b : α inst✝ : NoMinOrder α h : a < b ⊢ Ioo (pred a) b = insert a (Ioo a b) [PROOFSTEP] simp_rw [← Ioi_inter_Iio, Ioi_pred_eq_insert, insert_inter_of_mem (mem_Iio.2 h)] [GOAL] α : Type u_1 inst✝ : PartialOrder α ⊢ ∀ (a b : PredOrder α), a = b [PROOFSTEP] intro h₀ h₁ [GOAL] α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : PredOrder α ⊢ h₀ = h₁ [PROOFSTEP] ext a [GOAL] case pred.h α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : PredOrder α a : α ⊢ PredOrder.pred a = PredOrder.pred a [PROOFSTEP] by_cases ha : IsMin a [GOAL] case pos α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : PredOrder α a : α ha : IsMin a ⊢ PredOrder.pred a = PredOrder.pred a [PROOFSTEP] exact (@IsMin.pred_eq _ _ h₀ _ ha).trans ha.pred_eq.symm [GOAL] case neg α : Type u_1 inst✝ : PartialOrder α h₀ h₁ : PredOrder α a : α ha : ¬IsMin a ⊢ PredOrder.pred a = PredOrder.pred a [PROOFSTEP] exact @Covby.pred_eq _ _ h₀ _ _ (pred_covby_of_not_isMin ha) [GOAL] α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : PredOrder α a : α ⊢ pred a = ⨆ (b : α) (_ : b < a), b [PROOFSTEP] refine' le_antisymm _ (iSup_le fun b => iSup_le le_pred_of_lt) [GOAL] α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : PredOrder α a : α ⊢ pred a ≤ ⨆ (b : α) (_ : b < a), b [PROOFSTEP] obtain rfl | ha := eq_or_ne a ⊥ [GOAL] case inl α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : PredOrder α ⊢ pred ⊥ ≤ ⨆ (b : α) (_ : b < ⊥), b [PROOFSTEP] rw [pred_bot] [GOAL] case inl α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : PredOrder α ⊢ ⊥ ≤ ⨆ (b : α) (_ : b < ⊥), b [PROOFSTEP] exact bot_le [GOAL] case inr α : Type u_1 inst✝¹ : CompleteLattice α inst✝ : PredOrder α a : α ha : a ≠ ⊥ ⊢ pred a ≤ ⨆ (b : α) (_ : b < a), b [PROOFSTEP] exact @le_iSup₂ _ _ (fun b => b < a) _ (fun a _ => a) (pred a) (pred_lt_iff_ne_bot.2 ha) [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n : ℕ hin : ¬IsMax (succ^[n - 1] i) ⊢ pred^[n] (succ^[n] i) = i [PROOFSTEP] induction' n with n hn [GOAL] case zero α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n : ℕ hin✝ : ¬IsMax (succ^[n - 1] i) hin : ¬IsMax (succ^[Nat.zero - 1] i) ⊢ pred^[Nat.zero] (succ^[Nat.zero] i) = i [PROOFSTEP] simp only [Nat.zero_eq, Function.iterate_zero, id.def] [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[Nat.succ n - 1] i) ⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i [PROOFSTEP] rw [Nat.succ_sub_succ_eq_sub, Nat.sub_zero] at hin [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[n] i) ⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i [PROOFSTEP] have h_not_max : ¬IsMax (succ^[n - 1] i) := by cases' n with n · simpa using hin rw [Nat.succ_sub_succ_eq_sub, Nat.sub_zero] at hn ⊢ have h_sub_le : succ^[n] i ≤ succ^[n.succ] i := by rw [Function.iterate_succ'] exact le_succ _ refine' fun h_max => hin fun j hj => _ have hj_le : j ≤ succ^[n] i := h_max (h_sub_le.trans hj) exact hj_le.trans h_sub_le [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[n] i) ⊢ ¬IsMax (succ^[n - 1] i) [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n : ℕ hin✝ : ¬IsMax (succ^[n - 1] i) hn : ¬IsMax (succ^[Nat.zero - 1] i) → pred^[Nat.zero] (succ^[Nat.zero] i) = i hin : ¬IsMax (succ^[Nat.zero] i) ⊢ ¬IsMax (succ^[Nat.zero - 1] i) [PROOFSTEP] simpa using hin [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[Nat.succ n - 1] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) ⊢ ¬IsMax (succ^[Nat.succ n - 1] i) [PROOFSTEP] rw [Nat.succ_sub_succ_eq_sub, Nat.sub_zero] at hn ⊢ [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) ⊢ ¬IsMax (succ^[n] i) [PROOFSTEP] have h_sub_le : succ^[n] i ≤ succ^[n.succ] i := by rw [Function.iterate_succ'] exact le_succ _ [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) ⊢ succ^[n] i ≤ succ^[Nat.succ n] i [PROOFSTEP] rw [Function.iterate_succ'] [GOAL] α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) ⊢ succ^[n] i ≤ (succ ∘ succ^[n]) i [PROOFSTEP] exact le_succ _ [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) h_sub_le : succ^[n] i ≤ succ^[Nat.succ n] i ⊢ ¬IsMax (succ^[n] i) [PROOFSTEP] refine' fun h_max => hin fun j hj => _ [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) h_sub_le : succ^[n] i ≤ succ^[Nat.succ n] i h_max : IsMax (succ^[n] i) j : α hj : succ^[Nat.succ n] i ≤ j ⊢ j ≤ succ^[Nat.succ n] i [PROOFSTEP] have hj_le : j ≤ succ^[n] i := h_max (h_sub_le.trans hj) [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n] i) → pred^[Nat.succ n] (succ^[Nat.succ n] i) = i hin : ¬IsMax (succ^[Nat.succ n] i) h_sub_le : succ^[n] i ≤ succ^[Nat.succ n] i h_max : IsMax (succ^[n] i) j : α hj : succ^[Nat.succ n] i ≤ j hj_le : j ≤ succ^[n] i ⊢ j ≤ succ^[Nat.succ n] i [PROOFSTEP] exact hj_le.trans h_sub_le [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[n] i) h_not_max : ¬IsMax (succ^[n - 1] i) ⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i [PROOFSTEP] rw [Function.iterate_succ, Function.iterate_succ'] [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[n] i) h_not_max : ¬IsMax (succ^[n - 1] i) ⊢ (pred^[n] ∘ pred) ((succ ∘ succ^[n]) i) = i [PROOFSTEP] simp only [Function.comp_apply] [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[n] i) h_not_max : ¬IsMax (succ^[n - 1] i) ⊢ pred^[n] (pred (succ (succ^[n] i))) = i [PROOFSTEP] rw [pred_succ_of_not_isMax hin] [GOAL] case succ α : Type u_1 inst✝² : PartialOrder α inst✝¹ : SuccOrder α inst✝ : PredOrder α a b i : α n✝ : ℕ hin✝ : ¬IsMax (succ^[n✝ - 1] i) n : ℕ hn : ¬IsMax (succ^[n - 1] i) → pred^[n] (succ^[n] i) = i hin : ¬IsMax (succ^[n] i) h_not_max : ¬IsMax (succ^[n - 1] i) ⊢ pred^[n] (succ^[n] i) = i [PROOFSTEP] exact hn h_not_max [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : WithTop α ⊢ a ≤ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) a [PROOFSTEP] cases' a with a a [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α ⊢ none ≤ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) none [PROOFSTEP] exact le_top [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : α ⊢ Option.some a ≤ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) (Option.some a) [PROOFSTEP] change _ ≤ ite _ _ _ [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : α ⊢ Option.some a ≤ if a = ⊤ then ⊤ else ↑(succ a) [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : α h✝ : a = ⊤ ⊢ Option.some a ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : α h✝ : ¬a = ⊤ ⊢ Option.some a ≤ ↑(succ a) [PROOFSTEP] exact some_le_some.2 (le_succ a) [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : WithTop α ha : (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) a ≤ a ⊢ IsMax a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α ha : (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) none ≤ none ⊢ IsMax none [PROOFSTEP] exact isMax_top [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α ha : (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) (Option.some val✝) ≤ Option.some val✝ ⊢ IsMax (Option.some val✝) [PROOFSTEP] dsimp only at ha [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α ha : (if val✝ = ⊤ then ⊤ else ↑(succ val✝)) ≤ Option.some val✝ ⊢ IsMax (Option.some val✝) [PROOFSTEP] split_ifs at ha with ha' [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α ha' : val✝ = ⊤ ha : ⊤ ≤ Option.some val✝ ⊢ IsMax (Option.some val✝) [PROOFSTEP] exact (not_top_le_coe _ ha).elim [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α ha' : ¬val✝ = ⊤ ha : ↑(succ val✝) ≤ Option.some val✝ ⊢ IsMax (Option.some val✝) [PROOFSTEP] rw [some_eq_coe, coe_le_coe, succ_le_iff_eq_top] at ha [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α ha' : ¬val✝ = ⊤ ha✝ : succ val✝ ≤ val✝ ha : val✝ = ⊤ ⊢ IsMax (Option.some val✝) [PROOFSTEP] exact (ha' ha).elim [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a b : WithTop α h : a < b ⊢ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) a ≤ b [PROOFSTEP] cases b [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : WithTop α h : a < none ⊢ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) a ≤ none [PROOFSTEP] exact le_top [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a : WithTop α val✝ : α h : a < Option.some val✝ ⊢ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) a ≤ Option.some val✝ [PROOFSTEP] cases a [GOAL] case some.none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α h : none < Option.some val✝ ⊢ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) none ≤ Option.some val✝ [PROOFSTEP] exact (not_top_lt h).elim [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝ < Option.some val✝¹ ⊢ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) (Option.some val✝) ≤ Option.some val✝¹ [PROOFSTEP] rw [some_lt_some] at h [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : val✝ < val✝¹ ⊢ (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) (Option.some val✝) ≤ Option.some val✝¹ [PROOFSTEP] change ite _ _ _ ≤ _ [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : val✝ < val✝¹ ⊢ (if val✝ = ⊤ then ⊤ else ↑(succ val✝)) ≤ Option.some val✝¹ [PROOFSTEP] split_ifs with ha [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : val✝ < val✝¹ ha : val✝ = ⊤ ⊢ ⊤ ≤ Option.some val✝¹ [PROOFSTEP] rw [ha] at h [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : ⊤ < val✝¹ ha : val✝ = ⊤ ⊢ ⊤ ≤ Option.some val✝¹ [PROOFSTEP] exact (not_top_lt h).elim [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : val✝ < val✝¹ ha : ¬val✝ = ⊤ ⊢ ↑(succ val✝) ≤ Option.some val✝¹ [PROOFSTEP] exact some_le_some.2 (succ_le_of_lt h) [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α a b : WithTop α h : a < (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) b ⊢ a ≤ b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α b : WithTop α h : none < (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) b ⊢ none ≤ b [PROOFSTEP] exact (not_top_lt h).elim [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α b : WithTop α val✝ : α h : Option.some val✝ < (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) b ⊢ Option.some val✝ ≤ b [PROOFSTEP] cases b [GOAL] case some.none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝ : α h : Option.some val✝ < (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) none ⊢ Option.some val✝ ≤ none [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝¹ < (fun a => match a with | none => ⊤ | Option.some a => if a = ⊤ then ⊤ else ↑(succ a)) (Option.some val✝) ⊢ Option.some val✝¹ ≤ Option.some val✝ [PROOFSTEP] dsimp only at h [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝¹ < if val✝ = ⊤ then ⊤ else ↑(succ val✝) ⊢ Option.some val✝¹ ≤ Option.some val✝ [PROOFSTEP] rw [some_le_some] [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝¹ < if val✝ = ⊤ then ⊤ else ↑(succ val✝) ⊢ val✝¹ ≤ val✝ [PROOFSTEP] split_ifs at h with hb [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α hb : val✝ = ⊤ h : Option.some val✝¹ < ⊤ ⊢ val✝¹ ≤ val✝ [PROOFSTEP] rw [hb] [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α hb : val✝ = ⊤ h : Option.some val✝¹ < ⊤ ⊢ val✝¹ ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : SuccOrder α val✝¹ val✝ : α hb : ¬val✝ = ⊤ h : Option.some val✝¹ < ↑(succ val✝) ⊢ val✝¹ ≤ val✝ [PROOFSTEP] exact le_of_lt_succ (some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a : WithTop α ha : a ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) a ⊢ IsMin a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α ha : none ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) none ⊢ IsMin none [PROOFSTEP] exact ((coe_lt_top (⊤ : α)).not_le ha).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α val✝ : α ha : Option.some val✝ ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) (Option.some val✝) ⊢ IsMin (Option.some val✝) [PROOFSTEP] exact (min_of_le_pred <| some_le_some.1 ha).withTop [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a b : WithTop α h : a < b ⊢ a ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α b : WithTop α h : none < b ⊢ none ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) b [PROOFSTEP] exact (le_top.not_lt h).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α b : WithTop α val✝ : α h : Option.some val✝ < b ⊢ Option.some val✝ ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) b [PROOFSTEP] cases b [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α val✝ : α h : Option.some val✝ < none ⊢ Option.some val✝ ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) none [PROOFSTEP] exact some_le_some.2 le_top [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α val✝¹ val✝ : α h : Option.some val✝¹ < Option.some val✝ ⊢ Option.some val✝¹ ≤ (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) (Option.some val✝) [PROOFSTEP] exact some_le_some.2 (le_pred_of_lt <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a b : WithTop α h : (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) a < b ⊢ a ≤ b [PROOFSTEP] cases b [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a : WithTop α h : (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) a < none ⊢ a ≤ none [PROOFSTEP] exact le_top [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a : WithTop α val✝ : α h : (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) a < Option.some val✝ ⊢ a ≤ Option.some val✝ [PROOFSTEP] cases a [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α val✝ : α h : (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) none < Option.some val✝ ⊢ none ≤ Option.some val✝ [PROOFSTEP] exact (not_top_lt <| some_lt_some.1 h).elim [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α val✝¹ val✝ : α h : (fun a => match a with | none => ↑⊤ | Option.some a => ↑(pred a)) (Option.some val✝) < Option.some val✝¹ ⊢ Option.some val✝ ≤ Option.some val✝¹ [PROOFSTEP] exact some_le_some.2 (le_of_pred_lt <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a : WithTop α ha : a ≠ ⊤ ⊢ pred a ≠ ⊤ [PROOFSTEP] induction a using WithTop.recTopCoe [GOAL] case top α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α ha : ⊤ ≠ ⊤ ⊢ pred ⊤ ≠ ⊤ [PROOFSTEP] simp [GOAL] case coe α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderTop α inst✝ : PredOrder α a✝ : α ha : ↑a✝ ≠ ⊤ ⊢ pred ↑a✝ ≠ ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α a : WithTop α ⊢ a ≤ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) a [PROOFSTEP] cases' a with a a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α ⊢ none ≤ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) none [PROOFSTEP] exact le_top [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α a : α ⊢ Option.some a ≤ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) (Option.some a) [PROOFSTEP] exact some_le_some.2 (le_succ a) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α a : WithTop α ha : (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) a ≤ a ⊢ IsMax a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α ha : (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) none ≤ none ⊢ IsMax none [PROOFSTEP] exact isMax_top [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α val✝ : α ha : (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) (Option.some val✝) ≤ Option.some val✝ ⊢ IsMax (Option.some val✝) [PROOFSTEP] exact (not_isMax _ <| max_of_succ_le <| some_le_some.1 ha).elim [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α a b : WithTop α h : a < b ⊢ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) a ≤ b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α b : WithTop α h : none < b ⊢ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) none ≤ b [PROOFSTEP] exact (not_top_lt h).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α b : WithTop α val✝ : α h : Option.some val✝ < b ⊢ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) (Option.some val✝) ≤ b [PROOFSTEP] cases b [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α val✝ : α h : Option.some val✝ < none ⊢ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) (Option.some val✝) ≤ none [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝¹ < Option.some val✝ ⊢ (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) (Option.some val✝¹) ≤ Option.some val✝ [PROOFSTEP] exact some_le_some.2 (succ_le_of_lt <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α a b : WithTop α h : a < (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) b ⊢ a ≤ b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α b : WithTop α h : none < (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) b ⊢ none ≤ b [PROOFSTEP] exact (not_top_lt h).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α b : WithTop α val✝ : α h : Option.some val✝ < (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) b ⊢ Option.some val✝ ≤ b [PROOFSTEP] cases b [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α val✝ : α h : Option.some val✝ < (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) none ⊢ Option.some val✝ ≤ none [PROOFSTEP] exact le_top [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMaxOrder α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝¹ < (fun a => match a with | none => ⊤ | Option.some a => ↑(succ a)) (Option.some val✝) ⊢ Option.some val✝¹ ≤ Option.some val✝ [PROOFSTEP] exact some_le_some.2 (le_of_lt_succ <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α hα : Nonempty α ⊢ PredOrder (WithTop α) → False [PROOFSTEP] intro [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α hα : Nonempty α a✝ : PredOrder (WithTop α) ⊢ False [PROOFSTEP] cases' h : pred (⊤ : WithTop α) with a ha [GOAL] case none α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α hα : Nonempty α a✝ : PredOrder (WithTop α) h : pred ⊤ = none ⊢ False [PROOFSTEP] exact hα.elim fun a => (min_of_le_pred h.ge).not_lt <| coe_lt_top a [GOAL] case some α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α hα : Nonempty α a✝ : PredOrder (WithTop α) a : α h : pred ⊤ = Option.some a ⊢ False [PROOFSTEP] obtain ⟨c, hc⟩ := exists_gt a [GOAL] case some.intro α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α hα : Nonempty α a✝ : PredOrder (WithTop α) a : α h : pred ⊤ = Option.some a c : α hc : a < c ⊢ False [PROOFSTEP] rw [← some_lt_some, ← h] at hc [GOAL] case some.intro α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMaxOrder α hα : Nonempty α a✝ : PredOrder (WithTop α) a : α h : pred ⊤ = Option.some a c : α hc : pred ⊤ < Option.some c ⊢ False [PROOFSTEP] exact (le_of_pred_lt hc).not_lt (some_lt_none _) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a : WithBot α ha : (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) a ≤ a ⊢ IsMax a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α ha : (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) none ≤ none ⊢ IsMax none [PROOFSTEP] exact ((none_lt_some (⊥ : α)).not_le ha).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α val✝ : α ha : (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) (Option.some val✝) ≤ Option.some val✝ ⊢ IsMax (Option.some val✝) [PROOFSTEP] exact (max_of_succ_le <| some_le_some.1 ha).withBot [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a b : WithBot α h : a < b ⊢ (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) a ≤ b [PROOFSTEP] cases b [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a : WithBot α h : a < none ⊢ (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) a ≤ none [PROOFSTEP] exact (not_lt_bot h).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a : WithBot α val✝ : α h : a < Option.some val✝ ⊢ (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) a ≤ Option.some val✝ [PROOFSTEP] cases a [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α val✝ : α h : none < Option.some val✝ ⊢ (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) none ≤ Option.some val✝ [PROOFSTEP] exact some_le_some.2 bot_le [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝ < Option.some val✝¹ ⊢ (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) (Option.some val✝) ≤ Option.some val✝¹ [PROOFSTEP] exact some_le_some.2 (succ_le_of_lt <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a b : WithBot α h : a < (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) b ⊢ a ≤ b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α b : WithBot α h : none < (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) b ⊢ none ≤ b [PROOFSTEP] exact bot_le [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α b : WithBot α val✝ : α h : Option.some val✝ < (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) b ⊢ Option.some val✝ ≤ b [PROOFSTEP] cases b [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α val✝ : α h : Option.some val✝ < (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) none ⊢ Option.some val✝ ≤ none [PROOFSTEP] exact (not_lt_bot <| some_lt_some.1 h).elim [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α val✝¹ val✝ : α h : Option.some val✝¹ < (fun a => match a with | none => ↑⊥ | Option.some a => ↑(succ a)) (Option.some val✝) ⊢ Option.some val✝¹ ≤ Option.some val✝ [PROOFSTEP] exact some_le_some.2 (le_of_lt_succ <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a : WithBot α ha : a ≠ ⊥ ⊢ succ a ≠ ⊥ [PROOFSTEP] induction a using WithBot.recBotCoe [GOAL] case bot α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α ha : ⊥ ≠ ⊥ ⊢ succ ⊥ ≠ ⊥ [PROOFSTEP] simp [GOAL] case coe α : Type u_1 inst✝² : Preorder α inst✝¹ : OrderBot α inst✝ : SuccOrder α a✝ : α ha : ↑a✝ ≠ ⊥ ⊢ succ ↑a✝ ≠ ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : WithBot α ⊢ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) a ≤ a [PROOFSTEP] cases' a with a a [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α ⊢ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) none ≤ none [PROOFSTEP] exact bot_le [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ⊢ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) (Option.some a) ≤ Option.some a [PROOFSTEP] change ite _ _ _ ≤ _ [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ⊢ (if a = ⊥ then ⊥ else ↑(pred a)) ≤ Option.some a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α h✝ : a = ⊥ ⊢ ⊥ ≤ Option.some a [PROOFSTEP] exact bot_le [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α h✝ : ¬a = ⊥ ⊢ ↑(pred a) ≤ Option.some a [PROOFSTEP] exact some_le_some.2 (pred_le a) [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : WithBot α ha : a ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) a ⊢ IsMin a [PROOFSTEP] cases' a with a a [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α ha : none ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) none ⊢ IsMin none [PROOFSTEP] exact isMin_bot [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ha : Option.some a ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) (Option.some a) ⊢ IsMin (Option.some a) [PROOFSTEP] dsimp only at ha [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ha : Option.some a ≤ if a = ⊥ then ⊥ else ↑(pred a) ⊢ IsMin (Option.some a) [PROOFSTEP] split_ifs at ha with ha' [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ha' : a = ⊥ ha : Option.some a ≤ ⊥ ⊢ IsMin (Option.some a) [PROOFSTEP] exact (not_coe_le_bot _ ha).elim [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ha' : ¬a = ⊥ ha : Option.some a ≤ ↑(pred a) ⊢ IsMin (Option.some a) [PROOFSTEP] rw [some_eq_coe, coe_le_coe, le_pred_iff_eq_bot] at ha [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : α ha' : ¬a = ⊥ ha✝ : a ≤ pred a ha : a = ⊥ ⊢ IsMin (Option.some a) [PROOFSTEP] exact (ha' ha).elim [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a b : WithBot α h : a < b ⊢ a ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α b : WithBot α h : none < b ⊢ none ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) b [PROOFSTEP] exact bot_le [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α b : WithBot α val✝ : α h : Option.some val✝ < b ⊢ Option.some val✝ ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) b [PROOFSTEP] cases b [GOAL] case some.none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝ : α h : Option.some val✝ < none ⊢ Option.some val✝ ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) none [PROOFSTEP] exact (not_lt_bot h).elim [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : Option.some val✝¹ < Option.some val✝ ⊢ Option.some val✝¹ ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) (Option.some val✝) [PROOFSTEP] rw [some_lt_some] at h [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : val✝¹ < val✝ ⊢ Option.some val✝¹ ≤ (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) (Option.some val✝) [PROOFSTEP] change _ ≤ ite _ _ _ [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : val✝¹ < val✝ ⊢ Option.some val✝¹ ≤ if val✝ = ⊥ then ⊥ else ↑(pred val✝) [PROOFSTEP] split_ifs with hb [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : val✝¹ < val✝ hb : val✝ = ⊥ ⊢ Option.some val✝¹ ≤ ⊥ [PROOFSTEP] rw [hb] at h [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : val✝¹ < ⊥ hb : val✝ = ⊥ ⊢ Option.some val✝¹ ≤ ⊥ [PROOFSTEP] exact (not_lt_bot h).elim [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : val✝¹ < val✝ hb : ¬val✝ = ⊥ ⊢ Option.some val✝¹ ≤ ↑(pred val✝) [PROOFSTEP] exact some_le_some.2 (le_pred_of_lt h) [GOAL] α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a b : WithBot α h : (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) a < b ⊢ a ≤ b [PROOFSTEP] cases b [GOAL] case none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : WithBot α h : (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) a < none ⊢ a ≤ none [PROOFSTEP] exact (not_lt_bot h).elim [GOAL] case some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α a : WithBot α val✝ : α h : (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) a < Option.some val✝ ⊢ a ≤ Option.some val✝ [PROOFSTEP] cases a [GOAL] case some.none α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝ : α h : (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) none < Option.some val✝ ⊢ none ≤ Option.some val✝ [PROOFSTEP] exact bot_le [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : (fun a => match a with | none => ⊥ | Option.some a => if a = ⊥ then ⊥ else ↑(pred a)) (Option.some val✝) < Option.some val✝¹ ⊢ Option.some val✝ ≤ Option.some val✝¹ [PROOFSTEP] dsimp only at h [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : (if val✝ = ⊥ then ⊥ else ↑(pred val✝)) < Option.some val✝¹ ⊢ Option.some val✝ ≤ Option.some val✝¹ [PROOFSTEP] rw [some_le_some] [GOAL] case some.some α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α h : (if val✝ = ⊥ then ⊥ else ↑(pred val✝)) < Option.some val✝¹ ⊢ val✝ ≤ val✝¹ [PROOFSTEP] split_ifs at h with ha [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α ha : val✝ = ⊥ h : ⊥ < Option.some val✝¹ ⊢ val✝ ≤ val✝¹ [PROOFSTEP] rw [ha] [GOAL] case pos α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α ha : val✝ = ⊥ h : ⊥ < Option.some val✝¹ ⊢ ⊥ ≤ val✝¹ [PROOFSTEP] exact bot_le [GOAL] case neg α : Type u_1 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : PredOrder α val✝¹ val✝ : α ha : ¬val✝ = ⊥ h : ↑(pred val✝) < Option.some val✝¹ ⊢ val✝ ≤ val✝¹ [PROOFSTEP] exact le_of_pred_lt (some_lt_some.1 h) [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMinOrder α hα : Nonempty α ⊢ SuccOrder (WithBot α) → False [PROOFSTEP] intro [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMinOrder α hα : Nonempty α a✝ : SuccOrder (WithBot α) ⊢ False [PROOFSTEP] cases' h : succ (⊥ : WithBot α) with a ha [GOAL] case none α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMinOrder α hα : Nonempty α a✝ : SuccOrder (WithBot α) h : succ ⊥ = none ⊢ False [PROOFSTEP] exact hα.elim fun a => (max_of_succ_le h.le).not_lt <| bot_lt_coe a [GOAL] case some α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMinOrder α hα : Nonempty α a✝ : SuccOrder (WithBot α) a : α h : succ ⊥ = Option.some a ⊢ False [PROOFSTEP] obtain ⟨c, hc⟩ := exists_lt a [GOAL] case some.intro α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMinOrder α hα : Nonempty α a✝ : SuccOrder (WithBot α) a : α h : succ ⊥ = Option.some a c : α hc : c < a ⊢ False [PROOFSTEP] rw [← some_lt_some, ← h] at hc [GOAL] case some.intro α : Type u_1 inst✝¹ : Preorder α inst✝ : NoMinOrder α hα : Nonempty α a✝ : SuccOrder (WithBot α) a : α h : succ ⊥ = Option.some a c : α hc : Option.some c < succ ⊥ ⊢ False [PROOFSTEP] exact (le_of_lt_succ hc).not_lt (none_lt_some _) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : WithBot α ⊢ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) a ≤ a [PROOFSTEP] cases' a with a a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α ⊢ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) none ≤ none [PROOFSTEP] exact bot_le [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : α ⊢ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) (Option.some a) ≤ Option.some a [PROOFSTEP] exact some_le_some.2 (pred_le a) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : WithBot α ha : a ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) a ⊢ IsMin a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α ha : none ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) none ⊢ IsMin none [PROOFSTEP] exact isMin_bot [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α val✝ : α ha : Option.some val✝ ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) (Option.some val✝) ⊢ IsMin (Option.some val✝) [PROOFSTEP] exact (not_isMin _ <| min_of_le_pred <| some_le_some.1 ha).elim [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a b : WithBot α h : a < b ⊢ a ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) b [PROOFSTEP] cases b [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : WithBot α h : a < none ⊢ a ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) none [PROOFSTEP] exact (not_lt_bot h).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : WithBot α val✝ : α h : a < Option.some val✝ ⊢ a ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) (Option.some val✝) [PROOFSTEP] cases a [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α val✝ : α h : none < Option.some val✝ ⊢ none ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) (Option.some val✝) [PROOFSTEP] exact bot_le [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α val✝¹ val✝ : α h : Option.some val✝ < Option.some val✝¹ ⊢ Option.some val✝ ≤ (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) (Option.some val✝¹) [PROOFSTEP] exact some_le_some.2 (le_pred_of_lt <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a b : WithBot α h : (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) a < b ⊢ a ≤ b [PROOFSTEP] cases b [GOAL] case none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : WithBot α h : (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) a < none ⊢ a ≤ none [PROOFSTEP] exact (not_lt_bot h).elim [GOAL] case some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α a : WithBot α val✝ : α h : (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) a < Option.some val✝ ⊢ a ≤ Option.some val✝ [PROOFSTEP] cases a [GOAL] case some.none α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α val✝ : α h : (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) none < Option.some val✝ ⊢ none ≤ Option.some val✝ [PROOFSTEP] exact bot_le [GOAL] case some.some α : Type u_1 inst✝² : Preorder α inst✝¹ : NoMinOrder α inst✝ : PredOrder α val✝¹ val✝ : α h : (fun a => match a with | none => ⊥ | Option.some a => ↑(pred a)) (Option.some val✝) < Option.some val✝¹ ⊢ Option.some val✝ ≤ Option.some val✝¹ [PROOFSTEP] exact some_le_some.2 (le_of_pred_lt <| some_lt_some.1 h) [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a✝ b✝ : α a b : αᵒᵈ h : a ≤ b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] convert exists_succ_iterate_of_le h.ofDual [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α ⊢ (∃ n, succ^[n] a = b) ↔ a ≤ b [PROOFSTEP] refine' ⟨_, exists_succ_iterate_of_le⟩ [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α ⊢ (∃ n, succ^[n] a = b) → a ≤ b [PROOFSTEP] rintro ⟨n, rfl⟩ [GOAL] case intro α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a : α n : ℕ ⊢ a ≤ succ^[n] a [PROOFSTEP] exact id_le_iterate_of_id_le le_succ n a [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α P : α → Prop m : α h0 : P m h1 : ∀ (n : α), m ≤ n → P n → P (succ n) n : α hmn : m ≤ n ⊢ P n [PROOFSTEP] obtain ⟨n, rfl⟩ := hmn.exists_succ_iterate [GOAL] case intro α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α P : α → Prop m : α h0 : P m h1 : ∀ (n : α), m ≤ n → P n → P (succ n) n : ℕ hmn : m ≤ succ^[n] m ⊢ P (succ^[n] m) [PROOFSTEP] clear hmn [GOAL] case intro α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α P : α → Prop m : α h0 : P m h1 : ∀ (n : α), m ≤ n → P n → P (succ n) n : ℕ ⊢ P (succ^[n] m) [PROOFSTEP] induction' n with n ih [GOAL] case intro.zero α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α P : α → Prop m : α h0 : P m h1 : ∀ (n : α), m ≤ n → P n → P (succ n) ⊢ P (succ^[Nat.zero] m) [PROOFSTEP] exact h0 [GOAL] case intro.succ α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α P : α → Prop m : α h0 : P m h1 : ∀ (n : α), m ≤ n → P n → P (succ n) n : ℕ ih : P (succ^[n] m) ⊢ P (succ^[Nat.succ n] m) [PROOFSTEP] rw [Function.iterate_succ_apply'] [GOAL] case intro.succ α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a b : α P : α → Prop m : α h0 : P m h1 : ∀ (n : α), m ≤ n → P n → P (succ n) n : ℕ ih : P (succ^[n] m) ⊢ P (succ (succ^[n] m)) [PROOFSTEP] exact h1 _ (id_le_iterate_of_id_le le_succ n m) ih [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a✝ b✝ : α p : α → Prop hsucc : ∀ (a : α), p a ↔ p (succ a) a b : α h : a ≤ b ⊢ p a ↔ p b [PROOFSTEP] obtain ⟨n, rfl⟩ := h.exists_succ_iterate [GOAL] case intro α : Type u_1 inst✝² : Preorder α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α a✝ b : α p : α → Prop hsucc : ∀ (a : α), p a ↔ p (succ a) a : α n : ℕ h : a ≤ succ^[n] a ⊢ p a ↔ p (succ^[n] a) [PROOFSTEP] exact Iterate.rec (fun b => p a ↔ p b) (fun c hc => hc.trans (hsucc _)) Iff.rfl n [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : PredOrder α inst✝ : IsPredArchimedean α a✝ b✝ : α a b : αᵒᵈ h : a ≤ b ⊢ ∃ n, succ^[n] a = b [PROOFSTEP] convert exists_pred_iterate_of_le h.ofDual [GOAL] α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b : α ⊢ a ≤ b → ∃ n, pred^[n] b = a [PROOFSTEP] refine' WellFounded.fix (C := fun b => a ≤ b → ∃ n, Nat.iterate pred n b = a) h.wf _ b [GOAL] α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b : α ⊢ ∀ (x : α), (∀ (y : α), y < x → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y) → (fun b => a ≤ b → ∃ n, pred^[n] b = a) x [PROOFSTEP] intros b ih hab [GOAL] α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y hab : a ≤ b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] replace hab := eq_or_lt_of_le hab [GOAL] α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y hab : a = b ∨ a < b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] rcases hab with (rfl | hab) [GOAL] case inl α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b : α ih : ∀ (y : α), y < a → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y ⊢ ∃ n, pred^[n] a = a [PROOFSTEP] exact ⟨0, rfl⟩ [GOAL] case inr α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y hab : a < b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] cases' le_or_lt b (pred b) with hb hb [GOAL] case inr.inl α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y hab : a < b hb : b ≤ pred b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] cases (min_of_le_pred hb).not_lt hab [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → (fun b => a ≤ b → ∃ n, pred^[n] b = a) y hab : a < b hb : pred b < b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] dsimp at ih [GOAL] case inr.inr α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → a ≤ y → ∃ n, pred^[n] y = a hab : a < b hb : pred b < b ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] obtain ⟨k, hk⟩ := ih (pred b) hb (le_pred_of_lt hab) [GOAL] case inr.inr.intro α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → a ≤ y → ∃ n, pred^[n] y = a hab : a < b hb : pred b < b k : ℕ hk : pred^[k] (pred b) = a ⊢ ∃ n, pred^[n] b = a [PROOFSTEP] refine' ⟨k + 1, _⟩ [GOAL] case inr.inr.intro α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x < x_1 inst✝ : PredOrder α a b✝ b : α ih : ∀ (y : α), y < b → a ≤ y → ∃ n, pred^[n] y = a hab : a < b hb : pred b < b k : ℕ hk : pred^[k] (pred b) = a ⊢ pred^[k + 1] b = a [PROOFSTEP] rw [iterate_add_apply, iterate_one, hk] [GOAL] α : Type u_1 inst✝¹ : LinearOrder α h : IsWellOrder α fun x x_1 => x > x_1 inst✝ : SuccOrder α ⊢ IsPredArchimedean αᵒᵈ [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop ⊢ (∀ (i : α), i ≠ ⊥ → P i) ↔ ∀ (i : α), P (succ i) [PROOFSTEP] refine' ⟨fun h i ↦ h _ (Order.succ_ne_bot i), fun h i hi ↦ _⟩ [GOAL] α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) i : α hi : i ≠ ⊥ ⊢ P i [PROOFSTEP] obtain ⟨j, rfl⟩ := exists_succ_iterate_of_le (bot_le : ⊥ ≤ i) [GOAL] case intro α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ ⊢ P (Order.succ^[j] ⊥) [PROOFSTEP] have hj : 0 < j := by apply Nat.pos_of_ne_zero; contrapose! hi; simp [hi] [GOAL] α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ ⊢ 0 < j [PROOFSTEP] apply Nat.pos_of_ne_zero [GOAL] case a α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ ⊢ j ≠ 0 [PROOFSTEP] contrapose! hi [GOAL] case a α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : j = 0 ⊢ Order.succ^[j] ⊥ = ⊥ [PROOFSTEP] simp [hi] [GOAL] case intro α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ hj : 0 < j ⊢ P (Order.succ^[j] ⊥) [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos hj] [GOAL] case intro α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ hj : 0 < j ⊢ P (Order.succ^[Nat.succ (Nat.pred j)] ⊥) [PROOFSTEP] simp only [Function.iterate_succ', Function.comp_apply] [GOAL] case intro α : Type u_1 inst✝⁴ : Nontrivial α inst✝³ : PartialOrder α inst✝² : OrderBot α inst✝¹ : SuccOrder α inst✝ : IsSuccArchimedean α P : α → Prop h : ∀ (i : α), P (succ i) j : ℕ hi : Order.succ^[j] ⊥ ≠ ⊥ hj : 0 < j ⊢ P (Order.succ (Order.succ^[Nat.pred j] ⊥)) [PROOFSTEP] apply h
{"mathlib_filename": "Mathlib.Order.SuccPred.Basic", "llama_tokens": 37436}
{"mathlib_filename": "Mathlib.Order.Hom.Set", "llama_tokens": 0}
[GOAL] ι : Type u_1 inst✝ : LinearOrder ι i : ι ⊢ i ≤ succFn i [PROOFSTEP] rw [le_isGLB_iff (succFn_spec i), mem_lowerBounds] [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i : ι ⊢ ∀ (x : ι), x ∈ Set.Ioi i → i ≤ x [PROOFSTEP] exact fun x hx ↦ le_of_lt hx [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j k : ι hij_lt : i < j h : IsGLB (Set.Ioi i) k ⊢ IsGLB (Set.Ioc i j) k [PROOFSTEP] simp_rw [IsGLB, IsGreatest, mem_upperBounds, mem_lowerBounds] at h ⊢ [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j k : ι hij_lt : i < j h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k ⊢ (∀ (x : ι), x ∈ Set.Ioc i j → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1) → x ≤ k [PROOFSTEP] refine' ⟨fun x hx ↦ h.1 x hx.1, fun x hx ↦ h.2 x _⟩ [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j k : ι hij_lt : i < j h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k x : ι hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1 ⊢ ∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1 [PROOFSTEP] intro y hy [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j k : ι hij_lt : i < j h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k x : ι hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1 y : ι hy : y ∈ Set.Ioi i ⊢ x ≤ y [PROOFSTEP] cases' le_or_lt y j with h_le h_lt [GOAL] case inl ι : Type u_1 inst✝ : LinearOrder ι i j k : ι hij_lt : i < j h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k x : ι hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1 y : ι hy : y ∈ Set.Ioi i h_le : y ≤ j ⊢ x ≤ y [PROOFSTEP] exact hx y ⟨hy, h_le⟩ [GOAL] case inr ι : Type u_1 inst✝ : LinearOrder ι i j k : ι hij_lt : i < j h : (∀ (x : ι), x ∈ Set.Ioi i → k ≤ x) ∧ ∀ (x : ι), (∀ (x_1 : ι), x_1 ∈ Set.Ioi i → x ≤ x_1) → x ≤ k x : ι hx : ∀ (x_1 : ι), x_1 ∈ Set.Ioc i j → x ≤ x_1 y : ι hy : y ∈ Set.Ioi i h_lt : j < y ⊢ x ≤ y [PROOFSTEP] exact le_trans (hx j ⟨hij_lt, le_rfl⟩) h_lt.le [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i ⊢ IsMax i [PROOFSTEP] refine' fun j _ ↦ not_lt.mp fun hij_lt ↦ _ [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j ⊢ False [PROOFSTEP] have h_succFn_eq : succFn i = i := le_antisymm hi (le_succFn i) [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i ⊢ False [PROOFSTEP] have h_glb : IsGLB (Finset.Ioc i j : Set ι) i := by rw [Finset.coe_Ioc] have h := succFn_spec i rw [h_succFn_eq] at h exact isGLB_Ioc_of_isGLB_Ioi hij_lt h [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i ⊢ IsGLB (↑(Finset.Ioc i j)) i [PROOFSTEP] rw [Finset.coe_Ioc] [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i ⊢ IsGLB (Set.Ioc i j) i [PROOFSTEP] have h := succFn_spec i [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h : IsGLB (Set.Ioi i) (succFn i) ⊢ IsGLB (Set.Ioc i j) i [PROOFSTEP] rw [h_succFn_eq] at h [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h : IsGLB (Set.Ioi i) i ⊢ IsGLB (Set.Ioc i j) i [PROOFSTEP] exact isGLB_Ioc_of_isGLB_Ioi hij_lt h [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h_glb : IsGLB (↑(Finset.Ioc i j)) i ⊢ False [PROOFSTEP] have hi_mem : i ∈ Finset.Ioc i j := by refine' Finset.isGLB_mem _ h_glb _ exact ⟨_, Finset.mem_Ioc.mpr ⟨hij_lt, le_rfl⟩⟩ [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h_glb : IsGLB (↑(Finset.Ioc i j)) i ⊢ i ∈ Finset.Ioc i j [PROOFSTEP] refine' Finset.isGLB_mem _ h_glb _ [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h_glb : IsGLB (↑(Finset.Ioc i j)) i ⊢ Finset.Nonempty (Finset.Ioc i j) [PROOFSTEP] exact ⟨_, Finset.mem_Ioc.mpr ⟨hij_lt, le_rfl⟩⟩ [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h_glb : IsGLB (↑(Finset.Ioc i j)) i hi_mem : i ∈ Finset.Ioc i j ⊢ False [PROOFSTEP] rw [Finset.mem_Ioc] at hi_mem [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i : ι hi : succFn i ≤ i j : ι x✝ : i ≤ j hij_lt : i < j h_succFn_eq : succFn i = i h_glb : IsGLB (↑(Finset.Ioc i j)) i hi_mem : i < i ∧ i ≤ j ⊢ False [PROOFSTEP] exact lt_irrefl i hi_mem.1 [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j : ι hij : i < j ⊢ succFn i ≤ j [PROOFSTEP] have h := succFn_spec i [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j : ι hij : i < j h : IsGLB (Set.Ioi i) (succFn i) ⊢ succFn i ≤ j [PROOFSTEP] rw [IsGLB, IsGreatest, mem_lowerBounds] at h [GOAL] ι : Type u_1 inst✝ : LinearOrder ι i j : ι hij : i < j h : (∀ (x : ι), x ∈ Set.Ioi i → succFn i ≤ x) ∧ succFn i ∈ upperBounds (lowerBounds (Set.Ioi i)) ⊢ succFn i ≤ j [PROOFSTEP] exact h.1 j hij [GOAL] ι : Type u_1 inst✝ : LinearOrder ι j i : ι hij : j < succFn i ⊢ j ≤ i [PROOFSTEP] rw [lt_isGLB_iff (succFn_spec i)] at hij [GOAL] ι : Type u_1 inst✝ : LinearOrder ι j i : ι hij : ∃ c, c ∈ lowerBounds (Set.Ioi i) ∧ j < c ⊢ j ≤ i [PROOFSTEP] obtain ⟨k, hk_lb, hk⟩ := hij [GOAL] case intro.intro ι : Type u_1 inst✝ : LinearOrder ι j i k : ι hk_lb : k ∈ lowerBounds (Set.Ioi i) hk : j < k ⊢ j ≤ i [PROOFSTEP] rw [mem_lowerBounds] at hk_lb [GOAL] case intro.intro ι : Type u_1 inst✝ : LinearOrder ι j i k : ι hk_lb : ∀ (x : ι), x ∈ Set.Ioi i → k ≤ x hk : j < k ⊢ j ≤ i [PROOFSTEP] exact not_lt.mp fun hi_lt_j ↦ not_le.mpr hk (hk_lb j hi_lt_j) [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι ⊢ ∀ {a b : ι}, a ≤ b → ∃ n, succ^[n] a = b [PROOFSTEP] intro i j hij [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i ≤ j ⊢ ∃ n, succ^[n] i = j [PROOFSTEP] rw [le_iff_lt_or_eq] at hij [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j ∨ i = j ⊢ ∃ n, succ^[n] i = j [PROOFSTEP] cases' hij with hij hij [GOAL] case inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j ⊢ ∃ n, succ^[n] i = j case inr ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i = j ⊢ ∃ n, succ^[n] i = j [PROOFSTEP] swap [GOAL] case inr ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i = j ⊢ ∃ n, succ^[n] i = j [PROOFSTEP] refine' ⟨0, _⟩ [GOAL] case inr ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i = j ⊢ succ^[0] i = j [PROOFSTEP] simpa only [Function.iterate_zero, id.def] using hij [GOAL] case inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j ⊢ ∃ n, succ^[n] i = j [PROOFSTEP] by_contra h [GOAL] case inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ¬∃ n, succ^[n] i = j ⊢ False [PROOFSTEP] push_neg at h [GOAL] case inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j ⊢ False [PROOFSTEP] have h_lt : ∀ n, succ^[n] i < j := by intro n induction' n with n hn · simpa only [Function.iterate_zero, id.def] using hij · refine' lt_of_le_of_ne _ (h _) rw [Function.iterate_succ', Function.comp_apply] exact succ_le_of_lt hn [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j ⊢ ∀ (n : ℕ), succ^[n] i < j [PROOFSTEP] intro n [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j n : ℕ ⊢ succ^[n] i < j [PROOFSTEP] induction' n with n hn [GOAL] case zero ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j ⊢ succ^[Nat.zero] i < j [PROOFSTEP] simpa only [Function.iterate_zero, id.def] using hij [GOAL] case succ ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j n : ℕ hn : succ^[n] i < j ⊢ succ^[Nat.succ n] i < j [PROOFSTEP] refine' lt_of_le_of_ne _ (h _) [GOAL] case succ ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j n : ℕ hn : succ^[n] i < j ⊢ succ^[Nat.succ n] i ≤ j [PROOFSTEP] rw [Function.iterate_succ', Function.comp_apply] [GOAL] case succ ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j n : ℕ hn : succ^[n] i < j ⊢ succ (succ^[n] i) ≤ j [PROOFSTEP] exact succ_le_of_lt hn [GOAL] case inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j ⊢ False [PROOFSTEP] have h_mem : ∀ n, succ^[n] i ∈ Finset.Icc i j := fun n ↦ Finset.mem_Icc.mpr ⟨le_succ_iterate n i, (h_lt n).le⟩ [GOAL] case inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j ⊢ False [PROOFSTEP] obtain ⟨n, m, hnm, h_eq⟩ : ∃ n m, n < m ∧ succ^[n] i = succ^[m] i := by let f : ℕ → Finset.Icc i j := fun n ↦ ⟨succ^[n] i, h_mem n⟩ obtain ⟨n, m, hnm_ne, hfnm⟩ : ∃ n m, n ≠ m ∧ f n = f m exact Finite.exists_ne_map_eq_of_infinite f have hnm_eq : succ^[n] i = succ^[m] i := by simpa only [Subtype.mk_eq_mk] using hfnm cases' le_total n m with h_le h_le · exact ⟨n, m, lt_of_le_of_ne h_le hnm_ne, hnm_eq⟩ · exact ⟨m, n, lt_of_le_of_ne h_le hnm_ne.symm, hnm_eq.symm⟩ [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] let f : ℕ → Finset.Icc i j := fun n ↦ ⟨succ^[n] i, h_mem n⟩ [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] obtain ⟨n, m, hnm_ne, hfnm⟩ : ∃ n m, n ≠ m ∧ f n = f m [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } ⊢ ∃ n m, n ≠ m ∧ f n = f m case intro.intro.intro ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } n m : ℕ hnm_ne : n ≠ m hfnm : f n = f m ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] exact Finite.exists_ne_map_eq_of_infinite f [GOAL] case intro.intro.intro ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } n m : ℕ hnm_ne : n ≠ m hfnm : f n = f m ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] have hnm_eq : succ^[n] i = succ^[m] i := by simpa only [Subtype.mk_eq_mk] using hfnm [GOAL] ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } n m : ℕ hnm_ne : n ≠ m hfnm : f n = f m ⊢ succ^[n] i = succ^[m] i [PROOFSTEP] simpa only [Subtype.mk_eq_mk] using hfnm [GOAL] case intro.intro.intro ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } n m : ℕ hnm_ne : n ≠ m hfnm : f n = f m hnm_eq : succ^[n] i = succ^[m] i ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] cases' le_total n m with h_le h_le [GOAL] case intro.intro.intro.inl ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } n m : ℕ hnm_ne : n ≠ m hfnm : f n = f m hnm_eq : succ^[n] i = succ^[m] i h_le : n ≤ m ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] exact ⟨n, m, lt_of_le_of_ne h_le hnm_ne, hnm_eq⟩ [GOAL] case intro.intro.intro.inr ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j f : ℕ → { x // x ∈ Finset.Icc i j } := fun n => { val := succ^[n] i, property := (_ : succ^[n] i ∈ Finset.Icc i j) } n m : ℕ hnm_ne : n ≠ m hfnm : f n = f m hnm_eq : succ^[n] i = succ^[m] i h_le : m ≤ n ⊢ ∃ n m, n < m ∧ succ^[n] i = succ^[m] i [PROOFSTEP] exact ⟨m, n, lt_of_le_of_ne h_le hnm_ne.symm, hnm_eq.symm⟩ [GOAL] case inl.intro.intro.intro ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j n m : ℕ hnm : n < m h_eq : succ^[n] i = succ^[m] i ⊢ False [PROOFSTEP] have h_max : IsMax (succ^[n] i) := isMax_iterate_succ_of_eq_of_ne h_eq hnm.ne [GOAL] case inl.intro.intro.intro ι : Type u_1 inst✝¹ : LinearOrder ι inst✝ : LocallyFiniteOrder ι i j : ι hij : i < j h : ∀ (n : ℕ), succ^[n] i ≠ j h_lt : ∀ (n : ℕ), succ^[n] i < j h_mem : ∀ (n : ℕ), succ^[n] i ∈ Finset.Icc i j n m : ℕ hnm : n < m h_eq : succ^[n] i = succ^[m] i h_max : IsMax (succ^[n] i) ⊢ False [PROOFSTEP] exact not_le.mpr (h_lt n) (h_max (h_lt n).le) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι ⊢ ∀ {a b : ι}, a ≤ b → ∃ n, pred^[n] b = a [PROOFSTEP] intro i j hij [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j ⊢ ∃ n, pred^[n] j = i [PROOFSTEP] have h_exists := exists_succ_iterate_of_le hij [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j ⊢ ∃ n, pred^[n] j = i [PROOFSTEP] obtain ⟨n, hn_eq, hn_lt_ne⟩ : ∃ n, succ^[n] i = j ∧ ∀ m < n, succ^[m] i ≠ j [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j ⊢ ∃ n, succ^[n] i = j ∧ ∀ (m : ℕ), m < n → succ^[m] i ≠ j case intro.intro ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n : ℕ hn_eq : succ^[n] i = j hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j ⊢ ∃ n, pred^[n] j = i [PROOFSTEP] exact ⟨Nat.find h_exists, Nat.find_spec h_exists, fun m hmn ↦ Nat.find_min h_exists hmn⟩ [GOAL] case intro.intro ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n : ℕ hn_eq : succ^[n] i = j hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j ⊢ ∃ n, pred^[n] j = i [PROOFSTEP] refine' ⟨n, _⟩ [GOAL] case intro.intro ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n : ℕ hn_eq : succ^[n] i = j hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j ⊢ pred^[n] j = i [PROOFSTEP] rw [← hn_eq] [GOAL] case intro.intro ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n : ℕ hn_eq : succ^[n] i = j hn_lt_ne : ∀ (m : ℕ), m < n → succ^[m] i ≠ j ⊢ pred^[n] (succ^[n] i) = i [PROOFSTEP] induction' n with n [GOAL] case intro.intro.zero ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n : ℕ hn_eq✝ : succ^[n] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n → succ^[m] i ≠ j hn_eq : succ^[Nat.zero] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.zero → succ^[m] i ≠ j ⊢ pred^[Nat.zero] (succ^[Nat.zero] i) = i [PROOFSTEP] simp only [Nat.zero_eq, Function.iterate_zero, id.def] [GOAL] case intro.intro.succ ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ pred^[Nat.succ n] (succ^[Nat.succ n] i) = i [PROOFSTEP] rw [pred_succ_iterate_of_not_isMax] [GOAL] case intro.intro.succ.hin ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ ¬IsMax (succ^[Nat.succ n - 1] i) [PROOFSTEP] rw [Nat.succ_sub_succ_eq_sub, tsub_zero] [GOAL] case intro.intro.succ.hin ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ ¬IsMax (succ^[n] i) [PROOFSTEP] suffices : succ^[n] i < succ^[n.succ] i [GOAL] case intro.intro.succ.hin ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j this : succ^[n] i < succ^[Nat.succ n] i ⊢ ¬IsMax (succ^[n] i) case this ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ succ^[n] i < succ^[Nat.succ n] i [PROOFSTEP] exact not_isMax_of_lt this [GOAL] case this ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ succ^[n] i < succ^[Nat.succ n] i [PROOFSTEP] refine' lt_of_le_of_ne _ _ [GOAL] case this.refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ succ^[n] i ≤ succ^[Nat.succ n] i [PROOFSTEP] rw [Function.iterate_succ'] [GOAL] case this.refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ succ^[n] i ≤ (succ ∘ succ^[n]) i [PROOFSTEP] exact le_succ _ [GOAL] case this.refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ succ^[n] i ≠ succ^[Nat.succ n] i [PROOFSTEP] rw [hn_eq] [GOAL] case this.refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι i j : ι hij : i ≤ j h_exists : ∃ n, succ^[n] i = j n✝ : ℕ hn_eq✝ : succ^[n✝] i = j hn_lt_ne✝ : ∀ (m : ℕ), m < n✝ → succ^[m] i ≠ j n : ℕ n_ih✝ : succ^[n] i = j → (∀ (m : ℕ), m < n → succ^[m] i ≠ j) → pred^[n] (succ^[n] i) = i hn_eq : succ^[Nat.succ n] i = j hn_lt_ne : ∀ (m : ℕ), m < Nat.succ n → succ^[m] i ≠ j ⊢ succ^[n] i ≠ j [PROOFSTEP] exact hn_lt_ne _ (Nat.lt_succ_self n) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι ⊢ toZ i0 i0 = 0 [PROOFSTEP] rw [toZ_of_ge le_rfl] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι ⊢ ↑(Nat.find (_ : ∃ n, succ^[n] i0 = i0)) = 0 [PROOFSTEP] norm_cast [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι ⊢ Nat.find (_ : ∃ n, succ^[n] i0 = i0) = 0 [PROOFSTEP] refine' le_antisymm (Nat.find_le _) (zero_le _) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι ⊢ succ^[0] i0 = i0 [PROOFSTEP] rw [Function.iterate_zero, id.def] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i : ι hi : i0 ≤ i ⊢ succ^[Int.toNat (toZ i0 i)] i0 = i [PROOFSTEP] rw [toZ_of_ge hi, Int.toNat_coe_nat] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i : ι hi : i0 ≤ i ⊢ succ^[Nat.find (_ : ∃ n, succ^[n] i0 = i)] i0 = i [PROOFSTEP] exact Nat.find_spec (exists_succ_iterate_of_le hi) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i : ι hi : i < i0 ⊢ pred^[Int.toNat (-toZ i0 i)] i0 = i [PROOFSTEP] rw [toZ_of_lt hi, neg_neg, Int.toNat_coe_nat] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i : ι hi : i < i0 ⊢ pred^[Nat.find (_ : ∃ n, pred^[n] i0 = i)] i0 = i [PROOFSTEP] exact Nat.find_spec (exists_pred_iterate_of_le hi.le) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i0 ≤ i ⊢ 0 ≤ toZ i0 i [PROOFSTEP] rw [toZ_of_ge hi] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i0 ≤ i ⊢ 0 ≤ ↑(Nat.find (_ : ∃ n, succ^[n] i0 = i)) [PROOFSTEP] exact Nat.cast_nonneg _ [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i < i0 ⊢ toZ i0 i < 0 [PROOFSTEP] refine' lt_of_le_of_ne _ _ [GOAL] case refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i < i0 ⊢ toZ i0 i ≤ 0 [PROOFSTEP] rw [toZ_of_lt hi, neg_nonpos] [GOAL] case refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i < i0 ⊢ 0 ≤ ↑(Nat.find (_ : ∃ n, pred^[n] i0 = i)) [PROOFSTEP] exact Nat.cast_nonneg _ [GOAL] case refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i < i0 ⊢ toZ i0 i ≠ 0 [PROOFSTEP] by_contra h [GOAL] case refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i < i0 h : toZ i0 i = 0 ⊢ False [PROOFSTEP] have h_eq := iterate_pred_toZ i hi [GOAL] case refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : i < i0 h : toZ i0 i = 0 h_eq : pred^[Int.toNat (-toZ i0 i)] i0 = i ⊢ False [PROOFSTEP] rw [← h_eq, h] at hi [GOAL] case refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hi : pred^[Int.toNat (-0)] i0 < i0 h : toZ i0 i = 0 h_eq : pred^[Int.toNat (-toZ i0 i)] i0 = i ⊢ False [PROOFSTEP] simp only [neg_zero, Int.toNat_zero, Function.iterate_zero, id.def, lt_self_iff_false] at hi [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ ⊢ toZ i0 (succ^[n] i0) ≤ ↑n [PROOFSTEP] rw [toZ_of_ge (le_succ_iterate _ _)] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ ⊢ ↑(Nat.find (_ : ∃ n_1, succ^[n_1] i0 = succ^[n] i0)) ≤ ↑n [PROOFSTEP] norm_cast [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ ⊢ Nat.find (_ : ∃ n_1, succ^[n_1] i0 = succ^[n] i0) ≤ n [PROOFSTEP] exact Nat.find_min' _ rfl [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ ⊢ -↑n ≤ toZ i0 (pred^[n] i0) [PROOFSTEP] cases' le_or_lt i0 (pred^[n] i0) with h h [GOAL] case inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ h : i0 ≤ pred^[n] i0 ⊢ -↑n ≤ toZ i0 (pred^[n] i0) [PROOFSTEP] have h_eq : pred^[n] i0 = i0 := le_antisymm (pred_iterate_le _ _) h [GOAL] case inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ h : i0 ≤ pred^[n] i0 h_eq : pred^[n] i0 = i0 ⊢ -↑n ≤ toZ i0 (pred^[n] i0) [PROOFSTEP] rw [h_eq, toZ_of_eq] [GOAL] case inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ h : i0 ≤ pred^[n] i0 h_eq : pred^[n] i0 = i0 ⊢ -↑n ≤ 0 [PROOFSTEP] simp only [Right.neg_nonpos_iff, Nat.cast_nonneg] [GOAL] case inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ h : pred^[n] i0 < i0 ⊢ -↑n ≤ toZ i0 (pred^[n] i0) [PROOFSTEP] rw [toZ_of_lt h, neg_le_neg_iff] [GOAL] case inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ h : pred^[n] i0 < i0 ⊢ ↑(Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[n] i0)) ≤ ↑n [PROOFSTEP] norm_cast [GOAL] case inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ h : pred^[n] i0 < i0 ⊢ Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[n] i0) ≤ n [PROOFSTEP] exact Nat.find_min' _ rfl [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) ⊢ toZ i0 (succ^[n] i0) = ↑n [PROOFSTEP] let m := (toZ i0 (succ^[n] i0)).toNat [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) ⊢ toZ i0 (succ^[n] i0) = ↑n [PROOFSTEP] have h_eq : succ^[m] i0 = succ^[n] i0 := iterate_succ_toZ _ (le_succ_iterate _ _) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 ⊢ toZ i0 (succ^[n] i0) = ↑n [PROOFSTEP] by_cases hmn : m = n [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : m = n ⊢ toZ i0 (succ^[n] i0) = ↑n [PROOFSTEP] nth_rw 2 [← hmn] [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : m = n ⊢ toZ i0 (succ^[n] i0) = ↑m [PROOFSTEP] rw [Int.toNat_eq_max, toZ_of_ge (le_succ_iterate _ _), max_eq_left] [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : m = n ⊢ 0 ≤ ↑(Nat.find (_ : ∃ n_1, succ^[n_1] i0 = succ^[n] i0)) [PROOFSTEP] exact Nat.cast_nonneg _ [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : ¬m = n ⊢ toZ i0 (succ^[n] i0) = ↑n [PROOFSTEP] suffices : IsMax (succ^[n] i0) [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : ¬m = n this : IsMax (succ^[n] i0) ⊢ toZ i0 (succ^[n] i0) = ↑n case this ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : ¬m = n ⊢ IsMax (succ^[n] i0) [PROOFSTEP] exact absurd this hn [GOAL] case this ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMax (succ^[n] i0) m : ℕ := Int.toNat (toZ i0 (succ^[n] i0)) h_eq : succ^[m] i0 = succ^[n] i0 hmn : ¬m = n ⊢ IsMax (succ^[n] i0) [PROOFSTEP] exact isMax_iterate_succ_of_eq_of_ne h_eq.symm (Ne.symm hmn) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[n] i0) ⊢ toZ i0 (pred^[n] i0) = -↑n [PROOFSTEP] cases' n with n n [GOAL] case zero ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι hn : ¬IsMin (pred^[Nat.zero] i0) ⊢ toZ i0 (pred^[Nat.zero] i0) = -↑Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, Function.iterate_zero, id.def, toZ_of_eq, Nat.cast_zero, neg_zero] [GOAL] case succ ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) [PROOFSTEP] have : pred^[n.succ] i0 < i0 := by refine' lt_of_le_of_ne (pred_iterate_le _ _) fun h_pred_iterate_eq ↦ hn _ have h_pred_eq_pred : pred^[n.succ] i0 = pred^[0] i0 := by rwa [Function.iterate_zero, id.def] exact isMin_iterate_pred_of_eq_of_ne h_pred_eq_pred (Nat.succ_ne_zero n) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) ⊢ pred^[Nat.succ n] i0 < i0 [PROOFSTEP] refine' lt_of_le_of_ne (pred_iterate_le _ _) fun h_pred_iterate_eq ↦ hn _ [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) h_pred_iterate_eq : pred^[Nat.succ n] i0 = i0 ⊢ IsMin (pred^[Nat.succ n] i0) [PROOFSTEP] have h_pred_eq_pred : pred^[n.succ] i0 = pred^[0] i0 := by rwa [Function.iterate_zero, id.def] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) h_pred_iterate_eq : pred^[Nat.succ n] i0 = i0 ⊢ pred^[Nat.succ n] i0 = pred^[0] i0 [PROOFSTEP] rwa [Function.iterate_zero, id.def] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) h_pred_iterate_eq : pred^[Nat.succ n] i0 = i0 h_pred_eq_pred : pred^[Nat.succ n] i0 = pred^[0] i0 ⊢ IsMin (pred^[Nat.succ n] i0) [PROOFSTEP] exact isMin_iterate_pred_of_eq_of_ne h_pred_eq_pred (Nat.succ_ne_zero n) [GOAL] case succ ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) [PROOFSTEP] let m := (-toZ i0 (pred^[n.succ] i0)).toNat [GOAL] case succ ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) [PROOFSTEP] have h_eq : pred^[m] i0 = pred^[n.succ] i0 := iterate_pred_toZ _ this [GOAL] case succ ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) [PROOFSTEP] by_cases hmn : m = n.succ [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : m = Nat.succ n ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) [PROOFSTEP] nth_rw 2 [← hmn] [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : m = Nat.succ n ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑m [PROOFSTEP] rw [Int.toNat_eq_max, toZ_of_lt this, max_eq_left, neg_neg] [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : m = Nat.succ n ⊢ 0 ≤ - -↑(Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[Nat.succ n] i0)) [PROOFSTEP] rw [neg_neg] [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : m = Nat.succ n ⊢ 0 ≤ ↑(Nat.find (_ : ∃ n_1, pred^[n_1] i0 = pred^[Nat.succ n] i0)) [PROOFSTEP] exact Nat.cast_nonneg _ [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : ¬m = Nat.succ n ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) [PROOFSTEP] suffices : IsMin (pred^[n.succ] i0) [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this✝ : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : ¬m = Nat.succ n this : IsMin (pred^[Nat.succ n] i0) ⊢ toZ i0 (pred^[Nat.succ n] i0) = -↑(Nat.succ n) case this ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : ¬m = Nat.succ n ⊢ IsMin (pred^[Nat.succ n] i0) [PROOFSTEP] exact absurd this hn [GOAL] case this ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i : ι n : ℕ hn : ¬IsMin (pred^[Nat.succ n] i0) this : pred^[Nat.succ n] i0 < i0 m : ℕ := Int.toNat (-toZ i0 (pred^[Nat.succ n] i0)) h_eq : pred^[m] i0 = pred^[Nat.succ n] i0 hmn : ¬m = Nat.succ n ⊢ IsMin (pred^[Nat.succ n] i0) [PROOFSTEP] exact isMin_iterate_pred_of_eq_of_ne h_eq.symm (Ne.symm hmn) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j ⊢ i ≤ j [PROOFSTEP] cases' le_or_lt i0 i with hi hi [GOAL] case inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i0 ≤ i ⊢ i ≤ j [PROOFSTEP] cases' le_or_lt i0 j with hj hj [GOAL] case inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i < i0 ⊢ i ≤ j [PROOFSTEP] cases' le_or_lt i0 j with hj hj [GOAL] case inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i0 ≤ i hj : i0 ≤ j ⊢ i ≤ j [PROOFSTEP] rw [← iterate_succ_toZ i hi, ← iterate_succ_toZ j hj] [GOAL] case inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i0 ≤ i hj : i0 ≤ j ⊢ succ^[Int.toNat (toZ i0 i)] i0 ≤ succ^[Int.toNat (toZ i0 j)] i0 [PROOFSTEP] exact Monotone.monotone_iterate_of_le_map succ_mono (le_succ _) (Int.toNat_le_toNat h_le) [GOAL] case inl.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i0 ≤ i hj : j < i0 ⊢ i ≤ j [PROOFSTEP] exact absurd ((toZ_neg hj).trans_le (toZ_nonneg hi)) (not_lt.mpr h_le) [GOAL] case inr.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i < i0 hj : i0 ≤ j ⊢ i ≤ j [PROOFSTEP] exact hi.le.trans hj [GOAL] case inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i < i0 hj : j < i0 ⊢ i ≤ j [PROOFSTEP] rw [← iterate_pred_toZ i hi, ← iterate_pred_toZ j hj] [GOAL] case inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i < i0 hj : j < i0 ⊢ pred^[Int.toNat (-toZ i0 i)] i0 ≤ pred^[Int.toNat (-toZ i0 j)] i0 [PROOFSTEP] refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le _) (Int.toNat_le_toNat _) [GOAL] case inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i j : ι h_le : toZ i0 i ≤ toZ i0 j hi : i < i0 hj : j < i0 ⊢ -toZ i0 j ≤ -toZ i0 i [PROOFSTEP] exact neg_le_neg h_le [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] by_cases hi_max : IsMax i [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : IsMax i ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] rw [le_antisymm h_le (hi_max h_le)] [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] by_cases hj_min : IsMin j [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : IsMin j ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] rw [le_antisymm h_le (hj_min h_le)] [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] cases' le_or_lt i0 i with hi hi [GOAL] case neg.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] cases' le_or_lt i0 j with hj hj [GOAL] case neg.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] cases' le_or_lt i0 j with hj hj [GOAL] case neg.inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] let m := Nat.find (exists_succ_iterate_of_le h_le) [GOAL] case neg.inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] have hm : succ^[m] i = j := Nat.find_spec (exists_succ_iterate_of_le h_le) [GOAL] case neg.inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] have hj_eq : j = succ^[(toZ i0 i).toNat + m] i0 := by rw [← hm, add_comm] nth_rw 1 [← iterate_succ_toZ i hi] rw [Function.iterate_add] rfl [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j ⊢ j = succ^[Int.toNat (toZ i0 i) + m] i0 [PROOFSTEP] rw [← hm, add_comm] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j ⊢ succ^[m] i = succ^[m + Int.toNat (toZ i0 i)] i0 [PROOFSTEP] nth_rw 1 [← iterate_succ_toZ i hi] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j ⊢ succ^[m] (succ^[Int.toNat (toZ i0 i)] i0) = succ^[m + Int.toNat (toZ i0 i)] i0 [PROOFSTEP] rw [Function.iterate_add] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j ⊢ succ^[m] (succ^[Int.toNat (toZ i0 i)] i0) = (succ^[m] ∘ succ^[Int.toNat (toZ i0 i)]) i0 [PROOFSTEP] rfl [GOAL] case neg.inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] by_contra h [GOAL] case neg.inl.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j ⊢ False [PROOFSTEP] by_cases hm0 : m = 0 [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : m = 0 ⊢ False [PROOFSTEP] rw [hm0, Function.iterate_zero, id.def] at hm [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : m = 0 ⊢ False [PROOFSTEP] rw [hm] at h [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 j ≤ toZ i0 j hm0 : m = 0 ⊢ False [PROOFSTEP] exact h (le_of_eq rfl) [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ False [PROOFSTEP] refine' hi_max (max_of_succ_le (le_trans _ (@le_of_toZ_le _ _ _ _ _ i0 j i _))) [GOAL] case neg.refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ succ i ≤ j [PROOFSTEP] have h_succ_le : succ^[(toZ i0 i).toNat + 1] i0 ≤ j := by rw [hj_eq] refine' Monotone.monotone_iterate_of_le_map succ_mono (le_succ i0) (add_le_add_left _ _) exact Nat.one_le_iff_ne_zero.mpr hm0 [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ succ^[Int.toNat (toZ i0 i) + 1] i0 ≤ j [PROOFSTEP] rw [hj_eq] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ succ^[Int.toNat (toZ i0 i) + 1] i0 ≤ succ^[Int.toNat (toZ i0 i) + m] i0 [PROOFSTEP] refine' Monotone.monotone_iterate_of_le_map succ_mono (le_succ i0) (add_le_add_left _ _) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ 1 ≤ m [PROOFSTEP] exact Nat.one_le_iff_ne_zero.mpr hm0 [GOAL] case neg.refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 h_succ_le : succ^[Int.toNat (toZ i0 i) + 1] i0 ≤ j ⊢ succ i ≤ j [PROOFSTEP] rwa [Function.iterate_succ', Function.comp_apply, iterate_succ_toZ i hi] at h_succ_le [GOAL] case neg.refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : i0 ≤ j m : ℕ := Nat.find (_ : ∃ n, succ^[n] i = j) hm : succ^[m] i = j hj_eq : j = succ^[Int.toNat (toZ i0 i) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ toZ i0 j ≤ toZ i0 i [PROOFSTEP] exact le_of_not_le h [GOAL] case neg.inl.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i0 ≤ i hj : j < i0 ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] exact absurd h_le (not_le.mpr (hj.trans_le hi)) [GOAL] case neg.inr.inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : i0 ≤ j ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] exact (toZ_neg hi).le.trans (toZ_nonneg hj) [GOAL] case neg.inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] let m := Nat.find (exists_pred_iterate_of_le h_le) [GOAL] case neg.inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] have hm : pred^[m] j = i := Nat.find_spec (exists_pred_iterate_of_le h_le) [GOAL] case neg.inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] have hj_eq : i = pred^[(-toZ i0 j).toNat + m] i0 := by rw [← hm, add_comm] nth_rw 1 [← iterate_pred_toZ j hj] rw [Function.iterate_add] rfl [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i ⊢ i = pred^[Int.toNat (-toZ i0 j) + m] i0 [PROOFSTEP] rw [← hm, add_comm] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i ⊢ pred^[m] j = pred^[m + Int.toNat (-toZ i0 j)] i0 [PROOFSTEP] nth_rw 1 [← iterate_pred_toZ j hj] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i ⊢ pred^[m] (pred^[Int.toNat (-toZ i0 j)] i0) = pred^[m + Int.toNat (-toZ i0 j)] i0 [PROOFSTEP] rw [Function.iterate_add] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i ⊢ pred^[m] (pred^[Int.toNat (-toZ i0 j)] i0) = (pred^[m] ∘ pred^[Int.toNat (-toZ i0 j)]) i0 [PROOFSTEP] rfl [GOAL] case neg.inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 ⊢ toZ i0 i ≤ toZ i0 j [PROOFSTEP] by_contra h [GOAL] case neg.inr.inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j ⊢ False [PROOFSTEP] by_cases hm0 : m = 0 [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : m = 0 ⊢ False [PROOFSTEP] rw [hm0, Function.iterate_zero, id.def] at hm [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : m = 0 ⊢ False [PROOFSTEP] rw [hm] at h [GOAL] case pos ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 i hm0 : m = 0 ⊢ False [PROOFSTEP] exact h (le_of_eq rfl) [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ False [PROOFSTEP] refine' hj_min (min_of_le_pred _) [GOAL] case neg ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ j ≤ pred j [PROOFSTEP] refine' (@le_of_toZ_le _ _ _ _ _ i0 j i _).trans _ [GOAL] case neg.refine'_1 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ toZ i0 j ≤ toZ i0 i [PROOFSTEP] exact le_of_not_le h [GOAL] case neg.refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ i ≤ pred j [PROOFSTEP] have h_le_pred : i ≤ pred^[(-toZ i0 j).toNat + 1] i0 := by rw [hj_eq] refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le i0) (add_le_add_left _ _) exact Nat.one_le_iff_ne_zero.mpr hm0 [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ i ≤ pred^[Int.toNat (-toZ i0 j) + 1] i0 [PROOFSTEP] rw [hj_eq] [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ pred^[Int.toNat (-toZ i0 j) + m] i0 ≤ pred^[Int.toNat (-toZ i0 j) + 1] i0 [PROOFSTEP] refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le i0) (add_le_add_left _ _) [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 ⊢ 1 ≤ m [PROOFSTEP] exact Nat.one_le_iff_ne_zero.mpr hm0 [GOAL] case neg.refine'_2 ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : IsSuccArchimedean ι inst✝ : PredOrder ι i0 i✝ i j : ι h_le : i ≤ j hi_max : ¬IsMax i hj_min : ¬IsMin j hi : i < i0 hj : j < i0 m : ℕ := Nat.find (_ : ∃ n, pred^[n] j = i) hm : pred^[m] j = i hj_eq : i = pred^[Int.toNat (-toZ i0 j) + m] i0 h : ¬toZ i0 i ≤ toZ i0 j hm0 : ¬m = 0 h_le_pred : i ≤ pred^[Int.toNat (-toZ i0 j) + 1] i0 ⊢ i ≤ pred j [PROOFSTEP] rwa [Function.iterate_succ', Function.comp_apply, iterate_pred_toZ j hj] at h_le_pred [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι hι : Nonempty ι ⊢ ∀ {a b : ι}, ↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) a ≤ ↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) b ↔ a ≤ b [PROOFSTEP] intro i j [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι hι : Nonempty ι i j : ι ⊢ ↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) i ≤ ↑(Equiv.ofInjective (toZ (Nonempty.some hι)) (_ : Function.Injective (toZ (Nonempty.some hι)))) j ↔ i ≤ j [PROOFSTEP] exact toZ_le_iff i j [GOAL] ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι ⊢ Countable ι [PROOFSTEP] cases' isEmpty_or_nonempty ι with _ hι [GOAL] case inl ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι h✝ : IsEmpty ι ⊢ Countable ι [PROOFSTEP] infer_instance [GOAL] case inr ι : Type u_1 inst✝³ : LinearOrder ι inst✝² : SuccOrder ι inst✝¹ : PredOrder ι inst✝ : IsSuccArchimedean ι hι : Nonempty ι ⊢ Countable ι [PROOFSTEP] exact Countable.of_equiv _ orderIsoRangeToZOfLinearSuccPredArch.symm.toEquiv [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι ⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i [PROOFSTEP] cases' le_or_lt hι.some i with hi hi [GOAL] case inl ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι hi : Nonempty.some hι ≤ i ⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i [PROOFSTEP] have h_nonneg : 0 ≤ toZ hι.some i := toZ_nonneg hi [GOAL] case inl ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι hi : Nonempty.some hι ≤ i h_nonneg : 0 ≤ toZ (Nonempty.some hι) i ⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i [PROOFSTEP] simp_rw [if_pos h_nonneg] [GOAL] case inl ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι hi : Nonempty.some hι ≤ i h_nonneg : 0 ≤ toZ (Nonempty.some hι) i ⊢ succ^[Int.toNat (toZ (Nonempty.some hι) i)] (Nonempty.some hι) = i [PROOFSTEP] exact iterate_succ_toZ i hi [GOAL] case inr ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι hi : i < Nonempty.some hι ⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i [PROOFSTEP] have h_neg : toZ hι.some i < 0 := toZ_neg hi [GOAL] case inr ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι hi : i < Nonempty.some hι h_neg : toZ (Nonempty.some hι) i < 0 ⊢ (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i [PROOFSTEP] simp_rw [if_neg (not_le.mpr h_neg)] [GOAL] case inr ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i : ι hi : i < Nonempty.some hι h_neg : toZ (Nonempty.some hι) i < 0 ⊢ pred^[Int.toNat (-toZ (Nonempty.some hι) i)] (Nonempty.some hι) = i [PROOFSTEP] exact iterate_pred_toZ i hi [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ ⊢ toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n [PROOFSTEP] cases' le_or_lt 0 n with hn hn [GOAL] case inl ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ hn : 0 ≤ n ⊢ toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n [PROOFSTEP] simp_rw [if_pos hn] [GOAL] case inl ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ hn : 0 ≤ n ⊢ toZ (Nonempty.some hι) (succ^[Int.toNat n] (Nonempty.some hι)) = n [PROOFSTEP] rw [toZ_iterate_succ] [GOAL] case inl ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ hn : 0 ≤ n ⊢ ↑(Int.toNat n) = n [PROOFSTEP] exact Int.toNat_of_nonneg hn [GOAL] case inr ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ hn : n < 0 ⊢ toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n [PROOFSTEP] simp_rw [if_neg (not_le.mpr hn)] [GOAL] case inr ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ hn : n < 0 ⊢ toZ (Nonempty.some hι) (pred^[Int.toNat (-n)] (Nonempty.some hι)) = n [PROOFSTEP] rw [toZ_iterate_pred] [GOAL] case inr ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι n : ℤ hn : n < 0 ⊢ -↑(Int.toNat (-n)) = n [PROOFSTEP] simp only [hn.le, Int.toNat_of_nonneg, Right.nonneg_neg_iff, neg_neg] [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι ⊢ ∀ {a b : ι}, ↑{ toFun := toZ (Nonempty.some hι), invFun := fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι), left_inv := (_ : ∀ (i : ι), (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i), right_inv := (_ : ∀ (n : ℤ), toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n) } a ≤ ↑{ toFun := toZ (Nonempty.some hι), invFun := fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι), left_inv := (_ : ∀ (i : ι), (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i), right_inv := (_ : ∀ (n : ℤ), toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n) } b ↔ a ≤ b [PROOFSTEP] intro i j [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : NoMinOrder ι hι : Nonempty ι i j : ι ⊢ ↑{ toFun := toZ (Nonempty.some hι), invFun := fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι), left_inv := (_ : ∀ (i : ι), (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i), right_inv := (_ : ∀ (n : ℤ), toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n) } i ≤ ↑{ toFun := toZ (Nonempty.some hι), invFun := fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι), left_inv := (_ : ∀ (i : ι), (fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) (toZ (Nonempty.some hι) i) = i), right_inv := (_ : ∀ (n : ℤ), toZ (Nonempty.some hι) ((fun n => if 0 ≤ n then succ^[Int.toNat n] (Nonempty.some hι) else pred^[Int.toNat (-n)] (Nonempty.some hι)) n) = n) } j ↔ i ≤ j [PROOFSTEP] exact toZ_le_iff i j [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι i : ι ⊢ (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι i : ι ⊢ succ^[Int.toNat (toZ ⊥ i)] ⊥ = i [PROOFSTEP] exact iterate_succ_toZ i bot_le [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι n : ℕ ⊢ (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι n : ℕ ⊢ Int.toNat (toZ ⊥ (succ^[n] ⊥)) = n [PROOFSTEP] rw [toZ_iterate_succ] [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι n : ℕ ⊢ Int.toNat ↑n = n [PROOFSTEP] exact Int.toNat_coe_nat n [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι ⊢ ∀ {a b : ι}, ↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥, left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i), right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) } a ≤ ↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥, left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i), right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) } b ↔ a ≤ b [PROOFSTEP] intro i j [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι i j : ι ⊢ ↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥, left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i), right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) } i ≤ ↑{ toFun := fun i => Int.toNat (toZ ⊥ i), invFun := fun n => succ^[n] ⊥, left_inv := (_ : ∀ (i : ι), (fun n => succ^[n] ⊥) ((fun i => Int.toNat (toZ ⊥ i)) i) = i), right_inv := (_ : ∀ (n : ℕ), (fun i => Int.toNat (toZ ⊥ i)) ((fun n => succ^[n] ⊥) n) = n) } j ↔ i ≤ j [PROOFSTEP] simp only [Equiv.coe_fn_mk, Int.toNat_le] [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : NoMaxOrder ι inst✝ : OrderBot ι i j : ι ⊢ toZ ⊥ i ≤ ↑(Int.toNat (toZ ⊥ j)) ↔ i ≤ j [PROOFSTEP] rw [← @toZ_le_iff ι _ _ _ _ ⊥, Int.toNat_of_nonneg (toZ_nonneg bot_le)] [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } ⊢ (fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }) ((fun n => succ^[↑n] ⊥) n) = n [PROOFSTEP] ext1 [GOAL] case a ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } ⊢ ↑((fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }) ((fun n => succ^[↑n] ⊥) n)) = ↑n [PROOFSTEP] simp only [Subtype.coe_mk] [GOAL] case a ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } ⊢ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) = ↑n [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case a.refine'_1 ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } ⊢ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) ≤ ↑n [PROOFSTEP] rw [Int.toNat_le] [GOAL] case a.refine'_1 ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } ⊢ toZ ⊥ (succ^[↑n] ⊥) ≤ ↑↑n [PROOFSTEP] exact toZ_iterate_succ_le _ [GOAL] case a.refine'_2 ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } ⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) [PROOFSTEP] by_cases hn_max : IsMax (succ^[↑n] (⊥ : ι)) [GOAL] case pos ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } hn_max : IsMax (succ^[↑n] ⊥) ⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) [PROOFSTEP] rw [← isTop_iff_isMax, isTop_iff_eq_top] at hn_max [GOAL] case pos ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } hn_max✝ : IsTop (succ^[↑n] ⊥) hn_max : succ^[↑n] ⊥ = ⊤ ⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) [PROOFSTEP] rw [hn_max] [GOAL] case pos ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } hn_max✝ : IsTop (succ^[↑n] ⊥) hn_max : succ^[↑n] ⊥ = ⊤ ⊢ ↑n ≤ Int.toNat (toZ ⊥ ⊤) [PROOFSTEP] exact Nat.lt_succ_iff.mp (Finset.mem_range.mp n.prop) [GOAL] case neg ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } hn_max : ¬IsMax (succ^[↑n] ⊥) ⊢ ↑n ≤ Int.toNat (toZ ⊥ (succ^[↑n] ⊥)) [PROOFSTEP] rw [toZ_iterate_succ_of_not_isMax _ hn_max] [GOAL] case neg ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) } hn_max : ¬IsMax (succ^[↑n] ⊥) ⊢ ↑n ≤ Int.toNat ↑↑n [PROOFSTEP] simp only [Int.toNat_coe_nat, le_refl] [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι ⊢ ∀ {a b : ι}, ↑{ toFun := fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }, invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i), right_inv := (_ : ∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }), (fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }) ((fun n => succ^[↑n] ⊥) n) = n) } a ≤ ↑{ toFun := fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }, invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i), right_inv := (_ : ∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }), (fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }) ((fun n => succ^[↑n] ⊥) n) = n) } b ↔ a ≤ b [PROOFSTEP] intro i j [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι i j : ι ⊢ ↑{ toFun := fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }, invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i), right_inv := (_ : ∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }), (fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }) ((fun n => succ^[↑n] ⊥) n) = n) } i ≤ ↑{ toFun := fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }, invFun := fun n => succ^[↑n] ⊥, left_inv := (_ : ∀ (i : ι), succ^[Int.toNat (toZ ⊥ i)] ⊥ = i), right_inv := (_ : ∀ (n : { x // x ∈ Finset.range (Int.toNat (toZ ⊥ ⊤) + 1) }), (fun i => { val := Int.toNat (toZ ⊥ i), property := (_ : Int.toNat (toZ ⊥ i) ∈ Finset.range (Nat.succ (Int.toNat (toZ ⊥ ⊤)))) }) ((fun n => succ^[↑n] ⊥) n) = n) } j ↔ i ≤ j [PROOFSTEP] simp only [Equiv.coe_fn_mk, Subtype.mk_le_mk, Int.toNat_le] [GOAL] ι : Type u_1 inst✝⁵ : LinearOrder ι inst✝⁴ : SuccOrder ι inst✝³ : PredOrder ι inst✝² : IsSuccArchimedean ι inst✝¹ : OrderBot ι inst✝ : OrderTop ι i j : ι ⊢ toZ ⊥ i ≤ ↑(Int.toNat (toZ ⊥ j)) ↔ i ≤ j [PROOFSTEP] rw [← @toZ_le_iff ι _ _ _ _ ⊥, Int.toNat_of_nonneg (toZ_nonneg bot_le)]
{"mathlib_filename": "Mathlib.Order.SuccPred.LinearLocallyFinite", "llama_tokens": 44157}
[GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α ⊢ Finset.univ = {⊤, ⊥} [PROOFSTEP] change Finset.map _ (Finset.univ : Finset Bool) = _ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α ⊢ Finset.map { toFun := ↑IsSimpleOrder.equivBool.symm, inj' := (_ : Function.Injective ↑IsSimpleOrder.equivBool.symm) } Finset.univ = {⊤, ⊥} [PROOFSTEP] rw [Fintype.univ_bool] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α ⊢ Finset.map { toFun := ↑IsSimpleOrder.equivBool.symm, inj' := (_ : Function.Injective ↑IsSimpleOrder.equivBool.symm) } {true, false} = {⊤, ⊥} [PROOFSTEP] simp only [Finset.map_insert, Function.Embedding.coeFn_mk, Finset.map_singleton] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α ⊢ {↑IsSimpleOrder.equivBool.symm true, ↑IsSimpleOrder.equivBool.symm false} = {⊤, ⊥} [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 a : Bool ⊢ a = ⊥ ∨ a = ⊤ [PROOFSTEP] rw [← Finset.mem_singleton, Or.comm, ← Finset.mem_insert, top_eq_true, bot_eq_false, ← Fintype.univ_bool] [GOAL] α : Type u_1 β : Type u_2 a : Bool ⊢ a ∈ Finset.univ [PROOFSTEP] apply Finset.mem_univ [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : Finite α ⊢ IsCoatomic α [PROOFSTEP] refine' IsCoatomic.mk fun b => or_iff_not_imp_left.2 fun ht => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : Finite α b : α ht : ¬b = ⊤ ⊢ ∃ a, IsCoatom a ∧ b ≤ a [PROOFSTEP] obtain ⟨c, hc, hmax⟩ := Set.Finite.exists_maximal_wrt id {x : α | b ≤ x ∧ x ≠ ⊤} (Set.toFinite _) ⟨b, le_rfl, ht⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : Finite α b : α ht : ¬b = ⊤ c : α hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤} hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a' ⊢ ∃ a, IsCoatom a ∧ b ≤ a [PROOFSTEP] refine' ⟨c, ⟨hc.2, fun y hcy => _⟩, hc.1⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : Finite α b : α ht : ¬b = ⊤ c : α hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤} hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a' y : α hcy : c < y ⊢ y = ⊤ [PROOFSTEP] by_contra hyt [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : Finite α b : α ht : ¬b = ⊤ c : α hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤} hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a' y : α hcy : c < y hyt : ¬y = ⊤ ⊢ False [PROOFSTEP] obtain rfl : c = y := hmax y ⟨hc.1.trans hcy.le, hyt⟩ hcy.le [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : Finite α b : α ht : ¬b = ⊤ c : α hc : c ∈ {x | b ≤ x ∧ x ≠ ⊤} hmax : ∀ (a' : α), a' ∈ {x | b ≤ x ∧ x ≠ ⊤} → id c ≤ id a' → id c = id a' hcy : c < c hyt : ¬c = ⊤ ⊢ False [PROOFSTEP] exact (lt_self_iff_false _).mp hcy
{"mathlib_filename": "Mathlib.Order.Atoms.Finite", "llama_tokens": 1636}
{"mathlib_filename": "Mathlib.Order.RelIso.Set", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Order.RelIso.Group", "llama_tokens": 0}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : SupSet α inst✝¹ : SupSet β inst✝ : sSupHomClass F α β f : F g : ι → α ⊢ ↑f (⨆ (i : ι), g i) = ⨆ (i : ι), ↑f (g i) [PROOFSTEP] simp [iSup, ← Set.range_comp, Function.comp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : SupSet α inst✝¹ : SupSet β inst✝ : sSupHomClass F α β f : F g : (i : ι) → κ i → α ⊢ ↑f (⨆ (i : ι) (j : κ i), g i j) = ⨆ (i : ι) (j : κ i), ↑f (g i j) [PROOFSTEP] simp_rw [map_iSup] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : InfSet α inst✝¹ : InfSet β inst✝ : sInfHomClass F α β f : F g : ι → α ⊢ ↑f (⨅ (i : ι), g i) = ⨅ (i : ι), ↑f (g i) [PROOFSTEP] simp [iInf, ← Set.range_comp, Function.comp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : InfSet α inst✝¹ : InfSet β inst✝ : sInfHomClass F α β f : F g : (i : ι) → κ i → α ⊢ ↑f (⨅ (i : ι) (j : κ i), g i j) = ⨅ (i : ι) (j : κ i), ↑f (g i j) [PROOFSTEP] simp_rw [map_iInf] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sSupHomClass F α β src✝ : sSupHomClass F α β := inst✝ f : F a b : α ⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b [PROOFSTEP] rw [← sSup_pair, map_sSup] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sSupHomClass F α β src✝ : sSupHomClass F α β := inst✝ f : F a b : α ⊢ sSup (↑f '' {a, b}) = ↑f a ⊔ ↑f b [PROOFSTEP] simp only [Set.image_pair, sSup_insert, sSup_singleton] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sSupHomClass F α β src✝ : sSupHomClass F α β := inst✝ f : F ⊢ ↑f ⊥ = ⊥ [PROOFSTEP] rw [← sSup_empty, map_sSup, Set.image_empty] -- Porting note: rw [sSup_empty] does not work, but exact sSup_empty does? [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sSupHomClass F α β src✝ : sSupHomClass F α β := inst✝ f : F ⊢ sSup ∅ = ⊥ [PROOFSTEP] exact sSup_empty [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sInfHomClass F α β src✝ : sInfHomClass F α β := inst✝ f : F a b : α ⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b [PROOFSTEP] rw [← sInf_pair, map_sInf, Set.image_pair] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sInfHomClass F α β src✝ : sInfHomClass F α β := inst✝ f : F a b : α ⊢ sInf {↑f a, ↑f b} = ↑f a ⊓ ↑f b [PROOFSTEP] simp only [Set.image_pair, sInf_insert, sInf_singleton] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sInfHomClass F α β src✝ : sInfHomClass F α β := inst✝ f : F ⊢ ↑f ⊤ = ⊤ [PROOFSTEP] rw [← sInf_empty, map_sInf, Set.image_empty] -- Porting note: rw [sInf_empty] does not work, but exact sInf_empty does? [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : sInfHomClass F α β src✝ : sInfHomClass F α β := inst✝ f : F ⊢ sInf ∅ = ⊤ [PROOFSTEP] exact sInf_empty [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : OrderIsoClass F α β src✝ : OrderHomClass F α β := let_fun this := inferInstance; this f : F s : Set α c : (fun x => β) (sSup s) ⊢ ↑f (sSup s) ≤ c ↔ sSup (↑f '' s) ≤ c [PROOFSTEP] simp only [← le_map_inv_iff, sSup_le_iff, Set.ball_image_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝² : CompleteLattice α inst✝¹ : CompleteLattice β inst✝ : OrderIsoClass F α β src✝ : OrderHomClass F α β := let_fun this := inferInstance; this f : F s : Set α c : (fun x => β) (sInf s) ⊢ c ≤ ↑f (sInf s) ↔ c ≤ sInf (↑f '' s) [PROOFSTEP] simp only [← map_inv_le_iff, le_sInf_iff, Set.ball_image_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ f g : sSupHom α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ g : sSupHom α β toFun✝ : α → β map_sSup'✝ : ∀ (s : Set α), toFun✝ (sSup s) = sSup (toFun✝ '' s) h : { toFun := toFun✝, map_sSup' := map_sSup'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_sSup' := map_sSup'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ toFun✝¹ : α → β map_sSup'✝¹ : ∀ (s : Set α), toFun✝¹ (sSup s) = sSup (toFun✝¹ '' s) toFun✝ : α → β map_sSup'✝ : ∀ (s : Set α), toFun✝ (sSup s) = sSup (toFun✝ '' s) h : { toFun := toFun✝¹, map_sSup' := map_sSup'✝¹ }.toFun = { toFun := toFun✝, map_sSup' := map_sSup'✝ }.toFun ⊢ { toFun := toFun✝¹, map_sSup' := map_sSup'✝¹ } = { toFun := toFun✝, map_sSup' := map_sSup'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ s : Set α ⊢ id (sSup s) = sSup (id '' s) [PROOFSTEP] rw [id, Set.image_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ f : sSupHom β γ g : sSupHom α β s : Set α ⊢ (↑f ∘ ↑g) (sSup s) = sSup (↑f ∘ ↑g '' s) [PROOFSTEP] rw [comp_apply, map_sSup, map_sSup, Set.image_image] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ f : sSupHom β γ g : sSupHom α β s : Set α ⊢ sSup ((fun x => ↑f (↑g x)) '' s) = sSup (↑f ∘ ↑g '' s) [PROOFSTEP] simp only [Function.comp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : SupSet α inst✝² : SupSet β inst✝¹ : SupSet γ inst✝ : SupSet δ g : sSupHom β γ f₁ f₂ : sSupHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝ : SupSet α x✝ : CompleteLattice β s : Set α ⊢ (fun x => ⊥) (sSup s) = sSup ((fun x => ⊥) '' s) [PROOFSTEP] obtain rfl | hs := s.eq_empty_or_nonempty [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝ : SupSet α x✝ : CompleteLattice β ⊢ (fun x => ⊥) (sSup ∅) = sSup ((fun x => ⊥) '' ∅) [PROOFSTEP] rw [Set.image_empty, sSup_empty] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝ : SupSet α x✝ : CompleteLattice β s : Set α hs : Set.Nonempty s ⊢ (fun x => ⊥) (sSup s) = sSup ((fun x => ⊥) '' s) [PROOFSTEP] rw [hs.image_const, sSup_singleton] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ f g : sInfHom α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ g : sInfHom α β toFun✝ : α → β map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s) h : { toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_sInf' := map_sInf'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ toFun✝¹ : α → β map_sInf'✝¹ : ∀ (s : Set α), toFun✝¹ (sInf s) = sInf (toFun✝¹ '' s) toFun✝ : α → β map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s) h : { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }.toFun = { toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun ⊢ { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ } = { toFun := toFun✝, map_sInf' := map_sInf'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ s : Set α ⊢ id (sInf s) = sInf (id '' s) [PROOFSTEP] rw [id, Set.image_id] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ f : sInfHom β γ g : sInfHom α β s : Set α ⊢ (↑f ∘ ↑g) (sInf s) = sInf (↑f ∘ ↑g '' s) [PROOFSTEP] rw [comp_apply, map_sInf, map_sInf, Set.image_image] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ f : sInfHom β γ g : sInfHom α β s : Set α ⊢ sInf ((fun x => ↑f (↑g x)) '' s) = sInf (↑f ∘ ↑g '' s) [PROOFSTEP] simp only [Function.comp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : InfSet α inst✝² : InfSet β inst✝¹ : InfSet γ inst✝ : InfSet δ g : sInfHom β γ f₁ f₂ : sInfHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝¹ : InfSet α inst✝ : CompleteLattice β s : Set α ⊢ (fun x => ⊤) (sInf s) = sInf ((fun x => ⊤) '' s) [PROOFSTEP] obtain rfl | hs := s.eq_empty_or_nonempty [GOAL] case inl F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝¹ : InfSet α inst✝ : CompleteLattice β ⊢ (fun x => ⊤) (sInf ∅) = sInf ((fun x => ⊤) '' ∅) [PROOFSTEP] rw [Set.image_empty, sInf_empty] [GOAL] case inr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝¹ : InfSet α inst✝ : CompleteLattice β s : Set α hs : Set.Nonempty s ⊢ (fun x => ⊤) (sInf s) = sInf ((fun x => ⊤) '' s) [PROOFSTEP] rw [hs.image_const, sInf_singleton] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ f g : FrameHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ g : FrameHom α β toFun✝ : α → β map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤ map_sSup'✝ : ∀ (s : Set α), InfHom.toFun { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom (sSup s) = sSup ({ toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom.toFun '' s) h : (fun f => f.toFun) { toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }, map_sSup' := map_sSup'✝ } = (fun f => f.toFun) g ⊢ { toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }, map_sSup' := map_sSup'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ toFun✝¹ : α → β map_inf'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊓ b) = toFun✝¹ a ⊓ toFun✝¹ b map_top'✝¹ : InfHom.toFun { toFun := toFun✝¹, map_inf' := map_inf'✝¹ } ⊤ = ⊤ map_sSup'✝¹ : ∀ (s : Set α), InfHom.toFun { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ }.toInfHom (sSup s) = sSup ({ toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ }.toInfHom.toFun '' s) toFun✝ : α → β map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤ map_sSup'✝ : ∀ (s : Set α), InfHom.toFun { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom (sSup s) = sSup ({ toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }.toInfHom.toFun '' s) h : (fun f => f.toFun) { toInfTopHom := { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ }, map_sSup' := map_sSup'✝¹ } = (fun f => f.toFun) { toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }, map_sSup' := map_sSup'✝ } ⊢ { toInfTopHom := { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ }, map_sSup' := map_sSup'✝¹ } = { toInfTopHom := { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ }, map_sSup' := map_sSup'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ g : FrameHom β γ f₁ f₂ : FrameHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ f g : CompleteLatticeHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ g : CompleteLatticeHom α β toFun✝ : α → β map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s) map_sSup'✝ : ∀ (s : Set α), sInfHom.toFun { toFun := toFun✝, map_sInf' := map_sInf'✝ } (sSup s) = sSup ({ toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun '' s) h : (fun f => f.toFun) { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ } = (fun f => f.toFun) g ⊢ { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ toFun✝¹ : α → β map_sInf'✝¹ : ∀ (s : Set α), toFun✝¹ (sInf s) = sInf (toFun✝¹ '' s) map_sSup'✝¹ : ∀ (s : Set α), sInfHom.toFun { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ } (sSup s) = sSup ({ toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }.toFun '' s) toFun✝ : α → β map_sInf'✝ : ∀ (s : Set α), toFun✝ (sInf s) = sInf (toFun✝ '' s) map_sSup'✝ : ∀ (s : Set α), sInfHom.toFun { toFun := toFun✝, map_sInf' := map_sInf'✝ } (sSup s) = sSup ({ toFun := toFun✝, map_sInf' := map_sInf'✝ }.toFun '' s) h : (fun f => f.toFun) { tosInfHom := { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }, map_sSup' := map_sSup'✝¹ } = (fun f => f.toFun) { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ } ⊢ { tosInfHom := { toFun := toFun✝¹, map_sInf' := map_sInf'✝¹ }, map_sSup' := map_sSup'✝¹ } = { tosInfHom := { toFun := toFun✝, map_sInf' := map_sInf'✝ }, map_sSup' := map_sSup'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝³ : CompleteLattice α inst✝² : CompleteLattice β inst✝¹ : CompleteLattice γ inst✝ : CompleteLattice δ g : CompleteLatticeHom β γ f₁ f₂ : CompleteLatticeHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set β) ⊢ ⋂ (t : Set β) (_ : t ∈ s), f ⁻¹' t = sInf (preimage f '' s) [PROOFSTEP] simp only [Set.sInf_eq_sInter, Set.sInter_image] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set β) ⊢ ⋃ (t : Set β) (_ : t ∈ s), (fun x => f x) ⁻¹' t = sSup ({ toFun := preimage f, map_sInf' := (_ : ∀ (s : Set (Set β)), f ⁻¹' ⋂₀ s = sInf (preimage f '' s)) }.toFun '' s) [PROOFSTEP] simp only [Set.sSup_eq_sUnion, Set.sUnion_image] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) ⊢ f '' sSup s = sSup (image f '' s) [PROOFSTEP] ext b [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) b : β ⊢ b ∈ f '' sSup s ↔ b ∈ sSup (image f '' s) [PROOFSTEP] simp only [sSup_eq_sUnion, mem_image, mem_sUnion, exists_prop, sUnion_image, mem_iUnion] [GOAL] case h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) b : β ⊢ (∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = b) ↔ ∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = b [PROOFSTEP] constructor [GOAL] case h.mp F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) b : β ⊢ (∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = b) → ∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = b [PROOFSTEP] rintro ⟨a, ⟨t, ht₁, ht₂⟩, rfl⟩ [GOAL] case h.mp.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) a : α t : Set α ht₁ : t ∈ s ht₂ : a ∈ t ⊢ ∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = f a [PROOFSTEP] exact ⟨t, ht₁, a, ht₂, rfl⟩ [GOAL] case h.mpr F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) b : β ⊢ (∃ i, i ∈ s ∧ ∃ x, x ∈ i ∧ f x = b) → ∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = b [PROOFSTEP] rintro ⟨t, ht₁, a, ht₂, rfl⟩ [GOAL] case h.mpr.intro.intro.intro.intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 f : α → β s : Set (Set α) t : Set α ht₁ : t ∈ s a : α ht₂ : a ∈ t ⊢ ∃ x, (∃ t, t ∈ s ∧ x ∈ t) ∧ f x = f a [PROOFSTEP] exact ⟨a, ⟨t, ht₁, ht₂⟩, rfl⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 e : α ≃ β s : Set α ⊢ (fun s => ↑e.symm '' s) ((fun s => ↑e '' s) s) = s [PROOFSTEP] simp only [← image_comp, Equiv.symm_comp_self, id.def, image_id'] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 e : α ≃ β s : Set β ⊢ (fun s => ↑e '' s) ((fun s => ↑e.symm '' s) s) = s [PROOFSTEP] simp only [← image_comp, Equiv.self_comp_symm, id.def, image_id'] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 e : α ≃ β a✝ b✝ : Set α h : ↑{ toFun := fun s => ↑e '' s, invFun := fun s => ↑e.symm '' s, left_inv := (_ : ∀ (s : Set α), ↑e.symm '' (fun s => ↑e '' s) s = s), right_inv := (_ : ∀ (s : Set β), ↑e '' (fun s => ↑e.symm '' s) s = s) } a✝ ≤ ↑{ toFun := fun s => ↑e '' s, invFun := fun s => ↑e.symm '' s, left_inv := (_ : ∀ (s : Set α), ↑e.symm '' (fun s => ↑e '' s) s = s), right_inv := (_ : ∀ (s : Set β), ↑e '' (fun s => ↑e.symm '' s) s = s) } b✝ ⊢ a✝ ≤ b✝ [PROOFSTEP] simpa using @monotone_image _ _ e.symm _ _ h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝ : CompleteLattice α x : α × α s : Set (α × α) ⊢ (fun x => x.fst ⊔ x.snd) (sSup s) = sSup ((fun x => x.fst ⊔ x.snd) '' s) [PROOFSTEP] simp_rw [Prod.fst_sSup, Prod.snd_sSup, sSup_image, iSup_sup_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 ι : Sort u_6 κ : ι → Sort u_7 inst✝ : CompleteLattice α x : α × α s : Set (α × α) ⊢ (fun x => x.fst ⊓ x.snd) (sInf s) = sInf ((fun x => x.fst ⊓ x.snd) '' s) [PROOFSTEP] simp_rw [Prod.fst_sInf, Prod.snd_sInf, sInf_image, iInf_inf_eq]
{"mathlib_filename": "Mathlib.Order.Hom.CompleteLattice", "llama_tokens": 11705}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f g h : α → β ⊢ map id = id [PROOFSTEP] ext ⟨f⟩ [GOAL] case h.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g h : α → β x✝ : Germ l β f : α → β ⊢ map id (Quot.mk Setoid.r f) = id (Quot.mk Setoid.r f) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g✝ h : α → β op : β → γ → δ f f' : α → β Hf✝ : Setoid.r f f' g g' : α → γ Hg✝ : Setoid.r g g' x : α Hf : f x = f' x Hg : g x = g' x ⊢ (fun f g x => op (f x) (g x)) f g x = (fun f g x => op (f x) (g x)) f' g' x [PROOFSTEP] simp only [Hf, Hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β f✝ : Germ l β f : α → β ⊢ 1 • ↑f = ↑f [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β f✝ : Germ l β f : α → β ⊢ 1 • f =ᶠ[l] f [PROOFSTEP] simp only [one_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β f✝ : Germ l β f : α → β ⊢ f =ᶠ[l] f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β c₁ c₂ : M f✝ : Germ l β f : α → β ⊢ (c₁ * c₂) • ↑f = c₁ • c₂ • ↑f [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β c₁ c₂ : M f✝ : Germ l β f : α → β ⊢ (c₁ * c₂) • f =ᶠ[l] c₁ • c₂ • f [PROOFSTEP] simp only [mul_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β c₁ c₂ : M f✝ : Germ l β f : α → β ⊢ c₁ • c₂ • f =ᶠ[l] c₁ • c₂ • f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β f✝ : Germ l β f : α → β ⊢ 1 • ↑f = ↑f [PROOFSTEP] simp only [← coe_one, ← coe_smul', one_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β c₁✝ c₂✝ : Germ l M f✝ : Germ l β c₁ c₂ : α → M f : α → β ⊢ (↑c₁ * ↑c₂) • ↑f = ↑c₁ • ↑c₂ • ↑f [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β c₁✝ c₂✝ : Germ l M f✝ : Germ l β c₁ c₂ : α → M f : α → β ⊢ (c₁ * c₂) • f =ᶠ[l] c₁ • c₂ • f [PROOFSTEP] simp only [mul_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝¹ : Monoid M inst✝ : MulAction M β c₁✝ c₂✝ : Germ l M f✝ : Germ l β c₁ c₂ : α → M f : α → β ⊢ c₁ • c₂ • f =ᶠ[l] c₁ • c₂ • f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c : M ⊢ c • 0 = 0 [PROOFSTEP] simp only [← coe_zero, ← coe_smul, smul_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g✝¹ h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c : M f✝ g✝ : Germ l N f g : α → N ⊢ c • (↑f + ↑g) = c • ↑f + c • ↑g [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g✝¹ h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c : M f✝ g✝ : Germ l N f g : α → N ⊢ c • (f + g) =ᶠ[l] c • f + c • g [PROOFSTEP] simp only [smul_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g✝¹ h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c : M f✝ g✝ : Germ l N f g : α → N ⊢ c • f + c • g =ᶠ[l] c • f + c • g [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c✝ : Germ l M c : α → M ⊢ ↑c • 0 = 0 [PROOFSTEP] simp only [← coe_zero, ← coe_smul', smul_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g✝¹ h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c✝ : Germ l M f✝ g✝ : Germ l N c : α → M f g : α → N ⊢ ↑c • (↑f + ↑g) = ↑c • ↑f + ↑c • ↑g [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g✝¹ h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c✝ : Germ l M f✝ g✝ : Germ l N c : α → M f g : α → N ⊢ c • (f + g) =ᶠ[l] c • f + c • g [PROOFSTEP] simp only [smul_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g✝¹ h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : DistribMulAction M N c✝ : Germ l M f✝ g✝ : Germ l N c : α → M f g : α → N ⊢ c • f + c • g =ᶠ[l] c • f + c • g [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M c₁ c₂ : R f✝ : Germ l M f : α → M ⊢ (c₁ + c₂) • ↑f = c₁ • ↑f + c₂ • ↑f [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M c₁ c₂ : R f✝ : Germ l M f : α → M ⊢ (c₁ + c₂) • f =ᶠ[l] c₁ • f + c₂ • f [PROOFSTEP] simp only [add_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M c₁ c₂ : R f✝ : Germ l M f : α → M ⊢ c₁ • f + c₂ • f =ᶠ[l] c₁ • f + c₂ • f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f✝ : Germ l M f : α → M ⊢ 0 • ↑f = 0 [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f✝ : Germ l M f : α → M ⊢ 0 • f =ᶠ[l] 0 [PROOFSTEP] simp only [zero_smul, coe_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f✝ : Germ l M f : α → M ⊢ 0 =ᶠ[l] 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M c₁✝ c₂✝ : Germ l R f✝ : Germ l M c₁ c₂ : α → R f : α → M ⊢ (↑c₁ + ↑c₂) • ↑f = ↑c₁ • ↑f + ↑c₂ • ↑f [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M c₁✝ c₂✝ : Germ l R f✝ : Germ l M c₁ c₂ : α → R f : α → M ⊢ (c₁ + c₂) • f =ᶠ[l] c₁ • f + c₂ • f [PROOFSTEP] simp only [add_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M c₁✝ c₂✝ : Germ l R f✝ : Germ l M c₁ c₂ : α → R f : α → M ⊢ c₁ • f + c₂ • f =ᶠ[l] c₁ • f + c₂ • f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝¹ g h : α → β M : Type u_5 N : Type u_6 R : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f✝ : Germ l M f : α → M ⊢ 0 • ↑f = 0 [PROOFSTEP] simp only [← coe_zero, ← coe_smul', zero_smul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g✝ h✝ : α → β inst✝² : Mul β inst✝¹ : LE β inst✝ : ExistsMulOfLE β x y : Germ l β f g : α → β h : f ≤ᶠ[l] g ⊢ ∃ c, ↑g = ↑f * c [PROOFSTEP] classical choose c hc using fun x (hx : f x ≤ g x) ↦ exists_mul_of_le hx refine ⟨ofFun <| fun x ↦ if hx : f x ≤ g x then c x hx else f x, coe_eq.2 ?_⟩ filter_upwards [h] with x hx rw [dif_pos hx, hc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g✝ h✝ : α → β inst✝² : Mul β inst✝¹ : LE β inst✝ : ExistsMulOfLE β x y : Germ l β f g : α → β h : f ≤ᶠ[l] g ⊢ ∃ c, ↑g = ↑f * c [PROOFSTEP] choose c hc using fun x (hx : f x ≤ g x) ↦ exists_mul_of_le hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g✝ h✝ : α → β inst✝² : Mul β inst✝¹ : LE β inst✝ : ExistsMulOfLE β x y : Germ l β f g : α → β h : f ≤ᶠ[l] g c : (x : α) → f x ≤ g x → β hc : ∀ (x : α) (hx : f x ≤ g x), g x = f x * c x hx ⊢ ∃ c, ↑g = ↑f * c [PROOFSTEP] refine ⟨ofFun <| fun x ↦ if hx : f x ≤ g x then c x hx else f x, coe_eq.2 ?_⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g✝ h✝ : α → β inst✝² : Mul β inst✝¹ : LE β inst✝ : ExistsMulOfLE β x y : Germ l β f g : α → β h : f ≤ᶠ[l] g c : (x : α) → f x ≤ g x → β hc : ∀ (x : α) (hx : f x ≤ g x), g x = f x * c x hx ⊢ g =ᶠ[l] (fun f g x => (fun x x_1 => x * x_1) (f x) (g x)) f fun x => if hx : f x ≤ g x then c x hx else f x [PROOFSTEP] filter_upwards [h] with x hx [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 l : Filter α f✝ g✝ h✝ : α → β inst✝² : Mul β inst✝¹ : LE β inst✝ : ExistsMulOfLE β x✝ y : Germ l β f g : α → β h : f ≤ᶠ[l] g c : (x : α) → f x ≤ g x → β hc : ∀ (x : α) (hx : f x ≤ g x), g x = f x * c x hx x : α hx : f x ≤ g x ⊢ g x = f x * if hx : f x ≤ g x then c x hx else f x [PROOFSTEP] rw [dif_pos hx, hc]
{"mathlib_filename": "Mathlib.Order.Filter.Germ", "llama_tokens": 6049}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop F : Type u_5 inst✝ : RelHomClass F r s f : F a : α ⊢ Acc s (↑f a) → Acc r a [PROOFSTEP] generalize h : f a = b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop F : Type u_5 inst✝ : RelHomClass F r s f : F a : α b : β h : ↑f a = b ⊢ Acc s b → Acc r a [PROOFSTEP] intro ac [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop F : Type u_5 inst✝ : RelHomClass F r s f : F a : α b : β h : ↑f a = b ac : Acc s b ⊢ Acc r a [PROOFSTEP] induction' ac with _ H IH generalizing a [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop F : Type u_5 inst✝ : RelHomClass F r s f : F a✝ : α b : β h✝ : ↑f a✝ = b x✝ : β H : ∀ (y : β), s y x✝ → Acc s y IH : ∀ (y : β), s y x✝ → ∀ (a : α), ↑f a = y → Acc r a a : α h : ↑f a = x✝ ⊢ Acc r a [PROOFSTEP] subst h [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop F : Type u_5 inst✝ : RelHomClass F r s f : F a✝ : α b : β h : ↑f a✝ = b a : α H : ∀ (y : β), s y (↑f a) → Acc s y IH : ∀ (y : β), s y (↑f a) → ∀ (a : α), ↑f a = y → Acc r a ⊢ Acc r a [PROOFSTEP] exact ⟨_, fun a' h => IH (f a') (map_rel f h) _ rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f g : r →r s h : (fun o => o.toFun) f = (fun o => o.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop g : r →r s toFun✝ : α → β map_rel'✝ : ∀ {a b : α}, r a b → s (toFun✝ a) (toFun✝ b) h : (fun o => o.toFun) { toFun := toFun✝, map_rel' := map_rel'✝ } = (fun o => o.toFun) g ⊢ { toFun := toFun✝, map_rel' := map_rel'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop toFun✝¹ : α → β map_rel'✝¹ : ∀ {a b : α}, r a b → s (toFun✝¹ a) (toFun✝¹ b) toFun✝ : α → β map_rel'✝ : ∀ {a b : α}, r a b → s (toFun✝ a) (toFun✝ b) h : (fun o => o.toFun) { toFun := toFun✝¹, map_rel' := map_rel'✝¹ } = (fun o => o.toFun) { toFun := toFun✝, map_rel' := map_rel'✝ } ⊢ { toFun := toFun✝¹, map_rel' := map_rel'✝¹ } = { toFun := toFun✝, map_rel' := map_rel'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) ⊢ Injective f [PROOFSTEP] intro x y hxy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y ⊢ x = y [PROOFSTEP] rcases trichotomous_of r x y with (h | h | h) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r x y ⊢ x = y [PROOFSTEP] have := hf h [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r x y this : s (f x) (f y) ⊢ x = y [PROOFSTEP] rw [hxy] at this [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r x y this : s (f y) (f y) ⊢ x = y [PROOFSTEP] exfalso [GOAL] case inl.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r x y this : s (f y) (f y) ⊢ False [PROOFSTEP] exact irrefl_of s (f y) this [GOAL] case inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : x = y ⊢ x = y [PROOFSTEP] exact h [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r y x ⊢ x = y [PROOFSTEP] have := hf h [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r y x this : s (f y) (f x) ⊢ x = y [PROOFSTEP] rw [hxy] at this [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r y x this : s (f y) (f y) ⊢ x = y [PROOFSTEP] exfalso [GOAL] case inr.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsIrrefl β s f : α → β hf : ∀ {x y : α}, r x y → s (f x) (f y) x y : α hxy : f x = f y h : r y x this : s (f y) (f y) ⊢ False [PROOFSTEP] exact irrefl_of s (f y) this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) ⊢ WellFounded r → WellFounded s [PROOFSTEP] refine RelHomClass.wellFounded (RelHom.mk ?_ ?_ : s →r r) [GOAL] case refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) ⊢ β → α [PROOFSTEP] exact Classical.choose hf.hasRightInverse [GOAL] case refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) ⊢ ∀ {a b : β}, s a b → r (Classical.choose (_ : HasRightInverse f) a) (Classical.choose (_ : HasRightInverse f) b) [PROOFSTEP] intro a b h [GOAL] case refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ r (Classical.choose (_ : HasRightInverse f) a) (Classical.choose (_ : HasRightInverse f) b) [PROOFSTEP] apply o.2 [GOAL] case refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ s (f (Classical.choose (_ : HasRightInverse f) a)) (f (Classical.choose (_ : HasRightInverse f) b)) [PROOFSTEP] convert h [GOAL] case h.e'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ f (Classical.choose (_ : HasRightInverse f) a) = a case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ f (Classical.choose (_ : HasRightInverse f) b) = b [PROOFSTEP] iterate 2 apply Classical.choose_spec hf.hasRightInverse [GOAL] case h.e'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ f (Classical.choose (_ : HasRightInverse f) a) = a case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ f (Classical.choose (_ : HasRightInverse f) b) = b [PROOFSTEP] apply Classical.choose_spec hf.hasRightInverse [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : α → β hf : Surjective f o : ∀ {a b : α}, r a b ↔ s (f a) (f b) a b : β h : s a b ⊢ f (Classical.choose (_ : HasRightInverse f) b) = b [PROOFSTEP] apply Classical.choose_spec hf.hasRightInverse [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f g : r ↪r s h : (fun x => x.toFun) f = (fun x => x.toFun) g ⊢ f = g [PROOFSTEP] rcases f with ⟨⟨⟩⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop g : r ↪r s toFun✝ : α → β inj'✝ : Injective toFun✝ map_rel_iff'✝ : ∀ {a b : α}, s (↑{ toFun := toFun✝, inj' := inj'✝ } a) (↑{ toFun := toFun✝, inj' := inj'✝ } b) ↔ r a b h : (fun x => x.toFun) { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ } = (fun x => x.toFun) g ⊢ { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ } = g [PROOFSTEP] rcases g with ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop toFun✝¹ : α → β inj'✝¹ : Injective toFun✝¹ map_rel_iff'✝¹ : ∀ {a b : α}, s (↑{ toFun := toFun✝¹, inj' := inj'✝¹ } a) (↑{ toFun := toFun✝¹, inj' := inj'✝¹ } b) ↔ r a b toFun✝ : α → β inj'✝ : Injective toFun✝ map_rel_iff'✝ : ∀ {a b : α}, s (↑{ toFun := toFun✝, inj' := inj'✝ } a) (↑{ toFun := toFun✝, inj' := inj'✝ } b) ↔ r a b h : (fun x => x.toFun) { toEmbedding := { toFun := toFun✝¹, inj' := inj'✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } = (fun x => x.toFun) { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ } ⊢ { toEmbedding := { toFun := toFun✝¹, inj' := inj'✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } = { toEmbedding := { toFun := toFun✝, inj' := inj'✝ }, map_rel_iff' := map_rel_iff'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : s ↪r t ⊢ ∀ {a b : α}, t (↑(Embedding.trans f.toEmbedding g.toEmbedding) a) (↑(Embedding.trans f.toEmbedding g.toEmbedding) b) ↔ r a b [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s ⊢ r = ↑f ⁻¹'o s [PROOFSTEP] ext a b [GOAL] case h.h.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s a b : α ⊢ r a b ↔ (↑f ⁻¹'o s) a b [PROOFSTEP] exact f.map_rel_iff.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s a : α ⊢ Acc s (↑f a) → Acc r a [PROOFSTEP] generalize h : f a = b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s a : α b : β h : ↑f a = b ⊢ Acc s b → Acc r a [PROOFSTEP] intro ac [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s a : α b : β h : ↑f a = b ac : Acc s b ⊢ Acc r a [PROOFSTEP] induction' ac with _ H IH generalizing a [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s a✝ : α b : β h✝ : ↑f a✝ = b x✝ : β H : ∀ (y : β), s y x✝ → Acc s y IH : ∀ (y : β), s y x✝ → ∀ (a : α), ↑f a = y → Acc r a a : α h : ↑f a = x✝ ⊢ Acc r a [PROOFSTEP] subst h [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s a✝ : α b : β h : ↑f a✝ = b a : α H : ∀ (y : β), s y (↑f a) → Acc s y IH : ∀ (y : β), s y (↑f a) → ∀ (a : α), ↑f a = y → Acc r a ⊢ Acc r a [PROOFSTEP] exact ⟨_, fun a' h => IH (f a') (f.map_rel_iff.2 h) _ rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ ⊢ ∀ {a b : Quotient inst✝}, r (↑(Embedding.quotientOut α) a) (↑(Embedding.quotientOut α) b) ↔ Quotient.lift₂ r H a b [PROOFSTEP] refine' @fun x y => Quotient.inductionOn₂ x y fun a b => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ x y : Quotient inst✝ a b : α ⊢ r (↑(Embedding.quotientOut α) (Quotient.mk inst✝ a)) (↑(Embedding.quotientOut α) (Quotient.mk inst✝ b)) ↔ Quotient.lift₂ r H (Quotient.mk inst✝ a) (Quotient.mk inst✝ b) [PROOFSTEP] apply iff_iff_eq.2 (H _ _ _ _ _ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ x y : Quotient inst✝ a b : α ⊢ ↑(Embedding.quotientOut α) (Quotient.mk inst✝ a) ≈ a [PROOFSTEP] apply Quotient.mk_out [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ x y : Quotient inst✝ a b : α ⊢ ↑(Embedding.quotientOut α) (Quotient.mk inst✝ b) ≈ b [PROOFSTEP] apply Quotient.mk_out [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a : α ⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) ↔ Acc r a [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a : α ⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) → Acc r a [PROOFSTEP] exact RelHomClass.acc (Quotient.mkRelHom H) a [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a : α ⊢ Acc r a → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) [PROOFSTEP] intro ac [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a : α ac : Acc r a ⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) [PROOFSTEP] induction' ac with _ _ IH [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a x✝ : α h✝ : ∀ (y : α), r y x✝ → Acc r y IH : ∀ (y : α), r y x✝ → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ y) ⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ x✝) [PROOFSTEP] refine' ⟨_, fun q h => _⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a x✝ : α h✝ : ∀ (y : α), r y x✝ → Acc r y IH : ∀ (y : α), r y x✝ → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ y) q : Quotient inst✝ h : Quotient.lift₂ r H q (Quotient.mk inst✝ x✝) ⊢ Acc (Quotient.lift₂ r H) q [PROOFSTEP] obtain ⟨a', rfl⟩ := q.exists_rep [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ a x✝ : α h✝ : ∀ (y : α), r y x✝ → Acc r y IH : ∀ (y : α), r y x✝ → Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ y) a' : α h : Quotient.lift₂ r H (Quotient.mk inst✝ a') (Quotient.mk inst✝ x✝) ⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a') [PROOFSTEP] exact IH a' h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ ⊢ WellFounded (Quotient.lift₂ r H) ↔ WellFounded r [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ ⊢ WellFounded (Quotient.lift₂ r H) → WellFounded r [PROOFSTEP] exact RelHomClass.wellFounded (Quotient.mkRelHom H) [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ ⊢ WellFounded r → WellFounded (Quotient.lift₂ r H) [PROOFSTEP] refine' fun wf => ⟨fun q => _⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ wf : WellFounded r q : Quotient inst✝ ⊢ Acc (Quotient.lift₂ r H) q [PROOFSTEP] obtain ⟨a, rfl⟩ := q.exists_rep [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝ : Setoid α r : α → α → Prop H : ∀ (a₁ b₁ a₂ b₂ : α), a₁ ≈ a₂ → b₁ ≈ b₂ → r a₁ b₁ = r a₂ b₂ wf : WellFounded r a : α ⊢ Acc (Quotient.lift₂ r H) (Quotient.mk inst✝ a) [PROOFSTEP] exact acc_lift₂_iff.2 (wf.apply a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) ⊢ r ↪r s [PROOFSTEP] haveI := @IsAsymm.isIrrefl β s _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s ⊢ r ↪r s [PROOFSTEP] refine' ⟨⟨f, fun a b e => _⟩, @fun a b => ⟨fun h => _, H _ _⟩⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α e : f a = f b ⊢ a = b [PROOFSTEP] refine' ((@trichotomous _ r _ a b).resolve_left _).resolve_right _ [GOAL] case refine'_1.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α e : f a = f b ⊢ ¬r a b [PROOFSTEP] exact fun h => @irrefl _ s _ _ (by simpa [e] using H _ _ h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α e : f a = f b h : r a b ⊢ s (?m.45031 h) (?m.45031 h) [PROOFSTEP] simpa [e] using H _ _ h [GOAL] case refine'_1.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α e : f a = f b ⊢ ¬r b a [PROOFSTEP] exact fun h => @irrefl _ s _ _ (by simpa [e] using H _ _ h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α e : f a = f b h : r b a ⊢ s (?m.45243 h) (?m.45243 h) [PROOFSTEP] simpa [e] using H _ _ h [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α h : s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a) (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } b) ⊢ r a b [PROOFSTEP] refine' (@trichotomous _ r _ a b).resolve_right (Or.rec (fun e => _) fun h' => _) [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α h : s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a) (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } b) e : a = b ⊢ False [PROOFSTEP] subst e [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a : α h : s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a) (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a) ⊢ False [PROOFSTEP] exact irrefl _ h [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop inst✝¹ : IsTrichotomous α r inst✝ : IsAsymm β s f : α → β H : ∀ (a b : α), r a b → s (f a) (f b) this : IsIrrefl β s a b : α h : s (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } a) (↑{ toFun := f, inj' := (_ : ∀ (a b : α), f a = f b → a = b) } b) h' : r b a ⊢ False [PROOFSTEP] exact asymm (H _ _ h') h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u ⊢ ∀ {a b : α ⊕ γ}, Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } a) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } b) ↔ Sum.LiftRel r t a b [PROOFSTEP] rintro (a | b) (c | d) [GOAL] case inl.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u a c : α ⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔ Sum.LiftRel r t (Sum.inl a) (Sum.inl c) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] case inl.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u a : α d : γ ⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔ Sum.LiftRel r t (Sum.inl a) (Sum.inr d) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] case inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u b : γ c : α ⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔ Sum.LiftRel r t (Sum.inr b) (Sum.inl c) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u b d : γ ⊢ Sum.LiftRel s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔ Sum.LiftRel r t (Sum.inr b) (Sum.inr d) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u ⊢ ∀ {a b : α ⊕ γ}, Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } a) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } b) ↔ Sum.Lex r t a b [PROOFSTEP] rintro (a | b) (c | d) [GOAL] case inl.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u a c : α ⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔ Sum.Lex r t (Sum.inl a) (Sum.inl c) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] case inl.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u a : α d : γ ⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl a)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔ Sum.Lex r t (Sum.inl a) (Sum.inr d) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] case inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u b : γ c : α ⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inl c)) ↔ Sum.Lex r t (Sum.inr b) (Sum.inl c) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u b d : γ ⊢ Sum.Lex s u (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr b)) (↑{ toFun := Sum.map ↑f ↑g, inj' := (_ : Injective (Sum.map ↑f ↑g)) } (Sum.inr d)) ↔ Sum.Lex r t (Sum.inr b) (Sum.inr d) [PROOFSTEP] simp [f.map_rel_iff, g.map_rel_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop s : β → β → Prop a : α h : ¬r a a ⊢ ∀ {a_1 b : β}, Prod.Lex r s (↑{ toFun := Prod.mk a, inj' := (_ : Injective (Prod.mk a)) } a_1) (↑{ toFun := Prod.mk a, inj' := (_ : Injective (Prod.mk a)) } b) ↔ s a_1 b [PROOFSTEP] simp [Prod.lex_def, h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop r : α → α → Prop b : β h : ¬s b b ⊢ ∀ {a b_1 : α}, Prod.Lex r s (↑{ toFun := fun a => (a, b), inj' := (_ : Injective fun a => (a, b)) } a) (↑{ toFun := fun a => (a, b), inj' := (_ : Injective fun a => (a, b)) } b_1) ↔ r a b_1 [PROOFSTEP] simp [Prod.lex_def, h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ↪r s g : t ↪r u ⊢ ∀ {a b : α × γ}, Prod.Lex s u (↑{ toFun := Prod.map ↑f ↑g, inj' := (_ : Injective (Prod.map ↑f ↑g)) } a) (↑{ toFun := Prod.map ↑f ↑g, inj' := (_ : Injective (Prod.map ↑f ↑g)) } b) ↔ Prod.Lex r t a b [PROOFSTEP] simp [Prod.lex_def, f.map_rel_iff, g.map_rel_iff, f.inj] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop e₁ : α ≃ β o₁ : ∀ {a b : α}, s (↑e₁ a) (↑e₁ b) ↔ r a b e₂ : α ≃ β map_rel_iff'✝ : ∀ {a b : α}, s (↑e₂ a) (↑e₂ b) ↔ r a b h : { toEquiv := e₁, map_rel_iff' := o₁ }.toEquiv = { toEquiv := e₂, map_rel_iff' := map_rel_iff'✝ }.toEquiv ⊢ { toEquiv := e₁, map_rel_iff' := o₁ } = { toEquiv := e₂, map_rel_iff' := map_rel_iff'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop f : r ≃r s a b : β ⊢ r (↑f.symm a) (↑f.symm b) ↔ s a b [PROOFSTEP] erw [← f.map_rel_iff, f.1.apply_symm_apply, f.1.apply_symm_apply] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α✝ → α✝ → Prop s✝ : β✝ → β✝ → Prop t : γ → γ → Prop u : δ → δ → Prop α β : Type u r : α → α → Prop s : β → β → Prop h₁ : α = β h₂ : HEq r s a b : α ⊢ s (↑(Equiv.cast h₁) a) (↑(Equiv.cast h₁) b) ↔ r a b [PROOFSTEP] subst h₁ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α✝ → α✝ → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α : Type u r : α → α → Prop a b : α s : α → α → Prop h₂ : HEq r s ⊢ s (↑(Equiv.cast (_ : α = α)) a) (↑(Equiv.cast (_ : α = α)) b) ↔ r a b [PROOFSTEP] rw [eq_of_heq h₂] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r✝ : α✝ → α✝ → Prop s✝ : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α : Type u r : α → α → Prop a b : α s : α → α → Prop h₂ : HEq r s ⊢ s (↑(Equiv.cast (_ : α = α)) a) (↑(Equiv.cast (_ : α = α)) b) ↔ s a b [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 r✝ : α✝ → α✝ → Prop s✝ : β✝ → β✝ → Prop t✝ : γ✝ → γ✝ → Prop u : δ → δ → Prop α β γ : Type u r : α → α → Prop s : β → β → Prop t : γ → γ → Prop h₁ : α = β h₁' : β = γ h₂ : HEq r s h₂' : HEq s t x : α ⊢ ↑(RelIso.trans (RelIso.cast h₁ h₂) (RelIso.cast h₁' h₂')) x = ↑(RelIso.cast (_ : α = γ) (_ : HEq r t)) x [PROOFSTEP] subst h₁ [GOAL] α✝ : Type u_1 β : Type u_2 γ✝ : Type u_3 δ : Type u_4 r✝ : α✝ → α✝ → Prop s✝ : β → β → Prop t✝ : γ✝ → γ✝ → Prop u : δ → δ → Prop α γ : Type u r : α → α → Prop t : γ → γ → Prop x : α s : α → α → Prop h₁' : α = γ h₂ : HEq r s h₂' : HEq s t ⊢ ↑(RelIso.trans (RelIso.cast (_ : α = α) h₂) (RelIso.cast h₁' h₂')) x = ↑(RelIso.cast (_ : α = γ) (_ : HEq r t)) x [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop e : r ≃r s x : α y : β ⊢ r x (↑(RelIso.symm e) y) ↔ s (↑e x) y [PROOFSTEP] rw [← e.map_rel_iff, e.apply_symm_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop e : r ≃r s x : β y : α ⊢ r (↑(RelIso.symm e) x) y ↔ s x (↑e y) [PROOFSTEP] rw [← e.map_rel_iff, e.apply_symm_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop e₁ : r₁ ≃r s₁ e₂ : r₂ ≃r s₂ a b : α₁ ⊕ α₂ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr e₁.toEquiv e₂.toEquiv) a) (↑(Equiv.sumCongr e₁.toEquiv e₂.toEquiv) b) ↔ Sum.Lex r₁ r₂ a b [PROOFSTEP] cases' e₁ with f hf [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop e₂ : r₂ ≃r s₂ a b : α₁ ⊕ α₂ f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv e₂.toEquiv) a) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv e₂.toEquiv) b) ↔ Sum.Lex r₁ r₂ a b [PROOFSTEP] cases' e₂ with g hg [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop a b : α₁ ⊕ α₂ f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) a) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) b) ↔ Sum.Lex r₁ r₂ a b [PROOFSTEP] cases a [GOAL] case mk.mk.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop b : α₁ ⊕ α₂ f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b val✝ : α₁ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inl val✝)) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) b) ↔ Sum.Lex r₁ r₂ (Sum.inl val✝) b [PROOFSTEP] cases b [GOAL] case mk.mk.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop b : α₁ ⊕ α₂ f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b val✝ : α₂ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inr val✝)) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) b) ↔ Sum.Lex r₁ r₂ (Sum.inr val✝) b [PROOFSTEP] cases b [GOAL] case mk.mk.inl.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b val✝¹ val✝ : α₁ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inl val✝¹)) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inl val✝)) ↔ Sum.Lex r₁ r₂ (Sum.inl val✝¹) (Sum.inl val✝) [PROOFSTEP] simp [hf, hg] [GOAL] case mk.mk.inl.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b val✝¹ : α₁ val✝ : α₂ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inl val✝¹)) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inr val✝)) ↔ Sum.Lex r₁ r₂ (Sum.inl val✝¹) (Sum.inr val✝) [PROOFSTEP] simp [hf, hg] [GOAL] case mk.mk.inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b val✝¹ : α₂ val✝ : α₁ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inr val✝¹)) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inl val✝)) ↔ Sum.Lex r₁ r₂ (Sum.inr val✝¹) (Sum.inl val✝) [PROOFSTEP] simp [hf, hg] [GOAL] case mk.mk.inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.80676 α₂ : Type ?u.80684 β₁ : Type ?u.80677 β₂ : Type ?u.80685 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop f : α₁ ≃ β₁ hf : ∀ {a b : α₁}, s₁ (↑f a) (↑f b) ↔ r₁ a b g : α₂ ≃ β₂ hg : ∀ {a b : α₂}, s₂ (↑g a) (↑g b) ↔ r₂ a b val✝¹ val✝ : α₂ ⊢ Sum.Lex s₁ s₂ (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inr val✝¹)) (↑(Equiv.sumCongr { toEquiv := f, map_rel_iff' := hf }.toEquiv { toEquiv := g, map_rel_iff' := hg }.toEquiv) (Sum.inr val✝)) ↔ Sum.Lex r₁ r₂ (Sum.inr val✝¹) (Sum.inr val✝) [PROOFSTEP] simp [hf, hg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop u : δ → δ → Prop α₁ : Type ?u.82669 α₂ : Type ?u.82677 β₁ : Type ?u.82670 β₂ : Type ?u.82678 r₁ : α₁ → α₁ → Prop r₂ : α₂ → α₂ → Prop s₁ : β₁ → β₁ → Prop s₂ : β₂ → β₂ → Prop e₁ : r₁ ≃r s₁ e₂ : r₂ ≃r s₂ ⊢ ∀ {a b : α₁ × α₂}, Prod.Lex s₁ s₂ (↑(Equiv.prodCongr e₁.toEquiv e₂.toEquiv) a) (↑(Equiv.prodCongr e₁.toEquiv e₂.toEquiv) b) ↔ Prod.Lex r₁ r₂ a b [PROOFSTEP] simp [Prod.lex_def, e₁.map_rel_iff, e₂.map_rel_iff, e₁.injective.eq_iff]
{"mathlib_filename": "Mathlib.Order.RelIso.Basic", "llama_tokens": 22313}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : HeytingAlgebra α x✝ : HeytingAlgebra β inst✝ : HeytingHomClass F α β src✝ : HeytingHomClass F α β := inst✝ f : F ⊢ ↑f ⊤ = ⊤ [PROOFSTEP] rw [← @himp_self α _ ⊥, ← himp_self, map_himp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : CoheytingAlgebra α x✝ : CoheytingAlgebra β inst✝ : CoheytingHomClass F α β src✝ : CoheytingHomClass F α β := inst✝ f : F ⊢ ↑f ⊥ = ⊥ [PROOFSTEP] rw [← @sdiff_self α _ ⊤, ← sdiff_self, map_sdiff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : BiheytingHomClass F α β src✝ : BiheytingHomClass F α β := inst✝ f : F ⊢ ↑f ⊥ = ⊥ [PROOFSTEP] rw [← @sdiff_self α _ ⊤, ← sdiff_self, BiheytingHomClass.map_sdiff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : BiheytingHomClass F α β src✝ : BiheytingHomClass F α β := inst✝ f : F ⊢ ↑f ⊤ = ⊤ [PROOFSTEP] rw [← @himp_self α _ ⊥, ← himp_self, map_himp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : HeytingAlgebra α x✝ : HeytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass f : F a b : α c : (fun x => β) (a ⇨ b) ⊢ c ≤ ↑f (a ⇨ b) ↔ c ≤ ↑f a ⇨ ↑f b [PROOFSTEP] simp only [← map_inv_le_iff, le_himp_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : HeytingAlgebra α x✝ : HeytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass f : F a b : α c : (fun x => β) (a ⇨ b) ⊢ EquivLike.inv f c ⊓ a ≤ b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b [PROOFSTEP] rw [← OrderIsoClass.map_le_map_iff f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : HeytingAlgebra α x✝ : HeytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass f : F a b : α c : (fun x => β) (a ⇨ b) ⊢ ↑f (EquivLike.inv f c ⊓ a) ≤ ↑f b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : CoheytingAlgebra α x✝ : CoheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass f : F a b : α c : (fun x => β) (a \ b) ⊢ ↑f (a \ b) ≤ c ↔ ↑f a \ ↑f b ≤ c [PROOFSTEP] simp only [← le_map_inv_iff, sdiff_le_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : CoheytingAlgebra α x✝ : CoheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass f : F a b : α c : (fun x => β) (a \ b) ⊢ a ≤ b ⊔ EquivLike.inv f c ↔ a ≤ EquivLike.inv f (↑f b ⊔ c) [PROOFSTEP] rw [← OrderIsoClass.map_le_map_iff f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : CoheytingAlgebra α x✝ : CoheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : BoundedLatticeHomClass F α β := toBoundedLatticeHomClass f : F a b : α c : (fun x => β) (a \ b) ⊢ ↑f a ≤ ↑f (b ⊔ EquivLike.inv f c) ↔ a ≤ EquivLike.inv f (↑f b ⊔ c) [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : LatticeHomClass F α β := toLatticeHomClass f : F a b : α c : (fun x => β) (a ⇨ b) ⊢ c ≤ ↑f (a ⇨ b) ↔ c ≤ ↑f a ⇨ ↑f b [PROOFSTEP] simp only [← map_inv_le_iff, le_himp_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : LatticeHomClass F α β := toLatticeHomClass f : F a b : α c : (fun x => β) (a ⇨ b) ⊢ EquivLike.inv f c ⊓ a ≤ b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b [PROOFSTEP] rw [← OrderIsoClass.map_le_map_iff f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : LatticeHomClass F α β := toLatticeHomClass f : F a b : α c : (fun x => β) (a ⇨ b) ⊢ ↑f (EquivLike.inv f c ⊓ a) ≤ ↑f b ↔ EquivLike.inv f (c ⊓ ↑f a) ≤ b [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : LatticeHomClass F α β := toLatticeHomClass f : F a b : α c : (fun x => β) (a \ b) ⊢ ↑f (a \ b) ≤ c ↔ ↑f a \ ↑f b ≤ c [PROOFSTEP] simp only [← le_map_inv_iff, sdiff_le_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : LatticeHomClass F α β := toLatticeHomClass f : F a b : α c : (fun x => β) (a \ b) ⊢ a ≤ b ⊔ EquivLike.inv f c ↔ a ≤ EquivLike.inv f (↑f b ⊔ c) [PROOFSTEP] rw [← OrderIsoClass.map_le_map_iff f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : BiheytingAlgebra α x✝ : BiheytingAlgebra β inst✝ : OrderIsoClass F α β src✝ : LatticeHomClass F α β := toLatticeHomClass f : F a b : α c : (fun x => β) (a \ b) ⊢ ↑f a ≤ ↑f (b ⊔ EquivLike.inv f c) ↔ a ≤ EquivLike.inv f (↑f b ⊔ c) [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : BooleanAlgebra α inst✝¹ : BooleanAlgebra β inst✝ : BoundedLatticeHomClass F α β src✝ : BoundedLatticeHomClass F α β := inst✝ f : F a b : α ⊢ ↑f (a ⇨ b) = ↑f a ⇨ ↑f b [PROOFSTEP] rw [himp_eq, himp_eq, map_sup, (isCompl_compl.map _).compl_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : BooleanAlgebra α inst✝¹ : BooleanAlgebra β inst✝ : BoundedLatticeHomClass F α β src✝ : BoundedLatticeHomClass F α β := inst✝ f : F a b : α ⊢ ↑f (a \ b) = ↑f a \ ↑f b [PROOFSTEP] rw [sdiff_eq, sdiff_eq, map_inf, (isCompl_compl.map _).compl_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : HeytingAlgebra α inst✝¹ : HeytingAlgebra β inst✝ : HeytingHomClass F α β f : F a : α ⊢ ↑f aᶜ = (↑f a)ᶜ [PROOFSTEP] rw [← himp_bot, ← himp_bot, map_himp, map_bot] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : HeytingAlgebra α inst✝¹ : HeytingAlgebra β inst✝ : HeytingHomClass F α β f : F a b : α ⊢ ↑f (a ⇔ b) = ↑f a ⇔ ↑f b [PROOFSTEP] simp_rw [bihimp, map_inf, map_himp] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : CoheytingAlgebra α inst✝¹ : CoheytingAlgebra β inst✝ : CoheytingHomClass F α β f : F a : α ⊢ ↑f (¬a) = ¬↑f a [PROOFSTEP] rw [← top_sdiff', ← top_sdiff', map_sdiff, map_top] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : CoheytingAlgebra α inst✝¹ : CoheytingAlgebra β inst✝ : CoheytingHomClass F α β f : F a b : α ⊢ ↑f (a ∆ b) = ↑f a ∆ ↑f b [PROOFSTEP] simp_rw [symmDiff, map_sup, map_sdiff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f g : HeytingHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ g : HeytingHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_bot'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥ map_himp'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_bot' := map_bot'✝, map_himp' := map_himp'✝ } = (fun f => f.toFun) g ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_bot' := map_bot'✝, map_himp' := map_himp'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b map_inf'✝¹ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓ SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b map_bot'✝¹ : SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊥ = ⊥ map_himp'✝¹ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_bot'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥ map_himp'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_bot' := map_bot'✝¹, map_himp' := map_himp'✝¹ } = (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_bot' := map_bot'✝, map_himp' := map_himp'✝ } ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_bot' := map_bot'✝¹, map_himp' := map_himp'✝¹ } = { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_bot' := map_bot'✝, map_himp' := map_himp'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f : HeytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b [PROOFSTEP] simpa only [h] using map_sup f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f : HeytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b [PROOFSTEP] simpa only [h] using map_inf f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f : HeytingHom α β f' : α → β h : f' = ↑f ⊢ SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom ⊥ = ⊥ [PROOFSTEP] simpa only [h] using map_bot f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f : HeytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom b [PROOFSTEP] simpa only [h] using map_himp f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f : HeytingHom β γ g : HeytingHom α β src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom ⊢ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom ⊥ = ⊥ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f : HeytingHom β γ g : HeytingHom α β src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom a b : α ⊢ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom b [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : HeytingAlgebra α inst✝² : HeytingAlgebra β inst✝¹ : HeytingAlgebra γ inst✝ : HeytingAlgebra δ f f₁ f₂ : HeytingHom α β g g₁ g₂ : HeytingHom β γ hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f g : CoheytingHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ g : CoheytingHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_top'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤ map_sdiff'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ } = (fun f => f.toFun) g ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b map_inf'✝¹ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓ SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b map_top'✝¹ : SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊤ = ⊤ map_sdiff'✝¹ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_top'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤ map_sdiff'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹, map_sdiff' := map_sdiff'✝¹ } = (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ } ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹, map_sdiff' := map_sdiff'✝¹ } = { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_sdiff' := map_sdiff'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f : CoheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b [PROOFSTEP] simpa only [h] using map_sup f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f : CoheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b [PROOFSTEP] simpa only [h] using map_inf f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f : CoheytingHom α β f' : α → β h : f' = ↑f ⊢ SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom ⊤ = ⊤ [PROOFSTEP] simpa only [h] using map_top f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f : CoheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom b [PROOFSTEP] simpa only [h] using map_sdiff f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f : CoheytingHom β γ g : CoheytingHom α β src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom ⊢ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom ⊤ = ⊤ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f : CoheytingHom β γ g : CoheytingHom α β src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom a b : α ⊢ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom b [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : CoheytingAlgebra α inst✝² : CoheytingAlgebra β inst✝¹ : CoheytingAlgebra γ inst✝ : CoheytingAlgebra δ f f₁ f₂ : CoheytingHom α β g g₁ g₂ : CoheytingHom β γ hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f g : BiheytingHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ g : BiheytingHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_himp'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b map_sdiff'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ } = (fun f => f.toFun) g ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b map_inf'✝¹ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓ SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b map_himp'✝¹ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b map_sdiff'✝¹ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom b toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_himp'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b map_sdiff'✝ : ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom b h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_himp' := map_himp'✝¹, map_sdiff' := map_sdiff'✝¹ } = (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ } ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_himp' := map_himp'✝¹, map_sdiff' := map_sdiff'✝¹ } = { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_himp' := map_himp'✝, map_sdiff' := map_sdiff'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f : BiheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b [PROOFSTEP] simpa only [h] using map_sup f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f : BiheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b [PROOFSTEP] simpa only [h] using map_inf f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f : BiheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom b [PROOFSTEP] simpa only [h] using map_himp f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f : BiheytingHom α β f' : α → β h : f' = ↑f ⊢ ∀ (a b : α), SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } (a ⊓ b) = SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } a ⊓ SupHom.toFun { toFun := f', map_sup' := (_ : ∀ (a b : α), f' (a ⊔ b) = f' a ⊔ f' b) } b) }.toSupHom b [PROOFSTEP] simpa only [h] using map_sdiff f [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f : BiheytingHom β γ g : BiheytingHom α β src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom a b : α ⊢ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom (a ⇨ b) = SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom a ⇨ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom b [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f : BiheytingHom β γ g : BiheytingHom α β src✝ : LatticeHom α γ := LatticeHom.comp f.toLatticeHom g.toLatticeHom a b : α ⊢ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom (a \ b) = SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom a \ SupHom.toFun { toSupHom := { toFun := ↑f ∘ ↑g, map_sup' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊔ b) = SupHom.toFun src✝.toSupHom a ⊔ SupHom.toFun src✝.toSupHom b) }, map_inf' := (_ : ∀ (a b : α), SupHom.toFun src✝.toSupHom (a ⊓ b) = SupHom.toFun src✝.toSupHom a ⊓ SupHom.toFun src✝.toSupHom b) }.toSupHom b [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : BiheytingAlgebra α inst✝² : BiheytingAlgebra β inst✝¹ : BiheytingAlgebra γ inst✝ : BiheytingAlgebra δ f f₁ f₂ : BiheytingHom α β g g₁ g₂ : BiheytingHom β γ hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply]
{"mathlib_filename": "Mathlib.Order.Heyting.Hom", "llama_tokens": 21708}
[GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s ⊢ IsEquipartition P ↔ ∀ (a : Finset α), a ∈ P.parts → Finset.card a = Finset.card s / Finset.card P.parts ∨ Finset.card a = Finset.card s / Finset.card P.parts + 1 [PROOFSTEP] simp_rw [IsEquipartition, Finset.equitableOn_iff, P.sum_card_parts] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s hP : IsEquipartition P ht : t ∈ P.parts ⊢ Finset.card s / Finset.card P.parts ≤ Finset.card t [PROOFSTEP] rw [← P.sum_card_parts] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s hP : IsEquipartition P ht : t ∈ P.parts ⊢ (Finset.sum P.parts fun i => Finset.card i) / Finset.card P.parts ≤ Finset.card t [PROOFSTEP] exact Finset.EquitableOn.le hP ht [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s hP : IsEquipartition P ht : t ∈ P.parts ⊢ Finset.card t ≤ Finset.card s / Finset.card P.parts + 1 [PROOFSTEP] rw [← P.sum_card_parts] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s hP : IsEquipartition P ht : t ∈ P.parts ⊢ Finset.card t ≤ (Finset.sum P.parts fun i => Finset.card i) / Finset.card P.parts + 1 [PROOFSTEP] exact Finset.EquitableOn.le_add_one hP ht [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s ⊢ ∀ (a : Finset α), a ∈ ↑⊥.parts → Finset.card a = 1 ∨ Finset.card a = 1 + 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s hs : s ≠ ∅ ⊢ IsEquipartition (indiscrete hs) [PROOFSTEP] rw [IsEquipartition, indiscrete_parts, coe_singleton] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s hs : s ≠ ∅ ⊢ Set.EquitableOn {s} Finset.card [PROOFSTEP] exact Set.equitableOn_singleton s _
{"mathlib_filename": "Mathlib.Order.Partition.Equipartition", "llama_tokens": 811}
[GOAL] ⊢ ConcreteCategory ωCPO [PROOFSTEP] unfold ωCPO [GOAL] ⊢ ConcreteCategory (Bundled OmegaCompletePartialOrder) [PROOFSTEP] infer_instance [GOAL] J : Type v f : J → ωCPO s : Cone (Discrete.functor f) m : s.pt ⟶ (product f).pt w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j ⊢ m = (fun s => { toOrderHom := { toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) }, cont := (_ : ∀ (x : Chain ↑s.pt), ↑{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) })) }) s [PROOFSTEP] ext t [GOAL] case w J : Type v f : J → ωCPO s : Cone (Discrete.functor f) m : s.pt ⟶ (product f).pt w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j t : (forget ωCPO).obj s.pt ⊢ ↑m t = ↑((fun s => { toOrderHom := { toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) }, cont := (_ : ∀ (x : Chain ↑s.pt), ↑{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) })) }) s) t [PROOFSTEP] funext j [GOAL] case w.h J : Type v f : J → ωCPO s : Cone (Discrete.functor f) m : s.pt ⟶ (product f).pt w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j t : (forget ωCPO).obj s.pt j : J ⊢ ↑m t j = ↑((fun s => { toOrderHom := { toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) }, cont := (_ : ∀ (x : Chain ↑s.pt), ↑{ toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun t j => OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t, monotone' := (_ : ∀ (x y : ↑s.pt), x ≤ y → ∀ (j : J), ↑(NatTrans.app s.π { as := j }) x ≤ ↑(NatTrans.app s.π { as := j }) y) })) }) s) t j [PROOFSTEP] change m.toFun t j = (s.π.app ⟨j⟩).toFun t [GOAL] case w.h J : Type v f : J → ωCPO s : Cone (Discrete.functor f) m : s.pt ⟶ (product f).pt w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j t : (forget ωCPO).obj s.pt j : J ⊢ OrderHom.toFun m.toOrderHom t j = OrderHom.toFun (NatTrans.app s.π { as := j }).toOrderHom t [PROOFSTEP] rw [← w ⟨j⟩] [GOAL] case w.h J : Type v f : J → ωCPO s : Cone (Discrete.functor f) m : s.pt ⟶ (product f).pt w : ∀ (j : Discrete J), m ≫ NatTrans.app (product f).π j = NatTrans.app s.π j t : (forget ωCPO).obj s.pt j : J ⊢ OrderHom.toFun m.toOrderHom t j = OrderHom.toFun (m ≫ NatTrans.app (product f).π { as := j }).toOrderHom t [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : OmegaCompletePartialOrder β f g : α →𝒄 β c : Chain α hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i ⊢ ↑f (ωSup c) = ↑g (ωSup c) [PROOFSTEP] rw [f.continuous, g.continuous] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : OmegaCompletePartialOrder β f g : α →𝒄 β c : Chain α hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i ⊢ ωSup (Chain.map c ↑f) = ωSup (Chain.map c ↑g) [PROOFSTEP] congr 1 [GOAL] case e_a α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : OmegaCompletePartialOrder β f g : α →𝒄 β c : Chain α hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i ⊢ Chain.map c ↑f = Chain.map c ↑g [PROOFSTEP] apply OrderHom.ext [GOAL] case e_a.h α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : OmegaCompletePartialOrder β f g : α →𝒄 β c : Chain α hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i ⊢ ↑(Chain.map c ↑f) = ↑(Chain.map c ↑g) [PROOFSTEP] funext x [GOAL] case e_a.h.h α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : OmegaCompletePartialOrder β f g : α →𝒄 β c : Chain α hc : ∀ (i : α), i ∈ c → ↑f i = ↑g i x : ℕ ⊢ ↑(Chain.map c ↑f) x = ↑(Chain.map c ↑g) x [PROOFSTEP] apply hc _ ⟨_, rfl⟩ [GOAL] X Y : ωCPO f g : X ⟶ Y s : Fork f g x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero) ⊢ OrderHom.toFun f.toOrderHom (OrderHom.toFun (Fork.ι s).toOrderHom x) = OrderHom.toFun g.toOrderHom (OrderHom.toFun (Fork.ι s).toOrderHom x) [PROOFSTEP] apply ContinuousHom.congr_fun s.condition [GOAL] X Y : ωCPO f g : X ⟶ Y s : Fork f g ⊢ { toOrderHom := { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }, cont := (_ : ∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑{ toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) } ≫ Fork.ι (equalizer f g) = Fork.ι s [PROOFSTEP] ext [GOAL] case w X Y : ωCPO f g : X ⟶ Y s : Fork f g x✝ : (forget ωCPO).obj (((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero) ⊢ ↑({ toOrderHom := { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }, cont := (_ : ∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑{ toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) } ≫ Fork.ι (equalizer f g)) x✝ = ↑(Fork.ι s) x✝ [PROOFSTEP] rfl [GOAL] X Y : ωCPO f g : X ⟶ Y s : Fork f g m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizer f g).pt).obj WalkingParallelPair.zero hm : m✝ ≫ Fork.ι (equalizer f g) = Fork.ι s ⊢ m✝ = { toOrderHom := { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }, cont := (_ : ∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑{ toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) } [PROOFSTEP] apply ContinuousHom.ext _ _ fun x => Subtype.ext ?_ -- Porting note: Originally `ext` [GOAL] X Y : ωCPO f g : X ⟶ Y s : Fork f g m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (equalizer f g).pt).obj WalkingParallelPair.zero hm : m✝ ≫ Fork.ι (equalizer f g) = Fork.ι s x : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero) ⊢ ↑(↑m✝ x) = ↑(↑{ toOrderHom := { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) }, cont := (_ : ∀ (x : Chain ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), ↑{ toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) } (ωSup x) = ωSup (Chain.map x { toFun := fun x => { val := OrderHom.toFun (Fork.ι s).toOrderHom x, property := (_ : ↑(Fork.ι s ≫ f) x = ↑(Fork.ι s ≫ g) x) }, monotone' := (_ : ∀ (x y : ↑(((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero)), x ≤ y → ↑(Fork.ι s) x ≤ ↑(Fork.ι s) y) })) } x) [PROOFSTEP] apply ContinuousHom.congr_fun hm
{"mathlib_filename": "Mathlib.Order.Category.OmegaCompletePartialOrder", "llama_tokens": 5444}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ EquivLike.inv f b ≤ a ↔ b ≤ ↑f a [PROOFSTEP] convert (@map_le_map_iff _ _ _ _ _ _ f (EquivLike.inv f b) a).symm [GOAL] case h.e'_2.h.e'_3 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ b = ↑f (EquivLike.inv f b) [PROOFSTEP] exact (EquivLike.right_inv f _).symm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ a ≤ EquivLike.inv f b ↔ ↑f a ≤ b [PROOFSTEP] convert (@map_le_map_iff _ _ _ _ _ _ f a (EquivLike.inv f b)).symm [GOAL] case h.e'_2.h.e'_4 F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ b = ↑f (EquivLike.inv f b) [PROOFSTEP] exact (EquivLike.right_inv _ _).symm [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ EquivLike.inv f b < a ↔ b < ↑f a [PROOFSTEP] rw [← map_lt_map_iff f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ ↑f (EquivLike.inv f b) < ↑f a ↔ b < ↑f a [PROOFSTEP] simp only [EquivLike.apply_inv_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ a < EquivLike.inv f b ↔ ↑f a < b [PROOFSTEP] rw [← map_lt_map_iff f] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : OrderIsoClass F α β f : F a : α b : β ⊢ ↑f a < ↑f (EquivLike.inv f b) ↔ ↑f a < b [PROOFSTEP] simp only [EquivLike.apply_inv_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f g : α →o β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ g : α →o β toFun✝ : α → β monotone'✝ : Monotone toFun✝ h : { toFun := toFun✝, monotone' := monotone'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, monotone' := monotone'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ toFun✝¹ : α → β monotone'✝¹ : Monotone toFun✝¹ toFun✝ : α → β monotone'✝ : Monotone toFun✝ h : { toFun := toFun✝¹, monotone' := monotone'✝¹ }.toFun = { toFun := toFun✝, monotone' := monotone'✝ }.toFun ⊢ { toFun := toFun✝¹, monotone' := monotone'✝¹ } = { toFun := toFun✝, monotone' := monotone'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ ⊢ ∀ {a b : α × β →o γ}, ↑{ toFun := fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }, invFun := fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }, left_inv := (_ : ∀ (x : α × β →o γ), (fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) ((fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) x) = (fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) ((fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) x)), right_inv := (_ : ∀ (x : α →o β →o γ), (fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) ((fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) x) = (fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) ((fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) x)) } a ≤ ↑{ toFun := fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }, invFun := fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }, left_inv := (_ : ∀ (x : α × β →o γ), (fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) ((fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) x) = (fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) ((fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) x)), right_inv := (_ : ∀ (x : α →o β →o γ), (fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) ((fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) x) = (fun f => { toFun := fun x => { toFun := Function.curry (↑f) x, monotone' := (_ : ∀ (x_1 x_2 : β), x_1 ≤ x_2 → ↑f (x, x_1) ≤ ↑f (x, x_2)) }, monotone' := (_ : ∀ (x x_1 : α), x ≤ x_1 → ∀ (x_2 : β), ↑f (x, x_2) ≤ ↑f (x_1, x_2)) }) ((fun f => { toFun := Function.uncurry fun x => ↑(↑f x), monotone' := (_ : ∀ (x y : α × β), x ≤ y → toFun (↑f x.fst) x.snd ≤ Function.uncurry (fun x => ↑(↑f x)) y) }) x)) } b ↔ a ≤ b [PROOFSTEP] simp [le_def] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α →o β ⊢ comp f id = f [PROOFSTEP] ext [GOAL] case h.h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α →o β x✝ : α ⊢ ↑(comp f id) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α →o β ⊢ comp id f = f [PROOFSTEP] ext [GOAL] case h.h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ f : α →o β x✝ : α ⊢ ↑(comp id f) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ ⊢ OrderHom.prod fst snd = id [PROOFSTEP] ext ⟨x, y⟩ : 2 [GOAL] case h.h.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : Preorder γ inst✝ : Preorder δ x : α y : β ⊢ ↑(OrderHom.prod fst snd) (x, y) = ↑id (x, y) [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Preorder γ inst✝¹ : Preorder δ ι : Type u_6 π : ι → Type u_7 inst✝ : (i : ι) → Preorder (π i) p q : α → Prop h : ∀ (a : α), p a → q a src✝ : { x // p x } ↪ { x // q x } := Subtype.impEmbedding (fun x => p x) (fun x => q x) h ⊢ ∀ {a b : { x // p x }}, ↑{ toFun := src✝.toFun, inj' := (_ : Function.Injective src✝.toFun) } a ≤ ↑{ toFun := src✝.toFun, inj' := (_ : Function.Injective src✝.toFun) } b ↔ a ≤ b [PROOFSTEP] aesop [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : PartialOrder α inst✝ : PartialOrder β f : (fun x x_1 => x < x_1) ↪r fun x x_1 => x < x_1 ⊢ ∀ {a b : α}, ↑f.toEmbedding a ≤ ↑f.toEmbedding b ↔ a ≤ b [PROOFSTEP] intros [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : PartialOrder α inst✝ : PartialOrder β f : (fun x x_1 => x < x_1) ↪r fun x x_1 => x < x_1 a✝ b✝ : α ⊢ ↑f.toEmbedding a✝ ≤ ↑f.toEmbedding b✝ ↔ a✝ ≤ b✝ [PROOFSTEP] simp [le_iff_lt_or_eq, f.map_rel_iff, f.injective.eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β f : α ↪o β ⊢ ∀ {a b : α}, ↑f.toEmbedding a < ↑f.toEmbedding b ↔ a < b [PROOFSTEP] intros [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β f : α ↪o β a✝ b✝ : α ⊢ ↑f.toEmbedding a✝ < ↑f.toEmbedding b✝ ↔ a✝ < b✝ [PROOFSTEP] simp [lt_iff_le_not_le, f.map_rel_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ f g : α ≃o β h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ g : α ≃o β toFun✝ : α → β invFun✝ : β → α left_inv✝ : Function.LeftInverse invFun✝ toFun✝ right_inv✝ : Function.RightInverse invFun✝ toFun✝ map_rel_iff'✝ : ∀ {a b : α}, ↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } a ≤ ↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } b ↔ a ≤ b h₁ : (fun f => f.toFun) { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_rel_iff' := map_rel_iff'✝ } = (fun f => f.toFun) g h₂ : (fun f => f.invFun) { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_rel_iff' := map_rel_iff'✝ } = (fun f => f.invFun) g ⊢ { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_rel_iff' := map_rel_iff'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ toFun✝¹ : α → β invFun✝¹ : β → α left_inv✝¹ : Function.LeftInverse invFun✝¹ toFun✝¹ right_inv✝¹ : Function.RightInverse invFun✝¹ toFun✝¹ map_rel_iff'✝¹ : ∀ {a b : α}, ↑{ toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } a ≤ ↑{ toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } b ↔ a ≤ b toFun✝ : α → β invFun✝ : β → α left_inv✝ : Function.LeftInverse invFun✝ toFun✝ right_inv✝ : Function.RightInverse invFun✝ toFun✝ map_rel_iff'✝ : ∀ {a b : α}, ↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } a ≤ ↑{ toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } b ↔ a ≤ b h₁ : (fun f => f.toFun) { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } = (fun f => f.toFun) { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_rel_iff' := map_rel_iff'✝ } h₂ : (fun f => f.invFun) { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } = (fun f => f.invFun) { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_rel_iff' := map_rel_iff'✝ } ⊢ { toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ }, map_rel_iff' := map_rel_iff'✝¹ } = { toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }, map_rel_iff' := map_rel_iff'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e : α ≃o β ⊢ symm (symm e) = e [PROOFSTEP] ext [GOAL] case h.h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e : α ≃o β x✝ : α ⊢ ↑(symm (symm e)) x✝ = ↑e x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e e' : α ≃o β h : symm e = symm e' ⊢ e = e' [PROOFSTEP] rw [← e.symm_symm, h, e'.symm_symm] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e : α ≃o β ⊢ trans (refl α) e = e [PROOFSTEP] ext x [GOAL] case h.h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e : α ≃o β x : α ⊢ ↑(trans (refl α) e) x = ↑e x [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e : α ≃o β ⊢ trans e (refl β) = e [PROOFSTEP] ext x [GOAL] case h.h F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : LE α inst✝¹ : LE β inst✝ : LE γ e : α ≃o β x : α ⊢ ↑(trans e (refl β)) x = ↑e x [PROOFSTEP] rfl [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.90717 β : Type ?u.90720 inst✝¹ : PartialOrder α inst✝ : PartialOrder β e : (fun x x_1 => x < x_1) ≃r fun x x_1 => x < x_1 ⊢ ∀ {a b : α}, ↑e.toEquiv a ≤ ↑e.toEquiv b ↔ a ≤ b [PROOFSTEP] simp [le_iff_eq_or_lt, e.map_rel_iff, e.injective.eq_iff] [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type u_6 β : Type u_7 inst✝¹ : PartialOrder α inst✝ : PartialOrder β e : α ≃o β ⊢ ofRelIsoLT (toRelIsoLT e) = e [PROOFSTEP] ext [GOAL] case h.h F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type u_6 β : Type u_7 inst✝¹ : PartialOrder α inst✝ : PartialOrder β e : α ≃o β x✝ : α ⊢ ↑(ofRelIsoLT (toRelIsoLT e)) x✝ = ↑e x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type u_6 β : Type u_7 inst✝¹ : PartialOrder α inst✝ : PartialOrder β e : (fun x x_1 => x < x_1) ≃r fun x x_1 => x < x_1 ⊢ toRelIsoLT (ofRelIsoLT e) = e [PROOFSTEP] ext [GOAL] case h F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type u_6 β : Type u_7 inst✝¹ : PartialOrder α inst✝ : PartialOrder β e : (fun x x_1 => x < x_1) ≃r fun x x_1 => x < x_1 x✝ : α ⊢ ↑(toRelIsoLT (ofRelIsoLT e)) x✝ = ↑e x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b ⊢ ∀ (a : α), a = g (f a) [PROOFSTEP] intro [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b a✝ : α ⊢ a✝ = g (f a✝) [PROOFSTEP] rw [← cmp_eq_eq_iff, h, cmp_self_eq_eq] [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b gf : ∀ (a : α), a = g (f a) ⊢ Function.RightInverse g f [PROOFSTEP] intro [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b gf : ∀ (a : α), a = g (f a) x✝ : β ⊢ f (g x✝) = x✝ [PROOFSTEP] rw [← cmp_eq_eq_iff, ← h, cmp_self_eq_eq] [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b gf : ∀ (a : α), a = g (f a) ⊢ ∀ {a b : α}, ↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } a ≤ ↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } b ↔ a ≤ b [PROOFSTEP] intros a b [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b gf : ∀ (a : α), a = g (f a) a b : α ⊢ ↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } a ≤ ↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } b ↔ a ≤ b [PROOFSTEP] apply le_iff_le_of_cmp_eq_cmp [GOAL] case h F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b gf : ∀ (a : α), a = g (f a) a b : α ⊢ cmp (↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } a) (↑{ toFun := f, invFun := g, left_inv := (_ : ∀ (a : α), g (f a) = a), right_inv := (_ : ∀ (x : β), f (g x) = x) } b) = cmp a b [PROOFSTEP] convert (h a (f b)).symm [GOAL] case h.e'_3.h.e'_5 F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type ?u.94646 β : Type ?u.94649 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β g : β → α h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b gf : ∀ (a : α), a = g (f a) a b : α ⊢ b = g (f b) [PROOFSTEP] apply gf [GOAL] F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Preorder γ F : Type u_6 G : Type u_7 inst✝¹ : OrderHomClass F α β inst✝ : OrderHomClass G β α f : F g : G h₁ : OrderHom.comp ↑f ↑g = OrderHom.id h₂ : OrderHom.comp ↑g ↑f = OrderHom.id a b : α h : ↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x), right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) } a ≤ ↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x), right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) } b ⊢ a ≤ b [PROOFSTEP] replace h := map_rel g h [GOAL] F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α inst✝³ : Preorder β inst✝² : Preorder γ F : Type u_6 G : Type u_7 inst✝¹ : OrderHomClass F α β inst✝ : OrderHomClass G β α f : F g : G h₁ : OrderHom.comp ↑f ↑g = OrderHom.id h₂ : OrderHom.comp ↑g ↑f = OrderHom.id a b : α h : ↑g (↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x), right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) } a) ≤ ↑g (↑{ toFun := ↑f, invFun := ↑g, left_inv := (_ : ∀ (x : α), ↑(OrderHom.comp ↑g ↑f) x = ↑OrderHom.id x), right_inv := (_ : ∀ (x : β), ↑(OrderHom.comp ↑f ↑g) x = ↑OrderHom.id x) } b) ⊢ a ≤ b [PROOFSTEP] rwa [Equiv.coe_fn_mk, show g (f a) = (g : β →o α).comp (f : α →o β) a from rfl, show g (f b) = (g : β →o α).comp (f : α →o β) b from rfl, h₂] at h [GOAL] F : Type u_1 α✝ : Type u_2 β✝ : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Preorder α✝ inst✝³ : Preorder β✝ inst✝² : Preorder γ α : Type u_6 β : Type u_7 inst✝¹ : Unique α inst✝ : Preorder β ⊢ ∀ {a b : α → β}, ↑(Equiv.funUnique α β) a ≤ ↑(Equiv.funUnique α β) b ↔ a ≤ b [PROOFSTEP] simp [Pi.le_def, Unique.forall_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃ β h₁ : Monotone ↑e h₂ : Monotone ↑e.symm a✝ b✝ : α h : ↑e a✝ ≤ ↑e b✝ ⊢ a✝ ≤ b✝ [PROOFSTEP] simpa only [e.symm_apply_apply] using h₂ h [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : LE α inst✝ : PartialOrder β f : α ≃o β x : α y : β hx : ∀ (x' : α), x ≤ x' hy : ∀ (y' : β), y ≤ y' ⊢ ↑f x = y [PROOFSTEP] refine' le_antisymm _ (hy _) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : LE α inst✝ : PartialOrder β f : α ≃o β x : α y : β hx : ∀ (x' : α), x ≤ x' hy : ∀ (y' : β), y ≤ y' ⊢ ↑f x ≤ y [PROOFSTEP] rw [← f.apply_symm_apply y, f.map_rel_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : LE α inst✝ : PartialOrder β f : α ≃o β x : α y : β hx : ∀ (x' : α), x ≤ x' hy : ∀ (y' : β), y ≤ y' ⊢ x ≤ ↑(symm f) y [PROOFSTEP] apply hx [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf β f : α ≃o β x y : α ⊢ ↑f (x ⊓ y) = ↑f x ⊓ ↑f y [PROOFSTEP] refine' (f.toOrderEmbedding.map_inf_le x y).antisymm _ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf β f : α ≃o β x y : α ⊢ ↑(toOrderEmbedding f) x ⊓ ↑(toOrderEmbedding f) y ≤ ↑(toOrderEmbedding f) (x ⊓ y) [PROOFSTEP] apply f.symm.le_iff_le.1 [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf β f : α ≃o β x y : α ⊢ ↑(symm f) (↑(toOrderEmbedding f) x ⊓ ↑(toOrderEmbedding f) y) ≤ ↑(symm f) (↑(toOrderEmbedding f) (x ⊓ y)) [PROOFSTEP] simpa using f.symm.toOrderEmbedding.map_inf_le (f x) (f y) [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : SemilatticeInf α inst✝² : OrderBot α inst✝¹ : SemilatticeInf β inst✝ : OrderBot β a b : α f : α ≃o β ha : Disjoint a b ⊢ Disjoint (↑f a) (↑f b) [PROOFSTEP] rw [disjoint_iff_inf_le, ← f.map_inf, ← f.map_bot] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : SemilatticeInf α inst✝² : OrderBot α inst✝¹ : SemilatticeInf β inst✝ : OrderBot β a b : α f : α ≃o β ha : Disjoint a b ⊢ ↑f (a ⊓ b) ≤ ↑f ⊥ [PROOFSTEP] exact f.monotone ha.le_bot [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : SemilatticeSup α inst✝² : OrderTop α inst✝¹ : SemilatticeSup β inst✝ : OrderTop β a b : α f : α ≃o β ha : Codisjoint a b ⊢ Codisjoint (↑f a) (↑f b) [PROOFSTEP] rw [codisjoint_iff_le_sup, ← f.map_sup, ← f.map_top] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : SemilatticeSup α inst✝² : OrderTop α inst✝¹ : SemilatticeSup β inst✝ : OrderTop β a b : α f : α ≃o β ha : Codisjoint a b ⊢ ↑f ⊤ ≤ ↑f (a ⊔ b) [PROOFSTEP] exact f.monotone ha.top_le [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Lattice α inst✝³ : Lattice β inst✝² : BoundedOrder α inst✝¹ : BoundedOrder β f : α ≃o β inst✝ : ComplementedLattice α x : β ⊢ ∃ b, IsCompl x b [PROOFSTEP] obtain ⟨y, hy⟩ := exists_isCompl (f.symm x) [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Lattice α inst✝³ : Lattice β inst✝² : BoundedOrder α inst✝¹ : BoundedOrder β f : α ≃o β inst✝ : ComplementedLattice α x : β y : α hy : IsCompl (↑(symm f) x) y ⊢ ∃ b, IsCompl x b [PROOFSTEP] rw [← f.symm_apply_apply y] at hy [GOAL] case intro F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : Lattice α inst✝³ : Lattice β inst✝² : BoundedOrder α inst✝¹ : BoundedOrder β f : α ≃o β inst✝ : ComplementedLattice α x : β y : α hy : IsCompl (↑(symm f) x) (↑(symm f) (↑f y)) ⊢ ∃ b, IsCompl x b [PROOFSTEP] exact ⟨f y, f.symm.isCompl_iff.2 hy⟩ [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : BoundedOrder α inst✝ : BoundedOrder β f : α ≃o β ⊢ ComplementedLattice α → ComplementedLattice β [PROOFSTEP] intro [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : BoundedOrder α inst✝ : BoundedOrder β f : α ≃o β a✝ : ComplementedLattice α ⊢ ComplementedLattice β [PROOFSTEP] exact f.complementedLattice [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : BoundedOrder α inst✝ : BoundedOrder β f : α ≃o β ⊢ ComplementedLattice β → ComplementedLattice α [PROOFSTEP] intro [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : BoundedOrder α inst✝ : BoundedOrder β f : α ≃o β a✝ : ComplementedLattice β ⊢ ComplementedLattice α [PROOFSTEP] exact f.symm.complementedLattice
{"mathlib_filename": "Mathlib.Order.Hom.Basic", "llama_tokens": 15289}
[GOAL] α : Type u f g : Filter α s t : Set α ⊢ f = g ↔ ∀ (s : Set α), s ∈ f ↔ s ∈ g [PROOFSTEP] simp only [filter_eq_iff, ext_iff, Filter.mem_sets] [GOAL] α : Type u f g : Filter α s✝ t : Set α β : Type v s : β → Set α is : Set β hf : Set.Finite is ⊢ ⋂ (i : β) (_ : i ∈ ∅), s i ∈ f ↔ ∀ (i : β), i ∈ ∅ → s i ∈ f [PROOFSTEP] simp [GOAL] α : Type u f g : Filter α s✝¹ t : Set α β : Type v s : β → Set α is : Set β hf : Set.Finite is a✝ : β s✝ : Set β x✝¹ : ¬a✝ ∈ s✝ x✝ : Set.Finite s✝ hs : ⋂ (i : β) (_ : i ∈ s✝), s i ∈ f ↔ ∀ (i : β), i ∈ s✝ → s i ∈ f ⊢ ⋂ (i : β) (_ : i ∈ insert a✝ s✝), s i ∈ f ↔ ∀ (i : β), i ∈ insert a✝ s✝ → s i ∈ f [PROOFSTEP] simp [hs] [GOAL] α : Type u f g : Filter α s✝ t : Set α s : Set (Set α) hfin : Set.Finite s ⊢ ⋂₀ s ∈ f ↔ ∀ (U : Set α), U ∈ s → U ∈ f [PROOFSTEP] rw [sInter_eq_biInter, biInter_mem hfin] [GOAL] α : Type u f g : Filter α s t : Set α P Q : Set α → Prop hP : Antitone P hQ : Antitone Q ⊢ ((∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u) ↔ ∃ u, u ∈ f ∧ P u ∧ Q u [PROOFSTEP] constructor [GOAL] case mp α : Type u f g : Filter α s t : Set α P Q : Set α → Prop hP : Antitone P hQ : Antitone Q ⊢ ((∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u) → ∃ u, u ∈ f ∧ P u ∧ Q u [PROOFSTEP] rintro ⟨⟨u, huf, hPu⟩, v, hvf, hQv⟩ [GOAL] case mp.intro.intro.intro.intro.intro α : Type u f g : Filter α s t : Set α P Q : Set α → Prop hP : Antitone P hQ : Antitone Q u : Set α huf : u ∈ f hPu : P u v : Set α hvf : v ∈ f hQv : Q v ⊢ ∃ u, u ∈ f ∧ P u ∧ Q u [PROOFSTEP] exact ⟨u ∩ v, inter_mem huf hvf, hP (inter_subset_left _ _) hPu, hQ (inter_subset_right _ _) hQv⟩ [GOAL] case mpr α : Type u f g : Filter α s t : Set α P Q : Set α → Prop hP : Antitone P hQ : Antitone Q ⊢ (∃ u, u ∈ f ∧ P u ∧ Q u) → (∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u [PROOFSTEP] rintro ⟨u, huf, hPu, hQu⟩ [GOAL] case mpr.intro.intro.intro α : Type u f g : Filter α s t : Set α P Q : Set α → Prop hP : Antitone P hQ : Antitone Q u : Set α huf : u ∈ f hPu : P u hQu : Q u ⊢ (∃ u, u ∈ f ∧ P u) ∧ ∃ u, u ∈ f ∧ Q u [PROOFSTEP] exact ⟨⟨u, huf, hPu⟩, u, huf, hQu⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (Filter α) ⊢ univ ∈ {s | {t | s ∈ t} ∈ f} [PROOFSTEP] simp only [mem_setOf_eq, univ_sets, ← Filter.mem_sets, setOf_true] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α ⊢ ¬f ≤ g ↔ ∃ s, s ∈ g ∧ ¬s ∈ f [PROOFSTEP] simp_rw [le_def, not_forall, exists_prop] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ U ∈ generate s ↔ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ U ∈ generate s → ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U [PROOFSTEP] intro h [GOAL] case mpr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ (∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U) → U ∈ generate s [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α h : U ∈ generate s ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U [PROOFSTEP] induction h [GOAL] case mp.basic α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ : Set α a✝ : s✝ ∈ s ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ case mp.univ α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ case mp.superset α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : s✝ ⊆ t✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ case mp.inter α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : GenerateSets s t✝ a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝ [PROOFSTEP] case basic V V_in => exact ⟨{ V }, singleton_subset_iff.2 V_in, finite_singleton _, (sInter_singleton _).subset⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U V : Set α V_in : V ∈ s ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V [PROOFSTEP] case basic V V_in => exact ⟨{ V }, singleton_subset_iff.2 V_in, finite_singleton _, (sInter_singleton _).subset⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U V : Set α V_in : V ∈ s ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V [PROOFSTEP] exact ⟨{ V }, singleton_subset_iff.2 V_in, finite_singleton _, (sInter_singleton _).subset⟩ [GOAL] case mp.univ α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ case mp.superset α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : s✝ ⊆ t✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ case mp.inter α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : GenerateSets s t✝ a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝ [PROOFSTEP] case univ => exact ⟨∅, empty_subset _, finite_empty, subset_univ _⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ [PROOFSTEP] case univ => exact ⟨∅, empty_subset _, finite_empty, subset_univ _⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ univ [PROOFSTEP] exact ⟨∅, empty_subset _, finite_empty, subset_univ _⟩ [GOAL] case mp.superset α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : s✝ ⊆ t✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ case mp.inter α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : GenerateSets s t✝ a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝ [PROOFSTEP] case superset V W _ hVW hV => rcases hV with ⟨t, hts, ht, htV⟩ exact ⟨t, hts, ht, htV.trans hVW⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U V W : Set α a✝ : GenerateSets s V hVW : V ⊆ W hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W [PROOFSTEP] case superset V W _ hVW hV => rcases hV with ⟨t, hts, ht, htV⟩ exact ⟨t, hts, ht, htV.trans hVW⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U V W : Set α a✝ : GenerateSets s V hVW : V ⊆ W hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W [PROOFSTEP] rcases hV with ⟨t, hts, ht, htV⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ : Set α s : Set (Set α) U V W : Set α a✝ : GenerateSets s V hVW : V ⊆ W t : Set (Set α) hts : t ⊆ s ht : Set.Finite t htV : ⋂₀ t ⊆ V ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W [PROOFSTEP] exact ⟨t, hts, ht, htV.trans hVW⟩ [GOAL] case mp.inter α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝¹ t : Set α s : Set (Set α) U s✝ t✝ : Set α a✝¹ : GenerateSets s s✝ a✝ : GenerateSets s t✝ a_ih✝¹ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ a_ih✝ : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ t✝ ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ s✝ ∩ t✝ [PROOFSTEP] case inter V W _ _ hV hW => rcases hV, hW with ⟨⟨t, hts, ht, htV⟩, u, hus, hu, huW⟩ exact ⟨t ∪ u, union_subset hts hus, ht.union hu, (sInter_union _ _).subset.trans <| inter_subset_inter htV huW⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U V W : Set α a✝¹ : GenerateSets s V a✝ : GenerateSets s W hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V hW : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ∩ W [PROOFSTEP] case inter V W _ _ hV hW => rcases hV, hW with ⟨⟨t, hts, ht, htV⟩, u, hus, hu, huW⟩ exact ⟨t ∪ u, union_subset hts hus, ht.union hu, (sInter_union _ _).subset.trans <| inter_subset_inter htV huW⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U V W : Set α a✝¹ : GenerateSets s V a✝ : GenerateSets s W hV : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V hW : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ W ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ∩ W [PROOFSTEP] rcases hV, hW with ⟨⟨t, hts, ht, htV⟩, u, hus, hu, huW⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ : Set α s : Set (Set α) U V W : Set α a✝¹ : GenerateSets s V a✝ : GenerateSets s W t : Set (Set α) hts : t ⊆ s ht : Set.Finite t htV : ⋂₀ t ⊆ V u : Set (Set α) hus : u ⊆ s hu : Set.Finite u huW : ⋂₀ u ⊆ W ⊢ ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ V ∩ W [PROOFSTEP] exact ⟨t ∪ u, union_subset hts hus, ht.union hu, (sInter_union _ _).subset.trans <| inter_subset_inter htV huW⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α s : Set (Set α) U : Set α h : ∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U ⊢ U ∈ generate s [PROOFSTEP] rcases h with ⟨t, hts, tfin, h⟩ [GOAL] case mpr.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ : Set α s : Set (Set α) U : Set α t : Set (Set α) hts : t ⊆ s tfin : Set.Finite t h : ⋂₀ t ⊆ U ⊢ U ∈ generate s [PROOFSTEP] exact mem_of_superset ((sInter_mem tfin).2 fun V hV => GenerateSets.basic <| hts hV) h [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α ⊢ univ = univ ∩ univ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α ⊢ ∀ {x y : Set α}, x ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} → x ⊆ y → y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} [PROOFSTEP] rintro x y ⟨a, ha, b, hb, rfl⟩ xy [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α y a : Set α ha : a ∈ f b : Set α hb : b ∈ g xy : a ∩ b ⊆ y ⊢ y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} [PROOFSTEP] refine' ⟨a ∪ y, mem_of_superset ha (subset_union_left a y), b ∪ y, mem_of_superset hb (subset_union_left b y), _⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α y a : Set α ha : a ∈ f b : Set α hb : b ∈ g xy : a ∩ b ⊆ y ⊢ y = (a ∪ y) ∩ (b ∪ y) [PROOFSTEP] rw [← inter_union_distrib_right, union_eq_self_of_subset_left xy] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α ⊢ ∀ {x y : Set α}, x ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} → y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} → x ∩ y ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} [PROOFSTEP] rintro x y ⟨a, ha, b, hb, rfl⟩ ⟨c, hc, d, hd, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α a : Set α ha : a ∈ f b : Set α hb : b ∈ g c : Set α hc : c ∈ f d : Set α hd : d ∈ g ⊢ a ∩ b ∩ (c ∩ d) ∈ {s | ∃ a, a ∈ f ∧ ∃ b, b ∈ g ∧ s = a ∩ b} [PROOFSTEP] refine' ⟨a ∩ c, inter_mem ha hc, b ∩ d, inter_mem hb hd, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α a : Set α ha : a ∈ f b : Set α hb : b ∈ g c : Set α hc : c ∈ f d : Set α hd : d ∈ g ⊢ a ∩ b ∩ (c ∩ d) = a ∩ c ∩ (b ∩ d) [PROOFSTEP] ac_rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t s : Set α ⊢ s ∈ ⊤ ↔ s = univ [PROOFSTEP] rw [mem_top_iff_forall, eq_univ_iff_forall] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α ⊢ NeBot (f ⊔ g) ↔ NeBot f ∨ NeBot g [PROOFSTEP] simp only [neBot_iff, not_and_or, Ne.def, sup_eq_bot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α ⊢ ¬Disjoint f f ↔ NeBot f [PROOFSTEP] rw [disjoint_self, neBot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t x : Set α f : ι → Filter α ⊢ x ∈ iSup f ↔ ∀ (i : ι), x ∈ f i [PROOFSTEP] simp only [← Filter.mem_sets, iSup_sets_eq, iff_self_iff, mem_iInter] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α ⊢ NeBot (⨆ (i : ι), f i) ↔ ∃ i, NeBot (f i) [PROOFSTEP] simp [neBot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι I_fin : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i hU : ⋂ (i : ↑I), V i ⊆ U ⊢ U ∈ ⨅ (i : ι), s i [PROOFSTEP] haveI := I_fin.fintype [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι I_fin : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i hU : ⋂ (i : ↑I), V i ⊆ U this : Fintype ↑I ⊢ U ∈ ⨅ (i : ι), s i [PROOFSTEP] refine' mem_of_superset (iInter_mem.2 fun i => _) hU [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι I_fin : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i hU : ⋂ (i : ↑I), V i ⊆ U this : Fintype ↑I i : ↑I ⊢ V i ∈ ⨅ (i : ι), s i [PROOFSTEP] exact mem_iInf_of_mem (i : ι) (hV _) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ U ∈ ⨅ (i : ι), s i ↔ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ U ∈ ⨅ (i : ι), s i → ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] rw [iInf_eq_generate, mem_generate_iff] [GOAL] case mp α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ (∃ t x, Set.Finite t ∧ ⋂₀ t ⊆ U) → ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] rintro ⟨t, tsub, tfin, tinter⟩ [GOAL] case mp.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 s : ι → Filter α U : Set α t : Set (Set α) tsub : t ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite t tinter : ⋂₀ t ⊆ U ⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] rcases eq_finite_iUnion_of_finite_subset_iUnion tfin tsub with ⟨I, Ifin, σ, σfin, σsub, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂₀ ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ U ⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] rw [sInter_iUnion] at tinter [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U ⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] set V := fun i => U ∪ ⋂₀ σ i with hV [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i ⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] have V_in : ∀ i, V i ∈ s i := by rintro i have : ⋂₀ σ i ∈ s i := by rw [sInter_mem (σfin _)] apply σsub exact mem_of_superset this (subset_union_right _ _) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i ⊢ ∀ (i : ↑{i | i ∈ I}), V i ∈ s ↑i [PROOFSTEP] rintro i [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i i : ↑{i | i ∈ I} ⊢ V i ∈ s ↑i [PROOFSTEP] have : ⋂₀ σ i ∈ s i := by rw [sInter_mem (σfin _)] apply σsub [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i i : ↑{i | i ∈ I} ⊢ ⋂₀ σ i ∈ s ↑i [PROOFSTEP] rw [sInter_mem (σfin _)] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i i : ↑{i | i ∈ I} ⊢ ∀ (U : Set α), U ∈ σ i → U ∈ s ↑i [PROOFSTEP] apply σsub [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i i : ↑{i | i ∈ I} this : ⋂₀ σ i ∈ s ↑i ⊢ V i ∈ s ↑i [PROOFSTEP] exact mem_of_superset this (subset_union_right _ _) [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i V_in : ∀ (i : ↑{i | i ∈ I}), V i ∈ s ↑i ⊢ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i [PROOFSTEP] refine' ⟨I, Ifin, V, V_in, _⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α I : Set ι Ifin : Set.Finite I σ : ↑{i | i ∈ I} → Set (Set α) σfin : ∀ (i : ↑{i | i ∈ I}), Set.Finite (σ i) σsub : ∀ (i : ↑{i | i ∈ I}), σ i ⊆ (s ↑i).sets tsub : ⋃ (i : ↑{i | i ∈ I}), σ i ⊆ ⋃ (i : ι), (s i).sets tfin : Set.Finite (⋃ (i : ↑{i | i ∈ I}), σ i) tinter : ⋂ (i : ↑{i | i ∈ I}), ⋂₀ σ i ⊆ U V : ↑{i | i ∈ I} → Set α := fun i => U ∪ ⋂₀ σ i hV : V = fun i => U ∪ ⋂₀ σ i V_in : ∀ (i : ↑{i | i ∈ I}), V i ∈ s ↑i ⊢ U = ⋂ (i : ↑I), V i [PROOFSTEP] rwa [hV, ← union_iInter, union_eq_self_of_subset_right] [GOAL] case mpr α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i) → U ∈ ⨅ (i : ι), s i [PROOFSTEP] rintro ⟨I, Ifin, V, V_in, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι Ifin : Set.Finite I V : ↑I → Set α V_in : ∀ (i : ↑I), V i ∈ s ↑i ⊢ ⋂ (i : ↑I), V i ∈ ⨅ (i : ι), s i [PROOFSTEP] exact mem_iInf_of_iInter Ifin V_in Subset.rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ U ∈ ⨅ (i : ι), s i ↔ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ι), V i ∈ s i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ U = ⋂ (i : ι) (_ : i ∈ I), V i ∧ U = ⋂ (i : ι), V i [PROOFSTEP] simp only [mem_iInf, SetCoe.forall', biInter_eq_iInter] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i) ↔ ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ι), V i ∈ s i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ U = ⋂ (x : ↑I), V ↑x ∧ U = ⋂ (i : ι), V i [PROOFSTEP] refine' ⟨_, fun ⟨I, If, V, hVs, _, hVU, _⟩ => ⟨I, If, fun i => V i, fun i => hVs i, hVU⟩⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α U : Set α ⊢ (∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ↑I), V i ∈ s ↑i) ∧ U = ⋂ (i : ↑I), V i) → ∃ I, Set.Finite I ∧ ∃ V, (∀ (i : ι), V i ∈ s i) ∧ (∀ (i : ι), ¬i ∈ I → V i = univ) ∧ U = ⋂ (x : ↑I), V ↑x ∧ U = ⋂ (i : ι), V i [PROOFSTEP] rintro ⟨I, If, V, hV, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i ⊢ ∃ I_1, Set.Finite I_1 ∧ ∃ V_1, (∀ (i : ι), V_1 i ∈ s i) ∧ (∀ (i : ι), ¬i ∈ I_1 → V_1 i = univ) ∧ ⋂ (i : ↑I), V i = ⋂ (x : ↑I_1), V_1 ↑x ∧ ⋂ (i : ↑I), V i = ⋂ (i : ι), V_1 i [PROOFSTEP] refine' ⟨I, If, fun i => if hi : i ∈ I then V ⟨i, hi⟩ else univ, fun i => _, fun i hi => _, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i i : ι ⊢ (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) i ∈ s i [PROOFSTEP] dsimp only [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i i : ι ⊢ (if hi : i ∈ I then V { val := i, property := hi } else univ) ∈ s i [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i i : ι h✝ : i ∈ I ⊢ V { val := i, property := h✝ } ∈ s i case neg α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i i : ι h✝ : ¬i ∈ I ⊢ univ ∈ s i [PROOFSTEP] exacts [hV _, univ_mem] [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i i : ι hi : ¬i ∈ I ⊢ (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) i = univ [PROOFSTEP] exact dif_neg hi [GOAL] case intro.intro.intro.intro.refine'_3 α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Type u_2 s : ι → Filter α I : Set ι If : Set.Finite I V : ↑I → Set α hV : ∀ (i : ↑I), V i ∈ s ↑i ⊢ ⋂ (i : ↑I), V i = ⋂ (x : ↑I), (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) ↑x ∧ ⋂ (i : ↑I), V i = ⋂ (i : ι), (fun i => if hi : i ∈ I then V { val := i, property := hi } else univ) i [PROOFSTEP] simp only [iInter_dite, biInter_eq_iInter, dif_pos (Subtype.coe_prop _), Subtype.coe_eta, iInter_univ, inter_univ, eq_self_iff_true, true_and_iff] [GOAL] α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α✝ s✝ t : Set α✝ ι : Type u_2 inst✝ : Finite ι α : Type u_3 f : ι → Filter α s : Set α ⊢ s ∈ ⨅ (i : ι), f i ↔ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i [PROOFSTEP] refine' ⟨exists_iInter_of_mem_iInf, _⟩ [GOAL] α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α✝ s✝ t : Set α✝ ι : Type u_2 inst✝ : Finite ι α : Type u_3 f : ι → Filter α s : Set α ⊢ (∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i) → s ∈ ⨅ (i : ι), f i [PROOFSTEP] rintro ⟨t, ht, rfl⟩ [GOAL] case intro.intro α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α✝ s t✝ : Set α✝ ι : Type u_2 inst✝ : Finite ι α : Type u_3 f : ι → Filter α t : ι → Set α ht : ∀ (i : ι), t i ∈ f i ⊢ ⋂ (i : ι), t i ∈ ⨅ (i : ι), f i [PROOFSTEP] exact iInter_mem.2 fun i => mem_iInf_of_mem i (ht i) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t : Set α ⊢ 𝓟 s ≤ 𝓟 t ↔ s ⊆ t [PROOFSTEP] simp only [le_principal_iff, iff_self_iff, mem_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t : Set α ⊢ 𝓟 s = 𝓟 t ↔ s = t [PROOFSTEP] simp only [le_antisymm_iff, le_principal_iff, mem_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t : Set α ⊢ s ⊆ t ∧ t ⊆ s ↔ s ≤ t ∧ t ≤ s [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α ⊢ ⊤ ≤ 𝓟 univ [PROOFSTEP] simp only [le_principal_iff, mem_top, eq_self_iff_true] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α S : Set (Set α) f : Filter α ⊢ f ≤ generate S ↔ f ≤ ⨅ (s : Set α) (_ : s ∈ S), 𝓟 s [PROOFSTEP] simp [le_generate_iff, le_principal_iff, subset_def] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α ⊢ Disjoint f g ↔ ∃ s, s ∈ f ∧ ∃ t, t ∈ g ∧ Disjoint s t [PROOFSTEP] simp only [disjoint_iff, ← empty_mem_iff_bot, mem_inf_iff, inf_eq_inter, bot_eq_empty, @eq_comm _ ∅] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g✝ : Filter α s t : Set α f g : Filter α ⊢ f ⊓ g = ⊥ ↔ ∃ U, U ∈ f ∧ ∃ V, V ∈ g ∧ U ∩ V = ∅ [PROOFSTEP] simp only [← disjoint_iff, Filter.disjoint_iff, Set.disjoint_iff_inter_eq_empty] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s t : Set α ι : Type u_2 inst✝ : Finite ι l : ι → Filter α hd : Pairwise (Disjoint on l) ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ Pairwise (Disjoint on s) [PROOFSTEP] have : ∀ i j, i ≠ j → ∃ (s : { s // s ∈ l i }) (t : { t // t ∈ l j }), Disjoint s.1 t.1 [GOAL] case this α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s t : Set α ι : Type u_2 inst✝ : Finite ι l : ι → Filter α hd : Pairwise (Disjoint on l) ⊢ ∀ (i j : ι), i ≠ j → ∃ s t, Disjoint ↑s ↑t [PROOFSTEP] simpa only [Pairwise, Function.onFun, Filter.disjoint_iff, exists_prop, Subtype.exists] using hd [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s t : Set α ι : Type u_2 inst✝ : Finite ι l : ι → Filter α hd : Pairwise (Disjoint on l) this : ∀ (i j : ι), i ≠ j → ∃ s t, Disjoint ↑s ↑t ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ Pairwise (Disjoint on s) [PROOFSTEP] choose! s t hst using this [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 inst✝ : Finite ι l : ι → Filter α hd : Pairwise (Disjoint on l) s : (i : ι) → ι → { s // s ∈ l i } t : ι → (j : ι) → { t // t ∈ l j } hst : ∀ (i j : ι), i ≠ j → Disjoint ↑(s i j) ↑(t i j) ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ Pairwise (Disjoint on s) [PROOFSTEP] refine' ⟨fun i => ⋂ j, s i j ∩ t j i, fun i => _, fun i j hij => _⟩ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 inst✝ : Finite ι l : ι → Filter α hd : Pairwise (Disjoint on l) s : (i : ι) → ι → { s // s ∈ l i } t : ι → (j : ι) → { t // t ∈ l j } hst : ∀ (i j : ι), i ≠ j → Disjoint ↑(s i j) ↑(t i j) i : ι ⊢ (fun i => ⋂ (j : ι), ↑(s i j) ∩ ↑(t j i)) i ∈ l i case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 inst✝ : Finite ι l : ι → Filter α hd : Pairwise (Disjoint on l) s : (i : ι) → ι → { s // s ∈ l i } t : ι → (j : ι) → { t // t ∈ l j } hst : ∀ (i j : ι), i ≠ j → Disjoint ↑(s i j) ↑(t i j) i j : ι hij : i ≠ j ⊢ (Disjoint on fun i => ⋂ (j : ι), ↑(s i j) ∩ ↑(t j i)) i j [PROOFSTEP] exacts [iInter_mem.2 fun j => inter_mem (@s i j).2 (@t j i).2, (hst _ _ hij).mono ((iInter_subset _ j).trans (inter_subset_left _ _)) ((iInter_subset _ i).trans (inter_subset_right _ _))] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s t✝ : Set α ι : Type u_2 l : ι → Filter α t : Set ι hd : PairwiseDisjoint t l ht : Set.Finite t ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s [PROOFSTEP] haveI := ht.to_subtype [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s t✝ : Set α ι : Type u_2 l : ι → Filter α t : Set ι hd : PairwiseDisjoint t l ht : Set.Finite t this : Finite ↑t ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s [PROOFSTEP] rcases(hd.subtype _ _).exists_mem_filter_of_disjoint with ⟨s, hsl, hsd⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 l : ι → Filter α t : Set ι hd : PairwiseDisjoint t l ht : Set.Finite t this : Finite ↑t s : ↑t → Set α hsl : ∀ (i : ↑t), s i ∈ l ↑i hsd : Pairwise (Disjoint on s) ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s [PROOFSTEP] lift s to (i : t) → { s // s ∈ l i } using hsl [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 l : ι → Filter α t : Set ι hd : PairwiseDisjoint t l ht : Set.Finite t this : Finite ↑t s : (i : ↑t) → { s // s ∈ l ↑i } hsd : Pairwise (Disjoint on fun i => ↑(s i)) ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s [PROOFSTEP] [email protected]_pi_extension ι (fun i => { s // s ∈ l i }) _ _ s with ⟨s, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t✝ : Set α ι : Type u_2 l : ι → Filter α t : Set ι hd : PairwiseDisjoint t l ht : Set.Finite t this : Finite ↑t s : (i : ι) → { s // s ∈ l i } hsd : Pairwise (Disjoint on fun i => ↑((fun i => s ↑i) i)) ⊢ ∃ s, (∀ (i : ι), s i ∈ l i) ∧ PairwiseDisjoint t s [PROOFSTEP] exact ⟨fun i => s i, fun i => (s i).2, hsd.set_of_subtype _ _⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : NeBot l ⊢ l = ⊤ [PROOFSTEP] refine' top_unique fun s hs => _ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : NeBot l s : Set α hs : s ∈ l ⊢ s ∈ ⊤ [PROOFSTEP] obtain rfl : s = univ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : NeBot l s : Set α hs : s ∈ l ⊢ s = univ α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : NeBot l hs : univ ∈ l ⊢ univ ∈ ⊤ [PROOFSTEP] exact Subsingleton.eq_univ_of_nonempty (nonempty_of_mem hs) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : NeBot l hs : univ ∈ l ⊢ univ ∈ ⊤ [PROOFSTEP] exact univ_mem [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α inst✝ : Nonempty α s : Set α hs : s ∈ ⊤ ⊢ Set.Nonempty s [PROOFSTEP] rwa [mem_top.1 hs, ← nonempty_iff_univ_nonempty] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α p : ι → Prop l : Filter α h : ∀ {s : Set α}, s ∈ l ↔ ∃ i, p i ∧ s ∈ f i ⊢ l = ⨅ (i : ι) (_ : p i), f i [PROOFSTEP] rw [iInf_subtype'] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α p : ι → Prop l : Filter α h : ∀ {s : Set α}, s ∈ l ↔ ∃ i, p i ∧ s ∈ f i ⊢ l = ⨅ (x : { i // p i }), f ↑x [PROOFSTEP] exact eq_iInf_of_mem_iff_exists_mem <| fun {_} => by simp only [Subtype.exists, h, exists_prop] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α p : ι → Prop l : Filter α h : ∀ {s : Set α}, s ∈ l ↔ ∃ i, p i ∧ s ∈ f i x✝ : Set α ⊢ x✝ ∈ l ↔ ∃ i, x✝ ∈ f ↑i [PROOFSTEP] simp only [Subtype.exists, h, exists_prop] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι ⊢ ∀ {x y : Set α}, x ∈ ⋃ (i : ι), (f i).sets → x ⊆ y → y ∈ ⋃ (i : ι), (f i).sets [PROOFSTEP] simp only [mem_iUnion, exists_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι ⊢ ∀ {x y : Set α} (x_1 : ι), x ∈ (f x_1).sets → x ⊆ y → ∃ i, y ∈ (f i).sets [PROOFSTEP] exact fun i hx hxy => ⟨i, mem_of_superset hx hxy⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι ⊢ ∀ {x y : Set α}, x ∈ ⋃ (i : ι), (f i).sets → y ∈ ⋃ (i : ι), (f i).sets → x ∩ y ∈ ⋃ (i : ι), (f i).sets [PROOFSTEP] simp only [mem_iUnion, exists_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι ⊢ ∀ {x y : Set α} (x_1 : ι), x ∈ (f x_1).sets → ∀ (x_2 : ι), y ∈ (f x_2).sets → ∃ i, x ∩ y ∈ (f i).sets [PROOFSTEP] intro x y a hx b hy [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι x y : Set α a : ι hx : x ∈ (f a).sets b : ι hy : y ∈ (f b).sets ⊢ ∃ i, x ∩ y ∈ (f i).sets [PROOFSTEP] rcases h a b with ⟨c, ha, hb⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι x y : Set α a : ι hx : x ∈ (f a).sets b : ι hy : y ∈ (f b).sets c : ι ha : f a ≥ f c hb : f b ≥ f c ⊢ ∃ i, x ∩ y ∈ (f i).sets [PROOFSTEP] exact ⟨c, inter_mem (ha hx) (hb hy)⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f ne : Nonempty ι i : ι u : Filter α := { sets := ⋃ (i : ι), (f i).sets, univ_sets := (_ : univ ∈ ⋃ (i : ι), (f i).sets), sets_of_superset := ?m.89808, inter_sets := ?m.89809 } this : u = iInf f ⊢ u.sets = ⋃ (i : ι), (f i).sets [PROOFSTEP] simp only [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α h : Directed (fun x x_1 => x ≥ x_1) f inst✝ : Nonempty ι s : Set α ⊢ s ∈ iInf f ↔ ∃ i, s ∈ f i [PROOFSTEP] simp only [← Filter.mem_sets, iInf_sets_eq h, mem_iUnion] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α f : β → Filter α s : Set β h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) s ne : Set.Nonempty s t : Set α ⊢ t ∈ ⨅ (i : β) (_ : i ∈ s), f i ↔ ∃ i, i ∈ s ∧ t ∈ f i [PROOFSTEP] haveI := ne.to_subtype [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α f : β → Filter α s : Set β h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) s ne : Set.Nonempty s t : Set α this : Nonempty ↑s ⊢ t ∈ ⨅ (i : β) (_ : i ∈ s), f i ↔ ∃ i, i ∈ s ∧ t ∈ f i [PROOFSTEP] simp_rw [iInf_subtype', mem_iInf_of_directed h.directed_val, Subtype.exists, exists_prop] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α f : β → Filter α s : Set β h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) s ne : Set.Nonempty s t : Set α ⊢ t ∈ (⨅ (i : β) (_ : i ∈ s), f i).sets ↔ t ∈ ⋃ (i : β) (_ : i ∈ s), (f i).sets [PROOFSTEP] simp [mem_biInf_of_directed h ne] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s t : Set α ι : Type u_2 f : ι → Filter α ⊢ (⨅ (i : ι), f i).sets = ⋃ (t : Finset ι), (⨅ (i : ι) (_ : i ∈ t), f i).sets [PROOFSTEP] rw [iInf_eq_iInf_finset, iInf_sets_eq] [GOAL] case h α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s t : Set α ι : Type u_2 f : ι → Filter α ⊢ Directed (fun x x_1 => x ≥ x_1) fun t => ⨅ (i : ι) (_ : i ∈ t), f i [PROOFSTEP] exact directed_of_sup fun _ _ => biInf_mono [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α ⊢ (⨅ (i : ι), f i).sets = ⋃ (t : Finset (PLift ι)), (⨅ (i : PLift ι) (_ : i ∈ t), f i.down).sets [PROOFSTEP] rw [← iInf_sets_eq_finite, ← Equiv.plift.surjective.iInf_comp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α ⊢ (⨅ (x : PLift ι), f (↑Equiv.plift x)).sets = (⨅ (i : PLift ι), f i.down).sets [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α f₁ f₂ : Filter (Filter α) x : Set α ⊢ x ∈ join f₁ ⊔ join f₂ ↔ x ∈ join (f₁ ⊔ f₂) [PROOFSTEP] simp only [mem_sup, mem_join] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s t : Set α ι : Sort w f : ι → Filter (Filter α) x : Set α ⊢ x ∈ ⨆ (x : ι), join (f x) ↔ x ∈ join (⨆ (x : ι), f x) [PROOFSTEP] simp only [mem_iSup, mem_join] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter ⊢ ∀ (x y z : Filter α), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] intro x y z s [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter x y z : Filter α s : Set α ⊢ s ∈ x ⊔ y ⊓ z → s ∈ (x ⊔ y) ⊓ (x ⊔ z) [PROOFSTEP] simp only [and_assoc, mem_inf_iff, mem_sup, exists_prop, exists_imp, and_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter x y z : Filter α s : Set α ⊢ s ∈ x → ∀ (x_1 : Set α), x_1 ∈ y → ∀ (x_2 : Set α), x_2 ∈ z → s = x_1 ∩ x_2 → ∃ t₁, t₁ ∈ x ∧ t₁ ∈ y ∧ ∃ t₂, t₂ ∈ x ∧ t₂ ∈ z ∧ s = t₁ ∩ t₂ [PROOFSTEP] rintro hs t₁ ht₁ t₂ ht₂ rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter x y z : Filter α t₁ : Set α ht₁ : t₁ ∈ y t₂ : Set α ht₂ : t₂ ∈ z hs : t₁ ∩ t₂ ∈ x ⊢ ∃ t₁_1, t₁_1 ∈ x ∧ t₁_1 ∈ y ∧ ∃ t₂_1, t₂_1 ∈ x ∧ t₂_1 ∈ z ∧ t₁ ∩ t₂ = t₁_1 ∩ t₂_1 [PROOFSTEP] exact ⟨t₁, x.sets_of_superset hs (inter_subset_left t₁ t₂), ht₁, t₂, x.sets_of_superset hs (inter_subset_right t₁ t₂), ht₂, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets h₂ : t ∈ (sInf s).sets ⊢ t ∈ ⨅ (b : Filter α) (_ : b ∈ s), f ⊔ b [PROOFSTEP] rw [iInf_subtype'] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets h₂ : t ∈ (sInf s).sets ⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x [PROOFSTEP] rw [sInf_eq_iInf', iInf_sets_eq_finite, mem_iUnion] at h₂ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets h₂ : ∃ i, t ∈ (⨅ (i_1 : ↑s) (_ : i_1 ∈ i), ↑i_1).sets ⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x [PROOFSTEP] obtain ⟨u, hu⟩ := h₂ [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets u : Finset ↑s hu : t ∈ (⨅ (i : ↑s) (_ : i ∈ u), ↑i).sets ⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x [PROOFSTEP] rw [← Finset.inf_eq_iInf] at hu [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets u : Finset ↑s hu : t ∈ (Finset.inf u fun i => ↑i).sets ⊢ t ∈ ⨅ (x : { b // b ∈ s }), f ⊔ ↑x [PROOFSTEP] suffices ⨅ i : s, f ⊔ ↑i ≤ f ⊔ u.inf fun i => ↑i from this ⟨h₁, hu⟩ [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets u : Finset ↑s hu : t ∈ (Finset.inf u fun i => ↑i).sets ⊢ ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf u fun i => ↑i [PROOFSTEP] refine' Finset.induction_on u (le_sup_of_le_right le_top) _ [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets u : Finset ↑s hu : t ∈ (Finset.inf u fun i => ↑i).sets ⊢ ∀ ⦃a : ↑s⦄ {s_1 : Finset ↑s}, ¬a ∈ s_1 → (⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf s_1 fun i => ↑i) → ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf (insert a s_1) fun i => ↑i [PROOFSTEP] rintro ⟨i⟩ u _ ih [GOAL] case intro.mk α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets u✝ : Finset ↑s hu : t ∈ (Finset.inf u✝ fun i => ↑i).sets i : Filter α property✝ : i ∈ s u : Finset ↑s a✝ : ¬{ val := i, property := property✝ } ∈ u ih : ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf u fun i => ↑i ⊢ ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf (insert { val := i, property := property✝ } u) fun i => ↑i [PROOFSTEP] rw [Finset.inf_insert, sup_inf_left] [GOAL] case intro.mk α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α src✝ : CompleteLattice (Filter α) := instCompleteLatticeFilter f : Filter α s : Set (Filter α) t : Set α x✝ : t ∈ f ⊔ sInf s h₁ : t ∈ f.sets u✝ : Finset ↑s hu : t ∈ (Finset.inf u✝ fun i => ↑i).sets i : Filter α property✝ : i ∈ s u : Finset ↑s a✝ : ¬{ val := i, property := property✝ } ∈ u ih : ⨅ (i : ↑s), f ⊔ ↑i ≤ f ⊔ Finset.inf u fun i => ↑i ⊢ ⨅ (i : ↑s), f ⊔ ↑i ≤ (f ⊔ ↑{ val := i, property := property✝ }) ⊓ (f ⊔ Finset.inf u fun i => ↑i) [PROOFSTEP] exact le_inf (iInf_le _ _) ih [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α s : Finset α f : α → Filter β t : Set β ⊢ t ∈ ⨅ (a : α) (_ : a ∈ s), f a ↔ ∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (a : α) (_ : a ∈ s), p a [PROOFSTEP] simp only [← Finset.set_biInter_coe, biInter_eq_iInter, iInf_subtype'] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α s : Finset α f : α → Filter β t : Set β ⊢ t ∈ ⨅ (x : { i // i ∈ s }), f ↑x ↔ ∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (x : ↑↑s), p ↑x [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α s : Finset α f : α → Filter β t : Set β h : t ∈ ⨅ (x : { i // i ∈ s }), f ↑x ⊢ ∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (x : ↑↑s), p ↑x [PROOFSTEP] rcases(mem_iInf_of_finite _).1 h with ⟨p, hp, rfl⟩ [GOAL] case refine'_1.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α s : Finset α f : α → Filter β p : { i // i ∈ s } → Set β hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x ⊢ ∃ p_1, (∀ (a : α), a ∈ s → p_1 a ∈ f a) ∧ ⋂ (i : { i // i ∈ s }), p i = ⋂ (x : ↑↑s), p_1 ↑x [PROOFSTEP] refine' ⟨fun a => if h : a ∈ s then p ⟨a, h⟩ else univ, fun a ha => by simpa [ha] using hp ⟨a, ha⟩, _⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α s : Finset α f : α → Filter β p : { i // i ∈ s } → Set β hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x a : α ha : a ∈ s ⊢ (fun a => if h : a ∈ s then p { val := a, property := h } else univ) a ∈ f a [PROOFSTEP] simpa [ha] using hp ⟨a, ha⟩ [GOAL] case refine'_1.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α s : Finset α f : α → Filter β p : { i // i ∈ s } → Set β hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x ⊢ ⋂ (i : { i // i ∈ s }), p i = ⋂ (x : ↑↑s), (fun a => if h : a ∈ s then p { val := a, property := h } else univ) ↑x [PROOFSTEP] refine' iInter_congr_of_surjective id surjective_id _ [GOAL] case refine'_1.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α s : Finset α f : α → Filter β p : { i // i ∈ s } → Set β hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x ⊢ ∀ (x : { i // i ∈ s }), (fun a => if h : a ∈ s then p { val := a, property := h } else univ) ↑(id x) = p x [PROOFSTEP] rintro ⟨a, ha⟩ [GOAL] case refine'_1.intro.intro.mk α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α s : Finset α f : α → Filter β p : { i // i ∈ s } → Set β hp : ∀ (i : { i // i ∈ s }), p i ∈ f ↑i h : ⋂ (i : { i // i ∈ s }), p i ∈ ⨅ (x : { i // i ∈ s }), f ↑x a : α ha : a ∈ s ⊢ (fun a => if h : a ∈ s then p { val := a, property := h } else univ) ↑(id { val := a, property := ha }) = p { val := a, property := ha } [PROOFSTEP] simp [ha] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α s : Finset α f : α → Filter β t : Set β ⊢ (∃ p, (∀ (a : α), a ∈ s → p a ∈ f a) ∧ t = ⋂ (x : ↑↑s), p ↑x) → t ∈ ⨅ (x : { i // i ∈ s }), f ↑x [PROOFSTEP] rintro ⟨p, hpf, rfl⟩ [GOAL] case refine'_2.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α s : Finset α f : α → Filter β p : α → Set β hpf : ∀ (a : α), a ∈ s → p a ∈ f a ⊢ ⋂ (x : ↑↑s), p ↑x ∈ ⨅ (x : { i // i ∈ s }), f ↑x [PROOFSTEP] exact iInter_mem.2 fun a => mem_iInf_of_mem a (hpf a a.2) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α inst✝ : Nonempty ι hd : Directed (fun x x_1 => x ≥ x_1) f ⊢ ¬NeBot (iInf f) → ¬∀ (i : ι), NeBot (f i) [PROOFSTEP] simpa only [not_forall, not_neBot, ← empty_mem_iff_bot, mem_iInf_of_directed hd] using id [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α hn : Nonempty α hd : Directed (fun x x_1 => x ≥ x_1) f hb : ∀ (i : ι), NeBot (f i) ⊢ NeBot (iInf f) [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α hn : Nonempty α hd : Directed (fun x x_1 => x ≥ x_1) f hb : ∀ (i : ι), NeBot (f i) h✝ : IsEmpty ι ⊢ NeBot (iInf f) [PROOFSTEP] constructor [GOAL] case inl.ne' α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α hn : Nonempty α hd : Directed (fun x x_1 => x ≥ x_1) f hb : ∀ (i : ι), NeBot (f i) h✝ : IsEmpty ι ⊢ iInf f ≠ ⊥ [PROOFSTEP] simp [iInf_of_empty f, top_ne_bot] [GOAL] case inr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α hn : Nonempty α hd : Directed (fun x x_1 => x ≥ x_1) f hb : ∀ (i : ι), NeBot (f i) h✝ : Nonempty ι ⊢ NeBot (iInf f) [PROOFSTEP] exact iInf_neBot_of_directed' hd hb [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α s : Set α hs : s ∈ iInf f p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) ⊢ p s [PROOFSTEP] rw [mem_iInf_finite'] at hs [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α s : Set α hs : ∃ t, s ∈ ⨅ (i : PLift ι) (_ : i ∈ t), f i.down p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) ⊢ p s [PROOFSTEP] simp only [← Finset.inf_eq_iInf] at hs [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α s : Set α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) hs : ∃ t, s ∈ Finset.inf t fun a => f a.down ⊢ p s [PROOFSTEP] rcases hs with ⟨is, his⟩ [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α s : Set α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) is : Finset (PLift ι) his : s ∈ Finset.inf is fun a => f a.down ⊢ p s [PROOFSTEP] induction is using Finset.induction_on generalizing s [GOAL] case intro.empty α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) s : Set α his : s ∈ Finset.inf ∅ fun a => f a.down ⊢ p s case intro.insert α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝¹ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) a✝² : PLift ι s✝ : Finset (PLift ι) a✝¹ : ¬a✝² ∈ s✝ a✝ : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s s : Set α his : s ∈ Finset.inf (insert a✝² s✝) fun a => f a.down ⊢ p s [PROOFSTEP] case empty => rwa [mem_top.1 his] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) s : Set α his : s ∈ Finset.inf ∅ fun a => f a.down ⊢ p s [PROOFSTEP] case empty => rwa [mem_top.1 his] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) s : Set α his : s ∈ Finset.inf ∅ fun a => f a.down ⊢ p s [PROOFSTEP] rwa [mem_top.1 his] [GOAL] case intro.insert α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝¹ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) a✝² : PLift ι s✝ : Finset (PLift ι) a✝¹ : ¬a✝² ∈ s✝ a✝ : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s s : Set α his : s ∈ Finset.inf (insert a✝² s✝) fun a => f a.down ⊢ p s [PROOFSTEP] case insert ih => rw [Finset.inf_insert, mem_inf_iff] at his rcases his with ⟨s₁, hs₁, s₂, hs₂, rfl⟩ exact ins hs₁ (ih hs₂) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝¹ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) a✝¹ : PLift ι s✝ : Finset (PLift ι) a✝ : ¬a✝¹ ∈ s✝ ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s s : Set α his : s ∈ Finset.inf (insert a✝¹ s✝) fun a => f a.down ⊢ p s [PROOFSTEP] case insert ih => rw [Finset.inf_insert, mem_inf_iff] at his rcases his with ⟨s₁, hs₁, s₂, hs₂, rfl⟩ exact ins hs₁ (ih hs₂) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝¹ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) a✝¹ : PLift ι s✝ : Finset (PLift ι) a✝ : ¬a✝¹ ∈ s✝ ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s s : Set α his : s ∈ Finset.inf (insert a✝¹ s✝) fun a => f a.down ⊢ p s [PROOFSTEP] rw [Finset.inf_insert, mem_inf_iff] at his [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝¹ t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) a✝¹ : PLift ι s✝ : Finset (PLift ι) a✝ : ¬a✝¹ ∈ s✝ ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s s : Set α his : ∃ t₁, t₁ ∈ f a✝¹.down ∧ ∃ t₂, (t₂ ∈ Finset.inf s✝ fun a => f a.down) ∧ s = t₁ ∩ t₂ ⊢ p s [PROOFSTEP] rcases his with ⟨s₁, hs₁, s₂, hs₂, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s t : Set α f : ι → Filter α p : Set α → Prop uni : p univ ins : ∀ {i : ι} {s₁ s₂ : Set α}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂) a✝¹ : PLift ι s✝ : Finset (PLift ι) a✝ : ¬a✝¹ ∈ s✝ ih : ∀ {s : Set α}, (s ∈ Finset.inf s✝ fun a => f a.down) → p s s₁ : Set α hs₁ : s₁ ∈ f a✝¹.down s₂ : Set α hs₂ : s₂ ∈ Finset.inf s✝ fun a => f a.down ⊢ p (s₁ ∩ s₂) [PROOFSTEP] exact ins hs₁ (ih hs₂) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t : Set α ⊢ 𝓟 s ⊓ 𝓟 t ≤ 𝓟 (s ∩ t) [PROOFSTEP] simp only [le_principal_iff, mem_inf_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t : Set α ⊢ ∃ t₁, t₁ ∈ 𝓟 s ∧ ∃ t₂, t₂ ∈ 𝓟 t ∧ s ∩ t = t₁ ∩ t₂ [PROOFSTEP] exact ⟨s, Subset.rfl, t, Subset.rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t : Set α ⊢ 𝓟 (s ∩ t) ≤ 𝓟 s ⊓ 𝓟 t [PROOFSTEP] simp [le_inf_iff, inter_subset_left, inter_subset_right] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t✝ s t u : Set α ⊢ u ∈ 𝓟 s ⊔ 𝓟 t ↔ u ∈ 𝓟 (s ∪ t) [PROOFSTEP] simp only [union_subset_iff, mem_sup, mem_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f g : Filter α s✝ t : Set α ι : Sort w s : ι → Set α x : Set α ⊢ x ∈ ⨆ (x : ι), 𝓟 (s x) ↔ x ∈ 𝓟 (⋃ (i : ι), s i) [PROOFSTEP] simp only [mem_iSup, mem_principal, iUnion_subset_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t s : Set α ⊢ 𝓟 s ⊓ 𝓟 sᶜ = ⊥ [PROOFSTEP] rw [inf_principal, inter_compl_self, principal_empty] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t s : Set α ⊢ 𝓟 s ⊔ 𝓟 sᶜ = ⊤ [PROOFSTEP] rw [sup_principal, union_compl_self, principal_univ] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α f : Filter α s t : Set α ⊢ s ∈ f ⊓ 𝓟 t ↔ tᶜ ∪ s ∈ f [PROOFSTEP] simp only [← le_principal_iff, (isCompl_principal s).le_left_iff, disjoint_assoc, inf_principal, ← (isCompl_principal (t ∩ sᶜ)).le_right_iff, compl_inter, compl_compl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α f : Filter α s t : Set α ⊢ s ∈ f ⊓ 𝓟 t ↔ {x | x ∈ t → x ∈ s} ∈ f [PROOFSTEP] simp only [mem_inf_principal', imp_iff_not_or] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t✝ : Set α f : Filter α s t : Set α ⊢ tᶜ ∪ s ∈ f ↔ {x | ¬x ∈ t ∨ x ∈ s} ∈ f [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : ι → Filter α s : Set α ⊢ ⨆ (i : ι), f i ⊓ 𝓟 s = (⨆ (i : ι), f i) ⊓ 𝓟 s [PROOFSTEP] ext [GOAL] case a α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝¹ t : Set α f : ι → Filter α s s✝ : Set α ⊢ s✝ ∈ ⨆ (i : ι), f i ⊓ 𝓟 s ↔ s✝ ∈ (⨆ (i : ι), f i) ⊓ 𝓟 s [PROOFSTEP] simp only [mem_iSup, mem_inf_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : Filter α s : Set α ⊢ f ⊓ 𝓟 s = ⊥ ↔ sᶜ ∈ f [PROOFSTEP] rw [← empty_mem_iff_bot, mem_inf_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : Filter α s : Set α ⊢ {x | x ∈ s → x ∈ ∅} ∈ f ↔ sᶜ ∈ f [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t : Set α f : Filter α s : Set α h : f ⊓ 𝓟 sᶜ = ⊥ ⊢ s ∈ f [PROOFSTEP] rwa [inf_principal_eq_bot, compl_compl] at h [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t s : Set α f : Filter α ⊢ 𝓟 s ≤ f ↔ ∀ (V : Set α), V ∈ f → s ⊆ V [PROOFSTEP] change (∀ V, V ∈ f → V ∈ _) ↔ _ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ g : Filter α s✝ t s : Set α f : Filter α ⊢ (∀ (V : Set α), V ∈ f → V ∈ 𝓟 s) ↔ ∀ (V : Set α), V ∈ f → s ⊆ V [PROOFSTEP] simp_rw [mem_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s✝ t : Set α ι : Type w s : Finset ι f : ι → Set α ⊢ ⨅ (i : ι) (_ : i ∈ s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ s), f i) [PROOFSTEP] induction' s using Finset.induction_on with i s _ hs [GOAL] case empty α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s t : Set α ι : Type w f : ι → Set α ⊢ ⨅ (i : ι) (_ : i ∈ ∅), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ ∅), f i) [PROOFSTEP] simp [GOAL] case insert α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s✝ t : Set α ι : Type w f : ι → Set α i : ι s : Finset ι a✝ : ¬i ∈ s hs : ⨅ (i : ι) (_ : i ∈ s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ s), f i) ⊢ ⨅ (i_1 : ι) (_ : i_1 ∈ insert i s), 𝓟 (f i_1) = 𝓟 (⋂ (i_1 : ι) (_ : i_1 ∈ insert i s), f i_1) [PROOFSTEP] rw [Finset.iInf_insert, Finset.set_biInter_insert, hs, inf_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s t : Set α ι : Type w inst✝ : Finite ι f : ι → Set α ⊢ ⨅ (i : ι), 𝓟 (f i) = 𝓟 (⋂ (i : ι), f i) [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s t : Set α ι : Type w inst✝ : Finite ι f : ι → Set α val✝ : Fintype ι ⊢ ⨅ (i : ι), 𝓟 (f i) = 𝓟 (⋂ (i : ι), f i) [PROOFSTEP] simpa using iInf_principal_finset Finset.univ f [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s✝ t : Set α ι : Type w s : Set ι hs : Set.Finite s f : ι → Set α ⊢ ⨅ (i : ι) (_ : i ∈ s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ s), f i) [PROOFSTEP] lift s to Finset ι using hs [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ g : Filter α s✝ t : Set α ι : Type w f : ι → Set α s : Finset ι ⊢ ⨅ (i : ι) (_ : i ∈ ↑s), 𝓟 (f i) = 𝓟 (⋂ (i : ι) (_ : i ∈ ↑s), f i) [PROOFSTEP] exact_mod_cast iInf_principal_finset s f [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α t : NeBot f p : Prop h : p ⊢ (∀ᶠ (x : α) in f, p) ↔ p [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α t : NeBot f p : Prop h : ¬p ⊢ (∀ᶠ (x : α) in f, p) ↔ p [PROOFSTEP] simpa [h] using t.ne [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p q : α → Prop h : ∀ᶠ (x : α) in f, p x ↔ q x hq : ∀ᶠ (x : α) in f, q x ⊢ ∀ᶠ (x : α) in f, q x ↔ p x [PROOFSTEP] simpa only [Iff.comm] using h [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x ι : Type u_2 inst✝ : Finite ι l : Filter α p : ι → α → Prop ⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), p i x) ↔ ∀ (i : ι), ∀ᶠ (x : α) in l, p i x [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x ι : Type u_2 inst✝ : Finite ι l : Filter α p : ι → α → Prop val✝ : Fintype ι ⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), p i x) ↔ ∀ (i : ι), ∀ᶠ (x : α) in l, p i x [PROOFSTEP] simpa only [Filter.Eventually, setOf_forall] using iInter_mem [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x ι : Type u_2 I : Set ι hI : Set.Finite I l : Filter α p : ι → α → Prop ⊢ (∀ᶠ (x : α) in l, ∀ (i : ι), i ∈ I → p i x) ↔ ∀ (i : ι), i ∈ I → ∀ᶠ (x : α) in l, p i x [PROOFSTEP] simpa only [Filter.Eventually, setOf_forall] using biInter_mem hI [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : Prop q : α → Prop h : p ⊢ (∀ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∀ᶠ (x : α) in f, q x [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : Prop q : α → Prop h : ¬p ⊢ (∀ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∀ᶠ (x : α) in f, q x [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : α → Prop q : Prop ⊢ (∀ᶠ (x : α) in f, p x ∨ q) ↔ (∀ᶠ (x : α) in f, p x) ∨ q [PROOFSTEP] simp only [@or_comm _ q, eventually_or_distrib_left] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : Prop q : α → Prop ⊢ (∀ᶠ (x : α) in f, p → q x) ↔ p → ∀ᶠ (x : α) in f, q x [PROOFSTEP] simp only [imp_iff_not_or, eventually_or_distrib_left] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p q : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x hq : ∀ᶠ (x : α) in f, q x ⊢ ∃ᶠ (x : α) in f, p x ∧ q x [PROOFSTEP] refine' mt (fun h => hq.mp <| h.mono _) hp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p q : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x hq : ∀ᶠ (x : α) in f, q x h : ∀ᶠ (x : α) in f, ¬(fun x => p x ∧ q x) x ⊢ ∀ (x : α), ¬(fun x => p x ∧ q x) x → q x → ¬(fun x => p x) x [PROOFSTEP] exact fun x hpq hq hp => hpq ⟨hp, hq⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p q : α → Prop f : Filter α hp : ∀ᶠ (x : α) in f, p x hq : ∃ᶠ (x : α) in f, q x ⊢ ∃ᶠ (x : α) in f, p x ∧ q x [PROOFSTEP] simpa only [and_comm] using hq.and_eventually hp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x ⊢ ∃ x, p x [PROOFSTEP] by_contra H [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x H : ¬∃ x, p x ⊢ False [PROOFSTEP] replace H : ∀ᶠ x in f, ¬p x [GOAL] case H α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x H : ¬∃ x, p x ⊢ ∀ᶠ (x : α) in f, ¬p x α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x H : ∀ᶠ (x : α) in f, ¬p x ⊢ False [PROOFSTEP] exact eventually_of_forall (not_exists.1 H) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α hp : ∃ᶠ (x : α) in f, p x H : ∀ᶠ (x : α) in f, ¬p x ⊢ False [PROOFSTEP] exact hp H [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α H : ∀ {q : α → Prop}, (∀ᶠ (x : α) in f, q x) → ∃ x, p x ∧ q x hp : ∀ᶠ (x : α) in f, ¬(fun x => p x) x ⊢ False [PROOFSTEP] simpa only [and_not_self_iff, exists_false] using H hp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α P : α → Prop ⊢ (∃ᶠ (x : α) in f, P x) ↔ ∀ {U : Set α}, U ∈ f → ∃ x, x ∈ U ∧ P x [PROOFSTEP] simp only [frequently_iff_forall_eventually_exists_and, exists_prop, @and_comm (P _)] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α P : α → Prop ⊢ (∀ {q : α → Prop}, (∀ᶠ (x : α) in f, q x) → ∃ x, q x ∧ P x) ↔ ∀ {U : Set α}, U ∈ f → ∃ x, x ∈ U ∧ P x [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α ⊢ (¬∀ᶠ (x : α) in f, p x) ↔ ∃ᶠ (x : α) in f, ¬p x [PROOFSTEP] simp [Filter.Frequently] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f : Filter α ⊢ (¬∃ᶠ (x : α) in f, p x) ↔ ∀ᶠ (x : α) in f, ¬p x [PROOFSTEP] simp only [Filter.Frequently, not_not] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α ⊢ (∃ᶠ (x : α) in f, True) ↔ NeBot f [PROOFSTEP] simp [Filter.Frequently, -not_eventually, eventually_false_iff_eq_bot, neBot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α ⊢ ¬∃ᶠ (x : α) in f, False [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α inst✝ : NeBot f p : Prop h : p ⊢ (∃ᶠ (x : α) in f, p) ↔ p [PROOFSTEP] simpa [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α inst✝ : NeBot f p : Prop h : ¬p ⊢ (∃ᶠ (x : α) in f, p) ↔ p [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p q : α → Prop ⊢ (∃ᶠ (x : α) in f, p x ∨ q x) ↔ (∃ᶠ (x : α) in f, p x) ∨ ∃ᶠ (x : α) in f, q x [PROOFSTEP] simp only [Filter.Frequently, ← not_and_or, not_or, eventually_and] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α inst✝ : NeBot f p : Prop q : α → Prop ⊢ (∃ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∃ᶠ (x : α) in f, q x [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α inst✝ : NeBot f p : α → Prop q : Prop ⊢ (∃ᶠ (x : α) in f, p x ∨ q) ↔ (∃ᶠ (x : α) in f, p x) ∨ q [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p q : α → Prop ⊢ (∃ᶠ (x : α) in f, p x → q x) ↔ (∀ᶠ (x : α) in f, p x) → ∃ᶠ (x : α) in f, q x [PROOFSTEP] simp [imp_iff_not_or, not_eventually, frequently_or_distrib] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α inst✝ : NeBot f p : Prop q : α → Prop ⊢ (∃ᶠ (x : α) in f, p → q x) ↔ p → ∃ᶠ (x : α) in f, q x [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α inst✝ : NeBot f p : α → Prop q : Prop ⊢ (∃ᶠ (x : α) in f, p x → q) ↔ (∀ᶠ (x : α) in f, p x) → q [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : α → Prop q : Prop ⊢ (∀ᶠ (x : α) in f, p x → q) ↔ (∃ᶠ (x : α) in f, p x) → q [PROOFSTEP] simp only [imp_iff_not_or, eventually_or_distrib_right, not_frequently] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : Prop q : α → Prop ⊢ (∃ᶠ (x : α) in f, p ∧ q x) ↔ p ∧ ∃ᶠ (x : α) in f, q x [PROOFSTEP] simp only [Filter.Frequently, not_and, eventually_imp_distrib_left, not_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α p : α → Prop q : Prop ⊢ (∃ᶠ (x : α) in f, p x ∧ q) ↔ (∃ᶠ (x : α) in f, p x) ∧ q [PROOFSTEP] simp only [@and_comm _ q, frequently_and_distrib_left] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop ⊢ ¬∃ᶠ (x : α) in ⊥, p x [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop ⊢ (∃ᶠ (x : α) in ⊤, p x) ↔ ∃ x, p x [PROOFSTEP] simp [Filter.Frequently] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x a : Set α p : α → Prop ⊢ (∃ᶠ (x : α) in 𝓟 a, p x) ↔ ∃ x, x ∈ a ∧ p x [PROOFSTEP] simp [Filter.Frequently, not_forall] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop f g : Filter α ⊢ (∃ᶠ (x : α) in f ⊔ g, p x) ↔ (∃ᶠ (x : α) in f, p x) ∨ ∃ᶠ (x : α) in g, p x [PROOFSTEP] simp only [Filter.Frequently, eventually_sup, not_and_or] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop fs : Set (Filter α) ⊢ (∃ᶠ (x : α) in sSup fs, p x) ↔ ∃ f, f ∈ fs ∧ ∃ᶠ (x : α) in f, p x [PROOFSTEP] simp only [Filter.Frequently, not_forall, eventually_sSup, exists_prop] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x p : α → Prop fs : β → Filter α ⊢ (∃ᶠ (x : α) in ⨆ (b : β), fs b, p x) ↔ ∃ b, ∃ᶠ (x : α) in fs b, p x [PROOFSTEP] simp only [Filter.Frequently, eventually_iSup, not_forall] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x r : α → β → Prop l : Filter α inst✝ : NeBot l h : ∀ᶠ (x : α) in l, ∃ y, r x y ⊢ ∃ f, ∀ᶠ (x : α) in l, r x (f x) [PROOFSTEP] haveI : Nonempty β := let ⟨_, hx⟩ := h.exists; hx.nonempty [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x r : α → β → Prop l : Filter α inst✝ : NeBot l h : ∀ᶠ (x : α) in l, ∃ y, r x y this : Nonempty β ⊢ ∃ f, ∀ᶠ (x : α) in l, r x (f x) [PROOFSTEP] choose! f hf using fun x (hx : ∃ y, r x y) => hx [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x r : α → β → Prop l : Filter α inst✝ : NeBot l h : ∀ᶠ (x : α) in l, ∃ y, r x y this : Nonempty β f : α → β hf : ∀ (x : α), (∃ y, r x y) → r x (f x) ⊢ ∃ f, ∀ᶠ (x : α) in l, r x (f x) [PROOFSTEP] exact ⟨f, h.mono hf⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s : Set α l : Filter α ⊢ s =ᶠ[l] univ ↔ s ∈ l [PROOFSTEP] simp [eventuallyEq_set] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l : Filter α f f' : α → β hf : f =ᶠ[l] f' g g' : α → γ hg : g =ᶠ[l] g' ⊢ ∀ (x : α), g x = g' x → f x = f' x → (fun x => (f x, g x)) x = (fun x => (f' x, g' x)) x [PROOFSTEP] intros [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l : Filter α f f' : α → β hf : f =ᶠ[l] f' g g' : α → γ hg : g =ᶠ[l] g' x✝ : α a✝¹ : g x✝ = g' x✝ a✝ : f x✝ = f' x✝ ⊢ (fun x => (f x, g x)) x✝ = (fun x => (f' x, g' x)) x✝ [PROOFSTEP] simp only [*] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s : Set α l : Filter α ⊢ (∀ᶠ (x : α) in l, x ∈ s ↔ x ∈ ∅) ↔ ∀ᶠ (x : α) in l, ¬x ∈ s [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s t : Set α l : Filter α ⊢ s ∩ t =ᶠ[l] s ↔ ∀ᶠ (x : α) in l, x ∈ s → x ∈ t [PROOFSTEP] simp only [eventuallyEq_set, mem_inter_iff, and_iff_left_iff_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s t : Set α l : Filter α ⊢ s ∩ t =ᶠ[l] t ↔ ∀ᶠ (x : α) in l, x ∈ t → x ∈ s [PROOFSTEP] rw [inter_comm, inter_eventuallyEq_left] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : AddGroup β f g : α → β l : Filter α h : f =ᶠ[l] g ⊢ f - g =ᶠ[l] 0 [PROOFSTEP] simpa using ((EventuallyEq.refl l f).sub h).symm [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : AddGroup β f g : α → β l : Filter α h : f - g =ᶠ[l] 0 ⊢ f =ᶠ[l] g [PROOFSTEP] simpa using h.add (EventuallyEq.refl l g) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : LE β l : Filter α f f' g g' : α → β H✝ : f ≤ᶠ[l] g hf✝ : f =ᶠ[l] f' hg✝ : g =ᶠ[l] g' x : α hf : f x = f' x hg : g x = g' x H : f x ≤ g x ⊢ f' x ≤ g' x [PROOFSTEP] rwa [hf, hg] at H [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : PartialOrder β l : Filter α f g : α → β ⊢ f =ᶠ[l] g ↔ f ≤ᶠ[l] g ∧ g ≤ᶠ[l] f [PROOFSTEP] simp only [EventuallyEq, EventuallyLE, le_antisymm_iff, eventually_and] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s t : Set α l : Filter α ⊢ t ∈ l ⊓ 𝓟 s ↔ l ⊓ 𝓟 s ≤ l ⊓ 𝓟 t [PROOFSTEP] simp only [le_inf_iff, inf_le_left, true_and_iff, le_principal_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s t : Set α l : Filter α ⊢ s =ᶠ[l] t ↔ l ⊓ 𝓟 s = l ⊓ 𝓟 t [PROOFSTEP] simp only [eventuallyLE_antisymm_iff, le_antisymm_iff, set_eventuallyLE_iff_inf_principal_le] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝³ : MulZeroClass β inst✝² : PartialOrder β inst✝¹ : PosMulMono β inst✝ : MulPosMono β l : Filter α f₁ f₂ g₁ g₂ : α → β hf : f₁ ≤ᶠ[l] f₂ hg : g₁ ≤ᶠ[l] g₂ hg₀ : 0 ≤ᶠ[l] g₁ hf₀ : 0 ≤ᶠ[l] f₂ ⊢ f₁ * g₁ ≤ᶠ[l] f₂ * g₂ [PROOFSTEP] filter_upwards [hf, hg, hg₀, hf₀] with x using _root_.mul_le_mul [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝³ : Mul β inst✝² : Preorder β inst✝¹ : CovariantClass β β (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass β β (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 l : Filter α f₁ f₂ g₁ g₂ : α → β hf : f₁ ≤ᶠ[l] f₂ hg : g₁ ≤ᶠ[l] g₂ ⊢ f₁ * g₁ ≤ᶠ[l] f₂ * g₂ [PROOFSTEP] filter_upwards [hf, hg] with x hfx hgx using _root_.mul_le_mul' hfx hgx [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : OrderedSemiring β l : Filter α f g : α → β hf : 0 ≤ᶠ[l] f hg : 0 ≤ᶠ[l] g ⊢ 0 ≤ᶠ[l] f * g [PROOFSTEP] filter_upwards [hf, hg] with x using _root_.mul_nonneg [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : SemilatticeSup β l : Filter α f₁ f₂ g₁ g₂ : α → β hf : f₁ ≤ᶠ[l] f₂ hg : g₁ ≤ᶠ[l] g₂ ⊢ f₁ ⊔ g₁ ≤ᶠ[l] f₂ ⊔ g₂ [PROOFSTEP] filter_upwards [hf, hg] with x hfx hgx using sup_le_sup hfx hgx [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : SemilatticeSup β l : Filter α f g h : α → β hf : f ≤ᶠ[l] h hg : g ≤ᶠ[l] h ⊢ f ⊔ g ≤ᶠ[l] h [PROOFSTEP] filter_upwards [hf, hg] with x hfx hgx using _root_.sup_le hfx hgx [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α m : α → β m' : β → γ s : Set α t : Set β hf : Injective m h : m '' s ∈ map m f ⊢ s ∈ f [PROOFSTEP] rwa [← preimage_image_eq s hf] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α m : α → β m' : β → γ s : Set α t : Set β ⊢ range m ∈ map m f [PROOFSTEP] rw [← image_univ] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α m : α → β m' : β → γ s : Set α t : Set β ⊢ m '' univ ∈ map m f [PROOFSTEP] exact image_mem_map univ_mem [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter β ⊢ m ⁻¹' univ ⊆ univ [PROOFSTEP] simp only [subset_univ, preimage_univ] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter β p : α → Prop s : Set α x✝ : s ∈ comap f l t : Set β ht : t ∈ l hts : f ⁻¹' t ⊆ s y : β hy : y ∈ t x : α hx : f x = y ⊢ f x ∈ t [PROOFSTEP] rwa [hx] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter β p : α → Prop s✝ : Set α x : α s : Set β F : Filter (α × β) ⊢ s ∈ comap (Prod.mk x) F ↔ {p | p.fst = x → p.snd ∈ s} ∈ F [PROOFSTEP] simp_rw [mem_comap', Prod.ext_iff, and_imp, @forall_swap β (_ = _), forall_eq, eq_comm] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter β p : α → Prop s : Set α ⊢ (∃ᶠ (a : α) in comap f l, p a) ↔ ∃ᶠ (b : β) in l, ∃ a, f a = b ∧ p a [PROOFSTEP] simp only [Filter.Frequently, eventually_comap, not_exists, not_and] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter β p : α → Prop s : Set α ⊢ s ∈ comap f l ↔ (f '' sᶜ)ᶜ ∈ l [PROOFSTEP] simp only [mem_comap'', kernImage_eq_compl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter β p : α → Prop s : Set α ⊢ sᶜ ∈ comap f l ↔ (f '' s)ᶜ ∈ l [PROOFSTEP] rw [mem_comap_iff_compl, compl_compl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α ⊢ kernImage m univ = univ [PROOFSTEP] simp [kernImage_eq_compl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α ⊢ ∀ {x y : Set β}, x ∈ kernImage m '' f.sets → x ⊆ y → y ∈ kernImage m '' f.sets [PROOFSTEP] rintro _ t ⟨s, hs, rfl⟩ hst [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α t : Set β s : Set α hs : s ∈ f.sets hst : kernImage m s ⊆ t ⊢ t ∈ kernImage m '' f.sets [PROOFSTEP] refine ⟨s ∪ m ⁻¹' t, mem_of_superset hs (subset_union_left s _), ?_⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α t : Set β s : Set α hs : s ∈ f.sets hst : kernImage m s ⊆ t ⊢ kernImage m (s ∪ m ⁻¹' t) = t [PROOFSTEP] rw [kernImage_union_preimage, union_eq_right_iff_subset.mpr hst] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α ⊢ ∀ {x y : Set β}, x ∈ kernImage m '' f.sets → y ∈ kernImage m '' f.sets → x ∩ y ∈ kernImage m '' f.sets [PROOFSTEP] rintro _ _ ⟨s₁, h₁, rfl⟩ ⟨s₂, h₂, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α s₁ : Set α h₁ : s₁ ∈ f.sets s₂ : Set α h₂ : s₂ ∈ f.sets ⊢ kernImage m s₁ ∩ kernImage m s₂ ∈ kernImage m '' f.sets [PROOFSTEP] exact ⟨s₁ ∩ s₂, f.inter_sets h₁ h₂, Set.preimage_kernImage.u_inf⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α s : Set β ⊢ s ∈ kernMap m f ↔ ∃ t, tᶜ ∈ f ∧ m '' t = sᶜ [PROOFSTEP] rw [mem_kernMap, compl_surjective.exists] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α s : Set β ⊢ (∃ x, xᶜ ∈ f ∧ kernImage m xᶜ = s) ↔ ∃ t, tᶜ ∈ f ∧ m '' t = sᶜ [PROOFSTEP] refine exists_congr (fun x ↦ and_congr_right fun _ ↦ ?_) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α s : Set β x : Set α x✝ : xᶜ ∈ f ⊢ kernImage m xᶜ = s ↔ m '' x = sᶜ [PROOFSTEP] rw [kernImage_compl, compl_eq_comm, eq_comm] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α s : Set β ⊢ sᶜ ∈ kernMap m f ↔ ∃ t, tᶜ ∈ f ∧ m '' t = s [PROOFSTEP] simp_rw [mem_kernMap_iff_compl, compl_compl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x a : α s : Set α ⊢ s ∈ 𝓟 {a} ↔ s ∈ pure a [PROOFSTEP] simp only [mem_pure, mem_principal, singleton_subset_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x a : α m : α → Filter β ⊢ bind (pure a) m = m a [PROOFSTEP] simp only [Bind.bind, bind, map_pure, join_pure] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β inst✝ : NeBot f c : β ⊢ map (fun x => c) f = pure c [PROOFSTEP] ext s [GOAL] case a α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β inst✝ : NeBot f c : β s : Set β ⊢ s ∈ map (fun x => c) f ↔ s ∈ pure c [PROOFSTEP] by_cases h : c ∈ s [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β inst✝ : NeBot f c : β s : Set β h : c ∈ s ⊢ s ∈ map (fun x => c) f ↔ s ∈ pure c [PROOFSTEP] simp [h] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β inst✝ : NeBot f c : β s : Set β h : ¬c ∈ s ⊢ s ∈ map (fun x => c) f ↔ s ∈ pure c [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t : Set β m : γ → β n : β → α s : Set γ ⊢ sᶜ ∈ comap m (comap n f) ↔ sᶜ ∈ comap (n ∘ m) f [PROOFSTEP] simp only [compl_mem_comap, image_image, (· ∘ ·)] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β φ : α → β θ : α → γ ψ : β → δ ρ : γ → δ H : ψ ∘ φ = ρ ∘ θ F : Filter α ⊢ map ψ (map φ F) = map ρ (map θ F) [PROOFSTEP] rw [Filter.map_map, H, ← Filter.map_map] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β φ : α → β θ : α → γ ψ : β → δ ρ : γ → δ H : ψ ∘ φ = ρ ∘ θ G : Filter δ ⊢ comap φ (comap ψ G) = comap θ (comap ρ G) [PROOFSTEP] rw [Filter.comap_comap, H, ← Filter.comap_comap] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β b : β ⊢ comap m (pure b) = 𝓟 (m ⁻¹' {b}) [PROOFSTEP] rw [← principal_singleton, comap_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β ⊢ comap m g ≤ f ↔ g ≤ kernMap m f [PROOFSTEP] simp [Filter.le_def, mem_comap'', mem_kernMap, -mem_comap] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β s : Set α ⊢ kernMap m (𝓟 s) = 𝓟 (kernImage m s) [PROOFSTEP] refine eq_of_forall_le_iff (fun g ↦ ?_) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β s : Set α g : Filter β ⊢ g ≤ kernMap m (𝓟 s) ↔ g ≤ 𝓟 (kernImage m s) [PROOFSTEP] rw [← comap_le_iff_le_kernMap, le_principal_iff, le_principal_iff, mem_comap''] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β ⊢ map f ⊤ = 𝓟 (range f) [PROOFSTEP] rw [← principal_univ, map_principal, image_univ] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β l : Filter α ⊢ l ≤ comap f ⊤ [PROOFSTEP] rw [comap_top] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β l : Filter α ⊢ l ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β s : Set α x✝ : s ∈ ⊥ ⊢ m ⁻¹' ∅ ⊆ s [PROOFSTEP] simp only [empty_subset, preimage_empty] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : NeBot (comap m g) ⊢ NeBot g [PROOFSTEP] rw [neBot_iff] at * [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : comap m g ≠ ⊥ ⊢ g ≠ ⊥ [PROOFSTEP] contrapose! h [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : g = ⊥ ⊢ comap m g = ⊥ [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : g = ⊥ ⊢ comap m ⊥ = ⊥ [PROOFSTEP] exact comap_bot [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β ⊢ comap m (g ⊓ 𝓟 (range m)) = comap m g [PROOFSTEP] simpa only [le_principal_iff, comap_inf, comap_principal, preimage_range, principal_univ, inf_eq_left] using le_top [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : Disjoint g₁ g₂ ⊢ Disjoint (comap m g₁) (comap m g₂) [PROOFSTEP] simp only [disjoint_iff, ← comap_inf, h.eq_bot, comap_bot] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t : Set β s : Set (Filter β) m : α → β ⊢ comap m (sSup s) = ⨆ (f : Filter β) (_ : f ∈ s), comap m f [PROOFSTEP] simp only [sSup_eq_iSup, comap_iSup, eq_self_iff_true] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β ⊢ comap m (g₁ ⊔ g₂) = comap m g₁ ⊔ comap m g₂ [PROOFSTEP] rw [sup_eq_iSup, comap_iSup, iSup_bool_eq, Bool.cond_true, Bool.cond_false] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β ⊢ map m (comap m f) = f ⊓ 𝓟 (range m) [PROOFSTEP] refine' le_antisymm (le_inf map_comap_le <| le_principal_iff.2 range_mem_map) _ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β ⊢ f ⊓ 𝓟 (range m) ≤ map m (comap m f) [PROOFSTEP] rintro t' ⟨t, ht, sub⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t✝ : Set β f : Filter β m : α → β t' t : Set β ht : t ∈ f sub : m ⁻¹' t ⊆ m ⁻¹' t' ⊢ t' ∈ f ⊓ 𝓟 (range m) [PROOFSTEP] refine' mem_inf_principal.2 (mem_of_superset ht _) [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t✝ : Set β f : Filter β m : α → β t' t : Set β ht : t ∈ f sub : m ⁻¹' t ⊆ m ⁻¹' t' ⊢ t ⊆ {x | x ∈ range m → x ∈ t'} [PROOFSTEP] rintro _ hxt ⟨x, rfl⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t✝ : Set β f : Filter β m : α → β t' t : Set β ht : t ∈ f sub : m ⁻¹' t ⊆ m ⁻¹' t' x : α hxt : m x ∈ t ⊢ m x ∈ t' [PROOFSTEP] exact sub hxt [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β f : Filter β s : Set β ⊢ map Subtype.val (comap Subtype.val f) = f ⊓ 𝓟 s [PROOFSTEP] rw [map_comap, Subtype.range_val] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β hf : range m ∈ f ⊢ map m (comap m f) = f [PROOFSTEP] rw [map_comap, inf_eq_left.2 (le_principal_iff.2 hf)] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β hf : Surjective f l : Filter β ⊢ range f ∈ l [PROOFSTEP] simp only [hf.range_eq, univ_mem] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s✝ : Set α t : Set β s : Set α f : Filter α ⊢ map Subtype.val (comap Subtype.val f) = f ⊓ 𝓟 s [PROOFSTEP] rw [map_comap, Subtype.range_coe] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α c : β → α h : range c ∈ f W : Set β W_in : W ∈ comap c f ⊢ c '' W ∈ f [PROOFSTEP] rw [← map_comap_of_mem h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α c : β → α h : range c ∈ f W : Set β W_in : W ∈ comap c f ⊢ c '' W ∈ map c (comap c f) [PROOFSTEP] exact image_mem_map W_in [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α U : Set α h : U ∈ f W : Set ↑U W_in : W ∈ comap Subtype.val f ⊢ range Subtype.val ∈ f [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t : Set β f : Filter α m : α → β h : Injective m s : Set α hs : s ∈ f ⊢ m ⁻¹' (m '' s) ⊆ s [PROOFSTEP] simp only [preimage_image_eq s h, Subset.rfl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β inj : Injective m large : range m ∈ f S : Set α ⊢ S ∈ comap m f ↔ m '' S ∈ f [PROOFSTEP] rw [← image_mem_map_iff inj, map_comap_of_mem large] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f g : Filter α m : α → β hm : Injective m ⊢ map m f ≤ map m g ↔ f ≤ g [PROOFSTEP] rw [map_le_iff_le_comap, comap_map hm] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g✝ g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t : Set β f g : Filter α m : α → β s : Set α hsf : s ∈ f hsg : s ∈ g hm : InjOn m s ⊢ map m f = map m g ↔ f = g [PROOFSTEP] simp only [le_antisymm_iff, map_le_map_iff_of_injOn hsf hsg hm, map_le_map_iff_of_injOn hsg hsf hm] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β ⊢ NeBot (comap m f) ↔ ∀ (t : Set β), t ∈ f → ∃ a, m a ∈ t [PROOFSTEP] simp only [← forall_mem_nonempty_iff_neBot, mem_comap, forall_exists_index, and_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β ⊢ (∀ (s : Set α) (x : Set β), x ∈ f → m ⁻¹' x ⊆ s → Set.Nonempty s) ↔ ∀ (t : Set β), t ∈ f → ∃ a, m a ∈ t [PROOFSTEP] exact ⟨fun h t t_in => h (m ⁻¹' t) t t_in Subset.rfl, fun h s t ht hst => (h t ht).imp hst⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β ⊢ NeBot (comap m f) ↔ ∃ᶠ (y : β) in f, y ∈ range m [PROOFSTEP] simp only [comap_neBot_iff, frequently_iff, mem_range, @and_comm (_ ∈ _), exists_exists_eq_and] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s : Set α t : Set β f : Filter β m : α → β hm : Surjective m ⊢ comap m f = ⊥ ↔ f = ⊥ [PROOFSTEP] rw [comap_eq_bot_iff_compl_range, hm.range_eq, compl_univ, empty_mem_iff_bot] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : Surjective m ⊢ Disjoint (comap m g₁) (comap m g₂) ↔ Disjoint g₁ g₂ [PROOFSTEP] rw [disjoint_iff, disjoint_iff, ← comap_inf, comap_surjective_eq_bot h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α ⊢ NeBot (comap Prod.fst f) ↔ NeBot f ∧ Nonempty β [PROOFSTEP] cases isEmpty_or_nonempty β [GOAL] case inl α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α h✝ : IsEmpty β ⊢ NeBot (comap Prod.fst f) ↔ NeBot f ∧ Nonempty β [PROOFSTEP] rw [filter_eq_bot_of_isEmpty (f.comap _), ← not_iff_not] [GOAL] case inl α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α h✝ : IsEmpty β ⊢ ¬NeBot ⊥ ↔ ¬(NeBot f ∧ Nonempty β) [PROOFSTEP] simp [*] [GOAL] case inr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter α h✝ : Nonempty β ⊢ NeBot (comap Prod.fst f) ↔ NeBot f ∧ Nonempty β [PROOFSTEP] simp [comap_neBot_iff_frequently, *] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter β ⊢ NeBot (comap Prod.snd f) ↔ Nonempty α ∧ NeBot f [PROOFSTEP] cases' isEmpty_or_nonempty α with hα hα [GOAL] case inl α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter β hα : IsEmpty α ⊢ NeBot (comap Prod.snd f) ↔ Nonempty α ∧ NeBot f [PROOFSTEP] rw [filter_eq_bot_of_isEmpty (f.comap _), ← not_iff_not] [GOAL] case inl α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter β hα : IsEmpty α ⊢ ¬NeBot ⊥ ↔ ¬(Nonempty α ∧ NeBot f) [PROOFSTEP] simp [GOAL] case inr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : Filter β hα : Nonempty α ⊢ NeBot (comap Prod.snd f) ↔ Nonempty α ∧ NeBot f [PROOFSTEP] simp [comap_neBot_iff_frequently, hα] [GOAL] α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ f₁ f₂ : Filter α✝ g g₁ g₂ : Filter β m : α✝ → β m' : β → γ s : Set α✝ t : Set β ι : Type u_2 α : ι → Type u_3 i : ι f : Filter (α i) ⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f [PROOFSTEP] cases' isEmpty_or_nonempty (∀ j, α j) with H H [GOAL] case inl α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ f₁ f₂ : Filter α✝ g g₁ g₂ : Filter β m : α✝ → β m' : β → γ s : Set α✝ t : Set β ι : Type u_2 α : ι → Type u_3 i : ι f : Filter (α i) H : IsEmpty ((j : ι) → α j) ⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f [PROOFSTEP] rw [filter_eq_bot_of_isEmpty (f.comap _), ← not_iff_not] [GOAL] case inl α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ f₁ f₂ : Filter α✝ g g₁ g₂ : Filter β m : α✝ → β m' : β → γ s : Set α✝ t : Set β ι : Type u_2 α : ι → Type u_3 i : ι f : Filter (α i) H : IsEmpty ((j : ι) → α j) ⊢ ¬NeBot ⊥ ↔ ¬((∀ (j : ι), Nonempty (α j)) ∧ NeBot f) [PROOFSTEP] simp [← Classical.nonempty_pi] [GOAL] case inr α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ f₁ f₂ : Filter α✝ g g₁ g₂ : Filter β m : α✝ → β m' : β → γ s : Set α✝ t : Set β ι : Type u_2 α : ι → Type u_3 i : ι f : Filter (α i) H : Nonempty ((j : ι) → α j) ⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f [PROOFSTEP] have : ∀ j, Nonempty (α j) := Classical.nonempty_pi.1 H [GOAL] case inr α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ f₁ f₂ : Filter α✝ g g₁ g₂ : Filter β m : α✝ → β m' : β → γ s : Set α✝ t : Set β ι : Type u_2 α : ι → Type u_3 i : ι f : Filter (α i) H : Nonempty ((j : ι) → α j) this : ∀ (j : ι), Nonempty (α j) ⊢ NeBot (comap (eval i) f) ↔ (∀ (j : ι), Nonempty (α j)) ∧ NeBot f [PROOFSTEP] simp [comap_neBot_iff_frequently, *] [GOAL] α✝ : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x f✝ f₁ f₂ : Filter α✝ g g₁ g₂ : Filter β m : α✝ → β m' : β → γ s : Set α✝ t : Set β ι : Type u_2 α : ι → Type u_3 inst✝ : ∀ (j : ι), Nonempty (α j) i : ι f : Filter (α i) ⊢ NeBot (comap (eval i) f) ↔ NeBot f [PROOFSTEP] simp [comap_eval_neBot_iff', *] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t : Set β f : Filter β m : α → β hf : NeBot f s : Set α hs : m '' s ∈ f ⊢ NeBot (comap m f ⊓ 𝓟 s) [PROOFSTEP] refine' ⟨compl_compl s ▸ mt mem_of_eq_bot _⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t : Set β f : Filter β m : α → β hf : NeBot f s : Set α hs : m '' s ∈ f ⊢ ¬sᶜ ∈ comap m f [PROOFSTEP] rintro ⟨t, ht, hts⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t✝ : Set β f : Filter β m : α → β hf : NeBot f s : Set α hs : m '' s ∈ f t : Set β ht : t ∈ f hts : m ⁻¹' t ⊆ sᶜ ⊢ False [PROOFSTEP] rcases hf.nonempty_of_mem (inter_mem hs ht) with ⟨_, ⟨x, hxs, rfl⟩, hxt⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m✝ : α → β m' : β → γ s✝ : Set α t✝ : Set β f : Filter β m : α → β hf : NeBot f s : Set α hs : m '' s ∈ f t : Set β ht : t ∈ f hts : m ⁻¹' t ⊆ sᶜ x : α hxs : x ∈ s hxt : m x ∈ t ⊢ False [PROOFSTEP] exact absurd hxs (hts hxt) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β ⊢ map m f = ⊥ → f = ⊥ [PROOFSTEP] rw [← empty_mem_iff_bot, ← empty_mem_iff_bot] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β ⊢ ∅ ∈ map m f → ∅ ∈ f [PROOFSTEP] exact id [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β h : f = ⊥ ⊢ map m f = ⊥ [PROOFSTEP] simp only [h, map_bot] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter α ⊢ NeBot (map f F) ↔ NeBot F [PROOFSTEP] simp only [neBot_iff, Ne, map_eq_bot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β ⊢ ⋂₀ (comap f F).sets = ⋂ (U : Set β) (_ : U ∈ F), f ⁻¹' U [PROOFSTEP] ext x [GOAL] case h α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α ⊢ x ∈ ⋂₀ (comap f F).sets ↔ x ∈ ⋂ (U : Set β) (_ : U ∈ F), f ⁻¹' U [PROOFSTEP] suffices (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ B : Set β, B ∈ F → f x ∈ B by simp only [mem_sInter, mem_iInter, Filter.mem_sets, mem_comap, this, and_imp, exists_prop, mem_preimage, exists_imp] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α this : (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : Set β), B ∈ F → f x ∈ B ⊢ x ∈ ⋂₀ (comap f F).sets ↔ x ∈ ⋂ (U : Set β) (_ : U ∈ F), f ⁻¹' U [PROOFSTEP] simp only [mem_sInter, mem_iInter, Filter.mem_sets, mem_comap, this, and_imp, exists_prop, mem_preimage, exists_imp] [GOAL] case h α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α ⊢ (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : Set β), B ∈ F → f x ∈ B [PROOFSTEP] constructor [GOAL] case h.mp α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α ⊢ (∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) → ∀ (B : Set β), B ∈ F → f x ∈ B [PROOFSTEP] intro h U U_in [GOAL] case h.mp α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α h : ∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A U : Set β U_in : U ∈ F ⊢ f x ∈ U [PROOFSTEP] simpa only [Subset.rfl, forall_prop_of_true, mem_preimage] using h (f ⁻¹' U) U U_in [GOAL] case h.mpr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α ⊢ (∀ (B : Set β), B ∈ F → f x ∈ B) → ∀ (A : Set α) (B : Set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A [PROOFSTEP] intro h V U U_in f_U_V [GOAL] case h.mpr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f✝ f₁ f₂ : Filter α g g₁ g₂ : Filter β m : α → β m' : β → γ s : Set α t : Set β f : α → β F : Filter β x : α h : ∀ (B : Set β), B ∈ F → f x ∈ B V : Set α U : Set β U_in : U ∈ F f_U_V : f ⁻¹' U ⊆ V ⊢ x ∈ V [PROOFSTEP] exact f_U_V (h U U_in) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : ι → Filter α m : α → β hf : Directed (fun x x_1 => x ≥ x_1) f inst✝ : Nonempty ι s : Set β hs : m ⁻¹' s ∈ iInf f i : ι hi : m ⁻¹' s ∈ f i ⊢ map m (f i) ≤ 𝓟 s [PROOFSTEP] simp only [le_principal_iff, mem_map] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : ι → Filter α m : α → β hf : Directed (fun x x_1 => x ≥ x_1) f inst✝ : Nonempty ι s : Set β hs : m ⁻¹' s ∈ iInf f i : ι hi : m ⁻¹' s ∈ f i ⊢ m ⁻¹' s ∈ f i [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x ι : Type w f : ι → Filter α m : α → β p : ι → Prop h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) {x | p x} ne : ∃ i, p i ⊢ map m (⨅ (i : ι) (_ : p i), f i) = ⨅ (i : ι) (_ : p i), map m (f i) [PROOFSTEP] haveI := nonempty_subtype.2 ne [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x ι : Type w f : ι → Filter α m : α → β p : ι → Prop h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) {x | p x} ne : ∃ i, p i this : Nonempty { a // p a } ⊢ map m (⨅ (i : ι) (_ : p i), f i) = ⨅ (i : ι) (_ : p i), map m (f i) [PROOFSTEP] simp only [iInf_subtype'] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι✝ : Sort x ι : Type w f : ι → Filter α m : α → β p : ι → Prop h : DirectedOn (f ⁻¹'o fun x x_1 => x ≥ x_1) {x | p x} ne : ∃ i, p i this : Nonempty { a // p a } ⊢ map m (⨅ (x : { i // p i }), f ↑x) = ⨅ (x : { i // p i }), map m (f ↑x) [PROOFSTEP] exact map_iInf_eq h.directed_val [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α m : α → β h : Injective m ⊢ map m (f ⊓ g) = map m f ⊓ map m g [PROOFSTEP] refine' map_inf_le.antisymm _ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α m : α → β h : Injective m ⊢ map m f ⊓ map m g ≤ map m (f ⊓ g) [PROOFSTEP] rintro t ⟨s₁, hs₁, s₂, hs₂, ht : m ⁻¹' t = s₁ ∩ s₂⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α m : α → β h : Injective m t : Set β s₁ : Set α hs₁ : s₁ ∈ f s₂ : Set α hs₂ : s₂ ∈ g ht : m ⁻¹' t = s₁ ∩ s₂ ⊢ t ∈ map m f ⊓ map m g [PROOFSTEP] refine' mem_inf_of_inter (image_mem_map hs₁) (image_mem_map hs₂) _ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α m : α → β h : Injective m t : Set β s₁ : Set α hs₁ : s₁ ∈ f s₂ : Set α hs₂ : s₂ ∈ g ht : m ⁻¹' t = s₁ ∩ s₂ ⊢ m '' s₁ ∩ m '' s₂ ⊆ t [PROOFSTEP] rw [← image_inter h, image_subset_iff, ht] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α m : α → β t : Set α htf : t ∈ f htg : t ∈ g h : InjOn m t ⊢ map m (f ⊓ g) = map m f ⊓ map m g [PROOFSTEP] lift f to Filter t using htf [GOAL] case intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : Filter α m : α → β t : Set α htg : t ∈ g h : InjOn m t f : Filter ↑t ⊢ map m (map Subtype.val f ⊓ g) = map m (map Subtype.val f) ⊓ map m g [PROOFSTEP] lift g to Filter t using htg [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β t : Set α h : InjOn m t f g : Filter ↑t ⊢ map m (map Subtype.val f ⊓ map Subtype.val g) = map m (map Subtype.val f) ⊓ map m (map Subtype.val g) [PROOFSTEP] replace h : Injective (m ∘ ((↑) : t → α)) := h.injective [GOAL] case intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β t : Set α f g : Filter ↑t h : Injective (m ∘ Subtype.val) ⊢ map m (map Subtype.val f ⊓ map Subtype.val g) = map m (map Subtype.val f) ⊓ map m (map Subtype.val g) [PROOFSTEP] simp only [map_map, ← map_inf Subtype.coe_injective, map_inf h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β hm : Injective m f₁ f₂ : Filter α ⊢ Disjoint (map m f₁) (map m f₂) ↔ Disjoint f₁ f₂ [PROOFSTEP] simp only [disjoint_iff, ← map_inf hm, map_eq_bot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x e : α ≃ β f : Filter β ⊢ map (↑e) (map (↑e.symm) f) = map (↑e) (comap (↑e) f) [PROOFSTEP] rw [map_map, e.self_comp_symm, map_id, map_comap_of_surjective e.surjective] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β ⊢ map f (F ⊓ comap f G) = map f F ⊓ G [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β ⊢ map f (F ⊓ comap f G) ≤ map f F ⊓ G [PROOFSTEP] calc map f (F ⊓ comap f G) ≤ map f F ⊓ (map f <| comap f G) := map_inf_le _ ≤ map f F ⊓ G := inf_le_inf_left (map f F) map_comap_le [GOAL] case a α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β ⊢ map f F ⊓ G ≤ map f (F ⊓ comap f G) [PROOFSTEP] rintro U ⟨V, V_in, W, ⟨Z, Z_in, hZ⟩, h⟩ [GOAL] case a.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β U : Set β V : Set α V_in : V ∈ F W : Set α h : f ⁻¹' U = V ∩ W Z : Set β Z_in : Z ∈ G hZ : f ⁻¹' Z ⊆ W ⊢ U ∈ map f F ⊓ G [PROOFSTEP] apply mem_inf_of_inter (image_mem_map V_in) Z_in [GOAL] case a.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β U : Set β V : Set α V_in : V ∈ F W : Set α h : f ⁻¹' U = V ∩ W Z : Set β Z_in : Z ∈ G hZ : f ⁻¹' Z ⊆ W ⊢ f '' V ∩ Z ⊆ U [PROOFSTEP] calc f '' V ∩ Z = f '' (V ∩ f ⁻¹' Z) := by rw [image_inter_preimage] _ ⊆ f '' (V ∩ W) := (image_subset _ (inter_subset_inter_right _ ‹_›)) _ = f '' (f ⁻¹' U) := by rw [h] _ ⊆ U := image_preimage_subset f U [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β U : Set β V : Set α V_in : V ∈ F W : Set α h : f ⁻¹' U = V ∩ W Z : Set β Z_in : Z ∈ G hZ : f ⁻¹' Z ⊆ W ⊢ f '' V ∩ Z = f '' (V ∩ f ⁻¹' Z) [PROOFSTEP] rw [image_inter_preimage] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β U : Set β V : Set α V_in : V ∈ F W : Set α h : f ⁻¹' U = V ∩ W Z : Set β Z_in : Z ∈ G hZ : f ⁻¹' Z ⊆ W ⊢ f '' (V ∩ W) = f '' (f ⁻¹' U) [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β F : Filter α G : Filter β ⊢ map f (comap f G ⊓ F) = G ⊓ map f F [PROOFSTEP] simp only [Filter.push_pull, inf_comm] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s : Set α ⊢ 𝓟 s = map Subtype.val ⊤ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x F : Filter α s : Set α ⊢ F ⊓ 𝓟 s = ⊥ ↔ comap Subtype.val F = ⊥ [PROOFSTEP] rw [principal_eq_map_coe_top s, ← Filter.push_pull', inf_top_eq, map_eq_bot_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α a : α ⊢ f ≤ pure a ↔ {a} ∈ f [PROOFSTEP] rw [← principal_singleton, le_principal_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) g : Filter α s : Set β ⊢ s ∈ seq f g ↔ ∃ u, u ∈ f ∧ ∃ t, t ∈ g ∧ Set.seq u t ⊆ s [PROOFSTEP] simp only [mem_seq_def, seq_subset, exists_prop, iff_self_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α ⊢ seq (pure g) f = map g f [PROOFSTEP] refine' le_antisymm (le_map fun s hs => _) (le_seq fun s hs t ht => _) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α s : Set α hs : s ∈ f ⊢ g '' s ∈ seq (pure g) f [PROOFSTEP] rw [← singleton_seq] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α s : Set α hs : s ∈ f ⊢ Set.seq {g} s ∈ seq (pure g) f [PROOFSTEP] apply seq_mem_seq _ hs [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α s : Set α hs : s ∈ f ⊢ {g} ∈ pure g [PROOFSTEP] exact singleton_mem_pure [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α s : Set (α → β) hs : s ∈ pure g t : Set α ht : t ∈ f ⊢ Set.seq s t ∈ map g f [PROOFSTEP] refine' sets_of_superset (map g f) (image_mem_map ht) _ [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α s : Set (α → β) hs : s ∈ pure g t : Set α ht : t ∈ f ⊢ g '' t ⊆ Set.seq s t [PROOFSTEP] rintro b ⟨a, ha, rfl⟩ [GOAL] case refine'_2.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x g : α → β f : Filter α s : Set (α → β) hs : s ∈ pure g t : Set α ht : t ∈ f a : α ha : a ∈ t ⊢ g a ∈ Set.seq s t [PROOFSTEP] exact ⟨g, hs, a, ha, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) a : α ⊢ seq f (pure a) = map (fun g => g a) f [PROOFSTEP] refine' le_antisymm (le_map fun s hs => _) (le_seq fun s hs t ht => _) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) a : α s : Set (α → β) hs : s ∈ f ⊢ (fun g => g a) '' s ∈ seq f (pure a) [PROOFSTEP] rw [← seq_singleton] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) a : α s : Set (α → β) hs : s ∈ f ⊢ Set.seq s {a} ∈ seq f (pure a) [PROOFSTEP] exact seq_mem_seq hs singleton_mem_pure [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) a : α s : Set (α → β) hs : s ∈ f t : Set α ht : t ∈ pure a ⊢ Set.seq s t ∈ map (fun g => g a) f [PROOFSTEP] refine' sets_of_superset (map (fun g : α → β => g a) f) (image_mem_map hs) _ [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) a : α s : Set (α → β) hs : s ∈ f t : Set α ht : t ∈ pure a ⊢ (fun g => g a) '' s ⊆ Set.seq s t [PROOFSTEP] rintro b ⟨g, hg, rfl⟩ [GOAL] case refine'_2.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter (α → β) a : α s : Set (α → β) hs : s ∈ f t : Set α ht : t ∈ pure a g : α → β hg : g ∈ s ⊢ (fun g => g a) g ∈ Set.seq s t [PROOFSTEP] exact ⟨g, hg, a, ht, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) ⊢ seq h (seq g x) = seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x [PROOFSTEP] refine' le_antisymm (le_seq fun s hs t ht => _) (le_seq fun s hs t ht => _) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (α → γ) hs : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g t : Set α ht : t ∈ x ⊢ Set.seq s t ∈ seq h (seq g x) [PROOFSTEP] rcases mem_seq_iff.1 hs with ⟨u, hu, v, hv, hs⟩ [GOAL] case refine'_1.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (α → γ) hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g t : Set α ht : t ∈ x u : Set ((α → β) → α → γ) hu : u ∈ map (fun x x_1 => x ∘ x_1) h v : Set (α → β) hv : v ∈ g hs : Set.seq u v ⊆ s ⊢ Set.seq s t ∈ seq h (seq g x) [PROOFSTEP] rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hu⟩ [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (α → γ) hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g t : Set α ht : t ∈ x u : Set ((α → β) → α → γ) hu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h v : Set (α → β) hv : v ∈ g hs : Set.seq u v ⊆ s w : Set (β → γ) hw : w ∈ h hu : (fun x x_1 => x ∘ x_1) '' w ⊆ u ⊢ Set.seq s t ∈ seq h (seq g x) [PROOFSTEP] refine' mem_of_superset _ (Set.seq_mono ((Set.seq_mono hu Subset.rfl).trans hs) Subset.rfl) [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (α → γ) hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g t : Set α ht : t ∈ x u : Set ((α → β) → α → γ) hu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h v : Set (α → β) hv : v ∈ g hs : Set.seq u v ⊆ s w : Set (β → γ) hw : w ∈ h hu : (fun x x_1 => x ∘ x_1) '' w ⊆ u ⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' w) v) t ∈ seq h (seq g x) [PROOFSTEP] rw [← Set.seq_seq] [GOAL] case refine'_1.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (α → γ) hs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g t : Set α ht : t ∈ x u : Set ((α → β) → α → γ) hu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h v : Set (α → β) hv : v ∈ g hs : Set.seq u v ⊆ s w : Set (β → γ) hw : w ∈ h hu : (fun x x_1 => x ∘ x_1) '' w ⊆ u ⊢ Set.seq w (Set.seq v t) ∈ seq h (seq g x) [PROOFSTEP] exact seq_mem_seq hw (seq_mem_seq hv ht) [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (β → γ) hs : s ∈ h t : Set β ht : t ∈ seq g x ⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x [PROOFSTEP] rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (β → γ) hs : s ∈ h t : Set β ht✝ : t ∈ seq g x u : Set (α → β) hu : u ∈ g v : Set α hv : v ∈ x ht : Set.seq u v ⊆ t ⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x [PROOFSTEP] refine' mem_of_superset _ (Set.seq_mono Subset.rfl ht) [GOAL] case refine'_2.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (β → γ) hs : s ∈ h t : Set β ht✝ : t ∈ seq g x u : Set (α → β) hu : u ∈ g v : Set α hv : v ∈ x ht : Set.seq u v ⊆ t ⊢ Set.seq s (Set.seq u v) ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x [PROOFSTEP] rw [Set.seq_seq] [GOAL] case refine'_2.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x x : Filter α g : Filter (α → β) h : Filter (β → γ) s : Set (β → γ) hs : s ∈ h t : Set β ht✝ : t ∈ seq g x u : Set (α → β) hu : u ∈ g v : Set α hv : v ∈ x ht : Set.seq u v ⊆ t ⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' s) u) v ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x [PROOFSTEP] exact seq_mem_seq (seq_mem_seq (image_mem_map hs) hu) hv [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β ⊢ seq (map Prod.mk f) g = seq (map (fun b a => (a, b)) g) f [PROOFSTEP] refine' le_antisymm (le_seq fun s hs t ht => _) (le_seq fun s hs t ht => _) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (α → α × β) hs : s ∈ map (fun b a => (a, b)) g t : Set α ht : t ∈ f ⊢ Set.seq s t ∈ seq (map Prod.mk f) g [PROOFSTEP] rcases mem_map_iff_exists_image.1 hs with ⟨u, hu, hs⟩ [GOAL] case refine'_1.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (α → α × β) hs✝ : s ∈ map (fun b a => (a, b)) g t : Set α ht : t ∈ f u : Set β hu : u ∈ g hs : (fun b a => (a, b)) '' u ⊆ s ⊢ Set.seq s t ∈ seq (map Prod.mk f) g [PROOFSTEP] refine' mem_of_superset _ (Set.seq_mono hs Subset.rfl) [GOAL] case refine'_1.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (α → α × β) hs✝ : s ∈ map (fun b a => (a, b)) g t : Set α ht : t ∈ f u : Set β hu : u ∈ g hs : (fun b a => (a, b)) '' u ⊆ s ⊢ Set.seq ((fun b a => (a, b)) '' u) t ∈ seq (map Prod.mk f) g [PROOFSTEP] rw [← Set.prod_image_seq_comm] [GOAL] case refine'_1.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (α → α × β) hs✝ : s ∈ map (fun b a => (a, b)) g t : Set α ht : t ∈ f u : Set β hu : u ∈ g hs : (fun b a => (a, b)) '' u ⊆ s ⊢ Set.seq (Prod.mk '' t) u ∈ seq (map Prod.mk f) g [PROOFSTEP] exact seq_mem_seq (image_mem_map ht) hu [GOAL] case refine'_2 α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (β → α × β) hs : s ∈ map Prod.mk f t : Set β ht : t ∈ g ⊢ Set.seq s t ∈ seq (map (fun b a => (a, b)) g) f [PROOFSTEP] rcases mem_map_iff_exists_image.1 hs with ⟨u, hu, hs⟩ [GOAL] case refine'_2.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (β → α × β) hs✝ : s ∈ map Prod.mk f t : Set β ht : t ∈ g u : Set α hu : u ∈ f hs : Prod.mk '' u ⊆ s ⊢ Set.seq s t ∈ seq (map (fun b a => (a, b)) g) f [PROOFSTEP] refine' mem_of_superset _ (Set.seq_mono hs Subset.rfl) [GOAL] case refine'_2.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (β → α × β) hs✝ : s ∈ map Prod.mk f t : Set β ht : t ∈ g u : Set α hu : u ∈ f hs : Prod.mk '' u ⊆ s ⊢ Set.seq (Prod.mk '' u) t ∈ seq (map (fun b a => (a, b)) g) f [PROOFSTEP] rw [Set.prod_image_seq_comm] [GOAL] case refine'_2.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β s : Set (β → α × β) hs✝ : s ∈ map Prod.mk f t : Set β ht : t ∈ g u : Set α hu : u ∈ f hs : Prod.mk '' u ⊆ s ⊢ Set.seq ((fun b a => (a, b)) '' t) u ∈ seq (map (fun b a => (a, b)) g) f [PROOFSTEP] exact seq_mem_seq (image_mem_map ht) hu [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f₁ f₂ : Filter α g₁ g₂ : α → Filter β hf : f₁ ≤ f₂ hg : g₁ ≤ᶠ[f₁] g₂ ⊢ bind f₁ g₁ ≤ bind f₂ g₂ [PROOFSTEP] refine' le_trans (fun s hs => _) (join_mono <| map_mono hf) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f₁ f₂ : Filter α g₁ g₂ : α → Filter β hf : f₁ ≤ f₂ hg : g₁ ≤ᶠ[f₁] g₂ s : Set β hs : s ∈ join (map g₂ f₁) ⊢ s ∈ bind f₁ g₁ [PROOFSTEP] simp only [mem_join, mem_bind', mem_map] at hs ⊢ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f₁ f₂ : Filter α g₁ g₂ : α → Filter β hf : f₁ ≤ f₂ hg : g₁ ≤ᶠ[f₁] g₂ s : Set β hs : g₂ ⁻¹' {t | s ∈ t} ∈ f₁ ⊢ {a | s ∈ g₁ a} ∈ f₁ [PROOFSTEP] filter_upwards [hg, hs] with _ hx hs using hx hs [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : α → Filter β s✝ s : Set β ⊢ (s ∈ bind f fun x => g x ⊓ 𝓟 s✝) ↔ s ∈ bind f g ⊓ 𝓟 s✝ [PROOFSTEP] simp only [mem_bind, mem_inf_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x s : Set α f : α → Filter β ⊢ join (map f (𝓟 s)) = ⨆ (x : α) (_ : x ∈ s), f x [PROOFSTEP] simp only [sSup_image, join_principal_eq_sSup, map_principal, eq_self_iff_true] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' fs : List β' t : Set (List α') ⊢ t ∈ traverse f fs ↔ ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' fs : List β' t : Set (List α') ⊢ t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t [PROOFSTEP] induction fs generalizing t [GOAL] case mp.nil α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' t : Set (List α') ⊢ t ∈ traverse f [] → ∃ us, Forall₂ (fun b s => s ∈ f b) [] us ∧ sequence us ⊆ t case mp.cons α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' head✝ : β' tail✝ : List β' tail_ih✝ : ∀ (t : Set (List α')), t ∈ traverse f tail✝ → ∃ us, Forall₂ (fun b s => s ∈ f b) tail✝ us ∧ sequence us ⊆ t t : Set (List α') ⊢ t ∈ traverse f (head✝ :: tail✝) → ∃ us, Forall₂ (fun b s => s ∈ f b) (head✝ :: tail✝) us ∧ sequence us ⊆ t [PROOFSTEP] case nil => simp only [sequence, mem_pure, imp_self, forall₂_nil_left_iff, exists_eq_left, Set.pure_def, singleton_subset_iff, traverse_nil] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' t : Set (List α') ⊢ t ∈ traverse f [] → ∃ us, Forall₂ (fun b s => s ∈ f b) [] us ∧ sequence us ⊆ t [PROOFSTEP] case nil => simp only [sequence, mem_pure, imp_self, forall₂_nil_left_iff, exists_eq_left, Set.pure_def, singleton_subset_iff, traverse_nil] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' t : Set (List α') ⊢ t ∈ traverse f [] → ∃ us, Forall₂ (fun b s => s ∈ f b) [] us ∧ sequence us ⊆ t [PROOFSTEP] simp only [sequence, mem_pure, imp_self, forall₂_nil_left_iff, exists_eq_left, Set.pure_def, singleton_subset_iff, traverse_nil] [GOAL] case mp.cons α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' head✝ : β' tail✝ : List β' tail_ih✝ : ∀ (t : Set (List α')), t ∈ traverse f tail✝ → ∃ us, Forall₂ (fun b s => s ∈ f b) tail✝ us ∧ sequence us ⊆ t t : Set (List α') ⊢ t ∈ traverse f (head✝ :: tail✝) → ∃ us, Forall₂ (fun b s => s ∈ f b) (head✝ :: tail✝) us ∧ sequence us ⊆ t [PROOFSTEP] case cons b fs ih => intro ht rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩ rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hwu⟩ rcases ih v hv with ⟨us, hus, hu⟩ exact ⟨w :: us, Forall₂.cons hw hus, (Set.seq_mono hwu hu).trans ht⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' b : β' fs : List β' ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t t : Set (List α') ⊢ t ∈ traverse f (b :: fs) → ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t [PROOFSTEP] case cons b fs ih => intro ht rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩ rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hwu⟩ rcases ih v hv with ⟨us, hus, hu⟩ exact ⟨w :: us, Forall₂.cons hw hus, (Set.seq_mono hwu hu).trans ht⟩ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' b : β' fs : List β' ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t t : Set (List α') ⊢ t ∈ traverse f (b :: fs) → ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t [PROOFSTEP] intro ht [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' b : β' fs : List β' ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t t : Set (List α') ht : t ∈ traverse f (b :: fs) ⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t [PROOFSTEP] rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' b : β' fs : List β' ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t t : Set (List α') ht✝ : t ∈ traverse f (b :: fs) u : Set (List α' → List α') hu : u ∈ cons <$> f b v : Set (List α') hv : v ∈ (fun x => List.traverse f fs) () ht : Set.seq u v ⊆ t ⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t [PROOFSTEP] rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hwu⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' b : β' fs : List β' ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t t : Set (List α') ht✝ : t ∈ traverse f (b :: fs) u : Set (List α' → List α') hu : u ∈ cons <$> f b v : Set (List α') hv : v ∈ (fun x => List.traverse f fs) () ht : Set.seq u v ⊆ t w : Set α' hw : w ∈ f b hwu : cons '' w ⊆ u ⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t [PROOFSTEP] rcases ih v hv with ⟨us, hus, hu⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' b : β' fs : List β' ih : ∀ (t : Set (List α')), t ∈ traverse f fs → ∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t t : Set (List α') ht✝ : t ∈ traverse f (b :: fs) u : Set (List α' → List α') hu✝ : u ∈ cons <$> f b v : Set (List α') hv : v ∈ (fun x => List.traverse f fs) () ht : Set.seq u v ⊆ t w : Set α' hw : w ∈ f b hwu : cons '' w ⊆ u us : List (Set α') hus : Forall₂ (fun b s => s ∈ f b) fs us hu : sequence us ⊆ v ⊢ ∃ us, Forall₂ (fun b s => s ∈ f b) (b :: fs) us ∧ sequence us ⊆ t [PROOFSTEP] exact ⟨w :: us, Forall₂.cons hw hus, (Set.seq_mono hwu hu).trans ht⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' fs : List β' t : Set (List α') ⊢ (∃ us, Forall₂ (fun b s => s ∈ f b) fs us ∧ sequence us ⊆ t) → t ∈ traverse f fs [PROOFSTEP] rintro ⟨us, hus, hs⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x α' β' γ' : Type u f : β' → Filter α' s : γ' → Set α' fs : List β' t : Set (List α') us : List (Set α') hus : Forall₂ (fun b s => s ∈ f b) fs us hs : sequence us ⊆ t ⊢ t ∈ traverse f fs [PROOFSTEP] exact mem_of_superset (mem_traverse _ _ hus) hs [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter β ⊢ Tendsto f ⊥ l [PROOFSTEP] simp [Tendsto] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x mab : α → β mba : β → α f : Filter α g : Filter β h₁ : mab ∘ mba =ᶠ[g] id h₂ : Tendsto mba g f ⊢ g ≤ map mab f [PROOFSTEP] rw [← @map_id _ g, ← map_congr h₁, ← map_map] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x mab : α → β mba : β → α f : Filter α g : Filter β h₁ : mab ∘ mba =ᶠ[g] id h₂ : Tendsto mba g f ⊢ map mab (map mba g) ≤ map mab f [PROOFSTEP] exact map_mono h₂ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x inst✝ : IsEmpty α f : α → β la : Filter α lb : Filter β ⊢ Tendsto f la lb [PROOFSTEP] simp only [filter_eq_bot_of_isEmpty la, tendsto_bot] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f₁ f₂ : α → β l₁ : Filter α l₂ : Filter β hl : f₁ =ᶠ[l₁] f₂ ⊢ Tendsto f₁ l₁ l₂ ↔ Tendsto f₂ l₁ l₂ [PROOFSTEP] rw [Tendsto, Tendsto, map_congr hl] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : β → γ g : α → β x : Filter α y : Filter γ ⊢ Tendsto f (map g x) y ↔ Tendsto (f ∘ g) x y [PROOFSTEP] rw [Tendsto, Tendsto, map_map] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β g : β → γ a : Filter α c : Filter γ h : Tendsto (g ∘ f) a c ⊢ map g (map f a) ≤ c [PROOFSTEP] rwa [map_map] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α g : Filter β i : γ → α h : range i ∈ f ⊢ Tendsto (m ∘ i) (comap i f) g ↔ Tendsto m f g [PROOFSTEP] rw [Tendsto, ← map_compose] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x m : α → β f : Filter α g : Filter β i : γ → α h : range i ∈ f ⊢ (map m ∘ map i) (comap i f) ≤ g ↔ Tendsto m f g [PROOFSTEP] simp only [(· ∘ ·), map_comap_of_mem h, Tendsto] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β g : β → γ a : Filter α b : Filter β c : Filter γ hfg : Tendsto (g ∘ f) a c hg : comap g c ≤ b ⊢ Tendsto f a b [PROOFSTEP] rw [tendsto_iff_comap] at hfg ⊢ [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β g : β → γ a : Filter α b : Filter β c : Filter γ hfg : a ≤ comap (g ∘ f) c hg : comap g c ≤ b ⊢ a ≤ comap f b [PROOFSTEP] calc a ≤ comap (g ∘ f) c := hfg _ ≤ comap f b := by simpa [comap_comap] using comap_mono hg [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β g : β → γ a : Filter α b : Filter β c : Filter γ hfg : a ≤ comap (g ∘ f) c hg : comap g c ≤ b ⊢ comap (g ∘ f) c ≤ comap f b [PROOFSTEP] simpa [comap_comap] using comap_mono hg [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β φ : α → β ψ : β → α eq : ψ ∘ φ = id hφ : Tendsto φ f g hψ : Tendsto ψ g f ⊢ comap φ g = f [PROOFSTEP] refine' ((comap_mono <| map_le_iff_le_comap.1 hψ).trans _).antisymm (map_le_iff_le_comap.1 hφ) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β φ : α → β ψ : β → α eq : ψ ∘ φ = id hφ : Tendsto φ f g hψ : Tendsto ψ g f ⊢ comap φ (comap ψ f) ≤ f [PROOFSTEP] rw [comap_comap, eq, comap_id] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β φ : α → β ψ : β → α eq : φ ∘ ψ = id hφ : Tendsto φ f g hψ : Tendsto ψ g f ⊢ map φ f = g [PROOFSTEP] refine' le_antisymm hφ (le_trans _ (map_mono hψ)) [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : Filter α g : Filter β φ : α → β ψ : β → α eq : φ ∘ ψ = id hφ : Tendsto φ f g hψ : Tendsto ψ g f ⊢ g ≤ map φ (map ψ g) [PROOFSTEP] rw [map_map, eq, map_id] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β x : Filter α y₁ y₂ : Filter β ⊢ Tendsto f x (y₁ ⊓ y₂) ↔ Tendsto f x y₁ ∧ Tendsto f x y₂ [PROOFSTEP] simp only [Tendsto, le_inf_iff, iff_self_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β x : Filter α y : ι → Filter β ⊢ Tendsto f x (⨅ (i : ι), y i) ↔ ∀ (i : ι), Tendsto f x (y i) [PROOFSTEP] simp only [Tendsto, iff_self_iff, le_iInf_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β x₁ x₂ : Filter α y : Filter β ⊢ Tendsto f (x₁ ⊔ x₂) y ↔ Tendsto f x₁ y ∧ Tendsto f x₂ y [PROOFSTEP] simp only [Tendsto, map_sup, sup_le_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β x : ι → Filter α y : Filter β ⊢ Tendsto f (⨆ (i : ι), x i) y ↔ ∀ (i : ι), Tendsto f (x i) y [PROOFSTEP] simp only [Tendsto, map_iSup, iSup_le_iff] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β l : Filter α s : Set β ⊢ Tendsto f l (𝓟 s) ↔ ∀ᶠ (a : α) in l, f a ∈ s [PROOFSTEP] simp only [Tendsto, le_principal_iff, mem_map', Filter.Eventually] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β s : Set α t : Set β ⊢ Tendsto f (𝓟 s) (𝓟 t) ↔ ∀ (a : α), a ∈ s → f a ∈ t [PROOFSTEP] simp only [tendsto_principal, eventually_principal] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β a : Filter α b : β ⊢ Tendsto f a (pure b) ↔ ∀ᶠ (x : α) in a, f x = b [PROOFSTEP] simp only [Tendsto, le_pure_iff, mem_map', mem_singleton_iff, Filter.Eventually] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f : α → β s : Set β l : Filter α t : Set β ⊢ t ∈ map f (l ⊓ 𝓟 (f ⁻¹' s)) ↔ t ∈ map f l ⊓ 𝓟 s [PROOFSTEP] simp only [mem_map', mem_inf_principal, mem_setOf_eq, mem_preimage] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : Tendsto f (l₁ ⊓ 𝓟 {x | p x}) l₂ h₁ : Tendsto g (l₁ ⊓ 𝓟 {x | ¬p x}) l₂ ⊢ Tendsto (fun x => if p x then f x else g x) l₁ l₂ [PROOFSTEP] simp only [tendsto_def, mem_inf_principal] at * [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ ⊢ ∀ (s : Set β), s ∈ l₂ → (fun x => if p x then f x else g x) ⁻¹' s ∈ l₁ [PROOFSTEP] intro s hs [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ ⊢ (fun x => if p x then f x else g x) ⁻¹' s ∈ l₁ [PROOFSTEP] filter_upwards [h₀ s hs, h₁ s hs] with x hp₀ hp₁ [GOAL] case h α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ x : α hp₀ : p x → x ∈ f ⁻¹' s hp₁ : ¬p x → x ∈ g ⁻¹' s ⊢ x ∈ (fun x => if p x then f x else g x) ⁻¹' s [PROOFSTEP] rw [mem_preimage] [GOAL] case h α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ x : α hp₀ : p x → x ∈ f ⁻¹' s hp₁ : ¬p x → x ∈ g ⁻¹' s ⊢ (if p x then f x else g x) ∈ s [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ x : α hp₀ : p x → x ∈ f ⁻¹' s hp₁ : ¬p x → x ∈ g ⁻¹' s h : p x ⊢ f x ∈ s case neg α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x l₁ : Filter α l₂ : Filter β f g : α → β p : α → Prop inst✝ : (x : α) → Decidable (p x) h₀ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | p x} → x ∈ f ⁻¹' s} ∈ l₁ h₁ : ∀ (s : Set β), s ∈ l₂ → {x | x ∈ {x | ¬p x} → x ∈ g ⁻¹' s} ∈ l₁ s : Set β hs : s ∈ l₂ x : α hp₀ : p x → x ∈ f ⁻¹' s hp₁ : ¬p x → x ∈ g ⁻¹' s h : ¬p x ⊢ g x ∈ s [PROOFSTEP] exacts [hp₀ h, hp₁ h]
{"mathlib_filename": "Mathlib.Order.Filter.Basic", "llama_tokens": 72930}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ≤ b ⇨ c ↔ b ⊓ a ≤ c [PROOFSTEP] rw [le_himp_iff, inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ≤ b ⇨ c ↔ b ≤ a ⇨ c [PROOFSTEP] rw [le_himp_iff, le_himp_iff'] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ≤ a ⇨ b ↔ a ≤ b [PROOFSTEP] rw [le_himp_iff, inf_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⊓ (a ⇨ b) ≤ b [PROOFSTEP] rw [inf_comm, ← le_himp_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α ⊢ a ⊓ (a ⇨ b) ≤ b [PROOFSTEP] rw [inf_comm, ← le_himp_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α ⊢ (a ⇨ b) ⊓ a = b ⊓ a [PROOFSTEP] rw [inf_comm, inf_himp, inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ a ⇨ b = ⊤ ↔ a ≤ b [PROOFSTEP] rw [← top_le_iff, le_himp_iff, top_inf_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b✝ c d b : α ⊢ b ≤ ⊤ ⇨ a ↔ b ≤ a [PROOFSTEP] rw [le_himp_iff, inf_top_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ d ≤ a ⇨ b ⇨ c ↔ d ≤ a ⊓ b ⇨ c [PROOFSTEP] simp_rw [le_himp_iff, inf_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c [PROOFSTEP] rw [le_himp_iff, le_himp_iff, inf_assoc, himp_inf_self, ← inf_assoc, himp_inf_self, inf_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ c ⊓ (b ⊓ a) ≤ c [PROOFSTEP] exact inf_le_left [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ (b ⇨ c) ⊓ (a ⇨ b) ⊓ a ≤ c [PROOFSTEP] simpa using @himp_le_himp_himp_himp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ a ⇨ b ⇨ c = b ⇨ a ⇨ c [PROOFSTEP] simp_rw [himp_himp, inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α ⊢ b ⇨ b ⇨ a = b ⇨ a [PROOFSTEP] rw [himp_himp, inf_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ d ≤ a ⇨ b ⊓ c ↔ d ≤ (a ⇨ b) ⊓ (a ⇨ c) [PROOFSTEP] simp_rw [le_himp_iff, le_inf_iff, le_himp_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ d ≤ a ⊔ b ⇨ c ↔ d ≤ (a ⇨ c) ⊓ (b ⇨ c) [PROOFSTEP] rw [le_inf_iff, le_himp_comm, sup_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ a ≤ d ⇨ c ∧ b ≤ d ⇨ c ↔ d ≤ a ⇨ c ∧ d ≤ b ⇨ c [PROOFSTEP] simp_rw [le_himp_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α ⊢ a ⊔ b ⇨ a = b ⇨ a [PROOFSTEP] rw [sup_himp_distrib, himp_self, top_inf_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c d a b : α ⊢ a ⊔ b ⇨ b = a ⇨ b [PROOFSTEP] rw [sup_himp_distrib, himp_self, inf_top_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b ⊢ b ⇨ a = a [PROOFSTEP] conv_rhs => rw [← @top_himp _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b | a [PROOFSTEP] rw [← @top_himp _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b | a [PROOFSTEP] rw [← @top_himp _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b | a [PROOFSTEP] rw [← @top_himp _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b ⊢ b ⇨ a = ⊤ ⇨ a [PROOFSTEP] rw [← h.eq_top, sup_himp_self_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b ⊢ a ⇨ a ⊓ b = b [PROOFSTEP] rw [himp_inf_distrib, himp_self, top_inf_eq, h.himp_eq_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a b c d : α h : Codisjoint a b ⊢ b ⇨ a ⊓ b = a [PROOFSTEP] rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c [PROOFSTEP] rw [le_himp_iff, inf_right_comm, ← le_himp_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ (a ⇨ b) ⊓ a ≤ (b ⇨ c) ⇨ c [PROOFSTEP] exact himp_inf_le.trans le_himp_himp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c [PROOFSTEP] simp_rw [@inf_comm _ _ a, ← le_himp_iff, sup_le_iff, le_himp_iff, ← sup_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ b ⊓ a ⊔ c ⊓ a ≤ b ⊓ a ⊔ c ⊓ a [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : OrderBot αᵒᵈ := orderBot α a b c : αᵒᵈ ⊢ a \ b ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] rw [sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedHeytingAlgebra α a✝ b✝ c✝ d : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : OrderBot αᵒᵈ := orderBot α a b c : αᵒᵈ ⊢ a \ b ≤ c ↔ a ≤ c ⊔ b [PROOFSTEP] exact le_himp_iff [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝¹ : GeneralizedHeytingAlgebra α✝ a b c d : α✝ α : ι → Type u_4 inst✝ : (i : ι) → GeneralizedHeytingAlgebra (α i) src✝¹ : Lattice ((i : ι) → α i) := lattice src✝ : OrderTop ((i : ι) → α i) := orderTop i : (i : ι) → α i ⊢ ∀ (b c : (i : ι) → α i), i ≤ b ⇨ c ↔ i ⊓ b ≤ c [PROOFSTEP] simp [le_def] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ b ≤ c ↔ a ≤ c ⊔ b [PROOFSTEP] rw [sdiff_le_iff, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ b ≤ c ↔ a \ c ≤ b [PROOFSTEP] rw [sdiff_le_iff, sdiff_le_iff'] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ b ≤ b ↔ a ≤ b [PROOFSTEP] rw [sdiff_le_iff, sup_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ≤ a \ b ⊔ b [PROOFSTEP] rw [sup_comm, ← sdiff_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α ⊢ b \ a ⊔ a = b ⊔ a [PROOFSTEP] rw [sup_comm, sup_sdiff_self, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α hab : a ≤ b hbc : b ≤ c ⊢ b ⊔ c \ a = c [PROOFSTEP] rw [sup_sdiff_eq_sup hab, sup_of_le_right hbc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : b ≤ a ⊢ a \ b ⊔ b = a [PROOFSTEP] rw [sup_comm, sup_sdiff_cancel_right h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a \ b = ⊥ ↔ a ≤ b [PROOFSTEP] rw [← le_bot_iff, sdiff_le_iff, sup_bot_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b✝ c d b : α ⊢ a \ ⊥ ≤ b ↔ a ≤ b [PROOFSTEP] rw [sdiff_le_iff, bot_sup_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a \ b) \ (a \ c) ≤ c \ b [PROOFSTEP] rw [sdiff_le_iff, sdiff_le_iff, sup_left_comm, sup_sdiff_self, sup_left_comm, sdiff_sup_self, sup_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ≤ a ⊔ (b ⊔ c) [PROOFSTEP] exact le_sup_left [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ a ≤ b ⊔ (a \ c ⊔ c \ b) [PROOFSTEP] simpa using @sdiff_sdiff_sdiff_le_sdiff [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ (a \ b) \ c ≤ d ↔ a \ (b ⊔ c) ≤ d [PROOFSTEP] simp_rw [sdiff_le_iff, sup_assoc] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ (a \ b) \ c = (a \ c) \ b [PROOFSTEP] simp_rw [sdiff_sdiff, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a \ b) \ b = a \ b [PROOFSTEP] rw [sdiff_sdiff_left, sup_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a \ b) \ a = ⊥ [PROOFSTEP] rw [sdiff_sdiff_comm, sdiff_self, bot_sdiff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ (a ⊔ b) \ c ≤ d ↔ a \ c ⊔ b \ c ≤ d [PROOFSTEP] simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ a \ (b ⊓ c) ≤ d ↔ a \ b ⊔ a \ c ≤ d [PROOFSTEP] rw [sup_le_iff, sdiff_le_comm, le_inf_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d✝ a b c d : α ⊢ a \ d ≤ b ∧ a \ d ≤ c ↔ a \ b ≤ d ∧ a \ c ≤ d [PROOFSTEP] simp_rw [sdiff_le_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a ⊔ b) \ b = a \ b [PROOFSTEP] rw [sup_sdiff, sdiff_self, sup_bot_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α ⊢ (a ⊔ b) \ a = b \ a [PROOFSTEP] rw [sup_comm, sup_sdiff_right_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α ⊢ a \ (a ⊓ b) = a \ b [PROOFSTEP] rw [sdiff_inf, sdiff_self, bot_sup_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c d a b : α ⊢ b \ (a ⊓ b) = b \ a [PROOFSTEP] rw [sdiff_inf, sdiff_self, sup_bot_eq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b ⊢ a \ b = a [PROOFSTEP] conv_rhs => rw [← @sdiff_bot _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b | a [PROOFSTEP] rw [← @sdiff_bot _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b | a [PROOFSTEP] rw [← @sdiff_bot _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b | a [PROOFSTEP] rw [← @sdiff_bot _ _ a] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b ⊢ a \ b = a \ ⊥ [PROOFSTEP] rw [← h.eq_bot, sdiff_inf_self_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b ⊢ (a ⊔ b) \ a = b [PROOFSTEP] rw [sup_sdiff, sdiff_self, bot_sup_eq, h.sdiff_eq_right] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : Disjoint a b ⊢ (a ⊔ b) \ b = a [PROOFSTEP] rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ a \ c ≤ a \ b ⊔ b \ c [PROOFSTEP] rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d a b c : α ⊢ a \ (a \ b) ≤ c ⊔ b \ c [PROOFSTEP] exact sdiff_sdiff_le.trans le_sup_sdiff [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : c ⊔ a ≤ c ⊔ b ⊢ a \ c ≤ b \ c [PROOFSTEP] rw [← sup_sdiff_left_self, ← @sup_sdiff_left_self _ _ _ b] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : c ⊔ a ≤ c ⊔ b ⊢ (c ⊔ a) \ c ≤ (c ⊔ b) \ c [PROOFSTEP] exact sdiff_le_sdiff_right h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : a ⊔ c ≤ b ⊔ c ⊢ a \ c ≤ b \ c [PROOFSTEP] rw [← sup_sdiff_right_self, ← @sup_sdiff_right_self _ _ b] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a b c d : α h : a ⊔ c ≤ b ⊔ c ⊢ (a ⊔ c) \ c ≤ (b ⊔ c) \ c [PROOFSTEP] exact sdiff_le_sdiff_right h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d : α src✝ : GeneralizedCoheytingAlgebra α := inst✝ a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c [PROOFSTEP] simp_rw [← sdiff_le_iff, le_inf_iff, sdiff_le_iff, ← le_inf_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d : α src✝ : GeneralizedCoheytingAlgebra α := inst✝ a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ (a ⊔ b) ⊓ (a ⊔ c) [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : OrderTop αᵒᵈ := orderTop α a b c : αᵒᵈ ⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c [PROOFSTEP] rw [inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : GeneralizedCoheytingAlgebra α a✝ b✝ c✝ d : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : OrderTop αᵒᵈ := orderTop α a b c : αᵒᵈ ⊢ a ≤ b ⇨ c ↔ b ⊓ a ≤ c [PROOFSTEP] exact sdiff_le_iff [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 inst✝¹ : GeneralizedCoheytingAlgebra α✝ a b c d : α✝ α : ι → Type u_4 inst✝ : (i : ι) → GeneralizedCoheytingAlgebra (α i) src✝¹ : Lattice ((i : ι) → α i) := lattice src✝ : OrderBot ((i : ι) → α i) := orderBot i : (i : ι) → α i ⊢ ∀ (b c : (i : ι) → α i), i \ b ≤ c ↔ i ≤ b ⊔ c [PROOFSTEP] simp [le_def] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ [PROOFSTEP] simp_rw [← himp_bot, sup_himp_distrib] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b c a : α ⊢ a ⇨ aᶜ = aᶜ [PROOFSTEP] rw [← himp_bot, himp_himp, inf_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ a ⇨ bᶜ = b ⇨ aᶜ [PROOFSTEP] simp_rw [← himp_bot, himp_left_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a b c : α ⊢ a ≤ bᶜ ↔ Disjoint a b [PROOFSTEP] rw [← himp_bot, le_himp_iff, disjoint_iff_inf_le] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a b c : α ⊢ a ≤ bᶜ ↔ b ≤ aᶜ [PROOFSTEP] rw [le_compl_iff_disjoint_right, le_compl_iff_disjoint_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b c a : α ⊢ a ≤ ⊤ᶜ ↔ a ≤ ⊥ [PROOFSTEP] rw [le_compl_iff_disjoint_right, disjoint_top, le_bot_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a b c : α ⊢ ⊥ᶜ = ⊤ [PROOFSTEP] rw [← himp_bot, himp_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a b c : α ⊢ a ≤ aᶜ ↔ a = ⊥ [PROOFSTEP] rw [le_compl_iff_disjoint_left, disjoint_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : HeytingAlgebra α a b c : α inst✝ : Nontrivial α ⊢ a ≠ aᶜ [PROOFSTEP] intro h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : HeytingAlgebra α a b c : α inst✝ : Nontrivial α h : a = aᶜ ⊢ False [PROOFSTEP] cases le_compl_self.1 (le_of_eq h) [GOAL] case refl ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : HeytingAlgebra α b c : α inst✝ : Nontrivial α h : ⊥ = ⊥ᶜ ⊢ False [PROOFSTEP] simp at h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : HeytingAlgebra α a b c : α inst✝ : Nontrivial α ⊢ a < aᶜ ↔ a = ⊥ [PROOFSTEP] rw [lt_iff_le_and_ne] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : HeytingAlgebra α a b c : α inst✝ : Nontrivial α ⊢ a ≤ aᶜ ∧ a ≠ aᶜ ↔ a = ⊥ [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a b c : α ⊢ Disjoint aᶜᶜ b ↔ Disjoint a b [PROOFSTEP] simp_rw [← le_compl_iff_disjoint_left, compl_compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a b c : α ⊢ Disjoint a bᶜᶜ ↔ Disjoint a b [PROOFSTEP] simp_rw [← le_compl_iff_disjoint_right, compl_compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜᶜ [PROOFSTEP] refine' ((compl_anti compl_sup_compl_le).trans (compl_sup_distrib _ _).le).antisymm _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ aᶜᶜ ⊓ bᶜᶜ ≤ (a ⊓ b)ᶜᶜ [PROOFSTEP] rw [le_compl_iff_disjoint_right, disjoint_assoc, disjoint_compl_compl_left_iff, disjoint_left_comm, disjoint_compl_compl_left_iff, ← disjoint_assoc, inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ Disjoint (a ⊓ b) (a ⊓ b)ᶜ [PROOFSTEP] exact disjoint_compl_right [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜᶜ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ (a ⇨ b)ᶜᶜ ≤ aᶜᶜ ⇨ bᶜᶜ [PROOFSTEP] rw [le_himp_iff, ← compl_compl_inf_distrib] [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ ((a ⇨ b) ⊓ a)ᶜᶜ ≤ bᶜᶜ [PROOFSTEP] exact compl_anti (compl_anti himp_inf_le) [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ aᶜᶜ ⇨ bᶜᶜ ≤ (a ⇨ b)ᶜᶜ [PROOFSTEP] refine' le_compl_comm.1 ((compl_anti compl_sup_le_himp).trans _) [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ (aᶜ ⊔ b)ᶜ ≤ (aᶜᶜ ⇨ bᶜᶜ)ᶜ [PROOFSTEP] rw [compl_sup_distrib, le_compl_iff_disjoint_right, disjoint_right_comm, ← le_compl_iff_disjoint_right] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c a b : α ⊢ aᶜᶜ ⊓ (aᶜᶜ ⇨ bᶜᶜ) ≤ bᶜᶜ [PROOFSTEP] exact inf_himp_le [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c✝ : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : BoundedOrder αᵒᵈ := boundedOrder α a b c : αᵒᵈ ⊢ a \ b ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] rw [sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : HeytingAlgebra α a✝ b✝ c✝ : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : BoundedOrder αᵒᵈ := boundedOrder α a b c : αᵒᵈ ⊢ a \ b ≤ c ↔ a ≤ c ⊔ b [PROOFSTEP] exact le_himp_iff [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬(a ⊓ b) = ¬a ⊔ ¬b [PROOFSTEP] simp_rw [← top_sdiff', sdiff_inf_distrib] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c✝ : α src✝ : CoheytingAlgebra α := inst✝ a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c [PROOFSTEP] simp_rw [← sdiff_le_iff, le_inf_iff, sdiff_le_iff, ← le_inf_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c✝ : α src✝ : CoheytingAlgebra α := inst✝ a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ (a ⊔ b) ⊓ (a ⊔ c) [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b c a : α ⊢ ¬a \ a = ¬a [PROOFSTEP] rw [← top_sdiff', sdiff_sdiff, sup_idem] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬a \ b = ¬b \ a [PROOFSTEP] simp_rw [← top_sdiff', sdiff_right_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a b c : α ⊢ ¬a ≤ b ↔ Codisjoint a b [PROOFSTEP] rw [← top_sdiff', sdiff_le_iff, codisjoint_iff_le_sup] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a b c : α ⊢ ¬a ≤ b ↔ ¬b ≤ a [PROOFSTEP] rw [hnot_le_iff_codisjoint_right, hnot_le_iff_codisjoint_left] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b c a : α ⊢ ¬⊥ ≤ a ↔ ⊤ ≤ a [PROOFSTEP] rw [hnot_le_iff_codisjoint_left, codisjoint_bot, top_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a b c : α ⊢ ¬⊤ = ⊥ [PROOFSTEP] rw [← top_sdiff', sdiff_self] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a b c : α ⊢ Codisjoint (¬¬a) b ↔ Codisjoint a b [PROOFSTEP] simp_rw [← hnot_le_iff_codisjoint_right, hnot_hnot_hnot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a b c : α ⊢ Codisjoint a (¬¬b) ↔ Codisjoint a b [PROOFSTEP] simp_rw [← hnot_le_iff_codisjoint_left, hnot_hnot_hnot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b [PROOFSTEP] refine' ((hnot_inf_distrib _ _).ge.trans <| hnot_anti le_hnot_inf_hnot).antisymm' _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬(a ⊔ b) ≤ ¬¬a ⊔ ¬¬b [PROOFSTEP] rw [hnot_le_iff_codisjoint_left, codisjoint_assoc, codisjoint_hnot_hnot_left_iff, codisjoint_left_comm, codisjoint_hnot_hnot_left_iff, ← codisjoint_assoc, sup_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ Codisjoint (a ⊔ b) (¬(a ⊔ b)) [PROOFSTEP] exact codisjoint_hnot_right [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬(a \ b) = ¬¬a \ ¬¬b [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬(a \ b) ≤ ¬¬a \ ¬¬b [PROOFSTEP] refine' hnot_le_comm.1 ((hnot_anti sdiff_le_inf_hnot).trans' _) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬(¬¬a \ ¬¬b) ≤ ¬(a ⊓ ¬b) [PROOFSTEP] rw [hnot_inf_distrib, hnot_le_iff_codisjoint_right, codisjoint_left_comm, ← hnot_le_iff_codisjoint_right] [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬a ≤ ¬¬a \ ¬¬b ⊔ ¬¬b [PROOFSTEP] exact le_sdiff_sup [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬a \ ¬¬b ≤ ¬¬(a \ b) [PROOFSTEP] rw [sdiff_le_iff, ← hnot_hnot_sup_distrib] [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c a b : α ⊢ ¬¬a ≤ ¬¬(b ⊔ a \ b) [PROOFSTEP] exact hnot_anti (hnot_anti le_sup_sdiff) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c✝ : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : BoundedOrder αᵒᵈ := boundedOrder α a b c : αᵒᵈ ⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c [PROOFSTEP] rw [inf_comm] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : CoheytingAlgebra α a✝ b✝ c✝ : α src✝¹ : Lattice αᵒᵈ := lattice α src✝ : BoundedOrder αᵒᵈ := boundedOrder α a b c : αᵒᵈ ⊢ a ≤ b ⇨ c ↔ b ⊓ a ≤ c [PROOFSTEP] exact sdiff_le_iff [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α ⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c [PROOFSTEP] change _ ≤ ite _ _ _ ↔ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α ⊢ (a ≤ if b ≤ c then ⊤ else c) ↔ a ⊓ b ≤ c [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α h : b ≤ c ⊢ a ≤ ⊤ ↔ a ⊓ b ≤ c [PROOFSTEP] exact iff_of_true le_top (inf_le_of_right_le h) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α h : ¬b ≤ c ⊢ a ≤ c ↔ a ⊓ b ≤ c [PROOFSTEP] rw [inf_le_iff, or_iff_left h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α ⊢ a \ b ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] change ite _ _ _ ≤ _ ↔ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α ⊢ (if a ≤ b then ⊥ else a) ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α h : a ≤ b ⊢ ⊥ ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] exact iff_of_true bot_le (le_sup_of_le_left h) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : LinearOrder α inst✝ : BoundedOrder α src✝¹ : Lattice α := toLattice src✝ : BoundedOrder α := inst✝ a b c : α h : ¬a ≤ b ⊢ a ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] rw [le_sup_iff, or_iff_right h] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Top α inst✝¹ : HImp α inst✝ : GeneralizedHeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Top α := inst✝² src✝ : HImp α := inst✝¹ a : α ⊢ a ≤ ⊤ [PROOFSTEP] change f _ ≤ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Top α inst✝¹ : HImp α inst✝ : GeneralizedHeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Top α := inst✝² src✝ : HImp α := inst✝¹ a : α ⊢ f a ≤ f ⊤ [PROOFSTEP] rw [map_top] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Top α inst✝¹ : HImp α inst✝ : GeneralizedHeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Top α := inst✝² src✝ : HImp α := inst✝¹ a : α ⊢ f a ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Top α inst✝¹ : HImp α inst✝ : GeneralizedHeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Top α := inst✝² src✝ : HImp α := inst✝¹ a b c : α ⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c [PROOFSTEP] change f _ ≤ _ ↔ f _ ≤ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Top α inst✝¹ : HImp α inst✝ : GeneralizedHeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Top α := inst✝² src✝ : HImp α := inst✝¹ a b c : α ⊢ f a ≤ f (b ⇨ c) ↔ f (a ⊓ b) ≤ f c [PROOFSTEP] erw [map_himp, map_inf, le_himp_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedCoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Bot α := inst✝² src✝ : SDiff α := inst✝¹ a : α ⊢ ⊥ ≤ a [PROOFSTEP] change f _ ≤ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedCoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Bot α := inst✝² src✝ : SDiff α := inst✝¹ a : α ⊢ f ⊥ ≤ f a [PROOFSTEP] rw [map_bot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedCoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Bot α := inst✝² src✝ : SDiff α := inst✝¹ a : α ⊢ ⊥ ≤ f a [PROOFSTEP] exact bot_le [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedCoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Bot α := inst✝² src✝ : SDiff α := inst✝¹ a b c : α ⊢ a \ b ≤ c ↔ a ≤ b ⊔ c [PROOFSTEP] change f _ ≤ _ ↔ f _ ≤ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedCoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : Lattice α := Injective.lattice f hf map_sup map_inf src✝¹ : Bot α := inst✝² src✝ : SDiff α := inst✝¹ a b c : α ⊢ f (a \ b) ≤ f c ↔ f a ≤ f (b ⊔ c) [PROOFSTEP] erw [map_sdiff, map_sup, sdiff_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : HImp α inst✝ : HeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp src✝¹ : Bot α := inst✝³ src✝ : HasCompl α := inst✝² a : α ⊢ ⊥ ≤ a [PROOFSTEP] change f _ ≤ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : HImp α inst✝ : HeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp src✝¹ : Bot α := inst✝³ src✝ : HasCompl α := inst✝² a : α ⊢ f ⊥ ≤ f a [PROOFSTEP] rw [map_bot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : HImp α inst✝ : HeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp src✝¹ : Bot α := inst✝³ src✝ : HasCompl α := inst✝² a : α ⊢ ⊥ ≤ f a [PROOFSTEP] exact bot_le [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : HImp α inst✝ : HeytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_himp : ∀ (a b : α), f (a ⇨ b) = f a ⇨ f b src✝² : GeneralizedHeytingAlgebra α := Injective.generalizedHeytingAlgebra f hf map_sup map_inf map_top map_himp src✝¹ : Bot α := inst✝³ src✝ : HasCompl α := inst✝² a : α ⊢ f (a ⇨ ⊥) = f aᶜ [PROOFSTEP] erw [map_himp, map_compl, map_bot, himp_bot] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HNot α inst✝¹ : SDiff α inst✝ : CoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_hnot : ∀ (a : α), f (¬a) = ¬f a map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝¹ : Top α := inst✝⁴ src✝ : HNot α := inst✝² a : α ⊢ a ≤ ⊤ [PROOFSTEP] change f _ ≤ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HNot α inst✝¹ : SDiff α inst✝ : CoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_hnot : ∀ (a : α), f (¬a) = ¬f a map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝¹ : Top α := inst✝⁴ src✝ : HNot α := inst✝² a : α ⊢ f a ≤ f ⊤ [PROOFSTEP] rw [map_top] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HNot α inst✝¹ : SDiff α inst✝ : CoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_hnot : ∀ (a : α), f (¬a) = ¬f a map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝¹ : Top α := inst✝⁴ src✝ : HNot α := inst✝² a : α ⊢ f a ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HNot α inst✝¹ : SDiff α inst✝ : CoheytingAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_hnot : ∀ (a : α), f (¬a) = ¬f a map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝² : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝¹ : Top α := inst✝⁴ src✝ : HNot α := inst✝² a : α ⊢ f (⊤ \ a) = f (¬a) [PROOFSTEP] erw [map_sdiff, map_hnot, map_top, top_sdiff']
{"mathlib_filename": "Mathlib.Order.Heyting.Basic", "llama_tokens": 19922}
[GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : PartialOrder α inst✝ : Nontrivial α ⊢ Disjoint atBot atTop [PROOFSTEP] rcases exists_pair_ne α with ⟨x, y, hne⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : PartialOrder α inst✝ : Nontrivial α x y : α hne : x ≠ y ⊢ Disjoint atBot atTop [PROOFSTEP] by_cases hle : x ≤ y [GOAL] case pos ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : PartialOrder α inst✝ : Nontrivial α x y : α hne : x ≠ y hle : x ≤ y ⊢ Disjoint atBot atTop [PROOFSTEP] refine' disjoint_of_disjoint_of_mem _ (Iic_mem_atBot x) (Ici_mem_atTop y) [GOAL] case pos ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : PartialOrder α inst✝ : Nontrivial α x y : α hne : x ≠ y hle : x ≤ y ⊢ Disjoint (Iic x) (Ici y) [PROOFSTEP] exact Iic_disjoint_Ici.2 (hle.lt_of_ne hne).not_le [GOAL] case neg ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : PartialOrder α inst✝ : Nontrivial α x y : α hne : x ≠ y hle : ¬x ≤ y ⊢ Disjoint atBot atTop [PROOFSTEP] refine' disjoint_of_disjoint_of_mem _ (Iic_mem_atBot y) (Ici_mem_atTop x) [GOAL] case neg ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : PartialOrder α inst✝ : Nontrivial α x y : α hne : x ≠ y hle : ¬x ≤ y ⊢ Disjoint (Iic y) (Ici x) [PROOFSTEP] exact Iic_disjoint_Ici.2 hle [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder α p : α → Prop ⊢ (∀ᶠ (x : α) in atTop, ∀ (y : α), x ≤ y → p y) ↔ ∀ᶠ (x : α) in atTop, p x [PROOFSTEP] refine ⟨fun h ↦ h.mono fun x hx ↦ hx x le_rfl, fun h ↦ ?_⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder α p : α → Prop h : ∀ᶠ (x : α) in atTop, p x ⊢ ∀ᶠ (x : α) in atTop, ∀ (y : α), x ≤ y → p y [PROOFSTEP] rcases(hasBasis_iInf_principal_finite _).eventually_iff.1 h with ⟨S, hSf, hS⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder α p : α → Prop h : ∀ᶠ (x : α) in atTop, p x S : Set α hSf : Set.Finite S hS : ∀ ⦃x : α⦄, x ∈ ⋂ (i : α) (_ : i ∈ S), Ici i → p x ⊢ ∀ᶠ (x : α) in atTop, ∀ (y : α), x ≤ y → p y [PROOFSTEP] refine mem_iInf_of_iInter hSf (V := fun x ↦ Ici x.1) (fun _ ↦ Subset.rfl) fun x hx y hy ↦ ?_ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder α p : α → Prop h : ∀ᶠ (x : α) in atTop, p x S : Set α hSf : Set.Finite S hS : ∀ ⦃x : α⦄, x ∈ ⋂ (i : α) (_ : i ∈ S), Ici i → p x x : α hx : x ∈ ⋂ (i : ↑S), (fun x => Ici ↑x) i y : α hy : x ≤ y ⊢ p y [PROOFSTEP] simp only [mem_iInter] at hS hx [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder α p : α → Prop h : ∀ᶠ (x : α) in atTop, p x S : Set α hSf : Set.Finite S x y : α hy : x ≤ y hS : ∀ ⦃x : α⦄, (∀ (i : α), i ∈ S → x ∈ Ici i) → p x hx : ∀ (i : ↑S), x ∈ Ici ↑i ⊢ p y [PROOFSTEP] exact hS fun z hz ↦ le_trans (hx ⟨z, hz⟩) hy [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β✝ : Type u_4 γ : Type u_5 α : Type u_6 β : Type u_7 inst✝ : Preorder β l : Filter α p : β → Prop f : α → β hf : Tendsto f l atTop h_evtl : ∀ᶠ (x : β) in atTop, p x ⊢ ∀ᶠ (x : α) in l, ∀ (y : β), f x ≤ y → p y [PROOFSTEP] rw [← Filter.eventually_forall_ge_atTop] at h_evtl [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β✝ : Type u_4 γ : Type u_5 α : Type u_6 β : Type u_7 inst✝ : Preorder β l : Filter α p : β → Prop f : α → β hf : Tendsto f l atTop h_evtl : ∀ᶠ (x : β) in atTop, ∀ (y : β), x ≤ y → p y ⊢ ∀ᶠ (x : α) in l, ∀ (y : β), f x ≤ y → p y [PROOFSTEP] exact (h_evtl.comap f).filter_mono hf.le_comap [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β✝ : Type u_4 γ : Type u_5 α : Type u_6 β : Type u_7 inst✝ : Preorder β l : Filter α p : β → Prop f : α → β hf : Tendsto f l atBot h_evtl : ∀ᶠ (x : β) in atBot, p x ⊢ ∀ᶠ (x : α) in l, ∀ (y : β), y ≤ f x → p y [PROOFSTEP] rw [← Filter.eventually_forall_le_atBot] at h_evtl [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β✝ : Type u_4 γ : Type u_5 α : Type u_6 β : Type u_7 inst✝ : Preorder β l : Filter α p : β → Prop f : α → β hf : Tendsto f l atBot h_evtl : ∀ᶠ (x : β) in atBot, ∀ (y : β), y ≤ x → p y ⊢ ∀ᶠ (x : α) in l, ∀ (y : β), y ≤ f x → p y [PROOFSTEP] exact (h_evtl.comap f).filter_mono hf.le_comap [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝¹ : Subsingleton α inst✝ : Preorder α ⊢ atTop = ⊤ [PROOFSTEP] refine' top_unique fun s hs x => _ [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝¹ : Subsingleton α inst✝ : Preorder α s : Set α hs : s ∈ atTop x : α ⊢ x ∈ s [PROOFSTEP] rw [atTop, ciInf_subsingleton x, mem_principal] at hs [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝¹ : Subsingleton α inst✝ : Preorder α s : Set α x : α hs : Ici x ⊆ s ⊢ x ∈ s [PROOFSTEP] exact hs left_mem_Ici [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Nonempty α r : α → β → Prop ⊢ (∃ b, ∀ᶠ (a : α) in atTop, r a b) ↔ ∀ᶠ (a₀ : α) in atTop, ∃ b, ∀ (a : α), a ≥ a₀ → r a b [PROOFSTEP] simp_rw [eventually_atTop, ← exists_swap (α := α)] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Nonempty α r : α → β → Prop ⊢ (∃ x y, ∀ (b : α), b ≥ x → r b y) ↔ ∃ a, ∀ (b : α), b ≥ a → ∃ b_1, ∀ (a : α), a ≥ b → r a b_1 [PROOFSTEP] exact exists_congr fun a ↦ .symm <| forall_ge_iff <| Monotone.exists fun _ _ _ hb H n hn ↦ H n (hb.trans hn) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : Nonempty α r : α → β → Prop ⊢ (∃ b, ∀ᶠ (a : α) in atBot, r a b) ↔ ∀ᶠ (a₀ : α) in atBot, ∃ b, ∀ (a : α), a ≤ a₀ → r a b [PROOFSTEP] simp_rw [eventually_atBot, ← exists_swap (α := α)] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : Nonempty α r : α → β → Prop ⊢ (∃ x y, ∀ (b : α), b ≤ x → r b y) ↔ ∃ a, ∀ (b : α), b ≤ a → ∃ b_1, ∀ (a : α), a ≤ b → r a b_1 [PROOFSTEP] exact exists_congr fun a ↦ .symm <| forall_le_iff <| Antitone.exists fun _ _ _ hb H n hn ↦ H n (hn.trans hb) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Nonempty α p : α → Prop ⊢ (∀ (i : α), True → ∃ x, x ∈ Ici i ∧ p x) ↔ ∀ (a : α), ∃ b, b ≥ a ∧ p b [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : NoMaxOrder α p : α → Prop ⊢ (∀ (i : α), True → ∃ x, x ∈ Ioi i ∧ p x) ↔ ∀ (a : α), ∃ b, b > a ∧ p b [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder β m : α → β f : Filter α ⊢ Tendsto m f atTop ↔ ∀ (b : β), ∀ᶠ (a : α) in f, b ≤ m a [PROOFSTEP] simp only [atTop, tendsto_iInf, tendsto_principal, mem_Ici] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder β l : Filter α f₁ f₂ : α → β h : f₁ ≤ᶠ[l] f₂ h₁ : Tendsto f₁ l atTop b : β ⊢ ∀ᶠ (a : α) in l, b ≤ f₂ a [PROOFSTEP] filter_upwards [tendsto_atTop.1 h₁ b, h] with x using le_trans [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β ⊢ comap (↑e) atTop = atTop [PROOFSTEP] simp [atTop, ← e.surjective.iInf_comp] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β e : α ≃o β ⊢ map (↑e) atTop = atTop [PROOFSTEP] rw [← e.comap_atTop, map_comap_of_surjective e.surjective] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β l : Filter γ f : γ → α e : α ≃o β ⊢ Tendsto (fun x => ↑e (f x)) l atTop ↔ Tendsto f l atTop [PROOFSTEP] rw [← e.comap_atTop, tendsto_comap_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β l : Filter γ f : γ → α e : α ≃o β ⊢ Tendsto (fun x => ↑e (f x)) l atTop ↔ Tendsto (↑e ∘ f) l atTop [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Nonempty α F : Filter β u : α → β ⊢ NeBot (F ⊓ map u atTop) ↔ ∀ (U : Set β), U ∈ F → ∀ (N : α), ∃ n, n ≥ N ∧ u n ∈ U [PROOFSTEP] simp_rw [inf_neBot_iff_frequently_left, frequently_map, frequently_atTop] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Nonempty α F : Filter β u : α → β ⊢ (∀ {p : β → Prop}, (∀ᶠ (x : β) in F, p x) → ∀ (a : α), ∃ b, b ≥ a ∧ p (u b)) ↔ ∀ (U : Set β), U ∈ F → ∀ (N : α), ∃ n, n ≥ N ∧ u n ∈ U [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → Prop h : ∀ (N : ℕ), ∃ n, n > N ∧ P n ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n) [PROOFSTEP] choose u hu hu' using h [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → Prop u : ℕ → ℕ hu : ∀ (N : ℕ), u N > N hu' : ∀ (N : ℕ), P (u N) ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n) [PROOFSTEP] refine ⟨fun n => u^[n + 1] 0, strictMono_nat_of_lt_succ fun n => ?_, fun n => ?_⟩ [GOAL] case refine_1 ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → Prop u : ℕ → ℕ hu : ∀ (N : ℕ), u N > N hu' : ∀ (N : ℕ), P (u N) n : ℕ ⊢ u^[n + 1] 0 < u^[n + 1 + 1] 0 [PROOFSTEP] exact Trans.trans (hu _) (Function.iterate_succ_apply' _ _ _).symm [GOAL] case refine_2 ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → Prop u : ℕ → ℕ hu : ∀ (N : ℕ), u N > N hu' : ∀ (N : ℕ), P (u N) n : ℕ ⊢ P ((fun n => u^[n + 1] 0) n) [PROOFSTEP] simpa only [Function.iterate_succ_apply'] using hu' _ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → Prop h : ∃ᶠ (n : ℕ) in atTop, P n ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n) [PROOFSTEP] rw [frequently_atTop'] at h [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → Prop h : ∀ (a : ℕ), ∃ b, b > a ∧ P b ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P (φ n) [PROOFSTEP] exact extraction_of_frequently_atTop' h [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop h : ∀ (n : ℕ), ∃ᶠ (k : ℕ) in atTop, P n k ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n) [PROOFSTEP] simp only [frequently_atTop'] at h [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop h : ∀ (n a : ℕ), ∃ b, b > a ∧ P n b ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n) [PROOFSTEP] choose u hu hu' using h [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), P n (φ n) [PROOFSTEP] use(fun n => Nat.recOn n (u 0 0) fun n v => u (n + 1) v : ℕ → ℕ) [GOAL] case h ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) ⊢ (StrictMono fun n => Nat.recOn n (u 0 0) fun n v => u (n + 1) v) ∧ ∀ (n : ℕ), P n (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) [PROOFSTEP] constructor [GOAL] case h.left ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) ⊢ StrictMono fun n => Nat.recOn n (u 0 0) fun n v => u (n + 1) v [PROOFSTEP] apply strictMono_nat_of_lt_succ [GOAL] case h.left.hf ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) ⊢ ∀ (n : ℕ), (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) < Nat.recOn (n + 1) (u 0 0) fun n v => u (n + 1) v [PROOFSTEP] intro n [GOAL] case h.left.hf ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) n : ℕ ⊢ (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) < Nat.recOn (n + 1) (u 0 0) fun n v => u (n + 1) v [PROOFSTEP] apply hu [GOAL] case h.right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) ⊢ ∀ (n : ℕ), P n (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) [PROOFSTEP] intro n [GOAL] case h.right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) n : ℕ ⊢ P n (Nat.recOn n (u 0 0) fun n v => u (n + 1) v) [PROOFSTEP] cases n [GOAL] case h.right.zero ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) ⊢ P Nat.zero (Nat.recOn Nat.zero (u 0 0) fun n v => u (n + 1) v) [PROOFSTEP] simp [hu'] [GOAL] case h.right.succ ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop u : ℕ → ℕ → ℕ hu : ∀ (n a : ℕ), u n a > a hu' : ∀ (n a : ℕ), P n (u n a) n✝ : ℕ ⊢ P (Nat.succ n✝) (Nat.recOn (Nat.succ n✝) (u 0 0) fun n v => u (n + 1) v) [PROOFSTEP] simp [hu'] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 P : ℕ → ℕ → Prop h : ∀ (n : ℕ), ∃ N, ∀ (k : ℕ), k ≥ N → P n k ⊢ ∀ (n : ℕ), ∀ᶠ (k : ℕ) in atTop, P n k [PROOFSTEP] simp [eventually_atTop, h] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 hp : ∀ (k : ℕ), k < n → ∀ᶠ (a : ℕ) in atTop, p (n * a + k) ⊢ ∀ᶠ (a : ℕ) in atTop, p a [PROOFSTEP] simp only [eventually_atTop] at hp ⊢ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 hp : ∀ (k : ℕ), k < n → ∃ a, ∀ (b : ℕ), b ≥ a → p (n * b + k) ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b [PROOFSTEP] choose! N hN using hp [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 N : ℕ → ℕ hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k) ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b [PROOFSTEP] refine ⟨(Finset.range n).sup (n * N ·), fun b hb => ?_⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 N : ℕ → ℕ hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k) b : ℕ hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x ⊢ p b [PROOFSTEP] rw [← Nat.div_add_mod b n] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 N : ℕ → ℕ hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k) b : ℕ hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x ⊢ p (n * (b / n) + b % n) [PROOFSTEP] have hlt := Nat.mod_lt b hn.bot_lt [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 N : ℕ → ℕ hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k) b : ℕ hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x hlt : b % n < n ⊢ p (n * (b / n) + b % n) [PROOFSTEP] refine hN _ hlt _ ?_ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 N : ℕ → ℕ hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k) b : ℕ hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x hlt : b % n < n ⊢ b / n ≥ N (b % n) [PROOFSTEP] rw [ge_iff_le, Nat.le_div_iff_mul_le hn.bot_lt, mul_comm] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 p : ℕ → Prop n : ℕ hn : n ≠ 0 N : ℕ → ℕ hN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k) b : ℕ hb : b ≥ Finset.sup (Finset.range n) fun x => n * N x hlt : b % n < n ⊢ n * N (b % n) ≤ b [PROOFSTEP] exact (Finset.le_sup (f := (n * N ·)) (Finset.mem_range.2 hlt)).trans hb [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Preorder β u : α → β h : Tendsto u atTop atTop a : α b : β ⊢ ∃ a', a' ≥ a ∧ b ≤ u a' [PROOFSTEP] have : Nonempty α := ⟨a⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Preorder β u : α → β h : Tendsto u atTop atTop a : α b : β this : Nonempty α ⊢ ∃ a', a' ≥ a ∧ b ≤ u a' [PROOFSTEP] have : ∀ᶠ x in atTop, a ≤ x ∧ b ≤ u x := (eventually_ge_atTop a).and (h.eventually <| eventually_ge_atTop b) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Preorder β u : α → β h : Tendsto u atTop atTop a : α b : β this✝ : Nonempty α this : ∀ᶠ (x : α) in atTop, a ≤ x ∧ b ≤ u x ⊢ ∃ a', a' ≥ a ∧ b ≤ u a' [PROOFSTEP] exact this.exists [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β u : α → β h : Tendsto u atTop atTop a : α b : β ⊢ ∃ a', a' ≥ a ∧ b < u a' [PROOFSTEP] cases' exists_gt b with b' hb' [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β u : α → β h : Tendsto u atTop atTop a : α b b' : β hb' : b < b' ⊢ ∃ a', a' ≥ a ∧ b < u a' [PROOFSTEP] rcases exists_le_of_tendsto_atTop h a b' with ⟨a', ha', ha''⟩ [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β u : α → β h : Tendsto u atTop atTop a : α b b' : β hb' : b < b' a' : α ha' : a' ≥ a ha'' : b' ≤ u a' ⊢ ∃ a', a' ≥ a ∧ b < u a' [PROOFSTEP] exact ⟨a', ha', lt_of_lt_of_le hb' ha''⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop ⊢ ∀ (N : ℕ), ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] intro N [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N : ℕ ⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] obtain ⟨k : ℕ, - : k ≤ N, hku : ∀ l ≤ N, u l ≤ u k⟩ : ∃ k ≤ N, ∀ l ≤ N, u l ≤ u k [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N : ℕ ⊢ ∃ k, k ≤ N ∧ ∀ (l : ℕ), l ≤ N → u l ≤ u k case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] exact exists_max_image _ u (finite_le_nat N) ⟨N, le_refl N⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] have ex : ∃ n ≥ N, u k < u n := exists_lt_of_tendsto_atTop hu _ _ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n ⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] obtain ⟨n : ℕ, hnN : n ≥ N, hnk : u k < u n, hn_min : ∀ m, m < n → N ≤ m → u m ≤ u k⟩ : ∃ n ≥ N, u k < u n ∧ ∀ m, m < n → N ≤ m → u m ≤ u k := by rcases Nat.findX ex with ⟨n, ⟨hnN, hnk⟩, hn_min⟩ push_neg at hn_min exact ⟨n, hnN, hnk, hn_min⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n ⊢ ∃ n, n ≥ N ∧ u k < u n ∧ ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k [PROOFSTEP] rcases Nat.findX ex with ⟨n, ⟨hnN, hnk⟩, hn_min⟩ [GOAL] case mk.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hn_min : ∀ (m : ℕ), m < n → ¬(m ≥ N ∧ u k < u m) hnN : n ≥ N hnk : u k < u n ⊢ ∃ n, n ≥ N ∧ u k < u n ∧ ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k [PROOFSTEP] push_neg at hn_min [GOAL] case mk.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → m ≥ N → u m ≤ u k ⊢ ∃ n, n ≥ N ∧ u k < u n ∧ ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k [PROOFSTEP] exact ⟨n, hnN, hnk, hn_min⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k ⊢ ∃ n, n ≥ N ∧ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] use n, hnN [GOAL] case right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k ⊢ ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] rintro (l : ℕ) (hl : l < n) [GOAL] case right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k l : ℕ hl : l < n ⊢ u l < u n [PROOFSTEP] have hlk : u l ≤ u k := by cases' (le_total l N : l ≤ N ∨ N ≤ l) with H H · exact hku l H · exact hn_min l hl H [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k l : ℕ hl : l < n ⊢ u l ≤ u k [PROOFSTEP] cases' (le_total l N : l ≤ N ∨ N ≤ l) with H H [GOAL] case inl ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k l : ℕ hl : l < n H : l ≤ N ⊢ u l ≤ u k [PROOFSTEP] exact hku l H [GOAL] case inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k l : ℕ hl : l < n H : N ≤ l ⊢ u l ≤ u k [PROOFSTEP] exact hn_min l hl H [GOAL] case right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop N k : ℕ hku : ∀ (l : ℕ), l ≤ N → u l ≤ u k ex : ∃ n, n ≥ N ∧ u k < u n n : ℕ hnN : n ≥ N hnk : u k < u n hn_min : ∀ (m : ℕ), m < n → N ≤ m → u m ≤ u k l : ℕ hl : l < n hlk : u l ≤ u k ⊢ u l < u n [PROOFSTEP] calc u l ≤ u k := hlk _ < u n := hnk [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrder β inst✝ : NoMaxOrder β u : ℕ → β hu : Tendsto u atTop atTop ⊢ ∃ᶠ (n : ℕ) in atTop, ∀ (k : ℕ), k < n → u k < u n [PROOFSTEP] simpa [frequently_atTop] using high_scores hu [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : OrderedAddCommGroup β l : Filter α f g : α → β C : β hf : ∀ᶠ (x : α) in l, C ≤ f x hg : Tendsto g l atTop ⊢ ∀ᶠ (x : α) in l, (fun x => -f x) x ≤ -C [PROOFSTEP] simpa [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : OrderedAddCommGroup β l : Filter α f g : α → β C : β hf : ∀ᶠ (x : α) in l, C ≤ f x hg : Tendsto g l atTop ⊢ Tendsto (fun x => (fun x => -f x) x + (fun x => f x + g x) x) l atTop [PROOFSTEP] simpa [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : OrderedAddCommGroup β l : Filter α f g : α → β C : β hf : Tendsto f l atTop hg : ∀ᶠ (x : α) in l, C ≤ g x ⊢ ∀ᶠ (x : α) in l, (fun x => -g x) x ≤ -C [PROOFSTEP] simp [hg] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : OrderedAddCommGroup β l : Filter α f g : α → β C : β hf : Tendsto f l atTop hg : ∀ᶠ (x : α) in l, C ≤ g x ⊢ Tendsto (fun x => (fun x => f x + g x) x + (fun x => -g x) x) l atTop [PROOFSTEP] simp [hf] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedSemiring α l : Filter β f g : β → α hf : Tendsto f l atTop hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] refine' tendsto_atTop_mono' _ _ hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedSemiring α l : Filter β f g : β → α hf : Tendsto f l atTop hg : Tendsto g l atTop ⊢ g ≤ᶠ[l] fun x => f x * g x [PROOFSTEP] filter_upwards [hg.eventually (eventually_ge_atTop 0), hf.eventually (eventually_ge_atTop 1)] with _ using le_mul_of_one_le_left [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedRing α l : Filter β f g : β → α hf : Tendsto f l atTop hg : Tendsto g l atBot ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] have := hf.atTop_mul_atTop <| tendsto_neg_atBot_atTop.comp hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedRing α l : Filter β f g : β → α hf : Tendsto f l atTop hg : Tendsto g l atBot this : Tendsto (fun x => f x * (Neg.neg ∘ g) x) l atTop ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] simpa only [(· ∘ ·), neg_mul_eq_mul_neg, neg_neg] using tendsto_neg_atTop_atBot.comp this [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedRing α l : Filter β f g : β → α hf : Tendsto f l atBot hg : Tendsto g l atTop ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] have : Tendsto (fun x => -f x * g x) l atTop := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_atTop hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedRing α l : Filter β f g : β → α hf : Tendsto f l atBot hg : Tendsto g l atTop this : Tendsto (fun x => -f x * g x) l atTop ⊢ Tendsto (fun x => f x * g x) l atBot [PROOFSTEP] simpa only [(· ∘ ·), neg_mul_eq_neg_mul, neg_neg] using tendsto_neg_atTop_atBot.comp this [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedRing α l : Filter β f g : β → α hf : Tendsto f l atBot hg : Tendsto g l atBot ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] have : Tendsto (fun x => -f x * -g x) l atTop := (tendsto_neg_atBot_atTop.comp hf).atTop_mul_atTop (tendsto_neg_atBot_atTop.comp hg) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : StrictOrderedRing α l : Filter β f g : β → α hf : Tendsto f l atBot hg : Tendsto g l atBot this : Tendsto (fun x => -f x * -g x) l atTop ⊢ Tendsto (fun x => f x * g x) l atTop [PROOFSTEP] simpa only [neg_mul_neg] using this [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedAddCommGroup α ⊢ comap abs atTop = atBot ⊔ atTop [PROOFSTEP] refine' le_antisymm (((atTop_basis.comap _).le_basis_iff (atBot_basis.sup atTop_basis)).2 _) (sup_le tendsto_abs_atBot_atTop.le_comap tendsto_abs_atTop_atTop.le_comap) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedAddCommGroup α ⊢ ∀ (i' : α × α), True ∧ True → ∃ i, True ∧ abs ⁻¹' Ici i ⊆ Iic i'.fst ∪ Ici i'.snd [PROOFSTEP] rintro ⟨a, b⟩ - [GOAL] case mk ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedAddCommGroup α a b : α ⊢ ∃ i, True ∧ abs ⁻¹' Ici i ⊆ Iic (a, b).fst ∪ Ici (a, b).snd [PROOFSTEP] refine' ⟨max (-a) b, trivial, fun x hx => _⟩ [GOAL] case mk ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedAddCommGroup α a b x : α hx : x ∈ abs ⁻¹' Ici (max (-a) b) ⊢ x ∈ Iic (a, b).fst ∪ Ici (a, b).snd [PROOFSTEP] rw [mem_preimage, mem_Ici, le_abs', max_le_iff, ← min_neg_neg, le_min_iff, neg_neg] at hx [GOAL] case mk ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedAddCommGroup α a b x : α hx : x ≤ a ∧ x ≤ -b ∨ -a ≤ x ∧ b ≤ x ⊢ x ∈ Iic (a, b).fst ∪ Ici (a, b).snd [PROOFSTEP] exact hx.imp And.left And.right [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemiring α l : Filter β f : β → α n : ℕ h : Tendsto (fun x => x ^ n) atTop atTop hn : n = 0 ⊢ False [PROOFSTEP] simp only [hn, pow_zero, not_tendsto_const_atTop] at h [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedRing α ⊢ ¬Tendsto (fun x => x ^ 0) atTop atBot [PROOFSTEP] simp [not_tendsto_const_atBot] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ hr : 0 < r h : Tendsto f l atTop ⊢ Tendsto (fun x => r⁻¹ * (r * f x)) l atTop [PROOFSTEP] simpa only [inv_mul_cancel_left₀ hr.ne'] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ hr : 0 < r ⊢ Tendsto (fun x => f x * r) l atTop ↔ Tendsto f l atTop [PROOFSTEP] simpa only [mul_comm] using tendsto_const_mul_atTop_of_pos hr [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ inst✝ : NeBot l h : Tendsto f l atTop ⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r [PROOFSTEP] refine' ⟨fun hrf => not_le.mp fun hr => _, fun hr => (tendsto_const_mul_atTop_of_pos hr).mpr h⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ inst✝ : NeBot l h : Tendsto f l atTop hrf : Tendsto (fun x => r * f x) l atTop hr : r ≤ 0 ⊢ False [PROOFSTEP] rcases((h.eventually_ge_atTop 0).and (hrf.eventually_gt_atTop 0)).exists with ⟨x, hx, hrx⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ inst✝ : NeBot l h : Tendsto f l atTop hrf : Tendsto (fun x => r * f x) l atTop hr : r ≤ 0 x : β hx : 0 ≤ f x hrx : 0 < r * f x ⊢ False [PROOFSTEP] exact (mul_nonpos_of_nonpos_of_nonneg hr hx).not_lt hrx [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ inst✝ : NeBot l h : Tendsto f l atTop ⊢ Tendsto (fun x => f x * r) l atTop ↔ 0 < r [PROOFSTEP] simp only [mul_comm _ r, tendsto_const_mul_atTop_iff_pos h] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x / r) l atTop [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.atTop_mul_const (inv_pos.2 hr) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ ⊢ Tendsto (fun x => c * x ^ n) atTop atTop ↔ n ≠ 0 ∧ 0 < c [PROOFSTEP] refine' ⟨fun h => ⟨_, _⟩, fun h => tendsto_const_mul_pow_atTop h.1 h.2⟩ [GOAL] case refine'_1 ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ h : Tendsto (fun x => c * x ^ n) atTop atTop ⊢ n ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case refine'_1 ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α h : Tendsto (fun x => c * x ^ 0) atTop atTop ⊢ False [PROOFSTEP] simp only [pow_zero, not_tendsto_const_atTop] at h [GOAL] case refine'_2 ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ h : Tendsto (fun x => c * x ^ n) atTop atTop ⊢ 0 < c [PROOFSTEP] rcases((h.eventually_gt_atTop 0).and (eventually_ge_atTop 0)).exists with ⟨k, hck, hk⟩ [GOAL] case refine'_2.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedSemifield α l : Filter β f : β → α r c : α n : ℕ h : Tendsto (fun x => c * x ^ n) atTop atTop k : α hck : 0 < c * k ^ n hk : 0 ≤ k ⊢ 0 < c [PROOFSTEP] exact pos_of_mul_pos_left hck (pow_nonneg hk _) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : 0 < r ⊢ Tendsto (fun x => r * f x) l atBot ↔ Tendsto f l atBot [PROOFSTEP] simpa only [← mul_neg, ← tendsto_neg_atTop_iff] using tendsto_const_mul_atTop_of_pos hr [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : 0 < r ⊢ Tendsto (fun x => f x * r) l atBot ↔ Tendsto f l atBot [PROOFSTEP] simpa only [mul_comm] using tendsto_const_mul_atBot_of_pos hr [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : r < 0 ⊢ Tendsto (fun x => r * f x) l atTop ↔ Tendsto f l atBot [PROOFSTEP] simpa only [neg_mul, tendsto_neg_atBot_iff] using tendsto_const_mul_atBot_of_pos (neg_pos.2 hr) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : r < 0 ⊢ Tendsto (fun x => f x * r) l atTop ↔ Tendsto f l atBot [PROOFSTEP] simpa only [mul_comm] using tendsto_const_mul_atTop_of_neg hr [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : r < 0 ⊢ Tendsto (fun x => r * f x) l atBot ↔ Tendsto f l atTop [PROOFSTEP] simpa only [neg_mul, tendsto_neg_atTop_iff] using tendsto_const_mul_atTop_of_pos (neg_pos.2 hr) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : r < 0 ⊢ Tendsto (fun x => f x * r) l atBot ↔ Tendsto f l atTop [PROOFSTEP] simpa only [mul_comm] using tendsto_const_mul_atBot_of_neg hr [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l ⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot [PROOFSTEP] rcases lt_trichotomy r 0 with (hr | rfl | hr) [GOAL] case inl ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l hr : r < 0 ⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot [PROOFSTEP] simp [hr, hr.not_lt, tendsto_const_mul_atTop_of_neg] [GOAL] case inr.inl ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α inst✝ : NeBot l ⊢ Tendsto (fun x => 0 * f x) l atTop ↔ 0 < 0 ∧ Tendsto f l atTop ∨ 0 < 0 ∧ Tendsto f l atBot [PROOFSTEP] simp [not_tendsto_const_atTop] [GOAL] case inr.inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l hr : 0 < r ⊢ Tendsto (fun x => r * f x) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot [PROOFSTEP] simp [hr, hr.not_lt, tendsto_const_mul_atTop_of_pos] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l ⊢ Tendsto (fun x => f x * r) l atTop ↔ 0 < r ∧ Tendsto f l atTop ∨ r < 0 ∧ Tendsto f l atBot [PROOFSTEP] simp only [mul_comm _ r, tendsto_const_mul_atTop_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l ⊢ Tendsto (fun x => r * f x) l atBot ↔ 0 < r ∧ Tendsto f l atBot ∨ r < 0 ∧ Tendsto f l atTop [PROOFSTEP] simp only [← tendsto_neg_atTop_iff, ← mul_neg, tendsto_const_mul_atTop_iff, neg_neg] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l ⊢ Tendsto (fun x => f x * r) l atBot ↔ 0 < r ∧ Tendsto f l atBot ∨ r < 0 ∧ Tendsto f l atTop [PROOFSTEP] simp only [mul_comm _ r, tendsto_const_mul_atBot_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l h : Tendsto f l atBot ⊢ Tendsto (fun x => r * f x) l atTop ↔ r < 0 [PROOFSTEP] simp [tendsto_const_mul_atTop_iff, h, h.not_tendsto disjoint_atBot_atTop] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l h : Tendsto f l atBot ⊢ Tendsto (fun x => f x * r) l atTop ↔ r < 0 [PROOFSTEP] simp only [mul_comm _ r, tendsto_const_mul_atTop_iff_neg h] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l h : Tendsto f l atBot ⊢ Tendsto (fun x => r * f x) l atBot ↔ 0 < r [PROOFSTEP] simp [tendsto_const_mul_atBot_iff, h, h.not_tendsto disjoint_atBot_atTop] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l h : Tendsto f l atBot ⊢ Tendsto (fun x => f x * r) l atBot ↔ 0 < r [PROOFSTEP] simp only [mul_comm _ r, tendsto_const_mul_atBot_iff_pos h] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l h : Tendsto f l atTop ⊢ Tendsto (fun x => r * f x) l atBot ↔ r < 0 [PROOFSTEP] simp [tendsto_const_mul_atBot_iff, h, h.not_tendsto disjoint_atTop_atBot] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : LinearOrderedField α l : Filter β f : β → α r : α inst✝ : NeBot l h : Tendsto f l atTop ⊢ Tendsto (fun x => f x * r) l atBot ↔ r < 0 [PROOFSTEP] simp only [mul_comm _ r, tendsto_const_mul_atBot_iff_neg h] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r : α hr : 0 < r hf : Tendsto f l atBot ⊢ Tendsto (fun x => f x / r) l atBot [PROOFSTEP] simpa only [div_eq_mul_inv] using hf.atBot_mul_const (inv_pos.2 hr) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : LinearOrderedField α l : Filter β f : β → α r c : α n : ℕ ⊢ Tendsto (fun x => c * x ^ n) atTop atBot ↔ n ≠ 0 ∧ c < 0 [PROOFSTEP] simp only [← tendsto_neg_atTop_iff, ← neg_mul, tendsto_const_mul_pow_atTop_iff, neg_pos] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Nonempty α inst✝ : SemilatticeSup α f : α → β l : Filter β ⊢ Tendsto f atTop l ↔ ∀ (s : Set β), s ∈ l → ∃ a, ∀ (b : α), b ≥ a → f b ∈ s [PROOFSTEP] simp only [tendsto_def, mem_atTop_sets] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Nonempty α inst✝ : SemilatticeSup α f : α → β l : Filter β ⊢ (∀ (s : Set β), s ∈ l → ∃ a, ∀ (b : α), b ≥ a → b ∈ f ⁻¹' s) ↔ ∀ (s : Set β), s ∈ l → ∃ a, ∀ (b : α), b ≥ a → f b ∈ s [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → α s : Set α ⊢ Tendsto f atTop (𝓟 s) ↔ ∃ N, ∀ (n : β), n ≥ N → f n ∈ s [PROOFSTEP] rw [tendsto_iff_comap, comap_principal, le_principal_iff, mem_atTop_sets] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → α s : Set α ⊢ (∃ a, ∀ (b : β), b ≥ a → b ∈ f ⁻¹' s) ↔ ∃ N, ∀ (n : β), n ≥ N → f n ∈ s [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder β inst✝ : Preorder γ f : α → β e : β → γ l : Filter α hm : ∀ (b₁ b₂ : β), e b₁ ≤ e b₂ ↔ b₁ ≤ b₂ hu : ∀ (c : γ), ∃ b, c ≤ e b ⊢ Tendsto (e ∘ f) l atTop ↔ Tendsto f l atTop [PROOFSTEP] rw [← comap_embedding_atTop hm hu, tendsto_comap_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ⊢ atTop = ⨅ (x : α), 𝓟 (Ici {x}) [PROOFSTEP] refine' le_antisymm (le_iInf fun i => le_principal_iff.2 <| mem_atTop { i }) _ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ⊢ ⨅ (x : α), 𝓟 (Ici {x}) ≤ atTop [PROOFSTEP] refine' le_iInf fun s => le_principal_iff.2 <| mem_iInf_of_iInter s.finite_toSet (fun i => mem_principal_self _) _ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s : Finset α ⊢ ⋂ (i : ↑↑s), Ici {↑i} ⊆ Ici s [PROOFSTEP] simp only [subset_def, mem_iInter, SetCoe.forall, mem_Ici, Finset.le_iff_subset, Finset.mem_singleton, Finset.subset_iff, forall_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 s : Finset α ⊢ ∀ (x : Finset α), (∀ (x_1 : α), x_1 ∈ ↑s → x_1 ∈ x) → ∀ ⦃x_1 : α⦄, x_1 ∈ s → x_1 ∈ x [PROOFSTEP] exact fun t => id [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder β f : β → Finset α h : Monotone f h' : ∀ (x : α), ∃ n, x ∈ f n ⊢ Tendsto f atTop atTop [PROOFSTEP] simp only [atTop_finset_eq_iInf, tendsto_iInf, tendsto_principal] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder β f : β → Finset α h : Monotone f h' : ∀ (x : α), ∃ n, x ∈ f n ⊢ ∀ (i : α), ∀ᶠ (a : β) in atTop, f a ∈ Ici {i} [PROOFSTEP] intro a [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder β f : β → Finset α h : Monotone f h' : ∀ (x : α), ∃ n, x ∈ f n a : α ⊢ ∀ᶠ (a_1 : β) in atTop, f a_1 ∈ Ici {a} [PROOFSTEP] rcases h' a with ⟨b, hb⟩ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : Preorder β f : β → Finset α h : Monotone f h' : ∀ (x : α), ∃ n, x ∈ f n a : α b : β hb : a ∈ f b ⊢ ∀ᶠ (a_1 : β) in atTop, f a_1 ∈ Ici {a} [PROOFSTEP] exact (eventually_ge_atTop b).mono fun b' hb' => (Finset.singleton_subset_iff.2 hb).trans (h hb') [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : DecidableEq β i : β → γ j : γ → β h : Function.LeftInverse j i a : β ⊢ a ∈ Finset.image j {i a} [PROOFSTEP] simp only [Finset.image_singleton, h a, Finset.mem_singleton] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β ⊢ atTop ×ˢ atTop = atTop [PROOFSTEP] cases isEmpty_or_nonempty α [GOAL] case inl ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β h✝ : IsEmpty α ⊢ atTop ×ˢ atTop = atTop case inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β h✝ : Nonempty α ⊢ atTop ×ˢ atTop = atTop [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β h✝ : Nonempty α ⊢ atTop ×ˢ atTop = atTop [PROOFSTEP] cases isEmpty_or_nonempty β [GOAL] case inr.inl ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β h✝¹ : Nonempty α h✝ : IsEmpty β ⊢ atTop ×ˢ atTop = atTop case inr.inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β h✝¹ : Nonempty α h✝ : Nonempty β ⊢ atTop ×ˢ atTop = atTop [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case inr.inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β h✝¹ : Nonempty α h✝ : Nonempty β ⊢ atTop ×ˢ atTop = atTop [PROOFSTEP] simpa [atTop, prod_iInf_left, prod_iInf_right, iInf_prod] using iInf_comm [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 α₁ : Type u_6 α₂ : Type u_7 β₁ : Type u_8 β₂ : Type u_9 inst✝¹ : Preorder β₁ inst✝ : Preorder β₂ u₁ : β₁ → α₁ u₂ : β₂ → α₂ ⊢ map u₁ atTop ×ˢ map u₂ atTop = map (Prod.map u₁ u₂) atTop [PROOFSTEP] rw [prod_map_map_eq, prod_atTop_atTop_eq, Prod.map_def] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α ⊢ Tendsto (fun a => (a, a)) atBot atBot [PROOFSTEP] rw [← prod_atBot_atBot_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α ⊢ Tendsto (fun a => (a, a)) atBot (atBot ×ˢ atBot) [PROOFSTEP] exact tendsto_id.prod_mk tendsto_id [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α ⊢ Tendsto (fun a => (a, a)) atTop atTop [PROOFSTEP] rw [← prod_atTop_atTop_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α ⊢ Tendsto (fun a => (a, a)) atTop (atTop ×ˢ atTop) [PROOFSTEP] exact tendsto_id.prod_mk tendsto_id [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf γ F : Filter α G : Filter β f : α → γ g : β → γ hf : Tendsto f F atBot hg : Tendsto g G atBot ⊢ Tendsto (Prod.map f g) (F ×ˢ G) atBot [PROOFSTEP] rw [← prod_atBot_atBot_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf γ F : Filter α G : Filter β f : α → γ g : β → γ hf : Tendsto f F atBot hg : Tendsto g G atBot ⊢ Tendsto (Prod.map f g) (F ×ˢ G) (atBot ×ˢ atBot) [PROOFSTEP] exact hf.prod_map hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup γ F : Filter α G : Filter β f : α → γ g : β → γ hf : Tendsto f F atTop hg : Tendsto g G atTop ⊢ Tendsto (Prod.map f g) (F ×ˢ G) atTop [PROOFSTEP] rw [← prod_atTop_atTop_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup γ F : Filter α G : Filter β f : α → γ g : β → γ hf : Tendsto f F atTop hg : Tendsto g G atTop ⊢ Tendsto (Prod.map f g) (F ×ˢ G) (atTop ×ˢ atTop) [PROOFSTEP] exact hf.prod_map hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf γ f g : α → γ hf : Tendsto f atBot atBot hg : Tendsto g atBot atBot ⊢ Tendsto (Prod.map f g) atBot atBot [PROOFSTEP] rw [← prod_atBot_atBot_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf γ f g : α → γ hf : Tendsto f atBot atBot hg : Tendsto g atBot atBot ⊢ Tendsto (Prod.map f g) (atBot ×ˢ atBot) atBot [PROOFSTEP] exact hf.prod_map_prod_atBot hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup γ f g : α → γ hf : Tendsto f atTop atTop hg : Tendsto g atTop atTop ⊢ Tendsto (Prod.map f g) atTop atTop [PROOFSTEP] rw [← prod_atTop_atTop_eq] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup γ f g : α → γ hf : Tendsto f atTop atTop hg : Tendsto g atTop atTop ⊢ Tendsto (Prod.map f g) (atTop ×ˢ atTop) atTop [PROOFSTEP] exact hf.prod_map_prod_atTop hg [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : Nonempty α p : α × α → Prop ⊢ (∀ᶠ (x : α × α) in atBot, p x) ↔ ∃ a, ∀ (k l : α), k ≤ a → l ≤ a → p (k, l) [PROOFSTEP] simp [← prod_atBot_atBot_eq, (@atBot_basis α _ _).prod_self.eventually_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : Nonempty α p : α × α → Prop ⊢ (∀ᶠ (x : α × α) in atBot, p x) ↔ ∃ a, ∀ (k : α), k ≤ a → ∀ (l : α), l ≤ a → p (k, l) [PROOFSTEP] simp only [eventually_atBot_prod_self, ball_cond_comm] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : Nonempty α p : α × α → Prop ⊢ (∀ᶠ (x : α × α) in atTop, p x) ↔ ∃ a, ∀ (k : α), k ≥ a → ∀ (l : α), l ≥ a → p (k, l) [PROOFSTEP] simp only [eventually_atTop_prod_self, ball_cond_comm] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β p : α × β → Prop hp : ∀ᶠ (x : α × β) in atTop, p x ⊢ ∀ᶠ (k : α) in atTop, ∀ᶠ (l : β) in atTop, p (k, l) [PROOFSTEP] rw [← prod_atTop_atTop_eq] at hp [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β p : α × β → Prop hp : ∀ᶠ (x : α × β) in atTop ×ˢ atTop, p x ⊢ ∀ᶠ (k : α) in atTop, ∀ᶠ (l : β) in atTop, p (k, l) [PROOFSTEP] exact hp.curry [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β g : β → α b' : β hf : Monotone f gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b) hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b) ⊢ map f atTop = atTop [PROOFSTEP] refine' le_antisymm (hf.tendsto_atTop_atTop fun b => ⟨g (b ⊔ b'), le_sup_left.trans <| hgi _ le_sup_right⟩) _ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β g : β → α b' : β hf : Monotone f gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b) hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b) ⊢ atTop ≤ map f atTop [PROOFSTEP] rw [@map_atTop_eq _ _ ⟨g b'⟩] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β g : β → α b' : β hf : Monotone f gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b) hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b) ⊢ atTop ≤ ⨅ (a : α), 𝓟 (f '' {a' | a ≤ a'}) [PROOFSTEP] refine' le_iInf fun a => iInf_le_of_le (f a ⊔ b') <| principal_mono.2 fun b hb => _ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β g : β → α b' : β hf : Monotone f gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b) hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b) a : α b : β hb : b ∈ Ici (f a ⊔ b') ⊢ b ∈ f '' {a' | a ≤ a'} [PROOFSTEP] rw [mem_Ici, sup_le_iff] at hb [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β g : β → α b' : β hf : Monotone f gc : ∀ (a : α) (b : β), b ≥ b' → (f a ≤ b ↔ a ≤ g b) hgi : ∀ (b : β), b ≥ b' → b ≤ f (g b) a : α b : β hb : f a ≤ b ∧ b' ≤ b ⊢ b ∈ f '' {a' | a ≤ a'} [PROOFSTEP] exact ⟨g b, (gc _ _ hb.2).1 hb.1, le_antisymm ((gc _ _ hb.2).2 le_rfl) (hgi _ hb.2)⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s ⊢ map Subtype.val atTop = atTop [PROOFSTEP] haveI : Nonempty s := ⟨⟨a, h le_rfl⟩⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this : Nonempty ↑s ⊢ map Subtype.val atTop = atTop [PROOFSTEP] have : Directed (· ≥ ·) fun x : s => 𝓟 (Ici x) := by intro x y use⟨x ⊔ y ⊔ a, h le_sup_right⟩ simp only [ge_iff_le, principal_mono, Ici_subset_Ici, ← Subtype.coe_le_coe, Subtype.coe_mk] exact ⟨le_sup_left.trans le_sup_left, le_sup_right.trans le_sup_left⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this : Nonempty ↑s ⊢ Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) [PROOFSTEP] intro x y [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this : Nonempty ↑s x y : ↑s ⊢ ∃ z, (fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) x) ((fun x => 𝓟 (Ici x)) z) ∧ (fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) y) ((fun x => 𝓟 (Ici x)) z) [PROOFSTEP] use⟨x ⊔ y ⊔ a, h le_sup_right⟩ [GOAL] case h ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this : Nonempty ↑s x y : ↑s ⊢ (fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) x) ((fun x => 𝓟 (Ici x)) { val := ↑x ⊔ ↑y ⊔ a, property := (_ : ↑x ⊔ ↑y ⊔ a ∈ s) }) ∧ (fun x x_1 => x ≥ x_1) ((fun x => 𝓟 (Ici x)) y) ((fun x => 𝓟 (Ici x)) { val := ↑x ⊔ ↑y ⊔ a, property := (_ : ↑x ⊔ ↑y ⊔ a ∈ s) }) [PROOFSTEP] simp only [ge_iff_le, principal_mono, Ici_subset_Ici, ← Subtype.coe_le_coe, Subtype.coe_mk] [GOAL] case h ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this : Nonempty ↑s x y : ↑s ⊢ ↑x ≤ ↑x ⊔ ↑y ⊔ a ∧ ↑y ≤ ↑x ⊔ ↑y ⊔ a [PROOFSTEP] exact ⟨le_sup_left.trans le_sup_left, le_sup_right.trans le_sup_left⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) ⊢ map Subtype.val atTop = atTop [PROOFSTEP] simp only [le_antisymm_iff, atTop, le_iInf_iff, le_principal_iff, mem_map, mem_setOf_eq, map_iInf_eq this, map_principal] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) ⊢ (∀ (i : α), Ici i ∈ ⨅ (i : ↑s), 𝓟 (Subtype.val '' Ici i)) ∧ ∀ (i : ↑s), Subtype.val '' Ici i ∈ ⨅ (a : α), 𝓟 (Ici a) [PROOFSTEP] constructor [GOAL] case left ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) ⊢ ∀ (i : α), Ici i ∈ ⨅ (i : ↑s), 𝓟 (Subtype.val '' Ici i) [PROOFSTEP] intro x [GOAL] case left ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) x : α ⊢ Ici x ∈ ⨅ (i : ↑s), 𝓟 (Subtype.val '' Ici i) [PROOFSTEP] refine' mem_of_superset (mem_iInf_of_mem ⟨x ⊔ a, h le_sup_right⟩ (mem_principal_self _)) _ [GOAL] case left ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) x : α ⊢ Subtype.val '' Ici { val := x ⊔ a, property := (_ : x ⊔ a ∈ s) } ⊆ Ici x [PROOFSTEP] rintro _ ⟨y, hy, rfl⟩ [GOAL] case left.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) x : α y : ↑s hy : y ∈ Ici { val := x ⊔ a, property := (_ : x ⊔ a ∈ s) } ⊢ ↑y ∈ Ici x [PROOFSTEP] exact le_trans le_sup_left (Subtype.coe_le_coe.2 hy) [GOAL] case right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) ⊢ ∀ (i : ↑s), Subtype.val '' Ici i ∈ ⨅ (a : α), 𝓟 (Ici a) [PROOFSTEP] intro x [GOAL] case right ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) x : ↑s ⊢ Subtype.val '' Ici x ∈ ⨅ (a : α), 𝓟 (Ici a) [PROOFSTEP] filter_upwards [mem_atTop (↑x ⊔ a)] with b hb [GOAL] case h ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α s : Set α h : Ici a ⊆ s this✝ : Nonempty ↑s this : Directed (fun x x_1 => x ≥ x_1) fun x => 𝓟 (Ici x) x : ↑s b : α hb : ↑x ⊔ a ≤ b ⊢ b ∈ Subtype.val '' Ici x [PROOFSTEP] exact ⟨⟨b, h <| le_sup_right.trans hb⟩, Subtype.coe_le_coe.1 (le_sup_left.trans hb), rfl⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α ⊢ atTop = comap Subtype.val atTop [PROOFSTEP] rcases isEmpty_or_nonempty (Ioi a) with h | ⟨⟨b, hb⟩⟩ [GOAL] case inl ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α h : IsEmpty ↑(Ioi a) ⊢ atTop = comap Subtype.val atTop [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case inr.intro.mk ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a b : α hb : b ∈ Ioi a ⊢ atTop = comap Subtype.val atTop [PROOFSTEP] rw [← map_val_atTop_of_Ici_subset (Ici_subset_Ioi.2 hb), comap_map Subtype.coe_injective] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α ⊢ atTop = comap Subtype.val atTop [PROOFSTEP] rw [← map_val_Ici_atTop a, comap_map Subtype.coe_injective] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α f : β → ↑(Ioi a) l : Filter β ⊢ Tendsto f l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop [PROOFSTEP] rw [atTop_Ioi_eq, tendsto_comap_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α f : β → ↑(Ioi a) l : Filter β ⊢ Tendsto (Subtype.val ∘ f) l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α a : α f : β → ↑(Iio a) l : Filter β ⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot [PROOFSTEP] rw [atBot_Iio_eq, tendsto_comap_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α a : α f : β → ↑(Iio a) l : Filter β ⊢ Tendsto (Subtype.val ∘ f) l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α f : β → ↑(Ici a) l : Filter β ⊢ Tendsto f l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop [PROOFSTEP] rw [atTop_Ici_eq, tendsto_comap_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α f : β → ↑(Ici a) l : Filter β ⊢ Tendsto (Subtype.val ∘ f) l atTop ↔ Tendsto (fun x => ↑(f x)) l atTop [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α a : α f : β → ↑(Iic a) l : Filter β ⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot [PROOFSTEP] rw [atBot_Iic_eq, tendsto_comap_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α a : α f : β → ↑(Iic a) l : Filter β ⊢ Tendsto (Subtype.val ∘ f) l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : NoMaxOrder α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l [PROOFSTEP] rw [← map_val_Ioi_atTop a, tendsto_map'_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeSup α inst✝ : NoMaxOrder α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l [PROOFSTEP] rw [← map_val_Ici_atTop a, tendsto_map'_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeSup α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : NoMinOrder α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto f atBot l [PROOFSTEP] rw [← map_val_Iio_atBot a, tendsto_map'_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : NoMinOrder α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto (f ∘ Subtype.val) atBot l [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto f atBot l [PROOFSTEP] rw [← map_val_Iic_atBot a, tendsto_map'_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : SemilatticeInf α a : α f : α → β l : Filter β ⊢ Tendsto (fun x => f ↑x) atBot l ↔ Tendsto (f ∘ Subtype.val) atBot l [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 k a : ℕ h : a ≥ k ⊢ a ≤ (fun a => a - k) a + k [PROOFSTEP] rw [tsub_add_cancel_of_le h] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 k b : ℕ x✝ : b ≥ 0 ⊢ b ≤ (fun a => a + k) b - k [PROOFSTEP] rw [add_tsub_cancel_right] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : ℕ → α l : Filter α k : ℕ ⊢ Tendsto (f ∘ fun n => n + k) atTop l ↔ Tendsto f atTop l [PROOFSTEP] rw [← tendsto_map'_iff, map_add_atTop_eq_nat] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 k : ℕ hk : 0 < k a b : ℕ x✝ : b ≥ 1 ⊢ a / k ≤ b ↔ a ≤ (fun b => b * k + (k - 1)) b [PROOFSTEP] simp only [← Nat.lt_succ_iff, Nat.div_lt_iff_lt_mul hk, Nat.succ_eq_add_one, add_assoc, tsub_add_cancel_of_le (Nat.one_le_iff_ne_zero.2 hk.ne'), add_mul, one_mul] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 k : ℕ hk : 0 < k b : ℕ x✝ : b ≥ 1 ⊢ b = b * k / k [PROOFSTEP] rw [Nat.mul_div_cancel b hk] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder ι inst✝ : LinearOrder α u : ι → α h : Monotone u H : ¬BddAbove (range u) ⊢ Tendsto u atTop atTop [PROOFSTEP] apply h.tendsto_atTop_atTop [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder ι inst✝ : LinearOrder α u : ι → α h : Monotone u H : ¬BddAbove (range u) ⊢ ∀ (b : α), ∃ a, b ≤ u a [PROOFSTEP] intro b [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder ι inst✝ : LinearOrder α u : ι → α h : Monotone u H : ¬BddAbove (range u) b : α ⊢ ∃ a, b ≤ u a [PROOFSTEP] rcases not_bddAbove_iff.1 H b with ⟨_, ⟨N, rfl⟩, hN⟩ [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : Preorder ι inst✝ : LinearOrder α u : ι → α h : Monotone u H : ¬BddAbove (range u) b : α N : ι hN : b < u N ⊢ ∃ a, b ≤ u a [PROOFSTEP] exact ⟨N, le_of_lt hN⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝³ : Nonempty α inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β f : α → β h : Tendsto f atTop atTop ⊢ ¬BddAbove (range f) [PROOFSTEP] rintro ⟨M, hM⟩ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝³ : Nonempty α inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β f : α → β h : Tendsto f atTop atTop M : β hM : M ∈ upperBounds (range f) ⊢ False [PROOFSTEP] cases' mem_atTop_sets.mp (h <| Ioi_mem_atTop M) with a ha [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝³ : Nonempty α inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β f : α → β h : Tendsto f atTop atTop M : β hM : M ∈ upperBounds (range f) a : α ha : ∀ (b : α), b ≥ a → b ∈ f ⁻¹' Ioi M ⊢ False [PROOFSTEP] apply lt_irrefl M [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝³ : Nonempty α inst✝² : SemilatticeSup α inst✝¹ : Preorder β inst✝ : NoMaxOrder β f : α → β h : Tendsto f atTop atTop M : β hM : M ∈ upperBounds (range f) a : α ha : ∀ (b : α), b ≥ a → b ∈ f ⁻¹' Ioi M ⊢ M < M [PROOFSTEP] calc M < f a := ha a le_rfl _ ≤ M := hM (Set.mem_range_self a) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α f : β → α g : γ → α h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b ⊢ map (fun s => ∏ b in s, f b) atTop ≤ map (fun s => ∏ x in s, g x) atTop [PROOFSTEP] classical refine' ((atTop_basis.map _).le_basis_iff (atTop_basis.map _)).2 fun b _ => _ let ⟨v, hv⟩ := h_eq b refine ⟨v, trivial, ?_⟩ simpa [image_subset_iff] using hv [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α f : β → α g : γ → α h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b ⊢ map (fun s => ∏ b in s, f b) atTop ≤ map (fun s => ∏ x in s, g x) atTop [PROOFSTEP] refine' ((atTop_basis.map _).le_basis_iff (atTop_basis.map _)).2 fun b _ => _ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α f : β → α g : γ → α h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b b : Finset γ x✝ : True ⊢ ∃ i, True ∧ (fun s => ∏ b in s, f b) '' Ici i ⊆ (fun s => ∏ x in s, g x) '' Ici b [PROOFSTEP] let ⟨v, hv⟩ := h_eq b [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α f : β → α g : γ → α h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b b : Finset γ x✝ : True v : Finset β hv : ∀ (v' : Finset β), v ⊆ v' → ∃ u', b ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b ⊢ ∃ i, True ∧ (fun s => ∏ b in s, f b) '' Ici i ⊆ (fun s => ∏ x in s, g x) '' Ici b [PROOFSTEP] refine ⟨v, trivial, ?_⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α f : β → α g : γ → α h_eq : ∀ (u : Finset γ), ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', u ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b b : Finset γ x✝ : True v : Finset β hv : ∀ (v' : Finset β), v ⊆ v' → ∃ u', b ⊆ u' ∧ ∏ x in u', g x = ∏ b in v', f b ⊢ (fun s => ∏ b in s, f b) '' Ici v ⊆ (fun s => ∏ x in s, g x) '' Ici b [PROOFSTEP] simpa [image_subset_iff] using hv [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n ⊢ ∃ φ, StrictMono φ ∧ (∀ ⦃m n : ℕ⦄, m < n → r (φ m) (φ n)) ∧ HasAntitoneBasis f (s ∘ φ) [PROOFSTEP] suffices : ∃ φ : ℕ → ℕ, StrictMono φ ∧ ∀ m n, m < n → r (φ m) (φ n) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n this : ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n) ⊢ ∃ φ, StrictMono φ ∧ (∀ ⦃m n : ℕ⦄, m < n → r (φ m) (φ n)) ∧ HasAntitoneBasis f (s ∘ φ) [PROOFSTEP] rcases this with ⟨φ, hφ, hrφ⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n φ : ℕ → ℕ hφ : StrictMono φ hrφ : ∀ (m n : ℕ), m < n → r (φ m) (φ n) ⊢ ∃ φ, StrictMono φ ∧ (∀ ⦃m n : ℕ⦄, m < n → r (φ m) (φ n)) ∧ HasAntitoneBasis f (s ∘ φ) [PROOFSTEP] exact ⟨φ, hφ, hrφ, hs.comp_strictMono hφ⟩ [GOAL] case this ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n ⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n) [PROOFSTEP] have : ∀ t : Set ℕ, t.Finite → ∀ᶠ n in atTop, ∀ m ∈ t, m < n ∧ r m n := fun t ht => (eventually_all_finite ht).2 fun m _ => (eventually_gt_atTop m).and (hr _) [GOAL] case this ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n this : ∀ (t : Set ℕ), Set.Finite t → ∀ᶠ (n : ℕ) in atTop, ∀ (m : ℕ), m ∈ t → m < n ∧ r m n ⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n) [PROOFSTEP] rcases seq_of_forall_finite_exists fun t ht => (this t ht).exists with ⟨φ, hφ⟩ [GOAL] case this.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n this : ∀ (t : Set ℕ), Set.Finite t → ∀ᶠ (n : ℕ) in atTop, ∀ (m : ℕ), m ∈ t → m < n ∧ r m n φ : ℕ → ℕ hφ : ∀ (n m : ℕ), m ∈ φ '' Iio n → m < φ n ∧ r m (φ n) ⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n) [PROOFSTEP] simp only [ball_image_iff, forall_and, mem_Iio] at hφ [GOAL] case this.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α s : ℕ → Set α hs : HasAntitoneBasis f s r : ℕ → ℕ → Prop hr : ∀ (m : ℕ), ∀ᶠ (n : ℕ) in atTop, r m n this : ∀ (t : Set ℕ), Set.Finite t → ∀ᶠ (n : ℕ) in atTop, ∀ (m : ℕ), m ∈ t → m < n ∧ r m n φ : ℕ → ℕ hφ : (∀ (x x_1 : ℕ), x_1 < x → φ x_1 < φ x) ∧ ∀ (x x_1 : ℕ), x_1 < x → r (φ x_1) (φ x) ⊢ ∃ φ, StrictMono φ ∧ ∀ (m n : ℕ), m < n → r (φ m) (φ n) [PROOFSTEP] exact ⟨φ, forall_swap.2 hφ.1, forall_swap.2 hφ.2⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : NeBot f ⊢ ∃ x, Tendsto x atTop f [PROOFSTEP] obtain ⟨B, h⟩ := f.exists_antitone_basis [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : NeBot f B : ℕ → Set α h : HasAntitoneBasis f B ⊢ ∃ x, Tendsto x atTop f [PROOFSTEP] choose x hx using fun n => Filter.nonempty_of_mem (h.mem n) [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝¹ : IsCountablyGenerated f inst✝ : NeBot f B : ℕ → Set α h : HasAntitoneBasis f B x : ℕ → α hx : ∀ (n : ℕ), x n ∈ B n ⊢ ∃ x, Tendsto x atTop f [PROOFSTEP] exact ⟨x, h.tendsto hx⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop [PROOFSTEP] haveI h_ne_bot : (atTop : Filter α).NeBot := atTop_neBot [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop [PROOFSTEP] obtain ⟨ys, h⟩ := exists_seq_tendsto (atTop : Filter α) [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop [PROOFSTEP] let xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) Finset.nonempty_range_succ ys [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop [PROOFSTEP] have h_mono : Monotone xs := by intro i j hij rw [Finset.sup'_le_iff] intro k hk refine' Finset.le_sup'_of_le _ _ le_rfl rw [Finset.mem_range] at hk ⊢ exact hk.trans_le (add_le_add_right hij _) [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys ⊢ Monotone xs [PROOFSTEP] intro i j hij [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys i j : ℕ hij : i ≤ j ⊢ xs i ≤ xs j [PROOFSTEP] rw [Finset.sup'_le_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys i j : ℕ hij : i ≤ j ⊢ ∀ (b : ℕ), b ∈ Finset.range (i + 1) → ys b ≤ xs j [PROOFSTEP] intro k hk [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys i j : ℕ hij : i ≤ j k : ℕ hk : k ∈ Finset.range (i + 1) ⊢ ys k ≤ xs j [PROOFSTEP] refine' Finset.le_sup'_of_le _ _ le_rfl [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys i j : ℕ hij : i ≤ j k : ℕ hk : k ∈ Finset.range (i + 1) ⊢ k ∈ Finset.range (j + 1) [PROOFSTEP] rw [Finset.mem_range] at hk ⊢ [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys i j : ℕ hij : i ≤ j k : ℕ hk : k < i + 1 ⊢ k < j + 1 [PROOFSTEP] exact hk.trans_le (add_le_add_right hij _) [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs ⊢ ∃ xs, Monotone xs ∧ Tendsto xs atTop atTop [PROOFSTEP] refine' ⟨xs, h_mono, _⟩ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs ⊢ Tendsto xs atTop atTop [PROOFSTEP] refine' tendsto_atTop_atTop_of_monotone h_mono _ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs ⊢ ∀ (b : α), ∃ a, b ≤ xs a [PROOFSTEP] have : ∀ a : α, ∃ n : ℕ, a ≤ ys n := by rw [tendsto_atTop_atTop] at h intro a obtain ⟨i, hi⟩ := h a exact ⟨i, hi i le_rfl⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs ⊢ ∀ (a : α), ∃ n, a ≤ ys n [PROOFSTEP] rw [tendsto_atTop_atTop] at h [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : ∀ (b : α), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ys a xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs ⊢ ∀ (a : α), ∃ n, a ≤ ys n [PROOFSTEP] intro a [GOAL] ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : ∀ (b : α), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ys a xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs a : α ⊢ ∃ n, a ≤ ys n [PROOFSTEP] obtain ⟨i, hi⟩ := h a [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : ∀ (b : α), ∃ i, ∀ (a : ℕ), i ≤ a → b ≤ ys a xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs a : α i : ℕ hi : ∀ (a_1 : ℕ), i ≤ a_1 → a ≤ ys a_1 ⊢ ∃ n, a ≤ ys n [PROOFSTEP] exact ⟨i, hi i le_rfl⟩ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs this : ∀ (a : α), ∃ n, a ≤ ys n ⊢ ∀ (b : α), ∃ a, b ≤ xs a [PROOFSTEP] intro a [GOAL] case intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs this : ∀ (a : α), ∃ n, a ≤ ys n a : α ⊢ ∃ a_1, a ≤ xs a_1 [PROOFSTEP] obtain ⟨i, hi⟩ := this a [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs this : ∀ (a : α), ∃ n, a ≤ ys n a : α i : ℕ hi : a ≤ ys i ⊢ ∃ a_1, a ≤ xs a_1 [PROOFSTEP] refine' ⟨i, hi.trans _⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs this : ∀ (a : α), ∃ n, a ≤ ys n a : α i : ℕ hi : a ≤ ys i ⊢ ys i ≤ xs i [PROOFSTEP] refine' Finset.le_sup'_of_le _ _ le_rfl [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : Nonempty α inst✝ : IsCountablyGenerated atTop h_ne_bot : NeBot atTop ys : ℕ → α h : Tendsto ys atTop atTop xs : ℕ → α := fun n => Finset.sup' (Finset.range (n + 1)) (_ : Finset.Nonempty (Finset.range (n + 1))) ys h_mono : Monotone xs this : ∀ (a : α), ∃ n, a ≤ ys n a : α i : ℕ hi : a ≤ ys i ⊢ i ∈ Finset.range (i + 1) [PROOFSTEP] rw [Finset.mem_range_succ_iff] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k ⊢ Tendsto f k l ↔ ∀ (x : ℕ → α), Tendsto x atTop k → Tendsto (f ∘ x) atTop l [PROOFSTEP] refine' ⟨fun h x hx => h.comp hx, fun H s hs => _⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k H : ∀ (x : ℕ → α), Tendsto x atTop k → Tendsto (f ∘ x) atTop l s : Set β hs : s ∈ l ⊢ s ∈ map f k [PROOFSTEP] contrapose! H [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k ⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l [PROOFSTEP] have : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) := by simpa [neBot_iff, inf_principal_eq_bot] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k ⊢ NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) [PROOFSTEP] simpa [neBot_iff, inf_principal_eq_bot] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) ⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l [PROOFSTEP] rcases(k ⊓ 𝓟 (f ⁻¹' sᶜ)).exists_seq_tendsto with ⟨x, hx⟩ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) x : ℕ → α hx : Tendsto x atTop (k ⊓ 𝓟 (f ⁻¹' sᶜ)) ⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l [PROOFSTEP] rw [tendsto_inf, tendsto_principal] at hx [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) x : ℕ → α hx : Tendsto x atTop k ∧ ∀ᶠ (a : ℕ) in atTop, x a ∈ f ⁻¹' sᶜ ⊢ ∃ x, Tendsto x atTop k ∧ ¬Tendsto (f ∘ x) atTop l [PROOFSTEP] refine' ⟨x, hx.1, fun h => _⟩ [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) x : ℕ → α hx : Tendsto x atTop k ∧ ∀ᶠ (a : ℕ) in atTop, x a ∈ f ⁻¹' sᶜ h : Tendsto (f ∘ x) atTop l ⊢ False [PROOFSTEP] rcases(hx.2.and (h hs)).exists with ⟨N, hnmem, hmem⟩ [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : α → β k : Filter α l : Filter β inst✝ : IsCountablyGenerated k s : Set β hs : s ∈ l H : ¬s ∈ map f k this : NeBot (k ⊓ 𝓟 (f ⁻¹' sᶜ)) x : ℕ → α hx : Tendsto x atTop k ∧ ∀ᶠ (a : ℕ) in atTop, x a ∈ f ⁻¹' sᶜ h : Tendsto (f ∘ x) atTop l N : ℕ hnmem : x N ∈ f ⁻¹' sᶜ hmem : (f ∘ x) N ∈ s ⊢ False [PROOFSTEP] exact hnmem hmem [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 x : ι → α f : Filter α l : Filter ι ⊢ ¬Tendsto x l f ↔ ∃ s, s ∈ f ∧ ∃ᶠ (n : ι) in l, ¬x n ∈ s [PROOFSTEP] simp only [tendsto_iff_forall_eventually_mem, not_forall, exists_prop, Filter.Frequently, not_not] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l ⊢ (∃ᶠ (n : ι) in l, p n) ↔ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] refine' ⟨fun h_freq => _, fun h_exists_freq => _⟩ [GOAL] case refine'_1 ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n ⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] have : NeBot (l ⊓ 𝓟 {x : ι | p x}) := by simpa [neBot_iff, inf_principal_eq_bot] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n ⊢ NeBot (l ⊓ 𝓟 {x | p x}) [PROOFSTEP] simpa [neBot_iff, inf_principal_eq_bot] [GOAL] case refine'_1 ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n this : NeBot (l ⊓ 𝓟 {x | p x}) ⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] obtain ⟨x, hx⟩ := exists_seq_tendsto (l ⊓ 𝓟 {x : ι | p x}) [GOAL] case refine'_1.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n this : NeBot (l ⊓ 𝓟 {x | p x}) x : ℕ → ι hx : Tendsto x atTop (l ⊓ 𝓟 {x | p x}) ⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] rw [tendsto_inf] at hx [GOAL] case refine'_1.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n this : NeBot (l ⊓ 𝓟 {x | p x}) x : ℕ → ι hx : Tendsto x atTop l ∧ Tendsto x atTop (𝓟 {x | p x}) ⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] cases' hx with hx_l hx_p [GOAL] case refine'_1.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n this : NeBot (l ⊓ 𝓟 {x | p x}) x : ℕ → ι hx_l : Tendsto x atTop l hx_p : Tendsto x atTop (𝓟 {x | p x}) ⊢ ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] refine' ⟨x, hx_l, _⟩ [GOAL] case refine'_1.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n this : NeBot (l ⊓ 𝓟 {x | p x}) x : ℕ → ι hx_l : Tendsto x atTop l hx_p : Tendsto x atTop (𝓟 {x | p x}) ⊢ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] rw [tendsto_principal] at hx_p [GOAL] case refine'_1.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_freq : ∃ᶠ (n : ι) in l, p n this : NeBot (l ⊓ 𝓟 {x | p x}) x : ℕ → ι hx_l : Tendsto x atTop l hx_p : ∀ᶠ (a : ℕ) in atTop, x a ∈ {x | p x} ⊢ ∃ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] exact hx_p.frequently [GOAL] case refine'_2 ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h_exists_freq : ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) ⊢ ∃ᶠ (n : ι) in l, p n [PROOFSTEP] obtain ⟨x, hx_tendsto, hx_freq⟩ := h_exists_freq [GOAL] case refine'_2.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l x : ℕ → ι hx_tendsto : Tendsto x atTop l hx_freq : ∃ᶠ (n : ℕ) in atTop, p (x n) ⊢ ∃ᶠ (n : ι) in l, p n [PROOFSTEP] simp_rw [Filter.Frequently, Filter.Eventually] at hx_freq ⊢ [GOAL] case refine'_2.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l x : ℕ → ι hx_tendsto : Tendsto x atTop l hx_freq : ¬{x_1 | ¬p (x x_1)} ∈ atTop ⊢ ¬{x | ¬p x} ∈ l [PROOFSTEP] have : {n : ℕ | ¬p (x n)} = {n | x n ∈ {y | ¬p y}} := rfl [GOAL] case refine'_2.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l x : ℕ → ι hx_tendsto : Tendsto x atTop l hx_freq : ¬{x_1 | ¬p (x x_1)} ∈ atTop this : {n | ¬p (x n)} = {n | x n ∈ {y | ¬p y}} ⊢ ¬{x | ¬p x} ∈ l [PROOFSTEP] rw [this, ← mem_map'] at hx_freq [GOAL] case refine'_2.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l x : ℕ → ι hx_tendsto : Tendsto x atTop l hx_freq : ¬{y | ¬p y} ∈ map (fun n => x n) atTop this : {n | ¬p (x n)} = {n | x n ∈ {y | ¬p y}} ⊢ ¬{x | ¬p x} ∈ l [PROOFSTEP] exact mt (@hx_tendsto _) hx_freq [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l ⊢ (∀ᶠ (n : ι) in l, p n) ↔ ∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] have : (∀ᶠ n in l, p n) ↔ ¬∃ᶠ n in l, ¬p n := by rw [not_frequently] simp_rw [not_not] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l ⊢ (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n [PROOFSTEP] rw [not_frequently] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l ⊢ (∀ᶠ (n : ι) in l, p n) ↔ ∀ᶠ (x : ι) in l, ¬¬p x [PROOFSTEP] simp_rw [not_not] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l this : (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n ⊢ (∀ᶠ (n : ι) in l, p n) ↔ ∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] rw [this, frequently_iff_seq_frequently] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l this : (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n ⊢ (¬∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, ¬p (x n)) ↔ ∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] push_neg [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l this : (∀ᶠ (n : ι) in l, p n) ↔ ¬∃ᶠ (n : ι) in l, ¬p n ⊢ (∀ (x : ℕ → ι), Tendsto x atTop l → ¬∃ᶠ (n : ℕ) in atTop, ¬p (x n)) ↔ ∀ (x : ℕ → ι), Tendsto x atTop l → ∀ᶠ (n : ℕ) in atTop, p (x n) [PROOFSTEP] simp_rw [not_frequently, not_not] [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 x : ℕ → ι p : ι → Prop l : Filter ι h_tendsto : Tendsto x atTop l h : ∃ᶠ (n : ℕ) in atTop, p (x n) ⊢ ∃ ns, Tendsto (fun n => x (ns n)) atTop l ∧ ∀ (n : ℕ), p (x (ns n)) [PROOFSTEP] rw [tendsto_iff_seq_tendsto] at h_tendsto [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 x : ℕ → ι p : ι → Prop l : Filter ι h_tendsto : ∀ (x_1 : ℕ → ℕ), Tendsto x_1 atTop atTop → Tendsto (x ∘ x_1) atTop l h : ∃ᶠ (n : ℕ) in atTop, p (x n) ⊢ ∃ ns, Tendsto (fun n => x (ns n)) atTop l ∧ ∀ (n : ℕ), p (x (ns n)) [PROOFSTEP] choose ns hge hns using frequently_atTop.1 h [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 x : ℕ → ι p : ι → Prop l : Filter ι h_tendsto : ∀ (x_1 : ℕ → ℕ), Tendsto x_1 atTop atTop → Tendsto (x ∘ x_1) atTop l h : ∃ᶠ (n : ℕ) in atTop, p (x n) ns : ℕ → ℕ hge : ∀ (a : ℕ), ns a ≥ a hns : ∀ (a : ℕ), p (x (ns a)) ⊢ ∃ ns, Tendsto (fun n => x (ns n)) atTop l ∧ ∀ (n : ℕ), p (x (ns n)) [PROOFSTEP] exact ⟨ns, h_tendsto ns (tendsto_atTop_mono hge tendsto_id), hns⟩ [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h : ∃ᶠ (n : ι) in l, p n ⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n) [PROOFSTEP] rw [frequently_iff_seq_frequently] at h [GOAL] ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l h : ∃ x, Tendsto x atTop l ∧ ∃ᶠ (n : ℕ) in atTop, p (x n) ⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n) [PROOFSTEP] obtain ⟨x, hx_tendsto, hx_freq⟩ := h [GOAL] case intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l x : ℕ → ι hx_tendsto : Tendsto x atTop l hx_freq : ∃ᶠ (n : ℕ) in atTop, p (x n) ⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n) [PROOFSTEP] obtain ⟨n_to_n, h_tendsto, h_freq⟩ := subseq_forall_of_frequently hx_tendsto hx_freq [GOAL] case intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 ι : Type u_6 l : Filter ι p : ι → Prop hl : IsCountablyGenerated l x : ℕ → ι hx_tendsto : Tendsto x atTop l hx_freq : ∃ᶠ (n : ℕ) in atTop, p (x n) n_to_n : ℕ → ℕ h_tendsto : Tendsto (fun n => x (n_to_n n)) atTop l h_freq : ∀ (n : ℕ), p (x (n_to_n n)) ⊢ ∃ ns, Tendsto ns atTop l ∧ ∀ (n : ℕ), p (ns n) [PROOFSTEP] exact ⟨x ∘ n_to_n, h_tendsto, h_freq⟩ [GOAL] ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f ⊢ Tendsto x l f [PROOFSTEP] by_contra h [GOAL] ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f h : ¬Tendsto x l f ⊢ False [PROOFSTEP] obtain ⟨s, hs, hfreq⟩ : ∃ s ∈ f, ∃ᶠ n in l, x n ∉ s := by rwa [not_tendsto_iff_exists_frequently_nmem] at h [GOAL] ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f h : ¬Tendsto x l f ⊢ ∃ s, s ∈ f ∧ ∃ᶠ (n : ι) in l, ¬x n ∈ s [PROOFSTEP] rwa [not_tendsto_iff_exists_frequently_nmem] at h [GOAL] case intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s ⊢ False [PROOFSTEP] obtain ⟨y, hy_tendsto, hy_freq⟩ := exists_seq_forall_of_frequently hfreq [GOAL] case intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l hxy : ∀ (ns : ℕ → ι), Tendsto ns atTop l → ∃ ms, Tendsto (fun n => x (ns (ms n))) atTop f h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ⊢ False [PROOFSTEP] specialize hxy y hy_tendsto [GOAL] case intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s hxy : ∃ ms, Tendsto (fun n => x (y (ms n))) atTop f ⊢ False [PROOFSTEP] obtain ⟨ms, hms_tendsto⟩ := hxy [GOAL] case intro.intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : Tendsto (fun n => x (y (ms n))) atTop f ⊢ False [PROOFSTEP] specialize hms_tendsto hs [GOAL] case intro.intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : s ∈ map (fun n => x (y (ms n))) atTop ⊢ False [PROOFSTEP] rw [mem_map] at hms_tendsto [GOAL] case intro.intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop ⊢ False [PROOFSTEP] have hms_freq : ∀ n : ℕ, x (y (ms n)) ∉ s := fun n => hy_freq (ms n) [GOAL] case intro.intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s ⊢ False [PROOFSTEP] have h_empty : (fun n : ℕ => x (y (ms n))) ⁻¹' s = ∅ := by ext1 n simp only [Set.mem_preimage, Set.mem_empty_iff_false, iff_false_iff] exact hms_freq n [GOAL] ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s ⊢ (fun n => x (y (ms n))) ⁻¹' s = ∅ [PROOFSTEP] ext1 n [GOAL] case h ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s n : ℕ ⊢ n ∈ (fun n => x (y (ms n))) ⁻¹' s ↔ n ∈ ∅ [PROOFSTEP] simp only [Set.mem_preimage, Set.mem_empty_iff_false, iff_false_iff] [GOAL] case h ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s n : ℕ ⊢ ¬x (y (ms n)) ∈ s [PROOFSTEP] exact hms_freq n [GOAL] case intro.intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : (fun n => x (y (ms n))) ⁻¹' s ∈ atTop hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s h_empty : (fun n => x (y (ms n))) ⁻¹' s = ∅ ⊢ False [PROOFSTEP] rw [h_empty] at hms_tendsto [GOAL] case intro.intro.intro.intro.intro ι✝ : Type u_1 ι' : Type u_2 α✝ : Type u_3 β : Type u_4 γ : Type u_5 α : Type u_6 ι : Type u_7 x : ι → α f : Filter α l : Filter ι inst✝ : IsCountablyGenerated l h : ¬Tendsto x l f s : Set α hs : s ∈ f hfreq : ∃ᶠ (n : ι) in l, ¬x n ∈ s y : ℕ → ι hy_tendsto : Tendsto y atTop l hy_freq : ∀ (n : ℕ), ¬x (y n) ∈ s ms : ℕ → ℕ hms_tendsto : ∅ ∈ atTop hms_freq : ∀ (n : ℕ), ¬x (y (ms n)) ∈ s h_empty : (fun n => x (y (ms n))) ⁻¹' s = ∅ ⊢ False [PROOFSTEP] exact empty_not_mem atTop hms_tendsto [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] obtain ⟨B, h⟩ := f.exists_antitone_basis [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] have : ∀ N, ∃ n ≥ N, u n ∈ B N := fun N => Filter.inf_map_atTop_neBot_iff.mp hx _ (h.1.mem_of_mem trivial) N [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B this : ∀ (N : ℕ), ∃ n, n ≥ N ∧ u n ∈ B N ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] choose φ hφ using this [GOAL] case intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] cases' forall_and.mp hφ with φ_ge φ_in [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N φ_ge : ∀ (x : ℕ), φ x ≥ x φ_in : ∀ (x : ℕ), u (φ x) ∈ B x ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] have lim_uφ : Tendsto (u ∘ φ) atTop f := h.tendsto φ_in [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N φ_ge : ∀ (x : ℕ), φ x ≥ x φ_in : ∀ (x : ℕ), u (φ x) ∈ B x lim_uφ : Tendsto (u ∘ φ) atTop f ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] have lim_φ : Tendsto φ atTop atTop := tendsto_atTop_mono φ_ge tendsto_id [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N φ_ge : ∀ (x : ℕ), φ x ≥ x φ_in : ∀ (x : ℕ), u (φ x) ∈ B x lim_uφ : Tendsto (u ∘ φ) atTop f lim_φ : Tendsto φ atTop atTop ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] obtain ⟨ψ, hψ, hψφ⟩ : ∃ ψ : ℕ → ℕ, StrictMono ψ ∧ StrictMono (φ ∘ ψ) [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N φ_ge : ∀ (x : ℕ), φ x ≥ x φ_in : ∀ (x : ℕ), u (φ x) ∈ B x lim_uφ : Tendsto (u ∘ φ) atTop f lim_φ : Tendsto φ atTop atTop ⊢ ∃ ψ, StrictMono ψ ∧ StrictMono (φ ∘ ψ) case intro.intro.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N φ_ge : ∀ (x : ℕ), φ x ≥ x φ_in : ∀ (x : ℕ), u (φ x) ∈ B x lim_uφ : Tendsto (u ∘ φ) atTop f lim_φ : Tendsto φ atTop atTop ψ : ℕ → ℕ hψ : StrictMono ψ hψφ : StrictMono (φ ∘ ψ) ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] exact strictMono_subseq_of_tendsto_atTop lim_φ [GOAL] case intro.intro.intro.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 f : Filter α inst✝ : IsCountablyGenerated f u : ℕ → α hx : NeBot (f ⊓ map u atTop) B : ℕ → Set α h : HasAntitoneBasis f B φ : ℕ → ℕ hφ : ∀ (N : ℕ), φ N ≥ N ∧ u (φ N) ∈ B N φ_ge : ∀ (x : ℕ), φ x ≥ x φ_in : ∀ (x : ℕ), u (φ x) ∈ B x lim_uφ : Tendsto (u ∘ φ) atTop f lim_φ : Tendsto φ atTop atTop ψ : ℕ → ℕ hψ : StrictMono ψ hψφ : StrictMono (φ ∘ ψ) ⊢ ∃ θ, StrictMono θ ∧ Tendsto (u ∘ θ) atTop f [PROOFSTEP] exact ⟨φ ∘ ψ, hψφ, lim_uφ.comp hψ.tendsto_atTop⟩ [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i hs : Monotone s f g : (a : α) → β a a : α ⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a [PROOFSTEP] rcases em (∃ i, a ∈ s i) with ⟨i, hi⟩ | ha [GOAL] case inl.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i hs : Monotone s f g : (a : α) → β a a : α i : ι hi : a ∈ s i ⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a [PROOFSTEP] refine (eventually_ge_atTop i).mono fun j hij ↦ ?_ [GOAL] case inl.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i hs : Monotone s f g : (a : α) → β a a : α i : ι hi : a ∈ s i j : ι hij : i ≤ j ⊢ Set.piecewise (s j) f g a = Set.piecewise (⋃ (i : ι), s i) f g a [PROOFSTEP] simp only [Set.piecewise_eq_of_mem, hs hij hi, subset_iUnion _ _ hi] [GOAL] case inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i hs : Monotone s f g : (a : α) → β a a : α ha : ¬∃ i, a ∈ s i ⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a [PROOFSTEP] refine eventually_of_forall fun i ↦ ?_ [GOAL] case inr ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋃ (i : ι), s i hs : Monotone s f g : (a : α) → β a a : α ha : ¬∃ i, a ∈ s i i : ι ⊢ Set.piecewise (s i) f g a = Set.piecewise (⋃ (i : ι), s i) f g a [PROOFSTEP] simp only [Set.piecewise_eq_of_not_mem, not_exists.1 ha i, mt mem_iUnion.1 ha] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i hs : Antitone s f g : (a : α) → β a a : α ⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋂ (i : ι), s i) f g a [PROOFSTEP] classical convert ← (compl_anti.comp hs).piecewise_eventually_eq_iUnion g f a using 3 · convert congr_fun (Set.piecewise_compl (s _) g f) a · simp only [(· ∘ ·), ← compl_iInter, Set.piecewise_compl] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i hs : Antitone s f g : (a : α) → β a a : α ⊢ ∀ᶠ (i : ι) in atTop, Set.piecewise (s i) f g a = Set.piecewise (⋂ (i : ι), s i) f g a [PROOFSTEP] convert ← (compl_anti.comp hs).piecewise_eventually_eq_iUnion g f a using 3 [GOAL] case h.e'_2.h.h.e'_2 ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i hs : Antitone s f g : (a : α) → β a a : α x✝ : ι ⊢ Set.piecewise ((compl ∘ s) x✝) g f a = Set.piecewise (s x✝) f g a [PROOFSTEP] convert congr_fun (Set.piecewise_compl (s _) g f) a [GOAL] case h.e'_2.h.h.e'_3 ι : Type u_1 ι' : Type u_2 α : Type u_3 β✝ : Type u_4 γ : Type u_5 β : α → Type u_6 inst✝² : Preorder ι s : ι → Set α inst✝¹ : (i : ι) → DecidablePred fun x => x ∈ s i inst✝ : DecidablePred fun x => x ∈ ⋂ (i : ι), s i hs : Antitone s f g : (a : α) → β a a : α x✝ : ι ⊢ Set.piecewise (⋃ (i : ι), (compl ∘ s) i) g f a = Set.piecewise (⋂ (i : ι), s i) f g a [PROOFSTEP] simp only [(· ∘ ·), ← compl_iInter, Set.piecewise_compl] [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 ⊢ Filter.map (fun s => ∏ i in s, f (g i)) atTop = Filter.map (fun s => ∏ i in s, f i) atTop [PROOFSTEP] haveI := Classical.decEq β [GOAL] ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β ⊢ Filter.map (fun s => ∏ i in s, f (g i)) atTop = Filter.map (fun s => ∏ i in s, f i) atTop [PROOFSTEP] apply le_antisymm [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β ⊢ Filter.map (fun s => ∏ i in s, f (g i)) atTop ≤ Filter.map (fun s => ∏ i in s, f i) atTop [PROOFSTEP] refine' map_atTop_finset_prod_le_of_prod_eq fun s => _ [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β ⊢ Filter.map (fun s => ∏ i in s, f i) atTop ≤ Filter.map (fun s => ∏ i in s, f (g i)) atTop [PROOFSTEP] refine' map_atTop_finset_prod_le_of_prod_eq fun s => _ [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β ⊢ ∃ v, ∀ (v' : Finset γ), v ⊆ v' → ∃ u', s ⊆ u' ∧ ∏ x in u', f x = ∏ b in v', f (g b) [PROOFSTEP] refine' ⟨s.preimage g (hg.injOn _), fun t ht => _⟩ [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t ⊢ ∃ u', s ⊆ u' ∧ ∏ x in u', f x = ∏ b in t, f (g b) [PROOFSTEP] refine' ⟨t.image g ∪ s, Finset.subset_union_right _ _, _⟩ [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t ⊢ ∏ x in Finset.image g t ∪ s, f x = ∏ b in t, f (g b) [PROOFSTEP] rw [← Finset.prod_image (hg.injOn _)] [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t ⊢ ∏ x in Finset.image g t ∪ s, f x = ∏ x in Finset.image (fun x => g x) t, f x [PROOFSTEP] refine' (prod_subset (subset_union_left _ _) _).symm [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t ⊢ ∀ (x : β), x ∈ Finset.image g t ∪ s → ¬x ∈ Finset.image g t → f x = 1 [PROOFSTEP] simp only [Finset.mem_union, Finset.mem_image] [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t ⊢ ∀ (x : β), (∃ a, a ∈ t ∧ g a = x) ∨ x ∈ s → (¬∃ a, a ∈ t ∧ g a = x) → f x = 1 [PROOFSTEP] refine' fun y hy hyt => hf y (mt _ hyt) [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t y : β hy : (∃ a, a ∈ t ∧ g a = y) ∨ y ∈ s hyt : ¬∃ a, a ∈ t ∧ g a = y ⊢ y ∈ Set.range g → ∃ a, a ∈ t ∧ g a = y [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case a.intro ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset β t : Finset γ ht : Finset.preimage s g (_ : InjOn g (g ⁻¹' ↑s)) ⊆ t x : γ hy : (∃ a, a ∈ t ∧ g a = g x) ∨ g x ∈ s hyt : ¬∃ a, a ∈ t ∧ g a = g x ⊢ ∃ a, a ∈ t ∧ g a = g x [PROOFSTEP] exact ⟨x, ht (Finset.mem_preimage.2 <| hy.resolve_left hyt), rfl⟩ [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset γ ⊢ ∃ v, ∀ (v' : Finset β), v ⊆ v' → ∃ u', s ⊆ u' ∧ ∏ x in u', f (g x) = ∏ b in v', f b [PROOFSTEP] refine' ⟨s.image g, fun t ht => _⟩ [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset γ t : Finset β ht : Finset.image g s ⊆ t ⊢ ∃ u', s ⊆ u' ∧ ∏ x in u', f (g x) = ∏ b in t, f b [PROOFSTEP] simp only [← prod_preimage _ _ (hg.injOn _) _ fun x _ => hf x] [GOAL] case a ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝ : CommMonoid α g : γ → β hg : Injective g f : β → α hf : ∀ (x : β), ¬x ∈ Set.range g → f x = 1 this : DecidableEq β s : Finset γ t : Finset β ht : Finset.image g s ⊆ t ⊢ ∃ u', s ⊆ u' ∧ ∏ x in u', f (g x) = ∏ x in Finset.preimage t g (_ : InjOn g (g ⁻¹' ↑t)), f (g x) [PROOFSTEP] exact ⟨_, (image_subset_iff_subset_preimage _).1 ht, rfl⟩
{"mathlib_filename": "Mathlib.Order.Filter.AtTopBot", "llama_tokens": 62102}
[GOAL] α β : DistLatCat e : ↑α ≃o ↑β ⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : DistLatCat e : ↑α ≃o ↑β x✝ : (forget DistLatCat).obj α ⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : DistLatCat e : ↑α ≃o ↑β ⊢ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : DistLatCat e : ↑α ≃o ↑β x✝ : (forget DistLatCat).obj β ⊢ ↑({ toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.DistLatCat", "llama_tokens": 1347}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : LE α inst✝³ : OrderTop α inst✝² : PartialOrder β inst✝¹ : OrderTop β inst✝ : OrderIsoClass F α β f : F a : α ⊢ ↑f a = ⊤ ↔ a = ⊤ [PROOFSTEP] letI : TopHomClass F α β := OrderIsoClass.toTopHomClass [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : LE α inst✝³ : OrderTop α inst✝² : PartialOrder β inst✝¹ : OrderTop β inst✝ : OrderIsoClass F α β f : F a : α this : TopHomClass F α β := OrderIsoClass.toTopHomClass ⊢ ↑f a = ⊤ ↔ a = ⊤ [PROOFSTEP] rw [← map_top f, (EquivLike.injective f).eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : LE α inst✝³ : OrderBot α inst✝² : PartialOrder β inst✝¹ : OrderBot β inst✝ : OrderIsoClass F α β f : F a : α ⊢ ↑f a = ⊥ ↔ a = ⊥ [PROOFSTEP] letI : BotHomClass F α β := OrderIsoClass.toBotHomClass [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁴ : LE α inst✝³ : OrderBot α inst✝² : PartialOrder β inst✝¹ : OrderBot β inst✝ : OrderIsoClass F α β f : F a : α this : BotHomClass F α β := OrderIsoClass.toBotHomClass ⊢ ↑f a = ⊥ ↔ a = ⊥ [PROOFSTEP] rw [← map_bot f, (EquivLike.injective f).eq_iff] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Top α inst✝² : Top β inst✝¹ : Top γ inst✝ : Top δ f g : TopHom α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Top α inst✝² : Top β inst✝¹ : Top γ inst✝ : Top δ g : TopHom α β toFun✝ : α → β map_top'✝ : toFun✝ ⊤ = ⊤ h : { toFun := toFun✝, map_top' := map_top'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_top' := map_top'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Top α inst✝² : Top β inst✝¹ : Top γ inst✝ : Top δ toFun✝¹ : α → β map_top'✝¹ : toFun✝¹ ⊤ = ⊤ toFun✝ : α → β map_top'✝ : toFun✝ ⊤ = ⊤ h : { toFun := toFun✝¹, map_top' := map_top'✝¹ }.toFun = { toFun := toFun✝, map_top' := map_top'✝ }.toFun ⊢ { toFun := toFun✝¹, map_top' := map_top'✝¹ } = { toFun := toFun✝, map_top' := map_top'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Top α inst✝² : Top β inst✝¹ : Top γ inst✝ : Top δ f : TopHom β γ g : TopHom α β ⊢ (↑f ∘ ↑g) ⊤ = ⊤ [PROOFSTEP] rw [comp_apply, map_top, map_top] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Top α inst✝² : Top β inst✝¹ : Top γ inst✝ : Top δ g : TopHom β γ f₁ f₂ : TopHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← TopHom.comp_apply, h, TopHom.comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Top α inst✝¹ : SemilatticeInf β inst✝ : OrderTop β f✝ g✝ f g : TopHom α β ⊢ (↑f ⊓ ↑g) ⊤ = ⊤ [PROOFSTEP] rw [Pi.inf_apply, map_top, map_top, inf_top_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Top α inst✝¹ : SemilatticeSup β inst✝ : OrderTop β f✝ g✝ f g : TopHom α β ⊢ (↑f ⊔ ↑g) ⊤ = ⊤ [PROOFSTEP] rw [Pi.sup_apply, map_top, map_top, sup_top_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bot α inst✝² : Bot β inst✝¹ : Bot γ inst✝ : Bot δ f g : BotHom α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bot α inst✝² : Bot β inst✝¹ : Bot γ inst✝ : Bot δ g : BotHom α β toFun✝ : α → β map_bot'✝ : toFun✝ ⊥ = ⊥ h : { toFun := toFun✝, map_bot' := map_bot'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_bot' := map_bot'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bot α inst✝² : Bot β inst✝¹ : Bot γ inst✝ : Bot δ toFun✝¹ : α → β map_bot'✝¹ : toFun✝¹ ⊥ = ⊥ toFun✝ : α → β map_bot'✝ : toFun✝ ⊥ = ⊥ h : { toFun := toFun✝¹, map_bot' := map_bot'✝¹ }.toFun = { toFun := toFun✝, map_bot' := map_bot'✝ }.toFun ⊢ { toFun := toFun✝¹, map_bot' := map_bot'✝¹ } = { toFun := toFun✝, map_bot' := map_bot'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bot α inst✝² : Bot β inst✝¹ : Bot γ inst✝ : Bot δ f : BotHom β γ g : BotHom α β ⊢ (↑f ∘ ↑g) ⊥ = ⊥ [PROOFSTEP] rw [comp_apply, map_bot, map_bot] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : Bot α inst✝² : Bot β inst✝¹ : Bot γ inst✝ : Bot δ g : BotHom β γ f₁ f₂ : BotHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← BotHom.comp_apply, h, BotHom.comp_apply] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Bot α inst✝¹ : SemilatticeInf β inst✝ : OrderBot β f✝ g✝ f g : BotHom α β ⊢ (↑f ⊓ ↑g) ⊥ = ⊥ [PROOFSTEP] rw [Pi.inf_apply, map_bot, map_bot, inf_bot_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝² : Bot α inst✝¹ : SemilatticeSup β inst✝ : OrderBot β f✝ g✝ f g : BotHom α β ⊢ (↑f ⊔ ↑g) ⊥ = ⊥ [PROOFSTEP] rw [Pi.sup_apply, map_bot, map_bot, sup_bot_eq] [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ f g : BoundedOrderHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ g : BoundedOrderHom α β toFun✝ : α → β monotone'✝ : Monotone toFun✝ map_top'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊤ = ⊤ map_bot'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊥ = ⊥ h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } = (fun f => f.toFun) g ⊢ { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ toFun✝¹ : α → β monotone'✝¹ : Monotone toFun✝¹ map_top'✝¹ : OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } ⊤ = ⊤ map_bot'✝¹ : OrderHom.toFun { toFun := toFun✝¹, monotone' := monotone'✝¹ } ⊥ = ⊥ toFun✝ : α → β monotone'✝ : Monotone toFun✝ map_top'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊤ = ⊤ map_bot'✝ : OrderHom.toFun { toFun := toFun✝, monotone' := monotone'✝ } ⊥ = ⊥ h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } = (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } ⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } = { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : Preorder α inst✝⁶ : Preorder β inst✝⁵ : Preorder γ inst✝⁴ : Preorder δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ g : BoundedOrderHom β γ f₁ f₂ : BoundedOrderHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← BoundedOrderHom.comp_apply, h, BoundedOrderHom.comp_apply]
{"mathlib_filename": "Mathlib.Order.Hom.Bounded", "llama_tokens": 4388}
[GOAL] α β : LatCat e : ↑α ≃o ↑β ⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : LatCat e : ↑α ≃o ↑β x✝ : (forget LatCat).obj α ⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : LatCat e : ↑α ≃o ↑β ⊢ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : LatCat e : ↑α ≃o ↑β x✝ : (forget LatCat).obj β ⊢ ↑({ toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.LatCat", "llama_tokens": 1341}
[GOAL] α β : FinPartOrd e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat ⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : FinPartOrd e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat x✝ : (forget FinPartOrd).obj α ⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : FinPartOrd e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat ⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : FinPartOrd e : ↑α.toPartOrdCat ≃o ↑β.toPartOrdCat x✝ : (forget FinPartOrd).obj β ⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.FinPartOrd", "llama_tokens": 362}
[GOAL] ⊢ ConcreteCategory HeytAlgCat [PROOFSTEP] dsimp [HeytAlgCat] [GOAL] ⊢ ConcreteCategory (Bundled HeytingAlgebra) [PROOFSTEP] infer_instance -- Porting note: No idea why it does not find this instance... [GOAL] α β : HeytAlgCat e : ↑α ≃o ↑β ⊢ { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) } ≫ { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : HeytAlgCat e : ↑α ≃o ↑β x✝ : (forget HeytAlgCat).obj α ⊢ ↑({ toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) } ≫ { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : HeytAlgCat e : ↑α ≃o ↑β ⊢ { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) } ≫ { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : HeytAlgCat e : ↑α ≃o ↑β x✝ : (forget HeytAlgCat).obj β ⊢ ↑({ toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⇨ b) = ↑(OrderIso.symm e) a ⇨ ↑(OrderIso.symm e) b) } ≫ { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥), map_himp' := (_ : ∀ (a b : ↑α), ↑e (a ⇨ b) = ↑e a ⇨ ↑e b) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.HeytAlgCat", "llama_tokens": 2162}
[GOAL] ⊢ ConcreteCategory FrmCat [PROOFSTEP] unfold FrmCat [GOAL] ⊢ ConcreteCategory (Bundled Frame) [PROOFSTEP] infer_instance [GOAL] α β : FrmCat e : ↑α ≃o ↑β ⊢ { toInfTopHom := { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫ { toInfTopHom := { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : FrmCat e : ↑α ≃o ↑β x✝ : (forget FrmCat).obj α ⊢ ↑({ toInfTopHom := { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫ { toInfTopHom := { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : FrmCat e : ↑α ≃o ↑β ⊢ { toInfTopHom := { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫ { toInfTopHom := { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : FrmCat e : ↑α ≃o ↑β x✝ : (forget FrmCat).obj β ⊢ ↑({ toInfTopHom := { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫ { toInfTopHom := { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.FrmCat", "llama_tokens": 1603}
[GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : SemilatticeSup β inst✝ : SupHomClass F α β src✝ : SupHomClass F α β := inst✝ f : F a b : α h : a ≤ b ⊢ ↑f a ≤ ↑f b [PROOFSTEP] rw [← sup_eq_right, ← map_sup, sup_eq_right.2 h] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : SemilatticeInf α inst✝¹ : SemilatticeInf β inst✝ : InfHomClass F α β src✝ : InfHomClass F α β := inst✝ f : F a b : α h : a ≤ b ⊢ ↑f a ≤ ↑f b [PROOFSTEP] rw [← inf_eq_left, ← map_inf, inf_eq_left.2 h] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : SemilatticeSup α inst✝¹ : SemilatticeSup β inst✝ : OrderIsoClass F α β src✝ : OrderHomClass F α β := let_fun this := inferInstance; this f : F a b : α c : (fun x => β) (a ⊔ b) ⊢ ↑f (a ⊔ b) ≤ c ↔ ↑f a ⊔ ↑f b ≤ c [PROOFSTEP] simp only [← le_map_inv_iff, sup_le_iff] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : SemilatticeInf α inst✝¹ : SemilatticeInf β inst✝ : OrderIsoClass F α β src✝ : OrderHomClass F α β := let_fun this := inferInstance; this f : F a b : α c : (fun x => β) (a ⊓ b) ⊢ c ≤ ↑f (a ⊓ b) ↔ c ≤ ↑f a ⊓ ↑f b [PROOFSTEP] simp only [← map_inv_le_iff, le_inf_iff] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : Lattice β inst✝¹ : BoundedOrder β inst✝ : BoundedLatticeHomClass F α β f : F a b : α h : Disjoint a b ⊢ Disjoint (↑f a) (↑f b) [PROOFSTEP] rw [disjoint_iff, ← map_inf, h.eq_bot, map_bot] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : Lattice β inst✝¹ : BoundedOrder β inst✝ : BoundedLatticeHomClass F α β f : F a b : α h : Codisjoint a b ⊢ Codisjoint (↑f a) (↑f b) [PROOFSTEP] rw [codisjoint_iff, ← map_sup, h.eq_top, map_top] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : BooleanAlgebra α inst✝¹ : BooleanAlgebra β inst✝ : BoundedLatticeHomClass F α β f : F a b : α ⊢ ↑f (a \ b) = ↑f a \ ↑f b [PROOFSTEP] rw [sdiff_eq, sdiff_eq, map_inf, map_compl'] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : BooleanAlgebra α inst✝¹ : BooleanAlgebra β inst✝ : BoundedLatticeHomClass F α β f : F a b : α ⊢ ↑f (a ∆ b) = ↑f a ∆ ↑f b [PROOFSTEP] rw [symmDiff, symmDiff, map_sup, map_sdiff', map_sdiff'] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Sup α inst✝² : Sup β inst✝¹ : Sup γ inst✝ : Sup δ f g : SupHom α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Sup α inst✝² : Sup β inst✝¹ : Sup γ inst✝ : Sup δ g : SupHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b h : { toFun := toFun✝, map_sup' := map_sup'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_sup' := map_sup'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Sup α inst✝² : Sup β inst✝¹ : Sup γ inst✝ : Sup δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b h : { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }.toFun = { toFun := toFun✝, map_sup' := map_sup'✝ }.toFun ⊢ { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } = { toFun := toFun✝, map_sup' := map_sup'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Sup α inst✝² : Sup β inst✝¹ : Sup γ inst✝ : Sup δ f : SupHom β γ g : SupHom α β a b : α ⊢ (↑f ∘ ↑g) (a ⊔ b) = (↑f ∘ ↑g) a ⊔ (↑f ∘ ↑g) b [PROOFSTEP] rw [comp_apply, map_sup, map_sup] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Sup α inst✝² : Sup β inst✝¹ : Sup γ inst✝ : Sup δ f : SupHom β γ g : SupHom α β a b : α ⊢ ↑f (↑g a) ⊔ ↑f (↑g b) = (↑f ∘ ↑g) a ⊔ (↑f ∘ ↑g) b [PROOFSTEP] rfl [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Sup α inst✝² : Sup β inst✝¹ : Sup γ inst✝ : Sup δ g : SupHom β γ f₁ f₂ : SupHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← SupHom.comp_apply, h, SupHom.comp_apply] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝¹ : Sup α inst✝ : SemilatticeSup β f g : SupHom α β a b : α ⊢ (↑f ⊔ ↑g) (a ⊔ b) = (↑f ⊔ ↑g) a ⊔ (↑f ⊔ ↑g) b [PROOFSTEP] rw [Pi.sup_apply, map_sup, map_sup] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝¹ : Sup α inst✝ : SemilatticeSup β f g : SupHom α β a b : α ⊢ ↑f a ⊔ ↑f b ⊔ (↑g a ⊔ ↑g b) = (↑f ⊔ ↑g) a ⊔ (↑f ⊔ ↑g) b [PROOFSTEP] exact sup_sup_sup_comm _ _ _ _ [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Inf α inst✝² : Inf β inst✝¹ : Inf γ inst✝ : Inf δ f g : InfHom α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Inf α inst✝² : Inf β inst✝¹ : Inf γ inst✝ : Inf δ g : InfHom α β toFun✝ : α → β map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b h : { toFun := toFun✝, map_inf' := map_inf'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, map_inf' := map_inf'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Inf α inst✝² : Inf β inst✝¹ : Inf γ inst✝ : Inf δ toFun✝¹ : α → β map_inf'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊓ b) = toFun✝¹ a ⊓ toFun✝¹ b toFun✝ : α → β map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b h : { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }.toFun = { toFun := toFun✝, map_inf' := map_inf'✝ }.toFun ⊢ { toFun := toFun✝¹, map_inf' := map_inf'✝¹ } = { toFun := toFun✝, map_inf' := map_inf'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Inf α inst✝² : Inf β inst✝¹ : Inf γ inst✝ : Inf δ f : InfHom β γ g : InfHom α β a b : α ⊢ (↑f ∘ ↑g) (a ⊓ b) = (↑f ∘ ↑g) a ⊓ (↑f ∘ ↑g) b [PROOFSTEP] rw [comp_apply, map_inf, map_inf] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Inf α inst✝² : Inf β inst✝¹ : Inf γ inst✝ : Inf δ f : InfHom β γ g : InfHom α β a b : α ⊢ ↑f (↑g a) ⊓ ↑f (↑g b) = (↑f ∘ ↑g) a ⊓ (↑f ∘ ↑g) b [PROOFSTEP] rfl [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Inf α inst✝² : Inf β inst✝¹ : Inf γ inst✝ : Inf δ g : InfHom β γ f₁ f₂ : InfHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← InfHom.comp_apply, h, InfHom.comp_apply] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝¹ : Inf α inst✝ : SemilatticeInf β f g : InfHom α β a b : α ⊢ (↑f ⊓ ↑g) (a ⊓ b) = (↑f ⊓ ↑g) a ⊓ (↑f ⊓ ↑g) b [PROOFSTEP] rw [Pi.inf_apply, map_inf, map_inf] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝¹ : Inf α inst✝ : SemilatticeInf β f g : InfHom α β a b : α ⊢ ↑f a ⊓ ↑f b ⊓ (↑g a ⊓ ↑g b) = (↑f ⊓ ↑g) a ⊓ (↑f ⊓ ↑g) b [PROOFSTEP] exact inf_inf_inf_comm _ _ _ _ [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Sup α inst✝⁶ : Bot α inst✝⁵ : Sup β inst✝⁴ : Bot β inst✝³ : Sup γ inst✝² : Bot γ inst✝¹ : Sup δ inst✝ : Bot δ f g : SupBotHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Sup α inst✝⁶ : Bot α inst✝⁵ : Sup β inst✝⁴ : Bot β inst✝³ : Sup γ inst✝² : Bot γ inst✝¹ : Sup δ inst✝ : Bot δ g : SupBotHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_bot'✝ : SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } ⊥ = ⊥ h : (fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ } = (fun f => f.toFun) g ⊢ { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Sup α inst✝⁶ : Bot α inst✝⁵ : Sup β inst✝⁴ : Bot β inst✝³ : Sup γ inst✝² : Bot γ inst✝¹ : Sup δ inst✝ : Bot δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b map_bot'✝¹ : SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } ⊥ = ⊥ toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_bot'✝ : SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } ⊥ = ⊥ h : (fun f => f.toFun) { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_bot' := map_bot'✝¹ } = (fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ } ⊢ { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_bot' := map_bot'✝¹ } = { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_bot' := map_bot'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Sup α inst✝⁶ : Bot α inst✝⁵ : Sup β inst✝⁴ : Bot β inst✝³ : Sup γ inst✝² : Bot γ inst✝¹ : Sup δ inst✝ : Bot δ g : SupBotHom β γ f₁ f₂ : SupBotHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Inf α inst✝⁶ : Top α inst✝⁵ : Inf β inst✝⁴ : Top β inst✝³ : Inf γ inst✝² : Top γ inst✝¹ : Inf δ inst✝ : Top δ f g : InfTopHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Inf α inst✝⁶ : Top α inst✝⁵ : Inf β inst✝⁴ : Top β inst✝³ : Inf γ inst✝² : Top γ inst✝¹ : Inf δ inst✝ : Top δ g : InfTopHom α β toFun✝ : α → β map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤ h : (fun f => f.toFun) { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ } = (fun f => f.toFun) g ⊢ { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Inf α inst✝⁶ : Top α inst✝⁵ : Inf β inst✝⁴ : Top β inst✝³ : Inf γ inst✝² : Top γ inst✝¹ : Inf δ inst✝ : Top δ toFun✝¹ : α → β map_inf'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊓ b) = toFun✝¹ a ⊓ toFun✝¹ b map_top'✝¹ : InfHom.toFun { toFun := toFun✝¹, map_inf' := map_inf'✝¹ } ⊤ = ⊤ toFun✝ : α → β map_inf'✝ : ∀ (a b : α), toFun✝ (a ⊓ b) = toFun✝ a ⊓ toFun✝ b map_top'✝ : InfHom.toFun { toFun := toFun✝, map_inf' := map_inf'✝ } ⊤ = ⊤ h : (fun f => f.toFun) { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ } = (fun f => f.toFun) { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ } ⊢ { toInfHom := { toFun := toFun✝¹, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹ } = { toInfHom := { toFun := toFun✝, map_inf' := map_inf'✝ }, map_top' := map_top'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Inf α inst✝⁶ : Top α inst✝⁵ : Inf β inst✝⁴ : Top β inst✝³ : Inf γ inst✝² : Top γ inst✝¹ : Inf δ inst✝ : Top δ g : InfTopHom β γ f₁ f₂ : InfTopHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ inst✝ : Lattice δ f g : LatticeHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ inst✝ : Lattice δ g : LatticeHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b h : (fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ } = (fun f => f.toFun) g ⊢ { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ inst✝ : Lattice δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b map_inf'✝¹ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓ SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b h : (fun f => f.toFun) { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ } = (fun f => f.toFun) { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ } ⊢ { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ } = { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ inst✝ : Lattice δ g : LatticeHom β γ f₁ f₂ : LatticeHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← LatticeHom.comp_apply, h, LatticeHom.comp_apply] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : LinearOrder α inst✝¹ : Lattice β inst✝ : OrderHomClass F α β src✝ : OrderHomClass F α β := inst✝ f : F a b : α ⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b [PROOFSTEP] obtain h | h := le_total a b [GOAL] case inl F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : LinearOrder α inst✝¹ : Lattice β inst✝ : OrderHomClass F α β src✝ : OrderHomClass F α β := inst✝ f : F a b : α h : a ≤ b ⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b [PROOFSTEP] rw [sup_eq_right.2 h, sup_eq_right.2 (OrderHomClass.mono f h : f a ≤ f b)] [GOAL] case inr F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : LinearOrder α inst✝¹ : Lattice β inst✝ : OrderHomClass F α β src✝ : OrderHomClass F α β := inst✝ f : F a b : α h : b ≤ a ⊢ ↑f (a ⊔ b) = ↑f a ⊔ ↑f b [PROOFSTEP] rw [sup_eq_left.2 h, sup_eq_left.2 (OrderHomClass.mono f h : f b ≤ f a)] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : LinearOrder α inst✝¹ : Lattice β inst✝ : OrderHomClass F α β src✝ : OrderHomClass F α β := inst✝ f : F a b : α ⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b [PROOFSTEP] obtain h | h := le_total a b [GOAL] case inl F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : LinearOrder α inst✝¹ : Lattice β inst✝ : OrderHomClass F α β src✝ : OrderHomClass F α β := inst✝ f : F a b : α h : a ≤ b ⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b [PROOFSTEP] rw [inf_eq_left.2 h, inf_eq_left.2 (OrderHomClass.mono f h : f a ≤ f b)] [GOAL] case inr F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : LinearOrder α inst✝¹ : Lattice β inst✝ : OrderHomClass F α β src✝ : OrderHomClass F α β := inst✝ f : F a b : α h : b ≤ a ⊢ ↑f (a ⊓ b) = ↑f a ⊓ ↑f b [PROOFSTEP] rw [inf_eq_right.2 h, inf_eq_right.2 (OrderHomClass.mono f h : f b ≤ f a)] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Lattice α inst✝⁶ : Lattice β inst✝⁵ : Lattice γ inst✝⁴ : Lattice δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ f g : BoundedLatticeHom α β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f [GOAL] case mk.mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Lattice α inst✝⁶ : Lattice β inst✝⁵ : Lattice γ inst✝⁴ : Lattice δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ g : BoundedLatticeHom α β toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_top'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤ map_bot'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥ h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } = (fun f => f.toFun) g ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } = g [PROOFSTEP] obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk.mk.mk F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Lattice α inst✝⁶ : Lattice β inst✝⁵ : Lattice γ inst✝⁴ : Lattice δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ toFun✝¹ : α → β map_sup'✝¹ : ∀ (a b : α), toFun✝¹ (a ⊔ b) = toFun✝¹ a ⊔ toFun✝¹ b map_inf'✝¹ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } a ⊓ SupHom.toFun { toFun := toFun✝¹, map_sup' := map_sup'✝¹ } b map_top'✝¹ : SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊤ = ⊤ map_bot'✝¹ : SupHom.toFun { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }.toSupHom ⊥ = ⊥ toFun✝ : α → β map_sup'✝ : ∀ (a b : α), toFun✝ (a ⊔ b) = toFun✝ a ⊔ toFun✝ b map_inf'✝ : ∀ (a b : α), SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } (a ⊓ b) = SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } a ⊓ SupHom.toFun { toFun := toFun✝, map_sup' := map_sup'✝ } b map_top'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊤ = ⊤ map_bot'✝ : SupHom.toFun { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }.toSupHom ⊥ = ⊥ h : (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } = (fun f => f.toFun) { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } ⊢ { toLatticeHom := { toSupHom := { toFun := toFun✝¹, map_sup' := map_sup'✝¹ }, map_inf' := map_inf'✝¹ }, map_top' := map_top'✝¹, map_bot' := map_bot'✝¹ } = { toLatticeHom := { toSupHom := { toFun := toFun✝, map_sup' := map_sup'✝ }, map_inf' := map_inf'✝ }, map_top' := map_top'✝, map_bot' := map_bot'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝⁷ : Lattice α inst✝⁶ : Lattice β inst✝⁵ : Lattice γ inst✝⁴ : Lattice δ inst✝³ : BoundedOrder α inst✝² : BoundedOrder β inst✝¹ : BoundedOrder γ inst✝ : BoundedOrder δ g : BoundedLatticeHom β γ f₁ f₂ : BoundedLatticeHom α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ ⊢ (fun f => ↑f) (withTopWithBot (LatticeHom.id α)) = (fun f => ↑f) (BoundedLatticeHom.id (WithTop (WithBot α))) [PROOFSTEP] refine' (congr_arg Option.map _).trans Option.map_id [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ ⊢ (fun x => ↑(LatticeHom.withBot (LatticeHom.id α)).toSupHom x) = id [PROOFSTEP] rw [withBot_id] [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ ⊢ (fun x => ↑(LatticeHom.id (WithBot α)).toSupHom x) = id [PROOFSTEP] rfl [GOAL] F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ f : LatticeHom β γ g : LatticeHom α β ⊢ withTopWithBot (comp f g) = BoundedLatticeHom.comp (withTopWithBot f) (withTopWithBot g) [PROOFSTEP] ext [GOAL] case h F : Type u_1 ι : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ f : LatticeHom β γ g : LatticeHom α β a✝ : WithTop (WithBot α) ⊢ ↑(withTopWithBot (comp f g)) a✝ = ↑(BoundedLatticeHom.comp (withTopWithBot f) (withTopWithBot g)) a✝ [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Order.Hom.Lattice", "llama_tokens": 12524}
[GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a b : α hb : b ∈ P.parts ⊢ b ≠ ⊥ [PROOFSTEP] intro h [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a b : α hb : b ∈ P.parts h : b = ⊥ ⊢ False [PROOFSTEP] refine' P.not_bot_mem (_) [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a b : α hb : b ∈ P.parts h : b = ⊥ ⊢ ⊥ ∈ P.parts [PROOFSTEP] rw [h] at hb [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a b : α hb : ⊥ ∈ P.parts h : b = ⊥ ⊢ ⊥ ∈ P.parts [PROOFSTEP] exact hb [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a ⊢ P.parts = ∅ ↔ a = ⊥ [PROOFSTEP] simp_rw [← P.supParts] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a ⊢ P.parts = ∅ ↔ sup P.parts id = ⊥ [PROOFSTEP] refine' ⟨fun h ↦ _, fun h ↦ eq_empty_iff_forall_not_mem.2 fun b hb ↦ P.not_bot_mem _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a h : P.parts = ∅ ⊢ sup P.parts id = ⊥ [PROOFSTEP] rw [h] [GOAL] case refine'_1 α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a h : P.parts = ∅ ⊢ sup ∅ id = ⊥ [PROOFSTEP] exact Finset.sup_empty [GOAL] case refine'_2 α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a h : sup P.parts id = ⊥ b : α hb : b ∈ P.parts ⊢ ⊥ ∈ P.parts [PROOFSTEP] rwa [← le_bot_iff.1 ((le_sup hb).trans h.le)] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P : Finpartition a ⊢ Finset.Nonempty P.parts ↔ a ≠ ⊥ [PROOFSTEP] rw [nonempty_iff_ne_empty, not_iff_not, parts_eq_empty_iff] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : Inhabited (Finpartition ⊥) := inferInstance P : Finpartition ⊥ ⊢ P = default [PROOFSTEP] ext a [GOAL] case parts.a α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a✝ : α P✝ : Finpartition a✝ src✝ : Inhabited (Finpartition ⊥) := inferInstance P : Finpartition ⊥ a : α ⊢ a ∈ P.parts ↔ a ∈ default.parts [PROOFSTEP] exact iff_of_false (fun h ↦ P.ne_bot h <| le_bot_iff.1 <| P.le h) (not_mem_empty a) [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a ha : IsAtom a P : Finpartition a ⊢ P = default [PROOFSTEP] have h : ∀ b ∈ P.parts, b = a := fun _ hb ↦ (ha.le_iff.mp <| P.le hb).resolve_left (P.ne_bot hb) [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a ha : IsAtom a P : Finpartition a h : ∀ (b : α), b ∈ P.parts → b = a ⊢ P = default [PROOFSTEP] ext b [GOAL] case parts.a α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a ha : IsAtom a P : Finpartition a h : ∀ (b : α), b ∈ P.parts → b = a b : α ⊢ b ∈ P.parts ↔ b ∈ default.parts [PROOFSTEP] refine' Iff.trans ⟨h b, _⟩ mem_singleton.symm [GOAL] case parts.a α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a ha : IsAtom a P : Finpartition a h : ∀ (b : α), b ∈ P.parts → b = a b : α ⊢ b = a → b ∈ P.parts [PROOFSTEP] rintro rfl [GOAL] case parts.a α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α b : α P✝ : Finpartition b ha : IsAtom b P : Finpartition b h : ∀ (b_1 : α), b_1 ∈ P.parts → b_1 = b ⊢ b ∈ P.parts [PROOFSTEP] obtain ⟨c, hc⟩ := P.parts_nonempty ha.1 [GOAL] case parts.a.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α b : α P✝ : Finpartition b ha : IsAtom b P : Finpartition b h : ∀ (b_1 : α), b_1 ∈ P.parts → b_1 = b c : α hc : c ∈ P.parts ⊢ b ∈ P.parts [PROOFSTEP] simp_rw [← h c hc] [GOAL] case parts.a.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α b : α P✝ : Finpartition b ha : IsAtom b P : Finpartition b h : ∀ (b_1 : α), b_1 ∈ P.parts → b_1 = b c : α hc : c ∈ P.parts ⊢ c ∈ P.parts [PROOFSTEP] exact hc [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hQR : Q ≤ R b : α hb : b ∈ P.parts ⊢ ∃ c, c ∈ R.parts ∧ b ≤ c [PROOFSTEP] obtain ⟨c, hc, hbc⟩ := hPQ hb [GOAL] case intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hQR : Q ≤ R b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c ⊢ ∃ c, c ∈ R.parts ∧ b ≤ c [PROOFSTEP] obtain ⟨d, hd, hcd⟩ := hQR hc [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hQR : Q ≤ R b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c d : α hd : d ∈ R.parts hcd : c ≤ d ⊢ ∃ c, c ∈ R.parts ∧ b ≤ c [PROOFSTEP] exact ⟨d, hd, hbc.trans hcd⟩ [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P ⊢ P = Q [PROOFSTEP] ext b [GOAL] case parts.a α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α ⊢ b ∈ P.parts ↔ b ∈ Q.parts [PROOFSTEP] refine' ⟨fun hb ↦ _, fun hb ↦ _⟩ [GOAL] case parts.a.refine'_1 α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ P.parts ⊢ b ∈ Q.parts [PROOFSTEP] obtain ⟨c, hc, hbc⟩ := hPQ hb [GOAL] case parts.a.refine'_1.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c ⊢ b ∈ Q.parts [PROOFSTEP] obtain ⟨d, hd, hcd⟩ := hQP hc [GOAL] case parts.a.refine'_1.intro.intro.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c d : α hd : d ∈ P.parts hcd : c ≤ d ⊢ b ∈ Q.parts [PROOFSTEP] rwa [hbc.antisymm] [GOAL] case parts.a.refine'_1.intro.intro.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c d : α hd : d ∈ P.parts hcd : c ≤ d ⊢ c ≤ b [PROOFSTEP] rwa [P.disjoint.eq_of_le hb hd (P.ne_bot hb) (hbc.trans hcd)] [GOAL] case parts.a.refine'_2 α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ Q.parts ⊢ b ∈ P.parts [PROOFSTEP] obtain ⟨c, hc, hbc⟩ := hQP hb [GOAL] case parts.a.refine'_2.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ Q.parts c : α hc : c ∈ P.parts hbc : b ≤ c ⊢ b ∈ P.parts [PROOFSTEP] obtain ⟨d, hd, hcd⟩ := hPQ hc [GOAL] case parts.a.refine'_2.intro.intro.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ Q.parts c : α hc : c ∈ P.parts hbc : b ≤ c d : α hd : d ∈ Q.parts hcd : c ≤ d ⊢ b ∈ P.parts [PROOFSTEP] rwa [hbc.antisymm] [GOAL] case parts.a.refine'_2.intro.intro.intro.intro α : Type u_1 inst✝¹ : Lattice α inst✝ : OrderBot α a : α P✝ : Finpartition a src✝ : LE (Finpartition a) := inferInstance P Q : Finpartition a hPQ : P ≤ Q hQP : Q ≤ P b : α hb : b ∈ Q.parts c : α hc : c ∈ P.parts hbc : b ≤ c d : α hd : d ∈ Q.parts hcd : c ≤ d ⊢ c ≤ b [PROOFSTEP] rwa [Q.disjoint.eq_of_le hb hd (Q.ne_bot hb) (hbc.trans hcd)] [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a : α P✝ : Finpartition a inst✝ : Decidable (a = ⊥) P : Finpartition a ⊢ P ≤ ⊤ [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a : α P✝ : Finpartition a inst✝ : Decidable (a = ⊥) P : Finpartition a h : a = ⊥ ⊢ P ≤ ⊤ [PROOFSTEP] intro x hx [GOAL] case pos α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a : α P✝ : Finpartition a inst✝ : Decidable (a = ⊥) P : Finpartition a h : a = ⊥ x : α hx : x ∈ P.parts ⊢ ∃ c, c ∈ ⊤.parts ∧ x ≤ c [PROOFSTEP] simpa [h, P.ne_bot hx] using P.le hx [GOAL] case neg α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a : α P✝ : Finpartition a inst✝ : Decidable (a = ⊥) P : Finpartition a h : ¬a = ⊥ ⊢ P ≤ ⊤ [PROOFSTEP] exact fun b hb ↦ ⟨a, mem_singleton_self _, P.le hb⟩ [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a✝ : α P : Finpartition a✝ a : α inst✝ : Decidable (a = ⊥) ⊢ ⊤.parts ⊆ {a} [PROOFSTEP] intro b hb [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a✝ : α P : Finpartition a✝ a : α inst✝ : Decidable (a = ⊥) b : α hb : b ∈ ⊤.parts ⊢ b ∈ {a} [PROOFSTEP] have hb : b ∈ Finpartition.parts (dite _ _ _) := hb [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a✝ : α P : Finpartition a✝ a : α inst✝ : Decidable (a = ⊥) b : α hb✝ : b ∈ ⊤.parts hb : b ∈ (if ha : a = ⊥ then copy (Finpartition.empty α) (_ : ⊥ = a) else indiscrete ha).parts ⊢ b ∈ {a} [PROOFSTEP] split_ifs at hb [GOAL] case pos α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a✝ : α P : Finpartition a✝ a : α inst✝ : Decidable (a = ⊥) b : α hb✝ : b ∈ ⊤.parts h✝ : a = ⊥ hb : b ∈ (copy (Finpartition.empty α) (_ : ⊥ = a)).parts ⊢ b ∈ {a} [PROOFSTEP] simp only [copy_parts, empty_parts, not_mem_empty] at hb [GOAL] case neg α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α a✝ : α P : Finpartition a✝ a : α inst✝ : Decidable (a = ⊥) b : α hb✝ : b ∈ ⊤.parts h✝ : ¬a = ⊥ hb : b ∈ (indiscrete h✝).parts ⊢ b ∈ {a} [PROOFSTEP] exact hb [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ SupIndep (image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts)) id [PROOFSTEP] rw [supIndep_iff_disjoint_erase] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ ∀ (i : α), i ∈ image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts) → Disjoint (id i) (sup (erase (image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts)) i) id) [PROOFSTEP] simp only [mem_image, and_imp, exists_prop, forall_exists_index, id.def, Prod.exists, mem_product, Finset.disjoint_sup_right, mem_erase, Ne.def] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ ∀ (i x x_1 : α), x ∈ P.parts → x_1 ∈ Q.parts → x ⊓ x_1 = i → ∀ ⦃i_1 : α⦄, ¬i_1 = i → ∀ (x x_2 : α), x ∈ P.parts → x_2 ∈ Q.parts → x ⊓ x_2 = i_1 → Disjoint i i_1 [PROOFSTEP] rintro _ x₁ y₁ hx₁ hy₁ rfl _ h x₂ y₂ hx₂ hy₂ rfl [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a x₁ y₁ : α hx₁ : x₁ ∈ P.parts hy₁ : y₁ ∈ Q.parts x₂ y₂ : α hx₂ : x₂ ∈ P.parts hy₂ : y₂ ∈ Q.parts h : ¬x₂ ⊓ y₂ = x₁ ⊓ y₁ ⊢ Disjoint (x₁ ⊓ y₁) (x₂ ⊓ y₂) [PROOFSTEP] rcases eq_or_ne x₁ x₂ with (rfl | xdiff) [GOAL] case inl α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a x₁ y₁ : α hx₁ : x₁ ∈ P.parts hy₁ : y₁ ∈ Q.parts y₂ : α hy₂ : y₂ ∈ Q.parts hx₂ : x₁ ∈ P.parts h : ¬x₁ ⊓ y₂ = x₁ ⊓ y₁ ⊢ Disjoint (x₁ ⊓ y₁) (x₁ ⊓ y₂) [PROOFSTEP] refine' Disjoint.mono inf_le_right inf_le_right (Q.disjoint hy₁ hy₂ _) [GOAL] case inl α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a x₁ y₁ : α hx₁ : x₁ ∈ P.parts hy₁ : y₁ ∈ Q.parts y₂ : α hy₂ : y₂ ∈ Q.parts hx₂ : x₁ ∈ P.parts h : ¬x₁ ⊓ y₂ = x₁ ⊓ y₁ ⊢ y₁ ≠ y₂ [PROOFSTEP] intro t [GOAL] case inl α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a x₁ y₁ : α hx₁ : x₁ ∈ P.parts hy₁ : y₁ ∈ Q.parts y₂ : α hy₂ : y₂ ∈ Q.parts hx₂ : x₁ ∈ P.parts h : ¬x₁ ⊓ y₂ = x₁ ⊓ y₁ t : y₁ = y₂ ⊢ False [PROOFSTEP] simp [t] at h [GOAL] case inr α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a x₁ y₁ : α hx₁ : x₁ ∈ P.parts hy₁ : y₁ ∈ Q.parts x₂ y₂ : α hx₂ : x₂ ∈ P.parts hy₂ : y₂ ∈ Q.parts h : ¬x₂ ⊓ y₂ = x₁ ⊓ y₁ xdiff : x₁ ≠ x₂ ⊢ Disjoint (x₁ ⊓ y₁) (x₂ ⊓ y₂) [PROOFSTEP] exact Disjoint.mono inf_le_left inf_le_left (P.disjoint hx₁ hx₂ xdiff) [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ sup (image (fun bc => bc.fst ⊓ bc.snd) (P.parts ×ˢ Q.parts)) id = a [PROOFSTEP] rw [sup_image, comp.left_id, sup_product_left] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ (sup P.parts fun i => sup Q.parts fun i' => (i, i').fst ⊓ (i, i').snd) = a [PROOFSTEP] trans P.parts.sup id ⊓ Q.parts.sup id [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ (sup P.parts fun i => sup Q.parts fun i' => (i, i').fst ⊓ (i, i').snd) = sup P.parts id ⊓ sup Q.parts id [PROOFSTEP] simp_rw [Finset.sup_inf_distrib_right, Finset.sup_inf_distrib_left] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ (sup P.parts fun i => sup Q.parts fun i' => i ⊓ i') = sup P.parts fun i => sup Q.parts fun i_1 => id i ⊓ id i_1 [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P Q : Finpartition a ⊢ sup P.parts id ⊓ sup Q.parts id = a [PROOFSTEP] rw [P.supParts, Q.supParts, inf_idem] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q : Finpartition a b : α hb : b ∈ (P ⊓ Q).parts ⊢ ∃ c, c ∈ P.parts ∧ b ≤ c [PROOFSTEP] obtain ⟨c, hc, rfl⟩ := mem_image.1 (mem_of_mem_erase hb) [GOAL] case intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q : Finpartition a c : α × α hc : c ∈ P.parts ×ˢ Q.parts hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts ⊢ ∃ c_1, c_1 ∈ P.parts ∧ c.fst ⊓ c.snd ≤ c_1 [PROOFSTEP] rw [mem_product] at hc [GOAL] case intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q : Finpartition a c : α × α hc : c.fst ∈ P.parts ∧ c.snd ∈ Q.parts hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts ⊢ ∃ c_1, c_1 ∈ P.parts ∧ c.fst ⊓ c.snd ≤ c_1 [PROOFSTEP] exact ⟨c.1, hc.1, inf_le_left⟩ [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q : Finpartition a b : α hb : b ∈ (P ⊓ Q).parts ⊢ ∃ c, c ∈ Q.parts ∧ b ≤ c [PROOFSTEP] obtain ⟨c, hc, rfl⟩ := mem_image.1 (mem_of_mem_erase hb) [GOAL] case intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q : Finpartition a c : α × α hc : c ∈ P.parts ×ˢ Q.parts hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts ⊢ ∃ c_1, c_1 ∈ Q.parts ∧ c.fst ⊓ c.snd ≤ c_1 [PROOFSTEP] rw [mem_product] at hc [GOAL] case intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q : Finpartition a c : α × α hc : c.fst ∈ P.parts ∧ c.snd ∈ Q.parts hb : c.fst ⊓ c.snd ∈ (P ⊓ Q).parts ⊢ ∃ c_1, c_1 ∈ Q.parts ∧ c.fst ⊓ c.snd ≤ c_1 [PROOFSTEP] exact ⟨c.2, hc.2, inf_le_right⟩ [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hPR : P ≤ R b : α hb : b ∈ P.parts ⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c [PROOFSTEP] obtain ⟨c, hc, hbc⟩ := hPQ hb [GOAL] case intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hPR : P ≤ R b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c ⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c [PROOFSTEP] obtain ⟨d, hd, hbd⟩ := hPR hb [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hPR : P ≤ R b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c d : α hd : d ∈ R.parts hbd : b ≤ d ⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c [PROOFSTEP] have h := _root_.le_inf hbc hbd [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α src✝¹ : PartialOrder (Finpartition a) := inferInstance src✝ : Inf (Finpartition a) := inferInstance P Q R : Finpartition a hPQ : P ≤ Q hPR : P ≤ R b : α hb : b ∈ P.parts c : α hc : c ∈ Q.parts hbc : b ≤ c d : α hd : d ∈ R.parts hbd : b ≤ d h : b ≤ c ⊓ d ⊢ ∃ c, c ∈ (Q ⊓ R).parts ∧ b ≤ c [PROOFSTEP] refine' ⟨c ⊓ d, mem_erase_of_ne_of_mem (ne_bot_of_le_ne_bot (P.ne_bot hb) h) (mem_image.2 ⟨(c, d), mem_product.2 ⟨hc, hd⟩, rfl⟩), h⟩ [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts ⊢ ∃ c, c ∈ P.parts ∧ c ≤ b [PROOFSTEP] by_contra H [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b ⊢ False [PROOFSTEP] refine' Q.ne_bot hb (disjoint_self.1 <| Disjoint.mono_right (Q.le hb) _) [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b ⊢ Disjoint b a [PROOFSTEP] rw [← P.supParts, Finset.disjoint_sup_right] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b ⊢ ∀ ⦃i : α⦄, i ∈ P.parts → Disjoint b (id i) [PROOFSTEP] rintro c hc [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b c : α hc : c ∈ P.parts ⊢ Disjoint b (id c) [PROOFSTEP] obtain ⟨d, hd, hcd⟩ := h hc [GOAL] case intro.intro α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b c : α hc : c ∈ P.parts d : α hd : d ∈ Q.parts hcd : c ≤ d ⊢ Disjoint b (id c) [PROOFSTEP] refine' (Q.disjoint hb hd _).mono_right hcd [GOAL] case intro.intro α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b c : α hc : c ∈ P.parts d : α hd : d ∈ Q.parts hcd : c ≤ d ⊢ b ≠ d [PROOFSTEP] rintro rfl [GOAL] case intro.intro α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts H : ¬∃ c, c ∈ P.parts ∧ c ≤ b c : α hc : c ∈ P.parts hd : b ∈ Q.parts hcd : c ≤ b ⊢ False [PROOFSTEP] simp only [not_exists, not_and] at H [GOAL] case intro.intro α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b : α P Q : Finpartition a h : P ≤ Q hb : b ∈ Q.parts c : α hc : c ∈ P.parts hd : b ∈ Q.parts hcd : c ≤ b H : ∀ (x : α), x ∈ P.parts → ¬x ≤ b ⊢ False [PROOFSTEP] exact H _ hc hcd [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a : α P Q : Finpartition a h : P ≤ Q ⊢ card Q.parts ≤ card P.parts [PROOFSTEP] classical have : ∀ b ∈ Q.parts, ∃ c ∈ P.parts, c ≤ b := fun b ↦ exists_le_of_le h choose f hP hf using this rw [← card_attach] refine' card_le_card_of_inj_on (fun b ↦ f _ b.2) (fun b _ ↦ hP _ b.2) fun b _ c _ h ↦ _ exact Subtype.coe_injective (Q.disjoint.elim b.2 c.2 fun H ↦ P.ne_bot (hP _ b.2) <| disjoint_self.1 <| H.mono (hf _ b.2) <| h.le.trans <| hf _ c.2) [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a : α P Q : Finpartition a h : P ≤ Q ⊢ card Q.parts ≤ card P.parts [PROOFSTEP] have : ∀ b ∈ Q.parts, ∃ c ∈ P.parts, c ≤ b := fun b ↦ exists_le_of_le h [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a : α P Q : Finpartition a h : P ≤ Q this : ∀ (b : α), b ∈ Q.parts → ∃ c, c ∈ P.parts ∧ c ≤ b ⊢ card Q.parts ≤ card P.parts [PROOFSTEP] choose f hP hf using this [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a : α P Q : Finpartition a h : P ≤ Q f : (b : α) → b ∈ Q.parts → α hP : ∀ (b : α) (a_1 : b ∈ Q.parts), f b a_1 ∈ P.parts hf : ∀ (b : α) (a : b ∈ Q.parts), f b a ≤ b ⊢ card Q.parts ≤ card P.parts [PROOFSTEP] rw [← card_attach] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a : α P Q : Finpartition a h : P ≤ Q f : (b : α) → b ∈ Q.parts → α hP : ∀ (b : α) (a_1 : b ∈ Q.parts), f b a_1 ∈ P.parts hf : ∀ (b : α) (a : b ∈ Q.parts), f b a ≤ b ⊢ card (attach Q.parts) ≤ card P.parts [PROOFSTEP] refine' card_le_card_of_inj_on (fun b ↦ f _ b.2) (fun b _ ↦ hP _ b.2) fun b _ c _ h ↦ _ [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a : α P Q : Finpartition a h✝ : P ≤ Q f : (b : α) → b ∈ Q.parts → α hP : ∀ (b : α) (a_1 : b ∈ Q.parts), f b a_1 ∈ P.parts hf : ∀ (b : α) (a : b ∈ Q.parts), f b a ≤ b b : { x // x ∈ Q.parts } x✝¹ : b ∈ attach Q.parts c : { x // x ∈ Q.parts } x✝ : c ∈ attach Q.parts h : (fun b => f ↑b (_ : ↑b ∈ Q.parts)) b = (fun b => f ↑b (_ : ↑b ∈ Q.parts)) c ⊢ b = c [PROOFSTEP] exact Subtype.coe_injective (Q.disjoint.elim b.2 c.2 fun H ↦ P.ne_bot (hP _ b.2) <| disjoint_self.1 <| H.mono (hf _ b.2) <| h.le.trans <| hf _ c.2) [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ SupIndep (Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) id [PROOFSTEP] rw [supIndep_iff_pairwiseDisjoint] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ Set.PairwiseDisjoint (↑(Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts)) id [PROOFSTEP] rintro a ha b hb h [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a✝ b✝ c : α P✝ : Finpartition a✝ Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a✝ Q : (i : α) → i ∈ P.parts → Finpartition i a : α ha : a ∈ ↑(Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) b : α hb : b ∈ ↑(Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) h : a ≠ b ⊢ (Disjoint on id) a b [PROOFSTEP] rw [Finset.mem_coe, Finset.mem_biUnion] at ha hb [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a✝ b✝ c : α P✝ : Finpartition a✝ Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a✝ Q : (i : α) → i ∈ P.parts → Finpartition i a : α ha : ∃ a_1, a_1 ∈ attach P.parts ∧ a ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts b : α hb : ∃ a, a ∈ attach P.parts ∧ b ∈ (Q ↑a (_ : ↑a ∈ P.parts)).parts h : a ≠ b ⊢ (Disjoint on id) a b [PROOFSTEP] obtain ⟨⟨A, hA⟩, -, ha⟩ := ha [GOAL] case intro.mk.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a✝ b✝ c : α P✝ : Finpartition a✝ Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a✝ Q : (i : α) → i ∈ P.parts → Finpartition i a b : α hb : ∃ a, a ∈ attach P.parts ∧ b ∈ (Q ↑a (_ : ↑a ∈ P.parts)).parts h : a ≠ b A : α hA : A ∈ P.parts ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts ⊢ (Disjoint on id) a b [PROOFSTEP] obtain ⟨⟨B, hB⟩, -, hb⟩ := hb [GOAL] case intro.mk.intro.intro.mk.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a✝ b✝ c : α P✝ : Finpartition a✝ Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a✝ Q : (i : α) → i ∈ P.parts → Finpartition i a b : α h : a ≠ b A : α hA : A ∈ P.parts ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts B : α hB : B ∈ P.parts hb : b ∈ (Q ↑{ val := B, property := hB } (_ : ↑{ val := B, property := hB } ∈ P.parts)).parts ⊢ (Disjoint on id) a b [PROOFSTEP] obtain rfl | hAB := eq_or_ne A B [GOAL] case intro.mk.intro.intro.mk.intro.inl α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a✝ b✝ c : α P✝ : Finpartition a✝ Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a✝ Q : (i : α) → i ∈ P.parts → Finpartition i a b : α h : a ≠ b A : α hA : A ∈ P.parts ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts hB : A ∈ P.parts hb : b ∈ (Q ↑{ val := A, property := hB } (_ : ↑{ val := A, property := hB } ∈ P.parts)).parts ⊢ (Disjoint on id) a b [PROOFSTEP] exact (Q A hA).disjoint ha hb h [GOAL] case intro.mk.intro.intro.mk.intro.inr α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a✝ b✝ c : α P✝ : Finpartition a✝ Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a✝ Q : (i : α) → i ∈ P.parts → Finpartition i a b : α h : a ≠ b A : α hA : A ∈ P.parts ha : a ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts B : α hB : B ∈ P.parts hb : b ∈ (Q ↑{ val := B, property := hB } (_ : ↑{ val := B, property := hB } ∈ P.parts)).parts hAB : A ≠ B ⊢ (Disjoint on id) a b [PROOFSTEP] exact (P.disjoint hA hB hAB).mono ((Q A hA).le ha) ((Q B hB).le hb) [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ sup (Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) id = a [PROOFSTEP] simp_rw [sup_biUnion] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ (sup (attach P.parts) fun x => sup (Q ↑x (_ : ↑x ∈ P.parts)).parts id) = a [PROOFSTEP] trans (sup P.parts id) [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ (sup (attach P.parts) fun x => sup (Q ↑x (_ : ↑x ∈ P.parts)).parts id) = sup P.parts id [PROOFSTEP] rw [eq_comm, ← Finset.sup_attach] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ (sup (attach P.parts) fun x => id ↑x) = sup (attach P.parts) fun x => sup (Q ↑x (_ : ↑x ∈ P.parts)).parts id [PROOFSTEP] exact sup_congr rfl fun b _hb ↦ (Q b.1 b.2).supParts.symm [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ sup P.parts id = a [PROOFSTEP] exact P.supParts [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i h : ⊥ ∈ Finset.biUnion (attach P.parts) fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts ⊢ False [PROOFSTEP] rw [Finset.mem_biUnion] at h [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i h : ∃ a_1, a_1 ∈ attach P.parts ∧ ⊥ ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts ⊢ False [PROOFSTEP] obtain ⟨⟨A, hA⟩, -, h⟩ := h [GOAL] case intro.mk.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P✝ : Finpartition a Q✝ : (i : α) → i ∈ P✝.parts → Finpartition i P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i A : α hA : A ∈ P.parts h : ⊥ ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts ⊢ False [PROOFSTEP] exact (Q A hA).not_bot_mem h [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ b ∈ (bind P Q).parts ↔ ∃ A hA, b ∈ (Q A hA).parts [PROOFSTEP] rw [bind, mem_biUnion] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ (∃ a_1, a_1 ∈ attach P.parts ∧ b ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts) ↔ ∃ A hA, b ∈ (Q A hA).parts [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ (∃ a_1, a_1 ∈ attach P.parts ∧ b ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts) → ∃ A hA, b ∈ (Q A hA).parts [PROOFSTEP] rintro ⟨⟨A, hA⟩, -, h⟩ [GOAL] case mp.intro.mk.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i A : α hA : A ∈ P.parts h : b ∈ (Q ↑{ val := A, property := hA } (_ : ↑{ val := A, property := hA } ∈ P.parts)).parts ⊢ ∃ A hA, b ∈ (Q A hA).parts [PROOFSTEP] exact ⟨A, hA, h⟩ [GOAL] case mpr α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ (∃ A hA, b ∈ (Q A hA).parts) → ∃ a_2, a_2 ∈ attach P.parts ∧ b ∈ (Q ↑a_2 (_ : ↑a_2 ∈ P.parts)).parts [PROOFSTEP] rintro ⟨A, hA, h⟩ [GOAL] case mpr.intro.intro α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q : (i : α) → i ∈ P.parts → Finpartition i A : α hA : A ∈ P.parts h : b ∈ (Q A hA).parts ⊢ ∃ a_1, a_1 ∈ attach P.parts ∧ b ∈ (Q ↑a_1 (_ : ↑a_1 ∈ P.parts)).parts [PROOFSTEP] exact ⟨⟨A, hA⟩, mem_attach _ ⟨A, hA⟩, h⟩ [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ card (bind P Q).parts = ∑ A in attach P.parts, card (Q ↑A (_ : ↑A ∈ P.parts)).parts [PROOFSTEP] apply card_biUnion [GOAL] case h α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i ⊢ ∀ (x : { x // x ∈ P.parts }), x ∈ attach P.parts → ∀ (y : { x // x ∈ P.parts }), y ∈ attach P.parts → x ≠ y → Disjoint ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) x) ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) y) [PROOFSTEP] rintro ⟨b, hb⟩ - ⟨c, hc⟩ - hbc [GOAL] case h.mk.mk α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α P : Finpartition a Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i b : α hb : b ∈ P.parts c : α hc : c ∈ P.parts hbc : { val := b, property := hb } ≠ { val := c, property := hc } ⊢ Disjoint ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb }) ((fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc }) [PROOFSTEP] rw [Finset.disjoint_left] [GOAL] case h.mk.mk α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α P : Finpartition a Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i b : α hb : b ∈ P.parts c : α hc : c ∈ P.parts hbc : { val := b, property := hb } ≠ { val := c, property := hc } ⊢ ∀ ⦃a_1 : α⦄, a_1 ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb } → ¬a_1 ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc } [PROOFSTEP] rintro d hdb hdc [GOAL] case h.mk.mk α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α P : Finpartition a Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i b : α hb : b ∈ P.parts c : α hc : c ∈ P.parts hbc : { val := b, property := hb } ≠ { val := c, property := hc } d : α hdb : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb } hdc : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc } ⊢ False [PROOFSTEP] rw [Ne.def, Subtype.mk_eq_mk] at hbc [GOAL] case h.mk.mk α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b✝ c✝ : α P : Finpartition a Q✝ Q : (i : α) → i ∈ P.parts → Finpartition i b : α hb : b ∈ P.parts c : α hc : c ∈ P.parts hbc : ¬b = c d : α hdb : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := b, property := hb } hdc : d ∈ (fun i => (Q ↑i (_ : ↑i ∈ P.parts)).parts) { val := c, property := hc } ⊢ False [PROOFSTEP] exact (Q b hb).ne_bot hdb (eq_bot_iff.2 <| (le_inf ((Q b hb).le hdb) <| (Q c hc).le hdc).trans <| (P.disjoint hb hc hbc).le_bot) [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a hb : b ≠ ⊥ hab : Disjoint a b hc : a ⊔ b = c ⊢ SupIndep (insert b P.parts) id [PROOFSTEP] rw [supIndep_iff_pairwiseDisjoint, coe_insert] [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a hb : b ≠ ⊥ hab : Disjoint a b hc : a ⊔ b = c ⊢ Set.PairwiseDisjoint (insert b ↑P.parts) id [PROOFSTEP] exact P.disjoint.insert fun d hd _ ↦ hab.symm.mono_right <| P.le hd [GOAL] α : Type u_1 inst✝² : DistribLattice α inst✝¹ : OrderBot α inst✝ : DecidableEq α a b c : α P : Finpartition a hb : b ≠ ⊥ hab : Disjoint a b hc : a ⊔ b = c ⊢ sup (insert b P.parts) id = c [PROOFSTEP] rwa [sup_insert, P.supParts, id, _root_.sup_comm] [GOAL] α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : DecidableEq α a b✝ c : α P : Finpartition a b : α ⊢ sup (image (fun x => x \ b) P.parts) id = a \ b [PROOFSTEP] rw [sup_image, comp.left_id, Finset.sup_sdiff_right, ← id_def, P.supParts] [GOAL] α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : DecidableEq α a b c : α P : Finpartition a ⊢ c ∈ (avoid P b).parts ↔ ∃ d, d ∈ P.parts ∧ ¬d ≤ b ∧ d \ b = c [PROOFSTEP] simp only [avoid, ofErase, mem_erase, Ne.def, mem_image, exists_prop, ← exists_and_left, @and_left_comm (c ≠ ⊥)] [GOAL] α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : DecidableEq α a b c : α P : Finpartition a ⊢ (∃ x, x ∈ P.parts ∧ ¬c = ⊥ ∧ x \ b = c) ↔ ∃ d, d ∈ P.parts ∧ ¬d ≤ b ∧ d \ b = c [PROOFSTEP] refine' exists_congr fun d ↦ and_congr_right' <| and_congr_left _ [GOAL] α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : DecidableEq α a b c : α P : Finpartition a d : α ⊢ d \ b = c → (¬c = ⊥ ↔ ¬d ≤ b) [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : DecidableEq α a b : α P : Finpartition a d : α ⊢ ¬d \ b = ⊥ ↔ ¬d ≤ b [PROOFSTEP] rw [sdiff_eq_bot_iff] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s a : α ha : a ∈ s ⊢ ∃ t, t ∈ P.parts ∧ a ∈ t [PROOFSTEP] simp_rw [← P.supParts] at ha [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s a : α ha : a ∈ sup P.parts id ⊢ ∃ t, t ∈ P.parts ∧ a ∈ t [PROOFSTEP] exact mem_sup.1 ha [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s ⊢ ∑ i in P.parts, card i = card s [PROOFSTEP] convert congr_arg Finset.card P.biUnion_parts [GOAL] case h.e'_2 α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s ⊢ ∑ i in P.parts, card i = card (Finset.biUnion P.parts id) [PROOFSTEP] rw [card_biUnion P.supIndep.pairwiseDisjoint] [GOAL] case h.e'_2 α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s ⊢ ∑ i in P.parts, card i = ∑ u in P.parts, card (id u) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α ⊢ Set.PairwiseDisjoint (↑(map { toFun := singleton, inj' := (_ : Injective singleton) } s)) id [PROOFSTEP] rw [Finset.coe_map] [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α ⊢ Set.PairwiseDisjoint (↑{ toFun := singleton, inj' := (_ : Injective singleton) } '' ↑s) id [PROOFSTEP] exact Finset.pairwiseDisjoint_range_singleton.subset (Set.image_subset_range _ _) [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α ⊢ sup (map { toFun := singleton, inj' := (_ : Injective singleton) } s) id = s [PROOFSTEP] rw [sup_map, comp.left_id, Embedding.coeFn_mk, Finset.sup_singleton'] [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α ⊢ ¬⊥ ∈ map { toFun := singleton, inj' := (_ : Injective singleton) } s [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P✝ : Finpartition s✝ s : Finset α src✝ : Bot (Finpartition s) := inferInstance P : Finpartition s t : Finset α ht : t ∈ ⊥.parts ⊢ ∃ c, c ∈ P.parts ∧ t ≤ c [PROOFSTEP] rw [mem_bot_iff] at ht [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P✝ : Finpartition s✝ s : Finset α src✝ : Bot (Finpartition s) := inferInstance P : Finpartition s t : Finset α ht : ∃ a, a ∈ s ∧ {a} = t ⊢ ∃ c, c ∈ P.parts ∧ t ≤ c [PROOFSTEP] obtain ⟨a, ha, rfl⟩ := ht [GOAL] case intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P✝ : Finpartition s✝ s : Finset α src✝ : Bot (Finpartition s) := inferInstance P : Finpartition s a : α ha : a ∈ s ⊢ ∃ c, c ∈ P.parts ∧ {a} ≤ c [PROOFSTEP] obtain ⟨t, ht, hat⟩ := P.exists_mem ha [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P✝ : Finpartition s✝ s : Finset α src✝ : Bot (Finpartition s) := inferInstance P : Finpartition s a : α ha : a ∈ s t : Finset α ht : t ∈ P.parts hat : a ∈ t ⊢ ∃ c, c ∈ P.parts ∧ {a} ≤ c [PROOFSTEP] exact ⟨t, ht, singleton_subset_iff.2 hat⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P✝ P : Finpartition s ⊢ card P.parts ≤ card s [PROOFSTEP] rw [← card_bot s] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P✝ P : Finpartition s ⊢ card P.parts ≤ card ⊥.parts [PROOFSTEP] exact card_mono bot_le [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) x : Finset α hx : x ∈ ↑(image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)) y : Finset α hy : y ∈ ↑(image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)) h : x ≠ y z : α hz1 : z ∈ id x hz2 : z ∈ id y ⊢ x = y [PROOFSTEP] rw [mem_coe, mem_image] at hx hy [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) x : Finset α hx : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = x y : Finset α hy : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = y h : x ≠ y z : α hz1 : z ∈ id x hz2 : z ∈ id y ⊢ x = y [PROOFSTEP] obtain ⟨Q, hQ, rfl⟩ := hx [GOAL] case intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) y : Finset α hy : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = y z : α hz2 : z ∈ id y Q : Finset (Finset α) hQ : Q ∈ powerset F h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ y hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) ⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s = y [PROOFSTEP] obtain ⟨R, hR, rfl⟩ := hy [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ∈ powerset F hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) R : Finset (Finset α) hR : R ∈ powerset F hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s ⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s = filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s [PROOFSTEP] suffices h' : Q = R [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ∈ powerset F hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) R : Finset (Finset α) hR : R ∈ powerset F hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s h' : Q = R ⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s = filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s [PROOFSTEP] subst h' [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ∈ powerset F hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) hR : Q ∈ powerset F hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ⊢ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s = filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s [PROOFSTEP] exact of_eq_true (eq_self (filter (fun i ↦ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s)) [GOAL] case h' α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ∈ powerset F hz1 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) R : Finset (Finset α) hR : R ∈ powerset F hz2 : z ∈ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s ⊢ Q = R [PROOFSTEP] rw [id, mem_filter] at hz1 hz2 [GOAL] case h' α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ∈ powerset F hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t) R : Finset (Finset α) hR : R ∈ powerset F hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s ⊢ Q = R [PROOFSTEP] rw [mem_powerset] at hQ hR [GOAL] case h' α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ⊆ F hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t) R : Finset (Finset α) hR : R ⊆ F hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s ⊢ Q = R [PROOFSTEP] ext i [GOAL] case h'.a α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ⊆ F hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t) R : Finset (Finset α) hR : R ⊆ F hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s i : Finset α ⊢ i ∈ Q ↔ i ∈ R [PROOFSTEP] refine' ⟨fun hi ↦ _, fun hi ↦ _⟩ [GOAL] case h'.a.refine'_1 α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ⊆ F hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t) R : Finset (Finset α) hR : R ⊆ F hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s i : Finset α hi : i ∈ Q ⊢ i ∈ R [PROOFSTEP] rwa [hz2.2 _ (hQ hi), ← hz1.2 _ (hQ hi)] [GOAL] case h'.a.refine'_2 α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) z : α Q : Finset (Finset α) hQ : Q ⊆ F hz1 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ z ∈ t) R : Finset (Finset α) hR : R ⊆ F hz2 : z ∈ s ∧ ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ z ∈ t) h : filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s ≠ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ R ↔ i ∈ t)) s i : Finset α hi : i ∈ R ⊢ i ∈ Q [PROOFSTEP] rwa [hz1.2 _ (hR hi), ← hz2.2 _ (hR hi)] [GOAL] α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) ⊢ sup (image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)) id = s [PROOFSTEP] refine' (Finset.sup_le fun t ht ↦ _).antisymm fun a ha ↦ _ [GOAL] case refine'_1 α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) t : Finset α ht : t ∈ image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F) ⊢ id t ≤ s [PROOFSTEP] rw [mem_image] at ht [GOAL] case refine'_1 α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) t : Finset α ht : ∃ a, a ∈ powerset F ∧ filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ a ↔ i ∈ t)) s = t ⊢ id t ≤ s [PROOFSTEP] obtain ⟨A, _, rfl⟩ := ht [GOAL] case refine'_1.intro.intro α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F A : Finset (Finset α) left✝ : A ∈ powerset F ⊢ id (filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ A ↔ i ∈ t)) s) ≤ s [PROOFSTEP] exact s.filter_subset _ [GOAL] case refine'_2 α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) a : α ha : a ∈ s ⊢ a ∈ sup (image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F)) id [PROOFSTEP] rw [mem_sup] [GOAL] case refine'_2 α : Type u_1 inst✝ : DecidableEq α s✝ t : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) a : α ha : a ∈ s ⊢ ∃ v, v ∈ image (fun Q => filter (fun i => ∀ (t : Finset α), t ∈ F → (t ∈ Q ↔ i ∈ t)) s) (powerset F) ∧ a ∈ id v [PROOFSTEP] refine' ⟨s.filter fun i ↦ ∀ t, t ∈ F → ((t ∈ F.filter fun u ↦ a ∈ u) ↔ i ∈ t), mem_image_of_mem _ (mem_powerset.2 <| filter_subset _ _), mem_filter.2 ⟨ha, fun t ht ↦ _⟩⟩ [GOAL] case refine'_2 α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) a : α ha : a ∈ s t : Finset α ht : t ∈ F ⊢ t ∈ filter (fun u => a ∈ u) F ↔ a ∈ t [PROOFSTEP] rw [mem_filter] [GOAL] case refine'_2 α : Type u_1 inst✝ : DecidableEq α s✝ t✝ : Finset α P : Finpartition s✝ s : Finset α F : Finset (Finset α) a : α ha : a ∈ s t : Finset α ht : t ∈ F ⊢ t ∈ F ∧ a ∈ t ↔ a ∈ t [PROOFSTEP] exact and_iff_right ht [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ⊢ t ∈ (atomise s F).parts ↔ Finset.Nonempty t ∧ ∃ Q x, filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s = t [PROOFSTEP] simp only [atomise, ofErase, bot_eq_empty, mem_erase, mem_image, nonempty_iff_ne_empty, mem_singleton, and_comm, mem_powerset, exists_prop] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) hs : Finset.Nonempty s ⊢ (atomise s ∅).parts = {s} [PROOFSTEP] simp only [atomise, powerset_empty, image_singleton, not_mem_empty, IsEmpty.forall_iff, imp_true_iff, filter_True] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) hs : Finset.Nonempty s ⊢ (ofErase {s} (_ : SupIndep {s} id) (_ : sup {s} id = s)).parts = {s} [PROOFSTEP] exact erase_eq_of_not_mem (not_mem_singleton.2 hs.ne_empty.symm) [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s ⊢ Finset.biUnion (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) id = t [PROOFSTEP] ext a [GOAL] case a α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s a : α ⊢ a ∈ Finset.biUnion (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) id ↔ a ∈ t [PROOFSTEP] refine' mem_biUnion.trans ⟨fun ⟨u, hu, ha⟩ ↦ (mem_filter.1 hu).2.1 ha, fun ha ↦ _⟩ [GOAL] case a α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s a : α ha : a ∈ t ⊢ ∃ a_1, a_1 ∈ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ∧ a ∈ id a_1 [PROOFSTEP] obtain ⟨u, hu, hau⟩ := (atomise s F).exists_mem (hts ha) [GOAL] case a.intro.intro α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s a : α ha : a ∈ t u : Finset α hu : u ∈ (atomise s F).parts hau : a ∈ u ⊢ ∃ a_1, a_1 ∈ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ∧ a ∈ id a_1 [PROOFSTEP] refine' ⟨u, mem_filter.2 ⟨hu, fun b hb ↦ _, _, hau⟩, hau⟩ [GOAL] case a.intro.intro α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s a : α ha : a ∈ t u : Finset α hu : u ∈ (atomise s F).parts hau : a ∈ u b : α hb : b ∈ u ⊢ b ∈ t [PROOFSTEP] obtain ⟨Q, _hQ, rfl⟩ := (mem_atomise.1 hu).2 [GOAL] case a.intro.intro.intro.intro α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s a : α ha : a ∈ t b : α Q : Finset (Finset α) _hQ : Q ⊆ F hu : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s ∈ (atomise s F).parts hau : a ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s hb : b ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s ⊢ b ∈ t [PROOFSTEP] rw [mem_filter] at hau hb [GOAL] case a.intro.intro.intro.intro α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F hts : t ⊆ s a : α ha : a ∈ t b : α Q : Finset (Finset α) _hQ : Q ⊆ F hu : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ i ∈ u)) s ∈ (atomise s F).parts hau : a ∈ s ∧ ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ a ∈ u) hb : b ∈ s ∧ ∀ (u : Finset α), u ∈ F → (u ∈ Q ↔ b ∈ u) ⊢ b ∈ t [PROOFSTEP] rwa [← hb.2 _ ht, hau.2 _ ht] [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F ⊢ card (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) ≤ 2 ^ (card F - 1) [PROOFSTEP] suffices h : ((atomise s F).parts.filter fun u ↦ u ⊆ t ∧ u.Nonempty) ⊆ (F.erase t).powerset.image fun P ↦ s.filter fun i ↦ ∀ x ∈ F, x ∈ insert t P ↔ i ∈ x [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F h : filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ⊆ image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t)) ⊢ card (filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts) ≤ 2 ^ (card F - 1) [PROOFSTEP] refine' (card_le_of_subset h).trans (card_image_le.trans _) [GOAL] α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F h : filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ⊆ image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t)) ⊢ card (powerset (erase F t)) ≤ 2 ^ (card F - 1) [PROOFSTEP] rw [card_powerset, card_erase_of_mem ht] [GOAL] case h α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F ⊢ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts ⊆ image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t)) [PROOFSTEP] rw [subset_iff] [GOAL] case h α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F ⊢ ∀ ⦃x : Finset α⦄, x ∈ filter (fun u => u ⊆ t ∧ Finset.Nonempty u) (atomise s F).parts → x ∈ image (fun P => filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t P ↔ i ∈ x)) s) (powerset (erase F t)) [PROOFSTEP] simp_rw [mem_image, mem_powerset, mem_filter, and_imp, Finset.Nonempty, exists_imp, mem_atomise, and_imp, Finset.Nonempty, exists_imp] [GOAL] case h α : Type u_1 inst✝ : DecidableEq α s t : Finset α P : Finpartition s F : Finset (Finset α) ht : t ∈ F ⊢ ∀ ⦃x : Finset α⦄ (x_1 : α), x_1 ∈ x → ∀ (x_2 : Finset (Finset α)), x_2 ⊆ F → filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ x_2 ↔ i ∈ u)) s = x → x ⊆ t → ∀ (x_4 : α), x_4 ∈ x → ∃ a, a ⊆ erase F t ∧ filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t a ↔ i ∈ x)) s = x [PROOFSTEP] rintro P' i hi P PQ rfl hy₂ j _hj [GOAL] case h α : Type u_1 inst✝ : DecidableEq α s t : Finset α P✝ : Finpartition s F : Finset (Finset α) ht : t ∈ F i : α P : Finset (Finset α) PQ : P ⊆ F hi : i ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s hy₂ : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s ⊆ t j : α _hj : j ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s ⊢ ∃ a, a ⊆ erase F t ∧ filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t a ↔ i ∈ x)) s = filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s [PROOFSTEP] refine' ⟨P.erase t, erase_subset_erase _ PQ, _⟩ [GOAL] case h α : Type u_1 inst✝ : DecidableEq α s t : Finset α P✝ : Finpartition s F : Finset (Finset α) ht : t ∈ F i : α P : Finset (Finset α) PQ : P ⊆ F hi : i ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s hy₂ : filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s ⊆ t j : α _hj : j ∈ filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s ⊢ filter (fun i => ∀ (x : Finset α), x ∈ F → (x ∈ insert t (erase P t) ↔ i ∈ x)) s = filter (fun i => ∀ (u : Finset α), u ∈ F → (u ∈ P ↔ i ∈ u)) s [PROOFSTEP] simp only [insert_erase (((mem_filter.1 hi).2 _ ht).2 <| hy₂ hi)]
{"mathlib_filename": "Mathlib.Order.Partition.Finpartition", "llama_tokens": 28454}
[GOAL] X Y : FinBoolAlgCat f g : X ⟶ Y h : (forget₂ FinBoolAlgCat FinPartOrd).map f = (forget₂ FinBoolAlgCat FinPartOrd).map g ⊢ f = g [PROOFSTEP] dsimp at * [GOAL] X Y : FinBoolAlgCat f g : X ⟶ Y h : ↑f = ↑g ⊢ f = g [PROOFSTEP] apply FunLike.coe_injective [GOAL] case a X Y : FinBoolAlgCat f g : X ⟶ Y h : ↑f = ↑g ⊢ (fun f => ↑f) f = (fun f => ↑f) g [PROOFSTEP] dsimp [GOAL] case a X Y : FinBoolAlgCat f g : X ⟶ Y h : ↑f = ↑g ⊢ ↑f = ↑g [PROOFSTEP] ext x [GOAL] case a.h X Y : FinBoolAlgCat f g : X ⟶ Y h : ↑f = ↑g x : ↑X.toBoolAlgCat ⊢ ↑f x = ↑g x [PROOFSTEP] apply_fun (fun f => f x) at h [GOAL] case a.h X Y : FinBoolAlgCat f g : X ⟶ Y x : ↑X.toBoolAlgCat h : ↑↑f x = ↑↑g x ⊢ ↑f x = ↑g x [PROOFSTEP] exact h [GOAL] α β : FinBoolAlgCat e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat ⊢ ((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : FinBoolAlgCat e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat x✝ : (forget FinBoolAlgCat).obj α ⊢ ↑((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : FinBoolAlgCat e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat ⊢ ((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : FinBoolAlgCat e : ↑α.toBoolAlgCat ≃o ↑β.toBoolAlgCat x✝ : (forget FinBoolAlgCat).obj β ⊢ ↑((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBoolAlgCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.FinBoolAlgCat", "llama_tokens": 7968}
[GOAL] ⊢ ConcreteCategory CompleteLatCat [PROOFSTEP] dsimp [CompleteLatCat] [GOAL] ⊢ ConcreteCategory (Bundled CompleteLattice) [PROOFSTEP] infer_instance [GOAL] α β : CompleteLatCat e : ↑α ≃o ↑β ⊢ { tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫ { tosInfHom := { toFun := ↑(OrderIso.symm e), map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : CompleteLatCat e : ↑α ≃o ↑β x✝ : (forget CompleteLatCat).obj α ⊢ ↑({ tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } ≫ { tosInfHom := { toFun := ↑(OrderIso.symm e), map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : CompleteLatCat e : ↑α ≃o ↑β ⊢ { tosInfHom := { toFun := ↑(OrderIso.symm e), map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫ { tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : CompleteLatCat e : ↑α ≃o ↑β x✝ : (forget CompleteLatCat).obj β ⊢ ↑({ tosInfHom := { toFun := ↑(OrderIso.symm e), map_sInf' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sInf s) = sInf (↑(OrderIso.symm e) '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑β), ↑(OrderIso.symm e) (sSup s) = sSup (↑(OrderIso.symm e) '' s)) } ≫ { tosInfHom := { toFun := ↑e, map_sInf' := (_ : ∀ (s : Set ↑α), ↑e (sInf s) = sInf (↑e '' s)) }, map_sSup' := (_ : ∀ (s : Set ↑α), ↑e (sSup s) = sSup (↑e '' s)) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.CompleteLatCat", "llama_tokens": 1247}
[GOAL] α β : BddLatCat e : ↑α.toLat ≃o ↑β.toLat ⊢ ((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : BddLatCat e : ↑α.toLat ≃o ↑β.toLat x✝ : (forget BddLatCat).obj α ⊢ ↑((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : BddLatCat e : ↑α.toLat ≃o ↑β.toLat ⊢ ((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : BddLatCat e : ↑α.toLat ≃o ↑β.toLat x✝ : (forget BddLatCat).obj β ⊢ ↑((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toLat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] X : LatCat Y : BddLatCat f : latToBddLatCat.obj X ⟶ Y a b : ↑X ⊢ (some ∘ some) (a ⊔ b) = (some ∘ some) a ⊔ (some ∘ some) b [PROOFSTEP] rfl [GOAL] X : LatCat Y : BddLatCat f : latToBddLatCat.obj X ⟶ Y a b : ↑X ⊢ (some ∘ some) (a ⊓ b) = (some ∘ some) a ⊓ (some ∘ some) b [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Order.Category.BddLatCat", "llama_tokens": 7495}
[GOAL] α β : SemilatSupCat e : α.X ≃o β.X ⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : SemilatSupCat e : α.X ≃o β.X x✝ : (forget SemilatSupCat).obj α ⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : SemilatSupCat e : α.X ≃o β.X ⊢ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : SemilatSupCat e : α.X ≃o β.X x✝ : (forget SemilatSupCat).obj β ⊢ ↑({ toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : α.X), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_bot' := (_ : ↑e ⊥ = ⊥) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α β : SemilatInfCat e : α.X ≃o β.X ⊢ { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) } ≫ { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : SemilatInfCat e : α.X ≃o β.X x✝ : (forget SemilatInfCat).obj α ⊢ ↑({ toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) } ≫ { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : SemilatInfCat e : α.X ≃o β.X ⊢ { toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) } ≫ { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : SemilatInfCat e : α.X ≃o β.X x✝ : (forget SemilatInfCat).obj β ⊢ ↑({ toInfHom := { toFun := ↑(OrderIso.symm e), map_inf' := (_ : ∀ (a b : β.X), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤) } ≫ { toInfHom := { toFun := ↑e, map_inf' := (_ : ∀ (a b : α.X), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }, map_top' := (_ : ↑e ⊤ = ⊤) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.SemilatCat", "llama_tokens": 2188}
{"mathlib_filename": "Mathlib.Order.Extension.Well", "llama_tokens": 0}
[GOAL] α β : LinOrdCat e : ↑α ≃o ↑β ⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α [PROOFSTEP] ext x [GOAL] case w α β : LinOrdCat e : ↑α ≃o ↑β x : (forget LinOrdCat).obj α ⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x [PROOFSTEP] exact e.symm_apply_apply x [GOAL] α β : LinOrdCat e : ↑α ≃o ↑β ⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext x [GOAL] case w α β : LinOrdCat e : ↑α ≃o ↑β x : (forget LinOrdCat).obj β ⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x [PROOFSTEP] exact e.apply_symm_apply x
{"mathlib_filename": "Mathlib.Order.Category.LinOrdCat", "llama_tokens": 306}
[GOAL] α β : PartOrdCat e : ↑α ≃o ↑β ⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α [PROOFSTEP] ext x [GOAL] case w α β : PartOrdCat e : ↑α ≃o ↑β x : (forget PartOrdCat).obj α ⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x [PROOFSTEP] exact e.symm_apply_apply x [GOAL] α β : PartOrdCat e : ↑α ≃o ↑β ⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext x [GOAL] case w α β : PartOrdCat e : ↑α ≃o ↑β x : (forget PartOrdCat).obj β ⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x [PROOFSTEP] exact e.apply_symm_apply x [GOAL] X : PreordCat ⊢ { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map (𝟙 X) = 𝟙 ({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.obj X) [PROOFSTEP] ext x [GOAL] case w X : PreordCat x : (forget PartOrdCat).obj ({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.obj X) ⊢ ↑({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map (𝟙 X)) x = ↑(𝟙 ({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.obj X)) x [PROOFSTEP] exact Quotient.inductionOn' x fun x => Quotient.map'_mk'' _ (fun a b => id) _ [GOAL] X✝ Y✝ Z✝ : PreordCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map (f ≫ g) = { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map f ≫ { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map g [PROOFSTEP] ext x [GOAL] case w X✝ Y✝ Z✝ : PreordCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ x : (forget PartOrdCat).obj ({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.obj X✝) ⊢ ↑({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map (f ≫ g)) x = ↑({ obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map f ≫ { obj := fun X => PartOrdCat.of (Antisymmetrization ↑X fun x x_1 => x ≤ x_1), map := fun {X Y} f => OrderHom.antisymmetrization f }.map g) x [PROOFSTEP] exact Quotient.inductionOn' x fun x => OrderHom.antisymmetrization_apply_mk _ _
{"mathlib_filename": "Mathlib.Order.Category.PartOrdCat", "llama_tokens": 1377}
[GOAL] α β : BoolAlgCat e : ↑α ≃o ↑β ⊢ ((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : BoolAlgCat e : ↑α ≃o ↑β x✝ : (forget BoolAlgCat).obj α ⊢ ↑((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : BoolAlgCat e : ↑α ≃o ↑β ⊢ ((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : BoolAlgCat e : ↑α ≃o ↑β x✝ : (forget BoolAlgCat).obj β ⊢ ↑((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.BoolAlgCat", "llama_tokens": 6973}
[GOAL] α β : BddOrdCat e : ↑α.toPartOrd ≃o ↑β.toPartOrd ⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : BddOrdCat e : ↑α.toPartOrd ≃o ↑β.toPartOrd x✝ : (forget BddOrdCat).obj α ⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : BddOrdCat e : ↑α.toPartOrd ≃o ↑β.toPartOrd ⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : BddOrdCat e : ↑α.toPartOrd ≃o ↑β.toPartOrd x✝ : (forget BddOrdCat).obj β ⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.BddOrdCat", "llama_tokens": 360}